WO2016043133A1 - Gas sensor - Google Patents

Gas sensor Download PDF

Info

Publication number
WO2016043133A1
WO2016043133A1 PCT/JP2015/075824 JP2015075824W WO2016043133A1 WO 2016043133 A1 WO2016043133 A1 WO 2016043133A1 JP 2015075824 W JP2015075824 W JP 2015075824W WO 2016043133 A1 WO2016043133 A1 WO 2016043133A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
gas
gas sensor
electrode
height
Prior art date
Application number
PCT/JP2015/075824
Other languages
French (fr)
Japanese (ja)
Inventor
啓 杉浦
安藤 芳康
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015149660A external-priority patent/JP6380278B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015004220.2T priority Critical patent/DE112015004220B4/en
Priority to US15/509,327 priority patent/US10345256B2/en
Publication of WO2016043133A1 publication Critical patent/WO2016043133A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Definitions

  • the present invention relates to a gas sensor for detecting a specific gas component such as nitrogen oxide (NOx) contained in exhaust gas of an internal combustion engine, and more particularly to a chamber formed in a stacked sensor element.
  • a specific gas component such as nitrogen oxide (NOx) contained in exhaust gas of an internal combustion engine
  • a gas sensor used in an exhaust gas purification system of an internal combustion engine to detect NOx concentration is generally a chamber into which exhaust gas containing NOx is introduced, and a pump cell that is arranged upstream of the chamber and pumps oxygen in the exhaust gas. And a sensor cell that is disposed downstream of the chamber and detects the NOx concentration in the exhaust gas with a reduced oxygen concentration.
  • the pump cell and the sensor cell of the gas sensor are formed by forming a pair of electrodes on an oxygen ion conductive solid electrolyte sheet constituting the chamber wall, and further stacking a heater sheet and an insulating sheet on the solid electrolyte sheet to form a sensor element.
  • a three-cell gas sensor is known in which a sensor cell and a monitor cell are arranged in parallel on the downstream side of the chamber to monitor the oxygen concentration in the chamber (for example, Patent Document 1). .
  • a gas sensor having a two- or three-cell structure in which solid electrolyte sheets are laminated is generally known as an oxygen sensor (for example, Patent Document 2).
  • the required characteristics of the gas sensor include NOx detection accuracy and responsiveness.
  • NOx detection accuracy in order to improve the accuracy of NOx detection, the gas in which the oxygen concentration is sufficiently reduced by increasing the chance of contact between the exhaust gas passing through the pump cell and the electrode of the pump cell in the chamber and exhausting sufficient oxygen gas. Is preferably sent to the sensor cell.
  • responsiveness of NOx detection it is necessary to cause the exhaust gas to reach the sensor cell promptly due to the good diffusibility of the gas taken into the chamber.
  • the present invention has been made in view of the above problems, and efficiently diffuses exhaust gas into the chamber while efficiently exhausting oxygen in the exhaust gas, thereby improving both NOx detection accuracy and responsiveness. It is intended to provide a high performance gas sensor.
  • One aspect of the present invention is a gas sensor for detecting a specific gas component in a gas to be measured,
  • a chamber into which a gas to be measured is introduced from the outside through a porous diffusion layer provided in a gas sensor element in which a flat ceramic sheet is laminated, and provided at an end in a longitudinal direction of the gas sensor element;
  • a pump cell that has a pump electrode disposed upstream of the gas flow in the chamber and pumps out oxygen in the gas to be measured;
  • a sensor cell that has a sensor electrode disposed on the downstream side of the gas flow in the chamber, and that detects a specific gas component concentration in the gas to be measured with a reduced oxygen concentration;
  • the gas sensor element includes a second ceramic sheet having an opening serving as the chamber, a first ceramic sheet on which the pump electrode and the sensor electrode are disposed on a surface facing the chamber, and the opening covering the opening.
  • the chamber has a warped shape in which at least one surface of the first ceramic sheet and the third ceramic sheet constituting the chamber wall is convex inward of the chamber at the position where the pump cell is formed, and The amount of warpage of the surface is set in the range of 0.10% to 1.38%, In the diffusion layer and the chamber, the height Hp in the stacking direction of the diffusion layer and the average height Have in the stacking direction of the chamber at the position where the pump cell is formed satisfy the relationship of Hp ⁇ Have. , In the gas sensor.
  • the gas sensor faces the chamber provided in the stacked gas sensor element, and at least one surface of the two ceramic sheets constituting the inner wall surface thereof has a warped shape.
  • the space is narrower than the inlet side. For this reason, a gas flow from the side end toward the center of the pump cell is generated due to the difference in flow velocity, and an agitation effect of the gas flow is obtained.
  • the height Hp of the porous diffusion layer into which gas is introduced from the outside is made lower than the chamber average height Have at the pump cell position, the amount of gas introduced into the chamber space is suppressed, and the space becomes wider. Gas diffusibility at the inlet of the chamber is improved. As a result, the oxygen pump capacity is improved toward the outlet side while a sufficient amount of gas to be measured is taken in on the inlet side of the pump cell.
  • FIG. 2 is a diagram showing a tip structure of a gas sensor element constituting the gas sensor according to the first embodiment, and is a cross-sectional view taken along line IA-IA in FIG. 1B.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is 1st Embodiment of this invention, and the whole schematic block diagram of the gas sensor element which comprises a gas sensor.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, showing a planar structure of a tip portion of the gas sensor element.
  • the longitudinal section showing the chamber structure which is the principal part of a gas sensor element typically.
  • the sectional view of the transversal direction which shows typically the chamber structure which is the principal part of a gas sensor element.
  • FIG. 5 is a schematic cross-sectional view in the longitudinal direction for explaining the gas flow in the chamber by comparing the chamber height with the chamber height. The figure which shows the relationship between the amount of chamber deformation and sensor characteristics for demonstrating an effect.
  • the typical sectional view of the longitudinal direction and the transversal direction which show the example of a chamber shape.
  • Process drawing for demonstrating the chamber formation method of a gas sensor element Process drawing for demonstrating the chamber formation method of a gas sensor element.
  • Process drawing for demonstrating the chamber formation method of a gas sensor element Process drawing for demonstrating the chamber formation method of a gas sensor element.
  • the typical sectional view for explaining the method of adjusting the chamber shape of a gas sensor element.
  • the longitudinal section showing the chamber structure which is the principal part of a gas sensor element typically.
  • the sectional view of the transversal direction which shows typically the chamber structure which is the principal part of a gas sensor element.
  • the top view which shows the example of a shape of the gas sensor element in an Example.
  • Typical sectional drawing for demonstrating the evaluation method of the curvature amount in an Example.
  • the typical sectional view for explaining the method of prescribing the position of the end of a chamber in evaluation of the amount of curvature.
  • the typical sectional view for explaining the calculation method of the chamber average height in an example.
  • the figure which shows the relationship between the curvature amount in an Example, and oxygen exhaust capability.
  • Typical sectional drawing for demonstrating the crack suppression effect by the curvature amount in an Example The typical sectional view showing the relation between the amount of curvature and the occurrence of a crack in a comparative example.
  • FIG. 1B shows a gas sensor element 1 constituting a gas sensor
  • FIG. 1A shows a cross section of the tip of the element (that is, the left end part in the figure).
  • the main part of the gas sensor element 1 is a space provided in the element.
  • the exhaust gas is introduced through the porous diffusion layer 21. As shown in FIG.
  • the pump cell 3 in the chamber 2, is disposed on the distal end side (that is, the left end side in the drawing) that is the upstream side of the gas flow, and the proximal end side that is the downstream side of the gas flow (that is, The sensor cell 4 and the monitor cell 5 are arranged in parallel on the right end side in the figure.
  • the gas sensor element 1 has a chamber structure in which the inside of the chamber 2 is not partitioned, and the diffusion layer 21 is positioned so as to close the opening on the upstream side of the chamber 2 at the distal end in the element longitudinal direction.
  • the chamber 2 changes the height of the chamber from the upstream side to the downstream side of the gas flow by changing the height of the chamber with a part of the inner surface constituting the chamber wall being warped, so that the oxygen (ie, O 2 ) of the pump cell 3 is changed.
  • the pump function is promoted, and the gas diffusion property to the sensor cell 4 is improved.
  • Each of the cells 3 to 5 is connected to an unillustrated electrode terminal formed at the proximal end by a lead wire (not shown). Details of cross-sectional shape examples of the chamber 2 in the longitudinal direction and the lateral direction schematically shown in FIGS. 3 and 4 will be described later.
  • the gas sensor element 1 is composed of a laminate in which a plurality of elongated flat plate-like ceramic sheets are stacked in the thickness direction. Specifically, a basic structure in which a chamber forming sheet 12 serving as a second ceramic sheet and a shielding sheet 13 serving as a third ceramic sheet are sequentially laminated on the upper surface of the solid electrolyte sheet 11 serving as a first ceramic sheet. In the chamber forming sheet 12, a rectangular opening 22 that becomes the chamber 2 is formed by punching. The heater layer 6 is laminated on the lower surface of the solid electrolyte sheet 11 via a duct forming sheet 14 that is a fourth ceramic sheet.
  • the duct forming sheet 14 is formed with a duct 33 having an opening reaching a base end (not shown), and the atmosphere as a reference gas is introduced from the outside.
  • the heater layer 6 has a configuration in which a heater electrode 61 is embedded in a heater sheet 62 which is a fifth ceramic sheet.
  • the first to fifth ceramic sheets are made of insulating sheets that are not permeable to the gas to be measured.
  • the gas sensor element 1 is covered with a porous layer whose entire outer surface becomes the trap layer 15.
  • the trap layer 15 captures moisture, poisoning components, and the like contained in the exhaust gas, prevents entry into the chamber 2, and protects the gas sensor element 1.
  • Each cell 3, 4, 5 and heater layer 6 in the gas sensor element 1 is connected to a terminal portion 7 (see, for example, FIG. 1B) at the element base end via a lead wire (not shown), and gas detection means or It is connected to an external drive control unit having energization means and the like.
  • the heater layer 6 generates heat by energization and heats the cells 3, 4, and 5 to a temperature suitable for gas detection.
  • the pump cell 3 includes a solid electrolyte sheet 11, a pump electrode 31 as a pair of electrodes formed at opposite positions on both sides thereof, and a reference electrode 32.
  • the solid electrolyte sheet 11 is a sheet made of a solid electrolyte body having oxygen ion conductivity such as partially stabilized zirconia.
  • a porous cermet electrode mainly composed of a noble metal is used for the pump electrode 31 and the reference electrode 32.
  • the pump electrode 31 is an electrode having a low NOx decomposition activity, for example, a porous cermet electrode containing Pt (ie, platinum) and Au (ie, gold) to suppress decomposition of NOx in the exhaust gas. It is good to do.
  • the O 2 gas in the exhaust gas that has reached the pump electrode 31 is decomposed and permeates through the solid electrolyte sheet 11 to the reference electrode 32 side. Discharged.
  • O 2 gas is discharged from the pump electrode 31 side facing the chamber 2 to the reference electrode 32 side facing the duct 33, and the O 2 concentration in the exhaust gas passing through the pump cell 3 can be reduced. it can.
  • the sensor cell 4 includes a solid electrolyte sheet 11, a sensor electrode 41 as a pair of electrodes formed at opposite positions on both sides thereof, and a reference electrode 32.
  • the monitor cell 5 includes a solid electrolyte sheet 11, a monitor electrode 51 as a pair of electrodes formed at opposite positions on both sides thereof, and a reference electrode 32.
  • a porous cermet electrode mainly composed of a noble metal is preferably used as the sensor electrode 41 and the monitor electrode 51.
  • the sensor electrode 41 is an electrode having a high decomposition activity for NOx gas in the exhaust gas, for example, a porous cermet electrode containing Pt and Rh (ie, rhodium), and the monitor electrode 51 is an NOx decomposition activity.
  • Low electrode for example, a porous cermet electrode containing Pt and Au.
  • the reference electrode 32 is a common electrode for the pump cell 3, sensor cell 4, and monitor cell 5, on the surface of the solid electrolyte sheet 11 opposite to the surface defining the chamber 2, and on all of the pump electrode 31, sensor electrode 41, and monitor electrode 51.
  • a porous cermet electrode mainly composed of Pt is used.
  • the NOx gas in the exhaust gas reaching the sensor cell 4 is decomposed on the sensor electrode 41, and the generated oxygen ions pass through the solid electrolyte sheet 11 and are discharged to the reference electrode 32 side.
  • the current flowing at that time is detected as the concentration of NOx contained in the exhaust gas.
  • the O 2 gas that has reached the monitor electrode 51 is decomposed and discharged to the reference electrode 32 side, and the current flowing at that time is detected as the residual oxygen concentration in the exhaust gas. Since the monitor cell 5 is in the same position in the gas flow direction as the sensor cell 4 in the chamber 2, the pump cell 3 can be effectively feedback controlled by monitoring the residual oxygen concentration.
  • the chamber 2 has a rectangular shape in which the length in the longitudinal direction of the gas sensor element 1 (that is, the chamber length) is longer than the length in the short direction (that is, the chamber width).
  • a diffusion layer 21 made of a porous material having the same width as the chamber width is disposed at the inlet portion of the chamber 2 with a predetermined thickness in the longitudinal direction so as to partition the outer space across the inlet portion. Exhaust gas is introduced into the interior by the diffusion resistance.
  • the pump electrode 31 positioned on the upstream side of the gas flow has a substantially rectangular shape having a width slightly smaller than the chamber width between the sensor electrode 41, the monitor electrode 51 and the diffusion layer 21 positioned at the downstream end. It is formed in a shape.
  • the sensor electrode 41 and the monitor electrode 51 have substantially the same shape and are formed in a substantially rectangular shape having a width slightly smaller than 1 ⁇ 2 of the chamber width.
  • the pump electrode 3 has a sufficiently large area with respect to the sensor electrode 41 and the monitor electrode 51, and effectively discharges O 2 gas in the introduced exhaust gas.
  • the length of the pump electrode 31 in the gas flow direction is 2 to 4 times, for example, about 3 times that of the sensor electrode 41 and the monitor electrode 51, thereby enabling sufficient contact with the exhaust gas.
  • the O 2 gas in the exhaust gas may pass through without being discharged along the side end portion of the chamber 2 where the pump electrode 31 is not formed.
  • a part of the wall surface of the chamber 2 in the stacking direction of the gas sensor element 1 is deformed so that the gas flow in the chamber 2 can be controlled and disposed at the inlet of the chamber 2.
  • the height of the diffusion layer 21 is made lower than the wall surface height of the chamber 2 to limit the amount of exhaust gas introduced.
  • at least one surface of the shielding sheet 13 and the solid electrolyte sheet 11 facing each other with the chamber 2 interposed therebetween is a warped surface having a warped shape that protrudes inward of the chamber 2 at the position where the pump cell 3 is formed.
  • This warp surface is usually set to a predetermined warp amount range of 0.10% or more and 1.38% or less.
  • the amount of warpage represents the deformation ratio of the warped surface with respect to the reference surface without warpage, and is defined here based on the maximum amount of deformation in the cross section of the gas sensor element 1 in the longitudinal direction and the short direction. If the amount of warpage is less than 0.10%, the effect of the warped surface cannot be obtained, and cracks may occur in the process of firing and degreasing in the manufacturing process of the gas sensor element 1. As the amount of warpage increases, the flow velocity difference increases, but if it exceeds 1.38%, cracking may occur in the sheet lamination pressing step.
  • the diffusion layer 21 and the chamber 2 have a height in the stacking direction of the diffusion layer 21 as Hp and an average height in the stacking direction of the chamber 2 at the position where the pump cell 3 is formed as Have, Hp ⁇ Have, Satisfy the relationship.
  • the average height Have of the chamber 2 is calculated based on, for example, the average value of the chamber height at a plurality of locations from the inlet side to the outlet side of the pump cell 3 in the longitudinal section of the gas sensor element 1.
  • the diffusion layer 21 is formed, for example, by embedding a porous sheet on the front end side of the chamber forming sheet 12 forming the chamber 2, and the height Hp of the diffusion layer 21 is the height of the chamber forming sheet 12 (ie, Sheet thickness).
  • the arrangement of the diffusion layer 21 with respect to the chamber forming sheet 12 may be any of a position in contact with the solid electrolyte sheet 11, a position in contact with the shielding sheet 13, or an intermediate position in the stacking direction as illustrated.
  • the downstream end with respect to the upstream end (that is, the gas inlet) of the pump electrode 31 in the longitudinal direction of the gas sensor element 1 in the gas flow direction, the downstream end with respect to the upstream end (that is, the gas inlet) of the pump electrode 31.
  • the cross-sectional area of the portion (that is, the gas outlet portion) becomes smaller, and in the short direction, the intermediate portion where the pump cell 3 is formed, particularly the pump electrode 31 with respect to the height of at least one wall surface of the side end portion. It is set as the shape where the height of the center part position becomes low.
  • the shielding sheet 13 constituting the wall of the chamber 2 located on the opposite side to the pump electrode 31 is deformed among the wall surfaces to be the chamber 2, and in the longitudinal section (for example, see FIG. 3),
  • the surface of the shielding sheet 13 exposed to the chamber 2 (that is, the lower surface in FIG. 3) has a warped shape that protrudes inward of the chamber 2.
  • This warped shape is preferably formed on a curved surface of a mountain-shaped curved surface that is curved smoothly so that the deformation is maximized, that is, the height of the chamber 2 is lowered, at the downstream side of the central portion of the pump electrode 31.
  • the height of the chamber 2 is gradually decreased from the inlet portion a on the inlet side of the pump electrode 31 toward the outlet portion d on the outlet side, and the sectional area is gradually reduced. Between the inlet part a and the outlet part d, the height of the chamber 2 is lower at the intermediate part c downstream from the central part of the pump electrode 31 than at the intermediate part b upstream.
  • the height of the outlet part d and the intermediate part c upstream thereof is substantially the same, and the relationship between the heights of the parts in the longitudinal direction is preferably, for example, the inlet height Ha> Hb> Hc ⁇ the outlet height Hd. .
  • the downstream side e of the pump electrode 31 (that is, the position where the sensor electrode 41 and the monitor electrode 51 are formed) is slightly higher than the outlet part d, and the height of the chamber 2 gradually increases from the outlet part d which is the minimum height. It is formed to be higher.
  • the height between the inlet portion a and the downstream intermediate portion c for example, the same level as the upstream intermediate portion b can be set.
  • the chamber 2 has a substantially rectangular cross-sectional shape.
  • the surface of the shielding sheet 13 exposed to the chamber 2 is warped so as to be convex inward of the chamber 2, and in this case, the surface is curved so that the deformation is maximized at the central portion.
  • a mountain-shaped curved surface is formed, and the central space in the chamber 2 is narrowed.
  • the amount of deformation is gradually increased toward the outlet portion d of the pump electrode 31, and the cross-sectional area is gradually decreased.
  • the amount of deformation of the downstream portion e of the pump electrode 31 is slightly smaller than that of the outlet portion d, and the sectional area is slightly larger.
  • each part b to e is such that the side wall end has a constant wall height and the space remains wide, and the intermediate part has a chamber 2 height that gradually decreases toward the center position of the pump electrode 31, The space becomes narrower toward the center.
  • the cross-sectional area is, for example, in the relationship of the inlet part a>b> c ⁇ the outlet part d, and the downstream side E is between the inlet part a and the downstream intermediate part c, for example, the upstream intermediate part b. It has the same cross-sectional area.
  • the intermediate portion is narrowed, the O 2 pump capability is enhanced, and gas diffusibility is ensured at the wide side end portions.
  • the difference in flow velocity between the side end portions and the central portion is increased, the gas flow is agitated, and efficient O 2 discharge becomes possible.
  • both the wall surfaces of the chamber 2 facing the stacking direction of the gas sensor elements 1 can be deformed.
  • the shape and arrangement of the diffusion layer 21 (not shown), the relationship between the height Hp of the diffusion layer 21 and the average height Have of the chamber 2 at the position where the pump cell 3 is formed are the same as in the first embodiment. The difference will be mainly described. Specifically, in the longitudinal section (see, for example, FIG. 5), the surface of the solid electrolyte sheet 11 on which the shielding sheet 13 and the pump electrode 31 are formed is exposed to the inside of the chamber 2.
  • the chamber 2 is gradually lowered from the inlet portion a to the outlet portion d of the pump electrode 31 and is formed in a chevron-shaped warped surface in which the amount of warpage is maximized at the gas outlet portion.
  • the relationship between the height of the outlet portion d and the upstream portion thereof may be, for example, the inlet height Ha>Hb> Hc ⁇ the outlet height Hd, and the gas inlet portion of the pump electrode 31.
  • the cross-sectional area is maximized at the gas outlet, and the cross-sectional area is minimized at the gas outlet.
  • the downstream E (the position where the sensor electrode 41 and the monitor electrode 51 are formed) can be approximately the same as the height between the inlet portion a and the downstream intermediate portion c, for example, the upstream intermediate portion b.
  • the cross section in the short direction of FIG. 6 corresponds to the cross section of each part ae of FIG.
  • the chamber 2 has a substantially rectangular cross-sectional shape, and there is almost no deformation of the shielding sheet 13 and the solid electrolyte sheet 11 that become the walls of the chamber 2. .
  • the surfaces of the shielding sheet 13 and the solid electrolyte sheet 11 that are exposed to the chamber 2 are warped so as to protrude inward of the chamber 2, and in this case, the warping amount at the center is maximum. It has a mountain shape.
  • the amount of deformation gradually increases toward the outlet portion d of the pump electrode 31, and the amount of deformation on the downstream side e of the pump electrode 31 is slightly smaller than that on the outlet side d.
  • the side ends of each part b to e are less deformed than the middle part, the wall surface is high and the space remains wide, the middle part is narrow, and the height of the chamber 2 gradually decreases toward the center part. It has a cross-sectional shape.
  • the cross-sectional area is, for example, the relationship of the inlet part a> b> c ⁇ the outlet part d, and the downstream side e has a cross-sectional area similar to that of the upstream part b, for example, between the inlet part a and the upstream part c. ing.
  • the shielding sheet 13 and the solid electrolyte sheet 11 both set the amount of warpage of the surface exposed to the chamber 2 within a range of 0.10% to 1.38%.
  • the warpage shape and the amount of warpage of the shielding sheet 13 and the solid electrolyte sheet 11 satisfy the height Hp in the stacking direction of the diffusion layer 21 ⁇ the average height Have in the stacking direction of the chamber 2 at the position where the pump cell 3 is formed. Can be set as appropriate so that
  • the shape of the chamber 2 of the first and second embodiments is such that the average height Have at the position where the pump cell 3 is formed is appropriately set with respect to the height Hp of the diffusion layer 21, and one of the surfaces facing the stacking direction or Both are warped and the cross-sectional area of the inlet side end of the pump electrode 31 is ensured, thereby enabling the same gas intake as before. Furthermore, the deformation of the wall surface increases from the inlet side to the outlet side end and the cross-sectional area decreases, thereby promoting O 2 discharge of the pump electrode 31 shown in FIG. 1 and increasing the pump capacity. Further, the downstream side of the inlet side end portion has a narrow cross section at the middle portion and both side end portions, and as shown in FIG.
  • FIG. 7A schematically shows a representative shape in the short direction of the chamber 2 of the second embodiment.
  • the volume of the central portion where the distance between the opposing walls in the chamber 2 is minimum is V1, and the distance is maximum.
  • V2 be the volume of the side end.
  • the gas flow rate Q is represented by the following general formula.
  • General formula of gas flow rate Q Q C ⁇ ⁇ p In the formula, C is a coefficient representing the ease of gas flow.
  • FIG. 7B schematically shows the relationship between the height in the longitudinal direction of the chamber 2 and the gas flow, comparing the case where the chamber height is high (ie, the left figure) and the case where the chamber height is low (ie, the right figure). ing.
  • the chamber height is constant in the longitudinal direction
  • gas molecules including O 2 and the like collide with the wall surface of the chamber 2. Head downstream.
  • the lower the chamber height (ie, the right figure) the higher the collision frequency of the gas molecules, the O 2 molecules in the exhaust gas collide with the surface of the pump electrode 31 and decompose. It is easily removed and the O 2 discharge capacity is improved.
  • the chamber height (that is, the cross-sectional area) is sufficiently increased to secure the gas inflow amount, and the chamber gradually The height (that is, the cross-sectional area) is reduced so that the O 2 discharge capacity becomes higher toward the outlet side.
  • the chamber height of the intermediate part where the pump electrode 31 is formed, especially the central part is lowered, and a wide space is secured on both sides, thereby improving gas diffusibility and improving responsiveness.
  • the deformed wall surface has a smooth curved surface shape and does not obstruct the gas flow, and the flow rate difference between the central portion and the side end portion where the flow velocity is slow becomes large, and the gas flow is agitated, so that the pump electrode
  • the frequency of collision with 31 increases, and the surrounding gas is further drawn by the O 2 discharge, thereby enabling efficient O 2 removal.
  • the chamber height is the lowest at the downstream side of the central portion of the pump electrode 31, more preferably at the gas outlet portion of the pump electrode 31, particularly at or near the outlet side edge.
  • the chamber height (that is, the cross-sectional area) is increased again to improve the gas diffusibility, and the exhaust gas from which O 2 has been exhausted is quickly introduced into the sensor cell 4.
  • the relationship between the shape of the surface of the ceramic sheet serving as the inner wall surface of the chamber 2 and the height Hp of the diffusion layer 21 and the average height Have of the chamber 2 is determined as the position where the pump electrode 31 of the pump cell 3 is formed. It is possible to achieve both responsiveness and detection accuracy by prescribing them in correspondence with.
  • FIG. 8 shows the relationship between the sensor characteristics of the gas sensor element 1 of the present invention and the amount of deformation of the wall surface of the chamber 2 (that is, the amount of warpage). The amount of gas discharged in proportion to the amount of deformation increases. On the other hand, the gas responsiveness is almost constant.
  • the deformation amount represents the size of the surface warpage shape of both wall surfaces that deform so as to approach the opposing direction with respect to the shape of the chamber 2 of the second embodiment shown in FIG. This corresponds to the warped surface height Hm at the center where the height H2 is minimized. From the relationship of FIG. 8, the larger the amount of deformation of the chamber 2, the better the gas discharge efficiency. However, if the deformation of the chamber 2 is increased, problems are likely to occur during molding. Therefore, preferably, in FIG. 8, by appropriately setting the warp shape and the deformation amount so that good gas discharge efficiency and gas responsiveness can be obtained within a predetermined warp amount range that can ensure good moldability. Good characteristics can be obtained.
  • the sensor characteristics are defined by the height of the chamber 2 (that is, the height H1 at both ends and the height H2 at both ends). Therefore, the gas discharge efficiency can be optimized by setting the height H1 at both ends that can ensure the desired gas responsiveness, and setting the center height H2 from the upper limit value of the warp amount.
  • the height difference ⁇ H (that is, the difference between the height H1 at both ends and the height H2 at the both ends) is calculated from the center height H2 for obtaining a desired gas discharge efficiency, and the warpage of the two opposing wall surfaces is calculated.
  • the surface height Hm can also be set.
  • the warpage amount of the two wall surfaces may be the same, but if the warpage amount of the wall surface on which the pump electrode 31 is formed is made smaller, the deformation of the pump electrode 31 can be suppressed. Further, when the wall surface on which the pump electrode 31 is formed is a flat surface and only the opposing wall surface is warped, as in the shape of the chamber 2 of the first embodiment shown in FIG. And the chamber 2 can be easily formed.
  • FIGS. 10B to 10G are other examples of the shape of the chamber 2.
  • the shape of the warped surface is the shape of the above embodiment. It is not limited to.
  • the cross-sectional area of the outlet side is smaller than the inlet side of the pump electrode 31 in the longitudinal direction and the height of the intermediate portion where the pump electrode 31 is formed is lower than the side end portion in the short direction, The above effect is enhanced.
  • FIG.10 (b) The wall surface on which the pump electrode 31 is formed may be shaped to warp outward of the chamber 2 as shown in the longitudinal and lateral views. In this case, following the deformation of the wall surface facing the pump electrode 31, it is slightly deformed in the longitudinal direction or the short direction. As shown in FIG. 10C, the wall surface of the chamber 2 may have a corrugated warped shape with irregularities in the longitudinal direction or the short direction.
  • the deformed wall surface of the chamber 2 is not limited to a smooth curved surface, and may be a warped surface having a substantially V-shaped cross section as shown in FIGS.
  • the position having the minimum height in the longitudinal direction is the outlet side edge of the pump electrode 31 (FIG. 10 (e)) or the outlet side end (FIG. 10 (d) )
  • the position having the minimum height may be at the center of the pump electrode 31 (FIG. 10E) or the central portion in the vicinity thereof (FIG. 10D).
  • the height of the chamber 2 may be constant downstream from the outlet position of the pump electrode 31.
  • the upstream warp shape is a smooth curved surface, but it may be an inclined surface as shown in FIGS.
  • the chamber 2 only needs to have a height of at least one side end sufficiently higher than the intermediate portion where the pump electrode 31 is formed, and the other side end.
  • the height of the part may be approximately the same as the height of the intermediate part.
  • FIG. 10G is an example in which both the wall surfaces of the chamber 2 are warped, as in the second embodiment, and the amount of warpage is changed.
  • the amount of warpage of the wall surface on which the pump electrode 31 is formed is made smaller.
  • the longitudinal and short chamber shapes can be arbitrarily combined.
  • FIG. 11 shows an example of the manufacturing process of the gas sensor element 1 having the shape of the chamber 2 of the present invention.
  • 11A first, in the step (1), unfired ceramic sheets to be the solid electrolyte sheet 11, the chamber forming sheet 12, and the shielding sheet 13 are respectively molded.
  • step (2) a paste that becomes the diffusion layer 21, the pump electrode 31, the sensor electrode 41, and the monitor electrode 51 is printed at a predetermined position on the surface of the solid electrolyte sheet 11.
  • a paste (not shown) that is a lead wire for connecting each electrode to an electrode terminal (not shown) is printed.
  • a predetermined position of the chamber forming sheet 12 is punched to form an opening 22 that becomes the chamber 2.
  • the burnt material sheet 16 is inserted into the opening 22 of the chamber forming sheet 12 in the step (4).
  • the solid electrolyte sheet 11 is, for example, a mixed sheet of zirconia and an organic substance
  • the chamber forming sheet 12 and the shielding sheet 13 are, for example, a mixed sheet of alumina and an organic substance.
  • the burnt-out material sheet 16 is a single sheet or mixed sheet made of an organic material having a decomposition temperature of 1000 ° C. or lower, and includes, for example, a burned-out material such as acrylic resin, PVB, fluorine-based resin, carbon, etc. It is formed to become. By adjusting the composition, thickness, shape, etc. of the burnt-out material sheet 16, the shape of the chamber 2 can be adjusted.
  • the step (4) -1 shows a specific example of the method of inserting the burnt material sheet 16.
  • the burnt material sheet 16 is laminated on the chamber forming sheet 12, and a punching shape corresponding to the chamber 2 is punched out.
  • the die is used to punch out the burnt material sheet 16 from above, and at the same time, the punched burnt material sheet 16 is inserted into the punched hole of the chamber forming sheet 12.
  • the chamber forming sheet 12 punched into a predetermined shape may be placed on the suction plate, and the burned material sheet 16 having a corresponding shape may be transported and inserted. it can.
  • the chamber forming sheet 12 and the shielding sheet 13 are stacked in this order on the upper surface of the solid electrolyte sheet 11, and the release film 17 is stacked on the top and bottom, and placed in a molding die.
  • a load (for example, 15-50 MPa) is applied to the laminated body from above and below, and crimped at a temperature (for example, 60-80 ° C).
  • a chamber-forming sheet 12 and a shielding sheet obtained by printing or applying a paste made of a burned material at a predetermined position on the upper surface of the solid electrolyte sheet 11 and punching it into a predetermined shape in advance. 13 may be stacked in the order of 13 and placed in the molding die, and the burning material can be embedded and crimped simultaneously.
  • the pressure-bonded body of the duct forming sheet 14 and the heater layer 6 manufactured by a known method is laminated and bonded, and fired to obtain the gas sensor element 1.
  • the shape of the chamber 2 of the obtained gas sensor element 1 can be controlled by the sheet thickness of the burned material placed in the chamber 2 prior to the step (5).
  • the left figure of FIG. 12A schematically shows a case in which one wall surface (that is, the upper surface in the figure) side of the chamber 2 is warped, and as a burnt out material whose thickness is adjusted in advance according to the warpage amount, An organic sheet mainly composed of resin or carbon is used.
  • the burnt material is accommodated with the upper end portion of the chamber 2 left, and the wall surface facing the space portion of the chamber 2 is bent and deformed by applying a load from above.
  • the warped shape as in the first embodiment is relatively easy by appropriately adjusting the thickness of the burned material with respect to the distance A between both ends. After being formed and fired, it can be formed into a hollow chamber 2 shape having a desired deformation amount B as shown in the right figure of FIG. 12A.
  • step (5) When deforming so that only one wall surface is convex inward as in the shape of the chamber 2 in FIG. 12A, in the step (5), 1: between the sheet to be deformed and the release film 17, Insert the rubber film 2: Thicken the release film 17 on the sheet side to be deformed and thin the release film 17 on the opposite side 3: Make the release film 17 on the opposite side of the sheet to be deformed by pre-pressing Means such as hardening can also be employed. Further, by having a space part on both sides of the burned material accommodated in the chamber 2 and pressing from both sides, the warped chamber 2 shape in which both opposing wall surfaces protrude inward as in the second embodiment, can do.
  • a desired warp shape can be imparted to the surface of the burnt-out material sheet 16, as shown in FIG. 12B.
  • an unfired ceramic sheet 13 to be a shielding sheet 13 is disposed above the surface of the solid electrolyte sheet 11 to which the electrode paste is applied (that is, the upper surface in the figure).
  • a chamber forming sheet 12 containing a burnt-out material sheet 16 which is an organic material sheet as a component is disposed.
  • the upper and lower surfaces of the burnt-out material sheet 16 are recessed in a mortar shape, and the surfaces of the shielding sheet 13 and the solid electrolyte sheet 11 that are in contact with these surfaces are deformed at the time of laminating and pressing the sheets, A predetermined warpage shape corresponding to the shape of the burned-out material sheet 16 can be obtained.
  • the burnt-out material sheet 16 may be recessed and only one corresponding surface may be deformed.
  • a chamber that constitutes the wall surface of the chamber 2 facing the short direction of the gas sensor elements At least one of the inner surfaces of the opening 22 of the forming sheet 12 may be warped.
  • the relationship between the warp shape of the shielding sheet 13 serving as the chamber wall, the shape and arrangement of the diffusion layer 21, the height Hp of the diffusion layer 21 and the average height Have of the chamber 2 at the position where the pump cell 3 is formed is as follows. This is the same as the embodiment, and the following description will be focused on the differences.
  • the chamber forming sheet 12 is formed with a substantially rectangular opening 22 that becomes the chamber 2, and the inner surface exposed to the chamber 2 is exposed.
  • both the pair of inner surfaces extending in the longitudinal direction are angled warpage surfaces that protrude inward of the chamber 2.
  • the warped surface gradually reduces the width of the chamber 2 from the inlet portion a of the pump electrode 31 toward the outlet portion d at the position where the pump cell 3 is formed, and is preferably downstream of the central portion of the pump electrode 31.
  • it is preferable that the amount of warpage is maximized.
  • the relationship between the chamber widths Wa to We in the respective parts a to e in the chamber 2 is preferably, for example, the inlet width Wa> Wb> Wc ⁇ the outlet width Wd.
  • the relationship between the chamber heights Ha to He due to the warped surface of the shielding sheet 13 is, for example, the inlet height Ha> Hb> Hc ⁇ the outlet height Hd, as in the first embodiment.
  • the cross-sectional area of the chamber 2 in the short direction is the smallest on the downstream side of the central portion of the pump electrode 31.
  • the chamber 2 has a warped shape in which the surface of the shielding sheet 13 serving as the upper wall and the pair of surfaces of the chamber forming sheet 12 serving as the side walls are convex inward of the chamber 2, both of which are warped at the center. It has a mountain shape with a maximum.
  • the chamber 2 has a substantially rectangular cross-sectional shape as in the first embodiment, and the cross-sectional area becomes smaller as the amount of warpage gradually increases toward the downstream side.
  • the gas introduced into the chamber 2 travels toward the center of the pump cell 3 along the warped shape of the pair of surfaces of the chamber forming sheet 12 protruding into the chamber 2 as indicated by arrows in FIG. It becomes a flow. Also, along the warped shape of the surface of the shielding sheet 13 becomes a flow directed to the pumping electrodes 31 on the solid electrolyte sheet 11, it is possible to increase the O 2 discharge capacity in the pump electrode 31. Since the chamber 2 has spaces at the four corners in the cross section in the short direction, gas diffusibility is ensured.
  • the amount of warpage of the surface of the chamber forming sheet 12 can be arbitrarily set. Normally, if the amount of warpage is 0.10% or more, the gas flow stirring effect can be obtained.
  • the maximum amount of warpage may be set so that the warped surface does not protrude inward of the chamber 2 from the outer peripheral edge of the pump electrode 31.
  • the maximum amount of warpage varies depending on the shape of the chamber 2 and the arrangement of the pump electrode 31. For example, when the length of the chamber 2 is 14 mm and the gap between the side wall of the chamber 2 and the outer peripheral edge of the pump electrode 31 is 160 ⁇ m, The maximum amount of warpage is 1.2%.
  • the shape of the chamber 2 of the third embodiment it is possible to further increase O 2 discharge by the pump electrode 31 by increasing the difference in flow velocity of the gas flow while ensuring responsiveness. Further, the warped shape of the surface of the chamber forming sheet 12 can be combined with the shape of the chamber 2 of the second embodiment.
  • the height Hp of the diffusion layer 21, the shape of the chamber 2, and the shape of the pump cell 3 are shown in Table 1 for the gas sensor element 1 having the shape shown in FIGS.
  • the test element having a predetermined chamber warp shape was fabricated by the method described above, and the relationship with the sensor characteristics was examined (Examples 1 to 6). Test elements outside the scope of the invention were produced (Comparative Examples 1 to 5). As shown in the table in FIG.
  • the short direction length A of the sensor electrode 41 of the sensor cell 4 is 1 mm
  • the long direction length B is 2 mm
  • the short length C of the chamber 2 is 2.4 mm
  • the pump electrode of the pump cell 3 31 in the short direction E: 2.1 mm is common to all the examples and all the comparative examples.
  • Examples 1 to 6 and Comparative Examples 1 and 3 to 5 are the longitudinal length D of the chamber 2: 9 mm
  • the longitudinal length B of the pump electrode 31 was 6.5 mm.
  • the length in the longitudinal direction D of the chamber 2 was 14 mm
  • the length in the longitudinal direction F of the pump electrode 31 of the pump cell 3 was 11 mm.
  • the test elements of Examples 1 to 6 and Comparative Examples 3 to 5 are externally arranged so as to bend and deform the solid electrolyte sheet 11 serving as the lower wall surface of the chamber 2.
  • the warped shape is recessed by applying a load, and the surface on which the pump electrode 31 and the sensor electrode 41 are formed is a warped surface that curves so as to protrude inward of the chamber 2, that is, toward the shielding sheet 13.
  • the solid electrolyte sheet 11 has a warped shape that swells to the outside of the chamber 2. Table 1 shows the results of measuring the amount of warpage in each of these Examples and Comparative Examples.
  • the height Hp of the diffusion layer 21 in the stacking direction and the average height Have of the chamber 2 at the position where the pump cell 3 is formed are measured and shown in Table 1.
  • the average height Have is obtained by measuring the height between the solid electrolyte sheet 11 and the shielding sheet 13 for the inlet portion, the center portion, and the outlet portion of the pump electrode 31 in the gas flow direction. The value is obtained.
  • Average height Have (pump cell inlet height Hi + center height Hc + outlet height Ho) / 3
  • the height Hp of the diffusion layer 21 is lower than the average height Have of the chamber 2, and the height of the chamber 2 is equal to the central height Hc and the inlet height Hi of the pump cell 3.
  • the exit height Ho is low.
  • the height gradually decreases from the inlet to the outlet of the pump cell 3, or the heights of the center and the outlet are the same.
  • Examples 3 to 6 are the heights of the center and the outlet. Are almost equal or slightly higher in the middle.
  • the height Hp of the diffusion layer 21 is higher than the average height Have of the chamber 2.
  • Table 1 shows the results of examining the O 2 discharge capacity and gas responsiveness of Examples 1 to 6 and Comparative Examples 1 to 5.
  • the case where the oxygen current value was small (background was small) and the differential current value between the sensor cell 4 and the monitor cell 5 was stable and the NOx current value was measurable was evaluated as ⁇ .
  • the gas responsiveness can be measured because the response to NOx gas concentration fluctuation is poor and the NOx current value is not stable and cannot be measured, and the response to NOx gas concentration fluctuation is good and the NOx current value is stable. The thing was made into (circle). Further, FIG. 19A shows the relationship between the amount of chamber warpage and the O 2 discharge capacity in Examples and Comparative Examples in which the chamber is recessed.
  • FIG. 19A the O 2 discharge capacity is improved as the chamber warp amount increases.
  • Comparative Example 4 in which the chamber warpage amount was 1.40%, a crack occurred in the sheet lamination pressure bonding step.
  • Comparative Example 3 in which the chamber warpage amount is 0.05%, cracks are generated in the baking and degreasing process, and good results cannot be obtained if the chamber warpage amount is too large or too small.
  • FIG. 19B and FIG. 19C show the behavior in the firing and degreasing process when the chamber warpage amount exceeds 0.05% and when it is 0.05% or less.
  • Example 3 of 0.10% and Example 4 of 1.38% no cracks occurred in Example 3 of 0.10% and Example 4 of 1.38%. Therefore, in the present invention, the amount of warpage of the chamber should be in the range of 0.10% to 1.38%, and as is apparent from the results of Table 1, Examples 1 to 6 are O 2 Good results were obtained for both discharge capacity and gas responsiveness.
  • Comparative Example 1 in which the chamber 2 is expanded outward and deformed and in Comparative Example 5 in which the height Hp of the diffusion layer 21 is higher than the average height Have, sufficient O 2 discharge capability is not obtained.
  • the O 2 discharge capacity is improved by increasing the longitudinal lengths of the chamber 2 and the pump cell 3, but the gas responsiveness is lowered.
  • the gas sensor element 1 should just be the structure which has arrange
  • the chamber 2 shape of this invention is applied. Therefore, the same effect can be expected.
  • the wall surface shape of the chamber 2 may be a shape other than the above-described shape, and the manufacturing method of the gas sensor element 1 is not limited to the method described in the above embodiment, and the chamber 2 shape of the present invention is formed. Various methods can be employed.
  • a gas sensor having both detection accuracy and responsiveness can be realized.
  • This gas sensor is suitable as a NOx sensor installed in an exhaust system of an internal combustion engine, and contributes to an improvement in exhaust purification performance.
  • the specific gas component detected by the gas sensor of the present invention is not limited to NOx, but may be SOx or the like.
  • the gas to be measured is not limited to the exhaust gas from the internal combustion engine, but includes specific gas components in various gases. Used for detection, good sensor characteristics can be emitted.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

 A gas sensor in which exhaust gas is introduced into a chamber 2 provided to a gas sensor element 1, the oxygen concentration in an upstream pump cell 3 is reduced, and NOx is detected in exhaust gas in a downstream sensor cell 4, wherein the surface of a shielding sheet 13 and/or a solid electrolyte sheet 11 constituting a wall face of the chamber 2 is configured so as to have a curved shape convex toward the inside of the chamber at the position where the pump cell 3 is formed, the amount of curvature is set to a range of 0.10% to 1.38%, and the height Hp of a diffusion layer 21 in the layering direction thereof is configured so as to be less than the average height Have of the chamber in the layering direction at the position where the pump cell is formed.

Description

ガスセンサGas sensor
 本発明は、内燃機関の排出ガスに含まれる窒素酸化物(NOx)等の特定ガス成分を検知するガスセンサに関し、詳しくは、積層型のセンサ素子内に形成されるチャンバに関する。 The present invention relates to a gas sensor for detecting a specific gas component such as nitrogen oxide (NOx) contained in exhaust gas of an internal combustion engine, and more particularly to a chamber formed in a stacked sensor element.
 内燃機関の排気浄化システムに用いられてNOx濃度を検出するガスセンサは、一般に、NOxを含む排出ガスが導入されるチャンバと、チャンバ内の上流側に配置されて排出ガス中の酸素を汲み出すポンプセルと、チャンバ内の下流側に配置されて酸素濃度の低減した排出ガス中のNOx濃度を検知するセンサセルを備える。ガスセンサのポンプセルとセンサセルは、チャンバ壁を構成する酸素イオン導電性の固体電解質シートに一対の電極を形成してなり、さらに固体電解質シートにヒータシートや絶縁シートを積層して、センサ素子とする。この2セル構造のガスセンサの他、チャンバの下流側に、センサセルとモニタセルを並設して、チャンバ内の酸素濃度をモニタする3セル構造のガスセンサが知られている(例えば、特許文献1等)。 A gas sensor used in an exhaust gas purification system of an internal combustion engine to detect NOx concentration is generally a chamber into which exhaust gas containing NOx is introduced, and a pump cell that is arranged upstream of the chamber and pumps oxygen in the exhaust gas. And a sensor cell that is disposed downstream of the chamber and detects the NOx concentration in the exhaust gas with a reduced oxygen concentration. The pump cell and the sensor cell of the gas sensor are formed by forming a pair of electrodes on an oxygen ion conductive solid electrolyte sheet constituting the chamber wall, and further stacking a heater sheet and an insulating sheet on the solid electrolyte sheet to form a sensor element. In addition to this two-cell gas sensor, a three-cell gas sensor is known in which a sensor cell and a monitor cell are arranged in parallel on the downstream side of the chamber to monitor the oxygen concentration in the chamber (for example, Patent Document 1). .
 ガスセンサによるNOxの検出原理は、特許文献1等に記載されており、まず、積層型センサ素子の内部空間であるチャンバに排出ガスを取り込んで、上流側のポンプセルを通過する間に、検出の妨げとなる酸素をチャンバ外に排出する。このとき、ポンプセルへの印加電圧を、チャンバ内の酸素によって流れる電流値が電圧値に依存しなくなるように設定すると、限界電流式の酸素センサとして作動する。その後、下流側のセンサセルにおいて、酸素濃度が低減した排出ガス中のNOxを分解し、発生する電流値からNOx濃度を検知することができる。また、モニタセルを設けて、センサセルに達した排出ガス中の残留酸素濃度を検出し、ポンプセルへの印加電圧をフィードバック制御することができる。 The principle of NOx detection by a gas sensor is described in Patent Document 1 and the like. First, exhaust gas is taken into a chamber, which is an internal space of a stacked sensor element, and detection is prevented while passing through an upstream pump cell. The oxygen which becomes becomes exhausted out of the chamber. At this time, if the voltage applied to the pump cell is set so that the value of the current flowing by the oxygen in the chamber does not depend on the voltage value, it operates as a limiting current type oxygen sensor. Thereafter, in the downstream sensor cell, NOx in the exhaust gas having a reduced oxygen concentration can be decomposed, and the NOx concentration can be detected from the generated current value. In addition, a monitor cell can be provided to detect the residual oxygen concentration in the exhaust gas that has reached the sensor cell, and to feedback control the voltage applied to the pump cell.
 なお、固体電解質シートを積層した、2又は3セル構造のガスセンサは、一般には、酸素センサとして知られている(例えば、特許文献2等)。 A gas sensor having a two- or three-cell structure in which solid electrolyte sheets are laminated is generally known as an oxygen sensor (for example, Patent Document 2).
特開平11-83793号公報Japanese Patent Laid-Open No. 11-83793 特開2013-117428号公報JP 2013-117428 A
 ここで、ガスセンサの要求特性として、NOx検出の精度と応答性が挙げられる。このうち、NOx検出の精度を向上させるためには、チャンバ内において、ポンプセルを通過する排出ガスとポンプセルの電極との接触機会を増し、十分な酸素ガス排出により、酸素濃度を十分低減させたガスをセンサセルに送ることが望ましい。また、NOx検出の応答性を向上させるためには、チャンバ内に取り込まれたガスの良好な拡散性により、排出ガスを速やかにセンサセルへ到達させることが必要となる。 Here, the required characteristics of the gas sensor include NOx detection accuracy and responsiveness. Among these, in order to improve the accuracy of NOx detection, the gas in which the oxygen concentration is sufficiently reduced by increasing the chance of contact between the exhaust gas passing through the pump cell and the electrode of the pump cell in the chamber and exhausting sufficient oxygen gas. Is preferably sent to the sensor cell. Further, in order to improve the responsiveness of NOx detection, it is necessary to cause the exhaust gas to reach the sensor cell promptly due to the good diffusibility of the gas taken into the chamber.
 ところが、これら2つの要求特性は、背反の条件であり、現状では両立させることが困難であった。つまり、十分な酸素ガス排出のためには、例えば、排出ガスがポンプセルの電極上に留まりやすくなる構成とするとよいが、一方で、排出ガスがポンプセルを通過する時間が長くなり、ガスの良好な拡散性が阻害される。
 本発明は、かかる課題に鑑みてなされたものであり、排出ガス中の酸素を効率よく排出しながら、チャンバ内に排出ガスを効果的に拡散させて、NOx検出精度と応答性の両方を向上させた高性能なガスセンサを提供しようとするものである。
However, these two required characteristics are contradictory conditions, and it has been difficult to achieve both at present. That is, for sufficient oxygen gas discharge, for example, it is preferable that the exhaust gas stays on the electrode of the pump cell, but on the other hand, the time for the exhaust gas to pass through the pump cell becomes long and the gas is good. Diffusivity is inhibited.
The present invention has been made in view of the above problems, and efficiently diffuses exhaust gas into the chamber while efficiently exhausting oxygen in the exhaust gas, thereby improving both NOx detection accuracy and responsiveness. It is intended to provide a high performance gas sensor.
 本発明の一態様は、被測定ガス中の特定ガス成分を検出するガスセンサであって、
 平板状のセラミックシートを積層したガスセンサ素子内に設けられ、上記ガスセンサ素子の長手方向の端部に設けた多孔質の拡散層を介して、外部から被測定ガスが導入されるチャンバと、
 上記チャンバ内のガス流れの上流側に配置されるポンプ電極を有して、被測定ガス中の酸素を汲み出すポンプセルと、
 上記チャンバ内のガス流れの下流側に配置されるセンサ電極を有して、酸素濃度の低減した被測定ガス中の特定ガス成分濃度を検出するセンサセルを備え、
 上記ガスセンサ素子は、上記チャンバに面する表面に上記ポンプ電極及び上記センサ電極が配置される第1のセラミックシートに、上記チャンバとなる開口を有する第2のセラミックシートと、上記開口を覆って上記チャンバを画成する第3のセラミックシートを順に積層した構造を有し、
 上記チャンバは、チャンバ壁を構成する上記第1のセラミックシート及び上記第3のセラミックシートの少なくとも一方の表面が、上記ポンプセルの形成位置で上記チャンバ内方に凸となる反り形状を有し、かつ該表面の反り量が0.10%以上1.38%以下の範囲に設定されており、
 上記拡散層と上記チャンバとは、上記拡散層の積層方向の高さHpと、上記ポンプセルの形成位置における上記チャンバの積層方向の平均高さHaveとが、Hp<Have、の関係を満たしている、ガスセンサにある。
One aspect of the present invention is a gas sensor for detecting a specific gas component in a gas to be measured,
A chamber into which a gas to be measured is introduced from the outside through a porous diffusion layer provided in a gas sensor element in which a flat ceramic sheet is laminated, and provided at an end in a longitudinal direction of the gas sensor element;
A pump cell that has a pump electrode disposed upstream of the gas flow in the chamber and pumps out oxygen in the gas to be measured;
A sensor cell that has a sensor electrode disposed on the downstream side of the gas flow in the chamber, and that detects a specific gas component concentration in the gas to be measured with a reduced oxygen concentration;
The gas sensor element includes a second ceramic sheet having an opening serving as the chamber, a first ceramic sheet on which the pump electrode and the sensor electrode are disposed on a surface facing the chamber, and the opening covering the opening. Having a structure in which the third ceramic sheets defining the chamber are sequentially laminated;
The chamber has a warped shape in which at least one surface of the first ceramic sheet and the third ceramic sheet constituting the chamber wall is convex inward of the chamber at the position where the pump cell is formed, and The amount of warpage of the surface is set in the range of 0.10% to 1.38%,
In the diffusion layer and the chamber, the height Hp in the stacking direction of the diffusion layer and the average height Have in the stacking direction of the chamber at the position where the pump cell is formed satisfy the relationship of Hp <Have. , In the gas sensor.
 上記ガスセンサは、積層型ガスセンサ素子に設けたチャンバに面し、その内壁面を構成する2つのセラミックシートについて、その少なくとも一つの表面を、反り形状としたので、チャンバ内空間は、ガス流れ方向の上流側に位置するポンプセル位置で、入口側より空間が狭くなる形状を有する。そのため、流速差により側端部からポンプセル中央部へ向かうガス流れが発生し、ガス流れの攪拌効果が得られる。また、外部からガスが導入される多孔質の拡散層の高さHpを、ポンプセル位置のチャンバ平均高さHaveより低くしたので、チャンバ内空間に導入されるガス量が抑制され、空間が広くなるチャンバ入口部のガス拡散性が向上する。これにより、ポンプセルの入口側で十分な量の被測定ガスを取り込みつつ、出口側へ向けて酸素ポンプ能力が向上する。 The gas sensor faces the chamber provided in the stacked gas sensor element, and at least one surface of the two ceramic sheets constituting the inner wall surface thereof has a warped shape. At the pump cell position located on the upstream side, the space is narrower than the inlet side. For this reason, a gas flow from the side end toward the center of the pump cell is generated due to the difference in flow velocity, and an agitation effect of the gas flow is obtained. Further, since the height Hp of the porous diffusion layer into which gas is introduced from the outside is made lower than the chamber average height Have at the pump cell position, the amount of gas introduced into the chamber space is suppressed, and the space becomes wider. Gas diffusibility at the inlet of the chamber is improved. As a result, the oxygen pump capacity is improved toward the outlet side while a sufficient amount of gas to be measured is taken in on the inlet side of the pump cell.
 その結果、被測定ガスがポンプ電極と接触する機会が大きく上昇し、ポンプ電極による酸素排出が促進されることで、さらに側端部の空間からポンプセルへ被測定ガスが引き込まれる。これにより、効率よく酸素を除去して、センサセルに導入される被測定ガスの酸素濃度を十分小さくすることができる。このとき、チャンバ壁となる表面の反り量が0.10%以上1.38%以下の範囲にあるので、上記効果を発揮しつつ、焼成脱脂工程及びシート積層圧着工程における割れの発生を防止することができ、信頼性が向上する。
 したがって、上記態様によれば、良好なガス排出性とガス拡散性を両立させることができ、センサセルによる特定ガスの検出精度を向上させ、応答性を確保して、高性能なガスセンサを実現する。
As a result, the chance of the gas to be measured coming into contact with the pump electrode is greatly increased, and oxygen discharge by the pump electrode is promoted, whereby the gas to be measured is further drawn into the pump cell from the space at the side end. Thereby, oxygen can be efficiently removed, and the oxygen concentration of the measurement gas introduced into the sensor cell can be sufficiently reduced. At this time, since the amount of warpage of the surface serving as the chamber wall is in the range of 0.10% or more and 1.38% or less, the occurrence of cracks in the firing and degreasing process and the sheet laminating and pressing process is prevented while exhibiting the above effects. Can improve reliability.
Therefore, according to the said aspect, favorable gas discharge property and gas diffusibility can be made compatible, the detection accuracy of the specific gas by a sensor cell is improved, responsiveness is ensured, and a high-performance gas sensor is implement | achieved.
第1実施形態であり、ガスセンサを構成するガスセンサ素子の先端部構造を示す図で、図1BのIA-IA線断面図。FIG. 2 is a diagram showing a tip structure of a gas sensor element constituting the gas sensor according to the first embodiment, and is a cross-sectional view taken along line IA-IA in FIG. 1B. 本発明の第1実施形態であり、ガスセンサを構成するガスセンサ素子の全体概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS It is 1st Embodiment of this invention, and the whole schematic block diagram of the gas sensor element which comprises a gas sensor. ガスセンサ素子の先端部の平面構造を示す図で、図1のII-II線断面図。FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1, showing a planar structure of a tip portion of the gas sensor element. ガスセンサ素子の主要部であるチャンバ構造を模式的に示す長手方向の断面図。The longitudinal section showing the chamber structure which is the principal part of a gas sensor element typically. ガスセンサ素子の主要部であるチャンバ構造を模式的に示す短手方向の断面図。The sectional view of the transversal direction which shows typically the chamber structure which is the principal part of a gas sensor element. 第2実施形態であり、ガスセンサ素子の主要部であるチャンバ構造を模式的に示す長手方向の断面図。Sectional drawing of the longitudinal direction which is 2nd Embodiment and shows typically the chamber structure which is the principal part of a gas sensor element. 第2実施形態であり、ガスセンサ素子の主要部であるチャンバ構造を模式的に示す短手方向の断面図。Sectional drawing of the transversal direction which is 2nd Embodiment and shows typically the chamber structure which is the principal part of a gas sensor element. チャンバ内のガス流れを説明するための短手方向の模式的な断面図。The typical sectional view of the transversal direction for explaining the gas flow in a chamber. チャンバ内のガス流れをチャンバ高さにより比較して説明するための長手方向の模式的な断面図。FIG. 5 is a schematic cross-sectional view in the longitudinal direction for explaining the gas flow in the chamber by comparing the chamber height with the chamber height. 作用効果を説明するためのチャンバ変形量とセンサ特性の関係を示す図。The figure which shows the relationship between the amount of chamber deformation and sensor characteristics for demonstrating an effect. センサ特性とチャンバ形状の関係を説明するための模式的な断面図。The typical sectional view for explaining the relation between a sensor characteristic and a chamber shape. チャンバ形状例を示す長手方向及び短手方向の模式的な断面図。The typical sectional view of the longitudinal direction and the transversal direction which show the example of a chamber shape. ガスセンサ素子のチャンバ形成方法を説明するための工程図。Process drawing for demonstrating the chamber formation method of a gas sensor element. ガスセンサ素子のチャンバ形成方法を説明するための工程図。Process drawing for demonstrating the chamber formation method of a gas sensor element. ガスセンサ素子のチャンバ形成方法を説明するための工程図。Process drawing for demonstrating the chamber formation method of a gas sensor element. ガスセンサ素子のチャンバ形状を調整する方法を説明するための模式的な断面図。The typical sectional view for explaining the method of adjusting the chamber shape of a gas sensor element. ガスセンサ素子のチャンバ形状を調整する他の方法を説明するための模式的な断面図。The typical sectional view for explaining other methods of adjusting the chamber shape of a gas sensor element. 第3実施形態であり、ガスセンサ素子の先端部の平面構造を示す断面図。Sectional drawing which is 3rd Embodiment and shows the planar structure of the front-end | tip part of a gas sensor element. ガスセンサ素子の主要部であるチャンバ構造を模式的に示す長手方向の断面図。The longitudinal section showing the chamber structure which is the principal part of a gas sensor element typically. ガスセンサ素子の主要部であるチャンバ構造を模式的に示す短手方向の断面図。The sectional view of the transversal direction which shows typically the chamber structure which is the principal part of a gas sensor element. 実施例におけるガスセンサ素子の形状例を示す平面図。The top view which shows the example of a shape of the gas sensor element in an Example. 実施例における反り量の評価方法を説明するための模式的な断面図。Typical sectional drawing for demonstrating the evaluation method of the curvature amount in an Example. 反り量の評価においてチャンバ端部位置を規定する方法を説明するための模式的な断面図。The typical sectional view for explaining the method of prescribing the position of the end of a chamber in evaluation of the amount of curvature. 実施例におけるチャンバ平均高さの算出方法を説明するための模式的な断面図。The typical sectional view for explaining the calculation method of the chamber average height in an example. 実施例における反り量と酸素排出能力の関係を示す図。The figure which shows the relationship between the curvature amount in an Example, and oxygen exhaust capability. 実施例における反り量による亀裂抑制効果を説明するための模式的な断面図。Typical sectional drawing for demonstrating the crack suppression effect by the curvature amount in an Example. 比較例における反り量と亀裂の発生の関係を示す模式的な断面図。The typical sectional view showing the relation between the amount of curvature and the occurrence of a crack in a comparative example.
(第1実施形態)
 以下に、ガスセンサの第1実施形態について、図面を参照しながら詳細に説明する。本実施形態のガスセンサは、例えば、NOxセンサとして内燃機関の排気通路に設置され、被測定ガスである排出ガス中に含まれる特定ガス成分としての窒素酸化物(すなわち、NOx)ガスを検出する。図1Bは、ガスセンサを構成するガスセンサ素子1を、図1Aは、素子先端部(すなわち、図の左端部)断面を示しており、その主要部で素子内に設けた空間であるチャンバ2内に、多孔質の拡散層21を介して、排出ガスが導入されるようになっている。図2に示すように、チャンバ2内には、ガス流れの上流側となる先端側(すなわち、図の左端側)に、ポンプセル3が配置され、ガス流れの下流側となる基端側(すなわち、図の右端側)に、センサセル4とモニタセル5が、並列配置されている。
(First embodiment)
Hereinafter, a first embodiment of a gas sensor will be described in detail with reference to the drawings. The gas sensor of this embodiment is installed in an exhaust passage of an internal combustion engine as a NOx sensor, for example, and detects nitrogen oxide (that is, NOx) gas as a specific gas component contained in exhaust gas that is a gas to be measured. FIG. 1B shows a gas sensor element 1 constituting a gas sensor, and FIG. 1A shows a cross section of the tip of the element (that is, the left end part in the figure). The main part of the gas sensor element 1 is a space provided in the element. The exhaust gas is introduced through the porous diffusion layer 21. As shown in FIG. 2, in the chamber 2, the pump cell 3 is disposed on the distal end side (that is, the left end side in the drawing) that is the upstream side of the gas flow, and the proximal end side that is the downstream side of the gas flow (that is, The sensor cell 4 and the monitor cell 5 are arranged in parallel on the right end side in the figure.
 ガスセンサ素子1はチャンバ2内が区画されないチャンバ構造で、拡散層21は、素子長手方向の先端部において、チャンバ2の上流側の開口を閉鎖するように位置している。チャンバ2は、ガス流れの上流側から下流側へ向けて、チャンバ壁を構成する内表面の一部を反り形状として、チャンバ高さを変化させることで、ポンプセル3の酸素(すなわち、O)ポンプ機能が促進され、センサセル4へのガス拡散性が良好となる形状としてある。各セル3~5は、図示しないリード線によって、基端側端部に形成される図略の電極端子に接続される。図3、図4に模式的に示す、チャンバ2の長手方向及び短手方向の断面形状例については、詳細を後述する。 The gas sensor element 1 has a chamber structure in which the inside of the chamber 2 is not partitioned, and the diffusion layer 21 is positioned so as to close the opening on the upstream side of the chamber 2 at the distal end in the element longitudinal direction. The chamber 2 changes the height of the chamber from the upstream side to the downstream side of the gas flow by changing the height of the chamber with a part of the inner surface constituting the chamber wall being warped, so that the oxygen (ie, O 2 ) of the pump cell 3 is changed. The pump function is promoted, and the gas diffusion property to the sensor cell 4 is improved. Each of the cells 3 to 5 is connected to an unillustrated electrode terminal formed at the proximal end by a lead wire (not shown). Details of cross-sectional shape examples of the chamber 2 in the longitudinal direction and the lateral direction schematically shown in FIGS. 3 and 4 will be described later.
 図1Aにおいて、ガスセンサ素子1は、細長い平板状の複数のセラミックシートを板厚方向に重ねた積層体からなる。具体的には、第1のセラミックシートとなる固体電解質シート11の上面に、第2のセラミックシートとなるチャンバ形成シート12と、第3のセラミックシートとなる遮蔽シート13を順次積層した基本構造を有しており、チャンバ形成シート12には、チャンバ2となる長方形の開口22が打ち抜き形成されている。固体電解質シート11の下面には、第4のセラミックシートであるダクト形成シート14を介して、ヒータ層6が積層されている。ダクト形成シート14には、図示しない基端部に至る開口からなるダクト33が形成されており、外部から基準ガスとしての大気が導入される。ヒータ層6は、第5のセラミックシートであるヒータシート62内にヒータ電極61を埋設した構成となっている。第1~第5のセラミックシートは、被測定ガスの透過性を有しない絶縁性シートからなる。 In FIG. 1A, the gas sensor element 1 is composed of a laminate in which a plurality of elongated flat plate-like ceramic sheets are stacked in the thickness direction. Specifically, a basic structure in which a chamber forming sheet 12 serving as a second ceramic sheet and a shielding sheet 13 serving as a third ceramic sheet are sequentially laminated on the upper surface of the solid electrolyte sheet 11 serving as a first ceramic sheet. In the chamber forming sheet 12, a rectangular opening 22 that becomes the chamber 2 is formed by punching. The heater layer 6 is laminated on the lower surface of the solid electrolyte sheet 11 via a duct forming sheet 14 that is a fourth ceramic sheet. The duct forming sheet 14 is formed with a duct 33 having an opening reaching a base end (not shown), and the atmosphere as a reference gas is introduced from the outside. The heater layer 6 has a configuration in which a heater electrode 61 is embedded in a heater sheet 62 which is a fifth ceramic sheet. The first to fifth ceramic sheets are made of insulating sheets that are not permeable to the gas to be measured.
 ガスセンサ素子1は、外表面の全体がトラップ層15となる多孔質層で被覆されている。トラップ層15は、排出ガス中に含まれる水分や被毒成分等を捕捉して、チャンバ2内への侵入を防止し、ガスセンサ素子1を保護する。なお、ガスセンサ素子1内の各セル3、4、5、ヒータ層6は、図示しないリード線を介して素子基端部の端子部7(例えば、図1B参照)に接続し、ガス検出手段や通電手段等を有する外部の駆動制御部に接続される。ヒータ層6は、通電により発熱して、各セル3、4、5をガス検出に適した温度に加熱する。 The gas sensor element 1 is covered with a porous layer whose entire outer surface becomes the trap layer 15. The trap layer 15 captures moisture, poisoning components, and the like contained in the exhaust gas, prevents entry into the chamber 2, and protects the gas sensor element 1. Each cell 3, 4, 5 and heater layer 6 in the gas sensor element 1 is connected to a terminal portion 7 (see, for example, FIG. 1B) at the element base end via a lead wire (not shown), and gas detection means or It is connected to an external drive control unit having energization means and the like. The heater layer 6 generates heat by energization and heats the cells 3, 4, and 5 to a temperature suitable for gas detection.
 ポンプセル3は、固体電解質シート11と、その両面の対向位置に形成される一対の電極としてのポンプ電極31と、基準電極32からなる。固体電解質シート11は、部分安定化ジルコニア等の酸素イオン導電性を有する固体電解質体よりなるシートで、ポンプ電極31及び基準電極32には、貴金属を主成分とする多孔質サーメット電極が用いられる。好適には、ポンプ電極31を、NOxの分解活性の低い電極、例えば、Pt(すなわち、白金)とAu(すなわち、金)を含有する多孔質サーメット電極とし、排出ガス中のNOxの分解を抑制するのがよい。このとき、一対の電極間に所定の電圧を印加することにより、ポンプ電極31上に達した排出ガス中のOガスが分解され、固体電解質シート11内を透過して、基準電極32側へ排出される。このポンピング作用により、チャンバ2に面するポンプ電極31側から、ダクト33に面する基準電極32側へOガスを排出し、ポンプセル3を通過する排出ガス中のO濃度を低減することができる。 The pump cell 3 includes a solid electrolyte sheet 11, a pump electrode 31 as a pair of electrodes formed at opposite positions on both sides thereof, and a reference electrode 32. The solid electrolyte sheet 11 is a sheet made of a solid electrolyte body having oxygen ion conductivity such as partially stabilized zirconia. For the pump electrode 31 and the reference electrode 32, a porous cermet electrode mainly composed of a noble metal is used. Preferably, the pump electrode 31 is an electrode having a low NOx decomposition activity, for example, a porous cermet electrode containing Pt (ie, platinum) and Au (ie, gold) to suppress decomposition of NOx in the exhaust gas. It is good to do. At this time, by applying a predetermined voltage between the pair of electrodes, the O 2 gas in the exhaust gas that has reached the pump electrode 31 is decomposed and permeates through the solid electrolyte sheet 11 to the reference electrode 32 side. Discharged. By this pumping action, O 2 gas is discharged from the pump electrode 31 side facing the chamber 2 to the reference electrode 32 side facing the duct 33, and the O 2 concentration in the exhaust gas passing through the pump cell 3 can be reduced. it can.
 センサセル4は、固体電解質シート11と、その両面の対向位置に形成される一対の電極としてのセンサ電極41と、基準電極32からなる。モニタセル5は、固体電解質シート11と、その両面の対向位置に形成される一対の電極としてのモニタ電極51と、基準電極32からなる。センサ電極41及びモニタ電極51には、貴金属を主成分とする多孔質サーメット電極が好適に用いられる。好適には、センサ電極41を、排出ガス中のNOxガスに対する分解活性が高い電極、例えば、PtとRh(すなわち、ロジウム)を含有する多孔質サーメット電極とし、モニタ電極51を、NOxの分解活性の低い電極、例えば、PtとAuを含有する多孔質サーメット電極とするのがよい。基準電極32は、ポンプセル3、センサセル4、モニタセル5の共通電極として、チャンバ2を画成する表面と反対側の固体電解質シート11表面に、ポンプ電極31、センサ電極41及びモニタ電極51の全てに対向するように設けられ、例えば、Ptを主成分とする多孔質サーメット電極が用いられる。 The sensor cell 4 includes a solid electrolyte sheet 11, a sensor electrode 41 as a pair of electrodes formed at opposite positions on both sides thereof, and a reference electrode 32. The monitor cell 5 includes a solid electrolyte sheet 11, a monitor electrode 51 as a pair of electrodes formed at opposite positions on both sides thereof, and a reference electrode 32. As the sensor electrode 41 and the monitor electrode 51, a porous cermet electrode mainly composed of a noble metal is preferably used. Preferably, the sensor electrode 41 is an electrode having a high decomposition activity for NOx gas in the exhaust gas, for example, a porous cermet electrode containing Pt and Rh (ie, rhodium), and the monitor electrode 51 is an NOx decomposition activity. Low electrode, for example, a porous cermet electrode containing Pt and Au. The reference electrode 32 is a common electrode for the pump cell 3, sensor cell 4, and monitor cell 5, on the surface of the solid electrolyte sheet 11 opposite to the surface defining the chamber 2, and on all of the pump electrode 31, sensor electrode 41, and monitor electrode 51. For example, a porous cermet electrode mainly composed of Pt is used.
 このとき、センサセル4に達した排出ガス中のNOxガスが、センサ電極41上で分解され、発生した酸素イオンが固体電解質シート11を透過して、基準電極32側へ排出される。その際に流れる電流が、排出ガス中に含まれるNOx濃度として検出される。一方、モニタセル5では、モニタ電極51上に達したOガスが分解されて基準電極32側へ排出され、その際に流れる電流が、排出ガス中の残留酸素濃度として検出される。モニタセル5は、チャンバ2内において、センサセル4とガス流れ方向の同等位置にあるので、残留酸素濃度をモニタすることで、効果的にポンプセル3をフィードバック制御することが可能になる。 At this time, the NOx gas in the exhaust gas reaching the sensor cell 4 is decomposed on the sensor electrode 41, and the generated oxygen ions pass through the solid electrolyte sheet 11 and are discharged to the reference electrode 32 side. The current flowing at that time is detected as the concentration of NOx contained in the exhaust gas. On the other hand, in the monitor cell 5, the O 2 gas that has reached the monitor electrode 51 is decomposed and discharged to the reference electrode 32 side, and the current flowing at that time is detected as the residual oxygen concentration in the exhaust gas. Since the monitor cell 5 is in the same position in the gas flow direction as the sensor cell 4 in the chamber 2, the pump cell 3 can be effectively feedback controlled by monitoring the residual oxygen concentration.
 図2において、チャンバ2は、ガスセンサ素子1の長手方向の長さ(すなわち、チャンバ長)が、短手方向の長さ(すなわち、チャンバ幅)より長い矩形形状となっている。チャンバ2の入口部には、チャンバ幅と同幅の多孔質からなる拡散層21が、入口部を横切って外部空間との間を区画するように、長手方向に所定厚さで配置され、所定の拡散抵抗で排出ガスを内部に導入する。チャンバ2内において、ガス流れの上流側に位置するポンプ電極31は、下流側端部に位置するセンサ電極41、モニタ電極51と拡散層21との間に、チャンバ幅よりやや小さい幅の略長方形状に形成される。センサ電極41、モニタ電極51は略同一形状で、チャンバ幅の1/2よりやや小さい幅の略長方形状に形成される。 2, the chamber 2 has a rectangular shape in which the length in the longitudinal direction of the gas sensor element 1 (that is, the chamber length) is longer than the length in the short direction (that is, the chamber width). A diffusion layer 21 made of a porous material having the same width as the chamber width is disposed at the inlet portion of the chamber 2 with a predetermined thickness in the longitudinal direction so as to partition the outer space across the inlet portion. Exhaust gas is introduced into the interior by the diffusion resistance. In the chamber 2, the pump electrode 31 positioned on the upstream side of the gas flow has a substantially rectangular shape having a width slightly smaller than the chamber width between the sensor electrode 41, the monitor electrode 51 and the diffusion layer 21 positioned at the downstream end. It is formed in a shape. The sensor electrode 41 and the monitor electrode 51 have substantially the same shape and are formed in a substantially rectangular shape having a width slightly smaller than ½ of the chamber width.
 ポンプ電極3は、センサ電極41、モニタ電極51に対して十分大きい面積を有し、導入される排出ガス中のOガスを効果的に排出する。好適には、ポンプ電極31のガス流れ方向の長さを、センサ電極41、モニタ電極51の2~4倍、例えば、3倍程度に形成することで、排出ガスとの十分な接触を可能にする。ここで、拡散層21を経て導入される排出ガス中のOガスを確実に排出するには、ポンプ電極31が大きいほどよいが、一方で、ポンプセル31を通過するのに時間がかかり、センサセル4の応答性が低下する。また、ポンプ電極31が形成されないチャンバ2の側端部に沿って、排出ガス中のOガスが排出されずに通過するおそれがある。 The pump electrode 3 has a sufficiently large area with respect to the sensor electrode 41 and the monitor electrode 51, and effectively discharges O 2 gas in the introduced exhaust gas. Preferably, the length of the pump electrode 31 in the gas flow direction is 2 to 4 times, for example, about 3 times that of the sensor electrode 41 and the monitor electrode 51, thereby enabling sufficient contact with the exhaust gas. To do. Here, in order to reliably discharge the O 2 gas in the exhaust gas introduced through the diffusion layer 21, the larger the pump electrode 31, the better. On the other hand, it takes time to pass through the pump cell 31 and the sensor cell. 4 responsiveness decreases. Further, the O 2 gas in the exhaust gas may pass through without being discharged along the side end portion of the chamber 2 where the pump electrode 31 is not formed.
 そこで、図1Aに示すように、ガスセンサ素子1の積層方向におけるチャンバ2の壁面の一部を変形させて、チャンバ2内のガス流れを制御可能とするとともに、チャンバ2の入口部に配置される拡散層21の高さを、チャンバ2の壁面高さより低くして、導入される排出ガス量を制限する。具体的には、チャンバ2を挟んで対向する遮蔽シート13及び固体電解質シート11の少なくとも一方の表面を、ポンプセル3の形成位置でチャンバ2内方に凸となる反り形状を有する反り面とする。これにより、ガスセンサ素子1の長手方向及び短手方向において、チャンバ2の積層方向の高さが変化し、導入されるガスが流速差で攪拌されて、ポンプセルに向かう流れが形成される(例えば、図2参照)。 Therefore, as shown in FIG. 1A, a part of the wall surface of the chamber 2 in the stacking direction of the gas sensor element 1 is deformed so that the gas flow in the chamber 2 can be controlled and disposed at the inlet of the chamber 2. The height of the diffusion layer 21 is made lower than the wall surface height of the chamber 2 to limit the amount of exhaust gas introduced. Specifically, at least one surface of the shielding sheet 13 and the solid electrolyte sheet 11 facing each other with the chamber 2 interposed therebetween is a warped surface having a warped shape that protrudes inward of the chamber 2 at the position where the pump cell 3 is formed. Thereby, in the longitudinal direction and the short direction of the gas sensor element 1, the height in the stacking direction of the chamber 2 is changed, and the introduced gas is stirred with a flow rate difference to form a flow toward the pump cell (for example, (See FIG. 2).
 この反り面は、通常、0.10%以上、1.38%以下の所定の反り量範囲に設定される。反り量は、反りのない基準面に対する反り面の変形割合を表わし、ここでは、ガスセンサ素子1の長手方向及び短手方向の断面における最大変形量に基づいて規定される。反り量が0.10%に満たないと、反り面による効果が得られず、また、ガスセンサ素子1の製造工程における焼成脱脂の過程で割れが生じるおそれがある。反り量が大きくなるほど、流速差は大きくなるが、1.38%を超えると、シート積層圧着工程で割れが生じるおそれがある。 This warp surface is usually set to a predetermined warp amount range of 0.10% or more and 1.38% or less. The amount of warpage represents the deformation ratio of the warped surface with respect to the reference surface without warpage, and is defined here based on the maximum amount of deformation in the cross section of the gas sensor element 1 in the longitudinal direction and the short direction. If the amount of warpage is less than 0.10%, the effect of the warped surface cannot be obtained, and cracks may occur in the process of firing and degreasing in the manufacturing process of the gas sensor element 1. As the amount of warpage increases, the flow velocity difference increases, but if it exceeds 1.38%, cracking may occur in the sheet lamination pressing step.
 また、拡散層21とチャンバ2とは、拡散層21の積層方向の高さをHpとし、ポンプセル3の形成位置におけるチャンバ2の積層方向の平均高さをHaveとしたときに、Hp<Have、となる関係を満足する。これにより、多孔質の拡散層21を通過した排出ガスを、より広いチャンバ2内空間に速やかに拡散させ、応答性を向上させる。チャンバ2の平均高さHaveは、例えば、ガスセンサ素子1の長手方向の断面において、ポンプセル3の入口側から出口側の複数個所におけるチャンバ高さの平均値に基づいて算出される。 Further, when the diffusion layer 21 and the chamber 2 have a height in the stacking direction of the diffusion layer 21 as Hp and an average height in the stacking direction of the chamber 2 at the position where the pump cell 3 is formed as Have, Hp <Have, Satisfy the relationship. As a result, the exhaust gas that has passed through the porous diffusion layer 21 is quickly diffused into the wider internal space of the chamber 2 to improve responsiveness. The average height Have of the chamber 2 is calculated based on, for example, the average value of the chamber height at a plurality of locations from the inlet side to the outlet side of the pump cell 3 in the longitudinal section of the gas sensor element 1.
 拡散層21は、例えば、チャンバ2を形成するチャンバ形成シート12の先端側に、多孔質シートを埋め込むことによって形成され、拡散層21の高さHpは、チャンバ形成シート12の高さ(すなわち、シート厚さ)より低い。このとき、チャンバ形成シート12に対する拡散層21の配置は、図示するように、固体電解質シート11に接する位置の他、遮蔽シート13に接する位置、又は積層方向の中間位置のいずれでもよい。 The diffusion layer 21 is formed, for example, by embedding a porous sheet on the front end side of the chamber forming sheet 12 forming the chamber 2, and the height Hp of the diffusion layer 21 is the height of the chamber forming sheet 12 (ie, Sheet thickness). At this time, the arrangement of the diffusion layer 21 with respect to the chamber forming sheet 12 may be any of a position in contact with the solid electrolyte sheet 11, a position in contact with the shielding sheet 13, or an intermediate position in the stacking direction as illustrated.
 好適には、図3、図4に模式的に示すように、ガス流れ方向となるガスセンサ素子1の長手方向において、ポンプ電極31の上流側端部(すなわち、ガス入口部)に対し下流側端部(すなわち、ガス出口部)の断面積がより小さくなり、かつ、短手方向において、側端部の少なくとも一方の壁面の高さに対し、ポンプセル3が形成される中間部、特にポンプ電極31の中央部位置の高さが低くなる形状とする。本実施形態では、チャンバ2となる壁面のうち、ポンプ電極31と反対側に位置してチャンバ2壁を構成する遮蔽シート13を変形させており、長手方向断面(例えば、図3参照)において、チャンバ2に露出する遮蔽シート13の表面(すなわち、図3の下面)を、チャンバ2の内方に凸となる反り形状とする。 Preferably, as schematically shown in FIGS. 3 and 4, in the longitudinal direction of the gas sensor element 1 in the gas flow direction, the downstream end with respect to the upstream end (that is, the gas inlet) of the pump electrode 31. The cross-sectional area of the portion (that is, the gas outlet portion) becomes smaller, and in the short direction, the intermediate portion where the pump cell 3 is formed, particularly the pump electrode 31 with respect to the height of at least one wall surface of the side end portion. It is set as the shape where the height of the center part position becomes low. In this embodiment, the shielding sheet 13 constituting the wall of the chamber 2 located on the opposite side to the pump electrode 31 is deformed among the wall surfaces to be the chamber 2, and in the longitudinal section (for example, see FIG. 3), The surface of the shielding sheet 13 exposed to the chamber 2 (that is, the lower surface in FIG. 3) has a warped shape that protrudes inward of the chamber 2.
 この反り形状は、ポンプ電極31の中央部より下流側で、変形が最大となるように、すなわちチャンバ2高さが低くなるように滑らかに湾曲する山形の曲面形状の反り面に形成するとよい。本実施形態では、ポンプ電極31の入口側の入口部aから、出口側の出口部dへ向けて、徐々にチャンバ2高さが低くなるように形成して、断面積を徐々に小さくする。入口部aと出口部dの間においては、ポンプ電極31の中央部より下流側の中間部cで、上流側の中間部bより、チャンバ2高さが低くなる。出口部dとその上流の中間部cの高さは、ほぼ同等であり、長手方向の各部高さの関係は、例えば、入口高さHa>Hb>Hc≧出口高さHdとするのがよい。ポンプ電極31の下流側e(すなわち、センサ電極41、モニタ電極51形成位置)は、出口部dよりやや高さが高くなっており、最小高さとなる出口部dから、チャンバ2高さが徐々に高くなるように形成される。具体的には、入口部aと下流側の中間部cの間の高さ、例えば、上流側の中間部bと同程度とすることができる。 This warped shape is preferably formed on a curved surface of a mountain-shaped curved surface that is curved smoothly so that the deformation is maximized, that is, the height of the chamber 2 is lowered, at the downstream side of the central portion of the pump electrode 31. In the present embodiment, the height of the chamber 2 is gradually decreased from the inlet portion a on the inlet side of the pump electrode 31 toward the outlet portion d on the outlet side, and the sectional area is gradually reduced. Between the inlet part a and the outlet part d, the height of the chamber 2 is lower at the intermediate part c downstream from the central part of the pump electrode 31 than at the intermediate part b upstream. The height of the outlet part d and the intermediate part c upstream thereof is substantially the same, and the relationship between the heights of the parts in the longitudinal direction is preferably, for example, the inlet height Ha> Hb> Hc ≧ the outlet height Hd. . The downstream side e of the pump electrode 31 (that is, the position where the sensor electrode 41 and the monitor electrode 51 are formed) is slightly higher than the outlet part d, and the height of the chamber 2 gradually increases from the outlet part d which is the minimum height. It is formed to be higher. Specifically, the height between the inlet portion a and the downstream intermediate portion c, for example, the same level as the upstream intermediate portion b can be set.
 図4の短手方向断面は、図3の各部a~eに対応する具体的断面形状を示しており、ポンプ電極31の入口部aでは、チャンバ2は概略長方形の断面形状を有している。ポンプ電極31と反対側のチャンバ2壁となる遮蔽シート13の変形は、ほとんどなく、拡散層21を経て十分な量の排出ガスが入口部aに導入される。その下流の各部b~eでは、遮蔽シート13のチャンバ2に露出する表面が、チャンバ2の内方に凸となる反り形状、ここでは、いずれも中央部で変形が最大となるように湾曲する山形の曲面形状をなし、チャンバ2内の中央部空間が狭くなる。この変形量が、ポンプ電極31の出口部dへ向けて徐々に大きくなり、断面積が徐々に小さくなるように形成される。ポンプ電極31の下流部eの変形量は、出口部dよりやや小さく、断面積はやや大きい。 4 shows specific cross-sectional shapes corresponding to the respective parts a to e in FIG. 3. In the inlet part a of the pump electrode 31, the chamber 2 has a substantially rectangular cross-sectional shape. . There is almost no deformation | transformation of the shielding sheet 13 used as the wall of the chamber 2 on the opposite side to the pump electrode 31, and a sufficient amount of exhaust gas is introduced into the inlet part a through the diffusion layer 21. In each of the downstream portions b to e, the surface of the shielding sheet 13 exposed to the chamber 2 is warped so as to be convex inward of the chamber 2, and in this case, the surface is curved so that the deformation is maximized at the central portion. A mountain-shaped curved surface is formed, and the central space in the chamber 2 is narrowed. The amount of deformation is gradually increased toward the outlet portion d of the pump electrode 31, and the cross-sectional area is gradually decreased. The amount of deformation of the downstream portion e of the pump electrode 31 is slightly smaller than that of the outlet portion d, and the sectional area is slightly larger.
 各部b~eの断面形状は、両側端部は壁面高さが一定で空間が広いままであり、中間部はチャンバ2高さがポンプ電極31の中央部位置へ向けて徐々に低くなって、中央部ほど空間が狭くなる形状となっている。その断面積は、例えば、入口部a>b>c≧出口部dの関係にあり、下流側Eは、入口部aと下流側の中間部cの間、例えば、上流側の中間部bと同程度の断面積となっている。このとき、中間部が狭くなることで、Oポンプ能力が高まり、広い両側端部にてガス拡散性が確保される。また、両側端部と中央部との流速差が大きくなることで、ガス流れが攪拌され、効率よいO排出が可能になる。 The cross-sectional shape of each part b to e is such that the side wall end has a constant wall height and the space remains wide, and the intermediate part has a chamber 2 height that gradually decreases toward the center position of the pump electrode 31, The space becomes narrower toward the center. The cross-sectional area is, for example, in the relationship of the inlet part a>b> c ≧ the outlet part d, and the downstream side E is between the inlet part a and the downstream intermediate part c, for example, the upstream intermediate part b. It has the same cross-sectional area. At this time, since the intermediate portion is narrowed, the O 2 pump capability is enhanced, and gas diffusibility is ensured at the wide side end portions. In addition, since the difference in flow velocity between the side end portions and the central portion is increased, the gas flow is agitated, and efficient O 2 discharge becomes possible.
(第2実施形態)
 図5、図6に、第2実施形態として示すように、ガスセンサ素子1の積層方向に対向するチャンバ2の壁面の両方を変形させることもできる。本実施形態において、図示しない拡散層21の形状や配置、拡散層21の高さHpとポンプセル3形成位置におけるチャンバ2の平均高さHaveの関係は、第1実施形態と同様であり、以下、相違点を中心に説明する。具体的には、長手方向断面(例えば、図5参照)において、遮蔽シート13及びポンプ電極31が形成される固体電解質シート11を、チャンバ2に露出する表面が、チャンバ2の内方に凸となる反り形状を有し、ポンプ電極31の入口部aから出口部dへ向けて、徐々にチャンバ2高さが低くなり、ガス出口部で反り量が最大となる山形形状の反り面に形成される。第1実施形態と同様に、出口部dとその上流部の高さの関係は、例えば、入口高さHa>Hb>Hc≧出口高さHdとするのがよく、ポンプ電極31のガス入口部で断面積が最大となり、ガス出口部で断面積が最小となる。下流側E(センサ電極41、モニタ電極51形成位置)は、入口部aと下流側の中間部cの間の高さ、例えば、上流側の中間部bと同程度とすることができる。
(Second Embodiment)
As shown in FIGS. 5 and 6 as the second embodiment, both the wall surfaces of the chamber 2 facing the stacking direction of the gas sensor elements 1 can be deformed. In the present embodiment, the shape and arrangement of the diffusion layer 21 (not shown), the relationship between the height Hp of the diffusion layer 21 and the average height Have of the chamber 2 at the position where the pump cell 3 is formed are the same as in the first embodiment. The difference will be mainly described. Specifically, in the longitudinal section (see, for example, FIG. 5), the surface of the solid electrolyte sheet 11 on which the shielding sheet 13 and the pump electrode 31 are formed is exposed to the inside of the chamber 2. The chamber 2 is gradually lowered from the inlet portion a to the outlet portion d of the pump electrode 31 and is formed in a chevron-shaped warped surface in which the amount of warpage is maximized at the gas outlet portion. The As in the first embodiment, the relationship between the height of the outlet portion d and the upstream portion thereof may be, for example, the inlet height Ha>Hb> Hc ≧ the outlet height Hd, and the gas inlet portion of the pump electrode 31. The cross-sectional area is maximized at the gas outlet, and the cross-sectional area is minimized at the gas outlet. The downstream E (the position where the sensor electrode 41 and the monitor electrode 51 are formed) can be approximately the same as the height between the inlet portion a and the downstream intermediate portion c, for example, the upstream intermediate portion b.
 図6の短手方向断面は、図5の各部a~eにおける断面に対応する。第1実施形態と同様に、ポンプ電極31の入口部aでは、チャンバ2は概略長方形の断面形状を有しており、チャンバ2壁となる遮蔽シート13、固体電解質シート11の変形は、ほぼない。その下流各部b~eでは、遮蔽シート13、固体電解質シート11のチャンバ2に露出する表面が、チャンバ2の内方に凸となる反り形状、ここでは、いずれも中央部の反り量が最大となる山形形状となっている。この変形量は、ポンプ電極31の出口部dへ向けて徐々に大きくなり、ポンプ電極31の下流側eの変形量は、出口側dよりやや小さくなっている。各部b~eの両側端部は、中間部に比べて変形量が小さく、壁面が高く空間が広いままであり、中間部は空間が狭く、中央部へ向けて徐々にチャンバ2高さが低くなる断面形状を有している。その断面積は、例えば、入口部a>b>c≧出口部dの関係にあり、下流側eは、入口部aと上流部cの間、例えば上流部bと同程度の断面積となっている。 The cross section in the short direction of FIG. 6 corresponds to the cross section of each part ae of FIG. As in the first embodiment, at the inlet a of the pump electrode 31, the chamber 2 has a substantially rectangular cross-sectional shape, and there is almost no deformation of the shielding sheet 13 and the solid electrolyte sheet 11 that become the walls of the chamber 2. . In the downstream portions b to e, the surfaces of the shielding sheet 13 and the solid electrolyte sheet 11 that are exposed to the chamber 2 are warped so as to protrude inward of the chamber 2, and in this case, the warping amount at the center is maximum. It has a mountain shape. The amount of deformation gradually increases toward the outlet portion d of the pump electrode 31, and the amount of deformation on the downstream side e of the pump electrode 31 is slightly smaller than that on the outlet side d. The side ends of each part b to e are less deformed than the middle part, the wall surface is high and the space remains wide, the middle part is narrow, and the height of the chamber 2 gradually decreases toward the center part. It has a cross-sectional shape. The cross-sectional area is, for example, the relationship of the inlet part a> b> c ≧ the outlet part d, and the downstream side e has a cross-sectional area similar to that of the upstream part b, for example, between the inlet part a and the upstream part c. ing.
 遮蔽シート13と固体電解質シート11は、チャンバ2に露出する表面の反り量を、いずれも0.10%以上1.38%以下の範囲に設定する。遮蔽シート13と固体電解質シート11の反り形状や、反り量は、拡散層21の積層方向の高さHp<ポンプセル3形成位置におけるチャンバ2の積層方向の平均高さHaveを満足し、所望の特性が得られるように、それぞれ適宜設定することができる。 The shielding sheet 13 and the solid electrolyte sheet 11 both set the amount of warpage of the surface exposed to the chamber 2 within a range of 0.10% to 1.38%. The warpage shape and the amount of warpage of the shielding sheet 13 and the solid electrolyte sheet 11 satisfy the height Hp in the stacking direction of the diffusion layer 21 <the average height Have in the stacking direction of the chamber 2 at the position where the pump cell 3 is formed. Can be set as appropriate so that
 このように、第1、第2実施形態のチャンバ2形状は、ポンプセル3形成位置における平均高さHaveを拡散層21の高さHpに対し適切に設定し、積層方向に対向する表面の一方又は両方を反り形状として、ポンプ電極31の入口側端部の断面積を確保することで、従来と同等のガス取り込みを可能にする。さらに、入口側から出口側端部へ向けて壁面の変形が大きくなり、断面積が小さくなることで、図1に示すポンプ電極31のO排出を促進し、ポンプ能力を上昇させる。また、入口側端部より下流側では、中間部が狭く両側端部が広い断面形状となることで、図2に示すように、入口側から導入されるガス流れに流速差が生じ、側端部ではガス拡散性を向上させつつ、中央部との流速差でガス流れを攪拌させる。その結果、応答性を確保しながら、ポンプ電極31によるO排出をさらに促進することができる。この本発明の作用効果を、図7~図9を参照しながら説明する。 Thus, the shape of the chamber 2 of the first and second embodiments is such that the average height Have at the position where the pump cell 3 is formed is appropriately set with respect to the height Hp of the diffusion layer 21, and one of the surfaces facing the stacking direction or Both are warped and the cross-sectional area of the inlet side end of the pump electrode 31 is ensured, thereby enabling the same gas intake as before. Furthermore, the deformation of the wall surface increases from the inlet side to the outlet side end and the cross-sectional area decreases, thereby promoting O 2 discharge of the pump electrode 31 shown in FIG. 1 and increasing the pump capacity. Further, the downstream side of the inlet side end portion has a narrow cross section at the middle portion and both side end portions, and as shown in FIG. 2, a difference in flow velocity occurs in the gas flow introduced from the inlet side. In the part, the gas flow is agitated by the flow rate difference from the central part while improving the gas diffusibility. As a result, O 2 discharge by the pump electrode 31 can be further promoted while ensuring responsiveness. The function and effect of the present invention will be described with reference to FIGS.
 図7Aは、第2実施形態のチャンバ2の短手方向における代表形状を模式的に示したもので、チャンバ2内の対向壁間の距離が最小となる中央部の容積をV1、距離が最大となる側端部の容積をV2とする。中央部と側端部の差圧をΔpとすると、ガス流量Qは、以下の一般式で表される。
 ガス流量Qの一般式 Q=C×Δp
 式中、C:ガス流れやすさを表す係数、である。
 ここで、
 気体の状態方程式 PV=nRTから、
 差圧Δp=P1-P2
     =nRT×(1/V1-1/V2)
     =nRT×{(V2-V1)/V1・V2}
 式中、P1:中央部の圧力、P2:側端部の圧力、R:気体定数、T:温度、である。
 したがって、ガス流量Qは、差圧Δpに比例して大きくなり、側端部と中央部の容積差が大きいほど、流れやすくなる。
FIG. 7A schematically shows a representative shape in the short direction of the chamber 2 of the second embodiment. The volume of the central portion where the distance between the opposing walls in the chamber 2 is minimum is V1, and the distance is maximum. Let V2 be the volume of the side end. When the differential pressure between the central portion and the side end portion is Δp, the gas flow rate Q is represented by the following general formula.
General formula of gas flow rate Q Q = C × Δp
In the formula, C is a coefficient representing the ease of gas flow.
here,
From the equation of state of gas PV = nRT,
Differential pressure Δp = P1-P2
= NRT x (1 / V1-1 / V2)
= NRT × {(V2−V1) / V1 · V2}
In the formula, P1: pressure at the center, P2: pressure at the side end, R: gas constant, T: temperature.
Therefore, the gas flow rate Q increases in proportion to the differential pressure Δp, and the gas volume Q becomes easier to flow as the volume difference between the side end portion and the central portion increases.
 図7Bは、チャンバ2の長手方向における高さと、ガス流れの関係を模式的に示すもので、チャンバ高さが高い場合(すなわち、左図)と低い場合(すなわち、右図)とを比較している。チャンバ高さを長手方向に一定とした時、チャンバ2内に、図中左方の入口側から排出ガスが導入されると、O等を含むガス分子は、チャンバ2の壁面に衝突しながら下流側へ向かう。図に明らかなように、チャンバ高さが低い方が(すなわち、右図)、ガス分子の衝突頻度が高くなるために、排出ガス中のO分子がポンプ電極31表面に衝突して分解、除去されやすく、O排出能力が向上する。ただし、入口側の高さを低くすると、チャンバ2内へ取り込まれるガス量が少なくなり、NOxの検出精度が低くなる。一方、チャンバ高さが高い場合は(すなわち、左図)、O排出能力は低くなるものの、ガス流入量が多くなることで、検出精度の向上が期待される。 FIG. 7B schematically shows the relationship between the height in the longitudinal direction of the chamber 2 and the gas flow, comparing the case where the chamber height is high (ie, the left figure) and the case where the chamber height is low (ie, the right figure). ing. When the chamber height is constant in the longitudinal direction, when exhaust gas is introduced into the chamber 2 from the left inlet side in the figure, gas molecules including O 2 and the like collide with the wall surface of the chamber 2. Head downstream. As is clear from the figure, the lower the chamber height (ie, the right figure), the higher the collision frequency of the gas molecules, the O 2 molecules in the exhaust gas collide with the surface of the pump electrode 31 and decompose. It is easily removed and the O 2 discharge capacity is improved. However, if the height on the inlet side is lowered, the amount of gas taken into the chamber 2 is reduced and the detection accuracy of NOx is lowered. On the other hand, when the chamber height is high (that is, the left figure), although the O 2 exhaust capability is low, the detection accuracy is expected to be improved by increasing the gas inflow amount.
 このため、本発明では、図4、図6に示したように、ポンプ電極31入口側では、チャンバ高さ(すなわち、断面積)を十分大きくして、ガス流入量を確保し、徐々にチャンバ高さ(すなわち、断面積)を小さくして、O排出能力が出口側ほど高くなるようにする。また、短手方向において、ポンプ電極31が形成される中間部、特に中央部のチャンバ高さを低くし、両側部に広い空間を確保することで、ガス拡散性を向上させ、応答性を向上させる。このとき、変形する壁面は滑らかな曲面形状でガス流れを妨げることがなく、かつ流速が遅い中央部と側端部との流速差が大きくなって、ガス流れが攪拌されることで、ポンプ電極31との衝突頻度が高まるとともに、O排出によりさらに周囲のガスが引き込まれることで、効率よいO除去が可能になる。好適には、長手方向においてポンプ電極31の中央部より下流側、より好適には、ポンプ電極31のガス出口部、特に出口側端縁部ないしその近傍で、チャンバ高さが最も低くなるようにチャンバ2を形成すると、ガス流れ方向に徐々に空間が狭くなってOポンプ能力が上がり、ポンプセル3を通過する間にO濃度をほぼゼロとすることができる。ポンプ電極31の出口側より下流では、チャンバ高さ(すなわち、断面積)を再び大きくすることで、ガス拡散性を向上させ、Oが排出された排出ガスを、速やかにセンサセル4へ導入して、応答性よく精度よい検出が実現できる。 For this reason, in the present invention, as shown in FIGS. 4 and 6, on the inlet side of the pump electrode 31, the chamber height (that is, the cross-sectional area) is sufficiently increased to secure the gas inflow amount, and the chamber gradually The height (that is, the cross-sectional area) is reduced so that the O 2 discharge capacity becomes higher toward the outlet side. Also, in the short direction, the chamber height of the intermediate part where the pump electrode 31 is formed, especially the central part, is lowered, and a wide space is secured on both sides, thereby improving gas diffusibility and improving responsiveness. Let At this time, the deformed wall surface has a smooth curved surface shape and does not obstruct the gas flow, and the flow rate difference between the central portion and the side end portion where the flow velocity is slow becomes large, and the gas flow is agitated, so that the pump electrode The frequency of collision with 31 increases, and the surrounding gas is further drawn by the O 2 discharge, thereby enabling efficient O 2 removal. Preferably, in the longitudinal direction, the chamber height is the lowest at the downstream side of the central portion of the pump electrode 31, more preferably at the gas outlet portion of the pump electrode 31, particularly at or near the outlet side edge. When the chamber 2 is formed, the space gradually becomes narrower in the gas flow direction and the O 2 pump capacity is increased, so that the O 2 concentration can be made substantially zero while passing through the pump cell 3. Downstream from the outlet side of the pump electrode 31, the chamber height (that is, the cross-sectional area) is increased again to improve the gas diffusibility, and the exhaust gas from which O 2 has been exhausted is quickly introduced into the sensor cell 4. Thus, accurate detection with high responsiveness can be realized.
 このように、本発明では、チャンバ2の内壁面となるセラミックシート表面の形状と、拡散層21の高さHpとチャンバ2の平均高さHaveの関係を、ポンプセル3のポンプ電極31の形成位置に対応させて規定することで、応答性と検出精度の両立が可能になる。図8は、本発明のガスセンサ素子1によるセンサ特性と、チャンバ2の壁面の変形量(すなわち、反り量)の関係を示したもので、変形量が大きくなるのに比例して、ガス排出量が向上する一方、ガス応答性は、ほぼ一定となっている。ここで変形量は、例えば、図9に示す第2実施形態のチャンバ2形状について、対向方向に近づくように変形する両壁面の表面反り形状の大きさを表し、高さH1の両端部に対して高さH2が最小となる中央部の反り面高さHmに対応する。図8の関係から、チャンバ2の変形量を大きくするほど、ガス排出効率は向上するが、チャンバ2の変形が大きくなると成形時に不具合が生じやすくなる。したがって、好適には、図8において、良好な成形性を確保できる所定の反り量範囲で、良好なガス排出効率とガス応答性が得られるように、適宜反り形状と変形量を設定することで、良好な特性が得られる。 Thus, in the present invention, the relationship between the shape of the surface of the ceramic sheet serving as the inner wall surface of the chamber 2 and the height Hp of the diffusion layer 21 and the average height Have of the chamber 2 is determined as the position where the pump electrode 31 of the pump cell 3 is formed. It is possible to achieve both responsiveness and detection accuracy by prescribing them in correspondence with. FIG. 8 shows the relationship between the sensor characteristics of the gas sensor element 1 of the present invention and the amount of deformation of the wall surface of the chamber 2 (that is, the amount of warpage). The amount of gas discharged in proportion to the amount of deformation increases. On the other hand, the gas responsiveness is almost constant. Here, for example, the deformation amount represents the size of the surface warpage shape of both wall surfaces that deform so as to approach the opposing direction with respect to the shape of the chamber 2 of the second embodiment shown in FIG. This corresponds to the warped surface height Hm at the center where the height H2 is minimized. From the relationship of FIG. 8, the larger the amount of deformation of the chamber 2, the better the gas discharge efficiency. However, if the deformation of the chamber 2 is increased, problems are likely to occur during molding. Therefore, preferably, in FIG. 8, by appropriately setting the warp shape and the deformation amount so that good gas discharge efficiency and gas responsiveness can be obtained within a predetermined warp amount range that can ensure good moldability. Good characteristics can be obtained.
 例えば、図9のチャンバ2形状について、センサ特性は、チャンバ2の高さ(すなわち、両端部高さH1と中央部高さH2)によって規定される。そこで、所望のガス応答性を確保できる両端部高さH1を設定し、反り量の上限値から中央部高さH2を設定することで、ガス排出効率を最適化することができる。あるいは、所望のガス排出効率を得るための中央部高さH2から、高さ差ΔH(すなわち、両端部高さH1と中央部高さH2の差)を算出し、対向する2つの壁面の反り面高さHmを設定することもできる。このとき、2つの壁面の反り量を同じにしてもよいが、ポンプ電極31が形成される壁面の反り量をより小さくすると、ポンプ電極31の変形を抑制することができる。また、図10(a)に示す第1実施形態のチャンバ2形状のように、ポンプ電極31が形成される壁面を平面とし、対向する壁面のみを反り形状とした場合には、ポンプ電極31への影響がより小さくなり、チャンバ2の成形も容易になる。 For example, for the shape of the chamber 2 in FIG. 9, the sensor characteristics are defined by the height of the chamber 2 (that is, the height H1 at both ends and the height H2 at both ends). Therefore, the gas discharge efficiency can be optimized by setting the height H1 at both ends that can ensure the desired gas responsiveness, and setting the center height H2 from the upper limit value of the warp amount. Alternatively, the height difference ΔH (that is, the difference between the height H1 at both ends and the height H2 at the both ends) is calculated from the center height H2 for obtaining a desired gas discharge efficiency, and the warpage of the two opposing wall surfaces is calculated. The surface height Hm can also be set. At this time, the warpage amount of the two wall surfaces may be the same, but if the warpage amount of the wall surface on which the pump electrode 31 is formed is made smaller, the deformation of the pump electrode 31 can be suppressed. Further, when the wall surface on which the pump electrode 31 is formed is a flat surface and only the opposing wall surface is warped, as in the shape of the chamber 2 of the first embodiment shown in FIG. And the chamber 2 can be easily formed.
 図10(b)~(g)は、チャンバ2の他の形状例であり、本発明では、チャンバ平均高さと反り量が規定の範囲にあれば、反り面の形状は、上記実施形態の形状に限定されない。好適には、長手方向においてポンプ電極31の入口側より出口側の断面積が小さく、短手方向において側端部よりポンプ電極31が形成される中間部の高さが低く形成されていれば、上記効果が高まる。また、チャンバ2の壁面の変形形状は、一方の表面がチャンバ2の内方へ凸となる反り形状で上記規定を満足していれば、他方の表面はこれに限らず、図10(b)の長手方向及び短手方向の図に示すように、ポンプ電極31が形成される壁面が、チャンバ2の外方へ反る形状であってもよい。この場合は、ポンプ電極31に対向する壁面の変形に追従させて、長手方向又は短手方向にわずかに変形させている。図10(c)のように、長手方向又は短手方向について、チャンバ2の壁面が凹凸を有する波形の反り形状となっていてもよい。 FIGS. 10B to 10G are other examples of the shape of the chamber 2. In the present invention, if the average height of the chamber and the amount of warpage are within the specified ranges, the shape of the warped surface is the shape of the above embodiment. It is not limited to. Preferably, if the cross-sectional area of the outlet side is smaller than the inlet side of the pump electrode 31 in the longitudinal direction and the height of the intermediate portion where the pump electrode 31 is formed is lower than the side end portion in the short direction, The above effect is enhanced. Moreover, if the deformation | transformation shape of the wall surface of the chamber 2 is the curvature shape in which one surface is convex inward of the chamber 2, and the said prescription | regulation is satisfied, the other surface will not be restricted to this, FIG.10 (b) The wall surface on which the pump electrode 31 is formed may be shaped to warp outward of the chamber 2 as shown in the longitudinal and lateral views. In this case, following the deformation of the wall surface facing the pump electrode 31, it is slightly deformed in the longitudinal direction or the short direction. As shown in FIG. 10C, the wall surface of the chamber 2 may have a corrugated warped shape with irregularities in the longitudinal direction or the short direction.
 また、チャンバ2の変形する壁面は、滑らかな曲面状に限らず、図10(d)、(e)のように、略V字状断面の傾斜を有する反り面としてもよい。このとき、長手方向の最小高さとなる位置(すなわち、V字の頂点位置)が、ポンプ電極31の出口側端縁(図10(e))又はその近傍の出口側端部(図10(d))にあればよく、短手方向についても、最小高さとなる位置が、ポンプ電極31の中央(図10(e))又はその近傍の中央部(図10(d))にあればよい。また、図10(f)の長手方向の図に示すように、ポンプ電極31の出口位置より下流において、チャンバ2高さを一定としてもよい。ここでは、上流側の反り形状は滑らかな曲面としているが、図10(d)、(e)のような傾斜面であってもよい。同様に、図10(f)の短手方向の図において、チャンバ2は、少なくとも一方の側端部の高さが、ポンプ電極31が形成される中間部より十分高ければよく、他方の側端部の高さは中間部の高さと同等程度であってもよい。図10(g)は、第2実施形態と同様に、チャンバ2の壁面の両方を反り面とした例で、その反り量を変更している。ここでは、ポンプ電極31が形成される壁面の反り量をより小さくしている。これら図10(a)~(g)について、長手方向と短手方向のチャンバ形状は、任意に組み合わせることができる。 Further, the deformed wall surface of the chamber 2 is not limited to a smooth curved surface, and may be a warped surface having a substantially V-shaped cross section as shown in FIGS. At this time, the position having the minimum height in the longitudinal direction (that is, the vertex position of the V-shape) is the outlet side edge of the pump electrode 31 (FIG. 10 (e)) or the outlet side end (FIG. 10 (d) )), And also in the short direction, the position having the minimum height may be at the center of the pump electrode 31 (FIG. 10E) or the central portion in the vicinity thereof (FIG. 10D). Further, as shown in the longitudinal view of FIG. 10 (f), the height of the chamber 2 may be constant downstream from the outlet position of the pump electrode 31. Here, the upstream warp shape is a smooth curved surface, but it may be an inclined surface as shown in FIGS. Similarly, in the lateral view of FIG. 10 (f), the chamber 2 only needs to have a height of at least one side end sufficiently higher than the intermediate portion where the pump electrode 31 is formed, and the other side end. The height of the part may be approximately the same as the height of the intermediate part. FIG. 10G is an example in which both the wall surfaces of the chamber 2 are warped, as in the second embodiment, and the amount of warpage is changed. Here, the amount of warpage of the wall surface on which the pump electrode 31 is formed is made smaller. In these FIGS. 10A to 10G, the longitudinal and short chamber shapes can be arbitrarily combined.
 図11に、本発明のチャンバ2形状を有するガスセンサ素子1の製造工程の一例を示す。図11Aにおいて、まず(1)の工程で、固体電解質シート11、チャンバ形成シート12、遮蔽シート13となる未焼成のセラミックシートをそれぞれ成型する。次いで、(2)の工程で、固体電解質シート11の表面の所定位置に、拡散層21、ポンプ電極31、センサ電極41、モニタ電極51となるペーストを印刷する。また、各電極を、図略の電極端子に接続するためのリード線となる、図略のペーストを印刷形成する。(3)の工程では、チャンバ形成シート12の所定位置を打ち抜き、チャンバ2となる開口22を形成する。さらに、(4)の工程で、チャンバ形成シート12の開口22に、焼失材シート16を挿入する。 FIG. 11 shows an example of the manufacturing process of the gas sensor element 1 having the shape of the chamber 2 of the present invention. 11A, first, in the step (1), unfired ceramic sheets to be the solid electrolyte sheet 11, the chamber forming sheet 12, and the shielding sheet 13 are respectively molded. Next, in the step (2), a paste that becomes the diffusion layer 21, the pump electrode 31, the sensor electrode 41, and the monitor electrode 51 is printed at a predetermined position on the surface of the solid electrolyte sheet 11. In addition, a paste (not shown) that is a lead wire for connecting each electrode to an electrode terminal (not shown) is printed. In the step (3), a predetermined position of the chamber forming sheet 12 is punched to form an opening 22 that becomes the chamber 2. Furthermore, the burnt material sheet 16 is inserted into the opening 22 of the chamber forming sheet 12 in the step (4).
 固体電解質シート11は、例えば、ジルコニアと有機物の混合シートであり、チャンバ形成シート12、遮蔽シート13は、例えば、アルミナと有機物の混合シートからなる。焼失材シート16は、分解温度1000℃以下の有機物からなる樹脂の単体シート又は混合シートであり、例えばアクリル系樹脂、PVB、フッ素系樹脂、カーボン等の焼失材を含んで、分解温度1000℃以下となるように形成される。この焼失材シート16の組成や厚み、形状等を調整することで、チャンバ2形状を調整することができる。 The solid electrolyte sheet 11 is, for example, a mixed sheet of zirconia and an organic substance, and the chamber forming sheet 12 and the shielding sheet 13 are, for example, a mixed sheet of alumina and an organic substance. The burnt-out material sheet 16 is a single sheet or mixed sheet made of an organic material having a decomposition temperature of 1000 ° C. or lower, and includes, for example, a burned-out material such as acrylic resin, PVB, fluorine-based resin, carbon, etc. It is formed to become. By adjusting the composition, thickness, shape, etc. of the burnt-out material sheet 16, the shape of the chamber 2 can be adjusted.
 図11Bにおいて、(4)-1の工程は、焼失材シート16の挿入方法の具体例を示すもので、チャンバ形成シート12上に焼失材シート16を積層し、チャンバ2に対応する形状の打ち抜き金型を用いて、焼失材シート16の上方から打ち抜くと同時に、打ち抜いた焼失材シート16をチャンバ形成シート12の打ち抜き穴に挿入する。あるいは、(4)-2の工程のように、予め所定形状に打ち抜いたチャンバ形成シート12を吸着板上に載置し、対応する形状とした焼失材シート16をロボット搬送して挿入することもできる。その後、(5)-1の工程で、固体電解質シート11の上面に、チャンバ形成シート12、遮蔽シート13の順に重ねて、上下に離型フィルム17を積層し、成形金型に入れる。 In FIG. 11B, the step (4) -1 shows a specific example of the method of inserting the burnt material sheet 16. The burnt material sheet 16 is laminated on the chamber forming sheet 12, and a punching shape corresponding to the chamber 2 is punched out. The die is used to punch out the burnt material sheet 16 from above, and at the same time, the punched burnt material sheet 16 is inserted into the punched hole of the chamber forming sheet 12. Alternatively, as in the step (4) -2, the chamber forming sheet 12 punched into a predetermined shape may be placed on the suction plate, and the burned material sheet 16 having a corresponding shape may be transported and inserted. it can. Thereafter, in the step (5) -1, the chamber forming sheet 12 and the shielding sheet 13 are stacked in this order on the upper surface of the solid electrolyte sheet 11, and the release film 17 is stacked on the top and bottom, and placed in a molding die.
 この積層体に上下から荷重(例えば、15-50MPa)を加えて、温度(例えば、60-80℃)で圧着する。図11Cに(4)-3の工程として示すように、固体電解質シート11上面の所定位置に、焼失材からなるペーストを印刷又は塗布形成し、予め所定形状に打ち抜いたチャンバ形成シート12、遮蔽シート13の順に重ねて、成形金型に配置してもよく、焼失材の埋め込みと圧着を同時に行うことができる。その後、(5)-2の工程で、公知の方法で製造したダクト形成シート14とヒータ層6の圧着体を積層して接合し、焼成してガスセンサ素子1とする。 · A load (for example, 15-50 MPa) is applied to the laminated body from above and below, and crimped at a temperature (for example, 60-80 ° C). As shown in the step (4) -3 in FIG. 11C, a chamber-forming sheet 12 and a shielding sheet obtained by printing or applying a paste made of a burned material at a predetermined position on the upper surface of the solid electrolyte sheet 11 and punching it into a predetermined shape in advance. 13 may be stacked in the order of 13 and placed in the molding die, and the burning material can be embedded and crimped simultaneously. Thereafter, in the step (5) -2, the pressure-bonded body of the duct forming sheet 14 and the heater layer 6 manufactured by a known method is laminated and bonded, and fired to obtain the gas sensor element 1.
 得られるガスセンサ素子1のチャンバ2形状は、(5)の工程に先立ち、チャンバ2内に配置される焼失材のシート厚みによって制御することが可能である。例えば、図12A左図は、チャンバ2の一方の壁面(すなわち、図の上面)側を反り形状とする場合を模式的に示すもので、予め反り量に応じて厚みを調整した焼失材として、樹脂やカーボンを主成分とする有機物シートが用いられる。金型プレスするに際して、ここでは、チャンバ2の上端部を残して焼失材を収容し、上方から荷重をかけて凹陥させることでチャンバ2の空間部に面する壁面を湾曲変形させる。このとき、チャンバ2の角部近傍では変形量が小さくなるので、両端部間距離Aに対して焼失材厚みを適切に調整することで、第1実施形態のような反り形状が比較的容易に形成され、これを焼成して、図12Aの右図に示すように、所望の変形量Bを有する中空のチャンバ2形状とすることができる。 The shape of the chamber 2 of the obtained gas sensor element 1 can be controlled by the sheet thickness of the burned material placed in the chamber 2 prior to the step (5). For example, the left figure of FIG. 12A schematically shows a case in which one wall surface (that is, the upper surface in the figure) side of the chamber 2 is warped, and as a burnt out material whose thickness is adjusted in advance according to the warpage amount, An organic sheet mainly composed of resin or carbon is used. Here, when the mold is pressed, the burnt material is accommodated with the upper end portion of the chamber 2 left, and the wall surface facing the space portion of the chamber 2 is bent and deformed by applying a load from above. At this time, since the deformation amount is small in the vicinity of the corner portion of the chamber 2, the warped shape as in the first embodiment is relatively easy by appropriately adjusting the thickness of the burned material with respect to the distance A between both ends. After being formed and fired, it can be formed into a hollow chamber 2 shape having a desired deformation amount B as shown in the right figure of FIG. 12A.
 図12Aのチャンバ2形状のように、一方の壁面のみ内方に凸となるように変形させる場合には、(5)の工程において、1:変形させたいシートと離型フィルム17の間に、ラバーフィルムを挿入する、2:変形させたいシート側の離型フィルム17を厚く、反対側の離型フィルム17を薄くする、3:変形させたいシートの反対側の離型フィルム17を事前プレスにより硬くする、といった手段を採用することもできる。また、チャンバ2に収容した焼失材の両側に空間部を有して両側からプレスすることで、第2実施形態のように対向する両壁面が内方に凸となる反り形状のチャンバ2形状とすることができる。 When deforming so that only one wall surface is convex inward as in the shape of the chamber 2 in FIG. 12A, in the step (5), 1: between the sheet to be deformed and the release film 17, Insert the rubber film 2: Thicken the release film 17 on the sheet side to be deformed and thin the release film 17 on the opposite side 3: Make the release film 17 on the opposite side of the sheet to be deformed by pre-pressing Means such as hardening can also be employed. Further, by having a space part on both sides of the burned material accommodated in the chamber 2 and pressing from both sides, the warped chamber 2 shape in which both opposing wall surfaces protrude inward as in the second embodiment, can do.
 あるいは、(5)-1の工程に先立って、図12Bに示すように、焼失材シート16の表面に所望の反り形状を付与しておくこともできる。図中、固体電解質シート11の電極ペーストが塗布される表面(すなわち、図の上面)の上方に遮蔽シート13となる未焼成のセラミックシート13が配置され、これらの間に、樹脂やカーボンを主成分とする有機物シートである焼失材シート16を内在するチャンバ形成シート12が配置されている。このとき、例えば焼失材シート16の上下表面をすり鉢状に凹陥させておき、シート積層圧着時に、これら表面と接する遮蔽シート13、固体電解質シート11の表面を変形させて、チャンバ2の両壁面を、焼失材シート16形状に応じた所定の反り形状とすることができる。焼失材シート16の一方の側のみを凹陥させて、対応する一方の表面のみを変形させてももちろんよい。 Alternatively, prior to the step (5) -1, a desired warp shape can be imparted to the surface of the burnt-out material sheet 16, as shown in FIG. 12B. In the figure, an unfired ceramic sheet 13 to be a shielding sheet 13 is disposed above the surface of the solid electrolyte sheet 11 to which the electrode paste is applied (that is, the upper surface in the figure). A chamber forming sheet 12 containing a burnt-out material sheet 16 which is an organic material sheet as a component is disposed. At this time, for example, the upper and lower surfaces of the burnt-out material sheet 16 are recessed in a mortar shape, and the surfaces of the shielding sheet 13 and the solid electrolyte sheet 11 that are in contact with these surfaces are deformed at the time of laminating and pressing the sheets, A predetermined warpage shape corresponding to the shape of the burned-out material sheet 16 can be obtained. Of course, only one side of the burnt-out material sheet 16 may be recessed and only one corresponding surface may be deformed.
(第3実施形態)
 図13~15に、第3実施形態として示すように、ガスセンサ素子1の積層方向に対向するチャンバ2の壁面に加えて、ガスセンサ素子の短手方向に対向するチャンバ2の壁面を構成する、チャンバ形成シート12の開口22の内表面の少なくとも一つを、反り形状とすることもできる。本実施形態において、チャンバ壁となる遮蔽シート13の反り形状、拡散層21の形状や配置、拡散層21の高さHpとポンプセル3形成位置におけるチャンバ2の平均高さHaveの関係は、第1実施形態と同様であり、以下、相違点を中心に説明する。
(Third embodiment)
As shown in FIGS. 13 to 15 as a third embodiment, in addition to the wall surface of the chamber 2 facing the stacking direction of the gas sensor elements 1, a chamber that constitutes the wall surface of the chamber 2 facing the short direction of the gas sensor elements At least one of the inner surfaces of the opening 22 of the forming sheet 12 may be warped. In the present embodiment, the relationship between the warp shape of the shielding sheet 13 serving as the chamber wall, the shape and arrangement of the diffusion layer 21, the height Hp of the diffusion layer 21 and the average height Have of the chamber 2 at the position where the pump cell 3 is formed is as follows. This is the same as the embodiment, and the following description will be focused on the differences.
 具体的には、図13、図14に示すように、長手方向断面において、チャンバ形成シート12には、チャンバ2となる略長方形の開口22が形成されており、チャンバ2に露出する内表面のうち、長手方向に延びる一対の内表面の両方を、チャンバ2の内方に凸となる山形形状の反り面としている。この反り面により、ポンプセル3の形成位置で、ポンプ電極31の入口部aから出口部dへ向けて、徐々にチャンバ2の幅が狭くなり、好適には、ポンプ電極31の中央部より下流側で、反り量が最大となるようにするとよい。このとき、チャンバ2内の各部a~eにおけるチャンバ幅Wa~Weの関係は、例えば、入口幅Wa>Wb>Wc≧出口幅Wdとするのがよい。遮蔽シート13の反り面による、チャンバ高さHa~Heの関係は、第1実施形態と同様に、例えば、入口高さHa>Hb>Hc≧出口高さHdとする。 Specifically, as shown in FIGS. 13 and 14, in the longitudinal section, the chamber forming sheet 12 is formed with a substantially rectangular opening 22 that becomes the chamber 2, and the inner surface exposed to the chamber 2 is exposed. Among them, both the pair of inner surfaces extending in the longitudinal direction are angled warpage surfaces that protrude inward of the chamber 2. The warped surface gradually reduces the width of the chamber 2 from the inlet portion a of the pump electrode 31 toward the outlet portion d at the position where the pump cell 3 is formed, and is preferably downstream of the central portion of the pump electrode 31. Thus, it is preferable that the amount of warpage is maximized. At this time, the relationship between the chamber widths Wa to We in the respective parts a to e in the chamber 2 is preferably, for example, the inlet width Wa> Wb> Wc ≧ the outlet width Wd. The relationship between the chamber heights Ha to He due to the warped surface of the shielding sheet 13 is, for example, the inlet height Ha> Hb> Hc ≧ the outlet height Hd, as in the first embodiment.
 図15に示すように、チャンバ2の短手方向断面は、ポンプ電極31の中央部より下流側で、断面積が最小となる。チャンバ2は、上壁となる遮蔽シート13の表面と、側壁となるチャンバ形成シート12の一対の表面が、チャンバ2の内方に凸となる反り形状を有し、いずれも中央部の反り量が最大となる山形形状となっている。図示しない入口部aでは、第1実施形態と同様に、チャンバ2は概略長方形の断面形状を有しており、下流側へ向けて、反り量が徐々に大きくなるほど、断面積が小さくなる。 As shown in FIG. 15, the cross-sectional area of the chamber 2 in the short direction is the smallest on the downstream side of the central portion of the pump electrode 31. The chamber 2 has a warped shape in which the surface of the shielding sheet 13 serving as the upper wall and the pair of surfaces of the chamber forming sheet 12 serving as the side walls are convex inward of the chamber 2, both of which are warped at the center. It has a mountain shape with a maximum. In the inlet portion a (not shown), the chamber 2 has a substantially rectangular cross-sectional shape as in the first embodiment, and the cross-sectional area becomes smaller as the amount of warpage gradually increases toward the downstream side.
 このとき、チャンバ2に導入されるガスは、図13中に矢印に示すように、チャンバ2内に突出するチャンバ形成シート12の一対の表面の反り形状に沿って、ポンプセル3の中央部へ向かう流れとなる。また、遮蔽シート13の表面の反り形状に沿って、固体電解質シート11上のポンプ電極31へ向かう流れとなり、ポンプ電極31におけるO排出能力をより高めることができる。チャンバ2は、短手方向断面において、四隅に空間を有するので、ガス拡散性が確保される。 At this time, the gas introduced into the chamber 2 travels toward the center of the pump cell 3 along the warped shape of the pair of surfaces of the chamber forming sheet 12 protruding into the chamber 2 as indicated by arrows in FIG. It becomes a flow. Also, along the warped shape of the surface of the shielding sheet 13 becomes a flow directed to the pumping electrodes 31 on the solid electrolyte sheet 11, it is possible to increase the O 2 discharge capacity in the pump electrode 31. Since the chamber 2 has spaces at the four corners in the cross section in the short direction, gas diffusibility is ensured.
 チャンバ形成シート12の表面の反り量は、任意に設定することができ、通常は、反り量が0.10%以上であれば、ガス流れの撹拌効果が得られる。好適には、反り面が、ポンプ電極31の外周縁部よりチャンバ2の内方へ突出しないように、反り量の最大量を設定するとよい。この反り量の最大量は、チャンバ2の形状やポンプ電極31の配置によって異なり、例えば、チャンバ2の長さが14mm、チャンバ2の側壁とポンプ電極31外周縁部との隙間が160μmのとき、反り量の最大量は1.2%となる。 The amount of warpage of the surface of the chamber forming sheet 12 can be arbitrarily set. Normally, if the amount of warpage is 0.10% or more, the gas flow stirring effect can be obtained. Preferably, the maximum amount of warpage may be set so that the warped surface does not protrude inward of the chamber 2 from the outer peripheral edge of the pump electrode 31. The maximum amount of warpage varies depending on the shape of the chamber 2 and the arrangement of the pump electrode 31. For example, when the length of the chamber 2 is 14 mm and the gap between the side wall of the chamber 2 and the outer peripheral edge of the pump electrode 31 is 160 μm, The maximum amount of warpage is 1.2%.
 このように、第3実施形態のチャンバ2形状によれば、応答性を確保しながら、ガス流れの流速差を大きくして、ポンプ電極31によるO排出をさらに促進することができる。また、チャンバ形成シート12の表面の反り形状を、第2実施形態のチャンバ2形状と組み合わせることもできる。 As described above, according to the shape of the chamber 2 of the third embodiment, it is possible to further increase O 2 discharge by the pump electrode 31 by increasing the difference in flow velocity of the gas flow while ensuring responsiveness. Further, the warped shape of the surface of the chamber forming sheet 12 can be combined with the shape of the chamber 2 of the second embodiment.
 次に、本発明の効果を確認するために、図16、図17に示す形状のガスセンサ素子1について、拡散層21の高さHpとチャンバ2の形状及びポンプセル3の形状を表1に示すように変更し、上述した方法で所定のチャンバ反り形状を有する試験用素子を作製して、センサ特性との関係を調べた(実施例1~6)また、比較のためチャンバ形状又は反り形状を本発明の範囲外とした試験用素子を作製した(比較例1~5)。図16中の表に示すように、センサセル4のセンサ電極41の短手方向長A:1mm、長手方向長B:2mm、チャンバ2の短手方向長C:2.4mm、ポンプセル3のポンプ電極31の短手方向長E:2.1mmは、全実施例、全比較例に共通であり、実施例1~6、比較例1、3~5は、チャンバ2の長手方向長D:9mm、ポンプ電極31の長手方向長B:6.5mmとした。また、チャンバ2の長手方向長D:14mm、ポンプセル3のポンプ電極31の長手方向長F:11mmと、より長くしたものを、比較例2とした。 Next, in order to confirm the effect of the present invention, the height Hp of the diffusion layer 21, the shape of the chamber 2, and the shape of the pump cell 3 are shown in Table 1 for the gas sensor element 1 having the shape shown in FIGS. The test element having a predetermined chamber warp shape was fabricated by the method described above, and the relationship with the sensor characteristics was examined (Examples 1 to 6). Test elements outside the scope of the invention were produced (Comparative Examples 1 to 5). As shown in the table in FIG. 16, the short direction length A of the sensor electrode 41 of the sensor cell 4 is 1 mm, the long direction length B is 2 mm, the short length C of the chamber 2 is 2.4 mm, and the pump electrode of the pump cell 3 31 in the short direction E: 2.1 mm is common to all the examples and all the comparative examples. Examples 1 to 6 and Comparative Examples 1 and 3 to 5 are the longitudinal length D of the chamber 2: 9 mm, The longitudinal length B of the pump electrode 31 was 6.5 mm. Further, the length in the longitudinal direction D of the chamber 2 was 14 mm, and the length in the longitudinal direction F of the pump electrode 31 of the pump cell 3 was 11 mm.
 実施例1~6、比較例3~5の試験用素子は、図17A、図17Bに示すように、チャンバ2の下側の壁面となる固体電解質シート11を上方へ湾曲変形するように外側から荷重をかけて凹ませた反り形状とし、ポンプ電極31、センサ電極41が形成される表面がチャンバ2の内方、すなわち遮蔽シート13側へ凸となるように湾曲する反り面としている。比較例1、2は、固体電解質シート11がチャンバ2の外側へ膨らむ反り形状とした。これら各実施例、比較例の反り量を測定した結果を表1に示す。 As shown in FIGS. 17A and 17B, the test elements of Examples 1 to 6 and Comparative Examples 3 to 5 are externally arranged so as to bend and deform the solid electrolyte sheet 11 serving as the lower wall surface of the chamber 2. The warped shape is recessed by applying a load, and the surface on which the pump electrode 31 and the sensor electrode 41 are formed is a warped surface that curves so as to protrude inward of the chamber 2, that is, toward the shielding sheet 13. In Comparative Examples 1 and 2, the solid electrolyte sheet 11 has a warped shape that swells to the outside of the chamber 2. Table 1 shows the results of measuring the amount of warpage in each of these Examples and Comparative Examples.
 なお、反り量の評価は、次のようにして行った。得られた素子焼結体を、図17Aに示すように、長手方向及び短手方向に対して垂直に切断又は研磨して、チャンバ断面を作製した。このチャンバ断面につき、画像観察により、チャンバ端部間を直線でつなぎ、垂直方向の最大変形量を測定した。さらに、チャンバ2の長手方向及び短手方向の変形量をそれぞれ反り量(%)に換算し、両者を比較して大きい値を反り量とした。
 反り量(%)=100×[チャンバ変形量(μm)/チャンバ端部間距離(μm)]チャンバ端部位置は、図17Bにより規定した。すなわち、チャンバ垂直方向を任意に3点取り、チャンバ2の両側に近似線(点線)を引く。この近似線から垂直方向に0.5mmの範囲内で、任意に3点取り、近似線(点線)を引いて、これら近似線の交点をチャンバ端部とした。
In addition, evaluation of the amount of curvature was performed as follows. As shown in FIG. 17A, the obtained element sintered body was cut or polished perpendicularly to the longitudinal direction and the lateral direction to produce a chamber cross section. By observing images of the cross section of the chamber, the end portions of the chamber were connected with a straight line, and the maximum amount of deformation in the vertical direction was measured. Furthermore, the amount of deformation in the longitudinal direction and the short direction of the chamber 2 was converted into the amount of warpage (%), respectively, and both were compared and the larger value was taken as the amount of warpage.
Warpage (%) = 100 × [chamber deformation (μm) / chamber end distance (μm)] The position of the end of the chamber is defined by FIG. 17B. That is, three points are arbitrarily drawn in the vertical direction of the chamber, and approximate lines (dotted lines) are drawn on both sides of the chamber 2. Three points are arbitrarily drawn within a range of 0.5 mm in the vertical direction from this approximate line, and an approximate line (dotted line) is drawn, and the intersection of these approximate lines is defined as the chamber end.
 また、各実施例、比較例について、拡散層21の積層方向の高さHpと、ポンプセル3形成位置のチャンバ2の平均高さHaveを測定して表1に示した。平均高さHaveは、図18に示すように、ガス流れ方向におけるポンプ電極31の入口部、中央部、出口部について、それぞれ固体電解質シート11と遮蔽シート13間の高さを測定し、その平均値を求めたものである。
 平均高さHave=(ポンプセル入口高さHi+中央高さHc+出口高さHo)/3
 実施例1~6は、いずれも拡散層21の高さHpがチャンバ2の平均高さHaveより低く、チャンバ2の高さは、ポンプセル3の入口高さHiに対して、中央高さHc及び出口高さHoが低くなっている。このうち、実施例1、2は、ポンプセル3の入口から出口まで高さが徐々に低くなり、又は中央及び出口の高さが同じであり、実施例3~6は、中央及び出口の高さがほぼ同等か中央がわずかに高くなっている。比較例5は、拡散層21の高さHpをチャンバ2の平均高さHaveより高くしてある。
For each example and comparative example, the height Hp of the diffusion layer 21 in the stacking direction and the average height Have of the chamber 2 at the position where the pump cell 3 is formed are measured and shown in Table 1. As shown in FIG. 18, the average height Have is obtained by measuring the height between the solid electrolyte sheet 11 and the shielding sheet 13 for the inlet portion, the center portion, and the outlet portion of the pump electrode 31 in the gas flow direction. The value is obtained.
Average height Have = (pump cell inlet height Hi + center height Hc + outlet height Ho) / 3
In each of Examples 1 to 6, the height Hp of the diffusion layer 21 is lower than the average height Have of the chamber 2, and the height of the chamber 2 is equal to the central height Hc and the inlet height Hi of the pump cell 3. The exit height Ho is low. Among these, in Examples 1 and 2, the height gradually decreases from the inlet to the outlet of the pump cell 3, or the heights of the center and the outlet are the same. Examples 3 to 6 are the heights of the center and the outlet. Are almost equal or slightly higher in the middle. In Comparative Example 5, the height Hp of the diffusion layer 21 is higher than the average height Have of the chamber 2.
 実施例1~6、比較例1~5について、O排出能力及びガス応答性を調べた結果を表1に示す。O排出能力は、モニタセル5の酸素電流値が大きく(バックグラウンドが大きく)、センサセル4とモニタセル5の差分電流値が安定しないためNOx電流値を測定不可能であるものを×、モニタセル5の酸素電流値が小さく(バックグラウンドが小さく)、センサセル4とモニタセル5の差分電流値が安定するためNOx電流値を測定可能であるものを○とした。ガス応答性は、NOxガス濃度変動に対する応答が悪く、NOx電流値が安定せず測定不可能であるものを×、NOxガス濃度変動に対する応答が良く、NOx電流値が安定するため測定可能であるものを○とした。また、チャンバ凹み形状とした実施例、比較例のチャンバ反り量とO排出能力の関係を図19Aに示した。 Table 1 shows the results of examining the O 2 discharge capacity and gas responsiveness of Examples 1 to 6 and Comparative Examples 1 to 5. O 2 discharge capacity, large oxygen current monitor cell 5 (background is large), × what difference current value of the sensor cell 4 and the monitor cell 5 is not measured NOx current value because it does not stabilize, the monitor cell 5 The case where the oxygen current value was small (background was small) and the differential current value between the sensor cell 4 and the monitor cell 5 was stable and the NOx current value was measurable was evaluated as ◯. The gas responsiveness can be measured because the response to NOx gas concentration fluctuation is poor and the NOx current value is not stable and cannot be measured, and the response to NOx gas concentration fluctuation is good and the NOx current value is stable. The thing was made into (circle). Further, FIG. 19A shows the relationship between the amount of chamber warpage and the O 2 discharge capacity in Examples and Comparative Examples in which the chamber is recessed.
 図19Aに明らかなように、チャンバ反り量が大きくなるに従い、O排出能力が向上している。ただし、チャンバ反り量が1.40%の比較例4は、シート積層圧着工程において割れが発生した。また、チャンバ反り量が0.05%の比較例3は、焼成脱脂工程において割れが発生し、チャンバ反り量は、大きすぎても小さすぎても、良好な結果が得られないことがわかる。図19B、図19Cは、チャンバ反り量が0.05%を超える場合と、0.05%以下の場合の焼成脱脂工程における挙動を比較して示したもので、例えば、脱脂温度や樹脂の抜けのバラツキにより、上面のみ脱脂収縮が先に発生すると、伸びしろが無いために、引っ張り応力が発生し、亀裂が生じやすくなる(例えば、図19C参照)。これに対し、下面側の固体電解質シート11が反り形状とし、伸び変形させておくことで、脱脂中の引っ張り歪を緩和して、亀裂を防止できるものと考えられる(例えば、図19B参照)。 As is apparent from FIG. 19A, the O 2 discharge capacity is improved as the chamber warp amount increases. However, in Comparative Example 4 in which the chamber warpage amount was 1.40%, a crack occurred in the sheet lamination pressure bonding step. Further, it can be seen that in Comparative Example 3 in which the chamber warpage amount is 0.05%, cracks are generated in the baking and degreasing process, and good results cannot be obtained if the chamber warpage amount is too large or too small. FIG. 19B and FIG. 19C show the behavior in the firing and degreasing process when the chamber warpage amount exceeds 0.05% and when it is 0.05% or less. Due to this variation, if degreasing shrinkage occurs only on the upper surface first, there is no room for elongation, so tensile stress is generated and cracks are likely to occur (see, for example, FIG. 19C). On the other hand, it is considered that the solid electrolyte sheet 11 on the lower surface side is warped and stretched and deformed, so that the tensile strain during degreasing can be relaxed and cracks can be prevented (see, for example, FIG. 19B).
 一方、0.10%の実施例3、1.38%の実施例4では、亀裂は発生していない。したがって、本発明では、チャンバ反り量を0.10%以上、1.38%以下の範囲とするのがよく、また、表1の結果に明らかなように、実施例1~6は、O排出能力、ガス応答性のいずれも良好な結果が得られた。これに対し、チャンバ2を外方へ膨らみ変形させた比較例1、拡散層21の高さHpが平均高さHaveより高い比較例5は、十分なO排出能力が得られていない。チャンバ2を外方へ膨らみ変形させた比較例2は、チャンバ2及びポンプセル3の長手方向長を長くすることで、O排出能力が改善するが、ガス応答性が低下する。 On the other hand, no cracks occurred in Example 3 of 0.10% and Example 4 of 1.38%. Therefore, in the present invention, the amount of warpage of the chamber should be in the range of 0.10% to 1.38%, and as is apparent from the results of Table 1, Examples 1 to 6 are O 2 Good results were obtained for both discharge capacity and gas responsiveness. On the other hand, in Comparative Example 1 in which the chamber 2 is expanded outward and deformed, and in Comparative Example 5 in which the height Hp of the diffusion layer 21 is higher than the average height Have, sufficient O 2 discharge capability is not obtained. In the comparative example 2 in which the chamber 2 is expanded outward and deformed, the O 2 discharge capacity is improved by increasing the longitudinal lengths of the chamber 2 and the pump cell 3, but the gas responsiveness is lowered.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本発明において、ガスセンサ素子1は、少なくともチャンバ内に上流側からポンプセル3、センサセル4を配置した構成であればよく、上記実施形態の積層体構造に限らず、本発明のチャンバ2形状を適用することで、同様の効果が期待できる。また、チャンバ2の壁面形状は、上記した形状以外の形状とすることもでき、ガスセンサ素子1の製造方法としては、上記実施形態に記載した方法に限らず、本発明のチャンバ2形状を形成するための種々の方法が採用できる。 In this invention, the gas sensor element 1 should just be the structure which has arrange | positioned the pump cell 3 and the sensor cell 4 from the upstream at least in a chamber, and is not restricted to the laminated body structure of the said embodiment, The chamber 2 shape of this invention is applied. Therefore, the same effect can be expected. Further, the wall surface shape of the chamber 2 may be a shape other than the above-described shape, and the manufacturing method of the gas sensor element 1 is not limited to the method described in the above embodiment, and the chamber 2 shape of the present invention is formed. Various methods can be employed.
 以上のように、本発明によれば、検出精度と応答性を両立させたガスセンサを実現できる。このガスセンサは、内燃機関の排気系に設置されるNOxセンサとして好適であり、排気浄化性能の向上に寄与する。本発明のガスセンサにより検出される特定ガス成分としては、NOxに限らず、SOxその他であってもよく、被測定ガスは内燃機関からの排出ガスに限らず、種々のガス中の特定ガス成分の検出に使用されて、良好なセンサ特性を発することができる。 As described above, according to the present invention, a gas sensor having both detection accuracy and responsiveness can be realized. This gas sensor is suitable as a NOx sensor installed in an exhaust system of an internal combustion engine, and contributes to an improvement in exhaust purification performance. The specific gas component detected by the gas sensor of the present invention is not limited to NOx, but may be SOx or the like. The gas to be measured is not limited to the exhaust gas from the internal combustion engine, but includes specific gas components in various gases. Used for detection, good sensor characteristics can be emitted.
1 ガスセンサ素子
11 固体電解質シート(第1のセラミックシート)
12 チャンバ形成シート(第2のセラミックシート)
13 遮蔽シート(第3のセラミックシート)
2 チャンバ
21 拡散層
3 ポンプセル
31 ポンプ電極
4 センサセル
41 センサ電極
1 Gas Sensor Element 11 Solid Electrolyte Sheet (First Ceramic Sheet)
12 Chamber forming sheet (second ceramic sheet)
13 Shielding sheet (third ceramic sheet)
2 Chamber 21 Diffusion layer 3 Pump cell 31 Pump electrode 4 Sensor cell 41 Sensor electrode

Claims (9)

  1.  被測定ガス中の特定ガス成分を検出するガスセンサであって、
     平板状のセラミックシート(11~13)を積層したガスセンサ素子(1)内に設けられ、上記ガスセンサ素子の長手方向の端部に設けた拡散層(21)を介して、外部から被測定ガスが導入されるチャンバ(2)と、
     上記チャンバ内のガス流れの上流側に配置されるポンプ電極(31)を有して、被測定ガス中の酸素を汲み出すポンプセル(3)と、
     上記チャンバ内のガス流れの下流側に配置されるセンサ電極(41)を有して、酸素濃度の低減した被測定ガス中の特定ガス成分濃度を検出するセンサセル(4)を備え、
     上記ガスセンサ素子は、上記チャンバに面する表面に上記ポンプ電極及び上記センサ電極が配置される第1のセラミックシート(11)に、上記チャンバとなる開口(22)を有する第2のセラミックシート(12)と、上記開口を覆って上記チャンバを画成する第3のセラミックシート(13)を順に積層した構造を有し、
     上記チャンバは、チャンバ壁を構成する上記第1のセラミックシート及び上記第3のセラミックシートの少なくとも一方の表面が、上記ポンプセルの形成位置で上記チャンバ内方に凸となる反り形状を有し、かつ該表面の反り量が0.10%以上1.38%以下の範囲に設定されており、
     上記拡散層と上記チャンバとは、上記拡散層の積層方向の高さHpと、上記ポンプセルの形成位置における上記チャンバの積層方向の平均高さHaveとが、Hp<Have、の関係を満たしている、ガスセンサ。
    A gas sensor for detecting a specific gas component in a gas to be measured,
    A gas to be measured is provided from outside through a diffusion layer (21) provided in a gas sensor element (1) in which flat ceramic sheets (11 to 13) are laminated and provided at an end portion in the longitudinal direction of the gas sensor element. A chamber (2) to be introduced;
    A pump cell (3) having a pump electrode (31) disposed upstream of the gas flow in the chamber, and pumping out oxygen in the gas to be measured;
    A sensor cell (4) having a sensor electrode (41) disposed on the downstream side of the gas flow in the chamber and detecting a specific gas component concentration in the gas under measurement having a reduced oxygen concentration;
    The gas sensor element includes a second ceramic sheet (12) having an opening (22) serving as the chamber in a first ceramic sheet (11) on which the pump electrode and the sensor electrode are disposed on a surface facing the chamber. And a third ceramic sheet (13) covering the opening and defining the chamber in order,
    The chamber has a warped shape in which at least one surface of the first ceramic sheet and the third ceramic sheet constituting the chamber wall is convex inward of the chamber at the position where the pump cell is formed, and The amount of warpage of the surface is set in the range of 0.10% to 1.38%,
    In the diffusion layer and the chamber, the height Hp in the stacking direction of the diffusion layer and the average height Have in the stacking direction of the chamber at the position where the pump cell is formed satisfy the relationship of Hp <Have. , Gas sensor.
  2.  上記表面の反り量は、上記ガスセンサ素子の長手方向及び短手方向における最大変形量に基づいて算出される、請求項1に記載のガスセンサ。 The gas sensor according to claim 1, wherein the amount of warpage of the surface is calculated based on a maximum deformation amount in a longitudinal direction and a short direction of the gas sensor element.
  3.  上記チャンバは、上記ガスセンサ素子の長手方向をガス流れ方向として、上記ポンプ電極のガス入口部における断面積よりもガス出口部における断面積が小さくなり、かつ、上記ガスセンサ素子の短手方向において、上記チャンバ端部の少なくとも一方の壁面の高さよりも上記ポンプ電極の中央部位置における高さが低くなる形状であり、上記拡散層は、上記ポンプ電極のガス入口部に沿って配置される、請求項1に記載のガスセンサ。 The chamber has a gas flow direction in a longitudinal direction of the gas sensor element, a cross-sectional area at the gas outlet portion is smaller than a cross-sectional area at the gas inlet portion of the pump electrode, and the short direction of the gas sensor element The height at the central portion of the pump electrode is lower than the height of at least one wall surface of the chamber end, and the diffusion layer is disposed along the gas inlet of the pump electrode. The gas sensor according to 1.
  4.  上記チャンバは、上記ガスセンサ素子の長手方向において、上記ポンプ電極のガス入口部からガス出口部に向けて、断面積が徐々に小さくなり、ガス流れ方向の中央部より下流側において最小断面積となる形状である、請求項1に記載のガスセンサ。 In the longitudinal direction of the gas sensor element, the chamber gradually decreases in cross-sectional area from the gas inlet portion to the gas outlet portion of the pump electrode, and has a minimum cross-sectional area downstream from the central portion in the gas flow direction. The gas sensor according to claim 1, which has a shape.
  5.  上記チャンバは、上記ガスセンサ素子の短手方向において、上記チャンバの一方又は両方の端部から上記ポンプ電極の中央部位置へ向けて高さが徐々に低くなる形状である、請求項1に記載のガスセンサ。 2. The chamber according to claim 1, wherein the chamber has a shape that gradually decreases in height from one or both ends of the chamber toward a central portion of the pump electrode in a short direction of the gas sensor element. Gas sensor.
  6.  上記チャンバは、上記ガスセンサ素子の短手方向に対向するチャンバ壁を構成する、上記第2のセラミックシートの上記開口の内表面のうち少なくとも一つが、上記ポンプセルの形成位置で上記チャンバ内方に凸となる反り形状を有している、請求項1に記載のガスセンサ。 In the chamber, at least one of the inner surfaces of the opening of the second ceramic sheet constituting the chamber wall facing the short direction of the gas sensor element protrudes inward of the chamber at the position where the pump cell is formed. The gas sensor according to claim 1, which has a warped shape.
  7.  上記第1のセラミックシートは、酸素イオン導電性の固体電解質シートであり、上記チャンバと反対側の表面に、上記ポンプ電極又は上記センサ電極に対応する基準電極(32)を有して、上記ポンプセル又は上記センサセルを構成する、請求項1に記載のガスセンサ。 The first ceramic sheet is an oxygen ion conductive solid electrolyte sheet, and has a reference electrode (32) corresponding to the pump electrode or the sensor electrode on a surface opposite to the chamber, and the pump cell. Or the gas sensor of Claim 1 which comprises the said sensor cell.
  8.  上記第2のセラミックシート及び上記第3のセラミックシートは、被測定ガスの透過性を有しない絶縁性シートである、請求項1に記載のガスセンサ。 2. The gas sensor according to claim 1, wherein the second ceramic sheet and the third ceramic sheet are insulating sheets that are not permeable to the gas to be measured.
  9.  被測定ガスは内燃機関の排出ガスであり、特定ガス成分は窒素酸化物ガスである、請求項1に記載のガスセンサ。
     
    The gas sensor according to claim 1, wherein the gas to be measured is an exhaust gas of the internal combustion engine, and the specific gas component is a nitrogen oxide gas.
PCT/JP2015/075824 2014-09-16 2015-09-11 Gas sensor WO2016043133A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015004220.2T DE112015004220B4 (en) 2014-09-16 2015-09-11 Gas sensor
US15/509,327 US10345256B2 (en) 2014-09-16 2015-09-11 Gas sensor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-188024 2014-09-16
JP2014188024 2014-09-16
JP2015-149660 2015-07-29
JP2015149660A JP6380278B2 (en) 2014-09-16 2015-07-29 Gas sensor

Publications (1)

Publication Number Publication Date
WO2016043133A1 true WO2016043133A1 (en) 2016-03-24

Family

ID=55533171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075824 WO2016043133A1 (en) 2014-09-16 2015-09-11 Gas sensor

Country Status (1)

Country Link
WO (1) WO2016043133A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097903A (en) * 1998-09-18 2000-04-07 Ngk Spark Plug Co Ltd Apparatus and method for measuring gas concentration
JP2009150719A (en) * 2007-12-19 2009-07-09 Toyota Motor Corp Nox sensor
JP2011043333A (en) * 2009-08-19 2011-03-03 Nippon Soken Inc NOx SENSOR
JP2013117428A (en) * 2011-12-02 2013-06-13 Ngk Spark Plug Co Ltd Gas sensor and method for producing gas sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097903A (en) * 1998-09-18 2000-04-07 Ngk Spark Plug Co Ltd Apparatus and method for measuring gas concentration
JP2009150719A (en) * 2007-12-19 2009-07-09 Toyota Motor Corp Nox sensor
JP2011043333A (en) * 2009-08-19 2011-03-03 Nippon Soken Inc NOx SENSOR
JP2013117428A (en) * 2011-12-02 2013-06-13 Ngk Spark Plug Co Ltd Gas sensor and method for producing gas sensor

Similar Documents

Publication Publication Date Title
JP6380278B2 (en) Gas sensor
JP4911910B2 (en) NOx measuring electrode part structure, method for forming the same, and NOx sensor element
CN107949785B (en) Pump electrode and reference electrode of gas sensor
JP2020034435A (en) Sensor element
JP6352215B2 (en) Gas sensor element
JP2020034443A (en) Sensor element
JP7124644B2 (en) gas sensor element
JP6626901B2 (en) Part for measuring device of particulate matter and method for producing the same
JP4637671B2 (en) Ceramic laminate and gas sensor including the same
US11231391B2 (en) Gas sensor
WO2020137180A1 (en) Gas sensor element and gas sensor
JP2017150933A (en) Gas sensor element
WO2016043133A1 (en) Gas sensor
CN111381003B (en) sensor element
CN108693233B (en) Sensor element
JP2008157649A (en) Lamination type gas sensor
JP6439649B2 (en) Gas sensor element
CN108693234B (en) Sensor element
JP4223471B2 (en) Gas sensor element
WO2024029403A1 (en) SENSOR ELEMENT OF NOx SENSOR
JP2004085474A (en) Gas sensor element
JP2003107049A (en) Laminated oxygen sensor
WO2024029402A1 (en) SENSOR ELEMENT OF NOx SENSOR
JP2022153276A (en) sensor element
JP2023033155A (en) Sensor element and gas sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15509327

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015004220

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842893

Country of ref document: EP

Kind code of ref document: A1