WO2016043173A1 - Rfid device and object with rfid device - Google Patents

Rfid device and object with rfid device Download PDF

Info

Publication number
WO2016043173A1
WO2016043173A1 PCT/JP2015/076093 JP2015076093W WO2016043173A1 WO 2016043173 A1 WO2016043173 A1 WO 2016043173A1 JP 2015076093 W JP2015076093 W JP 2015076093W WO 2016043173 A1 WO2016043173 A1 WO 2016043173A1
Authority
WO
WIPO (PCT)
Prior art keywords
rfid device
dipole antenna
auxiliary electrode
circumferential direction
auxiliary
Prior art date
Application number
PCT/JP2015/076093
Other languages
French (fr)
Japanese (ja)
Inventor
邦宏 駒木
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Publication of WO2016043173A1 publication Critical patent/WO2016043173A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/26Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength

Definitions

  • the present invention relates to an RFID (Radio Frequency IDentification) device and an object with an RFID device, and a band-shaped dipole antenna connected to an RFIC (Radio Frequency Integration Circuit) element extends on the peripheral surface of the object.
  • the present invention relates to an RFID device and an object with an RFID device provided.
  • a typical RFID inlay (wireless communication device) is disclosed in Patent Document 1.
  • This RFID inlay has the advantage of being highly resistant to folding and bending and having high reliability.
  • the electromagnetic wave is strongly directed in the direction in which the surface on which the RFID inlay is attached, but decreases in a direction different from this direction.
  • the phenomenon in which the radiation characteristics of electromagnetic waves differ depending on the direction brings about a decrease in usability as an RFID inlay.
  • the directivity in the direction opposite to the mounting surface of the RFID inlay is to some extent by extending the electrode (antenna) forming the RFID inlay and extending it to the back side of the object or making it into a loop. Improved. However, it is necessary to adjust the length of the electrode in consideration of the resonance frequency of the RFID inlay. If the electrode is unnecessarily long, the gain decreases in the direction in which the mounting surface of the RFID inlay faces. Therefore, for example, when the RFID inlay is attached to a cylindrical or ring-shaped object, it is not easy to give a sufficient gain in the entire circumferential surface direction.
  • a main object of the present invention is to provide an RFID device capable of giving a sufficient gain in the entire circumferential direction of the object, and an object with an RFID device having a sufficient gain in the entire circumferential direction. is there.
  • An RFID device is an RFID device provided on an insulating object having a peripheral surface, and is connected to an RFIC element and has a predetermined gap with a strip-shaped dipole antenna extending in the circumferential direction of the object. And an end portion disposed opposite to the end portion of the dipole antenna, and a belt-like auxiliary electrode having the same electrical length as that of the dipole antenna and extending in the circumferential direction of the object.
  • the dipole antenna and the auxiliary electrode are provided on the object so as to go around the entire circumference of the object.
  • the number of auxiliary electrodes is two or more, and two adjacent auxiliary electrodes each have two end portions arranged to face each other with a predetermined gap.
  • the object is a columnar body or a ring-shaped object.
  • the RFIC element is mounted on a dipole antenna.
  • An object with an RFID device is an object with an RFID device in which an RFID device is provided on an insulating object having a peripheral surface, and the RFID device is connected to an RFIC element and extends in the circumferential direction of the object. It has a strip-shaped dipole antenna, an end facing the end of the dipole antenna with a predetermined gap, and an electrical length that is almost the same as the electrical length of the dipole antenna, and extends in the circumferential direction of the object.
  • a belt-like auxiliary electrode is an object with an RFID device in which an RFID device is provided on an insulating object having a peripheral surface, and the RFID device is connected to an RFIC element and extends in the circumferential direction of the object. It has a strip-shaped dipole antenna, an end facing the end of the dipole antenna with a predetermined gap, and an electrical length that is almost the same as the electrical length of the dipole antenna, and extends in the circumferential direction of the object.
  • An RFID device is a composite object comprising: an insulating first object having a peripheral surface; and a conductive second object having an intersecting surface facing a direction intersecting the circumferential direction of the first object.
  • An RFID device provided with a strip-shaped dipole antenna connected to an RFIC element and extending in a peripheral direction of a first object, and an end portion disposed opposite to an end portion of the dipole antenna with a predetermined gap. And a belt-like auxiliary electrode extending in the circumferential direction of the first object.
  • the auxiliary electrode has an electrical length that is approximately an integral multiple of the electrical length of the dipole antenna.
  • An object with an RFID device is an object with an RFID device in which an RFID device is provided on a composite object, and the composite object includes an insulating first object having a peripheral surface and a circumferential direction of the first object.
  • a conductive second object having a crossing surface facing in a direction crossing the first object, wherein the RFID device is connected to the RFIC element and extends in a circumferential direction of the first object; and a predetermined gap
  • a strip-shaped auxiliary electrode that has an end disposed opposite to the end of the dipole antenna and extends in the circumferential direction of the first object.
  • the strip-shaped dipole antenna and the auxiliary electrode extend in the circumferential direction of the object, the gain of the high-frequency signal is improved in a wide range in the circumferential direction of the object.
  • the end of the dipole antenna and the end of the auxiliary electrode face each other with a predetermined gap, and the electric length of the auxiliary electrode is substantially the same as the electric length of the dipole antenna, and the RFID device Since the frequency characteristic of the higher-order mode depends on the length of the auxiliary electrode or the length of the gap, the communication band can be widened by adjusting these lengths.
  • the usability of the RFID device is such that the radiation characteristics of the high-frequency signal are improved in a wide range in the circumferential direction of the object (that is, the gain in the circumferential direction of the object is increased), and the RFID depending on the length of the auxiliary electrode or the gap This is improved by widening the communication band of the device.
  • the direction in which a certain surface of the conductive second object faces intersects the circumferential direction of the insulating first object, and goes from the dipole antenna to the inside of the first object.
  • the band-shaped dipole antenna and the auxiliary electrode extend in the circumferential direction of the object, so that the gain of the high-frequency signal is improved in a wide range in the circumferential direction of the object.
  • the usability of the RFID device is improved by improving the radiation characteristics of the high-frequency signal in a wide range in the circumferential direction of the first object (that is, increasing the gain in the circumferential direction of the object).
  • FIG. 1 A is a perspective view showing an object with an RFID device of this embodiment
  • FIG. 2 B is a plan view showing an object with an RFID device of this embodiment
  • FIG. 2 shows an RFID device of this embodiment. It is a top view.
  • FIG. 1 It is an illustration figure which shows an example of the structure of the RFIC element applied to the RFID device of this Example, and its periphery. It is a circuit diagram which shows the equivalent circuit of the RFIC element of this Example. It is an illustration figure which shows an example of mode distribution of the high frequency signal radiated
  • (A) is an illustrative view showing the directivity of the frequency f0 component radiated from the object with the RFID device
  • (B) is an illustrative view showing the directivity of the frequency f1 component radiated from the object with the RFID device.
  • (C) is an illustrative view showing the directivity of the frequency f2 component radiated from the object with the RFID device.
  • FIG. 16 is a plan view showing a part of the RFID device shown in FIG. 15, and a plan view showing another part of the RFID device shown in FIG. 15. It is an enlarged view which shows the state which expanded the principal part of the RFID device shown in FIG. Furthermore, it is an illustration figure which shows the attachment state of the RFID device which comprises the object with an RFID device of another Example.
  • FIG. 19 is a plan view showing a part of the RFID device shown in FIG. 18 and a plan view showing another part of the RFID device shown in FIG. 18.
  • (A) is a top view which shows the object with the RFID device of another Example
  • (B) is a top view which shows the RFID device of another Example.
  • the object with the RFID device of the present invention is basically configured as shown in FIGS. 1 and 2, an object 10 with an RFID device includes an insulating object 12 formed in a ring shape.
  • the RFID device 14 wireless communication device
  • the object 12 is not limited to a ring-shaped object, and any object having a peripheral surface may be used. Further, the communication frequency is not limited to the UHF band.
  • the RFID device 14 includes a single RFID inlay 16 and three auxiliary electrodes 18a to 18c.
  • the RFID inlay 16 includes an RFIC element 16a and main electrodes 16b and 16c connected to the RFIC element 16a to form a dipole antenna.
  • the number of auxiliary electrodes is not limited to three, and at least one auxiliary electrode is sufficient.
  • the main electrodes 16b to 16c and the auxiliary electrodes 18a to 18c are all formed in a strip shape having a common width.
  • These electrodes are not limited to those having a common width, and the width of the main electrode and the auxiliary electrode may be different, or the main electrode or the auxiliary electrode may have a portion having a different width. Good.
  • the main electrode 16b is adjacent to the auxiliary electrode 18a
  • the auxiliary electrode 18a is adjacent to the auxiliary electrode 18b
  • the auxiliary electrode 18b is connected to the auxiliary electrode 18c.
  • the auxiliary electrode 18c is adjacent to the main electrode 16c.
  • the end of the main electrode 16b is disposed opposite to the starting end of the auxiliary electrode 18a with a predetermined gap
  • the end of the auxiliary electrode 18a is disposed opposite to the starting end of the auxiliary electrode 18b with a predetermined gap.
  • the end of the auxiliary electrode 18c is disposed opposite to the starting end of the auxiliary electrode 18c with a predetermined gap
  • the end of the auxiliary electrode 18c is disposed opposite to the starting end of the main electrode 16c with a predetermined gap.
  • the main electrode 16b is capacitively coupled with the auxiliary electrode 18a
  • the auxiliary electrode 18a is capacitively coupled with the auxiliary electrode 18b
  • the auxiliary electrode 18b is capacitively coupled with the auxiliary electrode 18c
  • the auxiliary electrode 18c is capacitively coupled with the main electrode 16c.
  • the “total electrical length of the main electrodes 16b and 16c” is synonymous with the electrical length of the dipole antenna.
  • the electric length of the dipole antenna is not the length from the start end of the main electrode 16c to the end of the main electrode 16b, but the electric length including the capacitance component of the matching circuit and the RFIC element 16a itself.
  • each of the auxiliary electrodes 18a to 18c is substantially the same as the total electrical length of the main electrodes 16b and 16c, and the dipole antenna and the auxiliary electrodes 18a to 18c are capacitively coupled as described above, the RFIC element 16a
  • the high-frequency signal output from is radiated from the dipole antenna and auxiliary electrodes 18a to 18c.
  • the radiation characteristic (gain) of the high-frequency signal is improved in a wide range in the circumferential direction of the object 12.
  • the RFID device 14 includes the auxiliary electrodes 18a to 18c, when the RFID device 14 is provided on the object 12 so as to extend in the circumferential direction of the object 12, the total electrical length of the main electrodes 16b and 16c and the object 12 There is no need to consider the difference from the circumferential length. Furthermore, since the frequency characteristic of the higher-order mode of the RFID device 14 depends on the length of each of the auxiliary electrodes 18a to 18c or the length of the gap, the communication band can be widened by adjusting these lengths. .
  • the ease of use of the RFID device 14 as an antenna is such that the radiation characteristics of high-frequency signals are improved in a wide range in the circumferential direction of the object 12, and the difference between the electrical length of the dipole antenna and the circumferential length of the object 12 is not considered.
  • the RFID device 14 is provided on the object 12, and the communication band of the RFID device 14 is widened according to the length of the auxiliary electrodes 18a to 18c or the gap. [Basic configuration 2]
  • the object with the RFID device of the present invention is also basically configured as shown in FIGS. 3 and 4, the RFID device-attached object 20 includes a first insulating object 22 formed in a ring shape and a second metal object 30 formed in a plate shape.
  • the second object 30 is attached to the first object 22 such that the opening of the first object 22 is blocked by the main surface of the second object 30. Therefore, the direction in which the main surface of the second object 30 faces intersects with the circumferential direction of the first object 22.
  • the first object 22 and the second object 30 as described above form a “composite object”.
  • An RFID device 24 having a UHF band as a communication frequency is provided on the outer peripheral surface of the first object 22.
  • the RFID device 24 includes a single RFID inlay 26 and two auxiliary electrodes 28a to 28b.
  • the RFID inlay 26 includes an RFIC element 26a and main electrodes 26b and 26c connected to the RFIC element 26a to form a dipole antenna.
  • the main electrode 26b is adjacent to the auxiliary electrode 28a
  • the auxiliary electrode 28a is adjacent to the auxiliary electrode 28b
  • the auxiliary electrode 28b is adjacent to the main electrode 26c.
  • the end of the main electrode 26b is disposed opposite to the starting end of the auxiliary electrode 28a with a predetermined gap
  • the end of the auxiliary electrode 28a is disposed opposite to the starting end of the auxiliary electrode 28b with a predetermined gap.
  • the end is disposed opposite to the start of the main electrode 26c with a predetermined gap.
  • the main electrode 26b is capacitively coupled to the auxiliary electrode 28a
  • the auxiliary electrode 28a is capacitively coupled to the auxiliary electrode 28b
  • the auxiliary electrode 28b is capacitively coupled to the main electrode 26c.
  • each of the auxiliary electrodes 28a to 28b is almost an integral multiple of the total electrical length of the main electrodes 26b and 26c, that is, the electrical length of the dipole antenna.
  • the electrical length of the auxiliary electrode 28a is adjusted in the range of 0.7 to 1.4 times the total electrical length of the main electrodes 26b and 26c.
  • the electrical length of the auxiliary electrode 28b is adjusted in the range of 1.4 to 2.1 times the total electrical length of the main electrodes 26b and 26c.
  • the opening of the first object 22 is blocked by the main surface of the second object 30, and the high-frequency signal directed from the dipole antenna toward the inside of the first object 22 is attenuated by the second object 30, so that the dipole antenna and the auxiliary electrodes 28a to 28a.
  • 28b extends in the circumferential direction of the first object 22 and is capacitively coupled to each other, and the electrical length of each of the auxiliary electrodes 28a to 28b is adjusted to be approximately an integral multiple of the total electrical length of the main electrodes 26b and 26c.
  • the high-frequency signal output from the RFIC element 26a is radiated from the dipole antenna and the auxiliary electrodes 28a to 28b.
  • the radiation characteristic (gain) toward the outside of the first object 22 is wide in the circumferential direction of the first object 22 even though the high-frequency signal from the dipole antenna toward the inside of the first object 22 is attenuated by the second object 30. Improve in range.
  • the RFID device 24 since the RFID device 24 includes the auxiliary electrodes 28a to 28b, when the RFID device 24 is provided on the first object 22 so as to extend in the circumferential direction of the first object 22, the electrical length of the dipole antenna and the first object There is no need to consider the difference in the circumferential length of 22. Furthermore, since the frequency characteristics of the higher-order mode of the RFID device 24 depend on the length of each of the auxiliary electrodes 28a to 28b or the length of the gap, the communication band can be widened by adjusting these lengths. .
  • the usability of the RFID device 24 as an antenna is that the high frequency signal radiation characteristics are improved in a wide range in the circumferential direction of the first object 22, and the difference between the electrical length of the dipole antenna and the circumferential length of the first object 22 is
  • the RFID device 24 can be provided on the first object 22 without consideration, and the communication band of the RFID device 24 can be widened according to the length of the auxiliary electrodes 28a to 28b or the cap. [Example 1]
  • the RFID device-equipped object 40 of this embodiment includes an insulating object 42 formed in a cylindrical shape.
  • the RFID device 44 is provided on the outer peripheral surface of the object 42 using the UHF band as a communication frequency.
  • the RFID device 44 is formed by mounting a single RFID inlay 46 and three auxiliary electrodes 48 a to 48 c on the surface of a band-shaped carrier film 50.
  • the RFID inlay 46 includes an RFIC element 46a and main electrodes 46b and 46c connected to the RFIC element 46a to form a dipole antenna.
  • the main electrodes 46 b to 46 c and the auxiliary electrodes 48 a to 48 c have a common width smaller than the width of the carrier film 50 and are formed in a strip shape.
  • the main electrodes 46b to 46c and the auxiliary electrodes 48a to 48c are provided at the center in the width direction on the surface of the carrier film 50, and extend in the circumferential direction of the carrier film 50 without overlapping each other.
  • the main electrode 46b is adjacent to the auxiliary electrode 48a
  • the auxiliary electrode 48a is adjacent to the auxiliary electrode 48b
  • the auxiliary electrode 48b is Adjacent to the auxiliary electrode 48c
  • the auxiliary electrode 48c is adjacent to the main electrode 46c.
  • the end of the main electrode 46b is disposed opposite to the starting end of the auxiliary electrode 48a with a predetermined gap
  • the end of the auxiliary electrode 48a is disposed opposite to the starting end of the auxiliary electrode 48b with a predetermined gap
  • the end of the auxiliary electrode 48c is disposed opposite to the starting end of the auxiliary electrode 48c with a predetermined gap
  • the end of the auxiliary electrode 48c is disposed opposite to the starting end of the main electrode 46c with a predetermined gap.
  • the main electrode 46b is capacitively coupled with the auxiliary electrode 48a
  • the auxiliary electrode 48a is capacitively coupled with the auxiliary electrode 48b
  • the auxiliary electrode 48b is capacitively coupled with the auxiliary electrode 48c
  • the auxiliary electrode 48c is capacitively coupled with the main electrode 46c.
  • the RFIC element 46a is provided so as to straddle the start end of the main electrode 46b and the end end of the main electrode 46c.
  • each of the auxiliary electrodes 48a to 48c substantially matches the total electrical length of the main electrodes 46b and 46c, that is, the electrical length of the dipole antenna. Specifically, the electrical length of each of the auxiliary electrodes 48a to 48c is adjusted in a range of 0.7 to 1.4 times the total electrical length of the main electrodes 46b and 46c.
  • Double-sided tape is applied to the back surface of the carrier film 50, and the RFID device 44 is attached to the object 42 in a posture in which the back surface of the carrier film 50 faces the outer peripheral surface of the object 42.
  • the length of the outer periphery of the object 42 substantially coincides with the length of the carrier film 50, and the carrier film 50 goes around the outer periphery of the object 42. Therefore, the RFID device 44 attached to the object 42 functions as a loop antenna.
  • the RFIC element 46a includes an RFIC chip 46cp for processing a high-frequency signal and a power supply circuit board 46fbs for mounting the RFIC chip 46cp.
  • the power supply circuit board 46fbs is formed in a plate shape using ceramic or resin as a material.
  • the RFIC chip 46cp incorporates a memory circuit and a signal processing circuit, and is sealed by a resin sealing layer 46md.
  • Terminal electrodes 46t1a and 46t1b arranged in the extending direction of the main electrodes 46b to 46c are provided on the lower surface of the RFIC chip 46cp.
  • Input / output terminals 46t2a and 46t2b arranged in the extending direction of the main electrodes 46b to 46c are also provided on the lower surface of the RFIC element 46a.
  • the terminal electrodes 46t1a and 46t1b are connected to the input / output terminals 46t2a and 46t2b via a power feeding circuit 46fct (see FIG. 7) provided on the power feeding circuit board 46fbs, respectively.
  • the input / output terminal 46t2a is connected to the start end of the main electrode 46b, and the input / output terminal 46t2b is connected to the end of the main electrode 46c.
  • FIG. 7 shows an equivalent circuit of the RFIC element 46a.
  • the power feeding circuit 46fct is provided on the power feeding circuit board 46fbs.
  • One end of the capacitor C1 is connected to the input / output terminal 46t2a, and the other end of the capacitor C1 is connected to the terminal electrode 46t1a.
  • One end of the capacitor C2 is connected to the input / output terminal 46t2b, and the other end of the capacitor C2 is connected to the terminal electrode 46t1b via the inductor L2.
  • One end of inductor L1 is connected to the other end of capacitor C1, and the other end of inductor L1 is connected to the other end of capacitor C2.
  • the RFIC element is configured to include a power supply circuit board having a built-in power supply circuit composed of capacitors and inductors, and an RFIC chip mounted on the power supply circuit board.
  • the power feeding circuit is configured by a resonance circuit having a resonance frequency corresponding to the carrier frequency (UHF band).
  • the center frequency of the RFID device is determined by the resonance frequency of the resonance circuit. That is, the frequency characteristics of the RFID device do not depend greatly on the electrical length of the radiating element (main electrode). However, the total electrical length of the plurality of main electrodes (including the power feeding circuit and the RFIC chip) is preferably an odd multiple of ⁇ / 2 because the gain is maximized when the carrier wavelength is ⁇ .
  • a high-order mode high-frequency signal is radiated from the RFID device 44.
  • an angle range of approximately 120 ° centered on the position of the RFIC element 46a is “RG0”
  • a high frequency signal indicating a frequency f0 is emitted from the angle range RG0
  • a frequency f1 is set from each of the angle ranges RG1a and RG1b.
  • a high-frequency signal indicating the frequency f2 is radiated from the angle range RG2.
  • the high-frequency signal having the frequency f0 has the radiation characteristic shown in FIG. 9A
  • the high-frequency signal having the frequency f1 has the radiation characteristic shown in FIG. 9B
  • the high-frequency signal having the frequency f2 is shown in FIG. 9C. It has the radiation characteristics shown.
  • the high-frequency signal having the frequency f0 is radiated mainly toward the outside of the object 42 from the position to which the angle range RG0 is assigned.
  • the high frequency signals of the frequencies f 1 and f 2 are radiated mainly from the entire circumference of the object 42 to the outside of the object 42.
  • the numerical values of the frequencies f0 to f2 depend on the length of each of the auxiliary electrodes 48a to 48c or the length of the gap described above. Therefore, the high-frequency signal radiated from the RFID device 44 shows frequency characteristics as shown in FIG. 10 corresponding to a certain length, and shows frequency characteristics like FIG. 11 corresponding to other lengths. Therefore, a wide band including a desired frequency is set as the communication band of the RFID device 44 by appropriately adjusting the length of each of the auxiliary electrodes 48a to 48c or the length of the gap described above.
  • the RFID device 44 is provided on the insulating object 42 having a peripheral surface.
  • the strip-shaped main electrodes 46b and 46c form a dipole antenna and extend in the circumferential direction of the object 42, and the start end of the main electrode 46b and the end of the main electrode 46c are connected to the RFIC element 46a.
  • each of the auxiliary electrodes 48a to 48c has substantially the same electrical length as that of the dipole antenna, and extends in the circumferential direction of the object.
  • the end of the main electrode 46b is disposed opposite to the starting end of the auxiliary electrode 48a with a predetermined gap
  • the end of the auxiliary electrode 48a is disposed opposite to the starting end of the auxiliary electrode 48b with a predetermined gap
  • the terminal end of 48b is arranged to face the starting end of the auxiliary electrode 48c with a predetermined gap
  • the terminal end of the auxiliary electrode 48c is arranged to face the starting end of the main electrode 46c with a predetermined gap.
  • each of the auxiliary electrodes 48a to 48c is substantially the same as the electrical length of the dipole antenna, and the auxiliary electrodes 48a to 48c are capacitively coupled to the dipole antenna. Therefore, the high frequency signal output from the RFIC element 46a is Radiated from the auxiliary electrodes 48a to 48c. Since the dipole antenna and the auxiliary electrodes 48 a to 48 c extend in the circumferential direction of the object 42 and function as a loop antenna, the radiation characteristic of the high-frequency signal is improved in a wide range in the circumferential direction of the object 42.
  • the RFID device 44 includes the auxiliary electrodes 48a to 48c, when the RFID device 44 is provided on the object 12 so as to extend in the circumferential direction of the object 42, the electrical length of the dipole antenna and the length of the object 42 in the circumferential direction. There is no need to consider the difference. Furthermore, since the frequency characteristics of the higher-order mode of the RFID device 44 depend on the length of each of the auxiliary electrodes 48a to 48c or the length of the gap, the communication band can be widened by adjusting these lengths. .
  • the ease of use of the RFID device 44 as an antenna is such that the radiation characteristics of high-frequency signals are improved in a wide range in the circumferential direction of the object 42, and the difference between the electrical length of the dipole antenna and the circumferential length of the object 42 is not considered.
  • the RFID device 44 is improved by providing the RFID device 44 on the object 42 and increasing the communication band of the RFID device 44 according to the length of the auxiliary electrodes 48a to 48c or the gap.
  • an object 60 with an RFID device includes an insulating first object 62 formed in a columnar shape and a cylinder. And a metal second object 72 formed in a ring shape or a ring shape.
  • the outer diameter of the first object 62 coincides with the outer diameter of the second object 72, and the first object 62 is positioned above the second object 72 so that the outer peripheral surface thereof is flush with the outer peripheral surface of the second object 72. Attached to.
  • the opening of the second object 72 is blocked by the first object 62.
  • the direction in which the opening surface or cross section of the second object 72 faces is orthogonal to the circumferential direction of the first object 62.
  • the first object 62 and the second object 72 as described above form a “composite object”.
  • An RFID device 64 having a UHF band as a communication frequency is provided on the outer peripheral surface of the first object 62.
  • the RFID device 64 is formed by mounting a single RFID inlay 66 and two auxiliary electrodes 68a to 68b on the surface of a band-shaped carrier film 70.
  • the RFID inlay 66 includes an RFIC element 66a and main electrodes 66b and 66c connected to the RFIC element 66a to form a dipole antenna.
  • the main electrodes 66b to 66c and the auxiliary electrodes 68a to 68b have a common width smaller than the width of the carrier film 70 and are formed in a strip shape.
  • the main electrodes 66b to 66c and the auxiliary electrodes 68a to 68b are provided at the center in the width direction on the surface of the carrier film 70, and extend in the circumferential direction of the carrier film 70 without overlapping each other.
  • the main electrode 66b is adjacent to the auxiliary electrode 68a
  • the auxiliary electrode 68a is adjacent to the auxiliary electrode 68b
  • the auxiliary electrode 68b is Adjacent to the main electrode 66c.
  • the end of the main electrode 66b is disposed opposite to the starting end of the auxiliary electrode 68a with a predetermined gap
  • the end of the auxiliary electrode 68a is disposed opposite to the starting end of the auxiliary electrode 68b with a predetermined gap.
  • the end is disposed opposite to the start of the main electrode 66c with a predetermined gap.
  • the main electrode 66b is capacitively coupled with the auxiliary electrode 68a
  • the auxiliary electrode 68a is capacitively coupled with the auxiliary electrode 68b
  • the auxiliary electrode 68b is capacitively coupled with the main electrode 66c.
  • the RFIC element 66a is provided so as to straddle the start end of the main electrode 66b and the end end of the main electrode 66c.
  • the electrical length of the auxiliary electrode 68a is adjusted in the range of 0.7 to 1.4 times the electrical length of the dipole antenna.
  • the electrical length of the auxiliary electrode 68b is adjusted in the range of 1.4 times to 2.1 times the electrical length of the dipole antenna.
  • Double-sided tape is applied to the back surface of the carrier film 70, and the RFID device 64 is attached to the first object 62 with the back surface of the carrier film 70 facing the outer peripheral surface of the first object 62.
  • the length of the outer periphery of the first object 62 substantially matches the length of the carrier film 70, and the carrier film 70 goes around the outer periphery of the first object 62. Therefore, the RFID device 64 attached to the first object 62 functions as a loop antenna.
  • the second object 72 attached to the lower side of the first object 62 is made of metal, and a high-frequency signal directed from the dipole antenna toward the inside of the first object 62 is attenuated by the second object 72.
  • 68a to 68b extend in the circumferential direction of the first object 62 and are capacitively coupled to each other, and the electrical length of each of the auxiliary electrodes 68a to 68b is adjusted to be approximately an integral multiple of the electrical length of the dipole antenna.
  • the high-frequency signal output from the RFIC element 66a is radiated from the dipole antenna and auxiliary electrodes 68a to 68b.
  • the radiation characteristic toward the outside of the first object 62 is improved in a wide range in the circumferential direction of the first object 62 even though the high-frequency signal from the dipole antenna toward the inside of the first object 62 is attenuated by the second object 72. To do.
  • the RFID device 64 includes the auxiliary electrodes 68a to 68b, when the RFID device 64 is provided on the first object 62 so as to extend in the circumferential direction of the first object 62, the electrical length of the dipole antenna and the first object There is no need to consider the difference in the circumferential length of 62. Furthermore, since the frequency characteristic of the higher-order mode of the RFID device 64 depends on the length of each of the auxiliary electrodes 68a to 68b or the length of the gap, the communication band can be widened by adjusting these lengths. .
  • the usability of the RFID device 64 as an antenna is that the high frequency signal radiation characteristics are improved in a wide range in the circumferential direction of the first object 62, and the difference between the electrical length of the dipole antenna and the circumferential length of the first object 62 is
  • the RFID device 64 can be provided on the first object 62 without consideration, and the communication band of the RFID device 64 can be widened according to the length of the auxiliary electrodes 68a to 68b or the cap.
  • the RFIC element is mounted on the dipole antenna.
  • the RFIC element may be disposed at a position away from the dipole antenna, and a high frequency signal output from the RFIC element may be supplied to the dipole antenna via a signal line.
  • an RFID device 80 shown in FIG. 15 is provided on the outer peripheral surface of an insulating cylindrical body (not shown).
  • the RFID device 80 uses the UHF band as a communication frequency, and includes a single RFID inlay 74 and three auxiliary electrodes 76a to 76c. Further, a strip-like carrier film 78d showing insulation is attached to the back surface of the RFID inlay 74, and strip-like carrier films 78a to 78c showing insulation are attached to the back surfaces of the auxiliary electrodes 76a to 76c, respectively.
  • the RFID inlay 74 includes an RFIC element 74a and main electrodes 74b and 74c connected to the RFIC element 74a to form a dipole antenna.
  • the main electrodes 74b to 74c have a common width smaller than the width of the carrier film 78d and are formed in a strip shape.
  • the main electrodes 74b to 74c are also provided at the center in the width direction of the surface of the carrier film 78d, and extend in the circumferential direction of the carrier film 78d without overlapping each other.
  • the auxiliary electrodes 76a to 76c also have a common width smaller than the widths of the carrier films 78a to 78c and are provided in the center in the width direction on the surfaces of the carrier films 78a to 78c.
  • the end of the main electrode 74b overlaps with the start of the auxiliary electrode 76a via the carrier film 78d along the clockwise direction, and the end of the auxiliary electrode 76a is the carrier film 78a.
  • the end of the auxiliary electrode 76b overlaps the start of the auxiliary electrode 76c via the carrier film 78b, and the end of the auxiliary electrode 76c overlaps the start of the main electrode 74c via the carrier film 78c.
  • the main electrode 74b is capacitively coupled with the auxiliary electrode 76a
  • the auxiliary electrode 76a is capacitively coupled with the auxiliary electrode 76b
  • the auxiliary electrode 76b is capacitively coupled with the auxiliary electrode 76c
  • the auxiliary electrode 76c is capacitively coupled with the main electrode 74c.
  • FIG. 17 in which a portion indicated by a broken line in FIG. 15 is enlarged, a capacitor C11 is formed between the main electrode 74b and the auxiliary electrode 76a.
  • Double-sided tape is applied to the back surfaces of the carrier films 78a to 78d, and the RFID device 80 is attached to the cylindrical body so that the back surfaces of the carrier films 78a to 78d face the outer peripheral surface of the cylindrical body.
  • the length of the outer periphery of the cylindrical body substantially matches the total length of the carrier films 78a to 78d, and the carrier films 78a to 78d circulate around the outer periphery of the cylindrical body. Therefore, the RFID device 80 attached to the cylindrical body functions as a loop antenna.
  • a capacitance is formed in the thickness direction of the overlapping portion of the main electrode 74b and the auxiliary electrode 76a, and a capacitance is formed in the thickness direction of the overlapping portion of the auxiliary electrode 76a and the auxiliary electrode 76b.
  • a capacitance is formed in the thickness direction of the overlapping portion between the auxiliary electrode 76c and the auxiliary electrode 76c, and a capacitance is formed in the thickness direction of the overlapping portion of the auxiliary electrode 76c and the main electrode 74c. Therefore, even if another article approaches these overlapping portions, the capacitance value does not change greatly. Further, it is not easily affected by the dielectric constant of the cylinder itself.
  • an RFID device 80 ' is provided on the outer peripheral surface of an insulating cylinder (not shown) as shown in FIG.
  • the structure of the RFID device 80 ′ is the same as that of the RFID device 80. I will omit the explanation as much as possible.
  • Double-sided tape is applied to the back surfaces of the carrier films 78a ′ to 78d ′, and the RFID device 80 ′ is attached to the cylindrical body with the back surfaces of the carrier films 78a ′ to 78d ′ facing the outer peripheral surface of the cylindrical body.
  • the length of the outer periphery of the cylindrical body substantially matches the total length of the carrier films 78a to 78d, and the carrier films 78a to 78d circulate around the outer periphery of the cylindrical body. Therefore, the RFID device 80 ′ attached to the cylindrical body functions as a loop antenna.
  • each of the carrier films 78a ′ to 78d ′ extends in an oblique direction with respect to the circumferential direction of the cylindrical body. Further, a line connecting the center points of the surfaces of the carrier films 78a ′ to 78d ′ extends in the circumferential direction of the cylindrical body.
  • the terminal side surface of the main electrode 74b ′ overlaps with the starting end side surface of the auxiliary electrode 76a ′
  • the terminal side surface of the auxiliary electrode 76a ′ overlaps with the starting end side surface of the auxiliary electrode 76b ′
  • the auxiliary electrode 76b ′ overlaps with the start end side surface of the main electrode 74c ′.
  • the end side surface of the auxiliary electrode 76c ′ overlaps with the start end side surface
  • the end surface of the auxiliary electrode 76c ′ overlaps with the start end side surface of the main electrode 74c ′.
  • the main electrode 74b ′ is capacitively coupled with the auxiliary electrode 76a ′
  • the auxiliary electrode 76a ′ is capacitively coupled with the auxiliary electrode 76b ′
  • the auxiliary electrode 76b ′ is capacitively coupled with the auxiliary electrode 76c ′
  • the auxiliary electrode 76c ′ is It is capacitively coupled to the main electrode 74c ′.
  • a capacitor C21 is formed between the main electrode 74b ′ and the auxiliary electrode 76a ′
  • a capacitor C22 is formed between the main electrode 74c ′ and the auxiliary electrode 76b ′.
  • the capacitance is formed between the two end side surfaces that are overlapped when viewed from the axial direction of the cylindrical body. Therefore, the capacitance value can be easily increased or decreased by adjusting the distance between the end side surfaces. Even when the diameter outside the cylinder is small, it is easy to ensure the length of the dipole antenna and the length of the auxiliary electrode.
  • the RFID device-equipped object 40 ′ of the other embodiments is almost the same as the RFID device-equipped object 40 shown in FIGS. 5A to 5C. Therefore, redundant description is omitted by adding “′” to the reference number of the common member.
  • the main electrode 46b ' is longer than the main electrode 46b, and the main electrode 46c' is shorter than the main electrode 46c. Therefore, the main electrodes 46b 'and 46c' constitute a so-called asymmetric dipole antenna.
  • the length from the start end of the main electrode 46c ′ to the end of the main electrode 46b ′ matches the length from the start end of the main electrode 46c to the end of the main electrode 46b. Therefore, the electrical length of this asymmetric dipole antenna matches the electrical length of the dipole antenna constituted by the main electrodes 46b and 46c.
  • the high-frequency signal output from the RFIC element 46a ′ is radiated from the dipole antenna and the auxiliary electrodes 48a ′ to 48c ′. Since the dipole antenna and the auxiliary electrodes 48a ′ to 48c ′ extend in the circumferential direction of the object 42 ′ and function as a loop antenna, the radiation characteristic of the high-frequency signal is improved in a wide range in the circumferential direction of the object 42 ′.

Abstract

 An object 10 with an RFID device is provided with an insulating object 12 and an RFID device 14 provided on the outer peripheral surface of the insulating object 12. The RFID device 14 is composed of a single RFID inlay 16 and three auxiliary electrodes 18a-18c. The RFID inlay 16 also has an RFIC element 16a, and main electrodes 16b-16c connected to same to form a dipole antenna. The dipole antenna and the auxiliary electrodes 18a-18c are formed in a band shape, and extend in the circumferential direction of the object 12 across a prescribed gap. The electrical length of each of the auxiliary electrodes 18a-18c is approximately equal to the electrical length of the dipole antenna.

Description

RFIDデバイスおよびRFIDデバイス付き物体RFID devices and objects with RFID devices
 この発明は、RFID(Radio Frequency IDentification)デバイスおよびRFIDデバイス付き物体に関し、RFIC(Radio Frequency Integration Circuit)素子に接続された帯状のダイポールアンテナが物体の周囲方向に延在するように物体の周面に設けられる、RFIDデバイスおよびRFIDデバイス付き物体に関する。 The present invention relates to an RFID (Radio Frequency IDentification) device and an object with an RFID device, and a band-shaped dipole antenna connected to an RFIC (Radio Frequency Integration Circuit) element extends on the peripheral surface of the object. The present invention relates to an RFID device and an object with an RFID device provided.
 代表的なRFIDインレイ(無線通信デバイス)が、特許文献1に開示されている。このRFIDインレイは、折り畳みや曲げに強く、信頼性が高いという利点を有している。このような利点を有するRFIDインレイをRFIDインレイよりも大きな物体に取り付ける際、電磁波は、RFIDインレイを取り付けた面が向く方向において強く指向するものの、この方向と異なる方向において低下する。このように電磁波の放射特性が方向によって相違する現象は、RFIDインレイとしての使い勝手の低下をもたらす。 A typical RFID inlay (wireless communication device) is disclosed in Patent Document 1. This RFID inlay has the advantage of being highly resistant to folding and bending and having high reliability. When an RFID inlay having such advantages is attached to an object larger than the RFID inlay, the electromagnetic wave is strongly directed in the direction in which the surface on which the RFID inlay is attached, but decreases in a direction different from this direction. Thus, the phenomenon in which the radiation characteristics of electromagnetic waves differ depending on the direction brings about a decrease in usability as an RFID inlay.
特許第5273326号Japanese Patent No. 5273326
 RFIDインレイの取り付け面とは逆方向への指向性は、RFIDインレイをなす電極(アンテナ)を長くして、これを物体の裏面側に引き延ばしたり、ループ状にしたりすることで、或る程度は改善される。しかし、電極の長さはRFIDインレイの共振周波数を考慮して調整する必要があり、むやみに電極を長くすると、RFIDインレイの取り付け面が向く方向での利得の低下を招く。したがって、たとえば円筒状やリング状の物体にRFIDインレイを貼り付ける場合、その全周面方向に十分な利得を持たせるのは容易ではない。 The directivity in the direction opposite to the mounting surface of the RFID inlay is to some extent by extending the electrode (antenna) forming the RFID inlay and extending it to the back side of the object or making it into a loop. Improved. However, it is necessary to adjust the length of the electrode in consideration of the resonance frequency of the RFID inlay. If the electrode is unnecessarily long, the gain decreases in the direction in which the mounting surface of the RFID inlay faces. Therefore, for example, when the RFID inlay is attached to a cylindrical or ring-shaped object, it is not easy to give a sufficient gain in the entire circumferential surface direction.
 それゆえに、この発明の主たる目的は、物体の全周方向に十分な利得を持たせることが可能なRFIDデバイス、および、全周方向に十分な利得を持ったRFIDデバイス付き物体を提供することである。 Therefore, a main object of the present invention is to provide an RFID device capable of giving a sufficient gain in the entire circumferential direction of the object, and an object with an RFID device having a sufficient gain in the entire circumferential direction. is there.
 第1の発明のRFIDデバイスは、周面を有する絶縁性の物体に設けられるRFIDデバイスであって、RFIC素子に接続され、物体の周方向に延在する帯状のダイポールアンテナと、所定のギャップをおいてダイポールアンテナの端部と対向配置された端部、およびダイポールアンテナの電気長とほぼ同じ電気長を有して、物体の周方向に延在する帯状の補助電極と、を備える。 An RFID device according to a first aspect of the present invention is an RFID device provided on an insulating object having a peripheral surface, and is connected to an RFIC element and has a predetermined gap with a strip-shaped dipole antenna extending in the circumferential direction of the object. And an end portion disposed opposite to the end portion of the dipole antenna, and a belt-like auxiliary electrode having the same electrical length as that of the dipole antenna and extending in the circumferential direction of the object.
 好ましくは、ダイポールアンテナおよび補助電極が物体の全周面を周回するように物体に設けられる。 Preferably, the dipole antenna and the auxiliary electrode are provided on the object so as to go around the entire circumference of the object.
 好ましくは、補助電極の数は2以上であり、隣り合う2つの補助電極は所定のギャップをおいて対向配置される2つの端部をそれぞれ有する。 Preferably, the number of auxiliary electrodes is two or more, and two adjacent auxiliary electrodes each have two end portions arranged to face each other with a predetermined gap.
 好ましくは、物体は柱状体またはリング状の物体である。 Preferably, the object is a columnar body or a ring-shaped object.
 好ましくは、RFIC素子はダイポールアンテナに搭載されている。 Preferably, the RFIC element is mounted on a dipole antenna.
 第2の発明のRFIDデバイス付き物体は、周面を有する絶縁性の物体にRFIDデバイスを設けてなるRFIDデバイス付き物体であって、RFIDデバイスは、RFIC素子に接続され、物体の周囲方向に延在する帯状のダイポールアンテナと、所定のギャップをおいてダイポールアンテナの端部と対向配置された端部、およびダイポールアンテナの電気長とほぼ同じ電気長を有して、物体の周囲方向に延在する帯状の補助電極と、を備える。 An object with an RFID device according to a second aspect of the invention is an object with an RFID device in which an RFID device is provided on an insulating object having a peripheral surface, and the RFID device is connected to an RFIC element and extends in the circumferential direction of the object. It has a strip-shaped dipole antenna, an end facing the end of the dipole antenna with a predetermined gap, and an electrical length that is almost the same as the electrical length of the dipole antenna, and extends in the circumferential direction of the object. A belt-like auxiliary electrode.
 第3の発明のRFIDデバイスは、周面を有する絶縁性の第1物体と、第1物体の周方向と交差する方向を向く交差面を有する導電性の第2物体と、を備える複合物体に設けられるRFIDデバイスであって、RFIC素子に接続され、第1物体の周囲方向に延在する帯状のダイポールアンテナと、所定のギャップをおいてダイポールアンテナの端部と対向配置された端部を有して、第1物体の周囲方向に延在する帯状の補助電極と、を備える。 An RFID device according to a third aspect of the present invention is a composite object comprising: an insulating first object having a peripheral surface; and a conductive second object having an intersecting surface facing a direction intersecting the circumferential direction of the first object. An RFID device provided with a strip-shaped dipole antenna connected to an RFIC element and extending in a peripheral direction of a first object, and an end portion disposed opposite to an end portion of the dipole antenna with a predetermined gap. And a belt-like auxiliary electrode extending in the circumferential direction of the first object.
 好ましくは、補助電極はダイポールアンテナの電気長のほぼ整数倍の電気長を有する。 Preferably, the auxiliary electrode has an electrical length that is approximately an integral multiple of the electrical length of the dipole antenna.
 第4の発明のRFIDデバイス付き物体は、RFIDデバイスを複合物体に設けてなるRFIDデバイス付き物体であって、複合物体は、周面を有する絶縁性の第1物体と、第1物体の周方向と交差する方向を向く交差面を有する導電性の第2物体と、を備え、RFIDデバイスは、RFIC素子に接続され、第1物体の周囲方向に延在する帯状のダイポールアンテナと、所定のギャップをおいてダイポールアンテナの端部と対向配置された端部を有して、第1物体の周囲方向に延在する帯状の補助電極と、を備える。 An object with an RFID device according to a fourth aspect of the invention is an object with an RFID device in which an RFID device is provided on a composite object, and the composite object includes an insulating first object having a peripheral surface and a circumferential direction of the first object. A conductive second object having a crossing surface facing in a direction crossing the first object, wherein the RFID device is connected to the RFIC element and extends in a circumferential direction of the first object; and a predetermined gap And a strip-shaped auxiliary electrode that has an end disposed opposite to the end of the dipole antenna and extends in the circumferential direction of the first object.
 第1の発明または第2の発明によれば、帯状のダイポールアンテナおよび補助電極は物体の周方向に延在するため、高周波信号の利得は物体の周方向における広い範囲で向上する。 According to the first invention or the second invention, since the strip-shaped dipole antenna and the auxiliary electrode extend in the circumferential direction of the object, the gain of the high-frequency signal is improved in a wide range in the circumferential direction of the object.
 また、ダイポールアンテナの端部と補助電極の端部とが所定のギャップを介して対向しており、かつ、補助電極の電気長がダイポールアンテナの電気長とほぼ同じ電気長であって、RFIDデバイスの高次モードの周波数特性は補助電極の長さまたはギャップの長さに依存するため、これらの長さを調整することで通信帯域の広帯域化が図られる。 The end of the dipole antenna and the end of the auxiliary electrode face each other with a predetermined gap, and the electric length of the auxiliary electrode is substantially the same as the electric length of the dipole antenna, and the RFID device Since the frequency characteristic of the higher-order mode depends on the length of the auxiliary electrode or the length of the gap, the communication band can be widened by adjusting these lengths.
 RFIDデバイスの使い勝手は、高周波信号の放射特性が物体の周方向における広い範囲で向上すること(つまり、物体の周方向における利得が大きくなること)、ならびに補助電極またはギャップの長さに応じてRFIDデバイスの通信帯域の広帯域化が図られることで、向上する。 The usability of the RFID device is such that the radiation characteristics of the high-frequency signal are improved in a wide range in the circumferential direction of the object (that is, the gain in the circumferential direction of the object is increased), and the RFID depending on the length of the auxiliary electrode or the gap This is improved by widening the communication band of the device.
 第3の発明または第4の発明によれば、導電性の第2物体の或る面が向く方向は絶縁性の第1物体の周方向と交差し、ダイポールアンテナから第1物体の内側に向かう高周波信号は第2物体によって減衰されるところ、帯状のダイポールアンテナおよび補助電極は物体の周方向に延在するため、高周波信号の利得は物体の周方向における広い範囲で向上する。 According to the third or fourth invention, the direction in which a certain surface of the conductive second object faces intersects the circumferential direction of the insulating first object, and goes from the dipole antenna to the inside of the first object. When the high-frequency signal is attenuated by the second object, the band-shaped dipole antenna and the auxiliary electrode extend in the circumferential direction of the object, so that the gain of the high-frequency signal is improved in a wide range in the circumferential direction of the object.
 RFIDデバイスの使い勝手は、高周波信号の放射特性が第1物体の周方向における広い範囲で向上すること(つまり、物体の周方向における利得が大きくなること)で、向上する。 The usability of the RFID device is improved by improving the radiation characteristics of the high-frequency signal in a wide range in the circumferential direction of the first object (that is, increasing the gain in the circumferential direction of the object).
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。 The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
この発明のRFIDデバイス付き物体の基本的構成の一例を示す斜視図である。It is a perspective view which shows an example of the fundamental structure of the object with an RFID device of this invention. 図1に示すRFIDデバイス付き物体を分解した状態を示す分解斜視図である。It is a disassembled perspective view which shows the state which decomposed | disassembled the object with an RFID device shown in FIG. この発明のRFIDデバイス付き物体の基本的構成の他の一例を示す斜視図である。It is a perspective view which shows another example of the fundamental structure of the object with an RFID device of this invention. 図3に示すRFIDデバイス付き物体を分解した状態を示す分解斜視図である。It is a disassembled perspective view which shows the state which decomposed | disassembled the object with an RFID device shown in FIG. (A)はこの実施例のRFIDデバイス付き物体を示す斜視図であり、(B)はこの実施例のRFIDデバイス付き物体を示す平面図であり、(C)はこの実施例のRFIDデバイスを示す平面図である。(A) is a perspective view showing an object with an RFID device of this embodiment, (B) is a plan view showing an object with an RFID device of this embodiment, and (C) shows an RFID device of this embodiment. It is a top view. この実施例のRFIDデバイスに適用されるRFIC素子およびその周辺の構造の一例を示す図解図である。It is an illustration figure which shows an example of the structure of the RFIC element applied to the RFID device of this Example, and its periphery. この実施例のRFIC素子の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the RFIC element of this Example. この実施例のRFIDデバイス付き物体から放射される高周波信号のモード分布の一例を示す図解図である。It is an illustration figure which shows an example of mode distribution of the high frequency signal radiated | emitted from the object with an RFID device of this Example. (A)はこのRFIDデバイス付き物体から放射される周波数f0成分の指向性を示す図解図であり、(B)はこのRFIDデバイス付き物体から放射される周波数f1成分の指向性を示す図解図であり、(C)はこのRFIDデバイス付き物体から放射される周波数f2成分の指向性を示す図解図である。(A) is an illustrative view showing the directivity of the frequency f0 component radiated from the object with the RFID device, and (B) is an illustrative view showing the directivity of the frequency f1 component radiated from the object with the RFID device. (C) is an illustrative view showing the directivity of the frequency f2 component radiated from the object with the RFID device. この実施例のRFIDデバイス付き物体から放射される高周波信号の周波数特性の一例を示すグラフである。It is a graph which shows an example of the frequency characteristic of the high frequency signal radiated | emitted from the object with an RFID device of this Example. この実施例のRFIDデバイス付き物体から放射される高周波信号の周波数特性の他の一例を示すグラフである。It is a graph which shows another example of the frequency characteristic of the high frequency signal radiated | emitted from the object with an RFID device of this Example. 他の実施例のRFIDデバイス付き物体を示す斜視図である。It is a perspective view which shows the object with the RFID device of another Example. 他の実施例のRFIDデバイス付き物体を分解した状態を示す分解斜視図である。It is a disassembled perspective view which shows the state which decomposed | disassembled the object with the RFID device of another Example. (A)は他の実施例のRFIDデバイス付き物体を示す平面図であり、(B)は他の実施例のRFIDデバイスを示す平面図である。(A) is a top view which shows the object with the RFID device of another Example, (B) is a top view which shows the RFID device of another Example. その他の実施例のRFIDデバイス付き物体を構成するRFIDデバイスの取り付け状態を示す図解図である。It is an illustration figure which shows the attachment state of the RFID device which comprises the object with an RFID device of another Example. 図15に示すRFIDデバイスの一部を示す平面図であり、図15に示すRFIDデバイスの他の一部を示す平面図である。FIG. 16 is a plan view showing a part of the RFID device shown in FIG. 15, and a plan view showing another part of the RFID device shown in FIG. 15. 図15に示すRFIDデバイスの要部を拡大した状態を示す拡大図である。It is an enlarged view which shows the state which expanded the principal part of the RFID device shown in FIG. さらにその他の実施例のRFIDデバイス付き物体を構成するRFIDデバイスの取り付け状態を示す図解図である。Furthermore, it is an illustration figure which shows the attachment state of the RFID device which comprises the object with an RFID device of another Example. 図18に示すRFIDデバイスの一部を示す平面図であり、図18に示すRFIDデバイスの他の一部を示す平面図である。FIG. 19 is a plan view showing a part of the RFID device shown in FIG. 18 and a plan view showing another part of the RFID device shown in FIG. 18. (A)は他の実施例のRFIDデバイス付き物体を示す平面図であり、(B)は他の実施例のRFIDデバイスを示す平面図である。(A) is a top view which shows the object with the RFID device of another Example, (B) is a top view which shows the RFID device of another Example.
[基本的構成1]
 この発明のRFIDデバイス付き物体は、基本的に図1および図2に示すように構成される。図1および図2において、RFIDデバイス付き物体10は、リング状に形成された絶縁性の物体12を含む。RFIDデバイス14(無線通信デバイス)は、UHF帯を通信周波数とするUHF帯RFIDタグとして、物体12の外周面に設けられる。物体12はリング状の物体に限定されるものではなく、周面を有するものであればよい。また、UHF帯を通信周波数とするものに限定されるものではない。
[Basic configuration 1]
The object with the RFID device of the present invention is basically configured as shown in FIGS. 1 and 2, an object 10 with an RFID device includes an insulating object 12 formed in a ring shape. The RFID device 14 (wireless communication device) is provided on the outer peripheral surface of the object 12 as a UHF band RFID tag whose communication frequency is the UHF band. The object 12 is not limited to a ring-shaped object, and any object having a peripheral surface may be used. Further, the communication frequency is not limited to the UHF band.
 詳しくは、RFIDデバイス14は、単一のRFIDインレイ16と、3つの補助電極18a~18cとによって構成される。また、RFIDインレイ16は、RFIC素子16aと、これに接続されてダイポールアンテナをなす主電極16bおよび16cとを有する。補助電極の本数は3本に限定されるものではなく、少なくとも1本あればよい。 Specifically, the RFID device 14 includes a single RFID inlay 16 and three auxiliary electrodes 18a to 18c. The RFID inlay 16 includes an RFIC element 16a and main electrodes 16b and 16c connected to the RFIC element 16a to form a dipole antenna. The number of auxiliary electrodes is not limited to three, and at least one auxiliary electrode is sufficient.
 主電極16b~16cおよび補助電極18a~18cはいずれも、共通の幅を有して帯状に形成される。また、主電極16b~16cおよび補助電極18a~18cは、物体12の高さ方法(=リングの幅方向)における共通の位置に設けられ、互いに重なることなく物体12の周方向に延在する。これらの電極は共通の幅を持つものに限定されるものではなく、主電極と補助電極の幅が異なっていてもよいし、主電極あるいは補助電極において異なる幅を持つ部位を有していてもよい。 The main electrodes 16b to 16c and the auxiliary electrodes 18a to 18c are all formed in a strip shape having a common width. The main electrodes 16b to 16c and the auxiliary electrodes 18a to 18c are provided at a common position in the height method of the object 12 (= the width direction of the ring), and extend in the circumferential direction of the object 12 without overlapping each other. These electrodes are not limited to those having a common width, and the width of the main electrode and the auxiliary electrode may be different, or the main electrode or the auxiliary electrode may have a portion having a different width. Good.
 RFIDデバイス14を物体12の上方から眺めたとき、時計回り方向に沿って、主電極16bは補助電極18aと隣り合い、補助電極18aは補助電極18bと隣り合い、補助電極18bは補助電極18cと隣り合い、補助電極18cは主電極16cと隣り合う。また、主電極16bの終端は所定のギャップをおいて補助電極18aの始端と対向配置され、補助電極18aの終端は所定のギャップをおいて補助電極18bの始端と対向配置され、補助電極18bの終端は所定のギャップをおいて補助電極18cの始端と対向配置され、補助電極18cの終端は所定のギャップをおいて主電極16cの始端と対向配置される。 When the RFID device 14 is viewed from above the object 12, along the clockwise direction, the main electrode 16b is adjacent to the auxiliary electrode 18a, the auxiliary electrode 18a is adjacent to the auxiliary electrode 18b, and the auxiliary electrode 18b is connected to the auxiliary electrode 18c. The auxiliary electrode 18c is adjacent to the main electrode 16c. The end of the main electrode 16b is disposed opposite to the starting end of the auxiliary electrode 18a with a predetermined gap, and the end of the auxiliary electrode 18a is disposed opposite to the starting end of the auxiliary electrode 18b with a predetermined gap. The end of the auxiliary electrode 18c is disposed opposite to the starting end of the auxiliary electrode 18c with a predetermined gap, and the end of the auxiliary electrode 18c is disposed opposite to the starting end of the main electrode 16c with a predetermined gap.
 これによって、主電極16bは補助電極18aと容量結合され、補助電極18aは補助電極18bと容量結合され、補助電極18bは補助電極18cと容量結合され、補助電極18cは主電極16cと容量結合される。 Thus, the main electrode 16b is capacitively coupled with the auxiliary electrode 18a, the auxiliary electrode 18a is capacitively coupled with the auxiliary electrode 18b, the auxiliary electrode 18b is capacitively coupled with the auxiliary electrode 18c, and the auxiliary electrode 18c is capacitively coupled with the main electrode 16c. The
 さらに、補助電極18a~18cの各々の電気長は、主電極16bおよび16cのトータルの電気長(=λ/2)とほぼ一致する。具体的には、補助電極18a~18cの各々の電気長は、主電極16bおよび16cのトータルの電気長の0.7倍~1.4倍の範囲で調整される。 Furthermore, the electrical length of each of the auxiliary electrodes 18a to 18c substantially matches the total electrical length (= λ / 2) of the main electrodes 16b and 16c. Specifically, the electrical length of each of the auxiliary electrodes 18a to 18c is adjusted in a range of 0.7 to 1.4 times the total electrical length of the main electrodes 16b and 16c.
 なお、“主電極16bおよび16cのトータルの電気長”は、ダイポールアンテナの電気長と同義である。また、ダイポールアンテナの電気長とは、主電極16cの始端から主電極16bの終端までの長さではなく、整合回路やRFIC素子16a自体が持つ容量成分等を含めた電気長である。 The “total electrical length of the main electrodes 16b and 16c” is synonymous with the electrical length of the dipole antenna. The electric length of the dipole antenna is not the length from the start end of the main electrode 16c to the end of the main electrode 16b, but the electric length including the capacitance component of the matching circuit and the RFIC element 16a itself.
 補助電極18a~18cの各々の電気長は主電極16bおよび16cのトータルの電気長とほぼ同じであり、ダイポールアンテナおよび補助電極18a~18cは上述のようにして容量結合されるため、RFIC素子16aから出力された高周波信号はダイポールアンテナおよび補助電極18a~18cから放射される。ここで、ダイポールアンテナおよび補助電極18a~18cは物体12の周方向に延在するため、高周波信号の放射特性(利得)は物体12の周方向における広い範囲で向上する。 Since the electrical length of each of the auxiliary electrodes 18a to 18c is substantially the same as the total electrical length of the main electrodes 16b and 16c, and the dipole antenna and the auxiliary electrodes 18a to 18c are capacitively coupled as described above, the RFIC element 16a The high-frequency signal output from is radiated from the dipole antenna and auxiliary electrodes 18a to 18c. Here, since the dipole antenna and the auxiliary electrodes 18a to 18c extend in the circumferential direction of the object 12, the radiation characteristic (gain) of the high-frequency signal is improved in a wide range in the circumferential direction of the object 12.
 また、RFIDデバイス14が補助電極18a~18cを備えることから、物体12の周方向に延在するようにRFIDデバイス14を物体12に設けるにあたって、主電極16bおよび16cのトータルの電気長と物体12の周方向の長さとの相違を考慮する必要がなくなる。さらに、RFIDデバイス14の高次モードの周波数特性は補助電極18a~18cの各々の長さまたはギャップの長さに依存するため、これらの長さを調整することで通信帯域の広帯域化が図られる。 Since the RFID device 14 includes the auxiliary electrodes 18a to 18c, when the RFID device 14 is provided on the object 12 so as to extend in the circumferential direction of the object 12, the total electrical length of the main electrodes 16b and 16c and the object 12 There is no need to consider the difference from the circumferential length. Furthermore, since the frequency characteristic of the higher-order mode of the RFID device 14 depends on the length of each of the auxiliary electrodes 18a to 18c or the length of the gap, the communication band can be widened by adjusting these lengths. .
 RFIDデバイス14のアンテナとしての使い勝手は、高周波信号の放射特性が物体12の周方向における広い範囲で向上すること、ダイポールアンテナの電気長と物体12の周方向の長さとの相違を考慮せずにRFIDデバイス14を物体12に設けられること、ならびに補助電極18a~18cまたはギャップの長さに応じてRFIDデバイス14の通信帯域の広帯域化が図られることで、向上する。
[基本的構成2]
The ease of use of the RFID device 14 as an antenna is such that the radiation characteristics of high-frequency signals are improved in a wide range in the circumferential direction of the object 12, and the difference between the electrical length of the dipole antenna and the circumferential length of the object 12 is not considered. The RFID device 14 is provided on the object 12, and the communication band of the RFID device 14 is widened according to the length of the auxiliary electrodes 18a to 18c or the gap.
[Basic configuration 2]
 この発明のRFIDデバイス付き物体はまた、基本的に図3および図4に示すように構成される。図3および図4において、RFIDデバイス付き物体20は、リング状に形成された絶縁性の第1物体22と、板状に形成された金属製の第2物体30とを含む。第2物体30は、第1物体22の開口が第2物体30の主面によって塞がれるように、第1物体22に取り付けられる。したがって、第2物体30の主面が向く方向は、第1物体22の周方向と交差する。このような第1物体22および第2物体30によって、“複合物体”が形成される。 The object with the RFID device of the present invention is also basically configured as shown in FIGS. 3 and 4, the RFID device-attached object 20 includes a first insulating object 22 formed in a ring shape and a second metal object 30 formed in a plate shape. The second object 30 is attached to the first object 22 such that the opening of the first object 22 is blocked by the main surface of the second object 30. Therefore, the direction in which the main surface of the second object 30 faces intersects with the circumferential direction of the first object 22. The first object 22 and the second object 30 as described above form a “composite object”.
 第1物体22の外周面には、UHF帯を通信周波数とするRFIDデバイス24が設けられる。詳しくは、RFIDデバイス24は、単一のRFIDインレイ26と、2つの補助電極28a~28bとによって構成される。また、RFIDインレイ26は、RFIC素子26aとこれに接続されてダイポールアンテナをなす主電極26bおよび26cとによって構成される。 An RFID device 24 having a UHF band as a communication frequency is provided on the outer peripheral surface of the first object 22. Specifically, the RFID device 24 includes a single RFID inlay 26 and two auxiliary electrodes 28a to 28b. The RFID inlay 26 includes an RFIC element 26a and main electrodes 26b and 26c connected to the RFIC element 26a to form a dipole antenna.
 主電極26b~26cおよび補助電極28a~28bはいずれも、共通の幅を有して帯状に形成される。また、主電極26b~26cおよび補助電極28a~28bは、第1物体22の高さ方法(=リングの幅方向)における共通の位置に設けられ、互いに重なることなく第1物体22の周方向に延在する。 The main electrodes 26b to 26c and the auxiliary electrodes 28a to 28b are all formed in a strip shape having a common width. Further, the main electrodes 26b to 26c and the auxiliary electrodes 28a to 28b are provided at a common position in the height method (= the width direction of the ring) of the first object 22, and do not overlap each other in the circumferential direction of the first object 22. Extend.
 RFIDデバイス24を上方から眺めたとき、時計回り方向に沿って、主電極26bは補助電極28aと隣り合い、補助電極28aは補助電極28bと隣り合い、補助電極28bは主電極26cと隣り合う。また、主電極26bの終端は所定のギャップをおいて補助電極28aの始端と対向配置され、補助電極28aの終端は所定のギャップをおいて補助電極28bの始端と対向配置され、補助電極28bの終端は所定のギャップをおいて主電極26cの始端と対向配置される。これによって、主電極26bは補助電極28aと容量結合され、補助電極28aは補助電極28bと容量結合され、補助電極28bは主電極26cと容量結合される。 When the RFID device 24 is viewed from above, along the clockwise direction, the main electrode 26b is adjacent to the auxiliary electrode 28a, the auxiliary electrode 28a is adjacent to the auxiliary electrode 28b, and the auxiliary electrode 28b is adjacent to the main electrode 26c. The end of the main electrode 26b is disposed opposite to the starting end of the auxiliary electrode 28a with a predetermined gap, and the end of the auxiliary electrode 28a is disposed opposite to the starting end of the auxiliary electrode 28b with a predetermined gap. The end is disposed opposite to the start of the main electrode 26c with a predetermined gap. As a result, the main electrode 26b is capacitively coupled to the auxiliary electrode 28a, the auxiliary electrode 28a is capacitively coupled to the auxiliary electrode 28b, and the auxiliary electrode 28b is capacitively coupled to the main electrode 26c.
 さらに、補助電極28a~28bの各々の電気長は、主電極26bおよび26cのトータルの電気長つまりダイポールアンテナの電気長のほぼ整数倍である。具体的には、補助電極28aの電気長は、主電極26bおよび26cのトータルの電気長の0.7倍~1.4倍の範囲で調整される。また、補助電極28bの電気長は、主電極26bおよび26cのトータルの電気長の1.4倍~2.1倍の範囲で調整される。 Furthermore, the electrical length of each of the auxiliary electrodes 28a to 28b is almost an integral multiple of the total electrical length of the main electrodes 26b and 26c, that is, the electrical length of the dipole antenna. Specifically, the electrical length of the auxiliary electrode 28a is adjusted in the range of 0.7 to 1.4 times the total electrical length of the main electrodes 26b and 26c. The electrical length of the auxiliary electrode 28b is adjusted in the range of 1.4 to 2.1 times the total electrical length of the main electrodes 26b and 26c.
 第1物体22の開口は第2物体30の主面によって塞がれ、ダイポールアンテナから第1物体22の内側に向かう高周波信号は第2物体30によって減衰されるところ、ダイポールアンテナおよび補助電極28a~28bは第1物体22の周方向に延在しかつ互いに容量結合され、補助電極28a~28bの各々の電気長は主電極26bおよび26cのトータルの電気長のほぼ整数倍に調整される。 The opening of the first object 22 is blocked by the main surface of the second object 30, and the high-frequency signal directed from the dipole antenna toward the inside of the first object 22 is attenuated by the second object 30, so that the dipole antenna and the auxiliary electrodes 28a to 28a. 28b extends in the circumferential direction of the first object 22 and is capacitively coupled to each other, and the electrical length of each of the auxiliary electrodes 28a to 28b is adjusted to be approximately an integral multiple of the total electrical length of the main electrodes 26b and 26c.
 したがって、RFIC素子26aから出力された高周波信号は、ダイポールアンテナおよび補助電極28a~28bから放射される。第1物体22の外側に向かう放射特性(利得)は、ダイポールアンテナから第1物体22の内側に向かう高周波信号が第2物体30によって減衰するにも関わらず、第1物体22の周方向の広い範囲で向上する。 Therefore, the high-frequency signal output from the RFIC element 26a is radiated from the dipole antenna and the auxiliary electrodes 28a to 28b. The radiation characteristic (gain) toward the outside of the first object 22 is wide in the circumferential direction of the first object 22 even though the high-frequency signal from the dipole antenna toward the inside of the first object 22 is attenuated by the second object 30. Improve in range.
 また、RFIDデバイス24が補助電極28a~28bを備えることから、第1物体22の周方向に延在するようにRFIDデバイス24を第1物体22に設けるにあたって、ダイポールアンテナの電気長と第1物体22の周方向の長さとの相違を考慮する必要がなくなる。さらに、RFIDデバイス24の高次モードの周波数特性は補助電極28a~28bの各々の長さまたはギャップの長さに依存するため、これらの長さを調整することで通信帯域の広帯域化が図られる。 Further, since the RFID device 24 includes the auxiliary electrodes 28a to 28b, when the RFID device 24 is provided on the first object 22 so as to extend in the circumferential direction of the first object 22, the electrical length of the dipole antenna and the first object There is no need to consider the difference in the circumferential length of 22. Furthermore, since the frequency characteristics of the higher-order mode of the RFID device 24 depend on the length of each of the auxiliary electrodes 28a to 28b or the length of the gap, the communication band can be widened by adjusting these lengths. .
 RFIDデバイス24のアンテナとしての使い勝手は、高周波信号の放射特性が第1物体22の周方向における広い範囲で向上すること、ダイポールアンテナの電気長と第1物体22の周方向の長さとの相違を考慮せずにRFIDデバイス24を第1物体22に設けられること、ならびに補助電極28a~28bまたはキャップの長さに応じてRFIDデバイス24の通信帯域の広帯域化が図られることで、向上する。
[実施例1]
The usability of the RFID device 24 as an antenna is that the high frequency signal radiation characteristics are improved in a wide range in the circumferential direction of the first object 22, and the difference between the electrical length of the dipole antenna and the circumferential length of the first object 22 is The RFID device 24 can be provided on the first object 22 without consideration, and the communication band of the RFID device 24 can be widened according to the length of the auxiliary electrodes 28a to 28b or the cap.
[Example 1]
 図5(A)~図5(C)を参照して、この実施例のRFIDデバイス付き物体40は、円柱状に形成された絶縁性の物体42を含む。RFIDデバイス44は、UHF帯を通信周波数として、物体42の外周面に設けられる。 5A to 5C, the RFID device-equipped object 40 of this embodiment includes an insulating object 42 formed in a cylindrical shape. The RFID device 44 is provided on the outer peripheral surface of the object 42 using the UHF band as a communication frequency.
 詳しくは、RFIDデバイス44は、単一のRFIDインレイ46と3つの補助電極48a~48cとを帯状のキャリアフィルム50の表面に実装してなる。RFIDインレイ46は、RFIC素子46aと、これに接続されてダイポールアンテナをなす主電極46bおよび46cとを有する。 Specifically, the RFID device 44 is formed by mounting a single RFID inlay 46 and three auxiliary electrodes 48 a to 48 c on the surface of a band-shaped carrier film 50. The RFID inlay 46 includes an RFIC element 46a and main electrodes 46b and 46c connected to the RFIC element 46a to form a dipole antenna.
 主電極46b~46cおよび補助電極48a~48cは、キャリアフィルム50の幅よりも小さい共通の幅を有して、帯状に形成される。また、主電極46b~46cおよび補助電極48a~48cは、キャリアフィルム50の表面の幅方向中央に設けられ、互いに重なることなくキャリアフィルム50の周方向に延在する。 The main electrodes 46 b to 46 c and the auxiliary electrodes 48 a to 48 c have a common width smaller than the width of the carrier film 50 and are formed in a strip shape. The main electrodes 46b to 46c and the auxiliary electrodes 48a to 48c are provided at the center in the width direction on the surface of the carrier film 50, and extend in the circumferential direction of the carrier film 50 without overlapping each other.
 図5(B)に示すRFIDデバイス44を上方から眺めたとき、時計回り方向に沿って、主電極46bは補助電極48aと隣り合い、補助電極48aは補助電極48bと隣り合い、補助電極48bは補助電極48cと隣り合い、補助電極48cは主電極46cと隣り合う。また、主電極46bの終端は所定のギャップをおいて補助電極48aの始端と対向配置され、補助電極48aの終端は所定のギャップをおいて補助電極48bの始端と対向配置され、補助電極48bの終端は所定のギャップをおいて補助電極48cの始端と対向配置され、補助電極48cの終端は所定のギャップをおいて主電極46cの始端と対向配置される。 When the RFID device 44 shown in FIG. 5B is viewed from above, along the clockwise direction, the main electrode 46b is adjacent to the auxiliary electrode 48a, the auxiliary electrode 48a is adjacent to the auxiliary electrode 48b, and the auxiliary electrode 48b is Adjacent to the auxiliary electrode 48c, the auxiliary electrode 48c is adjacent to the main electrode 46c. The end of the main electrode 46b is disposed opposite to the starting end of the auxiliary electrode 48a with a predetermined gap, and the end of the auxiliary electrode 48a is disposed opposite to the starting end of the auxiliary electrode 48b with a predetermined gap. The end of the auxiliary electrode 48c is disposed opposite to the starting end of the auxiliary electrode 48c with a predetermined gap, and the end of the auxiliary electrode 48c is disposed opposite to the starting end of the main electrode 46c with a predetermined gap.
 これによって、主電極46bは補助電極48aと容量結合され、補助電極48aは補助電極48bと容量結合され、補助電極48bは補助電極48cと容量結合され、補助電極48cは主電極46cと容量結合される。なお、RFIC素子46aは、主電極46bの始端および主電極46cの終端を跨ぐように設けられる。 Accordingly, the main electrode 46b is capacitively coupled with the auxiliary electrode 48a, the auxiliary electrode 48a is capacitively coupled with the auxiliary electrode 48b, the auxiliary electrode 48b is capacitively coupled with the auxiliary electrode 48c, and the auxiliary electrode 48c is capacitively coupled with the main electrode 46c. The The RFIC element 46a is provided so as to straddle the start end of the main electrode 46b and the end end of the main electrode 46c.
 さらに、補助電極48a~48cの各々の電気長は、主電極46bおよび46cのトータルの電気長つまりダイポールアンテナの電気長とほぼ一致する。具体的には、補助電極48a~48cの各々の電気長は、主電極46bおよび46cのトータルの電気長の0.7倍~1.4倍の範囲で調整される。 Furthermore, the electrical length of each of the auxiliary electrodes 48a to 48c substantially matches the total electrical length of the main electrodes 46b and 46c, that is, the electrical length of the dipole antenna. Specifically, the electrical length of each of the auxiliary electrodes 48a to 48c is adjusted in a range of 0.7 to 1.4 times the total electrical length of the main electrodes 46b and 46c.
 キャリアフィルム50の裏面には両面テープが塗布され、RFIDデバイス44は、キャリアフィルム50の裏面が物体42の外周面に対向する姿勢で物体42に貼着される。物体42の外周の長さはキャリアフィルム50の長さとほぼ一致し、キャリアフィルム50は物体42の外周を周回する。したがって、物体42に貼着されたRFIDデバイス44は、ループ状のアンテナとして機能する。 Double-sided tape is applied to the back surface of the carrier film 50, and the RFID device 44 is attached to the object 42 in a posture in which the back surface of the carrier film 50 faces the outer peripheral surface of the object 42. The length of the outer periphery of the object 42 substantially coincides with the length of the carrier film 50, and the carrier film 50 goes around the outer periphery of the object 42. Therefore, the RFID device 44 attached to the object 42 functions as a loop antenna.
 図6から分かるように、RFIC素子46aは、高周波信号を処理するRFICチップ46cpとこれを実装する給電回路基板46fbsとを含む。給電回路基板46fbsは、セラミックまたは樹脂を材料として板状に形成される。RFICチップ46cpは、メモリ回路や信号処理回路を内蔵し、かつ樹脂製の封止層46mdによって封止される。RFICチップ46cpの下面には、主電極46b~46cの延在方向に並ぶ端子電極46t1aおよび46t1bが設けられる。また、RFIC素子46aの下面にも、主電極46b~46cの延在方向に並ぶ入出力端子46t2aおよび46t2bが設けられる。 As can be seen from FIG. 6, the RFIC element 46a includes an RFIC chip 46cp for processing a high-frequency signal and a power supply circuit board 46fbs for mounting the RFIC chip 46cp. The power supply circuit board 46fbs is formed in a plate shape using ceramic or resin as a material. The RFIC chip 46cp incorporates a memory circuit and a signal processing circuit, and is sealed by a resin sealing layer 46md. Terminal electrodes 46t1a and 46t1b arranged in the extending direction of the main electrodes 46b to 46c are provided on the lower surface of the RFIC chip 46cp. Input / output terminals 46t2a and 46t2b arranged in the extending direction of the main electrodes 46b to 46c are also provided on the lower surface of the RFIC element 46a.
 端子電極46t1aおよび46t1bは、給電回路基板46fbsに設けられた給電回路46fct(図7参照)を介して、入出力端子46t2aおよび46t2bにそれぞれ接続される。入出力端子46t2aは主電極46bの始端に接続され、入出力端子46t2bは主電極46cの終端に接続される。 The terminal electrodes 46t1a and 46t1b are connected to the input / output terminals 46t2a and 46t2b via a power feeding circuit 46fct (see FIG. 7) provided on the power feeding circuit board 46fbs, respectively. The input / output terminal 46t2a is connected to the start end of the main electrode 46b, and the input / output terminal 46t2b is connected to the end of the main electrode 46c.
 RFIC素子46aの等価回路を図7に示す。給電回路46fctは、給電回路基板46fbsに設けられる。コンデンサC1の一方端は入出力端子46t2aと接続され、コンデンサC1の他方端は端子電極46t1aと接続される。コンデンサC2の一方端は入出力端子46t2bと接続され、コンデンサC2の他方端はインダクタL2を介して端子電極46t1bと接続される。インダクタL1の一方端はコンデンサC1の他方端と接続され、インダクタL1の他方端はコンデンサC2の他方端と接続される。 FIG. 7 shows an equivalent circuit of the RFIC element 46a. The power feeding circuit 46fct is provided on the power feeding circuit board 46fbs. One end of the capacitor C1 is connected to the input / output terminal 46t2a, and the other end of the capacitor C1 is connected to the terminal electrode 46t1a. One end of the capacitor C2 is connected to the input / output terminal 46t2b, and the other end of the capacitor C2 is connected to the terminal electrode 46t1b via the inductor L2. One end of inductor L1 is connected to the other end of capacitor C1, and the other end of inductor L1 is connected to the other end of capacitor C2.
 つまり、RFIC素子は、各コンデンサやインダクタによって構成された給電回路を内蔵した給電回路基板と、この給電回路基板に実装されたRFICチップとを含んで構成される。給電回路は、キャリア周波数(UHF帯)に相当する共振周波数を有した共振回路にて構成されている。このRFIDデバイスの中心周波数は共振回路の共振周波数によって定められる。つまり、RFIDデバイスの周波数特性は、放射素子(主電極)の電気長には大きく依存しない。ただし、複数の主電極の合計の電気長(給電回路とやRFICチップを含む)は、キャリア波長をλとすると、λ/2の奇数倍である場合、利得が最も大きくなるので好ましい。 That is, the RFIC element is configured to include a power supply circuit board having a built-in power supply circuit composed of capacitors and inductors, and an RFIC chip mounted on the power supply circuit board. The power feeding circuit is configured by a resonance circuit having a resonance frequency corresponding to the carrier frequency (UHF band). The center frequency of the RFID device is determined by the resonance frequency of the resonance circuit. That is, the frequency characteristics of the RFID device do not depend greatly on the electrical length of the radiating element (main electrode). However, the total electrical length of the plurality of main electrodes (including the power feeding circuit and the RFIC chip) is preferably an odd multiple of λ / 2 because the gain is maximized when the carrier wavelength is λ.
 図8を参照して、RFIDデバイス44からは、高次モードの高周波信号が放射される。具体的には、上方から眺めて、RFIC素子46aの位置を中心とするほぼ120°の角度範囲を“RG0”とし、RFIC素子46aの位置を中心とするほぼ180°の角度範囲および残りの範囲をそれぞれ“RG1a”および“RG1b”とし、360°の角度範囲を“RG2”とすると、角度範囲RG0からは周波数f0を示す高周波信号が放射され、角度範囲RG1aおよびRG1bの各々からは周波数f1を示す高周波信号が放射され、角度範囲RG2からは周波数f2を示す高周波信号が放射される。 Referring to FIG. 8, a high-order mode high-frequency signal is radiated from the RFID device 44. Specifically, when viewed from above, an angle range of approximately 120 ° centered on the position of the RFIC element 46a is “RG0”, an angle range of approximately 180 ° centered on the position of the RFIC element 46a and the remaining range. Are “RG1a” and “RG1b”, respectively, and a 360 ° angle range is “RG2”, a high frequency signal indicating a frequency f0 is emitted from the angle range RG0, and a frequency f1 is set from each of the angle ranges RG1a and RG1b. A high-frequency signal indicating the frequency f2 is radiated from the angle range RG2.
 周波数f0の高周波信号は図9(A)に示す放射特性を有し、周波数f1の高周波信号は図9(B)に示す放射特性を有し、周波数f2の高周波信号は図9(C)に示す放射特性を有する。図9(A)によれば、周波数f0の高周波信号は、角度範囲RG0が割り当てられた位置から、主に物体42の外側に向けて放射される。これに対して、図9(B)~図9(C)によれば、周波数f1およびf2の高周波信号は、物体42の全周から主に物体42の外側に放射される。 The high-frequency signal having the frequency f0 has the radiation characteristic shown in FIG. 9A, the high-frequency signal having the frequency f1 has the radiation characteristic shown in FIG. 9B, and the high-frequency signal having the frequency f2 is shown in FIG. 9C. It has the radiation characteristics shown. According to FIG. 9A, the high-frequency signal having the frequency f0 is radiated mainly toward the outside of the object 42 from the position to which the angle range RG0 is assigned. On the other hand, according to FIGS. 9B to 9C, the high frequency signals of the frequencies f 1 and f 2 are radiated mainly from the entire circumference of the object 42 to the outside of the object 42.
 周波数f0~f2の各々の数値は、補助電極48a~48cの各々の長さまたは上述したギャップの長さに依存する。したがって、RFIDデバイス44から放射される高周波信号は、或る長さに対応して図10のような周波数特性を示し、他の長さに対応して図11のような周波数特性を示す。したがって、補助電極48a~48cの各々の長さまたは上述したギャップの長さを適宜調整することで、所望の周波数を含む広い帯域がRFIDデバイス44の通信帯域として設定される。 The numerical values of the frequencies f0 to f2 depend on the length of each of the auxiliary electrodes 48a to 48c or the length of the gap described above. Therefore, the high-frequency signal radiated from the RFID device 44 shows frequency characteristics as shown in FIG. 10 corresponding to a certain length, and shows frequency characteristics like FIG. 11 corresponding to other lengths. Therefore, a wide band including a desired frequency is set as the communication band of the RFID device 44 by appropriately adjusting the length of each of the auxiliary electrodes 48a to 48c or the length of the gap described above.
 以上の説明から分かるように、RFIDデバイス44は、周面を有する絶縁性の物体42に設けられる。ここで、帯状の主電極46bおよび46cはダイポールアンテナをなして物体42の周方向に延在し、主電極46bの始端および主電極46cの終端はRFIC素子46aに接続される。また、補助電極48a~48cの各々は、ダイポールアンテナの電気長とほぼ同じ電気長を有して、物体の周方向に延在する。 As can be seen from the above description, the RFID device 44 is provided on the insulating object 42 having a peripheral surface. Here, the strip-shaped main electrodes 46b and 46c form a dipole antenna and extend in the circumferential direction of the object 42, and the start end of the main electrode 46b and the end of the main electrode 46c are connected to the RFIC element 46a. Further, each of the auxiliary electrodes 48a to 48c has substantially the same electrical length as that of the dipole antenna, and extends in the circumferential direction of the object.
 より詳しくは、主電極46bの終端は所定のギャップをおいて補助電極48aの始端と対向配置され、補助電極48aの終端は所定のギャップをおいて補助電極48bの始端と対向配置され、補助電極48bの終端は所定のギャップをおいて補助電極48cの始端と対向配置され、補助電極48cの終端は所定のギャップをおいて主電極46cの始端と対向配置される。 More specifically, the end of the main electrode 46b is disposed opposite to the starting end of the auxiliary electrode 48a with a predetermined gap, and the end of the auxiliary electrode 48a is disposed opposite to the starting end of the auxiliary electrode 48b with a predetermined gap. The terminal end of 48b is arranged to face the starting end of the auxiliary electrode 48c with a predetermined gap, and the terminal end of the auxiliary electrode 48c is arranged to face the starting end of the main electrode 46c with a predetermined gap.
 補助電極48a~48cの各々の電気長はダイポールアンテナの電気長とほぼ同じであり、補助電極48a~48cはダイポールアンテナと容量結合されるため、RFIC素子46aから出力された高周波信号はダイポールアンテナおよび補助電極48a~48cから放射される。ダイポールアンテナおよび補助電極48a~48cは物体42の周方向に延在してループ状のアンテナとして機能するため、高周波信号の放射特性は物体42の周方向における広い範囲で向上する。 The electrical length of each of the auxiliary electrodes 48a to 48c is substantially the same as the electrical length of the dipole antenna, and the auxiliary electrodes 48a to 48c are capacitively coupled to the dipole antenna. Therefore, the high frequency signal output from the RFIC element 46a is Radiated from the auxiliary electrodes 48a to 48c. Since the dipole antenna and the auxiliary electrodes 48 a to 48 c extend in the circumferential direction of the object 42 and function as a loop antenna, the radiation characteristic of the high-frequency signal is improved in a wide range in the circumferential direction of the object 42.
 また、RFIDデバイス44が補助電極48a~48cを備えることから、物体42の周方向に延在するようにRFIDデバイス44を物体12に設けるにあたって、ダイポールアンテナの電気長と物体42の周方向の長さとの相違を考慮する必要がなくなる。さらに、RFIDデバイス44の高次モードの周波数特性は補助電極48a~48cの各々の長さまたはギャップの長さに依存するため、これらの長さを調整することで通信帯域の広帯域化が図られる。 Since the RFID device 44 includes the auxiliary electrodes 48a to 48c, when the RFID device 44 is provided on the object 12 so as to extend in the circumferential direction of the object 42, the electrical length of the dipole antenna and the length of the object 42 in the circumferential direction. There is no need to consider the difference. Furthermore, since the frequency characteristics of the higher-order mode of the RFID device 44 depend on the length of each of the auxiliary electrodes 48a to 48c or the length of the gap, the communication band can be widened by adjusting these lengths. .
 RFIDデバイス44のアンテナとしての使い勝手は、高周波信号の放射特性が物体42の周方向における広い範囲で向上すること、ダイポールアンテナの電気長と物体42の周方向の長さとの相違を考慮せずにRFIDデバイス44を物体42に設けられること、ならびに補助電極48a~48cまたはギャップの長さに応じてRFIDデバイス44の通信帯域の広帯域化が図られることで、向上する。
[実施例2]
The ease of use of the RFID device 44 as an antenna is such that the radiation characteristics of high-frequency signals are improved in a wide range in the circumferential direction of the object 42, and the difference between the electrical length of the dipole antenna and the circumferential length of the object 42 is not considered. The RFID device 44 is improved by providing the RFID device 44 on the object 42 and increasing the communication band of the RFID device 44 according to the length of the auxiliary electrodes 48a to 48c or the gap.
[Example 2]
 図12,図13,図14(A)~図14(B)を参照して、他の実施例のRFIDデバイス付き物体60は、円柱状に形成された絶縁性の第1物体62と、円筒状またはリング状に形成された金属製の第2物体72とを含む。第1物体62の外径は第2物体72の外径と一致し、第1物体62は、その外周面が第2物体72の外周面と面一となるように、第2物体72の上に取り付けられる。この結果、第2物体72の開口は第1物体62によって塞がれる。このとき、第2物体72の開口面または断面が向く方向は、第1物体62の周方向と直交する。このような第1物体62および第2物体72によって、“複合物体”が形成される。 Referring to FIGS. 12, 13, and 14A to 14B, an object 60 with an RFID device according to another embodiment includes an insulating first object 62 formed in a columnar shape and a cylinder. And a metal second object 72 formed in a ring shape or a ring shape. The outer diameter of the first object 62 coincides with the outer diameter of the second object 72, and the first object 62 is positioned above the second object 72 so that the outer peripheral surface thereof is flush with the outer peripheral surface of the second object 72. Attached to. As a result, the opening of the second object 72 is blocked by the first object 62. At this time, the direction in which the opening surface or cross section of the second object 72 faces is orthogonal to the circumferential direction of the first object 62. The first object 62 and the second object 72 as described above form a “composite object”.
 第1物体62の外周面には、UHF帯を通信周波数とするRFIDデバイス64が設けられる。詳しくは、RFIDデバイス64は、単一のRFIDインレイ66と2つの補助電極68a~68bとを帯状のキャリアフィルム70の表面に実装してなる。また、RFIDインレイ66は、RFIC素子66aとこれに接続されてダイポールアンテナをなす主電極66bおよび66cとによって構成される。 An RFID device 64 having a UHF band as a communication frequency is provided on the outer peripheral surface of the first object 62. Specifically, the RFID device 64 is formed by mounting a single RFID inlay 66 and two auxiliary electrodes 68a to 68b on the surface of a band-shaped carrier film 70. The RFID inlay 66 includes an RFIC element 66a and main electrodes 66b and 66c connected to the RFIC element 66a to form a dipole antenna.
 主電極66b~66cおよび補助電極68a~68bは、キャリアフィルム70の幅よりも小さい共通の幅を有して、帯状に形成される。また、主電極66b~66cおよび補助電極68a~68bは、キャリアフィルム70の表面の幅方向中央に設けられ、互いに重なることなくキャリアフィルム70の周方向に延在する。 The main electrodes 66b to 66c and the auxiliary electrodes 68a to 68b have a common width smaller than the width of the carrier film 70 and are formed in a strip shape. The main electrodes 66b to 66c and the auxiliary electrodes 68a to 68b are provided at the center in the width direction on the surface of the carrier film 70, and extend in the circumferential direction of the carrier film 70 without overlapping each other.
 図14(A)に示すRFIDデバイス64を上方から眺めたとき、時計回り方向に沿って、主電極66bは補助電極68aと隣り合い、補助電極68aは補助電極68bと隣り合い、補助電極68bは主電極66cと隣り合う。また、主電極66bの終端は所定のギャップをおいて補助電極68aの始端と対向配置され、補助電極68aの終端は所定のギャップをおいて補助電極68bの始端と対向配置され、補助電極68bの終端は所定のギャップをおいて主電極66cの始端と対向配置される。 When the RFID device 64 shown in FIG. 14A is viewed from above, along the clockwise direction, the main electrode 66b is adjacent to the auxiliary electrode 68a, the auxiliary electrode 68a is adjacent to the auxiliary electrode 68b, and the auxiliary electrode 68b is Adjacent to the main electrode 66c. The end of the main electrode 66b is disposed opposite to the starting end of the auxiliary electrode 68a with a predetermined gap, and the end of the auxiliary electrode 68a is disposed opposite to the starting end of the auxiliary electrode 68b with a predetermined gap. The end is disposed opposite to the start of the main electrode 66c with a predetermined gap.
 これによって、主電極66bは補助電極68aと容量結合され、補助電極68aは補助電極68bと容量結合され、補助電極68bは主電極66cと容量結合される。なお、RFIC素子66aは、主電極66bの始端および主電極66cの終端を跨ぐように設けられる。 Thus, the main electrode 66b is capacitively coupled with the auxiliary electrode 68a, the auxiliary electrode 68a is capacitively coupled with the auxiliary electrode 68b, and the auxiliary electrode 68b is capacitively coupled with the main electrode 66c. The RFIC element 66a is provided so as to straddle the start end of the main electrode 66b and the end end of the main electrode 66c.
 さらに、補助電極68a~68bの各々の電気長は、主電極66bおよび66cがなすダイポールアンテナの電気長つまりダイポールアンテナの電気長(=λ/2)のほぼ整数倍である。具体的には、補助電極68aの電気長は、ダイポールアンテナの電気長の0.7倍~1.4倍の範囲で調整される。また、補助電極68bの電気長は、ダイポールアンテナの電気長の1.4倍~2.1倍の範囲で調整される。 Furthermore, the electrical length of each of the auxiliary electrodes 68a to 68b is approximately an integral multiple of the electrical length of the dipole antenna formed by the main electrodes 66b and 66c, that is, the electrical length of the dipole antenna (= λ / 2). Specifically, the electrical length of the auxiliary electrode 68a is adjusted in the range of 0.7 to 1.4 times the electrical length of the dipole antenna. The electrical length of the auxiliary electrode 68b is adjusted in the range of 1.4 times to 2.1 times the electrical length of the dipole antenna.
 キャリアフィルム70の裏面には両面テープが塗布され、RFIDデバイス64は、キャリアフィルム70の裏面が第1物体62の外周面に対向する姿勢で第1物体62に貼着される。第1物体62の外周の長さはキャリアフィルム70の長さとほぼ一致し、キャリアフィルム70は第1物体62の外周を周回する。したがって、第1物体62に貼着されたRFIDデバイス64は、ループ状のアンテナとして機能する。 Double-sided tape is applied to the back surface of the carrier film 70, and the RFID device 64 is attached to the first object 62 with the back surface of the carrier film 70 facing the outer peripheral surface of the first object 62. The length of the outer periphery of the first object 62 substantially matches the length of the carrier film 70, and the carrier film 70 goes around the outer periphery of the first object 62. Therefore, the RFID device 64 attached to the first object 62 functions as a loop antenna.
 第1物体62の下側に取り付けられた第2物体72は金属製であり、ダイポールアンテナから第1物体62の内側に向かう高周波信号は第2物体72によって減衰されるところ、ダイポールアンテナおよび補助電極68a~68bは第1物体62の周方向に延在しかつ互いに容量結合され、補助電極68a~68bの各々の電気長はダイポールアンテナの電気長のほぼ整数倍に調整される。 The second object 72 attached to the lower side of the first object 62 is made of metal, and a high-frequency signal directed from the dipole antenna toward the inside of the first object 62 is attenuated by the second object 72. 68a to 68b extend in the circumferential direction of the first object 62 and are capacitively coupled to each other, and the electrical length of each of the auxiliary electrodes 68a to 68b is adjusted to be approximately an integral multiple of the electrical length of the dipole antenna.
 したがって、RFIC素子66aから出力された高周波信号は、ダイポールアンテナおよび補助電極68a~68bから放射される。第1物体62の外側に向かう放射特性は、ダイポールアンテナから第1物体62の内側に向かう高周波信号が第2物体72によって減衰するにも関わらず、第1物体62の周方向の広い範囲で向上する。 Therefore, the high-frequency signal output from the RFIC element 66a is radiated from the dipole antenna and auxiliary electrodes 68a to 68b. The radiation characteristic toward the outside of the first object 62 is improved in a wide range in the circumferential direction of the first object 62 even though the high-frequency signal from the dipole antenna toward the inside of the first object 62 is attenuated by the second object 72. To do.
 また、RFIDデバイス64が補助電極68a~68bを備えることから、第1物体62の周方向に延在するようにRFIDデバイス64を第1物体62に設けるにあたって、ダイポールアンテナの電気長と第1物体62の周方向の長さとの相違を考慮する必要がなくなる。さらに、RFIDデバイス64の高次モードの周波数特性は補助電極68a~68bの各々の長さまたはギャップの長さに依存するため、これらの長さを調整することで通信帯域の広帯域化が図られる。 Since the RFID device 64 includes the auxiliary electrodes 68a to 68b, when the RFID device 64 is provided on the first object 62 so as to extend in the circumferential direction of the first object 62, the electrical length of the dipole antenna and the first object There is no need to consider the difference in the circumferential length of 62. Furthermore, since the frequency characteristic of the higher-order mode of the RFID device 64 depends on the length of each of the auxiliary electrodes 68a to 68b or the length of the gap, the communication band can be widened by adjusting these lengths. .
 RFIDデバイス64のアンテナとしての使い勝手は、高周波信号の放射特性が第1物体62の周方向における広い範囲で向上すること、ダイポールアンテナの電気長と第1物体62の周方向の長さとの相違を考慮せずにRFIDデバイス64を第1物体62に設けられること、ならびに補助電極68a~68bまたはキャップの長さに応じてRFIDデバイス64の通信帯域の広帯域化が図られることで、向上する。 The usability of the RFID device 64 as an antenna is that the high frequency signal radiation characteristics are improved in a wide range in the circumferential direction of the first object 62, and the difference between the electrical length of the dipole antenna and the circumferential length of the first object 62 is The RFID device 64 can be provided on the first object 62 without consideration, and the communication band of the RFID device 64 can be widened according to the length of the auxiliary electrodes 68a to 68b or the cap.
 なお、上述の基本的構成1~2および実施例1~2によれば、RFIC素子はダイポールアンテナに実装される。しかし、RFIC素子はダイポールアンテナから離れた位置に配置し、RFIC素子から出力された高周波信号を信号線路に介してダイポールアンテナに供給するようにしてもよい。
[実施例3]
According to the basic configurations 1 and 2 and Examples 1 and 2 described above, the RFIC element is mounted on the dipole antenna. However, the RFIC element may be disposed at a position away from the dipole antenna, and a high frequency signal output from the RFIC element may be supplied to the dipole antenna via a signal line.
[Example 3]
 その他の実施例のRFIDデバイス付き物体では、図15に示すRFIDデバイス80が、絶縁性の円筒体(図示せず)の外周面に設けられる。詳しくは、RFIDデバイス80は、UHF帯を通信周波数とし、単一のRFIDインレイ74と3つの補助電極76a~76cとを備える。また、RFIDインレイ74の裏面には絶縁性を示す帯状のキャリアフィルム78dが貼り付けられ、補助電極76a~76cの裏面にも絶縁性を示す帯状のキャリアフィルム78a~78cがそれぞれ貼り付けられる。さらに、RFIDインレイ74は、RFIC素子74aとこれに接続されてダイポールアンテナをなす主電極74bおよび74cとによって構成される。 In an object with an RFID device according to another embodiment, an RFID device 80 shown in FIG. 15 is provided on the outer peripheral surface of an insulating cylindrical body (not shown). Specifically, the RFID device 80 uses the UHF band as a communication frequency, and includes a single RFID inlay 74 and three auxiliary electrodes 76a to 76c. Further, a strip-like carrier film 78d showing insulation is attached to the back surface of the RFID inlay 74, and strip-like carrier films 78a to 78c showing insulation are attached to the back surfaces of the auxiliary electrodes 76a to 76c, respectively. Further, the RFID inlay 74 includes an RFIC element 74a and main electrodes 74b and 74c connected to the RFIC element 74a to form a dipole antenna.
 図16(A)から分かるように、主電極74b~74cは、キャリアフィルム78dの幅よりも小さい共通の幅を有して、帯状に形成される。主電極74b~74cはまた、キャリアフィルム78dの表面の幅方向中央に設けられ、互いに重なることなくキャリアフィルム78dの周方向に延在する。 As can be seen from FIG. 16A, the main electrodes 74b to 74c have a common width smaller than the width of the carrier film 78d and are formed in a strip shape. The main electrodes 74b to 74c are also provided at the center in the width direction of the surface of the carrier film 78d, and extend in the circumferential direction of the carrier film 78d without overlapping each other.
 図16(B)から分かるように、補助電極76a~76cも、キャリアフィルム78a~78cの幅よりも小さい共通の幅を有してキャリアフィルム78a~78cの表面の幅方向中央に設けられ、帯状に形成される。ここで、補助電極76a~76cの各々の電気長は、主電極74bおよび74cがなすダイポールアンテナの電気長(=λ/2)のほぼ整数倍である。 As can be seen from FIG. 16B, the auxiliary electrodes 76a to 76c also have a common width smaller than the widths of the carrier films 78a to 78c and are provided in the center in the width direction on the surfaces of the carrier films 78a to 78c. Formed. Here, the electrical length of each of the auxiliary electrodes 76a to 76c is approximately an integer multiple of the electrical length (= λ / 2) of the dipole antenna formed by the main electrodes 74b and 74c.
 図15に示すRFIDデバイス80を上方から眺めたとき、時計回り方向に沿って、主電極74bの終端はキャリアフィルム78dを介して補助電極76aの始端と重なり合い、補助電極76aの終端はキャリアフィルム78aを介して補助電極76bの始端と重なり合い、補助電極76bの終端はキャリアフィルム78bを介して補助電極76cの始端と重なり合い、補助電極76cの終端はキャリアフィルム78cを介して主電極74cの始端と重なり合う。 When the RFID device 80 shown in FIG. 15 is viewed from above, the end of the main electrode 74b overlaps with the start of the auxiliary electrode 76a via the carrier film 78d along the clockwise direction, and the end of the auxiliary electrode 76a is the carrier film 78a. The end of the auxiliary electrode 76b overlaps the start of the auxiliary electrode 76c via the carrier film 78b, and the end of the auxiliary electrode 76c overlaps the start of the main electrode 74c via the carrier film 78c. .
 これによって、主電極74bは補助電極76aと容量結合され、補助電極76aは補助電極76bと容量結合され、補助電極76bは補助電極76cと容量結合され、補助電極76cは主電極74cと容量結合される。特に、図15に破線で示す部分を拡大した図17から分かるように、主電極74bと補助電極76aとの間には容量C11が形成される。 Accordingly, the main electrode 74b is capacitively coupled with the auxiliary electrode 76a, the auxiliary electrode 76a is capacitively coupled with the auxiliary electrode 76b, the auxiliary electrode 76b is capacitively coupled with the auxiliary electrode 76c, and the auxiliary electrode 76c is capacitively coupled with the main electrode 74c. The In particular, as can be seen from FIG. 17 in which a portion indicated by a broken line in FIG. 15 is enlarged, a capacitor C11 is formed between the main electrode 74b and the auxiliary electrode 76a.
 キャリアフィルム78a~78dの裏面には両面テープが塗布され、RFIDデバイス80は、キャリアフィルム78a~78dの裏面が円筒体の外周面に対向する姿勢で円筒体に貼着される。円筒体の外周の長さはキャリアフィルム78a~78dの合計の長さとほぼ一致し、キャリアフィルム78a~78dは円筒体の外周を周回する。したがって、円筒体に貼着されたRFIDデバイス80は、ループ状のアンテナとして機能する。 Double-sided tape is applied to the back surfaces of the carrier films 78a to 78d, and the RFID device 80 is attached to the cylindrical body so that the back surfaces of the carrier films 78a to 78d face the outer peripheral surface of the cylindrical body. The length of the outer periphery of the cylindrical body substantially matches the total length of the carrier films 78a to 78d, and the carrier films 78a to 78d circulate around the outer periphery of the cylindrical body. Therefore, the RFID device 80 attached to the cylindrical body functions as a loop antenna.
 この実施例によれば、主電極74bと補助電極76aとの重なり部分の厚み方向に容量が形成され、補助電極76aと補助電極76bとの重なり部分の厚み方向に容量が形成され、補助電極76bと補助電極76cとの重なり部分の厚み方向に容量が形成され、補助電極76cと主電極74cとの重なり部分の厚み方向に容量が形成される。したがって、これらの重なり部分に他の物品が近づいても容量値が大きく変わることがない。また、円筒体自体の誘電率の影響も受けにくい。
[実施例4]
According to this embodiment, a capacitance is formed in the thickness direction of the overlapping portion of the main electrode 74b and the auxiliary electrode 76a, and a capacitance is formed in the thickness direction of the overlapping portion of the auxiliary electrode 76a and the auxiliary electrode 76b. A capacitance is formed in the thickness direction of the overlapping portion between the auxiliary electrode 76c and the auxiliary electrode 76c, and a capacitance is formed in the thickness direction of the overlapping portion of the auxiliary electrode 76c and the main electrode 74c. Therefore, even if another article approaches these overlapping portions, the capacitance value does not change greatly. Further, it is not easily affected by the dielectric constant of the cylinder itself.
[Example 4]
 さらにその他の実施例のRFIDデバイス付き物体では、RFIDデバイス80´が、図18に示すようにして絶縁性の円筒体(図示せず)の外周面に設けられる。ただし、図19(A)~図19(B)から分かるように、RFIDデバイス80´の構造はRFIDデバイス80と同じであるため、共通の部材の参照番号に“´”を付すことで、重複した説明を極力省略する。 In still another embodiment of the object with an RFID device, an RFID device 80 'is provided on the outer peripheral surface of an insulating cylinder (not shown) as shown in FIG. However, as can be seen from FIGS. 19A to 19B, the structure of the RFID device 80 ′ is the same as that of the RFID device 80. I will omit the explanation as much as possible.
 キャリアフィルム78a´~78d´の裏面には両面テープが塗布され、RFIDデバイス80´は、キャリアフィルム78a´~78d´の裏面が円筒体の外周面に対向する姿勢で円筒体に貼着される。円筒体の外周の長さはキャリアフィルム78a~78dの合計の長さとほぼ一致し、キャリアフィルム78a~78dは円筒体の外周を周回する。したがって、円筒体に貼着されたRFIDデバイス80´は、ループ状のアンテナとして機能する。 Double-sided tape is applied to the back surfaces of the carrier films 78a ′ to 78d ′, and the RFID device 80 ′ is attached to the cylindrical body with the back surfaces of the carrier films 78a ′ to 78d ′ facing the outer peripheral surface of the cylindrical body. . The length of the outer periphery of the cylindrical body substantially matches the total length of the carrier films 78a to 78d, and the carrier films 78a to 78d circulate around the outer periphery of the cylindrical body. Therefore, the RFID device 80 ′ attached to the cylindrical body functions as a loop antenna.
 ただし、貼着された状態において、キャリアフィルム78a´~78d´の各々は、円筒体の周方向に対して斜め方向に延在する。また、キャリアフィルム78a´~78d´の各々の表面の中心点を結ぶ線は、円筒体の周方向に延在する。 However, in the stuck state, each of the carrier films 78a ′ to 78d ′ extends in an oblique direction with respect to the circumferential direction of the cylindrical body. Further, a line connecting the center points of the surfaces of the carrier films 78a ′ to 78d ′ extends in the circumferential direction of the cylindrical body.
 円筒体を軸方向から眺めたとき、主電極74b´の終端側面は補助電極76a´の始端側面と重なり合い、補助電極76a´の終端側面は補助電極76b´の始端側面と重なり合い、補助電極76b´の終端側面は補助電極76c´の始端側面と重なり合い、補助電極76c´の終端側面は主電極74c´の始端側面と重なり合う。 When the cylindrical body is viewed from the axial direction, the terminal side surface of the main electrode 74b ′ overlaps with the starting end side surface of the auxiliary electrode 76a ′, the terminal side surface of the auxiliary electrode 76a ′ overlaps with the starting end side surface of the auxiliary electrode 76b ′, and the auxiliary electrode 76b ′. The end side surface of the auxiliary electrode 76c ′ overlaps with the start end side surface, and the end surface of the auxiliary electrode 76c ′ overlaps with the start end side surface of the main electrode 74c ′.
 これによって、主電極74b´は補助電極76a´と容量結合され、補助電極76a´は補助電極76b´と容量結合され、補助電極76b´は補助電極76c´と容量結合され、補助電極76c´は主電極74c´と容量結合される。特に、主電極74b´と補助電極76a´との間には容量C21が形成され、主電極74c´と補助電極76b´との間には容量C22が形成される。 Accordingly, the main electrode 74b ′ is capacitively coupled with the auxiliary electrode 76a ′, the auxiliary electrode 76a ′ is capacitively coupled with the auxiliary electrode 76b ′, the auxiliary electrode 76b ′ is capacitively coupled with the auxiliary electrode 76c ′, and the auxiliary electrode 76c ′ is It is capacitively coupled to the main electrode 74c ′. In particular, a capacitor C21 is formed between the main electrode 74b ′ and the auxiliary electrode 76a ′, and a capacitor C22 is formed between the main electrode 74c ′ and the auxiliary electrode 76b ′.
 この実施例によれば、円筒体の軸方向から眺めて重なり合う2つの端部側面の間に容量が形成されるため、端部側面間の距離を調整することで容量値を容易に増減できる。また、円筒外の径が小さい場合でも、ダイポールアンテナの長さや補助電極の長さを確保しやすい。
[実施例5]
According to this embodiment, the capacitance is formed between the two end side surfaces that are overlapped when viewed from the axial direction of the cylindrical body. Therefore, the capacitance value can be easily increased or decreased by adjusting the distance between the end side surfaces. Even when the diameter outside the cylinder is small, it is easy to ensure the length of the dipole antenna and the length of the auxiliary electrode.
[Example 5]
 図20(A)~図20(B)を参照して、他の実施例のRFIDデバイス付き物体40´は、図5(A)~図5(C)に示すRFIDデバイス付き物体40とほぼ同様であるため、共通の部材の参照番号に“´”を付すことで重複した説明を省略する。 Referring to FIGS. 20A to 20B, the RFID device-equipped object 40 ′ of the other embodiments is almost the same as the RFID device-equipped object 40 shown in FIGS. 5A to 5C. Therefore, redundant description is omitted by adding “′” to the reference number of the common member.
 主電極46b´は主電極46bよりも長く、主電極46c´は主電極46cよりも短い。したがって、主電極46b´および46c´は、いわゆる非対称ダイポールアンテナを構成する。ただし、主電極46c´の始端から主電極46b´の終端までの長さは、主電極46cの始端から主電極46bの終端までの長さと一致する。したがって、この非対称ダイポールアンテナの電気長は、主電極46bおよび46cによって構成されるダイポールアンテナの電気長と一致する。 The main electrode 46b 'is longer than the main electrode 46b, and the main electrode 46c' is shorter than the main electrode 46c. Therefore, the main electrodes 46b 'and 46c' constitute a so-called asymmetric dipole antenna. However, the length from the start end of the main electrode 46c ′ to the end of the main electrode 46b ′ matches the length from the start end of the main electrode 46c to the end of the main electrode 46b. Therefore, the electrical length of this asymmetric dipole antenna matches the electrical length of the dipole antenna constituted by the main electrodes 46b and 46c.
 この実施例においても、RFIC素子46a´から出力された高周波信号はダイポールアンテナおよび補助電極48a´~48c´から放射される。ダイポールアンテナおよび補助電極48a´~48c´は物体42´の周方向に延在してループ状のアンテナとして機能するため、高周波信号の放射特性は物体42´の周方向における広い範囲で向上する。 Also in this embodiment, the high-frequency signal output from the RFIC element 46a ′ is radiated from the dipole antenna and the auxiliary electrodes 48a ′ to 48c ′. Since the dipole antenna and the auxiliary electrodes 48a ′ to 48c ′ extend in the circumferential direction of the object 42 ′ and function as a loop antenna, the radiation characteristic of the high-frequency signal is improved in a wide range in the circumferential direction of the object 42 ′.
 10,20,40,40´,60 …RFIDデバイス付き物体
 12,42,42´ …物体
 22,62 …第1物体(複合物体の一部)
 30,72 …第2物体(複合物体の他の一部)
 14,24,44,44´,64,80,80´ …RFIDデバイス
 16,26,46,46´,66,74,74´ …RFIDインレイ
 16a,26a,46a,46a´,66a,74a,74a´ …RFIC素子
 16b,26b,46b,46b´,66b,74b,74b´ …主電極(ダイポールアンテナの一部)
 16c,26c,46c,46c´,66c,74c,74c´ …主電極(ダイポールアンテナの他の一部)
 18a~18c,28a~28b,48a~48c,48a´~48c´,68a~68b,76a~76c,76a´~76c´ …補助電極
10, 20, 40, 40 ', 60 ... object with RFID device 12, 42, 42' ... object 22, 62 ... first object (part of composite object)
30, 72 ... second object (other part of composite object)
14, 24, 44, 44 ', 64, 80, 80' ... RFID device 16, 26, 46, 46 ', 66, 74, 74' ... RFID inlay 16a, 26a, 46a, 46a ', 66a, 74a, 74a '... RFIC element 16b, 26b, 46b, 46b', 66b, 74b, 74b '... Main electrode (part of dipole antenna)
16c, 26c, 46c, 46c ', 66c, 74c, 74c' ... main electrode (other part of dipole antenna)
18a-18c, 28a-28b, 48a-48c, 48a'-48c ', 68a-68b, 76a-76c, 76a'-76c' ... auxiliary electrode

Claims (9)

  1.  周面を有する絶縁性の物体に設けられるRFIDデバイスであって、
     RFIC素子に接続され、前記物体の周方向に延在する帯状のダイポールアンテナと、
     所定のギャップをおいて前記ダイポールアンテナの端部と対向配置された端部、および前記ダイポールアンテナの電気長とほぼ同じ電気長を有して、前記物体の周方向に延在する帯状の補助電極と、
    を備える、RFIDデバイス。
    An RFID device provided on an insulating object having a peripheral surface,
    A strip-shaped dipole antenna connected to the RFIC element and extending in the circumferential direction of the object;
    An end portion disposed opposite to the end portion of the dipole antenna with a predetermined gap, and a strip-shaped auxiliary electrode extending in the circumferential direction of the object, having an electrical length substantially the same as the electrical length of the dipole antenna When,
    An RFID device comprising:
  2.  前記ダイポールアンテナおよび前記補助電極が前記物体の全周面を周回するように前記物体に設けられる、請求項1記載のRFIDデバイス。 The RFID device according to claim 1, wherein the dipole antenna and the auxiliary electrode are provided on the object so as to go around the entire circumference of the object.
  3.  前記補助電極の数は2以上であり、
     隣り合う2つの前記補助電極は所定のギャップをおいて対向配置される2つの端部をそれぞれ有する、請求項1または2記載のRFIDデバイス。
    The number of auxiliary electrodes is 2 or more,
    The RFID device according to claim 1, wherein the two adjacent auxiliary electrodes each have two end portions arranged to face each other with a predetermined gap.
  4.  前記物体は柱状体またはリング状の物体である、請求項1ないし3のいずれかに記載のRFIDデバイス。 The RFID device according to any one of claims 1 to 3, wherein the object is a columnar body or a ring-shaped object.
  5.  前記RFIC素子は前記ダイポールアンテナに搭載されている、請求項1ないし4のいずれかに記載のRFIDデバイス。 The RFID device according to claim 1, wherein the RFIC element is mounted on the dipole antenna.
  6.  周面を有する絶縁性の物体にRFIDデバイスを設けてなるRFIDデバイス付き物体であって、
     前記RFIDデバイスは、
     RFIC素子に接続され、前記物体の周囲方向に延在する帯状のダイポールアンテナと、
     所定のギャップをおいて前記ダイポールアンテナの端部と対向配置された端部、および前記ダイポールアンテナの電気長とほぼ同じ電気長を有して、前記物体の周囲方向に延在する帯状の補助電極と、
    を備える、RFIDデバイス付き物体。
    An object with an RFID device in which an RFID object is provided on an insulating object having a peripheral surface,
    The RFID device is
    A strip-shaped dipole antenna connected to the RFIC element and extending in the circumferential direction of the object;
    An end portion disposed opposite to the end portion of the dipole antenna with a predetermined gap, and a strip-shaped auxiliary electrode extending in the circumferential direction of the object, having an electric length substantially the same as the electric length of the dipole antenna When,
    An object with an RFID device comprising:
  7.  周面を有する絶縁性の第1物体と、前記第1物体の周方向と交差する方向を向く交差面を有する導電性の第2物体と、を備える複合物体に設けられるRFIDデバイスであって、
     RFIC素子に接続され、前記第1物体の周囲方向に延在する帯状のダイポールアンテナと、
     所定のギャップをおいて前記ダイポールアンテナの端部と対向配置された端部を有して、前記第1物体の周囲方向に延在する帯状の補助電極と、
    を備える、RFIDデバイス。
    An RFID device provided in a composite object comprising: an insulating first object having a peripheral surface; and a conductive second object having an intersecting surface facing a direction intersecting a circumferential direction of the first object,
    A strip-shaped dipole antenna connected to the RFIC element and extending in the circumferential direction of the first object;
    A band-shaped auxiliary electrode having an end portion opposed to the end portion of the dipole antenna with a predetermined gap and extending in the circumferential direction of the first object;
    An RFID device comprising:
  8.  前記補助電極は前記ダイポールアンテナの電気長のほぼ整数倍の電気長を有する、請求項7に記載のRFIDデバイス。 The RFID device according to claim 7, wherein the auxiliary electrode has an electrical length that is approximately an integral multiple of the electrical length of the dipole antenna.
  9.  RFIDデバイスを複合物体に設けてなるRFIDデバイス付き物体であって、
     前記複合物体は、
     周面を有する絶縁性の第1物体と、
     前記第1物体の周方向と交差する方向を向く交差面を有する導電性の第2物体と、
    を備え、
     前記RFIDデバイスは、
     RFIC素子に接続され、前記第1物体の周囲方向に延在する帯状のダイポールアンテナと、
     所定のギャップをおいて前記ダイポールアンテナの端部と対向配置された端部を有して、前記第1物体の周囲方向に延在する帯状の補助電極と、
    を備える、RFIDデバイス付き物体。
    An RFID device-attached object in which an RFID device is provided on a composite object,
    The composite object is:
    An insulating first object having a peripheral surface;
    A conductive second object having an intersecting surface facing a direction intersecting a circumferential direction of the first object;
    With
    The RFID device is
    A strip-shaped dipole antenna connected to the RFIC element and extending in the circumferential direction of the first object;
    A band-shaped auxiliary electrode having an end portion opposed to the end portion of the dipole antenna with a predetermined gap and extending in the circumferential direction of the first object;
    An object with an RFID device comprising:
PCT/JP2015/076093 2014-09-17 2015-09-15 Rfid device and object with rfid device WO2016043173A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-188465 2014-09-17
JP2014188465 2014-09-17

Publications (1)

Publication Number Publication Date
WO2016043173A1 true WO2016043173A1 (en) 2016-03-24

Family

ID=55533210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/076093 WO2016043173A1 (en) 2014-09-17 2015-09-15 Rfid device and object with rfid device

Country Status (1)

Country Link
WO (1) WO2016043173A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583596B1 (en) * 2018-08-09 2019-10-02 株式会社村田製作所 Wireless communication device
WO2020031419A1 (en) * 2018-08-09 2020-02-13 株式会社村田製作所 Wireless communication device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002259934A (en) * 2001-03-06 2002-09-13 Dainippon Printing Co Ltd Liquid container with rfid tag
WO2007084510A1 (en) * 2006-01-18 2007-07-26 Impinj, Inc. Discontinuous-loop rfid reader antenna and methods
US20090073072A1 (en) * 2007-09-06 2009-03-19 Delphi Delco Electronics Europe Gmbh Antenna for satellite reception
JP2010049410A (en) * 2008-08-20 2010-03-04 Nec Tokin Corp Fixing method and separation method for contactless ic tag
JP2010091614A (en) * 2008-10-03 2010-04-22 Iwata Label Co Ltd Label for rfid chip
WO2014077053A1 (en) * 2012-11-19 2014-05-22 株式会社小松製作所 Ic-tagged filter and ic tag for filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002259934A (en) * 2001-03-06 2002-09-13 Dainippon Printing Co Ltd Liquid container with rfid tag
WO2007084510A1 (en) * 2006-01-18 2007-07-26 Impinj, Inc. Discontinuous-loop rfid reader antenna and methods
US20090073072A1 (en) * 2007-09-06 2009-03-19 Delphi Delco Electronics Europe Gmbh Antenna for satellite reception
JP2010049410A (en) * 2008-08-20 2010-03-04 Nec Tokin Corp Fixing method and separation method for contactless ic tag
JP2010091614A (en) * 2008-10-03 2010-04-22 Iwata Label Co Ltd Label for rfid chip
WO2014077053A1 (en) * 2012-11-19 2014-05-22 株式会社小松製作所 Ic-tagged filter and ic tag for filter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583596B1 (en) * 2018-08-09 2019-10-02 株式会社村田製作所 Wireless communication device
WO2020031419A1 (en) * 2018-08-09 2020-02-13 株式会社村田製作所 Wireless communication device
US11379704B2 (en) 2018-08-09 2022-07-05 Murata Manufacturing Co., Ltd. Wireless communication device

Similar Documents

Publication Publication Date Title
JP6796429B2 (en) Antenna system and antenna module that reduces interference between radiation patterns
US8757500B2 (en) Wireless IC device
US8847831B2 (en) Antenna and antenna module
US8289165B2 (en) RFID device with conductive loop shield
JP5834987B2 (en) ANTENNA DEVICE AND WIRELESS COMMUNICATION DEVICE
JP6593552B2 (en) Wireless communication device
US9825361B2 (en) Antenna with multifrequency capability for miniaturized applications
WO2010001469A1 (en) Wireless communication device
WO2010047214A1 (en) Radio ic device
US20150207211A1 (en) Conductive Loop Antennas
JP2014187452A5 (en)
JPWO2006064540A1 (en) Antenna and contactless tag
JP4605318B2 (en) Antenna and wireless IC device
US11476580B2 (en) Antenna and communication device
WO2016043173A1 (en) Rfid device and object with rfid device
JP2009065321A (en) Patch antenna
TW201628262A (en) Antenna module and mobile communication device having the same
WO2013145623A1 (en) Antenna unit and mobile wireless device equipped with same
US10903557B2 (en) Antenna device and electronic device
US10111318B2 (en) Circuit substrate, and noise reduction method for circuit substrate
TW201803209A (en) Anti-electromagnetic interference unit
JP2012252664A (en) Radio communication device, manufacturing method thereof, and metal article with radio communication device
JP6642764B2 (en) Electronic and communication equipment
JP5404731B2 (en) Wireless communication device
JP5526736B2 (en) Slot antenna and wireless communication terminal equipped with the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15842354

Country of ref document: EP

Kind code of ref document: A1