WO2016043071A1 - Vehicle hydraulic control device - Google Patents

Vehicle hydraulic control device Download PDF

Info

Publication number
WO2016043071A1
WO2016043071A1 PCT/JP2015/075241 JP2015075241W WO2016043071A1 WO 2016043071 A1 WO2016043071 A1 WO 2016043071A1 JP 2015075241 W JP2015075241 W JP 2015075241W WO 2016043071 A1 WO2016043071 A1 WO 2016043071A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
hydraulic
oil pump
amount
cooling
Prior art date
Application number
PCT/JP2015/075241
Other languages
French (fr)
Japanese (ja)
Inventor
行宣 犬田
秀策 片倉
清水 豊
Original Assignee
日産自動車株式会社
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ジヤトコ株式会社 filed Critical 日産自動車株式会社
Priority to JP2016548835A priority Critical patent/JP6265273B2/en
Publication of WO2016043071A1 publication Critical patent/WO2016043071A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle hydraulic control device including a mechanical oil pump operated by a traveling drive source and an electric oil pump operated by an electric motor.
  • a vehicle hydraulic control device that includes an electric oil pump that is operated by an electric motor different from a travel drive source is known (see, for example, Patent Document 1).
  • the hydraulic oil discharged from the electric oil pump is supplied to the transmission mechanism hydraulic system. That is, the hydraulic oil discharged from the electric oil pump does not flow directly to the cooling / lubricating system of the transmission mechanism. For this reason, in order to perform clutch cooling in a scene where the clutch of the transmission mechanism generates heat, such as starting uphill or advancing the accelerator, for example, the transmission mechanism is separate from the electric oil pump that supplies hydraulic pressure instead of the mechanical oil pump. It is conceivable to provide a second electric oil pump that directly supplies hydraulic pressure to the cooling / lubricating system. However, in this case, two electric oil pumps for supplying hydraulic pressure and cooling / lubricating are provided, which causes problems that the on-vehicle performance of the electric oil pump is reduced and the cost is increased.
  • An object of the present invention is to provide a vehicular hydraulic control device.
  • a vehicle hydraulic control apparatus includes a mechanical oil pump, an electric oil pump, a line pressure control valve, a first hydraulic supply oil path, a second hydraulic supply oil path, A cooling system oil passage and a switching valve are provided.
  • the mechanical oil pump is an oil pump operated by a traveling drive source.
  • the electric oil pump is an oil pump that is operated by an electric motor different from the travel drive source.
  • the line pressure control valve regulates the line pressure supplied to the transmission mechanism hydraulic system.
  • the first hydraulic supply oil passage supplies hydraulic oil discharged from a mechanical oil pump to an input port of a line pressure control valve.
  • the second hydraulic supply oil passage supplies hydraulic oil discharged from the electric oil pump to an input port of the line pressure control valve.
  • the cooling system oil passage supplies hydraulic oil discharged from the electric oil pump to the cooling / lubricating system of the transmission mechanism.
  • the switching valve is provided in a discharge oil passage of the electric oil pump, and connects the discharge oil passage to one of the second hydraulic supply oil passage and the cooling system oil passage.
  • the discharge oil path of the electric oil pump operated by an electric motor different from the travel drive source is used to supply the hydraulic oil discharged from the electric oil pump using the switching valve.
  • the second hydraulic supply oil passage that supplies to the input port of the line pressure control valve or the cooling oil passage that supplies hydraulic oil discharged from the electric oil pump to the cooling / lubricating system of the transmission mechanism can do. Therefore, when the hydraulic oil supply request to the transmission hydraulic system is generated because the mechanical oil pump is stopped along with the stop of the travel drive source, the switching oil is supplied to the discharge oil passage of the electric oil pump by the switching valve. Connect to the oil passage.
  • the hydraulic oil discharged from the electric oil pump is regulated to the line pressure by the line pressure control valve and then supplied to the transmission mechanism hydraulic system, thereby ensuring the necessary hydraulic pressure of the transmission mechanism hydraulic system. it can.
  • the discharge oil passage of the electric oil pump is connected to the cooling system oil passage by the switching valve.
  • the hydraulic oil discharged from the electric oil pump is directly supplied to the cooling / lubricating system of the transmission mechanism, and the flow rate (oil amount) of the hydraulic oil flowing through the cooling / lubricating system of the transmission mechanism is increased. Cooling can be performed quickly.
  • the oil pressure securing of the speed change mechanism and the cooling function of the speed change mechanism when the mechanical oil pump is stopped can be achieved by one electric oil pump and the switching valve.
  • FIG. 1 is an overall system diagram illustrating a hybrid vehicle to which a hydraulic control device according to a first embodiment is applied.
  • FIG. 2 is a hydraulic circuit diagram illustrating a hydraulic control circuit included in the hybrid vehicle according to the first embodiment.
  • 6 is a flowchart illustrating a flow of a switching valve hydraulic pressure supply ⁇ cooling / lubrication switching process executed in the first embodiment. It is explanatory drawing which shows the structure of a line pressure control valve. It is a map which shows the deviation
  • the mechanical oil pump rotational speed, the hydraulic system supply oil amount for the transmission mechanism, the electric oil pump discharge oil amount, and the mechanical oil pump discharge when the switching valve is switched from the hydraulic supply side to the cooling side It is a time chart which shows each characteristic of an oil quantity and a switching valve state.
  • the time chart showing the characteristics of the accelerator opening, the vehicle speed, the CL2 temperature (second clutch temperature), the cooling flag, and the hydraulic pressure supply flag when the switching valve is switched from the cooling side to the hydraulic pressure supply side. It is.
  • the mechanical oil pump rotational speed, the hydraulic system supply oil amount for the transmission mechanism, the electric oil pump discharge oil amount, and the mechanical oil pump discharge when the switching valve is switched from the cooling side to the hydraulic supply side It is a time chart which shows each characteristic of an oil quantity and a switching valve state.
  • Example 1 First, the configuration of the vehicle hydraulic control apparatus according to the first embodiment is described as “overall system configuration of hybrid vehicle”, “detailed configuration of hydraulic control circuit”, “hydraulic supply ⁇ cooling / lubrication switching processing configuration”, “cooling / lubrication ⁇ The description will be divided into “hydraulic supply switching processing configuration”.
  • FIG. 1 is an overall system diagram illustrating a hybrid vehicle (an example of a vehicle) to which the control device according to the first embodiment is applied.
  • the overall system configuration of the hybrid vehicle according to the first embodiment will be described with reference to FIG.
  • the vehicle hydraulic control apparatus is applied to the hybrid vehicle shown in FIG.
  • the drive system of this hybrid vehicle includes an engine Eng, a first clutch CL1, a motor / generator MG, a second clutch CL2, a continuously variable transmission CVT, a final gear FG, a left drive wheel LT, and a right drive. And a wheel RT.
  • the engine Eng is a lean burnable internal combustion engine, and the engine torque matches the command value by controlling the intake air amount by the throttle actuator, controlling the fuel injection amount by the injector, and controlling the ignition timing by the spark plug. To be controlled.
  • the first clutch CL1 is a frictional engagement element interposed at a position between the engine Eng and the motor / generator MG.
  • the first clutch CL1 is operated by a hydraulic actuator that is operated by the hydraulic pressure of the hydraulic oil.
  • a dry clutch that is in a released state (normally open) when no hydraulic pressure is applied by a biasing force of a diaphragm spring is used.
  • the first clutch CL1 controls between the engine Eng and the motor / generator MG to be in a fully engaged / slip engaged / released state depending on the hydraulic pressure applied to the hydraulic actuator.
  • the first clutch CL1 transmits motor torque and engine torque to the second clutch CL2 when fully engaged, and transmits only motor torque to the second clutch CL2 when released.
  • the complete engagement / slip engagement / release control of the first clutch CL1 is performed by stroke control for the hydraulic actuator.
  • the motor / generator MG is a three-phase AC permanent magnet synchronous motor that serves as a driving source.
  • the motor / generator MG performs drive torque control and rotation speed control when starting and running.
  • the motor / generator MG performs regenerative braking control during braking or deceleration, and recovers vehicle kinetic energy to the battery BAT.
  • the second clutch CL2 is a frictional engagement element interposed between the motor / generator MG and the left and right drive wheels LT, RT.
  • the second clutch CL2 is composed of a wet multi-plate friction clutch operated by hydraulic oil pressure (second clutch hydraulic pressure), and complete engagement / slip engagement / release is controlled by the magnitude of the second clutch hydraulic pressure.
  • the second clutch CL2 of the first embodiment uses the forward clutch FC and the reverse brake RB provided in the forward / reverse switching mechanism of the continuously variable transmission CVT using planetary gears. That is, during forward travel, the forward clutch FC is the second clutch CL2, and during reverse travel, the reverse brake RB is the second clutch CL2.
  • the continuously variable transmission CVT is a belt type continuously variable transmission having a primary pulley Pri, a secondary pulley Sec, and a pulley belt V stretched between the primary pulley Pri and the secondary pulley Sec.
  • the primary pulley Pri and the secondary pulley Sec each change the pulley width by supplying hydraulic pressure, and change the diameter of the surface sandwiching the pulley belt V to freely control the gear ratio (pulley ratio).
  • the input gear of the mechanical oil pump O / P is connected to the motor output shaft MGout of the motor / generator MG via the chain CH.
  • the mechanical oil pump O / P is an oil pump that is operated by the rotational driving force of the motor / generator MG.
  • a gear pump or a vane pump is used.
  • the mechanical oil pump O / P can discharge oil regardless of the rotation direction of the motor / generator MG.
  • an electric oil pump M / O / P that is operated by the rotational driving force of the sub motor S / M is provided.
  • the sub motor S / M is an electric motor provided separately from the motor / generator MG.
  • the mechanical oil pump O / P and the electric oil pump M / O / P are used to supply hydraulic pressure (control pressure) to be supplied to the first and second clutches CL1 and CL2 and the continuously variable transmission CVT. It is OIL.
  • OIL hydraulic supply source
  • the sub motor S / M when the amount of oil discharged from the mechanical oil pump O / P is sufficient, the sub motor S / M is stopped and the electric oil pump M / O / P is stopped. Also, when the discharge oil amount of the mechanical oil pump O / P decreases, the sub motor S / M is driven to operate the electric oil pump M / O / P, and this electric oil pump M / O / P also operates. Let the oil discharge.
  • a three-phase AC permanent magnet synchronous motor capable of controlling the motor speed is used as the sub motor S / M.
  • the first clutch CL1, the motor / generator MG, and the second clutch CL2 constitute a one-motor / two-clutch hybrid drive system.
  • the main drive modes of this system are “EV mode” and “HEV”. Mode ".
  • the “EV mode” is an electric vehicle mode in which the first clutch CL1 is released, the second clutch CL2 is engaged, and only the motor / generator MG is used as a drive source.
  • the “HEV mode” is a hybrid vehicle mode in which the first and second clutches CL1 and CL2 are engaged and the engine Eng and the motor / generator MG are used as drive sources.
  • the control system of the hybrid vehicle of the first embodiment includes an inverter INV, a battery BAT, an integrated controller 10, a transmission controller 11, a clutch controller 12, an engine controller 13, and a motor controller 14. And a battery controller 15.
  • the inverter INV converts a direct current supplied from the battery BAT into a three-phase alternating current supplied to the motor / generator MG, and generates a drive current for the motor / generator MG. Further, the output rotation of the motor / generator MG is reversed by reversing the phase of the generated drive current. Further, when the motor / generator MG is regenerated, the three-phase alternating current is converted into direct current.
  • the battery BAT is a chargeable / dischargeable secondary battery, and supplies power to the motor / generator MG and charges power regenerated by the motor / generator MG.
  • the integrated controller 10 includes a battery state (here, input from the battery controller 15), an accelerator opening (here, detected by the accelerator opening sensor 21), and a vehicle speed (here, a value synchronized with the transmission output speed). , Detected by the transmission output speed sensor 22). Based on the result, command values for the actuators (motor / generator MG, engine Eng, first clutch CL1, second clutch CL2, continuously variable transmission CVT) are calculated and transmitted to the controllers 11-15. .
  • the integrated controller 10 controls the discharge oil amount of the mechanical oil pump O / P, the discharge oil amount of the electric oil pump M / O / P, the line pressure control valve 101, and the switching valve 106 described later.
  • the circuit control means to perform.
  • this integrated controller 10 when the sub-motor S / M is driven to operate the electric oil pump M / O / P, the amount of oil discharged from the mechanical oil pump O / P (from the detection value of the motor rotation speed sensor 23).
  • the rotational speed of the electric oil pump M / O / P is controlled according to the calculation. Further, the switching control of the switching valve 106 is performed according to the temperature of the second clutch CL2 (detected by the clutch temperature sensor 24) and the amount of oil discharged from the mechanical oil pump O / P.
  • the transmission controller 11 performs shift control so as to achieve a shift command from the integrated controller 10.
  • This shift control is performed by controlling the hydraulic pressure supplied to the primary pulley Pri of the continuously variable transmission CVT and the hydraulic pressure supplied to the secondary pulley Sec using the line pressure supplied via the hydraulic control circuit 100 as a source pressure. Done.
  • the surplus pressure generated when the hydraulic pressure supplied from the line pressure to the primary pulley Pri and the hydraulic pressure supplied to the secondary pulley Sec is generated is used for cooling and lubrication of the first clutch CL1 and the second clutch CL2.
  • the clutch controller 12 includes a second clutch input rotational speed (detected by the motor rotational speed sensor 23), a second clutch output rotational speed (detected by the second clutch output rotational speed sensor 25), a clutch oil temperature (operating oil temperature sensor 26). Detected by). Further, the clutch controller 12 performs first clutch control and second clutch control so as to achieve the first clutch control command and the second clutch control command from the integrated controller 10.
  • the first clutch control is performed by controlling the hydraulic pressure supplied to the first clutch CL1 using the line pressure supplied via the hydraulic control circuit 100 as a source pressure.
  • the second clutch control is performed by controlling the hydraulic pressure supplied to the second clutch CL2 using the line pressure supplied via the hydraulic control circuit 100 as a source pressure. The excess pressure generated when the hydraulic pressure supplied from the line pressure to the first clutch CL1 and the hydraulic pressure supplied to the second clutch CL2 is generated is used for cooling and lubrication of the first clutch CL1 and the second clutch CL2. Turned.
  • a circuit for supplying a control hydraulic pressure using the line pressure PL as a source pressure to the primary pulley Pri, the secondary pulley Sec, and the second clutch CL2 of the continuously variable transmission CVT is referred to herein as a “transmission mechanism hydraulic system Sup”.
  • a circuit for cooling and lubricating the second clutch CL2 is referred to herein as a “transmission mechanism cooling / lubricating system Lub”.
  • the engine controller 13 inputs the engine speed (detected by the engine speed sensor 27) and performs engine torque control so as to achieve an engine torque command value corresponding to the target engine torque from the integrated controller 10.
  • the motor controller 14 controls the motor / generator MG so as to achieve a motor torque command value and a motor rotation speed command value corresponding to the target motor torque from the integrated controller 10.
  • the battery controller 15 manages the state of charge of the battery BAT and transmits the information to the integrated controller 10. Note that the state of charge of the battery BAT is calculated based on the power supply voltage detected by the battery voltage sensor 15a and the battery temperature detected by the battery temperature sensor 15b.
  • FIG. 2 is a hydraulic circuit diagram illustrating a hydraulic control circuit included in the hybrid vehicle according to the first embodiment. The detailed configuration of the hydraulic control circuit according to the first embodiment will be described below with reference to FIG.
  • the hydraulic control circuit 100 regulates the discharge pressure of a hydraulic pressure supply source OIL composed of a mechanical oil pump O / P and an electric oil pump M / O / P to a line pressure PL, and supplies the line pressure PL to a hydraulic system Sup for a transmission mechanism. Further, in the hydraulic control circuit 100, surplus pressure generated when hydraulic fluid is supplied to the transmission mechanism hydraulic system Sup is supplied to the cooling / lubricating system Lub of the transmission mechanism. Further, in the hydraulic control circuit 100, by switching the switching valve 106, the hydraulic oil discharged from the electric oil pump M / O / P is directly supplied to the cooling / lubricating system Lub of the transmission mechanism. That is, as shown in FIG.
  • the hydraulic control circuit 100 includes a mechanical oil pump O / P, an electric oil pump M / O / P, a line pressure control valve 101, and a first hydraulic supply oil.
  • a passage 102, a second hydraulic supply oil passage 103, a cooling system oil passage 104, an electric oil pump discharge oil passage 105, and a switching valve 106 are provided.
  • the first hydraulic supply oil passage 102 is connected to the discharge port 110a, and the suction circuit 108 is connected to the suction port 110b.
  • the tip of the suction circuit 108 is inserted into the strainer 107.
  • the mechanical oil pump O / P operates when the motor / generator MG is driven to rotate, sucks the hydraulic oil stored in the strainer 107 via the suction circuit 108, and enters the first hydraulic supply oil passage 102. Discharge hydraulic fluid. The discharge pressure at this time depends on the rotation speed of the motor / generator MG.
  • the electric oil pump M / O / P has an electric oil pump discharge oil passage 105 connected to the discharge port 111a and a suction circuit 108 connected to the suction port 111b. The tip of the suction circuit 108 is inserted into the strainer 107.
  • the electric oil pump M / O / P operates when the sub motor S / M rotates, sucks in the hydraulic oil stored in the strainer 107 via the suction circuit 108, and supplies the electric oil pump discharge oil path 105. And discharge hydraulic oil. The discharge pressure at this time depends on the rotation speed of the sub motor S / M.
  • the line pressure control valve 101 uses the discharge pressure of the hydraulic supply source OIL (the discharge pressure of the mechanical oil pump O / P and / or the discharge pressure of the electric oil pump M / O / P) as a source pressure for the transmission mechanism.
  • This is a pressure regulating valve that regulates the line pressure PL supplied to the hydraulic system Sup. That is, the line pressure control valve 101 has a line pressure circuit connected to the input port 101a to the first hydraulic supply oil passage 102 and the second hydraulic supply oil passage 103, and to the output port 101b to the transmission mechanism hydraulic system Sup. 101c is connected.
  • the spool In the line pressure control valve 101, the spool is moved in accordance with an instruction value from the integrated controller 10, and hydraulic fluid supplied from the first hydraulic supply oil passage 102 and / or the second hydraulic supply oil passage 103 is drained (not shown).
  • Line pressure PL is regulated by letting it escape to the circuit.
  • the line pressure circuit 101c is provided with a pressure regulating valve 101d so that the excess pressure obtained by subtracting the hydraulic pressure required for the transmission hydraulic system Sup from the line pressure PL is released to the cooling / lubricating system Lub of the transmission mechanism. It has become.
  • the first hydraulic supply oil passage 102 has one end connected to the discharge port 110a of the mechanical oil pump O / P and the other end connected to the input port 101a of the line pressure control valve 101.
  • the first hydraulic supply oil passage 102 supplies the hydraulic oil discharged from the mechanical oil pump O / P to the input port 101 a of the line pressure control valve 101.
  • a first check valve 102 a is provided at an intermediate portion of the first hydraulic supply oil passage 102.
  • the first check valve 102a is a valve that prevents hydraulic fluid from flowing from the line pressure control valve 101 side to the mechanical oil pump O / P side.
  • the second hydraulic pressure supply oil passage 103 has one end connected to the hydraulic pressure supply side port 106 a of the switching valve 106 and the other end connected to the input port 101 a of the line pressure control valve 101.
  • the second hydraulic supply oil passage 103 supplies the hydraulic oil discharged from the electric oil pump M / O / P to the input port 101 a of the line pressure control valve 101.
  • a second check valve 103 a is provided at an intermediate portion of the second hydraulic supply oil passage 103.
  • the second check valve 103a is a valve that prevents hydraulic fluid from flowing from the line pressure control valve 101 side to the electric oil pump M / O / P side.
  • the cooling system oil passage 104 supplies hydraulic oil discharged from the electric oil pump M / O / P to the cooling / lubricating system Lub of the transmission mechanism.
  • the hydraulic fluid used in the cooling / lubricating system Lub of the transmission mechanism is collected by the strainer 107 via the drain circuit 109.
  • the electric oil pump discharge oil passage 105 has one end connected to the discharge port 110 a of the electric oil pump M / O / P and the other end connected to the input port 106 c of the switching valve 106.
  • the electric oil pump discharge oil passage 105 supplies the hydraulic oil discharged from the electric oil pump M / O / P to the second hydraulic supply oil passage 103 or the cooling system oil passage 104 via the switching valve 106.
  • the electric oil pump discharge oil passage 105 is provided with a pressure sensor 28 for detecting the discharge pressure of the electric oil pump M / O / P and a pressure leak valve 105a. When the discharge pressure of the electric oil pump M / O / P monitored by the pressure sensor 28 reaches a predetermined upper limit pressure, the pressure leak valve 105a is opened so that the pressure in the electric oil pump discharge oil passage 105 is released. It has become.
  • the switching valve 106 is provided in the electric oil pump discharge oil passage 105, and the electric oil pump discharge oil passage 105 is connected to the second hydraulic supply oil passage 103 and the cooling system oil passage 104 based on a switching command from the integrated controller 10. And connect to either one.
  • the switching valve 106 is a switching valve in which the communication destination of the input port 106c is switched by an on / off solenoid.
  • the path 105 is connected to the second hydraulic supply oil path 103. Further, when the input port 106 c of the switching valve 106 is communicated with the cooling side port 106 b, the electric oil pump discharge oil passage 105 is connected to the cooling system oil passage 104.
  • the transmission mechanism hydraulic system Sup includes a transmission pressure regulating valve 112a provided in the line pressure circuit 101c and a second clutch pressure regulating valve 112b provided in the line pressure circuit 101c.
  • the transmission pressure regulating valve 112a regulates the hydraulic pressure supplied to the primary pulley Pri and the secondary pulley Sec using the line pressure PL as the original pressure, and supplies the hydraulic pressure to the primary pulley Pri and the secondary pulley Sec. .
  • the hydraulic pressure supplied to the forward clutch FC and the reverse brake RB is adjusted by the second clutch pressure adjusting valve 112b with the line pressure PL as the original pressure, and the hydraulic pressure is supplied to the forward clutch FC and the reverse brake RB.
  • FIG. 3 is a flowchart showing a flow of the switching valve hydraulic pressure supply ⁇ cooling / lubrication switching process executed in the first embodiment.
  • the hydraulic pressure supply ⁇ cooling / lubrication switching processing configuration of the first embodiment will be described with reference to FIG.
  • the “cooling threshold” is an upper limit temperature at which the second clutch CL2 does not break or malfunction.
  • the second clutch CL2 may be damaged, etc., so that the flow rate of the hydraulic oil flowing through the cooling / lubricating system Lub of the transmission mechanism is increased. Occurs.
  • the temperature of the second clutch CL2 is detected by the clutch temperature sensor 24.
  • step S3 following the determination that CL2 temperature ⁇ cooling threshold value in step S2, it is necessary to increase the flow rate of the hydraulic oil flowing through the cooling / lubricating system Lub of the transmission mechanism due to the occurrence of the “cooling request”.
  • the second clutch CL2 is slip-engaged and discharged from the mechanical oil pump O / P on the assumption that a command for switching the switching valve 106 to the cooling side and supplying hydraulic pressure to the cooling / lubricating system Lub of the transmission mechanism is output.
  • the flow rate of the hydraulic oil (the amount of oil discharged from the mechanical oil pump O / P) is increased, and the process proceeds to step S4.
  • the hydraulic pressure supplied to the second clutch CL2 (the forward clutch FC or the reverse brake RB) is reduced by the transmission pressure regulating valve 112a.
  • “increasing the amount of oil discharged from the mechanical oil pump O / P” means that the rotational speed of the motor / generator MG exceeds the rotational speed determined according to the required driving force calculated from the accelerator opening and the vehicle speed. Increase the rotational speed of the mechanical oil pump O / P. That is, in this step S3, the flow rate of the hydraulic oil discharged from the mechanical oil pump O / P is increased at a speed equal to or higher than the increasing speed determined according to the required driving force. Note that since the second clutch CL2 is slip-engaged, even if the rotational speed of the motor / generator MG is increased beyond the rotational speed determined according to the required driving force, the left and right drive wheels LT, RT are not affected.
  • the “switchable oil amount” is an oil amount that can prevent deterioration of power consumption due to a wasteful oil amount while ensuring the line pressure PL.
  • step S5 following the determination that total oil amount ⁇ switchable oil amount in step S4, assuming that the switchable oil amount is secured by the total oil amount, the operating oil discharged from the electric oil pump M / O / P
  • the flow rate (the amount of oil discharged from the electric oil pump M / O / P) is reduced, and the process proceeds to step S6.
  • the rotation speed of the sub-motor S / M is decreased and the rotation speed of the electric oil pump M / O / P is decreased.
  • the speed is equal to or higher than the reduction speed determined according to the required driving force, and the total oil amount of the discharge amount of the mechanical oil pump O / P and the discharge oil amount of the electric oil pump M / O / P is Reduce the discharge oil amount of the electric oil pump M / O / P at a speed that does not fall below the oil amount necessary to secure the line pressure PL.
  • the “first threshold value” is a “pressure adjustable oil amount” that can be adjusted by the line pressure control valve 101.
  • the “first threshold value” determines the rate of change in the amount of hydraulic oil supplied to the line pressure control valve 101 immediately after switching the switching valve 106 from the hydraulic pressure supply side to the cooling side, and the switching valve 106 is switched.
  • the undershoot amount (hydraulic pressure decrease amount) of the hydraulic pressure (line pressure PL) supplied to the transmission mechanism hydraulic system Sup is determined accordingly.
  • the line pressure control valve 101 has an input port 101a, an output port 101b, and a drain port 101e as shown in FIG. 4A. Then, the discharge pressure of the hydraulic pressure supply source OIL is supplied to the input port 101a, and the line pressure PL is adjusted by reducing the discharge pressure of the hydraulic pressure supply source OIL using the feedback pressure from the spring 101f and the line pressure circuit 101c. Press. At this time, an orifice 101h is provided at a midway position of the feedback circuit 101g branched from the line pressure circuit 101c to alleviate the change in the feedback pressure.
  • the switching valve 106 when the switching valve 106 is switched from the hydraulic pressure supply side to the cooling side, the discharge oil of the electric oil pump M / O / P does not flow through the second hydraulic pressure supply oil passage 103 and the hydraulic oil supplied to the line pressure control valve 101. The amount of oil is reduced.
  • the discharge oil amount of the electric oil pump M / O / P is reduced in advance before switching the switching valve 106 from the hydraulic pressure supply side to the cooling side, the line pressure control valve when the switching valve 106 is switched. The change in the amount of hydraulic oil supplied to 101 can be suppressed.
  • the line pressure PL is maintained at a hydraulic pressure that can prevent the slippage of the pulley belt V of the continuously variable transmission CVT by suppressing the undershoot of the line pressure PL by enabling proper pressure regulation with the line pressure control valve 101.
  • step S 7 following the determination that the electric oil pump discharge oil amount ⁇ the first threshold value in step S 6, the line pressure control valve 101 does not change even if the discharge oil amount of the electric oil pump M / O / P switches the switching valve 106.
  • the control valve 106 is switched from the hydraulic pressure supply side to the cooling side, and the electric oil pump discharge oil passage 105 is cooled, assuming that the pressure is reduced below the value that suppresses the undershoot of the line pressure PL. Connect to the system oil passage 104 and proceed to Step S8.
  • the hydraulic oil discharged from the electric oil pump M / O / P is supplied to the cooling / lubricating system Lub of the transmission mechanism.
  • the rotation speed of the sub motor S / M is increased and the rotation speed of the electric oil pump M / O / P is increased.
  • FIG. 5 is a flowchart showing the flow of the switching valve cooling / lubrication ⁇ hydraulic pressure supply switching process executed in the first embodiment.
  • the cooling / lubrication ⁇ hydraulic supply switching processing configuration of the first embodiment will be described with reference to FIG.
  • step S12 following the determination that the electric oil pump is ON and the switching valve is on the cooling side in step S11, it is determined whether or not the temperature of the second clutch CL2 is below a predetermined cooling threshold. If YES (CL2 temperature ⁇ cooling threshold), it is determined that cooling of the second clutch CL2 is not necessary, and the process proceeds to step S13. When NO (CL2 temperature ⁇ cooling threshold), cooling of the second clutch CL2 is necessary, and it is necessary to continue supplying hydraulic pressure from the electric oil pump M / O / P to the cooling / lubricating system Lub of the transmission mechanism. If there is, return to step S1.
  • step S13 following the determination of CL2 temperature ⁇ cooling threshold in step S12, it is assumed that there is no “cooling request” that increases the flow rate of hydraulic oil flowing through the cooling / lubricating system Lub of the transmission mechanism.
  • the flow rate of hydraulic oil discharged from M / O / P (the amount of oil discharged from the electric oil pump M / O / P) is reduced, and the process proceeds to step S14.
  • the hydraulic oil supply request is not generated and “no hydraulic oil supply request” is set. If the discharge oil amount of the mechanical oil pump O / P is equal to or less than the oil supply requirement oil amount, the oil supply request is generated and “hydraulic supply request is present”.
  • step S15 following the determination that there is a hydraulic pressure supply request in step S14, it is determined whether or not the amount of oil discharged from the electric oil pump M / O / P is equal to or less than a predetermined second threshold value. If YES (electric oil pump discharge oil amount ⁇ second threshold value), the process proceeds to step S16. If NO (electric oil pump discharge oil amount> second threshold value), the process returns to step S13.
  • the “second threshold value” is a “pressure adjustable oil amount” that can be adjusted by the line pressure control valve 101.
  • the “second threshold value” determines the rate of change in the amount of hydraulic oil supplied to the line pressure control valve 101 immediately after the switching valve 106 is switched from the cooling side to the hydraulic pressure supply side, and the switching valve 106 is switched.
  • the overshoot amount (hydraulic pressure increase amount) of the hydraulic pressure (line pressure PL) supplied to the transmission mechanism hydraulic system Sup is determined accordingly.
  • the switching valve 106 when the switching valve 106 is switched from the cooling side to the hydraulic pressure supply side, the discharge oil of the electric oil pump M / O / P flows into the second hydraulic pressure supply oil passage 103 and the hydraulic oil supplied to the line pressure control valve 101 Increases oil volume.
  • the discharge oil amount of the electric oil pump M / O / P is reduced in advance before switching the switching valve 106 from the cooling side to the hydraulic pressure supply side, the line pressure control valve when the switching valve 106 is switched. The change in the amount of hydraulic oil supplied to 101 can be suppressed.
  • the following is a value that allows the line pressure control valve 101 to perform proper pressure regulation, suppresses overshoot of the line pressure PL, and maintains the line pressure PL at a hydraulic pressure that can avoid a shock of the continuously variable transmission CVT.
  • step S16 following the determination that the electric oil pump discharge oil amount ⁇ the second threshold value in step S15, the line pressure control valve 101 does not change even if the discharge oil amount of the electric oil pump M / O / P switches the switching valve 106. Therefore, the control valve 106 is switched from the cooling side to the hydraulic pressure supply side, and the electric oil pump discharge oil passage 105 is changed to the first level. 2. Connect to the hydraulic pressure supply oil passage 103 and proceed to Step S17. As a result, the hydraulic oil discharged from the electric oil pump M / O / P is supplied to the transmission mechanism hydraulic system Sup.
  • NO electric oil pump discharge oil amount ⁇ hydraulic supply required oil amount
  • the stop of the electric oil pump M / O / P is determined when the number of rotations of the sub motor S / M is equal to or less than a predetermined value at which it can be determined that the motor has stopped.
  • FIG. 6A is an explanatory diagram showing the operation of the switching valve and the flow of hydraulic oil when the switching valve is switched to the hydraulic pressure supply side
  • FIG. 6B is a diagram when the switching valve is switched to the cooling side. It is explanatory drawing which shows the operation
  • FIG. 6A and FIG. 6B the electric oil pump flow path switching effect
  • the hydraulic control circuit 100 includes a mechanical oil pump O / P operated by a motor / generator MG and an electric oil pump M / O / operated by a sub motor S / M different from the motor / generator MG. P and.
  • the electric oil pump discharge oil passage 105 connected to the discharge port 111a of the electric oil pump M / O / P is connected to the second hydraulic supply oil passage connected to the input port 101a of the line pressure control valve 101 by the switching valve 106. 103 and a cooling system oil passage 104 connected to the cooling / lubricating system Lub of the speed change mechanism.
  • the hydraulic control circuit 100 has the switching valve 106, the connection destination of the electric oil pump discharge oil passage 105 can be switched, and the transmission mechanism hydraulic pressure when the mechanical oil pump O / P is stopped.
  • the hydraulic pressure supply to the system Sup and the cooling function of the second clutch CL2 can be achieved by one electric oil pump M / O / P.
  • FIG. 7A shows the characteristics of accelerator opening, vehicle speed, CL2 temperature (second clutch temperature), cooling flag, and hydraulic pressure supply flag when the switching valve is switched from the hydraulic pressure supply side to the cooling side in the control device of the first embodiment. It is a time chart which shows.
  • FIG. 7B shows the mechanical oil pump rotation speed, the hydraulic system supply oil amount for the transmission mechanism, the electric oil pump discharge oil amount, the mechanical type when the switching valve is switched from the hydraulic pressure supply side to the cooling side in the control device of the first embodiment. It is a time chart which shows each characteristic of an oil pump discharge oil amount and a switching valve state.
  • the hydraulic pressure supply ⁇ cooling / lubrication switching operation of the first embodiment will be described with reference to FIGS. 7A and 7B.
  • the amount of oil discharged from the mechanical oil pump O / P is less than the amount of oil required to supply hydraulic pressure, and a hydraulic supply request to supply hydraulic pressure from the electric oil pump M / O / P to the hydraulic system Sup for the transmission mechanism is generated.
  • the hydraulic supply flag is turned on.
  • the sub-motor S / M is driven to operate the electric oil pump M / O / P, and the switching valve 106 is switched to the hydraulic pressure supply side so that the electric oil pump discharge oil passage 105 is set to the second hydraulic supply oil. Connect to path 103. For this reason, the hydraulic oil discharged from the electric oil pump M / O / P flows into the second hydraulic pressure supply oil passage 103 and is supplied to the line pressure control valve 101 to ensure the line pressure PL.
  • the rotational speed of the motor / generator MG increases as the vehicle speed increases, the rotational speed of the mechanical oil pump O / P also increases. For this reason, the amount of oil discharged from the mechanical oil pump O / P increases in proportion to the increase in vehicle speed.
  • the discharge oil amount of the electric oil pump M / O / P is decreased as the discharge oil amount of the mechanical oil pump O / P increases, and the discharge oil amount of the mechanical oil pump O / P Control is performed so that the amount of oil supplied to the hydraulic system Sup for the speed change mechanism, which is the total amount of oil discharged from the electric oil pump M / O / P, maintains the amount of oil required for hydraulic supply.
  • the temperature gradually of the second clutch CL2 in accordance with the transmitting power from the motor / generator MG is increased, at time t 1 the time, after the second clutch temperature reaches the cooling threshold, the electric oil pump M / O
  • a cooling request to supply hydraulic pressure directly from the / P to the cooling / lubricating system Lub of the transmission mechanism is generated, and the cooling flag is turned ON.
  • the process proceeds from step S1 to step S2 to step S3, the second clutch CL2 is slip-engaged, and the flow rate of the hydraulic oil discharged from the mechanical oil pump O / P is requested to drive. Raise at a speed higher than the speed determined by the force.
  • the amount of oil discharged from the mechanical oil pump O / P increases rapidly.
  • the amount of oil discharged from the electric oil pump M / O / P is reduced at a speed that assumes that the amount of oil discharged from the mechanical oil pump is increasing at an increasing speed determined according to the required driving force. . Therefore, the amount of oil supplied to the transmission mechanism hydraulic system Sup is greater than the amount of oil required for hydraulic supply.
  • step S4 the process proceeds from step S4 to step S5, and the flow rate of the hydraulic oil discharged from the electric oil pump M / O / P is higher than the decrease speed determined according to the required driving force.
  • the total oil amount is reduced at a speed that is equal to or less than the switchable oil amount and does not fall below the oil pressure required oil amount.
  • the discharge oil amount of the electric oil pump M / O / P is reduced at a speed at which the total oil amount maintains the switchable oil amount.
  • step S6 the time, when the discharge oil amount of the electric oil pump M / O / P reaches the first threshold value, the process proceeds to step S6 ⁇ step S7, the switching valve 106 and the switching control on the cooling side, the electric oil pump
  • the discharge oil passage 105 is connected to the cooling system oil passage 104.
  • the hydraulic oil discharged from the electric oil pump M / O / P is directly supplied to the cooling / lubricating system Lub of the transmission mechanism via the cooling system oil passage 104, and is supplied to the cooling / lubricating system Lub of the transmission mechanism.
  • the amount of flowing lubricating oil can be increased, and the second clutch CL2 can be quickly cooled.
  • the flow rate of the hydraulic oil supplied to the transmission mechanism hydraulic system Sup via the line pressure control valve 101 is such that the amount of oil discharged from the mechanical oil pump O / P and the electric oil are changed by the switching valve 106 being switched. From the total amount of oil discharged from the pump M / O / P, only the amount discharged from the mechanical oil pump O / P is used. At this time, since the discharge oil amount of the electric oil pump M / O / P has been reduced to the first threshold value before switching the switching valve 106, it is supplied to the line pressure control valve 101 as the switching valve 106 is switched. Even if the hydraulic oil is reduced, the oil amount changing speed at this time can be suppressed to a predetermined value ⁇ or less.
  • step S8 by increasing the discharge oil amount of the electric oil pump M / O / P proceeds to step S8, at time t 5 the time, when the electric oil pump discharge oil amount reaches the cooling oil required amount, to step S9 ⁇ End Then, the discharge oil amount of the electric oil pump M / O / P is maintained at an amount necessary for cooling, and the hydraulic pressure supply ⁇ cooling / lubrication switching process is ended.
  • the discharge oil amount of the mechanical oil pump O / P and the discharge oil amount of the electric oil pump M / O / P When the total oil amount reaches the switchable oil amount, the discharge oil amount of the electric oil pump M / O / P is reduced to the first threshold value that is the adjustable oil amount that can be adjusted by the line pressure control valve 101. Then, the switching valve 106 is switched to the cooling side. That is, when switching control is performed by the switching valve 106 to switch the connection destination of the electric oil pump discharge oil passage 105 to the cooling system oil passage 104, the required oil supply amount is ensured by the total oil amount and the electric oil pump discharge is performed. The oil amount is decreased until the oil amount becomes the first threshold value or less.
  • the discharge oil amount of the mechanical oil pump O / P and the electric oil Control is performed so that the total amount of oil discharged from the pump M / O / P is equal to or less than the switchable amount of oil, and does not fall below the amount of oil required for hydraulic supply. Therefore, it is possible to secure the line pressure PL and prevent the pulley belt V from slipping, suppress excessive driving of the sub motor S / M due to wasteful flow of hydraulic oil, and prevent power consumption deterioration.
  • the amount of oil discharged from the electric oil pump M / O / P is reduced while the amount of oil discharged from the mechanical oil pump O / P is reduced as the switching valve 106 is switched to the cooling side.
  • the second clutch CL2 is slip-engaged while the required amount of hydraulic pressure supply is secured by the total oil amount. That is, in the first embodiment, in order to reduce the amount of oil discharged from the electric oil pump while securing the required oil supply amount by the total oil amount, the rotational speed of the motor / generator MG is equal to or higher than the rotational speed determined according to the required driving force Need to be raised. However, at this time, the second clutch CL2 is slip-engaged so that the left and right drive wheels LT and RT are not affected, and the driver does not feel a shock or discomfort.
  • FIG. 8A shows the characteristics of accelerator opening, vehicle speed, CL2 temperature (second clutch temperature), cooling flag, and hydraulic pressure supply flag when the switching valve is switched from the cooling side to the hydraulic pressure supply side in the control device of the first embodiment. It is a time chart which shows.
  • FIG. 8B shows the mechanical oil pump rotation speed, the hydraulic system supply oil amount for the transmission mechanism, the electric oil pump discharge oil amount, the mechanical type when the switching valve is switched from the cooling side to the hydraulic pressure supply side in the control device of the first embodiment. It is a time chart which shows each characteristic of an oil pump discharge oil amount and a switching valve state.
  • step S11 the rotational speed of the mechanical oil pump O / P is relatively high, as can be ensured this mechanical oil pump O / P line pressure PL only by discharge oil amount of the hydraulic supply request is generated Not. Therefore, the process proceeds from step S14 to step S19, and it is determined whether or not the electric oil pump M / O / P is stopped. Then, at the time t 11 time, since the electric oil pump M / O / P is operating, the process returns to step S13, while reducing the amount of oil discharged electric oil pump M / O / P, the cooling of the transmission mechanism / Hydraulic supply to lubrication system Lub is continued.
  • step S14 the time, when the supply amount of oil to the speed change mechanism hydraulic system Sup had financed only by discharge oil amount of the mechanical oil pump O / P is less than the hydraulic pressure supply request oil amount, that is, the electric oil pump
  • the hydraulic pressure supply flag is turned ON.
  • the process proceeds from step S14 to step S15, and it is determined whether or not the amount of oil discharged from the electric oil pump M / O / P has fallen below a predetermined second threshold value.
  • step S15 the time, when the flow rate of hydraulic oil discharged from the electric oil pump M / O / P reaches the second threshold value, the process proceeds to step S15 ⁇ step S16, the switching control by the switching valve 106 to the hydraulic supply side Then, the electric oil pump discharge oil passage 105 is connected to the second hydraulic supply oil passage 103.
  • the hydraulic oil discharged from the electric oil pump M / O / P flows through the second hydraulic pressure supply oil passage 103 and is supplied to the line pressure control valve 101, and for the speed change mechanism via the line pressure control valve 101.
  • the amount of oil supplied to the hydraulic system Sup increases, and the line pressure PL can be secured.
  • the flow rate of the hydraulic oil supplied to the transmission mechanism hydraulic system Sup via the line pressure control valve 101 is only the discharge oil amount of the mechanical oil pump O / P because the switching valve 106 is switched. This is the total amount of oil discharged from the mechanical oil pump O / P and the amount discharged from the electric oil pump M / O / P.
  • the discharge oil amount of the electric oil pump M / O / P is reduced to the second threshold value in advance, so that it is supplied to the line pressure control valve 101 as the switching valve 106 is switched. Even if the amount of the hydraulic oil being increased increases, the oil amount changing speed at this time can be suppressed to a predetermined value ⁇ or less.
  • the feedback delay of the orifice 101h in the line pressure control valve 101 does not occur, and proper pressure regulation in the line pressure control valve 101 can be achieved.
  • step S17 After then, increased discharge oil amount of the electric oil pump M / O / P proceeds to step S17, at time t 14 the time, the electric oil pump discharge oil amount reaches the hydraulic supply oil required amount, step S18 ⁇ Proceeding to the end, the discharge oil amount of the electric oil pump M / O / P is maintained at an amount necessary to secure the line pressure PL, and the cooling / lubrication ⁇ hydraulic supply switching process is terminated.
  • the switching valve 106 is switched to the hydraulic pressure supply side. That is, when the switching control is performed by the switching valve 106 to switch the connection destination of the electric oil pump discharge oil passage 105 to the second hydraulic supply oil passage 103, the electric oil pump discharge oil amount is decreased until it becomes equal to or less than the second threshold value. .
  • the line pressure control valve 101 can control the pressure to be less than a predetermined value ⁇ , and can prevent an overshoot of the line pressure PL that causes the ratio of the continuously variable transmission CVT to fluctuate and generate a shock. Can be suppressed.
  • the second clutch temperature exceeds the cooling threshold, it is not determined whether or not the hydraulic pressure supply request is generated. That is, in order to switch the switching valve 106 from the cooling side to the hydraulic pressure supply side, the second clutch CL2 needs to be at a temperature equal to or lower than the cooling threshold. Therefore, the electric oil pump discharge oil passage 105 is connected to the second hydraulic supply oil passage 103 when a hydraulic supply request occurs and a cooling request does not occur. As a result, the hydraulic pressure supply to the cooling / lubricating system Lub of the transmission mechanism can surely be given priority over the hydraulic supply to the transmission mechanism hydraulic system Sup, and the second clutch CL2 becomes hot and breaks. Can be prevented.
  • step S11 In the case where the second clutch temperature is equal to or lower than the cooling threshold and no hydraulic pressure supply request is generated, the process proceeds from step S11 to step S12 to step S13 to step S14 to step S19 in the flowchart shown in FIG. Oil pump M / O / P is stopped. Thereby, unnecessary driving of the sub motor S / M is suppressed, and deterioration of power consumption can be prevented.
  • circuit control means for controlling the discharge oil amount of the mechanical oil pump O / P, the discharge oil amount of the electric oil pump M / O / P, and the switching valve 106; Prepared,
  • the circuit control means connects the connection destination of the discharge oil passage (electric oil pump discharge oil passage 105) from the second hydraulic supply oil passage 103 to the cooling system oil passage 104 by the switching valve 106.
  • the configuration Thereby, in addition to the effect of (1), undershoot of the line pressure PL that leads to breakage of the continuously variable transmission CVT can be prevented at the time of switching from hydraulic pressure supply to cooling / lubrication.
  • a friction engagement element (second clutch CL2) capable of slip engagement is disposed between the travel drive source (motor / generator MG) and the drive wheels (left and right drive wheels LT, RT),
  • the circuit control means integrated controller 10. secures a required oil amount in the transmission mechanism hydraulic system Sup based on the total oil amount when switching the connection destination of the discharge oil passage (electric oil pump discharge oil passage 105).
  • the frictional engagement element (second clutch CL2) is slip-engaged.
  • the required oil supply amount is ensured by the total amount of oil discharged from the mechanical oil pump O / P and the amount discharged from the electric oil pump M / O / P.
  • the amount of oil discharged from the electric oil pump is reduced, it is possible to prevent the driver from feeling shocked or uncomfortable.
  • circuit control means for controlling the discharge oil amount of the mechanical oil pump O / P, the discharge oil amount of the electric oil pump M / O / P, and the switching valve 106; Prepared,
  • the circuit control means connects the connection destination of the discharge oil passage (electric oil pump discharge oil passage 105) from the cooling system oil passage 104 to the second hydraulic supply oil passage 103 by the switching valve 106.
  • the discharge oil amount of the electric oil pump M / O / P is reduced to a pressure adjustable oil amount (second threshold value) that can be adjusted by the line pressure control valve 101.
  • circuit control means for controlling the discharge oil amount of the mechanical oil pump O / P, the discharge oil amount of the electric oil pump M / O / P, and the switching valve 106; Prepared,
  • the circuit control means causes the switching valve 106 to discharge the discharged oil when a cooling request for supplying hydraulic pressure from the electric oil pump M / O / P to the cooling / lubricating system Lub of the transmission mechanism occurs.
  • the passage (electric oil pump discharge oil passage 105) is connected to the cooling system oil passage 104.
  • the circuit control means (integrated controller 10) generates a hydraulic pressure supply request for supplying hydraulic pressure from the electric oil pump M / O / P to the transmission mechanism hydraulic system Sup, and the cooling request is generated. If not, the switching valve 106 connects the discharge circuit (electric oil pump discharge oil passage 105) to the second hydraulic supply oil passage 103.
  • the discharge circuit electric oil pump discharge oil passage 105
  • the vehicle hydraulic control apparatus of the present invention is applied to a hybrid vehicle having an engine Eng and a motor / generator MG.
  • the present invention is not limited to this.
  • the present invention can also be applied to an electric vehicle equipped only with a motor / generator MG, an engine vehicle equipped only with an engine Eng that stops idling, a plug-in hybrid vehicle, a fuel cell vehicle, and the like.
  • the travel drive source is the motor / generator MG
  • the frictional engagement element disposed between the travel drive source and the drive wheels is the second clutch CL2.
  • the present invention is not limited to this.
  • the travel drive source for operating the mechanical oil pump may be the engine Eng
  • the frictional engagement element disposed between the travel drive source and the drive wheels may be the first clutch CL1.
  • a circuit for supplying the control mechanism hydraulic pressure Sup to the primary pulley Pri, the secondary pulley Sec, and the second clutch CL2 of the continuously variable transmission CVT by using the transmission mechanism hydraulic system Sup as a source pressure may be included.
  • the “transmission mechanism hydraulic system” is a circuit in which hydraulic pressure is supplied via a control valve unit provided in the transmission.
  • the speed change mechanism is not limited to the continuously variable transmission CVT, and may include a stepped automatic transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

The purpose of the present invention is to provide a vehicle hydraulic control device designed to achieve both oil pressure supply to the gear change mechanism and cooling of the gear change mechanism when the mechanical oil pump is stopped while being able to improve ease of installation on a vehicle and cost reduction. The vehicle hydraulic control device is provided with: a first oil pressure supply oil path (102) for supplying oil discharged from a mechanical oil pump (O/P), which is operated by a motor/generator (MG), to a line pressure control valve (101); a second oil pressure supply oil path (103) for supplying oil discharged from an electric oil pump (M/O/P), which is operated by a submotor (S/M), to the line pressure control valve (101); a cooling system oil path (104) for supplying oil discharged from the electric oil pump (M/O/P) to a cooling/lubrication system (Lub) of a gear change mechanism; and a switching valve (106) for connecting an electric oil pump discharge oil path (105) to either the second oil pressure supply oil path (103) or the cooling system oil path (104).

Description

車両用油圧制御装置Hydraulic control device for vehicle
 本発明は、走行駆動源によって作動される機械式オイルポンプと、電動モータによって作動される電動オイルポンプと、を備えた車両用油圧制御装置に関する発明である。 The present invention relates to a vehicle hydraulic control device including a mechanical oil pump operated by a traveling drive source and an electric oil pump operated by an electric motor.
 従来、走行駆動源の停止に伴って、この走行駆動源によって作動される機械式オイルポンプが停止することで、変速機構用油圧系への油圧の供給が停止してしまうことを回避するため、走行駆動源とは別の電動モータによって作動される電動オイルポンプを備えた車両用油圧制御装置が知られている(例えば、特許文献1参照)。 Conventionally, in order to avoid stopping the supply of hydraulic pressure to the hydraulic system for the speed change mechanism by stopping the mechanical oil pump operated by the travel drive source along with the stop of the travel drive source, 2. Description of the Related Art A vehicle hydraulic control device that includes an electric oil pump that is operated by an electric motor different from a travel drive source is known (see, for example, Patent Document 1).
特開平10-324177号公報Japanese Patent Laid-Open No. 10-324177
 ところで、従来の車両用油圧制御装置にあっては、電動オイルポンプから吐出された作動油は変速機構用油圧系へ供給される。つまり、この電動オイルポンプから吐出された作動油が、変速機構の冷却/潤滑系に直接流れることはない。
 そのため、例えば登坂発進やアクセル全開発進等、変速機構のクラッチが発熱するようなシーンでクラッチ冷却を行うためには、機械式オイルポンプに代わって油圧供給を行う電動オイルポンプとは別に、変速機構の冷却/潤滑系へ油圧供給を直接行う第2の電動オイルポンプを設けることが考えられる。
 しかしながら、この場合では、油圧供給用と冷却/潤滑用との二つの電動オイルポンプを設けることになり、電動オイルポンプの車載性能が低下したり、コストが増大したりする問題が発生する。
By the way, in the conventional vehicle hydraulic control device, the hydraulic oil discharged from the electric oil pump is supplied to the transmission mechanism hydraulic system. That is, the hydraulic oil discharged from the electric oil pump does not flow directly to the cooling / lubricating system of the transmission mechanism.
For this reason, in order to perform clutch cooling in a scene where the clutch of the transmission mechanism generates heat, such as starting uphill or advancing the accelerator, for example, the transmission mechanism is separate from the electric oil pump that supplies hydraulic pressure instead of the mechanical oil pump. It is conceivable to provide a second electric oil pump that directly supplies hydraulic pressure to the cooling / lubricating system.
However, in this case, two electric oil pumps for supplying hydraulic pressure and cooling / lubricating are provided, which causes problems that the on-vehicle performance of the electric oil pump is reduced and the cost is increased.
 本発明は、上記問題に着目してなされたもので、機械式オイルポンプ停止時の変速機構の油圧確保と変速機構の冷却機能の両立を図りつつ、車載性の向上やコスト低減を図ることができる車両用油圧制御装置を提供することを目的とする。 The present invention has been made paying attention to the above-mentioned problem, and it is possible to improve the on-board performance and reduce the cost while ensuring both the oil pressure of the transmission mechanism and the cooling function of the transmission mechanism when the mechanical oil pump is stopped. An object of the present invention is to provide a vehicular hydraulic control device.
 上記目的を達成するため、本発明の車両用油圧制御装置は、機械式オイルポンプと、電動オイルポンプと、ライン圧制御弁と、第1油圧供給油路と、第2油圧供給油路と、冷却系油路と、切替弁と、を備えている。
 前記機械式オイルポンプは、走行駆動源によって作動されるオイルポンプである。
 前記電動オイルポンプは、走行駆動源とは別の電動モータによって作動されるオイルポンプである。
 前記ライン圧制御弁は、変速機構用油圧系へ供給するライン圧を調圧する。
 前記第1油圧供給油路は、機械式オイルポンプから吐出された作動油を、ライン圧制御弁の入力ポートへ供給する。
 前記第2油圧供給油路は、電動オイルポンプから吐出された作動油を、ライン圧制御弁の入力ポートへ供給する。
 前記冷却系油路は、電動オイルポンプから吐出された作動油を、変速機構の冷却/潤滑系へ供給する。
 前記切替弁は、電動オイルポンプの吐出油路に設けられ、この吐出油路を、第2油圧供給油路と冷却系油路とのいずれか一方に接続する。
To achieve the above object, a vehicle hydraulic control apparatus according to the present invention includes a mechanical oil pump, an electric oil pump, a line pressure control valve, a first hydraulic supply oil path, a second hydraulic supply oil path, A cooling system oil passage and a switching valve are provided.
The mechanical oil pump is an oil pump operated by a traveling drive source.
The electric oil pump is an oil pump that is operated by an electric motor different from the travel drive source.
The line pressure control valve regulates the line pressure supplied to the transmission mechanism hydraulic system.
The first hydraulic supply oil passage supplies hydraulic oil discharged from a mechanical oil pump to an input port of a line pressure control valve.
The second hydraulic supply oil passage supplies hydraulic oil discharged from the electric oil pump to an input port of the line pressure control valve.
The cooling system oil passage supplies hydraulic oil discharged from the electric oil pump to the cooling / lubricating system of the transmission mechanism.
The switching valve is provided in a discharge oil passage of the electric oil pump, and connects the discharge oil passage to one of the second hydraulic supply oil passage and the cooling system oil passage.
 よって、本発明の車両用油圧制御装置では、走行駆動源とは別の電動モータによって作動される電動オイルポンプの吐出油路を、切替弁を用いて、電動オイルポンプから吐出された作動油をライン圧制御弁の入力ポートへ供給する第2油圧供給油路と、電動オイルポンプから吐出された作動油を変速機構の冷却/潤滑系へ供給する冷却系油路と、のいずれか一方に接続することができる。
 そのため、走行駆動源の停止に伴って機械式オイルポンプが停止したことで、変速機構用油圧系への油圧供給要求が発生したときには、切替弁によって電動オイルポンプの吐出油路を第2油圧供給油路に接続する。これにより、電動オイルポンプから吐出された作動油が、ライン圧制御弁によってライン圧に調圧された上で変速機構用油圧系に供給され、変速機構用油圧系の必要油圧を確保することができる。
 一方、変速機構の冷却要求が発生したときには、切替弁によって電動オイルポンプの吐出油路を冷却系油路に接続する。これにより、電動オイルポンプから吐出された作動油が変速機構の冷却/潤滑系に直接供給され、この変速機構の冷却/潤滑系を流れる作動油の流量(油量)を増加させ、変速機構の冷却を速やかに行うことができる。
 すなわち、この機械式オイルポンプ停止時の変速機構の油圧確保と変速機構の冷却機能を、一つの電動オイルポンプと切替弁によって達成することができる。この結果、機械式オイルポンプ停止時の変速機構の油圧確保と変速機構の冷却機能の両立を図りつつ、車載性の向上やコスト低減を図ることができる。
Therefore, in the vehicle hydraulic control apparatus of the present invention, the discharge oil path of the electric oil pump operated by an electric motor different from the travel drive source is used to supply the hydraulic oil discharged from the electric oil pump using the switching valve. Connected to either the second hydraulic supply oil passage that supplies to the input port of the line pressure control valve or the cooling oil passage that supplies hydraulic oil discharged from the electric oil pump to the cooling / lubricating system of the transmission mechanism can do.
Therefore, when the hydraulic oil supply request to the transmission hydraulic system is generated because the mechanical oil pump is stopped along with the stop of the travel drive source, the switching oil is supplied to the discharge oil passage of the electric oil pump by the switching valve. Connect to the oil passage. As a result, the hydraulic oil discharged from the electric oil pump is regulated to the line pressure by the line pressure control valve and then supplied to the transmission mechanism hydraulic system, thereby ensuring the necessary hydraulic pressure of the transmission mechanism hydraulic system. it can.
On the other hand, when a cooling request for the transmission mechanism is generated, the discharge oil passage of the electric oil pump is connected to the cooling system oil passage by the switching valve. As a result, the hydraulic oil discharged from the electric oil pump is directly supplied to the cooling / lubricating system of the transmission mechanism, and the flow rate (oil amount) of the hydraulic oil flowing through the cooling / lubricating system of the transmission mechanism is increased. Cooling can be performed quickly.
That is, the oil pressure securing of the speed change mechanism and the cooling function of the speed change mechanism when the mechanical oil pump is stopped can be achieved by one electric oil pump and the switching valve. As a result, it is possible to improve the onboard performance and reduce the cost while ensuring both the oil pressure of the transmission mechanism when the mechanical oil pump is stopped and the cooling function of the transmission mechanism.
実施例1の油圧制御装置が適用されたハイブリッド車両を示す全体システム図である。1 is an overall system diagram illustrating a hybrid vehicle to which a hydraulic control device according to a first embodiment is applied. 実施例1のハイブリッド車両が有する油圧制御回路を示す油圧回路図である。FIG. 2 is a hydraulic circuit diagram illustrating a hydraulic control circuit included in the hybrid vehicle according to the first embodiment. 実施例1にて実行される切替弁の油圧供給→冷却/潤滑切り替え処理の流れを示すフローチャートである。6 is a flowchart illustrating a flow of a switching valve hydraulic pressure supply → cooling / lubrication switching process executed in the first embodiment. ライン圧制御弁の構成を示す説明図である。It is explanatory drawing which shows the structure of a line pressure control valve. ライン圧制御弁への供給油量変化速度に対する、目標ライン圧と実ライン圧との乖離量を示すマップである。It is a map which shows the deviation | shift amount of a target line pressure and an actual line pressure with respect to the supply oil amount change speed to a line pressure control valve. 実施例1にて実行される切替弁の冷却/潤滑→油圧供給切り替え処理の流れを示すフローチャートである。6 is a flowchart showing a flow of a switching valve cooling / lubrication → hydraulic supply switching process executed in the first embodiment. 切替弁が油圧供給側に切り替えられているときの切替弁の動作と、作動油の流れを示す説明図である。It is explanatory drawing which shows the operation | movement of a switching valve when the switching valve is switched to the hydraulic pressure supply side, and the flow of hydraulic fluid. 切替弁が冷却側に切り替えられているときの切替弁の動作と、作動油の流れを示す説明図である。It is explanatory drawing which shows the operation | movement of a switching valve when the switching valve is switched to the cooling side, and the flow of hydraulic fluid. 実施例1の油圧制御装置において、切替弁を油圧供給側から冷却側に切り替える際のアクセル開度・車速・CL2温度(第2クラッチ温度)・冷却フラグ・油圧供給フラグの各特性を示すタイムチャートである。In the hydraulic control apparatus according to the first embodiment, a time chart showing the characteristics of the accelerator opening, the vehicle speed, the CL2 temperature (second clutch temperature), the cooling flag, and the hydraulic pressure supply flag when the switching valve is switched from the hydraulic pressure supply side to the cooling side. It is. 実施例1の油圧制御装置において、切替弁を油圧供給側から冷却側に切り替える際の機械式オイルポンプ回転数・変速機構用油圧系供給油量・電動オイルポンプ吐出油量・機械式オイルポンプ吐出油量・切替弁状態の各特性を示すタイムチャートである。In the hydraulic control apparatus according to the first embodiment, the mechanical oil pump rotational speed, the hydraulic system supply oil amount for the transmission mechanism, the electric oil pump discharge oil amount, and the mechanical oil pump discharge when the switching valve is switched from the hydraulic supply side to the cooling side. It is a time chart which shows each characteristic of an oil quantity and a switching valve state. 実施例1の油圧制御装置において、切替弁を冷却側から油圧供給側に切り替える際のアクセル開度・車速・CL2温度(第2クラッチ温度)・冷却フラグ・油圧供給フラグの各特性を示すタイムチャートである。In the hydraulic control apparatus according to the first embodiment, the time chart showing the characteristics of the accelerator opening, the vehicle speed, the CL2 temperature (second clutch temperature), the cooling flag, and the hydraulic pressure supply flag when the switching valve is switched from the cooling side to the hydraulic pressure supply side. It is. 実施例1の油圧制御装置において、切替弁を冷却側から油圧供給側に切り替える際の機械式オイルポンプ回転数・変速機構用油圧系供給油量・電動オイルポンプ吐出油量・機械式オイルポンプ吐出油量・切替弁状態の各特性を示すタイムチャートである。In the hydraulic control apparatus according to the first embodiment, the mechanical oil pump rotational speed, the hydraulic system supply oil amount for the transmission mechanism, the electric oil pump discharge oil amount, and the mechanical oil pump discharge when the switching valve is switched from the cooling side to the hydraulic supply side It is a time chart which shows each characteristic of an oil quantity and a switching valve state.
 以下、本発明の車両用油圧制御装置を実施するための形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, a mode for carrying out the vehicle hydraulic control apparatus of the present invention will be described based on Example 1 shown in the drawings.
 (実施例1)
 まず、実施例1の車両用油圧制御装置の構成を、「ハイブリッド車両の全体システム構成」、「油圧制御回路の詳細構成」、「油圧供給→冷却/潤滑切り替え処理構成」、「冷却/潤滑→油圧供給切り替え処理構成」に分けて説明する。
(Example 1)
First, the configuration of the vehicle hydraulic control apparatus according to the first embodiment is described as “overall system configuration of hybrid vehicle”, “detailed configuration of hydraulic control circuit”, “hydraulic supply → cooling / lubrication switching processing configuration”, “cooling / lubrication → The description will be divided into “hydraulic supply switching processing configuration”.
 [ハイブリッド車両の全体システム構成]
 図1は、実施例1の制御装置が適用されたハイブリッド車両(車両の一例)を示す全体システム図である。以下、図1に基づいて、実施例1のハイブリッド車両の全体システム構成を説明する。
[Overall system configuration of hybrid vehicle]
FIG. 1 is an overall system diagram illustrating a hybrid vehicle (an example of a vehicle) to which the control device according to the first embodiment is applied. Hereinafter, the overall system configuration of the hybrid vehicle according to the first embodiment will be described with reference to FIG.
 実施例1の車両用油圧制御装置は、図1に示すハイブリッド車両に適用されている。このハイブリッド車両の駆動系は、エンジンEngと、第1クラッチCL1と、モータ/ジェネレータMGと、第2クラッチCL2と、無段変速機CVTと、ファイナルギヤFGと、左駆動輪LTと、右駆動輪RTと、を備えている。 The vehicle hydraulic control apparatus according to the first embodiment is applied to the hybrid vehicle shown in FIG. The drive system of this hybrid vehicle includes an engine Eng, a first clutch CL1, a motor / generator MG, a second clutch CL2, a continuously variable transmission CVT, a final gear FG, a left drive wheel LT, and a right drive. And a wheel RT.
 前記エンジンEngは、希薄燃焼可能な内燃機関であり、スロットルアクチュエータによる吸入空気量の制御と、インジェクタによる燃料噴射量の制御と、点火プラグによる点火時期の制御とにより、エンジントルクが指令値と一致するように制御される。 The engine Eng is a lean burnable internal combustion engine, and the engine torque matches the command value by controlling the intake air amount by the throttle actuator, controlling the fuel injection amount by the injector, and controlling the ignition timing by the spark plug. To be controlled.
 前記第1クラッチCL1は、エンジンEngとモータ/ジェネレータMGとの間の位置に介装された摩擦締結要素である。この第1クラッチCL1は、作動油の油圧によって動作する油圧アクチュエータで操作され、例えば、ダイアフラムスプリングによる付勢力によって、油圧がかかっていないときに解放状態になる(ノーマルオープン)乾式クラッチが用いられる。
この第1クラッチCL1は、油圧アクチュエータにかかる油圧の大きさによって、エンジンEngとモータ/ジェネレータMGとの間を、完全締結/スリップ締結/解放のいずれかの状態に制御する。この第1クラッチCL1は、完全締結状態のとき、モータトルク及びエンジントルクを第2クラッチCL2へと伝達し、解放状態のとき、モータトルクのみを第2クラッチCL2へと伝達する。
なお、第1クラッチCL1の完全締結/スリップ締結/解放の制御は、油圧アクチュエータに対するストローク制御にて行われる。
The first clutch CL1 is a frictional engagement element interposed at a position between the engine Eng and the motor / generator MG. The first clutch CL1 is operated by a hydraulic actuator that is operated by the hydraulic pressure of the hydraulic oil. For example, a dry clutch that is in a released state (normally open) when no hydraulic pressure is applied by a biasing force of a diaphragm spring is used.
The first clutch CL1 controls between the engine Eng and the motor / generator MG to be in a fully engaged / slip engaged / released state depending on the hydraulic pressure applied to the hydraulic actuator. The first clutch CL1 transmits motor torque and engine torque to the second clutch CL2 when fully engaged, and transmits only motor torque to the second clutch CL2 when released.
The complete engagement / slip engagement / release control of the first clutch CL1 is performed by stroke control for the hydraulic actuator.
 前記モータ/ジェネレータMGは、走行駆動源になる三相交流の永久磁石型同期モータである。このモータ/ジェネレータMGは、発進時や走行時に、駆動トルク制御や回転数制御を行う。また、このモータ/ジェネレータMGは、制動時や減速時に、回生ブレーキ制御を行い、車両運動エネルギーをバッテリBATへ回収する。 The motor / generator MG is a three-phase AC permanent magnet synchronous motor that serves as a driving source. The motor / generator MG performs drive torque control and rotation speed control when starting and running. The motor / generator MG performs regenerative braking control during braking or deceleration, and recovers vehicle kinetic energy to the battery BAT.
 前記第2クラッチCL2は、モータ/ジェネレータMGと左右駆動輪LT,RTとの間に介装された摩擦締結要素である。この第2クラッチCL2は、ここでは作動油の油圧(第2クラッチ油圧)によって動作する湿式の多板摩擦クラッチから構成され、第2クラッチ油圧の大きさによって完全締結/スリップ締結/解放が制御される。
なお、実施例1の第2クラッチCL2は、遊星ギアによる無段変速機CVTの前後進切替機構に設けられた前進クラッチFCと後退ブレーキRBを流用している。つまり、前進走行時には、前進クラッチFCが第2クラッチCL2とされ、後退走行時には、後退ブレーキRBが第2クラッチCL2とされる。
The second clutch CL2 is a frictional engagement element interposed between the motor / generator MG and the left and right drive wheels LT, RT. Here, the second clutch CL2 is composed of a wet multi-plate friction clutch operated by hydraulic oil pressure (second clutch hydraulic pressure), and complete engagement / slip engagement / release is controlled by the magnitude of the second clutch hydraulic pressure. The
The second clutch CL2 of the first embodiment uses the forward clutch FC and the reverse brake RB provided in the forward / reverse switching mechanism of the continuously variable transmission CVT using planetary gears. That is, during forward travel, the forward clutch FC is the second clutch CL2, and during reverse travel, the reverse brake RB is the second clutch CL2.
 前記無段変速機CVTは、プライマリプーリPriと、セカンダリプーリSecと、このプライマリプーリPriとセカンダリプーリSecの間に掛け渡されたプーリベルトVと、を有するベルト式無段変速機である。プライマリプーリPriとセカンダリプーリSecは、それぞれ油圧が供給されることでプーリ幅を変更し、プーリベルトVを挟持する面の径を変更して変速比(プーリ比)を自在に制御する。 The continuously variable transmission CVT is a belt type continuously variable transmission having a primary pulley Pri, a secondary pulley Sec, and a pulley belt V stretched between the primary pulley Pri and the secondary pulley Sec. The primary pulley Pri and the secondary pulley Sec each change the pulley width by supplying hydraulic pressure, and change the diameter of the surface sandwiching the pulley belt V to freely control the gear ratio (pulley ratio).
 さらに、機械式オイルポンプO/Pの入力ギアが、モータ/ジェネレータMGのモータ出力軸MGoutに、チェーンCHを介して接続されている。この機械式オイルポンプO/Pは、モータ/ジェネレータMGの回転駆動力によって作動するオイルポンプであり、例えばギアポンプやベーンポンプ等が用いられる。また、この機械式オイルポンプO/Pは、モータ/ジェネレータMGの回転方向に拘らずオイル吐出が可能となっている。さらに、ここでは、オイルポンプとして、サブモータS/Mの回転駆動力によって作動する電動オイルポンプM/O/Pが設けられている。サブモータS/Mは、モータ/ジェネレータMGとは別に設けられた電動モータである。 Furthermore, the input gear of the mechanical oil pump O / P is connected to the motor output shaft MGout of the motor / generator MG via the chain CH. The mechanical oil pump O / P is an oil pump that is operated by the rotational driving force of the motor / generator MG. For example, a gear pump or a vane pump is used. The mechanical oil pump O / P can discharge oil regardless of the rotation direction of the motor / generator MG. Further, here, as the oil pump, an electric oil pump M / O / P that is operated by the rotational driving force of the sub motor S / M is provided. The sub motor S / M is an electric motor provided separately from the motor / generator MG.
 そして、この機械式オイルポンプO/Pと電動オイルポンプM/O/Pは、第1,第2クラッチCL1,CL2及び無段変速機CVTへ供給する作動油圧(制御圧)を作り出す油圧供給源OILとなっている。この油圧供給源OILでは、機械式オイルポンプO/Pの吐出油量が十分であるとき、サブモータS/Mを停止して電動オイルポンプM/O/Pを停止させる。また、機械式オイルポンプO/Pの吐出油量が低下したとき、サブモータS/Mを駆動して電動オイルポンプM/O/Pを作動させ、この電動オイルポンプM/O/Pからも作動油を吐出させる。
なお、モータ回転数制御ができる三相交流の永久磁石型同期モータが、サブモータS/Mとして用いられる。
The mechanical oil pump O / P and the electric oil pump M / O / P are used to supply hydraulic pressure (control pressure) to be supplied to the first and second clutches CL1 and CL2 and the continuously variable transmission CVT. It is OIL. In this hydraulic supply source OIL, when the amount of oil discharged from the mechanical oil pump O / P is sufficient, the sub motor S / M is stopped and the electric oil pump M / O / P is stopped. Also, when the discharge oil amount of the mechanical oil pump O / P decreases, the sub motor S / M is driven to operate the electric oil pump M / O / P, and this electric oil pump M / O / P also operates. Let the oil discharge.
A three-phase AC permanent magnet synchronous motor capable of controlling the motor speed is used as the sub motor S / M.
 そして、このハイブリッド車両は、第1クラッチCL1とモータ/ジェネレータMGと第2クラッチCL2により1モータ・2クラッチのハイブリッド駆動システムが構成され、このシステムによる主な駆動態様として「EVモード」と「HEVモード」を有する。
前記「EVモード」は、第1クラッチCL1を解放し、第2クラッチCL2を締結してモータ/ジェネレータMGのみを駆動源に有する電気自動車モードである。
前記「HEVモード」は、第1,第2クラッチCL1,CL2を締結してエンジンEngとモータ/ジェネレータMGを駆動源に有するハイブリッド車モードである。
In this hybrid vehicle, the first clutch CL1, the motor / generator MG, and the second clutch CL2 constitute a one-motor / two-clutch hybrid drive system. The main drive modes of this system are “EV mode” and “HEV”. Mode ".
The “EV mode” is an electric vehicle mode in which the first clutch CL1 is released, the second clutch CL2 is engaged, and only the motor / generator MG is used as a drive source.
The “HEV mode” is a hybrid vehicle mode in which the first and second clutches CL1 and CL2 are engaged and the engine Eng and the motor / generator MG are used as drive sources.
 実施例1のハイブリッド車両の制御系は、図1に示すように、インバータINVと、バッテリBATと、統合コントローラ10と、変速機コントローラ11と、クラッチコントローラ12と、エンジンコントローラ13と、モータコントローラ14と、バッテリコントローラ15と、を備えている。 As shown in FIG. 1, the control system of the hybrid vehicle of the first embodiment includes an inverter INV, a battery BAT, an integrated controller 10, a transmission controller 11, a clutch controller 12, an engine controller 13, and a motor controller 14. And a battery controller 15.
 前記インバータINVは、バッテリBATから供給される直流電流を、モータ/ジェネレータMGに供給する三相交流へと変換し、モータ/ジェネレータMGの駆動電流を生成する。また、生成する駆動電流の位相を逆転することでモータ/ジェネレータMGの出力回転を反転する。さらに、モータ/ジェネレータMGの回生時には、三相交流電流を直流に変換する。 The inverter INV converts a direct current supplied from the battery BAT into a three-phase alternating current supplied to the motor / generator MG, and generates a drive current for the motor / generator MG. Further, the output rotation of the motor / generator MG is reversed by reversing the phase of the generated drive current. Further, when the motor / generator MG is regenerated, the three-phase alternating current is converted into direct current.
  前記バッテリBATは、充放電可能な二次電池であり、モータ/ジェネレータMGへの電力供給と、モータ/ジェネレータMGが回生した電力の充電を行う。 The battery BAT is a chargeable / dischargeable secondary battery, and supplies power to the motor / generator MG and charges power regenerated by the motor / generator MG.
 前記統合コントローラ10は、バッテリ状態(ここでは、バッテリコントローラ15から入力)、アクセル開度(ここでは、アクセル開度センサ21により検出)、及び車速(ここでは、変速機出力回転数に同期した値、変速機出力回転数センサ22により検出)から目標駆動トルクを演算する。そして、その結果に基づき、各アクチュエータ(モータ/ジェネレータMG、エンジンEng、第1クラッチCL1、第2クラッチCL2、無段変速機CVT)に対する指令値を演算し、各コントローラ11~15へと送信する。
また、この統合コントローラ10は、機械式オイルポンプO/Pの吐出油量と、電動オイルポンプM/O/Pの吐出油量と、ライン圧制御弁101と、後述する切替弁106の制御を行う回路制御手段である。すなわち、この統合コントローラ10では、サブモータS/Mを駆動して電動オイルポンプM/O/Pを作動させる際、機械式オイルポンプO/Pの吐出油量(モータ回転数センサ23の検出値から演算)に応じて、電動オイルポンプM/O/Pの回転数制御を行う。また、第2クラッチCL2の温度(クラッチ温度センサ24により検出)や、機械式オイルポンプO/Pの吐出油量に応じて、切替弁106の切替制御を行う。
The integrated controller 10 includes a battery state (here, input from the battery controller 15), an accelerator opening (here, detected by the accelerator opening sensor 21), and a vehicle speed (here, a value synchronized with the transmission output speed). , Detected by the transmission output speed sensor 22). Based on the result, command values for the actuators (motor / generator MG, engine Eng, first clutch CL1, second clutch CL2, continuously variable transmission CVT) are calculated and transmitted to the controllers 11-15. .
The integrated controller 10 controls the discharge oil amount of the mechanical oil pump O / P, the discharge oil amount of the electric oil pump M / O / P, the line pressure control valve 101, and the switching valve 106 described later. The circuit control means to perform. That is, in this integrated controller 10, when the sub-motor S / M is driven to operate the electric oil pump M / O / P, the amount of oil discharged from the mechanical oil pump O / P (from the detection value of the motor rotation speed sensor 23). The rotational speed of the electric oil pump M / O / P is controlled according to the calculation. Further, the switching control of the switching valve 106 is performed according to the temperature of the second clutch CL2 (detected by the clutch temperature sensor 24) and the amount of oil discharged from the mechanical oil pump O / P.
 前記変速機コントローラ11は、統合コントローラ10からの変速指令を達成するように変速制御を行なう。この変速制御は、油圧制御回路100を介して供給されたライン圧を元圧として、無段変速機CVTのプライマリプーリPriに供給する油圧と、セカンダリプーリSecに供給する油圧をそれぞれ制御することで行われる。
そして、ライン圧からプライマリプーリPriに供給する油圧と、セカンダリプーリSecに供給する油圧を作り出した際に生じた余剰圧は、第1クラッチCL1や第2クラッチCL2の冷却や潤滑に回される。
The transmission controller 11 performs shift control so as to achieve a shift command from the integrated controller 10. This shift control is performed by controlling the hydraulic pressure supplied to the primary pulley Pri of the continuously variable transmission CVT and the hydraulic pressure supplied to the secondary pulley Sec using the line pressure supplied via the hydraulic control circuit 100 as a source pressure. Done.
The surplus pressure generated when the hydraulic pressure supplied from the line pressure to the primary pulley Pri and the hydraulic pressure supplied to the secondary pulley Sec is generated is used for cooling and lubrication of the first clutch CL1 and the second clutch CL2.
 前記クラッチコントローラ12は、第2クラッチ入力回転数(モータ回転数センサ23により検出)、第2クラッチ出力回転数(第2クラッチ出力回転数センサ25により検出)、クラッチ油温(作動油温センサ26により検出)を入力する。また、このクラッチコントローラ12は、統合コントローラ10からの第1クラッチ制御指令及び第2クラッチ制御指令を達成するように、第1クラッチ制御、第2クラッチ制御をそれぞれ行う。この第1クラッチ制御は、油圧制御回路100を介して供給されたライン圧を元圧として、第1クラッチCL1に供給される油圧を制御することで行われる。また、第2クラッチ制御は、油圧制御回路100を介して供給されたライン圧を元圧として、第2クラッチCL2に供給される油圧を制御することで行われる。
そして、ライン圧から第1クラッチCL1に供給される油圧と、第2クラッチCL2に供給される油圧を作り出した際に生じた余剰圧は、第1クラッチCL1や第2クラッチCL2の冷却や潤滑に回される。
The clutch controller 12 includes a second clutch input rotational speed (detected by the motor rotational speed sensor 23), a second clutch output rotational speed (detected by the second clutch output rotational speed sensor 25), a clutch oil temperature (operating oil temperature sensor 26). Detected by). Further, the clutch controller 12 performs first clutch control and second clutch control so as to achieve the first clutch control command and the second clutch control command from the integrated controller 10. The first clutch control is performed by controlling the hydraulic pressure supplied to the first clutch CL1 using the line pressure supplied via the hydraulic control circuit 100 as a source pressure. The second clutch control is performed by controlling the hydraulic pressure supplied to the second clutch CL2 using the line pressure supplied via the hydraulic control circuit 100 as a source pressure.
The excess pressure generated when the hydraulic pressure supplied from the line pressure to the first clutch CL1 and the hydraulic pressure supplied to the second clutch CL2 is generated is used for cooling and lubrication of the first clutch CL1 and the second clutch CL2. Turned.
 なお、無段変速機CVTのプライマリプーリPri、セカンダリプーリSec、第2クラッチCL2に対し、ライン圧PLを元圧とした制御油圧を供給する回路を、ここでは「変速機構用油圧系Sup」という。また、第2クラッチCL2の冷却や潤滑を行う回路を、ここでは「変速機構の冷却/潤滑系Lub」という。 A circuit for supplying a control hydraulic pressure using the line pressure PL as a source pressure to the primary pulley Pri, the secondary pulley Sec, and the second clutch CL2 of the continuously variable transmission CVT is referred to herein as a “transmission mechanism hydraulic system Sup”. . A circuit for cooling and lubricating the second clutch CL2 is referred to herein as a “transmission mechanism cooling / lubricating system Lub”.
 前記エンジンコントローラ13は、エンジン回転数(エンジン回転数センサ27により検出)を入力すると共に、統合コントローラ10からの目標エンジントルクに対応したエンジントルク指令値を達成するようにエンジントルク制御を行なう。 The engine controller 13 inputs the engine speed (detected by the engine speed sensor 27) and performs engine torque control so as to achieve an engine torque command value corresponding to the target engine torque from the integrated controller 10.
 前記モータコントローラ14は、統合コントローラ10からの目標モータトルクに対応したモータトルク指令値やモータ回転数指令値を達成するようにモータ/ジェネレータMGの制御を行なう。 The motor controller 14 controls the motor / generator MG so as to achieve a motor torque command value and a motor rotation speed command value corresponding to the target motor torque from the integrated controller 10.
 前記バッテリコントローラ15は、バッテリBATの充電状態を管理し、その情報を統合コントローラ10へと送信する。なお、バッテリBATの充電状態は、バッテリ電圧センサ15aが検出する電源電圧と、バッテリ温度センサ15bが検出するバッテリ温度とに基づいて演算している。 The battery controller 15 manages the state of charge of the battery BAT and transmits the information to the integrated controller 10. Note that the state of charge of the battery BAT is calculated based on the power supply voltage detected by the battery voltage sensor 15a and the battery temperature detected by the battery temperature sensor 15b.
 [油圧制御回路の詳細構成]
 図2は、実施例1のハイブリッド車両が有する油圧制御回路を示す油圧回路図である。以下、図2に基づいて、実施例1の油圧制御回路の詳細構成を説明する。
[Detailed configuration of hydraulic control circuit]
FIG. 2 is a hydraulic circuit diagram illustrating a hydraulic control circuit included in the hybrid vehicle according to the first embodiment. The detailed configuration of the hydraulic control circuit according to the first embodiment will be described below with reference to FIG.
 前記油圧制御回路100は、機械式オイルポンプO/Pと電動オイルポンプM/O/Pからなる油圧供給源OILの吐出圧をライン圧PLに調圧し、変速機構用油圧系Supに供給する。また、この油圧制御回路100では、変速機構用油圧系Supに作動油を供給した際に生じた余剰圧を、変速機構の冷却/潤滑系Lubに供給する。さらに、この油圧制御回路100では、切替弁106を切り替えることで、電動オイルポンプM/O/Pから吐出された作動油を変速機構の冷却/潤滑系Lubに直接供給する。
すなわち、実施例1の油圧制御回路100は、図2に示すように、機械式オイルポンプO/Pと、電動オイルポンプM/O/Pと、ライン圧制御弁101と、第1油圧供給油路102と、第2油圧供給油路103と、冷却系油路104と、電動オイルポンプ吐出油路105と、切替弁106と、を有している。
The hydraulic control circuit 100 regulates the discharge pressure of a hydraulic pressure supply source OIL composed of a mechanical oil pump O / P and an electric oil pump M / O / P to a line pressure PL, and supplies the line pressure PL to a hydraulic system Sup for a transmission mechanism. Further, in the hydraulic control circuit 100, surplus pressure generated when hydraulic fluid is supplied to the transmission mechanism hydraulic system Sup is supplied to the cooling / lubricating system Lub of the transmission mechanism. Further, in the hydraulic control circuit 100, by switching the switching valve 106, the hydraulic oil discharged from the electric oil pump M / O / P is directly supplied to the cooling / lubricating system Lub of the transmission mechanism.
That is, as shown in FIG. 2, the hydraulic control circuit 100 according to the first embodiment includes a mechanical oil pump O / P, an electric oil pump M / O / P, a line pressure control valve 101, and a first hydraulic supply oil. A passage 102, a second hydraulic supply oil passage 103, a cooling system oil passage 104, an electric oil pump discharge oil passage 105, and a switching valve 106 are provided.
 前記機械式オイルポンプO/Pは、吐出ポート110aに第1油圧供給油路102が接続され、吸込ポート110bに吸込回路108が接続されている。吸込回路108の先端は、ストレーナ107に差し込まれている。そして、この機械式オイルポンプO/Pは、モータ/ジェネレータMGが回転駆動することで作動し、吸込回路108を介してストレーナ107に貯留した作動油を吸い込み、第1油圧供給油路102へと作動油を吐出する。このときの吐出圧は、モータ/ジェネレータMGの回転数に依存する。 In the mechanical oil pump O / P, the first hydraulic supply oil passage 102 is connected to the discharge port 110a, and the suction circuit 108 is connected to the suction port 110b. The tip of the suction circuit 108 is inserted into the strainer 107. The mechanical oil pump O / P operates when the motor / generator MG is driven to rotate, sucks the hydraulic oil stored in the strainer 107 via the suction circuit 108, and enters the first hydraulic supply oil passage 102. Discharge hydraulic fluid. The discharge pressure at this time depends on the rotation speed of the motor / generator MG.
 前記電動オイルポンプM/O/Pは、吐出ポート111aに電動オイルポンプ吐出油路105が接続され、吸込ポート111bに吸込回路108が接続されている。吸込回路108の先端は、ストレーナ107に差し込まれている。そして、この電動オイルポンプM/O/Pは、サブモータS/Mが回転駆動することで作動し、吸込回路108を介してストレーナ107に貯留した作動油を吸い込み、電動オイルポンプ吐出油路105へと作動油を吐出する。このときの吐出圧は、サブモータS/Mの回転数に依存する。 The electric oil pump M / O / P has an electric oil pump discharge oil passage 105 connected to the discharge port 111a and a suction circuit 108 connected to the suction port 111b. The tip of the suction circuit 108 is inserted into the strainer 107. The electric oil pump M / O / P operates when the sub motor S / M rotates, sucks in the hydraulic oil stored in the strainer 107 via the suction circuit 108, and supplies the electric oil pump discharge oil path 105. And discharge hydraulic oil. The discharge pressure at this time depends on the rotation speed of the sub motor S / M.
 前記ライン圧制御弁101は、油圧供給源OILの吐出圧(機械式オイルポンプO/Pの吐出圧及び/又は電動オイルポンプM/O/Pの吐出圧)を元圧にして、変速機構用油圧系Supへ供給するライン圧PLを調圧する圧力調整弁である。
すなわち、このライン圧制御弁101は、入力ポート101aに、第1油圧供給油路102及び第2油圧供給油路103が接続され、出力ポート101bに、変速機構用油圧系Supに繋がるライン圧回路101cが接続されている。そして、このライン圧制御弁101では、統合コントローラ10からの指示値によってスプールを移動させ、第1油圧供給油路102及び/又は第2油圧供給油路103から供給される作動油を図示しないドレン回路に逃がすことで、ライン圧PLを調圧する。
なお、ライン圧回路101cには、圧力調整弁101dが設けられ、ライン圧PLから変速機構用油圧系Supに必要な油圧を差し引いた余剰圧を、変速機構の冷却/潤滑系Lubに逃がすようになっている。
The line pressure control valve 101 uses the discharge pressure of the hydraulic supply source OIL (the discharge pressure of the mechanical oil pump O / P and / or the discharge pressure of the electric oil pump M / O / P) as a source pressure for the transmission mechanism. This is a pressure regulating valve that regulates the line pressure PL supplied to the hydraulic system Sup.
That is, the line pressure control valve 101 has a line pressure circuit connected to the input port 101a to the first hydraulic supply oil passage 102 and the second hydraulic supply oil passage 103, and to the output port 101b to the transmission mechanism hydraulic system Sup. 101c is connected. In the line pressure control valve 101, the spool is moved in accordance with an instruction value from the integrated controller 10, and hydraulic fluid supplied from the first hydraulic supply oil passage 102 and / or the second hydraulic supply oil passage 103 is drained (not shown). Line pressure PL is regulated by letting it escape to the circuit.
The line pressure circuit 101c is provided with a pressure regulating valve 101d so that the excess pressure obtained by subtracting the hydraulic pressure required for the transmission hydraulic system Sup from the line pressure PL is released to the cooling / lubricating system Lub of the transmission mechanism. It has become.
 前記第1油圧供給油路102は、一端が機械式オイルポンプO/Pの吐出ポート110aに接続され、他端がライン圧制御弁101の入力ポート101aに接続されている。この第1油圧供給油路102は、機械式オイルポンプO/Pから吐出された作動油を、ライン圧制御弁101の入力ポート101aへ供給する。この第1油圧供給油路102の中間部には、第1逆止弁102aが設けられている。第1逆止弁102aは、ライン圧制御弁101側から機械式オイルポンプO/P側へ作動油が流れることを防止する弁である。 The first hydraulic supply oil passage 102 has one end connected to the discharge port 110a of the mechanical oil pump O / P and the other end connected to the input port 101a of the line pressure control valve 101. The first hydraulic supply oil passage 102 supplies the hydraulic oil discharged from the mechanical oil pump O / P to the input port 101 a of the line pressure control valve 101. A first check valve 102 a is provided at an intermediate portion of the first hydraulic supply oil passage 102. The first check valve 102a is a valve that prevents hydraulic fluid from flowing from the line pressure control valve 101 side to the mechanical oil pump O / P side.
 前記第2油圧供給油路103は、一端が切替弁106の油圧供給側ポート106aに接続され、他端がライン圧制御弁101の入力ポート101aに接続されている。この第2油圧供給油路103は、電動オイルポンプM/O/Pから吐出された作動油を、ライン圧制御弁101の入力ポート101aへ供給する。この第2油圧供給油路103の中間部には、第2逆止弁103aが設けられている。第2逆止弁103aは、ライン圧制御弁101側から電動オイルポンプM/O/P側へ作動油が流れることを防止する弁である。 The second hydraulic pressure supply oil passage 103 has one end connected to the hydraulic pressure supply side port 106 a of the switching valve 106 and the other end connected to the input port 101 a of the line pressure control valve 101. The second hydraulic supply oil passage 103 supplies the hydraulic oil discharged from the electric oil pump M / O / P to the input port 101 a of the line pressure control valve 101. A second check valve 103 a is provided at an intermediate portion of the second hydraulic supply oil passage 103. The second check valve 103a is a valve that prevents hydraulic fluid from flowing from the line pressure control valve 101 side to the electric oil pump M / O / P side.
 前記冷却系油路104は、一端が切替弁106の冷却側ポート106bに接続され、他端が変速機構の冷却/潤滑系Lubに繋がっている。この冷却系油路104は、電動オイルポンプM/O/Pから吐出された作動油を、変速機構の冷却/潤滑系Lubへ供給する。
なお、変速機構の冷却/潤滑系Lubにて使用された作動油は、ドレン回路109を介してストレーナ107に回収される。
One end of the cooling system oil passage 104 is connected to the cooling side port 106b of the switching valve 106, and the other end is connected to the cooling / lubricating system Lub of the transmission mechanism. The cooling system oil passage 104 supplies hydraulic oil discharged from the electric oil pump M / O / P to the cooling / lubricating system Lub of the transmission mechanism.
The hydraulic fluid used in the cooling / lubricating system Lub of the transmission mechanism is collected by the strainer 107 via the drain circuit 109.
 前記電動オイルポンプ吐出油路105は、一端が電動オイルポンプM/O/Pの吐出ポート110aに接続され、他端が切替弁106の入力ポート106cに接続されている。この電動オイルポンプ吐出油路105は、電動オイルポンプM/O/Pから吐出された作動油を、切替弁106を介して第2油圧供給油路103或いは冷却系油路104へ供給する。
この電動オイルポンプ吐出油路105には、電動オイルポンプM/O/Pの吐出圧を検出する圧力センサ28と、圧力リーク弁105aが設けられている。そして、圧力センサ28によって監視されている電動オイルポンプM/O/Pの吐出圧が所定の上限圧に達したら、圧力リーク弁105aが開き、電動オイルポンプ吐出油路105内の圧力を逃がすようになっている。
The electric oil pump discharge oil passage 105 has one end connected to the discharge port 110 a of the electric oil pump M / O / P and the other end connected to the input port 106 c of the switching valve 106. The electric oil pump discharge oil passage 105 supplies the hydraulic oil discharged from the electric oil pump M / O / P to the second hydraulic supply oil passage 103 or the cooling system oil passage 104 via the switching valve 106.
The electric oil pump discharge oil passage 105 is provided with a pressure sensor 28 for detecting the discharge pressure of the electric oil pump M / O / P and a pressure leak valve 105a. When the discharge pressure of the electric oil pump M / O / P monitored by the pressure sensor 28 reaches a predetermined upper limit pressure, the pressure leak valve 105a is opened so that the pressure in the electric oil pump discharge oil passage 105 is released. It has become.
 前記切替弁106は、電動オイルポンプ吐出油路105に設けられ、統合コントローラ10からの切替指令に基づいて、電動オイルポンプ吐出油路105を、第2油圧供給油路103と冷却系油路104とのいずれか一方に接続する。
すなわち、この切替弁106は、オン・オフソレノイドによって入力ポート106cの連通先が切り替わる切替バルブであり、切替弁106の入力ポート106cを油圧供給側ポート106aに連通させたとき、電動オイルポンプ吐出油路105が第2油圧供給油路103に接続される。また、切替弁106の入力ポート106cを冷却側ポート106bに連通させたとき、電動オイルポンプ吐出油路105が冷却系油路104に接続される。
The switching valve 106 is provided in the electric oil pump discharge oil passage 105, and the electric oil pump discharge oil passage 105 is connected to the second hydraulic supply oil passage 103 and the cooling system oil passage 104 based on a switching command from the integrated controller 10. And connect to either one.
In other words, the switching valve 106 is a switching valve in which the communication destination of the input port 106c is switched by an on / off solenoid. The path 105 is connected to the second hydraulic supply oil path 103. Further, when the input port 106 c of the switching valve 106 is communicated with the cooling side port 106 b, the electric oil pump discharge oil passage 105 is connected to the cooling system oil passage 104.
 なお、前記変速機構用油圧系Supは、ライン圧回路101cに設けられた変速機用調圧弁112aと、ライン圧回路101cに設けられた第2クラッチ用調圧弁112bと、を有している。そして、変速機用調圧弁112aにより、ライン圧PLを元圧にしてプライマリプーリPriやセカンダリプーリSecに供給される油圧が調圧された上、プライマリプーリPriやセカンダリプーリSecに油圧供給がなされる。また、第2クラッチ用調圧弁112bにより、ライン圧PLを元圧にして前進クラッチFCや後退ブレーキRBに供給される油圧が調圧された上、前進クラッチFCや後退ブレーキRBに油圧供給がなされる。 The transmission mechanism hydraulic system Sup includes a transmission pressure regulating valve 112a provided in the line pressure circuit 101c and a second clutch pressure regulating valve 112b provided in the line pressure circuit 101c. The transmission pressure regulating valve 112a regulates the hydraulic pressure supplied to the primary pulley Pri and the secondary pulley Sec using the line pressure PL as the original pressure, and supplies the hydraulic pressure to the primary pulley Pri and the secondary pulley Sec. . Further, the hydraulic pressure supplied to the forward clutch FC and the reverse brake RB is adjusted by the second clutch pressure adjusting valve 112b with the line pressure PL as the original pressure, and the hydraulic pressure is supplied to the forward clutch FC and the reverse brake RB. The
 [油圧供給→冷却/潤滑切り替え処理構成]
 図3は、実施例1にて実行される切替弁の油圧供給→冷却/潤滑切り替え処理の流れを示すフローチャートである。以下、図3に基づいて、実施例1の油圧供給→冷却/潤滑切り替え処理構成を説明する。
[Hydraulic supply → Cooling / lubrication switching processing configuration]
FIG. 3 is a flowchart showing a flow of the switching valve hydraulic pressure supply → cooling / lubrication switching process executed in the first embodiment. Hereinafter, the hydraulic pressure supply → cooling / lubrication switching processing configuration of the first embodiment will be described with reference to FIG.
 ステップS1では、電動オイルポンプM/O/Pが作動すると共に、切替弁106によって電動オイルポンプ吐出油路105が第2油圧供給油路103に接続されているか否か、つまり、電動オイルポンプM/O/Pから変速機構用油圧系Supに油圧供給が行われているか否かを判断する。YES(電動オイルポンプON,切替弁=油圧供給側)の場合にはステップS2へ進む。NO(電動オイルポンプNO又は切替弁=冷却側)の場合には、電動オイルポンプM/O/Pから変速機構用油圧系Supに油圧供給が行われていないため、油圧供給→冷却/潤滑切り替え処理を行う必要はないとしてエンドへ進む。 In step S1, the electric oil pump M / O / P is activated, and whether or not the electric oil pump discharge oil passage 105 is connected to the second hydraulic supply oil passage 103 by the switching valve 106, that is, the electric oil pump M It is determined whether or not hydraulic pressure is supplied from / O / P to the transmission mechanism hydraulic system Sup. If YES (electric oil pump ON, switching valve = hydraulic supply side), the process proceeds to step S2. In the case of NO (electric oil pump NO or switching valve = cooling side), since hydraulic pressure is not supplied from the electric oil pump M / O / P to the transmission mechanism hydraulic system Sup, hydraulic pressure supply → cooling / lubrication switching Since it is not necessary to perform processing, the process proceeds to the end.
 ステップS2では、ステップS1での電動オイルポンプON,切替弁=油圧供給側との判断に続き、第2クラッチCL2の温度が所定の冷却閾値を上回っているか否かを判断する。YES(CL2温度≧冷却閾値)の場合にはステップS3へ進む。NO(CL2温度<冷却閾値)の場合には、第2クラッチCL2の冷却が不要であり、電動オイルポンプM/O/Pから変速機構用油圧系Supへの油圧供給を継続可能であるとして、ステップS1へ戻る。
ここで、「冷却閾値」は、第2クラッチCL2が破損や不具合を生じない上限温度である。第2クラッチCL2の温度がこの冷却閾値を上回れば、第2クラッチCL2に破損等が生じる可能性があるため、変速機構の冷却/潤滑系Lubに流れる作動油の流量を増加させる「冷却要求」が発生する。また、第2クラッチCL2の温度は、クラッチ温度センサ24により検出する。
In step S2, following the determination that the electric oil pump is ON and the switching valve = hydraulic supply side in step S1, it is determined whether or not the temperature of the second clutch CL2 exceeds a predetermined cooling threshold. If YES (CL2 temperature ≧ cooling threshold), the process proceeds to step S3. In the case of NO (CL2 temperature <cooling threshold), cooling of the second clutch CL2 is not necessary, and it is possible to continue supplying hydraulic pressure from the electric oil pump M / O / P to the transmission mechanism hydraulic system Sup. Return to step S1.
Here, the “cooling threshold” is an upper limit temperature at which the second clutch CL2 does not break or malfunction. If the temperature of the second clutch CL2 exceeds the cooling threshold, the second clutch CL2 may be damaged, etc., so that the flow rate of the hydraulic oil flowing through the cooling / lubricating system Lub of the transmission mechanism is increased. Occurs. The temperature of the second clutch CL2 is detected by the clutch temperature sensor 24.
 ステップS3では、ステップS2でのCL2温度≧冷却閾値との判断に続き、「冷却要求」が生じたことで、変速機構の冷却/潤滑系Lubに流れる作動油の流量増加が必要である、つまり切替弁106を冷却側に切り替えて、変速機構の冷却/潤滑系Lubへの油圧供給を行う指令が出力されたとして、第2クラッチCL2をスリップ締結すると共に、機械式オイルポンプO/Pから吐出される作動油の流量(機械式オイルポンプO/Pの吐出油量)を上昇させ、ステップS4へ進む。
ここで、第2クラッチCL2をスリップ締結させるには、変速機用調圧弁112aにより第2クラッチCL2(前進クラッチFC又は後退ブレーキRB)に供給されている油圧を低下させる。また、「機械式オイルポンプO/Pの吐出油量を上昇させる」とは、モータ/ジェネレータMGの回転数を、アクセル開度と車速から演算される要求駆動力に応じて決まる回転数以上に上昇させて、機械式オイルポンプO/Pの回転数を上げることである。つまり、このステップS3では、機械式オイルポンプO/Pから吐出される作動油の流量を、要求駆動力に応じて決まる上昇速度以上の速さで上昇させる。なお、第2クラッチCL2がスリップ締結していることで、モータ/ジェネレータMGの回転数を要求駆動力に応じて決まる回転数以上に上げても、左右駆動輪LT,RTに影響は出ない。
In step S3, following the determination that CL2 temperature ≧ cooling threshold value in step S2, it is necessary to increase the flow rate of the hydraulic oil flowing through the cooling / lubricating system Lub of the transmission mechanism due to the occurrence of the “cooling request”. The second clutch CL2 is slip-engaged and discharged from the mechanical oil pump O / P on the assumption that a command for switching the switching valve 106 to the cooling side and supplying hydraulic pressure to the cooling / lubricating system Lub of the transmission mechanism is output. The flow rate of the hydraulic oil (the amount of oil discharged from the mechanical oil pump O / P) is increased, and the process proceeds to step S4.
Here, in order to slip the second clutch CL2, the hydraulic pressure supplied to the second clutch CL2 (the forward clutch FC or the reverse brake RB) is reduced by the transmission pressure regulating valve 112a. In addition, “increasing the amount of oil discharged from the mechanical oil pump O / P” means that the rotational speed of the motor / generator MG exceeds the rotational speed determined according to the required driving force calculated from the accelerator opening and the vehicle speed. Increase the rotational speed of the mechanical oil pump O / P. That is, in this step S3, the flow rate of the hydraulic oil discharged from the mechanical oil pump O / P is increased at a speed equal to or higher than the increasing speed determined according to the required driving force. Note that since the second clutch CL2 is slip-engaged, even if the rotational speed of the motor / generator MG is increased beyond the rotational speed determined according to the required driving force, the left and right drive wheels LT, RT are not affected.
 ステップS4では、ステップS3でのCL2=スリップ締結,機械式オイルポンプO/P=油量上昇に続き、機械式オイルポンプO/Pの吐出油量と、電動オイルポンプM/O/Pの吐出油量の合計油量が、変速機構用油圧系Supでの必要油量を確保できる油量(=切替可能油量)に達したか否かを判断する。YES(合計油量≧切替可能油量)の場合にはステップS5へ進む。NO(合計油量<切替可能油量)の場合には、変速機構用油圧系Supにおける必要油量が確保されないとして、ステップS3へ戻る。
ここで、「切替可能油量」とは、ライン圧PLを担保しつつ、無駄な油量による電力消費悪化を防止できる油量である。
In step S4, following the CL2 = slip engagement and mechanical oil pump O / P = oil amount increase in step S3, the discharge amount of the mechanical oil pump O / P and the discharge amount of the electric oil pump M / O / P It is determined whether or not the total oil amount has reached an oil amount (= switchable oil amount) that can secure a necessary oil amount in the transmission system hydraulic system Sup. If YES (total oil amount ≧ switchable oil amount), the process proceeds to step S5. If NO (total oil amount <switchable oil amount), the required oil amount in the transmission mechanism hydraulic system Sup is not secured, and the process returns to step S3.
Here, the “switchable oil amount” is an oil amount that can prevent deterioration of power consumption due to a wasteful oil amount while ensuring the line pressure PL.
 ステップS5では、ステップS4での合計油量≧切替可能油量との判断に続き、合計油量により切替可能油量を確保したとして、電動オイルポンプM/O/Pから吐出される作動油の流量(電動オイルポンプM/O/Pの吐出油量)を低下させ、ステップS6へ進む。
ここで、電動オイルポンプM/O/Pの吐出油量を低下させるには、サブモータS/Mの回転数を低下させて、電動オイルポンプM/O/Pの回転数を下げる。このとき、要求駆動力に応じて決まる低下速度以上の速さであって、機械式オイルポンプO/Pの吐出油量と、電動オイルポンプM/O/Pの吐出油量の合計油量が、ライン圧PLを確保するために必要な油量を下回らない速度で電動オイルポンプM/O/Pの吐出油量を低下する。
In step S5, following the determination that total oil amount ≧ switchable oil amount in step S4, assuming that the switchable oil amount is secured by the total oil amount, the operating oil discharged from the electric oil pump M / O / P The flow rate (the amount of oil discharged from the electric oil pump M / O / P) is reduced, and the process proceeds to step S6.
Here, in order to reduce the discharge oil amount of the electric oil pump M / O / P, the rotation speed of the sub-motor S / M is decreased and the rotation speed of the electric oil pump M / O / P is decreased. At this time, the speed is equal to or higher than the reduction speed determined according to the required driving force, and the total oil amount of the discharge amount of the mechanical oil pump O / P and the discharge oil amount of the electric oil pump M / O / P is Reduce the discharge oil amount of the electric oil pump M / O / P at a speed that does not fall below the oil amount necessary to secure the line pressure PL.
 ステップS6では、ステップS5での電動オイルポンプM/O/P=油量低下に続き、電動オイルポンプM/O/Pの吐出油量が所定の第1閾値以下であるか否かを判断する。YES(電動オイルポンプ吐出油量≦第1閾値)の場合にはステップS7へ進む。NO(電動オイルポンプ吐出油量>第1閾値)の場合にはステップS4へ戻る。
ここで、「第1閾値」は、ライン圧制御弁101で調圧可能な「調圧可能油量」である。つまり、この「第1閾値」によって、切替弁106を油圧供給側から冷却側へ切り替えた直後のライン圧制御弁101に供給される作動油の油量変化速度が決まり、切替弁106を切り替えたことに伴って生じる変速機構用油圧系Supに供給される油圧(ライン圧PL)のアンダーシュート量(油圧低下量)が決まる。
In step S6, following the electric oil pump M / O / P = oil amount decrease in step S5, it is determined whether or not the discharge oil amount of the electric oil pump M / O / P is equal to or less than a predetermined first threshold value. . If YES (electric oil pump discharge oil amount ≦ first threshold), the process proceeds to step S7. If NO (electric oil pump discharge oil amount> first threshold value), the process returns to step S4.
Here, the “first threshold value” is a “pressure adjustable oil amount” that can be adjusted by the line pressure control valve 101. That is, the “first threshold value” determines the rate of change in the amount of hydraulic oil supplied to the line pressure control valve 101 immediately after switching the switching valve 106 from the hydraulic pressure supply side to the cooling side, and the switching valve 106 is switched. The undershoot amount (hydraulic pressure decrease amount) of the hydraulic pressure (line pressure PL) supplied to the transmission mechanism hydraulic system Sup is determined accordingly.
 すなわち、ライン圧制御弁101は、図4Aに示すように、入力ポート101aと、出力ポート101bと、ドレンポート101eと、を有している。そして、入力ポート101aに油圧供給源OILの吐出圧が供給され、スプリング101fと、ライン圧回路101cからのフィードバック圧を用いて、油圧供給源OILの吐出圧を減圧することでライン圧PLを調圧する。このとき、ライン圧回路101cから分岐するフィードバック回路101gの途中位置には、フィードバック圧の変化を緩和するオリフィス101hが設けられている。そのため、ライン圧制御弁101に供給される作動油の油量、つまり油圧供給源OILの吐出油量が急変すると、オリフィス101hによるフィードバック圧の変動緩和作用により、フィードバック圧とライン圧回路101cの実圧との間に差が生じ、ライン圧制御弁101による制御が適正にできない場合がある。
つまり、図4Bに示すように、ライン圧制御弁101に供給される作動油の油量変化速度(供給油量変化速度)が所定値αを超えると、目標ライン圧と実ライン圧との差に乖離が発生する。しかも、この乖離量は供給油量変化速度が増すほど大きくなる。そして、ライン圧制御弁101に供給される作動油の油量が急減する場合には、実ライン圧が目標ライン圧に対して急減してアンダーシュート量が大きくなり、プーリベルトVが滑って無段変速機CVTに破損が生じることが考えられる。
That is, the line pressure control valve 101 has an input port 101a, an output port 101b, and a drain port 101e as shown in FIG. 4A. Then, the discharge pressure of the hydraulic pressure supply source OIL is supplied to the input port 101a, and the line pressure PL is adjusted by reducing the discharge pressure of the hydraulic pressure supply source OIL using the feedback pressure from the spring 101f and the line pressure circuit 101c. Press. At this time, an orifice 101h is provided at a midway position of the feedback circuit 101g branched from the line pressure circuit 101c to alleviate the change in the feedback pressure. For this reason, when the amount of hydraulic oil supplied to the line pressure control valve 101, that is, the amount of oil discharged from the hydraulic pressure supply source OIL changes suddenly, the feedback pressure and line pressure circuit 101c is effectively reduced by the feedback pressure fluctuation mitigating action by the orifice 101h. There may be a difference between the pressure and the pressure by the line pressure control valve 101.
That is, as shown in FIG. 4B, when the oil amount change speed (supply oil amount change speed) of the hydraulic oil supplied to the line pressure control valve 101 exceeds a predetermined value α, the difference between the target line pressure and the actual line pressure. Deviation occurs. Moreover, the amount of deviation increases as the supply oil amount change rate increases. When the amount of hydraulic oil supplied to the line pressure control valve 101 decreases rapidly, the actual line pressure rapidly decreases with respect to the target line pressure, the undershoot amount increases, and the pulley belt V does not slip. It is possible that the stage transmission CVT is damaged.
 一方、切替弁106を油圧供給側から冷却側へ切り替えると、電動オイルポンプM/O/Pの吐出油が第2油圧供給油路103を流れなくなり、ライン圧制御弁101に供給される作動油の油量が低減する。ここで、切替弁106を油圧供給側から冷却側へ切り替える前に、電動オイルポンプM/O/Pの吐出油量を予め低下させておけば、切替弁106を切り替えたときのライン圧制御弁101に供給される作動油の油量変化を抑えることができる。つまり、上記「第1閾値(=調圧可能油量)」は、この切替弁106を油圧供給側から冷却側へ切り替えた際に生じるライン圧制御弁101への供給油量変化速度を所定値α以下にし、ライン圧制御弁101での適正な調圧を可能にしてライン圧PLのアンダーシュートを抑え、無段変速機CVTのプーリベルトVの滑り破損を回避できる油圧にライン圧PLを維持する値となる。 On the other hand, when the switching valve 106 is switched from the hydraulic pressure supply side to the cooling side, the discharge oil of the electric oil pump M / O / P does not flow through the second hydraulic pressure supply oil passage 103 and the hydraulic oil supplied to the line pressure control valve 101. The amount of oil is reduced. Here, if the discharge oil amount of the electric oil pump M / O / P is reduced in advance before switching the switching valve 106 from the hydraulic pressure supply side to the cooling side, the line pressure control valve when the switching valve 106 is switched. The change in the amount of hydraulic oil supplied to 101 can be suppressed. That is, the “first threshold value (= pressure adjustable oil amount)” is a predetermined value representing the rate of change in the amount of oil supplied to the line pressure control valve 101 that occurs when the switching valve 106 is switched from the hydraulic pressure supply side to the cooling side. The line pressure PL is maintained at a hydraulic pressure that can prevent the slippage of the pulley belt V of the continuously variable transmission CVT by suppressing the undershoot of the line pressure PL by enabling proper pressure regulation with the line pressure control valve 101. The value to be
 ステップS7では、ステップS6での電動オイルポンプ吐出油量≦第1閾値との判断に続き、電動オイルポンプM/O/Pの吐出油量が、切替弁106を切り替えてもライン圧制御弁101での適正な調圧を可能にし、ライン圧PLのアンダーシュートを抑える値以下に低下したとして、切替弁106を油圧供給側から冷却側に切り替え制御して、電動オイルポンプ吐出油路105を冷却系油路104に接続し、ステップS8へ進む。これにより、電動オイルポンプM/O/Pから吐出された作動油は、変速機構の冷却/潤滑系Lubに供給される。 In step S 7, following the determination that the electric oil pump discharge oil amount ≦ the first threshold value in step S 6, the line pressure control valve 101 does not change even if the discharge oil amount of the electric oil pump M / O / P switches the switching valve 106. The control valve 106 is switched from the hydraulic pressure supply side to the cooling side, and the electric oil pump discharge oil passage 105 is cooled, assuming that the pressure is reduced below the value that suppresses the undershoot of the line pressure PL. Connect to the system oil passage 104 and proceed to Step S8. As a result, the hydraulic oil discharged from the electric oil pump M / O / P is supplied to the cooling / lubricating system Lub of the transmission mechanism.
 ステップS8では、ステップS7での切替弁=冷却側との切替制御に続き、電動オイルポンプM/O/Pの吐出油量を上昇させ、ステップS9へ進む。
ここで、電動オイルポンプM/O/Pの吐出油量を上昇させるには、サブモータS/Mの回転数を上昇させ、電動オイルポンプM/O/Pの回転数を上げる。
In step S8, following the switching control with the switching valve = cooling side in step S7, the discharge oil amount of the electric oil pump M / O / P is increased, and the process proceeds to step S9.
Here, in order to increase the discharge oil amount of the electric oil pump M / O / P, the rotation speed of the sub motor S / M is increased and the rotation speed of the electric oil pump M / O / P is increased.
 ステップS9では、ステップS8での電動オイルポンプM/O/P=油量上昇に続き、電動オイルポンプM/O/Pの吐出油量が変速機構の冷却/潤滑系Lubにおいて必要な油量(=冷却必要油量)に達したか否かを判断する。YES(電動オイルポンプ吐出油量≧冷却必要油量)の場合には、電動オイルポンプ吐出油量によって第2クラッチCL2等の冷却に必要な油量を確保したとしてエンドへ進む。NO(電動オイルポンプ吐出油量<冷却必要油量)の場合には、電動オイルポンプ吐出油量が第2クラッチCL2等の冷却に必要な油量に足りないとしてステップS8へ戻る。 In step S9, following the electric oil pump M / O / P = oil amount increase in step S8, the amount of oil discharged from the electric oil pump M / O / P is the amount of oil required in the cooling / lubricating system Lub of the transmission mechanism ( == Required cooling oil amount) is determined. If YES (electric oil pump discharge oil amount ≧ cooling required oil amount), the flow proceeds to the end assuming that the oil amount necessary for cooling the second clutch CL2 and the like is secured by the electric oil pump discharge oil amount. If NO (electric oil pump discharge oil amount <cooling required oil amount), the flow returns to step S8 because the electric oil pump discharge oil amount is not sufficient for cooling the second clutch CL2 and the like.
 [冷却/潤滑→油圧供給切り替え処理構成]
 図5は、実施例1にて実行される切替弁の冷却/潤滑→油圧供給切り替え処理の流れを示すフローチャートである。以下、図5に基づいて、実施例1の冷却/潤滑→油圧供給切り替え処理構成を説明する。
[Cooling / lubrication → Hydraulic supply switching processing configuration]
FIG. 5 is a flowchart showing the flow of the switching valve cooling / lubrication → hydraulic pressure supply switching process executed in the first embodiment. Hereinafter, the cooling / lubrication → hydraulic supply switching processing configuration of the first embodiment will be described with reference to FIG.
 ステップS11では、電動オイルポンプM/O/Pが作動すると共に、切替弁106によって電動オイルポンプ吐出油路105が冷却系油路104に接続されているか否か、つまり、電動オイルポンプM/O/Pから変速機構の冷却/潤滑系Lubに油圧供給が行われているか否かを判断する。YES(電動オイルポンプON,切替弁=冷却側)の場合にはステップS12へ進む。NO(電動オイルポンプNO又は切替弁=油圧供給側)の場合には、電動オイルポンプM/O/Pから変速機構の冷却/潤滑系Lubに油圧供給が行われていないため、冷却/潤滑→油圧供給切り替え処理を行う必要はないとしてエンドへ進む。 In step S11, the electric oil pump M / O / P is activated, and whether or not the electric oil pump discharge oil passage 105 is connected to the cooling system oil passage 104 by the switching valve 106, that is, the electric oil pump M / O. It is determined whether or not hydraulic pressure is supplied from the / P to the cooling / lubricating system Lub of the transmission mechanism. If YES (electric oil pump ON, switching valve = cooling side), the process proceeds to step S12. In the case of NO (electric oil pump NO or switching valve = hydraulic pressure supply side), the hydraulic oil is not supplied from the electric oil pump M / O / P to the cooling / lubricating system Lub of the transmission mechanism, so cooling / lubrication → Since it is not necessary to perform the hydraulic pressure supply switching process, the process proceeds to the end.
 ステップS12では、ステップS11での電動オイルポンプON,切替弁=冷却側との判断に続き、第2クラッチCL2の温度が所定の冷却閾値を下回っているか否かを判断する。YES(CL2温度<冷却閾値)の場合には、第2クラッチCL2の冷却が必要ないとしてステップS13へ進む。NO(CL2温度≧冷却閾値)の場合には、第2クラッチCL2の冷却が必要であり、電動オイルポンプM/O/Pから変速機構の冷却/潤滑系Lubへの油圧供給を継続する必要があるとして、ステップS1へ戻る。 In step S12, following the determination that the electric oil pump is ON and the switching valve is on the cooling side in step S11, it is determined whether or not the temperature of the second clutch CL2 is below a predetermined cooling threshold. If YES (CL2 temperature <cooling threshold), it is determined that cooling of the second clutch CL2 is not necessary, and the process proceeds to step S13. When NO (CL2 temperature ≥ cooling threshold), cooling of the second clutch CL2 is necessary, and it is necessary to continue supplying hydraulic pressure from the electric oil pump M / O / P to the cooling / lubricating system Lub of the transmission mechanism. If there is, return to step S1.
 ステップS13では、ステップS12でのCL2温度<冷却閾値との判断に続き、変速機構の冷却/潤滑系Lubに流れる作動油の流量を増加させる「冷却要求」が発生していないとして、電動オイルポンプM/O/Pから吐出される作動油の流量(電動オイルポンプM/O/Pの吐出油量)を低下させ、ステップS14へ進む。 In step S13, following the determination of CL2 temperature <cooling threshold in step S12, it is assumed that there is no “cooling request” that increases the flow rate of hydraulic oil flowing through the cooling / lubricating system Lub of the transmission mechanism. The flow rate of hydraulic oil discharged from M / O / P (the amount of oil discharged from the electric oil pump M / O / P) is reduced, and the process proceeds to step S14.
 ステップS14では、ステップS13での電動オイルポンプM/O/P=油量低下に続き、電動オイルポンプM/O/Pから変速機構用油圧系Supに対して油圧供給を行わせる油圧供給要求が発生したか否かを判断する。YES(油圧供給要求あり)の場合にはステップS15へ進む。NO(油圧供給要求なし)の場合にはステップS19へ進む。
ここで、油圧供給要求の有無は、機械式オイルポンプO/P吐出される作動油の流量が、この機械式オイルポンプ吐出油量だけでは変速機構用油圧系Supでの必要油量を確保できないと判断される油量(=油圧供給要求油量)に達しているか否かに基づいて判断する。機械式オイルポンプO/Pの吐出油量>油圧供給要求油量であれば、油圧供給要求は発生せず、「油圧供給要求なし」になる。機械式オイルポンプO/Pの吐出油量≦油圧供給要求油量であれば、油圧供給要求が発生して「油圧供給要求あり」になる。
In step S14, following the electric oil pump M / O / P = oil amount reduction in step S13, a hydraulic pressure supply request is made to supply hydraulic pressure from the electric oil pump M / O / P to the transmission mechanism hydraulic system Sup. Determine whether it occurred. If YES (hydraulic supply requested), the process proceeds to step S15. If NO (no hydraulic supply request), the process proceeds to step S19.
Here, whether or not there is a hydraulic supply request is that the flow rate of the hydraulic oil discharged from the mechanical oil pump O / P cannot secure the required amount of oil in the hydraulic system Sup for the transmission mechanism only by the amount of oil discharged from the mechanical oil pump. It is determined based on whether or not the oil amount determined (= hydraulic supply required oil amount) has been reached. If the discharge oil amount of the mechanical oil pump O / P> the hydraulic oil supply requirement oil amount, the hydraulic oil supply request is not generated and “no hydraulic oil supply request” is set. If the discharge oil amount of the mechanical oil pump O / P is equal to or less than the oil supply requirement oil amount, the oil supply request is generated and “hydraulic supply request is present”.
 ステップS15では、ステップS14での油圧供給要求ありとの判断に続き、電動オイルポンプM/O/Pの吐出油量が所定の第2閾値以下であるか否かを判断する。YES(電動オイルポンプ吐出油量≦第2閾値)の場合にはステップS16へ進む。NO(電動オイルポンプ吐出油量>第2閾値)の場合にはステップS13へ戻る。
ここで、「第2閾値」は、ライン圧制御弁101で調圧可能な「調圧可能油量」である。つまり、この「第2閾値」によって、切替弁106を冷却側から油圧供給側へ切り替えた直後のライン圧制御弁101に供給される作動油の油量変化速度が決まり、切替弁106を切り替えたことに伴って生じる変速機構用油圧系Supに供給される油圧(ライン圧PL)のオーバーシュート量(油圧上昇量)が決まる。
In step S15, following the determination that there is a hydraulic pressure supply request in step S14, it is determined whether or not the amount of oil discharged from the electric oil pump M / O / P is equal to or less than a predetermined second threshold value. If YES (electric oil pump discharge oil amount ≦ second threshold value), the process proceeds to step S16. If NO (electric oil pump discharge oil amount> second threshold value), the process returns to step S13.
Here, the “second threshold value” is a “pressure adjustable oil amount” that can be adjusted by the line pressure control valve 101. That is, the “second threshold value” determines the rate of change in the amount of hydraulic oil supplied to the line pressure control valve 101 immediately after the switching valve 106 is switched from the cooling side to the hydraulic pressure supply side, and the switching valve 106 is switched. The overshoot amount (hydraulic pressure increase amount) of the hydraulic pressure (line pressure PL) supplied to the transmission mechanism hydraulic system Sup is determined accordingly.
 すなわち、切替弁106を冷却側から油圧供給側へ切り替えると、電動オイルポンプM/O/Pの吐出油が第2油圧供給油路103に流れ込み、ライン圧制御弁101に供給される作動油の油量が上昇する。ここで、切替弁106を冷却側から油圧供給側へ切り替える前に、電動オイルポンプM/O/Pの吐出油量を予め低下させておけば、切替弁106を切り替えたときのライン圧制御弁101に供給される作動油の油量変化を抑えることができる。つまり、上記「第2閾値(=調圧可能油量)」は、この切替弁106を冷却側から油圧供給側へ切り替えた際に生じるライン圧制御弁101への供給油量変化を所定値α以下にし、ライン圧制御弁101での適正な調圧を可能にして、ライン圧PLのオーバーシュートを抑え、無段変速機CVTのショックを回避できる油圧にライン圧PLを維持する値となる。 That is, when the switching valve 106 is switched from the cooling side to the hydraulic pressure supply side, the discharge oil of the electric oil pump M / O / P flows into the second hydraulic pressure supply oil passage 103 and the hydraulic oil supplied to the line pressure control valve 101 Increases oil volume. Here, if the discharge oil amount of the electric oil pump M / O / P is reduced in advance before switching the switching valve 106 from the cooling side to the hydraulic pressure supply side, the line pressure control valve when the switching valve 106 is switched. The change in the amount of hydraulic oil supplied to 101 can be suppressed. That is, the “second threshold value (= pressure adjustable oil amount)” is a predetermined value α representing a change in the amount of oil supplied to the line pressure control valve 101 that occurs when the switching valve 106 is switched from the cooling side to the hydraulic pressure supply side. The following is a value that allows the line pressure control valve 101 to perform proper pressure regulation, suppresses overshoot of the line pressure PL, and maintains the line pressure PL at a hydraulic pressure that can avoid a shock of the continuously variable transmission CVT.
 ステップS16では、ステップS15での電動オイルポンプ吐出油量≦第2閾値との判断に続き、電動オイルポンプM/O/Pの吐出油量が、切替弁106を切り替えてもライン圧制御弁101での適正な調圧を可能にし、ライン圧PLのオーバーシュートを抑える値以下に低下したとして、切替弁106を冷却側から油圧供給側に切り替え制御して、電動オイルポンプ吐出油路105を第2油圧供給油路103に接続し、ステップS17へ進む。これにより、電動オイルポンプM/O/Pから吐出された作動油は、変速機構用油圧系Supに供給される。 In step S16, following the determination that the electric oil pump discharge oil amount ≦ the second threshold value in step S15, the line pressure control valve 101 does not change even if the discharge oil amount of the electric oil pump M / O / P switches the switching valve 106. Therefore, the control valve 106 is switched from the cooling side to the hydraulic pressure supply side, and the electric oil pump discharge oil passage 105 is changed to the first level. 2. Connect to the hydraulic pressure supply oil passage 103 and proceed to Step S17. As a result, the hydraulic oil discharged from the electric oil pump M / O / P is supplied to the transmission mechanism hydraulic system Sup.
 ステップS17では、ステップS16での切替弁=油圧供給側との切替制御に続き、電動オイルポンプM/O/Pの吐出油量を上昇させ、ステップS18へ進む。 In step S17, following the switching control with the switching valve = hydraulic supply side in step S16, the discharge oil amount of the electric oil pump M / O / P is increased, and the process proceeds to step S18.
 ステップS18では、ステップS17での電動オイルポンプM/O/P=油量上昇に続き、電動オイルポンプM/O/Pの吐出油量が変速機構用油圧系Supにおいて必要な油量(ライン圧PLを確保できる油量=油圧供給必要油量)に達したか否かを判断する。YES(電動オイルポンプ吐出油量≧油圧供給必要油量)の場合には、電動オイルポンプ吐出油量によってライン圧PLを維持するために必要な油量を確保したとしてエンドへ進む。NO(電動オイルポンプ吐出油量<油圧供給必要油量)の場合には、電動オイルポンプ吐出油量がライン圧PLを維持するために必要な油量に足りないとしてステップS17へ戻る。 In step S18, following the electric oil pump M / O / P = oil amount increase in step S17, the discharge oil amount of the electric oil pump M / O / P is the oil amount (line pressure) required for the transmission mechanism hydraulic system Sup. Judgment is made as to whether or not the amount of oil capable of securing PL = the amount of oil required for hydraulic supply has been reached. If YES (electric oil pump discharge oil amount ≧ hydraulic supply oil amount), the flow proceeds to the end assuming that the oil amount necessary to maintain the line pressure PL is secured by the electric oil pump discharge oil amount. In the case of NO (electric oil pump discharge oil amount <hydraulic supply required oil amount), the flow returns to step S17 because the electric oil pump discharge oil amount is not sufficient to maintain the line pressure PL.
 ステップS19では、ステップS14での油圧供給要求なしとの判断に続き、電動オイルポンプM/O/Pが停止したか否かを判断する。YES(電動オイルポンプ=停止)の場合にはエンドへ進む。NO(電動オイルポンプ≠停止)の場合にはステップS13へ戻る。
ここで、電動オイルポンプM/O/Pの停止は、サブモータS/Mの回転数が停止したと判断できる所定値以下になったことで判断する。
In step S19, following the determination that there is no hydraulic pressure supply request in step S14, it is determined whether or not the electric oil pump M / O / P has stopped. If YES (electric oil pump = stop), go to end. If NO (electric oil pump ≠ stop), the process returns to step S13.
Here, the stop of the electric oil pump M / O / P is determined when the number of rotations of the sub motor S / M is equal to or less than a predetermined value at which it can be determined that the motor has stopped.
 次に、実施例1の車両用油圧制御装置における作用を、「電動オイルポンプ流路切り替え作用」、「油圧供給→冷却/潤滑切り替え作用」、「冷却/潤滑→油圧供給切り替え作用」に分けて説明する。 Next, the actions in the vehicle hydraulic control apparatus of the first embodiment are divided into “electric oil pump flow path switching action”, “hydraulic supply → cooling / lubrication switching action”, and “cooling / lubrication → hydraulic supply switching action”. explain.
 [電動オイルポンプ流路切り替え作用]
 図6Aは、切替弁が油圧供給側に切り替えられているときの切替弁の動作と、作動油の流れを示す説明図であり、図6Bは、切替弁が冷却側に切り替えられているときの切替弁の動作と、作動油の流れを示す説明図である。以下、図6A及び図6Bに基づいて、実施例1の電動オイルポンプ流路切り替え作用を説明する。
[Electric oil pump flow path switching action]
FIG. 6A is an explanatory diagram showing the operation of the switching valve and the flow of hydraulic oil when the switching valve is switched to the hydraulic pressure supply side, and FIG. 6B is a diagram when the switching valve is switched to the cooling side. It is explanatory drawing which shows the operation | movement of a switching valve, and the flow of hydraulic oil. Hereinafter, based on FIG. 6A and FIG. 6B, the electric oil pump flow path switching effect | action of Example 1 is demonstrated.
 実施例1の油圧制御回路100は、モータ/ジェネレータMGによって作動される機械式オイルポンプO/Pと、モータ/ジェネレータMGとは別のサブモータS/Mによって作動される電動オイルポンプM/O/Pと、を備えている。そして、電動オイルポンプM/O/Pの吐出ポート111aに接続された電動オイルポンプ吐出油路105は、切替弁106によって、ライン圧制御弁101の入力ポート101aに接続した第2油圧供給油路103と、変速機構の冷却/潤滑系Lubに接続した冷却系油路104と、のいずれか一方に接続される。 The hydraulic control circuit 100 according to the first embodiment includes a mechanical oil pump O / P operated by a motor / generator MG and an electric oil pump M / O / operated by a sub motor S / M different from the motor / generator MG. P and. The electric oil pump discharge oil passage 105 connected to the discharge port 111a of the electric oil pump M / O / P is connected to the second hydraulic supply oil passage connected to the input port 101a of the line pressure control valve 101 by the switching valve 106. 103 and a cooling system oil passage 104 connected to the cooling / lubricating system Lub of the speed change mechanism.
 すなわち、図6Aに示すように、切替弁106が、電動オイルポンプ吐出油路105を第2油圧供給油路103に接続するように切替制御されると、電動オイルポンプM/O/Pから吐出された作動油は、電動オイルポンプ吐出油路105→切替弁106→第2油圧供給油路103→ライン圧制御弁101→ライン圧回路101cを順に通って変速機構用油圧系Supに供給される。
これにより、機械式オイルポンプO/Pから供給される油圧が、変速機構用油圧系Supにおいて必要な油圧に足りないときには、電動オイルポンプM/O/Pから変速機構用油圧系Supへと作動油を供給することができる。このため、ライン圧PLの低下を防止して、変速機構用油圧系Supでの必要油圧を確保することができる。
That is, as shown in FIG. 6A, when the switching valve 106 is controlled so as to connect the electric oil pump discharge oil passage 105 to the second hydraulic supply oil passage 103, the discharge from the electric oil pump M / O / P is performed. The hydraulic oil thus discharged is supplied to the transmission mechanism hydraulic system Sup through the electric oil pump discharge oil passage 105 → the switching valve 106 → the second hydraulic supply oil passage 103 → the line pressure control valve 101 → the line pressure circuit 101c in this order. .
As a result, when the hydraulic pressure supplied from the mechanical oil pump O / P is less than the hydraulic pressure required for the transmission mechanism hydraulic system Sup, the electric oil pump M / O / P operates from the transmission mechanism hydraulic system Sup. Oil can be supplied. For this reason, it is possible to prevent the line pressure PL from being lowered and to secure the necessary hydraulic pressure in the transmission mechanism hydraulic system Sup.
 これに対し、図6Bに示すように、切替弁106が、電動オイルポンプ吐出油路105を冷却系油路104に接続するように切替制御されると、電動オイルポンプM/O/Pから吐出された作動油は、電動オイルポンプ吐出油路105→切替弁106→冷却系油路104を順に通って変速機構の冷却/潤滑系Lubに供給される。
これにより、第2クラッチCL2が温度上昇し、速やかなクラッチ冷却が必要なときには、電動オイルポンプM/O/Pから変速機構の冷却/潤滑系Lubへと作動油を直接供給することができる。このため、変速機構の冷却/潤滑系Lubの冷却を速やかに行うことができる。
In contrast, as shown in FIG. 6B, when the switching valve 106 is controlled so as to connect the electric oil pump discharge oil passage 105 to the cooling system oil passage 104, the electric oil pump M / O / P discharges. The hydraulic fluid thus supplied is supplied to the cooling / lubricating system Lub of the transmission mechanism through the electric oil pump discharge oil passage 105 → the switching valve 106 → the cooling system oil passage 104 in order.
Thus, when the temperature of the second clutch CL2 rises and quick clutch cooling is required, the hydraulic oil can be directly supplied from the electric oil pump M / O / P to the cooling / lubricating system Lub of the transmission mechanism. For this reason, the cooling of the transmission mechanism / the lubrication system Lub can be quickly performed.
 このように、油圧制御回路100が切替弁106を有していることで、電動オイルポンプ吐出油路105の接続先を切り替えることができ、機械式オイルポンプO/P停止時の変速機構用油圧系Supへの油圧供給と、第2クラッチCL2の冷却機能を、一つの電動オイルポンプM/O/Pによって達成することができる。この結果、機械式オイルポンプO/P停止時の変速機構への油圧供給と変速機構の冷却機能の両立を図りつつ、車載性の向上やコスト低減を図ることができる。 Thus, since the hydraulic control circuit 100 has the switching valve 106, the connection destination of the electric oil pump discharge oil passage 105 can be switched, and the transmission mechanism hydraulic pressure when the mechanical oil pump O / P is stopped. The hydraulic pressure supply to the system Sup and the cooling function of the second clutch CL2 can be achieved by one electric oil pump M / O / P. As a result, it is possible to improve the in-vehicle performance and reduce the cost while achieving both the hydraulic pressure supply to the transmission mechanism when the mechanical oil pump O / P is stopped and the cooling function of the transmission mechanism.
 [油圧供給→冷却/潤滑切り替え作用]
 図7Aは、実施例1の制御装置において、切替弁を油圧供給側から冷却側に切り替える際のアクセル開度・車速・CL2温度(第2クラッチ温度)・冷却フラグ・油圧供給フラグの各特性を示すタイムチャートである。図7Bは、実施例1の制御装置において、切替弁を油圧供給側から冷却側に切り替える際の機械式オイルポンプ回転数・変速機構用油圧系供給油量・電動オイルポンプ吐出油量・機械式オイルポンプ吐出油量・切替弁状態の各特性を示すタイムチャートである。以下、図7A,図7Bに基づき、実施例1の油圧供給→冷却/潤滑切り替え作用を説明する。
[Hydraulic supply → Cooling / lubrication switching action]
FIG. 7A shows the characteristics of accelerator opening, vehicle speed, CL2 temperature (second clutch temperature), cooling flag, and hydraulic pressure supply flag when the switching valve is switched from the hydraulic pressure supply side to the cooling side in the control device of the first embodiment. It is a time chart which shows. FIG. 7B shows the mechanical oil pump rotation speed, the hydraulic system supply oil amount for the transmission mechanism, the electric oil pump discharge oil amount, the mechanical type when the switching valve is switched from the hydraulic pressure supply side to the cooling side in the control device of the first embodiment. It is a time chart which shows each characteristic of an oil pump discharge oil amount and a switching valve state. Hereinafter, the hydraulic pressure supply → cooling / lubrication switching operation of the first embodiment will be described with reference to FIGS. 7A and 7B.
 図7A,図7Bに示す時刻tにおいて、車両停止状態からアクセル踏込操作が行われる。このとき、時刻t以前にモータ/ジェネレータMGからの動力伝達が行われていなかったので、第2クラッチ温度は冷却閾値未満である。そのため、電動オイルポンプM/O/Pから変速機構の冷却/潤滑系Lubへ直接油圧供給させる冷却要求は発生せず、冷却フラグがOFFになる。一方、モータ/ジェネレータMGの回転数が低いため、機械式オイルポンプO/Pの回転数は、変速機構用油圧系Supにおいて必要な油量(=油圧供給必要油量)を確保できる値(=油圧供給必要回転数)以下である。すなわち、機械式オイルポンプO/Pの吐出油量が、油圧供給必要油量に足りないので、電動オイルポンプM/O/Pから変速機構用油圧系Supへ油圧供給させる油圧供給要求が発生し、油圧供給フラグはONになる。 Figure 7A, at time t 0 shown in FIG. 7B, the accelerator depression operation is performed from the vehicle stoppage state. At this time, since the time t 0 before power transmission from the motor / generator MG to has not been performed, the second clutch temperature is below the cooling threshold. Therefore, a cooling request for supplying hydraulic pressure directly from the electric oil pump M / O / P to the cooling / lubricating system Lub of the transmission mechanism does not occur, and the cooling flag is turned off. On the other hand, since the rotational speed of the motor / generator MG is low, the rotational speed of the mechanical oil pump O / P is a value that can secure the required oil amount (= required oil amount for hydraulic supply) in the transmission mechanism hydraulic system Sup (= The number of revolutions required for hydraulic pressure supply) or less. In other words, the amount of oil discharged from the mechanical oil pump O / P is less than the amount of oil required to supply hydraulic pressure, and a hydraulic supply request to supply hydraulic pressure from the electric oil pump M / O / P to the hydraulic system Sup for the transmission mechanism is generated. The hydraulic supply flag is turned on.
 これにより、サブモータS/Mを駆動して電動オイルポンプM/O/Pを作動させると共に、切替弁106を油圧供給側に切替制御して、電動オイルポンプ吐出油路105を第2油圧供給油路103に接続する。このため、電動オイルポンプM/O/Pから吐出された作動油が第2油圧供給油路103に流れ、ライン圧制御弁101に供給されてライン圧PLが確保される。 As a result, the sub-motor S / M is driven to operate the electric oil pump M / O / P, and the switching valve 106 is switched to the hydraulic pressure supply side so that the electric oil pump discharge oil passage 105 is set to the second hydraulic supply oil. Connect to path 103. For this reason, the hydraulic oil discharged from the electric oil pump M / O / P flows into the second hydraulic pressure supply oil passage 103 and is supplied to the line pressure control valve 101 to ensure the line pressure PL.
 その後、車速の上昇に応じてモータ/ジェネレータMGの回転数が上昇していくと、機械式オイルポンプO/Pの回転数も上がる。このため、機械式オイルポンプO/Pの吐出油量は、車速の上昇に対して比例的に上がっていく。
これに対し、電動オイルポンプM/O/Pの吐出油量は、機械式オイルポンプO/Pの吐出油量が増加するにしたがって低下させ、機械式オイルポンプO/Pの吐出油量と、電動オイルポンプM/O/Pの吐出油量の合計油量である変速機構用油圧系Supへの供給油量が、油圧供給必要油量を維持するように制御する。
Thereafter, as the rotational speed of the motor / generator MG increases as the vehicle speed increases, the rotational speed of the mechanical oil pump O / P also increases. For this reason, the amount of oil discharged from the mechanical oil pump O / P increases in proportion to the increase in vehicle speed.
On the other hand, the discharge oil amount of the electric oil pump M / O / P is decreased as the discharge oil amount of the mechanical oil pump O / P increases, and the discharge oil amount of the mechanical oil pump O / P Control is performed so that the amount of oil supplied to the hydraulic system Sup for the speed change mechanism, which is the total amount of oil discharged from the electric oil pump M / O / P, maintains the amount of oil required for hydraulic supply.
 そして、モータ/ジェネレータMGからの動力伝達を行うに伴って次第に第2クラッチCL2の温度が上昇し、時刻t時点において、この第2クラッチ温度が冷却閾値に達したら、電動オイルポンプM/O/Pから変速機構の冷却/潤滑系Lubへ直接油圧供給させる冷却要求が発生し、冷却フラグがONになる。これにより、図3に示すフローチャートにおいてステップS1→ステップS2→ステップS3へと進み、第2クラッチCL2をスリップ締結すると共に、機械式オイルポンプO/Pから吐出される作動油の流量を、要求駆動力に応じて決まる上昇速度以上の速さで上昇させる。
そのため、機械式オイルポンプO/Pの吐出油量は急上昇する。これに対し、電動オイルポンプM/O/Pの吐出油量は、機械式オイルポンプ吐出油量が、要求駆動力に応じて決まる上昇速度で上昇していることを前提とした速度で低下させる。そのため、変速機構用油圧系Supへの供給油量は、油圧供給必要油量よりも増加する。
Then, the temperature gradually of the second clutch CL2 in accordance with the transmitting power from the motor / generator MG is increased, at time t 1 the time, after the second clutch temperature reaches the cooling threshold, the electric oil pump M / O A cooling request to supply hydraulic pressure directly from the / P to the cooling / lubricating system Lub of the transmission mechanism is generated, and the cooling flag is turned ON. Accordingly, in the flowchart shown in FIG. 3, the process proceeds from step S1 to step S2 to step S3, the second clutch CL2 is slip-engaged, and the flow rate of the hydraulic oil discharged from the mechanical oil pump O / P is requested to drive. Raise at a speed higher than the speed determined by the force.
Therefore, the amount of oil discharged from the mechanical oil pump O / P increases rapidly. In contrast, the amount of oil discharged from the electric oil pump M / O / P is reduced at a speed that assumes that the amount of oil discharged from the mechanical oil pump is increasing at an increasing speed determined according to the required driving force. . Therefore, the amount of oil supplied to the transmission mechanism hydraulic system Sup is greater than the amount of oil required for hydraulic supply.
 時刻t時点において、機械式オイルポンプO/Pの吐出油量と、電動オイルポンプM/O/Pの吐出油量の合計油量である変速機構用油圧系Supへの供給油量が、切替可能油量に達したら、ステップS4→ステップS5へと進み、電動オイルポンプM/O/Pから吐出される作動油の流量を、要求駆動力に応じて決まる低下速度以上の速さであって、上記合計油量が、切替可能油量以下であって油圧供給必要油量を下回らない速度で低下させる。なお、ここでは合計油量が切り替え可能油量を維持する速さで、電動オイルポンプM/O/Pの吐出油量を低下させる。 At time t 2 when a discharge oil amount of the mechanical oil pump O / P, supplied oil amount to the electric oil pump M / O / P total oil amount of discharge oil amount is speed change mechanism hydraulic system Sup of, When the switchable oil amount is reached, the process proceeds from step S4 to step S5, and the flow rate of the hydraulic oil discharged from the electric oil pump M / O / P is higher than the decrease speed determined according to the required driving force. Thus, the total oil amount is reduced at a speed that is equal to or less than the switchable oil amount and does not fall below the oil pressure required oil amount. Here, the discharge oil amount of the electric oil pump M / O / P is reduced at a speed at which the total oil amount maintains the switchable oil amount.
 その後、時刻t時点において、機械式オイルポンプO/Pの回転数が油圧供給必要回転数に達したら、機械式オイルポンプO/Pの回転数の上昇を停止し、機械式オイルポンプO/Pの吐出油量を維持する。さらに、このタイミング(時刻t時点)で、第2クラッチCL2を完全締結する。一方、電動オイルポンプM/O/Pの吐出油量の低下は継続する。
なお、この時刻t時点において、機械式オイルポンプO/Pの回転数が油圧供給必要回転数に達したことで、電動オイルポンプM/O/Pから変速機構用油圧系Supへ油圧供給は不要として、油圧供給停止許可が発生して油圧供給フラグがOFFになる。しかしながら、時刻t時点において、第2クラッチ温度が冷却閾値を上回ったことで冷却要求が発生したため、この時刻t時点で、すでに油圧供給フラグのON/OFF状態、つまり油圧供給要求や油圧供給停止許可の有無に拘らず、切替弁106を冷却側に切り替える指令が出力されている。すなわち、変速機構用油圧計Supへの油圧供給よりも、変速機構の冷却/潤滑系Lubへの油圧供給の方が優先される。
Then, at time t 3 time, when the rotational speed of the mechanical oil pump O / P reaches the hydraulic supply required rotational speed, to stop the rotation speed increase of the mechanical oil pump O / P, the mechanical oil pump O / Maintain the discharge oil amount of P. Moreover, at this timing (time t 3 time points), to completely engaging the second clutch CL2. On the other hand, the discharge oil amount of the electric oil pump M / O / P continues to decrease.
Note that in this time t 3 point, that the rotational speed of the mechanical oil pump O / P reaches the oil pressure supply required rotational speed, the hydraulic pressure supplied from the electric oil pump M / O / P to the hydraulic system Sup gear shifting mechanism As unnecessary, the hydraulic supply stop permission is generated and the hydraulic supply flag is turned OFF. However, at time t 1 time, the cooling required by the second clutch temperature exceeds the cooling threshold occurs, this time t 1 time, already ON / OFF state of the oil pressure supply flag, i.e. hydraulic supply request and the hydraulic pressure supply A command to switch the switching valve 106 to the cooling side is output regardless of whether or not the stop is permitted. That is, the hydraulic pressure supply to the cooling / lubricating system Lub of the transmission mechanism is prioritized over the hydraulic pressure supply to the transmission mechanism hydraulic pressure gauge Sup.
 時刻t時点において、電動オイルポンプM/O/Pの吐出油量が第1閾値に達したら、ステップS6→ステップS7へと進み、切替弁106を冷却側に切替制御して、電動オイルポンプ吐出油路105を冷却系油路104に接続する。
これにより、電動オイルポンプM/O/Pから吐出された作動油は、冷却系油路104を介して変速機構の冷却/潤滑系Lubに直接供給され、この変速機構の冷却/潤滑系Lubに流れる潤滑油量を増加させ、第2クラッチCL2の冷却が速やかに行うことができる。
At time t 4 the time, when the discharge oil amount of the electric oil pump M / O / P reaches the first threshold value, the process proceeds to step S6 → step S7, the switching valve 106 and the switching control on the cooling side, the electric oil pump The discharge oil passage 105 is connected to the cooling system oil passage 104.
As a result, the hydraulic oil discharged from the electric oil pump M / O / P is directly supplied to the cooling / lubricating system Lub of the transmission mechanism via the cooling system oil passage 104, and is supplied to the cooling / lubricating system Lub of the transmission mechanism. The amount of flowing lubricating oil can be increased, and the second clutch CL2 can be quickly cooled.
 また、ライン圧制御弁101を介して変速機構用油圧系Supに供給される作動油の流量は、切替弁106が切り替わったことで、機械式オイルポンプO/Pの吐出油量と、電動オイルポンプM/O/Pの吐出油量の合計油量から、機械式オイルポンプO/Pの吐出油量のみになる。
このとき、切替弁106の切り替え前に、予め電動オイルポンプM/O/Pの吐出油量を第1閾値まで低下させているので、切替弁106の切り替えに伴ってライン圧制御弁101に供給される作動油が低下しても、このときの油量変化速度を所定値α以下に抑制することができる。そのため、ライン圧制御弁101におけるオリフィス101hのフィードバック遅れが発生せず、ライン圧制御弁101での適正な調圧を可能にすることができる。これにより、無段変速機CVTの破損につながるライン圧PLのアンダーシュートを防止することができる。
The flow rate of the hydraulic oil supplied to the transmission mechanism hydraulic system Sup via the line pressure control valve 101 is such that the amount of oil discharged from the mechanical oil pump O / P and the electric oil are changed by the switching valve 106 being switched. From the total amount of oil discharged from the pump M / O / P, only the amount discharged from the mechanical oil pump O / P is used.
At this time, since the discharge oil amount of the electric oil pump M / O / P has been reduced to the first threshold value before switching the switching valve 106, it is supplied to the line pressure control valve 101 as the switching valve 106 is switched. Even if the hydraulic oil is reduced, the oil amount changing speed at this time can be suppressed to a predetermined value α or less. Therefore, the feedback delay of the orifice 101h in the line pressure control valve 101 does not occur, and proper pressure regulation in the line pressure control valve 101 can be achieved. Thereby, undershoot of the line pressure PL that leads to breakage of the continuously variable transmission CVT can be prevented.
 その後、ステップS8へと進んで電動オイルポンプM/O/Pの吐出油量を増加し、時刻t時点において、電動オイルポンプ吐出油量が冷却必要油量に達したら、ステップS9→エンドへ進み、電動オイルポンプM/O/Pの吐出油量を冷却に必要な量に維持すると共に、油圧供給→冷却/潤滑切り替え処理を終了する。 Then, by increasing the discharge oil amount of the electric oil pump M / O / P proceeds to step S8, at time t 5 the time, when the electric oil pump discharge oil amount reaches the cooling oil required amount, to step S9 → End Then, the discharge oil amount of the electric oil pump M / O / P is maintained at an amount necessary for cooling, and the hydraulic pressure supply → cooling / lubrication switching process is ended.
 このように、第2クラッチ温度が冷却閾値以上になったことで冷却要求が発生したときには、機械式オイルポンプO/Pの吐出油量と、電動オイルポンプM/O/Pの吐出油量の合計油量が切替可能油量に達すると共に、電動オイルポンプM/O/Pの吐出油量をライン圧制御弁101で調圧可能な調圧可能油量である第1閾値に至るまで低下させてから、切替弁106を冷却側に切り替える。
つまり、切替弁106によって、電動オイルポンプ吐出油路105の接続先を冷却系油路104に切り替える切替制御を行うときには、上記合計油量によって油圧供給必要油量を確保すると共に、電動オイルポンプ吐出油量を第1閾値以下になるまで低下させる。
As described above, when a cooling request is generated because the second clutch temperature is equal to or higher than the cooling threshold, the discharge oil amount of the mechanical oil pump O / P and the discharge oil amount of the electric oil pump M / O / P When the total oil amount reaches the switchable oil amount, the discharge oil amount of the electric oil pump M / O / P is reduced to the first threshold value that is the adjustable oil amount that can be adjusted by the line pressure control valve 101. Then, the switching valve 106 is switched to the cooling side.
That is, when switching control is performed by the switching valve 106 to switch the connection destination of the electric oil pump discharge oil passage 105 to the cooling system oil passage 104, the required oil supply amount is ensured by the total oil amount and the electric oil pump discharge is performed. The oil amount is decreased until the oil amount becomes the first threshold value or less.
 これにより、切替弁106が油圧供給側に切り替わった際にライン圧制御弁101に供給されている作動油の流量が低減しても、このときのライン圧制御弁101への供給油量変化速度を、ライン圧制御弁101での調圧が可能な所定値α以下に抑制することができ、無段変速機CVTの破損につながるライン圧PLのアンダーシュートを防止することができる。 As a result, even if the flow rate of the hydraulic oil supplied to the line pressure control valve 101 is reduced when the switching valve 106 is switched to the hydraulic pressure supply side, the change rate of the supplied oil amount to the line pressure control valve 101 at this time Can be suppressed below a predetermined value α that can be regulated by the line pressure control valve 101, and an undershoot of the line pressure PL leading to breakage of the continuously variable transmission CVT can be prevented.
 また、電動オイルポンプM/O/Pの吐出油量を低下させる一方、機械式オイルポンプO/Pの吐出油量を上昇させる際、機械式オイルポンプO/Pの吐出油量と、電動オイルポンプM/O/Pの吐出油量の合計油量が切替可能油量以下であって、油圧供給必要油量を下回らない油量となるように制御する。そのため、ライン圧PLを担保してプーリベルトVの滑りを防止すると共に、作動油が無駄に流れることによるサブモータS/Mの駆動過多を抑制し、電力消費悪化を防止することができる。 Also, when decreasing the discharge oil amount of the electric oil pump M / O / P, while increasing the discharge oil amount of the mechanical oil pump O / P, the discharge oil amount of the mechanical oil pump O / P and the electric oil Control is performed so that the total amount of oil discharged from the pump M / O / P is equal to or less than the switchable amount of oil, and does not fall below the amount of oil required for hydraulic supply. Therefore, it is possible to secure the line pressure PL and prevent the pulley belt V from slipping, suppress excessive driving of the sub motor S / M due to wasteful flow of hydraulic oil, and prevent power consumption deterioration.
 しかも、この実施例1では、切替弁106の冷却側への切り替えに伴って、電動オイルポンプM/O/Pの吐出油量を低下させる一方、機械式オイルポンプO/Pの吐出油量を上昇させることで、上記合計油量により油圧供給必要油量を確保している間、第2クラッチCL2をスリップ締結する。
すなわち、実施例1では、合計油量によって油圧供給必要油量を確保しつつ、電動オイルポンプ吐出油量を低下させるため、モータ/ジェネレータMGの回転数を要求駆動力に応じて決まる回転数以上に上昇させる必要がある。しかしこのとき、第2クラッチCL2をスリップ締結することで、左右駆動輪LT,RTへの影響は発生せず、ドライバーにショックや違和感を感じさせることはない。
Moreover, in the first embodiment, the amount of oil discharged from the electric oil pump M / O / P is reduced while the amount of oil discharged from the mechanical oil pump O / P is reduced as the switching valve 106 is switched to the cooling side. By raising the second clutch CL2, the second clutch CL2 is slip-engaged while the required amount of hydraulic pressure supply is secured by the total oil amount.
That is, in the first embodiment, in order to reduce the amount of oil discharged from the electric oil pump while securing the required oil supply amount by the total oil amount, the rotational speed of the motor / generator MG is equal to or higher than the rotational speed determined according to the required driving force Need to be raised. However, at this time, the second clutch CL2 is slip-engaged so that the left and right drive wheels LT and RT are not affected, and the driver does not feel a shock or discomfort.
 そして、第2クラッチ温度が冷却閾値を上回れば電動オイルポンプM/O/Pから変速機構の冷却/潤滑系Lubへ直接油圧供給させる冷却要求が発生し、切替弁106を冷却側に切り替える指令が出力される。すなわち、切替弁106を冷却側に切り替える指令を出力する要件に、油圧供給要求や油圧供給停止許可の有無は関係ない。そのため、第2クラッチCL2温度が冷却閾値を上回ったら、強制的に切替弁106によって電動オイルポンプ吐出油路105が冷却系油路104に接続される。
これにより、変速機構用油圧系Supへの油圧供給よりも、変速機構の冷却/潤滑系Lubへ油圧供給の方を優先することができ、第2クラッチCL2が高温になって破損することを防止できる。
When the second clutch temperature exceeds the cooling threshold, a cooling request for directly supplying hydraulic pressure from the electric oil pump M / O / P to the cooling / lubricating system Lub of the transmission mechanism is generated, and a command to switch the switching valve 106 to the cooling side is issued. Is output. That is, the requirement for outputting a command to switch the switching valve 106 to the cooling side does not depend on whether or not there is a hydraulic pressure supply request or a hydraulic pressure supply stop permission. Therefore, when the temperature of the second clutch CL2 exceeds the cooling threshold, the electric oil pump discharge oil passage 105 is forcibly connected to the cooling system oil passage 104 by the switching valve 106.
As a result, the hydraulic pressure supply to the cooling / lubricating system Lub can be prioritized over the hydraulic pressure supply to the transmission hydraulic system Sup, and the second clutch CL2 can be prevented from being damaged due to high temperature. it can.
 [冷却/潤滑→油圧供給切り替え作用]
 図8Aは、実施例1の制御装置において、切替弁を冷却側から油圧供給側に切り替える際のアクセル開度・車速・CL2温度(第2クラッチ温度)・冷却フラグ・油圧供給フラグの各特性を示すタイムチャートである。図8Bは、実施例1の制御装置において、切替弁を冷却側から油圧供給側に切り替える際の機械式オイルポンプ回転数・変速機構用油圧系供給油量・電動オイルポンプ吐出油量・機械式オイルポンプ吐出油量・切替弁状態の各特性を示すタイムチャートである。以下、図8A,図8Bに基づき、実施例1の冷却/潤滑→油圧供給切り替え作用を説明する。
[Cooling / lubrication → hydraulic supply switching]
FIG. 8A shows the characteristics of accelerator opening, vehicle speed, CL2 temperature (second clutch temperature), cooling flag, and hydraulic pressure supply flag when the switching valve is switched from the cooling side to the hydraulic pressure supply side in the control device of the first embodiment. It is a time chart which shows. FIG. 8B shows the mechanical oil pump rotation speed, the hydraulic system supply oil amount for the transmission mechanism, the electric oil pump discharge oil amount, the mechanical type when the switching valve is switched from the cooling side to the hydraulic pressure supply side in the control device of the first embodiment. It is a time chart which shows each characteristic of an oil pump discharge oil amount and a switching valve state. Hereinafter, based on FIG. 8A and FIG. 8B, the cooling / lubrication → hydraulic pressure supply switching operation of the first embodiment will be described.
 ブレーキを踏み込んで減速する際、モータ/ジェネレータMGにより回生しているときに、第2クラッチCL2の温度が冷却閾値より高くて冷却要求が発生していると共に、機械式オイルポンプO/Pからの吐出油量が十分あり、油圧供給要求が生じていない場合を考える。
このような場合では、冷却フラグはONになり、油圧供給フラグがOFFになる。このため、電動オイルポンプM/O/Pが作動されると共に、切替弁106により電動オイルポンプ吐出油路105が冷却系油路104に接続されて、電動オイルポンプM/O/Pから変速機構の冷却/潤滑系Lubへ直接油圧供給が行われる。なお、このときの電動オイルポンプ吐出油量は、冷却に必要な油量に応じて制御される。一方、変速機構用油圧系Supへの油圧供給は、機械式オイルポンプO/Pの吐出油量のみによって賄われる。
When decelerating by depressing the brake, when the motor / generator MG is regenerating, the temperature of the second clutch CL2 is higher than the cooling threshold and a cooling request is generated, and from the mechanical oil pump O / P Consider a case where the amount of discharged oil is sufficient and no hydraulic pressure supply request has occurred.
In such a case, the cooling flag is turned on and the hydraulic pressure supply flag is turned off. For this reason, the electric oil pump M / O / P is actuated, and the electric oil pump discharge oil passage 105 is connected to the cooling system oil passage 104 by the switching valve 106 so that the electric oil pump M / O / P can change the speed change mechanism. Hydraulic pressure is supplied directly to the cooling / lubrication system Lub. The amount of oil discharged from the electric oil pump at this time is controlled according to the amount of oil required for cooling. On the other hand, the hydraulic pressure supply to the transmission mechanism hydraulic system Sup is provided only by the amount of oil discharged from the mechanical oil pump O / P.
 このような状態のとき、第2クラッチCL2の温度が低下し、図8A,図8Bに示す時刻t11において、第2クラッチ温度が冷却閾値を下回ったら、電動オイルポンプM/O/Pを用いて変速機構の冷却/潤滑系Lubに積極的に油圧供給を行う必要はないとして、冷却フラグがOFFになる。これにより、図5に示すフローチャートにおいてステップS11→ステップS12→ステップS13→ステップS14へと進み、電動オイルポンプM/O/Pから吐出される作動油の流量を低下させた後、電動オイルポンプM/O/Pから変速機構用油圧系Supへ油圧供給をさせる油圧供給要求が発生したか否かが判断される。 When such a state, the temperature of the second clutch CL2 is decreased, with Figure 8A, at time t 11 shown in FIG. 8B, When the second clutch temperature falls below the cooling threshold, the electric oil pump M / O / P Therefore, it is not necessary to actively supply hydraulic pressure to the cooling / lubricating system Lub of the transmission mechanism, and the cooling flag is turned off. Thus, in the flowchart shown in FIG. 5, the process proceeds from step S11 to step S12 to step S13 to step S14, and after the flow rate of the hydraulic oil discharged from the electric oil pump M / O / P is reduced, the electric oil pump M It is determined whether or not a hydraulic pressure supply request for supplying hydraulic pressure from / O / P to the transmission mechanism hydraulic system Sup has occurred.
 この時刻t11時点では、機械式オイルポンプO/Pの回転数が比較的高く、この機械式オイルポンプO/Pの吐出油量のみによってライン圧PLを確保できるとして、油圧供給要求は発生していない。そのため、ステップS14→ステップS19へと進んで、電動オイルポンプM/O/Pが停止したか否かが判断される。そして、時刻t11時点では、電動オイルポンプM/O/Pは作動しているので、ステップS13へと戻り、電動オイルポンプM/O/Pの吐出油量を低下させつつ、変速機構の冷却/潤滑系Lubへの油圧供給が継続される。 This time t 11 time, the rotational speed of the mechanical oil pump O / P is relatively high, as can be ensured this mechanical oil pump O / P line pressure PL only by discharge oil amount of the hydraulic supply request is generated Not. Therefore, the process proceeds from step S14 to step S19, and it is determined whether or not the electric oil pump M / O / P is stopped. Then, at the time t 11 time, since the electric oil pump M / O / P is operating, the process returns to step S13, while reducing the amount of oil discharged electric oil pump M / O / P, the cooling of the transmission mechanism / Hydraulic supply to lubrication system Lub is continued.
 そして、時刻t12時点において、機械式オイルポンプO/Pの吐出油量のみによって賄っていた変速機構用油圧系Supへの供給油量が油圧供給要求油量を下回ったら、つまり、電動オイルポンプM/O/Pから変速機構用油圧系Supに対して油圧供給を行わせる油圧供給要求が発生したら、油圧供給フラグがONになる。これにより、ステップS14→ステップS15へと進み、電動オイルポンプM/O/Pの吐出油量が所定の第2閾値を下回ったか否かが判断される。
この時刻t12時点では、電動オイルポンプM/O/Pの吐出油量が第2閾値を上回っているので、電動オイルポンプ吐出油量の低下を継続しつつ、変速機構の冷却/潤滑系Lubへの油圧供給が継続される。
Then, at time t 12 the time, when the supply amount of oil to the speed change mechanism hydraulic system Sup had financed only by discharge oil amount of the mechanical oil pump O / P is less than the hydraulic pressure supply request oil amount, that is, the electric oil pump When a hydraulic pressure supply request for supplying hydraulic pressure from the M / O / P to the transmission mechanism hydraulic system Sup is generated, the hydraulic pressure supply flag is turned ON. Thus, the process proceeds from step S14 to step S15, and it is determined whether or not the amount of oil discharged from the electric oil pump M / O / P has fallen below a predetermined second threshold value.
This time t 12 time, since the discharge oil amount of the electric oil pump M / O / P is above the second threshold value, while continuing the lowering of the electric oil pump discharge oil amount, the cooling / lubricating system of the transmission mechanism Lub The hydraulic pressure supply to is continued.
 時刻t13時点において、電動オイルポンプM/O/Pから吐出される作動油の流量が第2閾値に達したら、ステップS15→ステップS16へと進み、切替弁106を油圧供給側に切替制御して、電動オイルポンプ吐出油路105を第2油圧供給油路103に接続する。
これにより、電動オイルポンプM/O/Pから吐出された作動油は、第2油圧供給油路103を流れてライン圧制御弁101に供給され、このライン圧制御弁101を介して変速機構用油圧系Supに供給される油量が増加し、ライン圧PLを確保することができる。
At time t 13 the time, when the flow rate of hydraulic oil discharged from the electric oil pump M / O / P reaches the second threshold value, the process proceeds to step S15 → step S16, the switching control by the switching valve 106 to the hydraulic supply side Then, the electric oil pump discharge oil passage 105 is connected to the second hydraulic supply oil passage 103.
As a result, the hydraulic oil discharged from the electric oil pump M / O / P flows through the second hydraulic pressure supply oil passage 103 and is supplied to the line pressure control valve 101, and for the speed change mechanism via the line pressure control valve 101. The amount of oil supplied to the hydraulic system Sup increases, and the line pressure PL can be secured.
 また、ライン圧制御弁101を介して変速機構用油圧系Supに供給される作動油の流量は、切替弁106が切り替わったことで、機械式オイルポンプO/Pの吐出油量のみであったものが、機械式オイルポンプO/Pの吐出油量と、電動オイルポンプM/O/Pの吐出油量の合計油量になる。
このとき、切替弁106の切り替え前に、予め電動オイルポンプM/O/Pの吐出油量を第2閾値まで低下させているので、切替弁106の切り替えに伴ってライン圧制御弁101に供給されている作動油が増加しても、このときの油量変化速度を所定値α以下に抑制することができる。そのため、ライン圧制御弁101におけるオリフィス101hのフィードバック遅れが発生せず、ライン圧制御弁101での適正な調圧を可能にすることができる。これにより、無段変速機CVTのレシオが変動してショックを発生するライン圧PLのオーバーシュートを防止することができる。
Further, the flow rate of the hydraulic oil supplied to the transmission mechanism hydraulic system Sup via the line pressure control valve 101 is only the discharge oil amount of the mechanical oil pump O / P because the switching valve 106 is switched. This is the total amount of oil discharged from the mechanical oil pump O / P and the amount discharged from the electric oil pump M / O / P.
At this time, before the switching valve 106 is switched, the discharge oil amount of the electric oil pump M / O / P is reduced to the second threshold value in advance, so that it is supplied to the line pressure control valve 101 as the switching valve 106 is switched. Even if the amount of the hydraulic oil being increased increases, the oil amount changing speed at this time can be suppressed to a predetermined value α or less. Therefore, the feedback delay of the orifice 101h in the line pressure control valve 101 does not occur, and proper pressure regulation in the line pressure control valve 101 can be achieved. As a result, it is possible to prevent overshoot of the line pressure PL that causes a shock due to a change in the ratio of the continuously variable transmission CVT.
 その後、ステップS17へと進んで電動オイルポンプM/O/Pの吐出油量を増加し、時刻t14時点において、この電動オイルポンプ吐出油量が油圧供給必要油量に達したら、ステップS18→エンドへ進み、電動オイルポンプM/O/Pの吐出油量を、ライン圧PLを確保するために必要な量に維持すると共に、冷却/潤滑→油圧供給切り替え処理を終了する。 After then, increased discharge oil amount of the electric oil pump M / O / P proceeds to step S17, at time t 14 the time, the electric oil pump discharge oil amount reaches the hydraulic supply oil required amount, step S18 → Proceeding to the end, the discharge oil amount of the electric oil pump M / O / P is maintained at an amount necessary to secure the line pressure PL, and the cooling / lubrication → hydraulic supply switching process is terminated.
 このように、第2クラッチ温度が所定の冷却閾値を下回っているときに、機械式オイルポンプO/Pでの吐出油量が油圧供給要求油量を下回ることで油圧供給要求が発生したときには、電動オイルポンプM/O/Pの吐出油量をライン圧制御弁101で調圧可能な調圧可能油量である第2閾値に至るまで低下させてから、切替弁106を油圧供給側に切り替える。
つまり、切替弁106によって、電動オイルポンプ吐出油路105の接続先を第2油圧供給油路103に切り替える切替制御を行うときは、電動オイルポンプ吐出油量を第2閾値以下になるまで低下させる。
In this way, when the second clutch temperature is below the predetermined cooling threshold and the hydraulic oil supply request is generated when the discharge oil amount at the mechanical oil pump O / P falls below the hydraulic oil supply request oil amount, After switching the discharge oil amount of the electric oil pump M / O / P to the second threshold value, which is the adjustable oil amount that can be adjusted by the line pressure control valve 101, the switching valve 106 is switched to the hydraulic pressure supply side. .
That is, when the switching control is performed by the switching valve 106 to switch the connection destination of the electric oil pump discharge oil passage 105 to the second hydraulic supply oil passage 103, the electric oil pump discharge oil amount is decreased until it becomes equal to or less than the second threshold value. .
 これにより、切替弁106が冷却側に切り替わった際にライン圧制御弁101に供給されている作動油の流量が増加しても、このときのライン圧制御弁101への供給油量変化速度を、ライン圧制御弁101での調圧が可能な所定値α以下に抑制することができ、無段変速機CVTのレシオが変動してしまうライン圧PLのオーバーシュートを防止して、ショックの発生を抑制することができる。 As a result, even if the flow rate of hydraulic oil supplied to the line pressure control valve 101 increases when the switching valve 106 is switched to the cooling side, the rate of change in the amount of oil supplied to the line pressure control valve 101 at this time is increased. The line pressure control valve 101 can control the pressure to be less than a predetermined value α, and can prevent an overshoot of the line pressure PL that causes the ratio of the continuously variable transmission CVT to fluctuate and generate a shock. Can be suppressed.
 また、この実施例1では、図5の示すフローチャートに示すように、第2クラッチ温度が冷却閾値を上回っている間は、油圧供給要求の発生有無を判断しない。つまり、切替弁106を冷却側から油圧供給側に切り替えるためには、第2クラッチCL2が冷却閾値以下の温度になっている必要がある。そのため、油圧供給要求が生じ、且つ、冷却要求が発生しないときに、電動オイルポンプ吐出油路105を第2油圧供給油路103に接続する。
これにより、変速機構用油圧系Supへの油圧供給よりも、変速機構の冷却/潤滑系Lubへ油圧供給の方を確実に優先することができ、第2クラッチCL2が高温になって破損することを防止できる。
Further, in the first embodiment, as shown in the flowchart shown in FIG. 5, while the second clutch temperature exceeds the cooling threshold, it is not determined whether or not the hydraulic pressure supply request is generated. That is, in order to switch the switching valve 106 from the cooling side to the hydraulic pressure supply side, the second clutch CL2 needs to be at a temperature equal to or lower than the cooling threshold. Therefore, the electric oil pump discharge oil passage 105 is connected to the second hydraulic supply oil passage 103 when a hydraulic supply request occurs and a cooling request does not occur.
As a result, the hydraulic pressure supply to the cooling / lubricating system Lub of the transmission mechanism can surely be given priority over the hydraulic supply to the transmission mechanism hydraulic system Sup, and the second clutch CL2 becomes hot and breaks. Can be prevented.
 なお、第2クラッチ温度が冷却閾値以下であって、さらに油圧供給要求が発生しない場合では、図5に示すフローチャートにおいて、ステップS11→ステップS12→ステップS13→ステップS14→ステップS19へと進み、電動オイルポンプM/O/Pが停止される。
これにより、不要なサブモータS/Mの駆動が抑制され、電力消費の悪化を防止することができる。
In the case where the second clutch temperature is equal to or lower than the cooling threshold and no hydraulic pressure supply request is generated, the process proceeds from step S11 to step S12 to step S13 to step S14 to step S19 in the flowchart shown in FIG. Oil pump M / O / P is stopped.
Thereby, unnecessary driving of the sub motor S / M is suppressed, and deterioration of power consumption can be prevented.
 次に、効果を説明する。
 実施例1の車両用油圧制御装置にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the vehicle hydraulic control apparatus according to the first embodiment, the effects listed below can be obtained.
 (1) 走行駆動源(モータ/ジェネレータMG)によって作動される機械式オイルポンプO/Pと、
 前記走行駆動源(モータ/ジェネレータMG)とは別の電動モータ(サブモータS/M)によって作動される電動オイルポンプM/O/Pと、
 変速機構用油圧系Supへ供給するライン圧PLを調圧するライン圧制御弁101と、
 前記機械式オイルポンプO/Pから吐出された作動油を、前記ライン圧制御弁101の入力ポート101aへ供給する第1油圧供給油路102と、
 前記電動オイルポンプM/O/Pから吐出された作動油を、前記ライン圧制御弁101の入力ポート101aへ供給する第2油圧供給油路103と、
 前記電動オイルポンプM/O/Pから吐出された作動油を、変速機構の冷却/潤滑系Lubへ供給する冷却系油路104と、
 前記電動オイルポンプM/O/Pの吐出油路(電動オイルポンプ吐出油路105)に設けられ、該吐出油路(電動オイルポンプ吐出油路105)を、前記第2油圧供給油路103と前記冷却系油路104とのいずれか一方に接続する切替弁106と、
 を備える構成とした。
 これにより、機械式オイルポンプ停止時の変速機構への油圧供給と変速機構の冷却機能の両立を図りつつ、車載性の向上やコスト低減を図ることができる。
(1) a mechanical oil pump O / P operated by a travel drive source (motor / generator MG);
An electric oil pump M / O / P operated by an electric motor (sub motor S / M) different from the travel drive source (motor / generator MG);
A line pressure control valve 101 for regulating the line pressure PL to be supplied to the transmission system hydraulic system Sup;
A first hydraulic supply oil passage 102 for supplying hydraulic oil discharged from the mechanical oil pump O / P to the input port 101a of the line pressure control valve 101;
A second hydraulic supply oil passage 103 for supplying hydraulic oil discharged from the electric oil pump M / O / P to the input port 101a of the line pressure control valve 101;
A cooling system oil passage 104 for supplying the hydraulic oil discharged from the electric oil pump M / O / P to the cooling / lubricating system Lub of the transmission mechanism;
A discharge oil passage (electric oil pump discharge oil passage 105) of the electric oil pump M / O / P is provided, and the discharge oil passage (electric oil pump discharge oil passage 105) is connected to the second hydraulic supply oil passage 103. A switching valve 106 connected to one of the cooling system oil passages 104;
It was set as the structure provided with.
As a result, it is possible to improve the onboard performance and reduce the cost while achieving both the hydraulic pressure supply to the transmission mechanism when the mechanical oil pump is stopped and the cooling function of the transmission mechanism.
 (2) 前記機械式オイルポンプO/Pの吐出油量と、前記電動オイルポンプM/O/Pの吐出油量と、前記切替弁106と、を制御する回路制御手段(統合コントローラ10)を備え、
 前記回路制御手段(統合コントローラ10)は、前記切替弁106によって、前記吐出油路(電動オイルポンプ吐出油路105)の接続先を前記第2油圧供給油路103から前記冷却系油路104に切り替えるとき、前記機械式オイルポンプO/Pの吐出油量と前記電動オイルポンプM/O/Pの吐出油量との合計油量により、前記変速機構用油圧系Supでの必要油量(=油圧供給必要油量)を確保すると共に、前記電動オイルポンプM/O/Pの吐出油量を前記ライン圧制御弁101で調圧可能な調圧可能油量(第1閾値)以下に低下する構成とした。
 これにより、(1)の効果に加え、油圧供給→冷却/潤滑切り替え時に、無段変速機CVTの破損につながるライン圧 PLのアンダーシュートを防止することができる。
(2) circuit control means (integrated controller 10) for controlling the discharge oil amount of the mechanical oil pump O / P, the discharge oil amount of the electric oil pump M / O / P, and the switching valve 106; Prepared,
The circuit control means (integrated controller 10) connects the connection destination of the discharge oil passage (electric oil pump discharge oil passage 105) from the second hydraulic supply oil passage 103 to the cooling system oil passage 104 by the switching valve 106. At the time of switching, the required oil amount in the hydraulic system Sup for the transmission mechanism is calculated based on the total oil amount of the discharge oil amount of the mechanical oil pump O / P and the discharge oil amount of the electric oil pump M / O / P (= The required oil amount for hydraulic supply) is secured, and the discharge oil amount of the electric oil pump M / O / P is reduced below the adjustable oil amount (first threshold) that can be adjusted by the line pressure control valve 101. The configuration.
Thereby, in addition to the effect of (1), undershoot of the line pressure PL that leads to breakage of the continuously variable transmission CVT can be prevented at the time of switching from hydraulic pressure supply to cooling / lubrication.
 (3) 前記走行駆動源(モータ/ジェネレータMG)と駆動輪(左右駆動輪LT,RT)の間に、スリップ締結可能な摩擦締結要素(第2クラッチCL2)を配置し、
 前記回路制御手段(統合コントローラ10)は、前記吐出油路(電動オイルポンプ吐出油路105)の接続先を切り替える際、前記合計油量により前記変速機構用油圧系Supでの必要油量を確保している間、前記摩擦締結要素(第2クラッチCL2)をスリップ締結する構成とした。
 これにより、(2)の効果に加え、機械式オイルポンプO/Pの吐出油量と電動オイルポンプM/O/Pの吐出油量との合計油量によって油圧供給必要油量を確保しつつ、電動オイルポンプ吐出油量を低下させるときに、ドライバーにショックや違和感を感じさせることを防止できる。
(3) A friction engagement element (second clutch CL2) capable of slip engagement is disposed between the travel drive source (motor / generator MG) and the drive wheels (left and right drive wheels LT, RT),
The circuit control means (integrated controller 10) secures a required oil amount in the transmission mechanism hydraulic system Sup based on the total oil amount when switching the connection destination of the discharge oil passage (electric oil pump discharge oil passage 105). During this time, the frictional engagement element (second clutch CL2) is slip-engaged.
As a result, in addition to the effect of (2), the required oil supply amount is ensured by the total amount of oil discharged from the mechanical oil pump O / P and the amount discharged from the electric oil pump M / O / P. When the amount of oil discharged from the electric oil pump is reduced, it is possible to prevent the driver from feeling shocked or uncomfortable.
 (4) 前記機械式オイルポンプO/Pの吐出油量と、前記電動オイルポンプM/O/Pの吐出油量と、前記切替弁106と、を制御する回路制御手段(統合コントローラ10)を備え、
 前記回路制御手段(統合コントローラ10)は、前記切替弁106によって、前記吐出油路(電動オイルポンプ吐出油路105)の接続先を前記冷却系油路104から前記第2油圧供給油路103に切り替えるとき、前記電動オイルポンプM/O/Pの吐出油量を、前記ライン圧制御弁101で調圧可能な調圧可能油量(第2閾値)以下に低下する構成とした。
 これにより、(1)から(3)のいずれかの効果に加え、冷却/潤滑→油圧供給切り替え時に、無段変速機CVTのレシオが変動してしまうライン圧PLのオーバーシュートを防止することができる。
(4) circuit control means (integrated controller 10) for controlling the discharge oil amount of the mechanical oil pump O / P, the discharge oil amount of the electric oil pump M / O / P, and the switching valve 106; Prepared,
The circuit control means (integrated controller 10) connects the connection destination of the discharge oil passage (electric oil pump discharge oil passage 105) from the cooling system oil passage 104 to the second hydraulic supply oil passage 103 by the switching valve 106. When switching, the discharge oil amount of the electric oil pump M / O / P is reduced to a pressure adjustable oil amount (second threshold value) that can be adjusted by the line pressure control valve 101.
As a result, in addition to any of the effects (1) to (3), it is possible to prevent overshoot of the line pressure PL that causes the ratio of the continuously variable transmission CVT to fluctuate when switching between cooling / lubrication and hydraulic pressure supply. it can.
 (5) 前記機械式オイルポンプO/Pの吐出油量と、前記電動オイルポンプM/O/Pの吐出油量と、前記切替弁106と、を制御する回路制御手段(統合コントローラ10)を備え、
 前記回路制御手段(統合コントローラ10)は、前記電動オイルポンプM/O/Pから前記変速機構の冷却/潤滑系Lubに油圧供給をさせる冷却要求が生じた場合、前記切替弁106によって前記吐出油路(電動オイルポンプ吐出油路105)を前記冷却系油路104に接続する構成とした。
 これにより、(1)から(4)のいずれかの効果に加え、変速機構用油圧系Supへの油圧供給よりも、変速機構の冷却/潤滑系Lubへ油圧供給の方を優先させることができ、熱による変速機構の不具合の発生を防止することができる。
(5) circuit control means (integrated controller 10) for controlling the discharge oil amount of the mechanical oil pump O / P, the discharge oil amount of the electric oil pump M / O / P, and the switching valve 106; Prepared,
The circuit control means (integrated controller 10) causes the switching valve 106 to discharge the discharged oil when a cooling request for supplying hydraulic pressure from the electric oil pump M / O / P to the cooling / lubricating system Lub of the transmission mechanism occurs. The passage (electric oil pump discharge oil passage 105) is connected to the cooling system oil passage 104.
As a result, in addition to any of the effects (1) to (4), the hydraulic supply to the cooling / lubricating system Lub of the transmission mechanism can be given priority over the hydraulic supply to the hydraulic system Sup for the transmission mechanism. It is possible to prevent the occurrence of a malfunction of the transmission mechanism due to heat.
 (6) 前記回路制御手段(統合コントローラ10)は、前記電動オイルポンプM/O/Pから前記変速機構用油圧系Supへ油圧供給をさせる油圧供給要求が生じ、且つ、前記冷却要求が発生していない場合、前記切替弁106によって前記吐出回路(電動オイルポンプ吐出油路105)を前記第2油圧供給油路103に接続する構成とした。
 これにより、(5)の効果に加え、変速機構用油圧系Supへの油圧供給よりも、変速機構の冷却/潤滑系Lubへ油圧供給の方を確実に優先させることができ、熱による変速機構の不具合の発生を防止することができる。
(6) The circuit control means (integrated controller 10) generates a hydraulic pressure supply request for supplying hydraulic pressure from the electric oil pump M / O / P to the transmission mechanism hydraulic system Sup, and the cooling request is generated. If not, the switching valve 106 connects the discharge circuit (electric oil pump discharge oil passage 105) to the second hydraulic supply oil passage 103.
As a result, in addition to the effect of (5), it is possible to reliably give priority to the hydraulic supply to the cooling / lubricating system Lub of the transmission mechanism over the hydraulic supply to the hydraulic system Sup for the transmission mechanism. Can be prevented from occurring.
 以上、本発明の車両用油圧制御装置を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As mentioned above, although the vehicle hydraulic control apparatus of the present invention has been described based on the first embodiment, the specific configuration is not limited to the first embodiment, and the invention according to each claim of the claims is not limited thereto. Design changes and additions are allowed without departing from the gist.
 実施例1では、本発明の車両用油圧制御装置をエンジンEngとモータ/ジェネレータMGを有するハイブリッド車両に適用する例を示したが、これに限らない。モータ/ジェネレータMGのみを搭載した電気自動車や、アイドルストップするエンジンEngのみを搭載したエンジン車、さらにプラグインハイブリッド車や燃料電池車等であっても適用することができる。 In the first embodiment, the vehicle hydraulic control apparatus of the present invention is applied to a hybrid vehicle having an engine Eng and a motor / generator MG. However, the present invention is not limited to this. The present invention can also be applied to an electric vehicle equipped only with a motor / generator MG, an engine vehicle equipped only with an engine Eng that stops idling, a plug-in hybrid vehicle, a fuel cell vehicle, and the like.
 また、実施例1では、走行駆動源をモータ/ジェネレータMGとし、走行駆動源と駆動輪の間に配置した摩擦締結要素を第2クラッチCL2とする例を示したが、これに限らない。例えば、機械式オイルポンプを作動させる走行駆動源をエンジンEngとし、走行駆動源と駆動輪の間に配置した摩擦締結要素を第1クラッチCL1としてもよい。 In the first embodiment, the travel drive source is the motor / generator MG, and the frictional engagement element disposed between the travel drive source and the drive wheels is the second clutch CL2. However, the present invention is not limited to this. For example, the travel drive source for operating the mechanical oil pump may be the engine Eng, and the frictional engagement element disposed between the travel drive source and the drive wheels may be the first clutch CL1.
 さらに、実施例1では、変速機構用油圧系Supを、無段変速機CVTのプライマリプーリPri、セカンダリプーリSec、第2クラッチCL2に対し、ライン圧PLを元圧とした制御油圧を供給する回路とする例を示したが、例えば、第1クラッチCL1に対して制御油圧を供給する回路を含んでいてもよい。つまり、「変速機構用油圧系」は、変速機に設けられたコントロールバルブユニットを介しての油圧供給が行われる回路である。
また、変速機構としては、無段変速機CVTに限らず、有段の自動変速機を含むものであってもよい。
Further, in the first embodiment, a circuit for supplying the control mechanism hydraulic pressure Sup to the primary pulley Pri, the secondary pulley Sec, and the second clutch CL2 of the continuously variable transmission CVT by using the transmission mechanism hydraulic system Sup as a source pressure. However, for example, a circuit for supplying control hydraulic pressure to the first clutch CL1 may be included. That is, the “transmission mechanism hydraulic system” is a circuit in which hydraulic pressure is supplied via a control valve unit provided in the transmission.
Further, the speed change mechanism is not limited to the continuously variable transmission CVT, and may include a stepped automatic transmission.
関連出願の相互参照Cross-reference of related applications
 本出願は、2014年9月17日に日本国特許庁に出願された特願2014-189158に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2014-189158 filed with the Japan Patent Office on September 17, 2014, the entire disclosure of which is fully incorporated herein by reference.

Claims (6)

  1.  走行駆動源によって作動される機械式オイルポンプと、
     前記走行駆動源とは別の電動モータによって作動される電動オイルポンプと、
     変速機構用油圧系へ供給するライン圧を調圧するライン圧制御弁と、
     前記機械式オイルポンプから吐出された作動油を、前記ライン圧制御弁の入力ポートへ供給する第1油圧供給油路と、
     前記電動オイルポンプから吐出された作動油を、前記ライン圧制御弁の入力ポートへ供給する第2油圧供給油路と、
     前記電動オイルポンプから吐出された作動油を、変速機構の冷却/潤滑系へ供給する冷却系油路と、
     前記電動オイルポンプの吐出油路に設けられ、該吐出油路を、前記第2油圧供給油路と前記冷却系油路とのいずれか一方に接続する切替弁と、
     を備えたことを特徴とする車両用油圧制御装置。
    A mechanical oil pump operated by a traveling drive source;
    An electric oil pump operated by an electric motor different from the travel drive source;
    A line pressure control valve that regulates the line pressure supplied to the hydraulic system for the transmission mechanism;
    A first hydraulic supply oil passage for supplying hydraulic oil discharged from the mechanical oil pump to an input port of the line pressure control valve;
    A second hydraulic supply oil passage for supplying hydraulic oil discharged from the electric oil pump to an input port of the line pressure control valve;
    A cooling system oil passage for supplying hydraulic oil discharged from the electric oil pump to a cooling / lubricating system of the transmission mechanism;
    A switching valve provided in a discharge oil passage of the electric oil pump, and connecting the discharge oil passage to either the second hydraulic supply oil passage or the cooling system oil passage;
    A vehicle hydraulic control apparatus comprising:
  2.  請求項1に記載された車両用油圧制御装置において、
     前記機械式オイルポンプの吐出油量と、前記電動オイルポンプの吐出油量と、前記切替弁と、を制御する回路制御手段を備え、
     前記回路制御手段は、前記切替弁によって、前記吐出油路の接続先を前記第2油圧供給油路から前記冷却系油路に切り替えるとき、前記機械式オイルポンプの吐出油量と前記電動オイルポンプの吐出油量との合計油量により、前記変速機構用油圧系での必要油量を確保すると共に、前記電動オイルポンプの吐出油量を、前記ライン圧制御弁で調圧可能な調圧可能油量以下に低下する
     ことを特徴とする車両用油圧制御装置。
    In the vehicle hydraulic control device according to claim 1,
    Circuit control means for controlling the discharge oil amount of the mechanical oil pump, the discharge oil amount of the electric oil pump, and the switching valve;
    The circuit control means uses the switching valve to switch the connection destination of the discharge oil passage from the second hydraulic supply oil passage to the cooling system oil passage and the discharge oil amount of the mechanical oil pump and the electric oil pump. The required oil amount in the hydraulic system for the transmission mechanism is ensured by the total oil amount with the amount of discharged oil, and the discharge oil amount of the electric oil pump can be regulated by the line pressure control valve. A hydraulic control device for a vehicle, wherein the hydraulic pressure control device drops below an oil amount.
  3.  請求項2に記載された車両用油圧制御装置において、
     前記走行駆動源と駆動輪との間に、スリップ締結可能な摩擦締結要素を配置し、
     前記回路制御手段は、前記吐出油路の接続先を切り替える際、前記合計油量により前記変速機構用油圧系での必要油量を確保している間、前記摩擦締結要素をスリップ締結する
     ことを特徴とする車両用油圧制御装置。
    In the vehicle hydraulic control device according to claim 2,
    Between the traveling drive source and the drive wheel, a friction fastening element capable of slip fastening is disposed,
    When the circuit control means switches the connection destination of the discharge oil path, the circuit control means slip-fastens the friction engagement element while securing the required oil amount in the transmission mechanism hydraulic system by the total oil amount. A vehicle hydraulic control device.
  4.  請求項1から請求項3のいずれか一項に記載された車両用油圧制御装置において、
     前記機械式オイルポンプの吐出油量と、前記電動オイルポンプの吐出油量と、前記切替弁と、を制御する回路制御手段を備え、
     前記回路制御手段は、前記切替弁によって、前記吐出油路の接続先を前記冷却系油路から前記第2油圧供給油路に切り替えるとき、前記電動オイルポンプの吐出油量を、前記ライン圧制御弁で調圧可能な調圧可能油量以下に低下する
     ことを特徴とする車両用油圧制御装置。
    In the vehicle hydraulic control device according to any one of claims 1 to 3,
    Circuit control means for controlling the discharge oil amount of the mechanical oil pump, the discharge oil amount of the electric oil pump, and the switching valve;
    The circuit control means uses the switching valve to switch the discharge oil amount of the electric oil pump when the connection destination of the discharge oil passage is switched from the cooling system oil passage to the second hydraulic supply oil passage. A hydraulic control apparatus for a vehicle, characterized in that the oil pressure drops below an adjustable oil amount that can be adjusted by a valve.
  5.  請求項1から請求項4のいずれか一項に記載された車両用油圧制御装置において、
     前記機械式オイルポンプの吐出油量と、前記電動オイルポンプの吐出油量と、前記切替弁と、を制御する回路制御手段を備え、
     前記回路制御手段は、前記電動オイルポンプから前記変速機構の冷却/潤滑系に油圧供給をさせる冷却要求が生じた場合、前記切替弁によって前記吐出油路を前記冷却系油路に接続する
     ことを特徴とする車両用油圧制御装置。
    In the vehicle hydraulic control device according to any one of claims 1 to 4,
    Circuit control means for controlling the discharge oil amount of the mechanical oil pump, the discharge oil amount of the electric oil pump, and the switching valve;
    The circuit control means connects the discharge oil passage to the cooling system oil passage by the switching valve when a cooling request for supplying hydraulic pressure from the electric oil pump to the cooling / lubrication system of the transmission mechanism is generated. A vehicle hydraulic control device.
  6.  請求項5に記載された車両用油圧制御装置において、
     前記回路制御手段は、前記電動オイルポンプから前記変速機構用油圧系へ油圧供給をさせる油圧供給要求が生じ、且つ、前記冷却要求が発生していない場合、前記切替弁によって前記吐出回路を前記第2油圧供給油路に接続する
     ことを特徴とする車両用油圧制御装置。
    In the vehicle hydraulic control device according to claim 5,
    When a hydraulic pressure supply request for supplying hydraulic pressure from the electric oil pump to the hydraulic mechanism for the transmission mechanism is generated and the cooling request is not generated, the circuit control means causes the switching valve to switch the discharge circuit to the first circuit. 2. A hydraulic control device for a vehicle, wherein the hydraulic control device is connected to a hydraulic pressure oil passage.
PCT/JP2015/075241 2014-09-17 2015-09-04 Vehicle hydraulic control device WO2016043071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016548835A JP6265273B2 (en) 2014-09-17 2015-09-04 Hydraulic control device for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014189158 2014-09-17
JP2014-189158 2014-09-17

Publications (1)

Publication Number Publication Date
WO2016043071A1 true WO2016043071A1 (en) 2016-03-24

Family

ID=55533111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075241 WO2016043071A1 (en) 2014-09-17 2015-09-04 Vehicle hydraulic control device

Country Status (2)

Country Link
JP (1) JP6265273B2 (en)
WO (1) WO2016043071A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021588A (en) * 2016-08-02 2018-02-08 株式会社Subaru Oil supply system
WO2018057310A1 (en) * 2016-09-21 2018-03-29 Fca Us Llc Selective response control of dc-dc converters in mild hybrid electric vehicles at high voltage failure
JP2018204706A (en) * 2017-06-05 2018-12-27 ジヤトコ株式会社 Transmission and control method of transmission
JP2020125843A (en) * 2019-02-06 2020-08-20 アイシン・エィ・ダブリュ株式会社 Hydraulic control unit of vehicular drive device, and hybrid vehicle
JP2021060060A (en) * 2019-10-04 2021-04-15 マツダ株式会社 Lubrication control device for automatic transmission

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038236A (en) * 2005-10-17 2006-02-09 Toyota Motor Corp Oil pressure control device
JP2008069837A (en) * 2006-09-13 2008-03-27 Aisin Seiki Co Ltd Hydraulic pressure feeder
JP2008536060A (en) * 2005-03-22 2008-09-04 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト Method and apparatus for controlling the oil supply to automatic transmissions and starting elements
JP2008267498A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Vehicular oil supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008536060A (en) * 2005-03-22 2008-09-04 ツェットエフ、フリードリッヒスハーフェン、アクチエンゲゼルシャフト Method and apparatus for controlling the oil supply to automatic transmissions and starting elements
JP2006038236A (en) * 2005-10-17 2006-02-09 Toyota Motor Corp Oil pressure control device
JP2008069837A (en) * 2006-09-13 2008-03-27 Aisin Seiki Co Ltd Hydraulic pressure feeder
JP2008267498A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Vehicular oil supply device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021588A (en) * 2016-08-02 2018-02-08 株式会社Subaru Oil supply system
WO2018057310A1 (en) * 2016-09-21 2018-03-29 Fca Us Llc Selective response control of dc-dc converters in mild hybrid electric vehicles at high voltage failure
US10164522B2 (en) 2016-09-21 2018-12-25 Fca Us Llc Selective response control of DC-DC converters in mild hybrid electric vehicles
JP2018204706A (en) * 2017-06-05 2018-12-27 ジヤトコ株式会社 Transmission and control method of transmission
JP2020125843A (en) * 2019-02-06 2020-08-20 アイシン・エィ・ダブリュ株式会社 Hydraulic control unit of vehicular drive device, and hybrid vehicle
JP7131419B2 (en) 2019-02-06 2022-09-06 株式会社アイシン HYDRAULIC CONTROL DEVICE FOR VEHICLE DRIVE AND HYBRID VEHICLE
JP2021060060A (en) * 2019-10-04 2021-04-15 マツダ株式会社 Lubrication control device for automatic transmission

Also Published As

Publication number Publication date
JPWO2016043071A1 (en) 2017-04-27
JP6265273B2 (en) 2018-01-24

Similar Documents

Publication Publication Date Title
US10576965B2 (en) Starting control device for vehicle and starting control method
US10023196B2 (en) Control device for vehicle
JP6478756B2 (en) Hydraulic control unit for vehicle
JP6265273B2 (en) Hydraulic control device for vehicle
JP6374431B2 (en) Drive control mechanism and drive control device
JP6410648B2 (en) Hydraulic control device for vehicle
JP2011528780A (en) Transmission system hydraulic system having a transmission main pump and an auxiliary pump
JP6429697B2 (en) Hydraulic control device for vehicle
JP6393907B2 (en) Hydraulic control device for vehicle
JP2000046165A (en) Control system for vehicular driver
JP6320541B2 (en) Hydraulic control device for hybrid vehicle
JP6354427B2 (en) Hydraulic control device for vehicle
JPWO2014156931A1 (en) Hybrid vehicle failure determination device and failure determination method thereof
JP6497873B2 (en) Hydraulic control device for continuously variable transmission
JP6377465B2 (en) Hydraulic control device for continuously variable transmission
JP2015169181A (en) control device
KR20190030291A (en) Device and method for controlling slip of engine clutch for hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841409

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841409

Country of ref document: EP

Kind code of ref document: A1