WO2016043017A1 - Quadrangular cell case for vehicle cell and method for manufacturing same - Google Patents

Quadrangular cell case for vehicle cell and method for manufacturing same Download PDF

Info

Publication number
WO2016043017A1
WO2016043017A1 PCT/JP2015/074375 JP2015074375W WO2016043017A1 WO 2016043017 A1 WO2016043017 A1 WO 2016043017A1 JP 2015074375 W JP2015074375 W JP 2015074375W WO 2016043017 A1 WO2016043017 A1 WO 2016043017A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
thickness
battery case
case
rectangular
Prior art date
Application number
PCT/JP2015/074375
Other languages
French (fr)
Japanese (ja)
Inventor
小西 晴之
寛子 加嶋
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015064638A external-priority patent/JP6030178B2/en
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201580027384.9A priority Critical patent/CN106463655A/en
Priority to KR1020177003358A priority patent/KR101902132B1/en
Publication of WO2016043017A1 publication Critical patent/WO2016043017A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/103Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a prismatic battery case for an in-vehicle battery that is used in a state in which a large number of battery cases are arranged in parallel and incorporated in a module, and a method for manufacturing the same.
  • Li-ion batteries have been mainly used in the mobile field such as mobile phones and notebook PCs.
  • Li-ion batteries have been used for HV cars, plug-in hybrid cars, and electric cars for automobiles (in-vehicle use). ing.
  • the battery case has a flat (cross-sectional) rectangular shape (square shape) and a large ratio of the width of the wide side surface to the width of the narrow side surface (the short side is significantly smaller than the long side). It is a battery case.
  • a prismatic battery using such a thin prismatic battery case is suitable for reducing the thickness and weight of the device, and has a high space effect.
  • the Li-ion battery case for automobiles is also referred to as a rectangular battery case for in-vehicle batteries, a battery case for in-vehicle batteries, or simply a rectangular battery case or a battery case.
  • a rectangular battery case for an in-vehicle battery internal organs such as a battery foil, an electrolytic solution, and a current collector are housed in an internal space, and then the opening is closed with a battery lid (hereinafter simply referred to as a lid). It is widely performed that the opening of the battery case and the joint of the battery lid are sealed and welded using laser welding.
  • an iron metal outer can such as a cold rolled steel sheet of carbon steel is mainly proposed as a rectangular battery case for portable equipment such as a mobile phone.
  • the battery since the battery is used as a single battery, strength and rigidity are required even in a thin rectangular battery case.
  • cover is about 25% or less than the thickness of an intermediate part (steady part) in order to improve sealing strength.
  • the metal outer can is made to be partially thick.
  • the lid and body (can) of the rectangular battery case for in-vehicle batteries is made of a molded product obtained by integrally pressing an aluminum alloy plate (cold rolled plate) material from steel to aluminum alloy, corrosion resistance
  • the present invention has been made in view of such a problem, and is capable of stably performing the sealing welding, and enables a sound welded portion to be formed.
  • An object is to provide a manufacturing method.
  • the gist of the in-vehicle battery square battery case of the present invention is integrally formed from a single material aluminum alloy plate into a case having a rectangular cross section having a bottom, a side wall, and an opening.
  • the thickness of the side wall is reduced to a range of 0.2 to 0.6 mm, and the thickness of the bottom is increased to a thickness of 0.6 to 1.0 mm.
  • the thickness of the upper part of the side wall is partially thickened in advance so as to protrude toward the inside of the case.
  • the rectangular battery case 1 is used as a vehicle battery as a premise. That is, a large number of battery cases 1 are arranged in parallel and used in a module. For this reason, in view of space efficiency, the battery case is made of a flat and thin aluminum alloy having a rectangular cross-sectional shape each having a bottom, a side wall, and an opening.
  • the rectangular battery case 1 basically includes a rectangular (rectangular in plan view) bottom 6, four side walls 2, 3, 4, 5 rising from each peripheral edge of the rectangular bottom 6, and the side walls 2, 3. 4 and 5 has a rectangular tube shape integrally having a rectangular opening 7 on the side of the upper ends 2a, 3a, 4a and 5a.
  • the rectangular shape referred to in the present invention includes a rectangular shape or a square shape, including the following description, or a shape that approximates a rectangular shape or a square shape, even if these shapes are not themselves.
  • the thickness (plate thickness) t6 of the rectangular bottom portion 6 is in the range of 0.6 to 1.0 mm, and the thickness (plate thickness) t2, t3 of the stationary portions 2b, 3b, 4b, 5b of the side walls 2, 3, 4, 5 t4 and t5 are selected from a range of 0.2 to 0.6 mm, and are made different from each other by the above-described forming of a plate having a uniform thickness. That is, it has a differential thickness square tube shape in which the thicknesses of these parts are different.
  • FIG. 4 shows a laser beam from the upper side to the lower side toward the boundary (welded part) between the peripheral edge portions 8a and 8b of the lid 8 and the upper end portions 2a and 3a of the side walls, as indicated by a laser incident line X indicated by an arrow.
  • FIG. 2 shows incident top-sealed sealing welding.
  • FIG. 5 shows that the laser is directed horizontally from the lateral direction toward the boundary (welded portion) between the peripheral edge portions 8a and 8b of the lid 8 and the upper end portions 2a and 3a of the side walls or the upper portions 2c and 3c of the side walls.
  • a laser incident line X shown in FIG.
  • Laser welding in sealing welding can be performed by using a well-known laser welding machine, such as a semiconductor excitation pulse transmission type YAG laser, a disk laser, or a fiber laser. .
  • a well-known laser welding machine such as a semiconductor excitation pulse transmission type YAG laser, a disk laser, or a fiber laser.
  • the penetration depth H of the beads shown in FIGS. The thickness of these side walls is 80% or more. Therefore, as the thickness of the side wall 21 is reduced to the range of 0.2 to 0.6 mm, there is no room for the thickness of the side wall 21 with respect to the penetration depth H of the bead. Due to the characteristics of the aluminum alloy, depending on the welding conditions such as increasing the laser output, fiber diameter, peak output, and welding speed, the shape of the unstable bead 22 such that the tip 22a penetrates the upper portion 21a of the side wall. It is easy to become.
  • FIGS. Thickening the side wall:
  • the upper portions of the side walls 2, 3, 4, and 5 that are sealed and welded to the lid 8 are shown in FIGS.
  • 2c, 3c, 4c, and 5c partially than the thickness of the steady portions 2b, 3b, 4b, and 5b of the side walls so as to be thicker than the penetration depth H of the beads formed by the sealing welding.
  • the thickness is increased in advance prior to the sealing welding.
  • Each of the upper portions 2c, 3c, 4c, and 5c of each side wall is partially thickened in advance so as to protrude only toward the inside of the rectangular battery case 1 or to swell as shown in FIGS. ing.
  • the thickness (plate thickness) of the steady portions 2b, 3b, 4b, and 5b of each side wall: t2, t3, t4, and t5 are selected from the range of 0.2 to 0.6 mm as described above.
  • the thickness (plate thickness) of the upper portions 2c, 3c, 4c, and 5c of the side walls: t2c, t3c, t4c, and t5c are made thicker than the thicknesses t2, t3, t4, and t5 of these stationary portions.
  • the selection range and allowable range of welding conditions are increased. And the stable welding becomes possible, and there is an effect that a stable and healthy bead 9 is formed. That is, the effect that the bead 9 does not penetrate the upper part of the side wall, relaxes the allowable range of the sealing welding condition, and stabilizes the welding condition is great.
  • the present invention makes it possible to perform stable laser welding on the premise of the basic structure of the rectangular battery case (including the thickness range of the lid 8, the rectangular bottom 6 and the side wall).
  • the joint strength depends on the penetration depth H of the bead 9.
  • the bead penetration depth H is within the range of the side walls 2, 3, 4, 5 in order to ensure sufficient joint strength within the range of sealing welding conditions by lasers that are generally used. It is preferable that the thickness is 60% or more, preferably 80% or more of the thickness of these side walls with respect to the thickness t2, t3, t4, t5 of the stationary part.
  • the thickness (plate) of the upper portions 2c, 3c, 4c, and 5c of each side wall is used as a guide for thickening the upper thick portions 2c, 3c, 4c, and 5c of the side walls with respect to the penetration depth H of the beads.
  • Thickness): t2c, t3c, t4c, and t5c are partially thickened by 30% or more, more preferably 40% or more of the thicknesses t2, t3, t4, and t5 of the steady portions of the side walls 2, 3, 4, and 5, respectively.
  • the thickening may be performed over the entire length and the entire width of each of the upper portions 2c, 3c, 4c, and 5c of the side walls where the beads 9 are formed by sealing and welding. Only the upper part of the side wall where the bead 9 is formed by welding may be selectively performed. However, the upper part and the upper end part of each side wall that is not sealed and welded may be thickened in view of the ease of thickening processing described later.
  • Preferred processing method for thickening the upper side wall As a processing method for increasing the thickness of each of the side wall upper portions 2c, 3c, 4c, and 5c, a processing method that is preferable to the compression processing of FIG. 6 is shown in FIGS. Show.
  • the battery case 1a obtained in the processing step of FIG. 9 also has a thickness of the upper portions 2c, 3c, 4c, and 5c of the side wall of the rectangular battery case made of an aluminum alloy plate formed body, which is larger than the thickness of the steady portion of the side wall.
  • the thickness can be partially increased toward the inside of the rectangular battery case by an amount corresponding to the amount of beads formed.

Abstract

 The present invention is a quadrangular cell case 1 for a vehicle cell, wherein a bottom part 6, lateral walls 2, 3, 4, 5, and an opening part 7 are integrally formed from one sheet of an aluminum alloy plate into a case that has each of these parts and is rectangular in transverse cross-section; and, before a lid is seal-welded to the opening 7, upper portions 2c, 3c, 4c, 5c of the lateral walls 2, 3, 4, 5 to be welded are locally increased in thickness so as to protrude into the cell case. The quadrangular cell case 1 for a vehicle cell is made of aluminum alloy, and it is possible to form a bead configuration that has stabilized during seal-welding, and to form sound weld portions.

Description

車載電池用の角形電池ケースおよびその製造方法Rectangular battery case for in-vehicle battery and manufacturing method thereof
 本発明は、電池ケース同士が多数並列され、モジュールに組み込まれて使用される車載電池用の角形電池ケースおよびその製造方法に関するものである。 The present invention relates to a prismatic battery case for an in-vehicle battery that is used in a state in which a large number of battery cases are arranged in parallel and incorporated in a module, and a method for manufacturing the same.
 Liイオン電池は、従来から、携帯電話やノートPCなどのモバイル分野で主として用いられてきたが、近年では、自動車用(車載用)として、HV車や、プラグインハイブリッド車、電気自動車に用いられている。 Conventionally, Li-ion batteries have been mainly used in the mobile field such as mobile phones and notebook PCs. However, in recent years, Li-ion batteries have been used for HV cars, plug-in hybrid cars, and electric cars for automobiles (in-vehicle use). ing.
 これら自動車用のLiイオン電池は、大きな電力が必要なため、限られた車載スペースに、多数の電池ケース同士が互いに並列され、モジュールに組み込まれて収納される。このため、互いに並列しやすく、スペース効果が高い形状で、しかも実装効率が高く、放熱性能にも優れ、過大な温度上昇を避けることが重要となる。 Since these Li-ion batteries for automobiles require a large amount of power, a large number of battery cases are arranged in parallel in a limited in-vehicle space, and are incorporated and stored in a module. For this reason, it is important to avoid the excessive temperature rise because it is easy to parallel to each other, has a high space effect, has high mounting efficiency, has excellent heat dissipation performance.
 このため、その電池ケースは、横断面形状が矩形(角型)で、側面の広幅面の幅と狭幅面の幅の比の大きい(長辺に比して短辺が著しく小さい)扁平形の電池ケースとなっている。このような薄型の角形電池ケースを用いた角形電池は、機器の薄型化や軽量化に適し、且つスペース効果も高い。以上のような自動車用のLiイオン電池ケースを、以下では、車載電池用の角形電池ケース、車載電池用の電池ケース、あるいは単に角形電池ケースあるいは電池ケースとも言う。 For this reason, the battery case has a flat (cross-sectional) rectangular shape (square shape) and a large ratio of the width of the wide side surface to the width of the narrow side surface (the short side is significantly smaller than the long side). It is a battery case. A prismatic battery using such a thin prismatic battery case is suitable for reducing the thickness and weight of the device, and has a high space effect. Hereinafter, the Li-ion battery case for automobiles is also referred to as a rectangular battery case for in-vehicle batteries, a battery case for in-vehicle batteries, or simply a rectangular battery case or a battery case.
 このような車載電池用の角形電池ケースは、内部空間に、電池箔や電解液、集電体などの内臓物を収めたのち、前記開口部を電池蓋(以下、単に蓋と言う)で塞ぎ、電池ケースの前記開口部と電池蓋の接合部とを、レーザ溶接を使って封止溶接することが広く行われている。 In such a rectangular battery case for an in-vehicle battery, internal organs such as a battery foil, an electrolytic solution, and a current collector are housed in an internal space, and then the opening is closed with a battery lid (hereinafter simply referred to as a lid). It is widely performed that the opening of the battery case and the joint of the battery lid are sealed and welded using laser welding.
 従来から、このような角形電池ケースの機能性を高めるために、角形電池ケース各部の肉厚の配分を工夫した事例などが種々提案されている。 Conventionally, in order to enhance the functionality of such a rectangular battery case, various examples have been proposed in which the thickness distribution of each part of the rectangular battery case is devised.
 例えば、特許文献1では、携帯電話などのポ-タブル機器用の角形電池ケースとして、主として、炭素鋼の冷延鋼板などの鉄製の金属外装缶が提案されている。同文献では、電池単品で使う用途であるため、薄肉化された角形電池ケースでも強度や剛性を必要とする。このために、蓋により封口される、開口部周辺部の壁上部厚み(封口部周辺側厚)を、封口強度を向上するために、中間部(定常部)の厚みよりも、約25%以下程度、部分的に厚くなるように金属外装缶を製作している。 For example, in Patent Document 1, an iron metal outer can such as a cold rolled steel sheet of carbon steel is mainly proposed as a rectangular battery case for portable equipment such as a mobile phone. In this document, since the battery is used as a single battery, strength and rigidity are required even in a thin rectangular battery case. For this reason, the wall upper part thickness (opening part periphery side thickness) of the opening peripheral part sealed by a lid | cover is about 25% or less than the thickness of an intermediate part (steady part) in order to improve sealing strength. The metal outer can is made to be partially thick.
特開平11-54095号公報Japanese Patent Laid-Open No. 11-54095
 ここで、車載電池用の角形電池ケースの蓋や本体(缶)を、鋼製からアルミニウム合金製に代え、アルミニウム合金板(冷延板)素材を一体にプレス成形した成形品から構成すると、耐食性や軽量化および加工性やコスト面からも有利である。従って、近年、検討が進められている。
 また、アルミニウム合金製の車載電池用の角形電池ケースの、より低コスト化をすすめるために、薄肉化の検討も進められている。具体的には、この電池ケースの側壁の板厚を、従来の0.5~1.0mm程度から、0.2~0.6mm程度にまで薄くする動きがある。
Here, when the lid and body (can) of the rectangular battery case for in-vehicle batteries is made of a molded product obtained by integrally pressing an aluminum alloy plate (cold rolled plate) material from steel to aluminum alloy, corrosion resistance In addition, it is advantageous in terms of weight reduction, workability and cost. Therefore, studies have been promoted in recent years.
In addition, in order to further reduce the cost of a rectangular battery case for an in-vehicle battery made of an aluminum alloy, studies are being made to reduce the thickness. Specifically, there is a movement to reduce the thickness of the side wall of the battery case from about 0.5 to 1.0 mm to about 0.2 to 0.6 mm.
 ただ、車載電池用の角形電池ケースをアルミニウム合金製とした場合、前記した薄肉化を追求すると、レーザによる前記封止溶接時の溶接が安定しないという、鋼製には無い、アルミニウム合金製特有の課題が生じる。 However, when the prismatic battery case for in-vehicle batteries is made of an aluminum alloy, if pursuing the above-mentioned thinning, the welding at the time of the sealing welding by the laser is not stable. Challenges arise.
 すなわち、角形電池ケースの側壁を薄くすると、鋼よりも溶接性に劣るアルミニウム合金では、前記したレーザによる封止溶接時に、板の熱ひずみが生じてしまう。従って、同じアルミニウム合金である蓋との溶接が安定せず、継手部が波型になったり、段差が生じたり,溶接部の側壁を貫通するような不安定なビード形状となって、電池ケースの内容物に悪影響がある。このため、健全なビード形状や溶接部とするために、レーザ照射移置を高精度に位置合わせするなど、封止溶接時に、効率を低下させるような、多大の労力を必要とする。 That is, when the side wall of the rectangular battery case is made thin, in an aluminum alloy that is inferior in weldability than steel, thermal distortion of the plate occurs during sealing welding with the laser described above. Therefore, the welding with the lid made of the same aluminum alloy is not stable, the joint portion becomes corrugated, a step is generated, or the bead shape is unstable and penetrates the side wall of the welded portion. The contents of are badly affected. For this reason, in order to obtain a sound bead shape and a welded portion, a great deal of labor is required to reduce the efficiency during sealing welding, such as positioning the laser irradiation transfer with high accuracy.
 アルミニウム合金は融点が低く、溶融しやすいように考えられるが、アルミ合金の比熱および溶融潜熱は、鋼や他の大多数の金属よりも大きく、熱伝導の良いこととあいまって、鋼の5倍も熱が逃げやすい。このため、局部加熱が難しく、溶融させるためには鋼よりも多量の熱を供給する必要があり、これが前記した封止溶接が安定せず、不安定なビード形状となる大きな要因となる。 Aluminum alloys have a low melting point and are likely to melt, but the specific heat and latent heat of fusion of aluminum alloys are larger than that of steel and most other metals, combined with good heat conduction, 5 times that of steel. Even heat is easy to escape. For this reason, local heating is difficult, and it is necessary to supply a larger amount of heat than steel in order to melt it. This is a major factor in that the above-described sealing welding is not stable and an unstable bead shape is formed.
 本発明は、このような課題に鑑みてなされたものであり、前記封止溶接が安定して実施でき、健全な溶接部形成を可能とする、アルミニウム合金製の車載電池用角形電池ケースおよびその製造方法を提供することを目的とする。 The present invention has been made in view of such a problem, and is capable of stably performing the sealing welding, and enables a sound welded portion to be formed. An object is to provide a manufacturing method.
 上記目的達成のために、本発明の車載電池用の角形電池ケースの要旨は、1枚の素材アルミニウム合金板から、底部、側壁、開口部を各々有する横断面形状が矩形状のケースに一体に成形されるとともに、前記側壁の厚みが0.2~0.6mmの範囲に薄肉化された上で、前記底部の厚みが0.6~1.0mmの範囲で、前記側壁よりも厚肉化されており、更に、前記側壁の上部の厚みが、前記ケースの内側に向かって張り出すように、部分的に予め厚肉化されていることである。 In order to achieve the above object, the gist of the in-vehicle battery square battery case of the present invention is integrally formed from a single material aluminum alloy plate into a case having a rectangular cross section having a bottom, a side wall, and an opening. In addition to being molded, the thickness of the side wall is reduced to a range of 0.2 to 0.6 mm, and the thickness of the bottom is increased to a thickness of 0.6 to 1.0 mm. Further, the thickness of the upper part of the side wall is partially thickened in advance so as to protrude toward the inside of the case.
 また、上記目的達成のために、本発明の車載電池用の角形電池ケースの製造方法の要旨は、1枚の素材アルミニウム合金板から、底部、側壁、開口部を各々有する横断面形状が矩形状のケースを一体に成形する際に、前記側壁の厚みを0.2~0.6mmの範囲に薄肉化した上で、前記底部の厚みを0.6~1.0mmの範囲に、前記側壁よりも厚肉化し、更に、前記側壁の上部の厚みを、角形電池ケースの内側に向かって張り出すように、部分的に予め厚肉化したことである。 In order to achieve the above object, the gist of the method for manufacturing a rectangular battery case for an in-vehicle battery according to the present invention is that a cross-sectional shape having a bottom portion, a side wall, and an opening portion is rectangular from a single material aluminum alloy plate. When the case is integrally formed, the thickness of the side wall is reduced to a range of 0.2 to 0.6 mm, and the thickness of the bottom portion is set to a range of 0.6 to 1.0 mm from the side wall. In addition, the thickness of the upper portion of the side wall is partially thickened in advance so as to protrude toward the inside of the rectangular battery case.
 本発明は、アルミニウム合金板の成形体からなる角形電池ケースの側壁の上部を、アルミニウム合金製の蓋とレーザによって封止溶接するに先立って、この側壁の上部の厚みを、この側壁の定常部の厚みよりも、ビードの形成量に見合った分だけ、角形電池ケースの内側に向かって部分的に厚肉化する。 In the present invention, prior to sealing and welding an upper part of a side wall of a rectangular battery case made of a molded body of an aluminum alloy plate with an aluminum alloy lid and a laser, the thickness of the upper part of the side wall is changed to a steady part of the side wall. The thickness is partially increased toward the inner side of the rectangular battery case by an amount corresponding to the bead formation amount rather than the thickness of the battery.
 これによって、前記封止溶接が安定して実施でき、側壁の上部と蓋とに亘るとともに、側壁の上部を貫通しないようなビードが形成でき、健全な溶接部とすることができる。 Thereby, the sealing welding can be carried out stably, and a bead that does not penetrate the upper part of the side wall can be formed while extending over the upper part of the side wall and the lid, and a sound weld can be obtained.
本発明角形電池ケースの一態様を示す斜視図である。It is a perspective view which shows one aspect | mode of this invention square battery case. 図1のA―A断面図である。It is AA sectional drawing of FIG. 図1のB―B断面図である。It is BB sectional drawing of FIG. 本発明角形電池ケースの蓋の溶接の一態様を示す断面図である。It is sectional drawing which shows the one aspect | mode of the welding of the lid | cover of this invention square battery case. 本発明角形電池ケースの蓋の溶接の他の態様を示す断面図である。It is sectional drawing which shows the other aspect of welding of the lid | cover of this invention square battery case. 本発明角形電池ケースの側壁の厚肉化の加工の一態様を示す断面図である。It is sectional drawing which shows the one aspect | mode of the process of thickening the side wall of this invention square battery case. 従来の角形電池ケースの蓋の溶接の一態様を示す断面図である。It is sectional drawing which shows the one aspect | mode of the welding of the lid | cover of the conventional square battery case. 従来の角形電池ケースの蓋の溶接の他の態様を示す断面図である。It is sectional drawing which shows the other aspect of the welding of the lid | cover of the conventional square battery case. 本発明角形電池ケースの側壁の厚肉化の加工の他の好ましい態様を示す断面図である。It is sectional drawing which shows the other preferable aspect of the process of thickening the side wall of this invention square battery case.
 以下に図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
角形電池ケースの基本構造:
 図1~3に本発明角形電池ケースの一態様を示す。本発明で言う角形電池ケースとは、底部、側壁、開口部を各々有する横断面形状が矩形状のアルミニウム合金製電池ケースを言う。
Basic structure of prismatic battery case:
1 to 3 show one embodiment of the rectangular battery case of the present invention. The rectangular battery case referred to in the present invention refers to an aluminum alloy battery case having a rectangular cross-sectional shape each having a bottom, a side wall, and an opening.
 図1~3において、角形電池ケース1は前提として車載電池用として使用される。すなわち、この電池ケース1同士が多数並列され、モジュールに組み込まれて使用される。このため、スペースの効率から、底部、側壁、開口部を各々有する横断面形状が矩形状の、扁平で薄型のアルミニウム合金製電池ケースとされている。 1 to 3, the rectangular battery case 1 is used as a vehicle battery as a premise. That is, a large number of battery cases 1 are arranged in parallel and used in a module. For this reason, in view of space efficiency, the battery case is made of a flat and thin aluminum alloy having a rectangular cross-sectional shape each having a bottom, a side wall, and an opening.
 角形電池ケース1は、基本的に、矩形(平面視で角形)底部6と、この矩形底部6の各周縁部から立ち上がる四つの各側壁2、3、4、5と、これら各側壁2、3、4、5の上端部2a、3a、4a、5a側の矩形状開口部7とを一体に有した角筒形状からなる。 The rectangular battery case 1 basically includes a rectangular (rectangular in plan view) bottom 6, four side walls 2, 3, 4, 5 rising from each peripheral edge of the rectangular bottom 6, and the side walls 2, 3. 4 and 5 has a rectangular tube shape integrally having a rectangular opening 7 on the side of the upper ends 2a, 3a, 4a and 5a.
 本発明で言う矩形状とは、以下の記載も含めて、矩形あるいは四角の形状や、これらの形状そのものでなくても、矩形あるいは四角に近似する形状を意味する。 The rectangular shape referred to in the present invention includes a rectangular shape or a square shape, including the following description, or a shape that approximates a rectangular shape or a square shape, even if these shapes are not themselves.
 図1~3の角形電池ケース1において、側壁4、5は大きくて広幅な壁面として長辺側にある対向する二つの側壁であり、側壁2、3は小さくて狭幅な壁面として短辺側にある、対向する二つの側壁である。これらの側壁は、壁面形状が角型で、広幅な壁面の幅と狭幅な壁面の幅の比の大きい(長辺側に比して短辺側が著しく小さい)、矩形で扁平な薄型の電池ケースを構成する。 In the rectangular battery case 1 of FIGS. 1 to 3, the side walls 4 and 5 are two opposite side walls on the long side as large and wide walls, and the side walls 2 and 3 are on the short side as small and narrow walls. Two opposing side walls. These side walls are rectangular in shape and have a large ratio between the width of the wide wall and the width of the narrow wall (the short side is significantly smaller than the long side), and are rectangular, flat and thin batteries. Construct a case.
 矩形底部6の厚み(板厚)t6は0.6~1.0mmの範囲、各側壁2、3、4、5の定常部2b、3b、4b、5bの厚み(板厚)t2、t3、t4、t5は0.2~0.6mmの範囲から選択されて、均一な板厚の板の前記した成形によって、互いに差厚化されている。すなわち、これら各部の厚みが異なる、差厚角筒形状からなっている。 The thickness (plate thickness) t6 of the rectangular bottom portion 6 is in the range of 0.6 to 1.0 mm, and the thickness (plate thickness) t2, t3 of the stationary portions 2b, 3b, 4b, 5b of the side walls 2, 3, 4, 5 t4 and t5 are selected from a range of 0.2 to 0.6 mm, and are made different from each other by the above-described forming of a plate having a uniform thickness. That is, it has a differential thickness square tube shape in which the thicknesses of these parts are different.
 この矩形底部6の厚みは、薄肉化された上で立設される電池ケースの強度(剛性)の必要性から、前記各側壁よりも厚肉化されている。また、多数の電池ケース1が互いに密に並べられてモジュールに組み込まれ、隣接する電池ケースの側壁同士で接しているため、強度が比較的低くても良い、長辺側の二つの側壁4b、5bの各厚みt4、t5は、短辺側の二つの側壁2b、3bの各厚みt2、t3よりも薄くしても良い。すなわち、これら矩形底部6や側壁2~5同士は、車載電池用として、各々の厚みを、前記した範囲内で互いに変えて、差厚化しても良い。 The thickness of the rectangular bottom 6 is made thicker than the respective side walls because of the necessity of strength (rigidity) of the battery case that is erected after being thinned. In addition, since a large number of battery cases 1 are closely arranged and assembled in a module and are in contact with the side walls of adjacent battery cases, the two side walls 4b on the long side, which may have relatively low strength, The thicknesses t4 and t5 of 5b may be thinner than the thicknesses t2 and t3 of the two side walls 2b and 3b on the short side. That is, the rectangular bottom portion 6 and the side walls 2 to 5 may be used for an in-vehicle battery, and the thickness may be changed by changing each thickness within the above range.
 これらの角形電池ケース1は、汎用される公知の製造方法として、均一な厚み(t1:0.5~1.2mm)の1枚の素材アルミニウム合金板(冷延板)を、絞りとしごきなどを順次組み合わせた、公知の多段の成形加工よって一体に成形して得ることができる。ちなみに、これら多段の成形加工自体は、例えば、特許第4119612号公報、特許第4325515号公報、塑性加工学2、W.ジョンソン、P.B.メラー共著、昭和40年10月30日培風館発行、「11・10底付き容器の再絞り加工」26-27頁などに、具体的に記載されている。この角形電池ケース1の素材となるアルミニウム合金板は、後述する合金の中から選択される。 These rectangular battery cases 1 are made of a single material aluminum alloy plate (cold-rolled plate) having a uniform thickness (t1: 0.5 to 1.2 mm) as a drawing, ironing, etc. Can be integrally molded by a known multi-stage molding process. Incidentally, these multi-stage forming processes themselves include, for example, Japanese Patent No. 4119612, Japanese Patent No. 4325515, Plastic Work Process 2, W. Johnson, P.B. This is specifically described in the co-authored by Meller, published on October 30, 1965, Baifukan, “11.10 Redrawing of bottomed containers” on pages 26-27. The aluminum alloy plate used as the material of the rectangular battery case 1 is selected from alloys described later.
蓋の装着:
 図4、5に示す通り、角形電池ケース1の矩形開口部7には、角形電池ケース1とは別の素材アルミニウム合金板から成形された、平面視で矩形状の蓋8が装着される。因みに、蓋8は、必ずしも板の成形によらずとも、鋳造、鍛造、押出などの別の製法で制作されても良い。
Installing the lid:
As shown in FIGS. 4 and 5, a rectangular lid 8 formed from a material aluminum alloy plate different from the rectangular battery case 1 is attached to the rectangular opening 7 of the rectangular battery case 1 in a plan view. Incidentally, the lid 8 may be produced by another manufacturing method such as casting, forging, and extrusion without necessarily forming a plate.
 この図4、5は、図1の角形電池ケース1に蓋8を装着した態様を、図1のA―A断面図を用いて、角形電池ケース1のA―A断面側のみを部分的に示している。以下の説明では、図1のB―B断面側にも共通する記載もあり、そのような場合には、B―B断面側の符号を、A―A断面側の符号に続いて、括弧書きにて追記する。 4 and 5 show a state in which the lid 8 is attached to the rectangular battery case 1 of FIG. 1, and only the AA cross section side of the rectangular battery case 1 is partially shown using the AA sectional view of FIG. Show. In the following description, there is also a description common to the BB cross section side in FIG. 1. In such a case, the reference sign on the BB cross section side is written in parentheses after the reference sign on the AA cross section side. Add to
 この蓋8は、電池ケース上部の平面視した矩形形状と同じあるいは相似する矩形(平面視)形状を有し、通常は、Liイオン電池ケースなどとして必要な、外部正極、電解液の注入口やカバー、安全弁などの他の必要部品を備える。このために、必要な強度(剛性)が高く、前記各側壁2、3、4、5、あるいは、更に矩形底部6よりも厚肉化されており、その厚み(板厚)t8は1.0~2.0mmの範囲である。この蓋8の素材となるアルミニウム合金板も後述する合金の中から選択される。 The lid 8 has a rectangular shape (in plan view) that is the same as or similar to the rectangular shape in plan view of the upper part of the battery case. Usually, an external positive electrode, an electrolyte inlet, Other necessary parts such as a cover and a safety valve are provided. For this reason, the required strength (rigidity) is high, and the side walls 2, 3, 4, 5, or further thicker than the rectangular bottom 6, and the thickness (plate thickness) t 8 is 1.0. It is in the range of ~ 2.0 mm. The aluminum alloy plate used as the material of the lid 8 is also selected from the alloys described later.
 この蓋8の装着に際して汎用される装着方式としては、代表的には、図4のような、おとし蓋方式である。具体的には、蓋8を各側壁の上端部2a、3a(4a、5a)で囲む空間内に収容して、蓋8と各側壁の上端部2a、3a(4a、5a)とを、同じ平面の(面一の)同じレベルにして載置する方法がある。また、図5のような載蓋方式で、蓋8を各側壁の上端部2a、3a(4a、5a)上に載置して、これら各側壁の上端部を覆う方法などもある。 As a mounting method generally used for mounting the lid 8, a typical lid method as shown in FIG. 4 is used. Specifically, the lid 8 is accommodated in a space surrounded by the upper ends 2a, 3a (4a, 5a) of the side walls, and the lid 8 and the upper ends 2a, 3a (4a, 5a) of the side walls are the same. There is a method of mounting on the same level of the plane. In addition, there is a method in which the lid 8 is placed on the upper end portions 2a, 3a (4a, 5a) of the respective side walls to cover the upper end portions of the respective side walls by the mounting method as shown in FIG.
 この蓋8の装着に際しては、図4、5の矢印で示す溶接方向から、蓋8の周縁部8a、8bと、各側壁の上端部2a、3aあるいは各側壁の上部2c、3cとが互いに、その長手方向あるいは平面視での周縁に亘って、レーザ溶接によって封止溶接される。但し、図3、4で図示しているのは、前記した通り、短辺側側壁2、3の上端部2a、3aあるいは上部2c、3cのみである。 When the lid 8 is mounted, the peripheral edge portions 8a and 8b of the lid 8 and the upper end portions 2a and 3a of the side walls or the upper portions 2c and 3c of the side walls are mutually connected from the welding direction indicated by the arrows in FIGS. Seal welding is performed by laser welding over the longitudinal direction or the periphery in plan view. However, only the upper end portions 2a and 3a or the upper portions 2c and 3c of the short side walls 2 and 3 are illustrated in FIGS.
 図4は、蓋8の周縁部8a、8bと、各側壁の上端部2a、3aとの境界(溶接部)に向かって、レーザが上方から下方に、矢印で示すレーザ入射線Xのように、入射される上打ち方式の封止溶接を示している。
 図5は、蓋8の周縁部8a、8bと、各側壁の上端部2a、3aあるいは各側壁の上部2c、3cとの境界(溶接部)に向かって、レーザが横方向から水平に、矢印で示すレーザ入射線Xのように、入射される横打ち方式の封止溶接を示している。
 これら図4、5では図示してはいないが、図1における側壁4、5の上端部4a、5aや、上部4c、5cも、同様にして、蓋8と封止溶接される。
FIG. 4 shows a laser beam from the upper side to the lower side toward the boundary (welded part) between the peripheral edge portions 8a and 8b of the lid 8 and the upper end portions 2a and 3a of the side walls, as indicated by a laser incident line X indicated by an arrow. FIG. 2 shows incident top-sealed sealing welding.
FIG. 5 shows that the laser is directed horizontally from the lateral direction toward the boundary (welded portion) between the peripheral edge portions 8a and 8b of the lid 8 and the upper end portions 2a and 3a of the side walls or the upper portions 2c and 3c of the side walls. As shown by a laser incident line X shown in FIG.
Although not shown in FIGS. 4 and 5, the upper ends 4a and 5a of the side walls 4 and 5 and the upper portions 4c and 5c in FIG.
 封止溶接におけるレーザ溶接は、公知のものが使用でき、レーザ溶接機として、半導体励起パルス発信型YAGレーザ、ディスクレーザ、ファイバレーザなどを使用して、レーザ溶接のスポットを照射して順次溶接する。例えば、レーザ出力:200~500W、ファイバー径=0.1~0.4mm、溶接速度=10~20m/分、シールドガス=Ar(0.1~0.5L/s)などの条件で、連続溶接で行う。 Laser welding in sealing welding can be performed by using a well-known laser welding machine, such as a semiconductor excitation pulse transmission type YAG laser, a disk laser, or a fiber laser. . For example, continuous under conditions of laser output: 200 to 500 W, fiber diameter = 0.1 to 0.4 mm, welding speed = 10 to 20 m / min, shield gas = Ar (0.1 to 0.5 L / s), etc. Perform by welding.
ビード形成:
 この封止溶接の際に、図4、5のように、各側壁の上部2c、3c(4c、5c)と、蓋8の例えば周縁部8a、8bとに亘るとともに、その先端部9aが各側壁の上部2c、3c(4c、5c)を電池ケース内部に向けて貫通しないような、安定した健全なビード9が形成されて、接合されることが必要である。このビード9は、蓋8の周縁部8a、8bと前記各側壁の上部2c、3c(4c、5c)の封止溶接される部分に亘って、蓋と側壁上端部や側壁上部の長手方向あるいは平面視での周縁に亘って、形成される。
Bead formation:
In this sealing welding, as shown in FIGS. 4 and 5, the upper portions 2c and 3c (4c and 5c) of the side walls and the peripheral portions 8a and 8b of the lid 8, for example, and the tip end portions 9a thereof It is necessary that a stable and healthy bead 9 is formed and joined so as not to penetrate the upper portions 2c and 3c (4c and 5c) of the side walls toward the inside of the battery case. This bead 9 extends in the longitudinal direction of the lid and the upper end of the side wall or the upper side of the side wall over the peripheral welds of the peripheral parts 8a and 8b of the lid 8 and the upper portions 2c and 3c (4c and 5c) of the side walls. It is formed over the periphery in plan view.
 しかし、側壁を0.2~0.6mmの範囲に均一な厚みに薄肉化した従来例では、この側壁が薄すぎて、レーザによる封止溶接が安定しない。前記した通り、アルミニウム合金の比熱および溶融潜熱は、鋼や他の大多数の金属よりも大きく、熱伝導の良いこととあいまって、鋼の5倍も熱が逃げやすい。このため、溶接部である側壁21が薄くなるほど、局部加熱が難しく、溶融させるために鋼よりも多量の熱を供給する必要があり、レーザによる封止溶接が安定しなくなる。 However, in the conventional example in which the side wall is thinned to a uniform thickness in the range of 0.2 to 0.6 mm, the side wall is too thin and sealing welding by laser is not stable. As described above, the specific heat and the latent heat of fusion of aluminum alloys are larger than those of steel and most other metals, and combined with good heat conduction, heat is likely to escape five times as much as steel. For this reason, as the side wall 21 which is a welded portion becomes thinner, local heating becomes more difficult, and it is necessary to supply a larger amount of heat than steel for melting, and sealing welding by laser becomes unstable.
 レーザ溶接条件にも勿論よるが、この種のアルミニウム合金板製の車載用電池ケースに汎用されるレーザによる封止溶接の条件範囲では、後述する図4、5に示すビードの溶け込み深さHは、これら側壁の厚みの80%以上となる。したがって、側壁21の厚みが前記0.2~0.6mmの範囲に薄肉化されるほど、ビードの溶け込み深さHに対する側壁21の厚みの余裕が無い。そしてアルミニウム合金の前記特性上、レーザ出力やファイバー径、ピーク出力、溶接速度を大きくするなどの溶接条件によっては、側壁の上部21aを、その先端22aが貫通するような不安定なビード22の形状となりやすい。 Of course, depending on the laser welding conditions, the penetration depth H of the beads shown in FIGS. The thickness of these side walls is 80% or more. Therefore, as the thickness of the side wall 21 is reduced to the range of 0.2 to 0.6 mm, there is no room for the thickness of the side wall 21 with respect to the penetration depth H of the bead. Due to the characteristics of the aluminum alloy, depending on the welding conditions such as increasing the laser output, fiber diameter, peak output, and welding speed, the shape of the unstable bead 22 such that the tip 22a penetrates the upper portion 21a of the side wall. It is easy to become.
 図7、8に、側壁の上部21aも定常部と均一な厚みを有する、従来の薄肉化した側壁21の溶接部を示す。この図7、8に示す通り、レーザ溶接による封止溶接が安定しないと、側壁の上部21aを、その先端22aが貫通するような不安定なビード22の形状となりやすい。これは図7のような上打ち方式でも、図8のような横打ち方式の封止溶接でも同様である。
 このように、その先端22aが貫通するような不安定なビード形状となった場合には、接合強度が低下するとともに、スパッタが電池ケース内部に飛んで、電池ケースの内容物に大きな損傷やダメージを与える。
このため、健全なビード形状や溶接部とするため、封止溶接時に余分で多大の労力やコストを必要とする。より具体的に言うと、従来は、健全なビード形状や溶接部とするために、溶接効率を犠牲にして、溶接電流や溶接速度を低くして、多段階に細分化したような溶接工程とするか、高い制御精度のより高価な溶接機が必要であった。
7 and 8 show a conventional welded portion of the thinned side wall 21 in which the upper portion 21a of the side wall also has a uniform thickness with the steady portion. As shown in FIGS. 7 and 8, if sealing welding by laser welding is not stable, the shape of the bead 22 that is unstable such that the tip 22a penetrates the upper portion 21a of the side wall tends to be obtained. This is the same for both the top-up method as shown in FIG. 7 and the side-weld type seal welding as shown in FIG.
Thus, when it becomes the unstable bead shape which the front-end | tip 22a penetrates, while joining strength falls, a spatter flies inside a battery case and a big damage and damage to the contents of a battery case are carried out. give.
For this reason, in order to make it a healthy bead shape and a welding part, extra labor and cost are required at the time of sealing welding. More specifically, in the past, in order to obtain a sound bead shape and welded part, the welding process was subdivided into multiple stages by reducing the welding current and welding speed at the expense of welding efficiency. Or more expensive welders with high control accuracy were required.
側壁の厚肉化:
 これに対して、前記した安定した健全なビード9の形成のため、本発明では、蓋8と封止溶接される、各側壁2、3、4、5の上部を、図1~3に示す2c、3c、4c、5cの通り、前記封止溶接によって形成されるビードの溶け込み深さHよりも厚くなるよう、各側壁の定常部2b、3b、4b、5bの厚みよりも、部分的に、前記封止溶接に先立って予め厚肉化する。
 これら各側壁の各上部2c、3c、4c、5cは、図1~3の通り、角形電池ケース1の内側に向かってのみ張り出すように、あるいは膨らむように、部分的に予め厚肉化されている。したがって、各側壁の各上部2c、3c、4c、5cの外側の壁は、好ましくは図1~3の通り、各側壁の定常部2b、3b、4b、5bの外壁と同じく、厚肉化による膨らみや凹凸が無い、平坦な壁面である。さらに、各側壁の各上部2c、3c、4c、5cの外側の壁は、前記各定常部の外壁と同じ平面でつながり、角形電池ケース1の平坦な外壁面を各々構成している。
Thickening the side wall:
On the other hand, in order to form the above-described stable and healthy bead 9, in the present invention, the upper portions of the side walls 2, 3, 4, and 5 that are sealed and welded to the lid 8 are shown in FIGS. As shown in 2c, 3c, 4c, and 5c, partially than the thickness of the steady portions 2b, 3b, 4b, and 5b of the side walls so as to be thicker than the penetration depth H of the beads formed by the sealing welding. The thickness is increased in advance prior to the sealing welding.
Each of the upper portions 2c, 3c, 4c, and 5c of each side wall is partially thickened in advance so as to protrude only toward the inside of the rectangular battery case 1 or to swell as shown in FIGS. ing. Therefore, the outer walls of the upper portions 2c, 3c, 4c, and 5c of the side walls are preferably made thicker as in the outer walls of the stationary portions 2b, 3b, 4b, and 5b of the side walls as shown in FIGS. It is a flat wall without bulges or irregularities. Furthermore, the outer wall of each upper part 2c, 3c, 4c, 5c of each side wall is connected in the same plane as the outer wall of each said stationary part, and comprises the flat outer wall surface of the square battery case 1, respectively.
 ここで、ビードの溶け込み深さHは、図4、5において図示するごとく、レーザの入射方向に関わらず、矢印で示すレーザの入射線Xの延長線上にある、ビード9の外表面部9bから、その先端部9aまでの、ビードの最大深さ(最大の溶け込み深さ)である。 Here, as shown in FIGS. 4 and 5, the penetration depth H of the bead is from the outer surface portion 9 b of the bead 9 on the extension line of the laser incident line X indicated by the arrow, regardless of the laser incident direction. The maximum bead depth (maximum penetration depth) up to the tip 9a.
 各側壁の定常部2b、3b、4b、5bの厚み(板厚):t2、t3、t4、t5は前記した通り0.2~0.6mmの範囲から選択される。これに対して、各側壁の上部2c、3c、4c、5cの厚み(板厚):t2c、t3c、t4c、t5cは、これら定常部の厚みt2、t3、t4、t5よりも厚くする。この目安として、ビード9の形成量に見合った分だけ、これら側壁の上部2c、3c、4c、5cにおける各々のビードの溶け込み深さHよりも厚くなるように、部分的に厚肉化することが好ましい。
 しかも、この厚肉化は、角形電池ケース1の内側(内側空間)に向かってのみ張り出すように、部分的に厚肉化している。図1の本発明角形電池ケースは、図2のA―A断面図における厚肉化部分2c、3cと、図3のB―B断面図における厚肉化部分4c、5cとを有する。
The thickness (plate thickness) of the steady portions 2b, 3b, 4b, and 5b of each side wall: t2, t3, t4, and t5 are selected from the range of 0.2 to 0.6 mm as described above. On the other hand, the thickness (plate thickness) of the upper portions 2c, 3c, 4c, and 5c of the side walls: t2c, t3c, t4c, and t5c are made thicker than the thicknesses t2, t3, t4, and t5 of these stationary portions. As a guideline, the thickness should be partially increased by an amount corresponding to the amount of bead 9 formed so as to be thicker than the penetration depth H of each bead at the upper portions 2c, 3c, 4c and 5c of the side walls. Is preferred.
Moreover, this thickening is partially thickened so as to project only toward the inner side (inner space) of the rectangular battery case 1. The square battery case of the present invention of FIG. 1 has thickened portions 2c and 3c in the AA cross-sectional view of FIG. 2, and thickened portions 4c and 5c in the BB cross-sectional view of FIG.
 このような厚肉化によって、安定したレーザ溶接が可能となる。そして、前記図4、5の右側に示したように、側壁の上部2c、3c(4c、5c)と、蓋の周縁部8a、8bとに亘るとともに、その先端部9aが側壁の上部2c、3c(4c、5c)を貫通しないような、安定した健全なビード9が形成される。
 また、側壁の上部2c、3c(4c、5c)の厚肉化によって、側壁の上部を貫通しない範囲で許容されるビード9の溶け込み深さH(あるいは許容されるビード9の大きさ)が、薄肉化された元の側壁厚みから、厚肉化された厚みへと、大きく増大する効果も大きい。
 また、側壁2、3、4、5の各上部2c、3c、4c、5cを、ビード9の溶け込み深さH以上に、部分的に厚肉化することによって、溶接条件の選択範囲や許容範囲も広がり、安定した溶接が可能となり、安定した健全なビード9が形成される効果もある。
 すなわち、側壁の上部をビード9が貫通しない、封止溶接条件の許容範囲を緩和させ、溶接条件を安定化させる効果も大きい。本発明では、前記角形電池ケースの基本構造(蓋8、矩形底部6、側壁の各厚み範囲も含めて)を前提とした上で、安定したレーザ溶接を可能とする。
Such a thickening enables stable laser welding. 4 and 5, as shown on the right side of the side walls, the upper portions 2c and 3c (4c and 5c) of the side wall and the peripheral edge portions 8a and 8b of the lid, and the front end portion 9a thereof are the upper portion 2c of the side wall, A stable and healthy bead 9 that does not penetrate 3c (4c, 5c) is formed.
Further, by increasing the thickness of the upper portions 2c, 3c (4c, 5c) of the side wall, the penetration depth H of the bead 9 (or the allowable size of the bead 9) allowed in a range not penetrating the upper portion of the side wall is The effect of greatly increasing from the reduced thickness of the original side wall to the increased thickness is also great.
Further, by selectively thickening the upper portions 2c, 3c, 4c, and 5c of the side walls 2, 3, 4, and 5 to a depth equal to or greater than the penetration depth H of the bead 9, the selection range and allowable range of welding conditions are increased. And the stable welding becomes possible, and there is an effect that a stable and healthy bead 9 is formed.
That is, the effect that the bead 9 does not penetrate the upper part of the side wall, relaxes the allowable range of the sealing welding condition, and stabilizes the welding condition is great. The present invention makes it possible to perform stable laser welding on the premise of the basic structure of the rectangular battery case (including the thickness range of the lid 8, the rectangular bottom 6 and the side wall).
 更に、各側壁の各上部2c、3c、4c、5cは、角形電池ケース1の内側に向かってのみ張り出すように、あるいは膨らむように部分的に予め厚肉化されている。このため、これら各側壁上部2c、3c、4c、5cの外側の壁面は、各側壁の定常部2b、3b、4b、5bの外壁面と同じく、厚肉化による膨らみや凹凸が無い、平坦な壁面となっている。すなわち、これらの側壁の外側の壁面は、厚肉化されている側壁の各上部2c、3c、4c、5cを含めて、同じ平面(面一)に平坦化されている。
 この結果、前記各側壁の定常部の外壁面と同じ平面でつながり、角形電池ケース1の平坦な外壁面を各々構成できる。したがって、自動車用のLiイオン電池として、限られた車載スペースにおいても、多数の電池ケース(の外壁)同士を互いに並列して載置しやすく、スペース効果が高いという特徴もある。
 このような各側壁上部2c、3c、4c、5cの外側の壁面の、各側壁の定常部2b、3b、4b、5bの外壁面との、同じ平面での平坦化は、必須ではないが、上記した優れたスペース効果を有する。
Furthermore, each upper part 2c, 3c, 4c, 5c of each side wall is partially thickened in advance so as to protrude only toward the inside of the rectangular battery case 1 or to swell. For this reason, the outer wall surface of each of the side wall upper portions 2c, 3c, 4c, 5c is flat without the bulge and unevenness due to the thickening as the outer wall surfaces of the stationary portions 2b, 3b, 4b, 5b of the respective side walls. It is a wall surface. That is, the outer wall surfaces of these side walls are flattened on the same plane (the same plane) including the upper portions 2c, 3c, 4c, and 5c of the thickened side walls.
As a result, it is connected in the same plane as the outer wall surface of the stationary part of each side wall, and each flat outer wall surface of the rectangular battery case 1 can be configured. Therefore, as a Li-ion battery for automobiles, even in a limited on-vehicle space, a large number of battery cases (outer walls) can be easily placed in parallel with each other, and the space effect is high.
Although flattening in the same plane with the outer wall surfaces of the stationary portions 2b, 3b, 4b, and 5b of the side walls of the outer wall surfaces of the respective side wall upper portions 2c, 3c, 4c, and 5c is not essential, It has the excellent space effect described above.
 ここで、電池ケースとして、健全な使用に耐えうるためには、封止溶接部に十分な継手強度が必要である。この継手強度はビード9の溶け込み深さHに依存する。レーザ溶接条件にも勿論よるが、汎用されるレーザによる封止溶接条件の範囲では、十分な継手強度を確保するためには、ビードの溶け込み深さHは、側壁2、3、4、5の定常部の厚みt2、t3、t4、t5に対し、これら側壁の厚みの60%以上、好ましくは80%以上となることが好ましい。
 しかしながら,側壁2、3、4、5の定常部の厚みt2、t3、t4、t5が0.2~0.6mmの範囲と薄い場合には、溶接の際に前記のような熱ひずみが生じるため、溶け込みが不安定となり、一部には側壁をビードが貫通してしまう。
 こうした問題を解決するには、レーザによる封止溶接部の肉厚を部分的に増加させ,熱ひずみを抑制することが必要となる。そして、このような溶接の問題は、前記特許文献1のような鋼板の場合よりも多量の入熱を必要とする、アルミニウム合金板に特有の問題である。
Here, in order to withstand the sound use as a battery case, a sufficient joint strength is required for the sealed welded portion. The joint strength depends on the penetration depth H of the bead 9. Of course, depending on the laser welding conditions, the bead penetration depth H is within the range of the side walls 2, 3, 4, 5 in order to ensure sufficient joint strength within the range of sealing welding conditions by lasers that are generally used. It is preferable that the thickness is 60% or more, preferably 80% or more of the thickness of these side walls with respect to the thickness t2, t3, t4, t5 of the stationary part.
However, when the thicknesses t2, t3, t4, and t5 of the stationary portions of the side walls 2, 3, 4, and 5 are as thin as 0.2 to 0.6 mm, the above-described thermal strain occurs during welding. Therefore, the melting becomes unstable, and the bead penetrates through the side wall in part.
In order to solve these problems, it is necessary to partially increase the thickness of the laser-welded welded part to suppress thermal distortion. And the problem of such welding is a problem peculiar to the aluminum alloy plate which requires a larger amount of heat input than the case of the steel plate like the said patent document 1. FIG.
 このため、これらの側壁の上部厚肉部2c、3c、4c、5cを、ビードの溶け込み深さHよりも厚肉化する目安として、各側壁の上部2c、3c、4c、5cの厚み(板厚):t2c、t3c、t4c、t5cは、側壁2、3、4、5の定常部の厚みt2、t3、t4、t5の30%以上、より好ましくは40%以上、部分的に厚肉化されていることが好ましい。
 側壁2、3、4、5の定常部2b、3b、4b、5bの厚みが、各々異なる場合には、厚肉化する側壁自体(厚肉化する当該側壁)の定常部の厚みを各々基準とする。
 この厚肉化の上限は、内容積の設計限界や厚肉化の加工限界から、70%程度である。すなわち、この厚肉化の好ましい範囲は、前記側壁定常部厚みの130~170%、より好ましくは140~170%である。
For this reason, the thickness (plate) of the upper portions 2c, 3c, 4c, and 5c of each side wall is used as a guide for thickening the upper thick portions 2c, 3c, 4c, and 5c of the side walls with respect to the penetration depth H of the beads. Thickness): t2c, t3c, t4c, and t5c are partially thickened by 30% or more, more preferably 40% or more of the thicknesses t2, t3, t4, and t5 of the steady portions of the side walls 2, 3, 4, and 5, respectively. It is preferable that
When the thicknesses of the steady portions 2b, 3b, 4b, and 5b of the side walls 2, 3, 4, and 5 are different from each other, the thicknesses of the steady portions of the side walls to be thickened (the side walls to be thickened) are used as references. And
The upper limit of this thickening is about 70% from the design limit of internal volume and the processing limit of thickening. That is, the preferable range for increasing the thickness is 130 to 170%, more preferably 140 to 170% of the thickness of the side wall steady portion.
 この側壁上部2c、3c、4c、5cの厚肉化が、側壁2、3、4、5の定常部の厚みt2、t3、t4、t5の30%未満では、側壁2、3、4、5の厚みが0.2~0.6mmの範囲のアルミニウム合金板の場合、前記レーザ溶接条件では、熱ひずみが生じてしまい、溶け込みや、ビード深さが不安定となる。このため、レーザ出力やファイバー径、ピーク出力、溶接速度を大きくするなどの溶接条件を修正したとしても、側壁の上部21aを、その先端22aが貫通するような、図7、8に示す不安定なビード22の形状となりやすい。 When the thickness of the side wall upper portions 2c, 3c, 4c, and 5c is less than 30% of the thickness t2, t3, t4, and t5 of the stationary portions of the side walls 2, 3, 4, and 5, the side walls 2, 3, 4, 5 In the case of an aluminum alloy plate having a thickness of 0.2 to 0.6 mm, thermal distortion occurs under the laser welding conditions, and the penetration and bead depth become unstable. For this reason, even if the welding conditions such as increasing the laser output, fiber diameter, peak output, and welding speed are corrected, the instability shown in FIGS. 7 and 8 such that the tip 22a penetrates the upper portion 21a of the side wall. The shape of the large bead 22 is likely to be obtained.
 因みに、前記特許文献1では、鉄製の角形電池ケースとして、蓋により封口される上部開口部周辺部の壁の側厚(封口部周辺側厚)を、前記した通り、強度(剛性)を高めるために、中間部の側厚よりも、約25%以下程度厚くなるようにしている。
 この特許文献1のように、本発明の封止溶接の課題を認識せずに、角形電池ケースの強度、剛性のみを高める場合には、剛性は、板厚の三乗に比例して増加するので、板厚を10%厚くすれば、剛性を30%以上高めることができる。
 したがって、前記特許文献1にとって、本発明のような30%以上の厚肉化は全く不要であり、その記載範囲でもある、25%以下程度の、できるだけ少ない厚肉化で済ませることが、その目的でもある軽量化を阻害しないことにもつながる。
Incidentally, in the said patent document 1, as an iron square battery case, in order to raise intensity | strength (rigidity) as above-mentioned, the side thickness (sealing part periphery side thickness) of the upper opening periphery part sealed by a lid | cover is mentioned. In addition, the thickness is about 25% or less than the side thickness of the intermediate portion.
As in Patent Document 1, when only the strength and rigidity of the rectangular battery case are increased without recognizing the problem of sealing welding according to the present invention, the rigidity increases in proportion to the cube of the plate thickness. Therefore, if the plate thickness is increased by 10%, the rigidity can be increased by 30% or more.
Therefore, for Patent Document 1, it is not necessary to increase the thickness of 30% or more as in the present invention, and the purpose is to reduce the thickness as much as possible, which is about 25% or less, which is also the description range thereof. However, it also leads to not obstructing a certain weight reduction.
 しかし、本発明のように、その先端部9aが各側壁の上部を貫通しないような、健全なビード9の形成のためには、溶接時の熱ひずみを防止する必要があり、そのため、側壁2、3、4、5の元々の薄肉化をも考慮して、より大きな厚肉化をさせる必要がある。 However, as in the present invention, in order to form a sound bead 9 in which the tip end portion 9a does not penetrate the upper part of each side wall, it is necessary to prevent thermal strain during welding. Considering the original thinning of 3, 4, 5 as well, it is necessary to increase the thickness.
 この厚肉化する各側壁の上部2c、3c、4c、5cの延在長さ(領域)は、前記電池ケースや溶接の前提条件のもとでは、少なくともビードが及ぶ(形成される)範囲、好ましくは溶接の熱影響部の範囲をカバーできるものとすることが好ましい。 The extension length (region) of the upper portions 2c, 3c, 4c, and 5c of each side wall that is thickened is a range where at least a bead extends (forms) under the battery case and the preconditions for welding, It is preferable that the range of the heat affected zone of welding be covered.
 更に、これら各側壁の上部2c、3c、4c、5cの厚肉化が、角形電池ケース1の外側に向かうことは、壁面の凹凸となって、壁面の平滑化と平面化の妨げとなるので、避けるようにする。すなわち、あくまで角形電池ケース1の内側(内側空間)に向かって部分的に厚肉化し、角形電池ケース1の外側に向かっては厚肉化せずに、角形電池ケース1の各外壁面(側壁の外表面)は平滑化と平面化を保持する。 Furthermore, the increase in thickness of the upper portions 2c, 3c, 4c, and 5c of the respective side walls leads to the unevenness of the wall surfaces, which hinders the smoothing and flattening of the wall surfaces. To avoid. That is, the outer wall surfaces (side walls) of the prismatic battery case 1 are not thickened partially toward the inner side (inner space) of the prismatic battery case 1 and thickened toward the outer side of the prismatic battery case 1. The outer surface) keeps smoothing and planarization.
 なお、この厚肉化は、封止溶接されてビード9が形成される、各側壁の上部2c、3c、4c、5cについて各々全部、そして全長乃至全幅に亘って行っても良いが、封止溶接されビード9が形成される側壁上部のみ、選択的に行っても良い。ただ、後述する厚肉化加工のやりやすさなどとの関係で、封止溶接されない各側壁の上部や上端部を厚肉化しても良い。 The thickening may be performed over the entire length and the entire width of each of the upper portions 2c, 3c, 4c, and 5c of the side walls where the beads 9 are formed by sealing and welding. Only the upper part of the side wall where the bead 9 is formed by welding may be selectively performed. However, the upper part and the upper end part of each side wall that is not sealed and welded may be thickened in view of the ease of thickening processing described later.
側壁上部の厚肉化加工:
 このような側壁の厚肉化は、例えば、図6に示すような、側壁の圧縮加工によって可能である。この図6に示す圧縮加工自体は公知であって、側壁3の上部3cを電池ケースの内側に向かって厚肉化する態様を示している。
 図6において、元の均一な厚みである側壁3の上部3cを中心に、側壁3の外側より型12によって、側壁3の内側より中子11によって、側壁3を挟持した上で、カム構造10により、側壁3の上部3cを上方から圧縮加工して、角形電池ケース1の内側(内側空間)に向かって部分的に厚肉化する。この圧縮加工は、厚肉化の程度により複数段に分けて行う。
 このような加工によって、図1~3に示すように、各側壁の各上部2c、3c、4c、5cを、角形電池ケース1の内側に向かってのみ膨らむように部分的に予め厚肉化させる。その結果、これら各側壁上部2c、3c、4c、5cの外側の壁面は、各側壁の定常部2b、3b、4b、5bの外壁面と同じ平面(面一)で、厚肉化による膨らみや凹凸が無い、平坦な壁面とすることが可能である。
Thickening the upper side wall:
Such thickening of the side wall can be achieved by, for example, compressing the side wall as shown in FIG. The compression process itself shown in FIG. 6 is known and shows an aspect in which the upper portion 3c of the side wall 3 is thickened toward the inside of the battery case.
In FIG. 6, the cam structure 10 is sandwiched between the mold 3 from the outside of the side wall 3 and the core 11 from the inside of the side wall 3 with the core 11 around the upper part 3 c of the original uniform thickness. Thus, the upper portion 3c of the side wall 3 is compressed from above and partially thickened toward the inner side (inner space) of the rectangular battery case 1. This compression processing is performed in a plurality of stages depending on the degree of thickening.
By such processing, as shown in FIGS. 1 to 3, the upper portions 2c, 3c, 4c, and 5c of the respective side walls are partially thickened in advance so as to expand only toward the inside of the rectangular battery case 1. . As a result, the outer wall surface of each of the side wall upper portions 2c, 3c, 4c, and 5c is the same plane (the same surface) as the outer wall surface of the stationary portions 2b, 3b, 4b, and 5b of each side wall. It is possible to make a flat wall surface with no unevenness.
側壁上部の厚肉化の好ましい加工方法:
 各側壁上部2c、3c、4c、5cの厚肉化の加工方法として、前記図6の圧縮加工よりも好ましい加工方法を、図9(a)~(e)に、加工工程順に各断面図で示す。
Preferred processing method for thickening the upper side wall:
As a processing method for increasing the thickness of each of the side wall upper portions 2c, 3c, 4c, and 5c, a processing method that is preferable to the compression processing of FIG. 6 is shown in FIGS. Show.
 この加工方法の概要は、各側壁上部2c、3c、4c、5cの厚肉化の厚みを、角形電池ケース1の内側に向かって、部分的に予め厚肉化するに際して、各側壁上部2c、3c、4c、5cの上部以外の、当該側壁の部位にしごき加工を加えて厚みを減少させる。また一方で、前記各側壁の上部には、前記しごき加工を加えず、元の側壁の厚みを有するとともに、角形電池ケース1の外側に向かって張り出す厚肉部としてそのまま残すものである。
 そして、その上で、更に、前記側壁2、3、4、5の上部の厚肉部に加工を加えて、この厚肉部の張り出す方向を、角形電池ケース1内側に向かうよう反転させる。さらに、前記側壁2、3、4、5の上部の厚肉部の外側の壁面は、前記しごき加工された他の側壁部位の外側の壁面と同じ平面の平坦面に成形する。
The outline of this processing method is that each side wall upper portion 2c, 2c, 3c, 4c, 5c is thickened partially in advance toward the inside of the rectangular battery case 1 in advance. The thickness is reduced by applying ironing to the side wall portions other than the upper portions of 3c, 4c, and 5c. On the other hand, the ironing process is not applied to the upper part of each of the side walls, and the original side wall thickness is left as it is as a thick part projecting toward the outside of the rectangular battery case 1.
Then, further processing is performed on the thick part on the upper side of the side walls 2, 3, 4, and 5, and the protruding direction of the thick part is reversed so as to be directed toward the inside of the rectangular battery case 1. Furthermore, the outer wall surface of the thick portion at the upper part of the side walls 2, 3, 4, 5 is formed into a flat surface that is the same plane as the outer wall surface of the other side wall portion that has been ironed.
 以下に、図9を用いて説明するが、図9は、図9(a)のように、厚肉化加工前の電池ケース、すなわち、横断面形状が略矩形になるように成形した中間成形品としての、図1のB―B断面における、長辺側側壁4、5と矩形底部6、および矩形開口部7のみを示している。
 したがって、以下の加工方法の説明は、長辺側壁4、5についてのみ行うが、前記した短辺側壁2、3についても、同様の加工が行われ、角形電池ケース1の全側壁が、前記各側壁上部厚肉部2c、3c、4c、5cを含めて、同様の形状、構造に成形されるものである。
9 will be described below. FIG. 9 shows a battery case before thickening as shown in FIG. 9 (a), that is, an intermediate molding in which the cross-sectional shape is substantially rectangular. Only the long side walls 4 and 5, the rectangular bottom 6, and the rectangular opening 7 in the BB cross section of FIG. 1 are shown as products.
Therefore, although the following description of the processing method is performed only for the long side walls 4 and 5, the same processing is performed for the short side walls 2 and 3, and all the side walls of the square battery case 1 The side wall upper thick parts 2c, 3c, 4c and 5c are formed into the same shape and structure.
 図9(b)は、側壁4、5の外方からのしごきダイス13、13と、開口部7から電池ケース1a(以下、単にケースと言う)の内部空間に挿入したパンチ14との協働で、側壁4、5の上部4e、5e以外の側壁部分4b、5bに、しごき加工を順次施していく、第一の工程の態様を示している。
 この第一の工程では、前記側壁上部4e、5e以外の部分の、側壁4b、5bは、前記しごき加工により薄肉化される。したがって、前記側壁上部4e、5eの部分だけが、しごき加工を受けずに、元の側壁4、5の各板厚(肉厚)として残され、しごき加工された他の側壁4b、5bの部分に比して、ケースの外側に向って張り出す凸部を有する形状に、部分的に厚肉化される。
FIG. 9B shows the cooperation of the ironing dies 13 and 13 from the outside of the side walls 4 and 5 and the punch 14 inserted from the opening 7 into the internal space of the battery case 1a (hereinafter simply referred to as the case). Thus, a mode of the first step is shown in which ironing is sequentially performed on the side wall portions 4b and 5b other than the upper portions 4e and 5e of the side walls 4 and 5.
In this first step, the side walls 4b and 5b other than the side wall upper portions 4e and 5e are thinned by the ironing process. Therefore, only the portions of the side wall upper portions 4e and 5e are not subjected to the ironing process, and are left as the respective plate thicknesses (wall thicknesses) of the original side walls 4 and 5, and the portions of the other side walls 4b and 5b subjected to the ironing process. As compared with the case, it is partially thickened into a shape having a convex portion protruding toward the outside of the case.
 図9(c)、(d)、(e)は、前記側壁上部4e、5eの厚肉化(厚肉部)の張り出し方向をケースの内側に向かうものとすべく、前記したケースの外側に向かう張り出し方向から反転させる、第二の工程の態様を示している。
 図9(c)では、先ず、開口部7からケース内にパンチ15を挿入する。
9 (c), (d) and (e) show the outer side of the case so that the protruding direction of the thickening (thick part) of the side wall upper parts 4e and 5e is directed toward the inside of the case. The aspect of the 2nd process reversed from the overhang direction which faces is shown.
In FIG. 9C, first, the punch 15 is inserted into the case from the opening 7.
 次に、図9(d)のように、ケース内に挿入したパンチ15を下降させ、パンチ15の下方の周囲に配した環状スリーブ16の内部空間(内壁面)の最下方側に設けた細孔16c内に、その棒状の先端部15bを挿入する。
 そして、環状スリーブ16の内壁面の、前記細孔16cの上方に形成した漏斗状の(下方に縮径する)テーパ部16bに、パンチ15の先端部15bの上方に位置する漏斗状の(下方に縮径する)テーパ部15aを押圧して、環状スリーブ16(テーパ部16b)を左右方向に押し広げて拡径する。
Next, as shown in FIG. 9 (d), the punch 15 inserted into the case is lowered, and the narrow space provided on the lowermost side of the inner space (inner wall surface) of the annular sleeve 16 disposed around the lower portion of the punch 15. The rod-shaped tip 15b is inserted into the hole 16c.
A funnel-shaped (downwardly decreasing) taper portion 16b formed on the inner wall surface of the annular sleeve 16 above the pore 16c is formed in a funnel-shaped (lower side) above the tip portion 15b of the punch 15. The tapered sleeve 15a is pressed to expand the diameter of the annular sleeve 16 (taper 16b) in the left-right direction.
 同時に、図9(d)のように、厚肉化された側壁上部4e、5e(側壁上部の厚肉部4e、5e)の壁面に、外方からしごきダイス18、18を押圧する。そして、その一方で、側壁上部の厚肉部4e、5eの内側壁面の上部に、パンチ15の上方に設けた環状外周部17の垂直方向に延在する平坦面を当接させる。また、側壁上部の厚肉部4e、5eの内側の下部には、環状スリーブ16の上部の外周に設けられた、下方に拡径するテーパ部16aを当接させる。 At the same time, as shown in FIG. 9 (d), the ironing dies 18 and 18 are pressed from the outside against the wall surfaces of the thickened side wall upper portions 4e and 5e ( thick wall portions 4e and 5e at the upper side walls). And on the other hand, the flat surface extended in the perpendicular direction of the annular outer peripheral part 17 provided above the punch 15 is made to contact | abut to the upper part of the inner wall surface of thick part 4e, 5e of a side wall upper part. Further, a taper portion 16a that is provided on the outer periphery of the upper portion of the annular sleeve 16 and expands downward is brought into contact with the lower portion inside the thick portions 4e and 5e at the upper portion of the side wall.
 そして、側壁上部の厚肉部4e、5eの壁面への、しごきダイス18、18の押圧と、これに伴う、環状外周部17の前記平坦面、環状スリーブ16上部のテーパ部16aへの、側壁上部の厚肉部4e、5eの押し当てを行う。
 これらの作用により、側壁上部の厚肉部4e、5eの厚肉化の方向を、前記ケースの外側方向から、前記ケースの内側方向に向かって張り出すべく、反転させ(窪ませ)、ケースの外側方向に向かって張り出す凸部を有する形状である、側壁上部の厚肉部4c、5cに成形する。
 同時に、側壁上部の厚肉部4e、5e(4c、5c)の外側の壁面も、前記図9(b)でしごき加工された他の側壁4b、5b部分の外側の壁面と同じ平面(面一)である、垂直方向に延在する平坦な壁面に成形される。
 また、これらと同時に、前記環状外周部17の平坦面により、側壁上部の厚肉部4e、5e(4c、5c)の上部側を垂直方向に延在する平坦な壁面に成形しつつ、前記下方に拡径するテーパ部16aにより、側壁上部の厚肉部4e、5e(4c、5c)の下部側を、下方に拡径する内壁面テーパ部4dに成形される。
 ここで、前記しごきダイス18、18として、前記図9(b)でしごき加工に用いたしごきダイス13、13を用いても良く、別のしごきダイスを用いても良い。
Then, the pressing dies 18 and 18 are pressed against the wall surfaces of the thick wall portions 4e and 5e at the upper side of the side wall, and the resulting side wall of the flat surface of the annular outer peripheral portion 17 and the tapered portion 16a at the upper portion of the annular sleeve 16 are accompanied. The upper thick parts 4e and 5e are pressed.
By these actions, the direction of thickening the thick portions 4e and 5e on the upper side wall is reversed (recessed) so as to project from the outer side of the case toward the inner side of the case. It is formed into thick parts 4c and 5c at the upper part of the side wall, which is a shape having a convex part projecting outward.
At the same time, the outer wall surfaces of the thick wall portions 4e, 5e (4c, 5c) at the upper side of the side wall are also flush with the outer wall surfaces of the other side walls 4b, 5b that have been ironed in FIG. 9 (b). ) Which is a flat wall surface extending in the vertical direction.
At the same time, the upper side of the thick wall portions 4e, 5e (4c, 5c) at the upper side of the side wall is formed into a flat wall surface extending in the vertical direction by the flat surface of the annular outer peripheral portion 17, while The lower side of the thick wall portions 4e, 5e (4c, 5c) on the upper side wall is formed into an inner wall taper portion 4d that expands downward.
Here, as the ironing dies 18, 18, the ironing dies 13, 13 used for ironing in FIG. 9B may be used, or another ironing die may be used.
 これらの第2のしごき加工後には、パンチ15の側面が平坦(長手方向の外径が均一)になるように、カム機構で制御することで、前記のケース内側に厚肉化した部分を変形させずに、パンチを離脱させることができる。
 図9(e)は、以上説明した側壁上部の厚肉部4e、5eの成形終了後に、開口部7からパンチ15を、このカム機構により取り出す態様を示している。
 すなわち、前記図9(d)とは逆に、ケース内に挿入したパンチ15を上昇させ、パンチ15の下方に配した環状スリーブ16の孔16c内から、その先端部15bを抜き出す。そして、パンチ15の漏斗状のテーパ部15aの押圧から、環状スリーブ16のテーパ部16bを開放して、環状スリーブ16を縮径させて、パンチ15をケース内から抜けやすくしている。
 以上説明した、図9の一連の加工方法は、他の各側壁上部2c、3cの厚肉部の加工にも、そのまま適用できる。
After the second ironing process, the thickened part inside the case is deformed by controlling with a cam mechanism so that the side surface of the punch 15 is flat (the outer diameter in the longitudinal direction is uniform). Without letting go, the punch can be removed.
FIG. 9 (e) shows a mode in which the punch 15 is taken out from the opening 7 by the cam mechanism after the formation of the thick portions 4e and 5e at the upper side wall described above.
That is, contrary to FIG. 9 (d), the punch 15 inserted into the case is raised, and the tip portion 15 b is extracted from the hole 16 c of the annular sleeve 16 disposed below the punch 15. Then, by pressing the funnel-shaped taper portion 15a of the punch 15, the taper portion 16b of the annular sleeve 16 is released, and the diameter of the annular sleeve 16 is reduced, so that the punch 15 can be easily removed from the case.
The above-described series of processing methods in FIG. 9 can be applied to the processing of the thick portions of the other side wall upper portions 2c and 3c as they are.
 図9の加工方法は、側壁4、5の、上部4e、5e以外の、側壁部位4b、5bにしごき加工を加えて板厚を減少させ、この側壁上部4e、5e(厚肉部4c、5c)には、前記しごき加工を加えずに、元の側壁4、5の各板厚(肉厚)として、そのまま残している。
 このような側壁上部のみを部分的にケース外側に厚肉化する加工は容易にでき、前記図6の圧縮加工のように、側壁に大きな圧縮力を加える必要がないため、側壁が座屈する可能性が低く、効率的に部分厚肉化ができる利点がある。
 また、しごき加工により薄肉化された側壁部分も、加工硬化によって高強度化されるため、板厚の減少に伴う、側壁部分の強度低下が少ない。
 あるいは、アルミニウム合金組成やしごき加工量の選択によって、加工硬化の程度を制御して、側壁部分が薄肉化しても、より高強度化することも可能となる。
 これらの利点は、他の各側壁上部2c、3cの厚肉部の加工でも同じである。
In the processing method of FIG. 9, the side wall portions 4b and 5b other than the upper portions 4e and 5e of the side walls 4 and 5 are subjected to ironing to reduce the plate thickness, and the side wall upper portions 4e and 5e ( thick portions 4c and 5c). ), The plate thickness (wall thickness) of the original side walls 4 and 5 is left as it is without adding the ironing process.
Such a process of thickening only the upper portion of the side wall partially outside the case can be easily performed, and unlike the compression process of FIG. 6, it is not necessary to apply a large compressive force to the side wall, so that the side wall can buckle. There is an advantage that partial thickness can be efficiently increased.
Moreover, since the strength of the side wall portion thinned by the ironing process is increased by work hardening, the strength of the side wall portion is hardly reduced due to the reduction of the plate thickness.
Alternatively, even if the side wall portion is thinned by controlling the degree of work hardening by selecting the aluminum alloy composition and the ironing amount, it is possible to increase the strength.
These advantages are the same in the processing of the thick portions of the other side wall upper portions 2c and 3c.
 次に、一旦形成した側壁上部の厚肉部4e、5eの厚肉化の方向を、ケースの内側方向に向かうべく、前記ケースの外側方向から反転させ(窪ませ)、厚肉部4c、5cとする加工も容易である。
 そして、同時に、側壁上部厚肉部4e、5eの外側の壁面を、前記図9(b)でしごき加工された他の側壁4b、5b部分の外側の壁面と、同一平面に平坦化する成形も容易である。
これらの利点は、他の各側壁上部2c、3cの厚肉部の加工でも同じである。
Next, the thickened portions 4e and 5e at the upper side of the side wall once formed are reversed (recessed) from the outer side of the case so as to be directed toward the inner side of the case. It is easy to process.
At the same time, the outer wall surfaces of the side wall upper thick portions 4e and 5e are flattened in the same plane as the outer wall surfaces of the other side walls 4b and 5b that have been ironed in FIG. 9B. Easy.
These advantages are the same in the processing of the thick portions of the other side wall upper portions 2c and 3c.
 更に、上記図9の一連の加工工程は、使用する各パンチと各ダイスとの上下運動のみからなる、1段あるいは多段の連続的な加工で行うことができる。このため、通常の電池ケース成形に用いられるトランスファープレスに容易に組み込むことが可能であり、高効率で安価に加工ができる利点がある。 Furthermore, the series of processing steps shown in FIG. 9 can be performed by one-step or multi-step continuous processing consisting only of the vertical movement of each punch to be used and each die. For this reason, it can be easily incorporated into a transfer press used for normal battery case molding, and has an advantage of being highly efficient and inexpensive.
 上記図9の加工工程で得られた電池ケース1aも、アルミニウム合金板の成形体からなる角形電池ケースの側壁の上部2c、3c、4c、5cの厚みを、この側壁の定常部の厚みよりも、ビードの形成量に見合った分だけ、角形電池ケースの内側に向かって部分的に厚肉化できる。 The battery case 1a obtained in the processing step of FIG. 9 also has a thickness of the upper portions 2c, 3c, 4c, and 5c of the side wall of the rectangular battery case made of an aluminum alloy plate formed body, which is larger than the thickness of the steady portion of the side wall. The thickness can be partially increased toward the inside of the rectangular battery case by an amount corresponding to the amount of beads formed.
 これによって、アルミニウム合金製の蓋8(図9では図示せず)をレーザによって封止溶接するに際して、この封止溶接が安定して実施でき、前記図4、5で示したビード9が形成でき、健全な溶接部にすることができる。
 すなわち、前記図4、5で示したように、側壁の上部2c、3c、4c、5cと蓋8とに亘るとともに、側壁の上部2c、3c、4c、5cを貫通しないような、ビード9が形成できる。
 そして、これらの効果を、側壁の上部2c、3c、4c、5cの厚肉部以外は薄肉化して、使用する材料を節約し、材料コストを低減した上で実現できる。
Thus, when the aluminum alloy lid 8 (not shown in FIG. 9) is sealed and welded by a laser, this sealing welding can be stably performed, and the beads 9 shown in FIGS. 4 and 5 can be formed. Can be a sound weld.
That is, as shown in FIGS. 4 and 5, the bead 9 extends over the side walls 2c, 3c, 4c and 5c and the lid 8 and does not penetrate the side walls 2c, 3c, 4c and 5c. Can be formed.
These effects can be realized by reducing the thickness of the portions other than the thick portions of the upper portions 2c, 3c, 4c, and 5c of the side walls, saving the material to be used, and reducing the material cost.
素材アルミニウム合金板:
 前記素材アルミニウム合金板は、必要強度と成形性、耐食性、耐クリープ性(耐クリープ変形性)、そして封止溶接性などの、角形電池ケース用素材としての要求特性から選択される。
 この点、室温での機械的な特性で、0.2%耐力が30~200MPaおよび全伸びが3~20%であるような、JIS乃至AAに規格される1000系または3000系のアルミニウム合金板であることが好ましい。中でもA3003アルミニウム合金が好ましく、JIS乃至AAに規格される1000系アルミニウム合金、中でもレーザ溶接を用いて封口される場合には、純アルミニウム合金であるA1050合金が好ましい。
Material aluminum alloy plate:
The material aluminum alloy plate is selected from required characteristics as a material for a rectangular battery case, such as required strength, formability, corrosion resistance, creep resistance (creep deformation resistance), and sealing weldability.
In this respect, 1000 series or 3000 series aluminum alloy sheets specified in JIS or AA, which have mechanical properties at room temperature, 0.2% proof stress of 30 to 200 MPa, and total elongation of 3 to 20%. It is preferable that Among them, A3003 aluminum alloy is preferable, 1000 series aluminum alloy standardized by JIS or AA, and when sealing by laser welding, A1050 alloy which is a pure aluminum alloy is preferable.
 これらのアルミニウム合金板は、均一な厚みの冷延板を、必要により溶体化および焼入れ処理や時効硬化処理あるいは焼鈍などの調質処理を施して、前記特性とする。ただ、使用条件や成形条件によっては、これら合金の耐クリープ性(耐クリープ変形性)などをより改良した合金や、2000系あるいは、より高強度な5000系や6000系アルミニウム合金を用いても良い。 These aluminum alloy plates have the above-mentioned properties by subjecting cold-rolled plates of uniform thickness to solution treatment and quenching treatment, age hardening treatment or annealing treatment as necessary. However, depending on the use conditions and the molding conditions, an alloy in which the creep resistance (creep deformation resistance) of these alloys is further improved, or a 2000 series or higher strength 5000 series or 6000 series aluminum alloy may be used. .
 以上の通り、本発明は、前記封止溶接時に安定したビード形状の形成が可能で、健全な溶接部形成を可能とするアルミニウム合金製の車載電池用角形電池ケースおよびその製造方法を提供できる。このため、車載用の角形電池ケースや、その製造方法好適に使用することができる。 As described above, the present invention can provide a prismatic battery case for an in-vehicle battery made of aluminum alloy that can form a stable bead shape during the sealing welding and can form a sound welded portion, and a method for manufacturing the same. For this reason, it can be used suitably for the vehicle-mounted square battery case and its manufacturing method.
1:電池ケース、2、3、4、5:側壁、2a、3a、4a、5a:側壁上端部、2b、3b、4b、5b:側壁定常部、2c、3c、4c、5c:側壁上部(厚肉部)、6:矩形底部、7:矩形開口部、8:蓋、9:ビード、9a:ビード先端部、9b:ビード外表面、10:カム構造、11:中子、12:型、14、15:パンチ、13、18:しごきダイス、16:環状スリーブ、17:環状外周部、H:ビード溶け込み深さ、X:レーザ入射線 1: Battery case 2, 3, 4, 5: Side wall, 2a, 3a, 4a, 5a: Side wall upper end part, 2b, 3b, 4b, 5b: Side wall steady part, 2c, 3c, 4c, 5c: Side wall upper part ( (Thick part), 6: rectangular bottom, 7: rectangular opening, 8: lid, 9: bead, 9a: bead tip, 9b: bead outer surface, 10: cam structure, 11: core, 12: mold, 14, 15: punch, 13, 18: ironing die, 16: annular sleeve, 17: annular outer periphery, H: bead penetration depth, X: laser incident line

Claims (8)

  1.  車載電池用角形電池ケースであって、1枚の素材アルミニウム合金板から、底部、側壁、開口部を各々有する横断面形状が矩形状のケースに一体に成形されるとともに、前記側壁の厚みが0.2~0.6mmの範囲に薄肉化された上で、前記底部の厚みが0.6~1.0mmの範囲で、前記側壁よりも厚肉化されており、更に、前記側壁の上部の厚みが、前記ケースの内側に向かって張り出すように、部分的に予め厚肉化されていることを特徴とする車載電池用角形電池ケース。 A rectangular battery case for an in-vehicle battery, in which a cross-sectional shape having a bottom, a side wall, and an opening is integrally formed from a single material aluminum alloy plate into a rectangular case, and the thickness of the side wall is 0 The thickness of the bottom portion is 0.6 to 1.0 mm and the wall thickness is larger than that of the side wall. A rectangular battery case for an in-vehicle battery, wherein the thickness is partially thickened in advance so as to protrude toward the inside of the case.
  2.  前記側壁の上部の厚みが、この側壁の定常部の厚みの30%以上、部分的に予め厚肉化されている請求項1に記載の車載電池用角形電池ケース。 The rectangular battery case for in-vehicle batteries according to claim 1, wherein the thickness of the upper part of the side wall is partially thickened in advance by 30% or more of the thickness of the steady part of the side wall.
  3.  前記側壁の外側の壁面は、前記厚肉化されている側壁の上部を含めて同一平面に平坦化されている請求項1または2に記載の車載電池用角形電池ケース。 The rectangular battery case for in-vehicle battery according to claim 1 or 2, wherein the outer wall surface of the side wall is flattened on the same plane including the upper part of the thickened side wall.
  4.  車載電池用の角形電池ケースの製造方法であって、1枚の素材アルミニウム合金板から、底部、側壁、開口部を各々有する横断面形状が矩形状のケースを一体に成形する際に、前記側壁の厚みを0.2~0.6mmの範囲に薄肉化した上で、前記底部の厚みを0.6~1.0mmの範囲に、前記側壁よりも厚肉化し、更に、前記側壁の上部の厚みを、前記ケースの内側に向かって張り出すように、部分的に予め厚肉化したことを特徴とする車載電池用角形電池ケースの製造方法。 A method for manufacturing a rectangular battery case for an in-vehicle battery, wherein when a case having a rectangular cross-sectional shape each having a bottom, a side wall, and an opening is integrally formed from a single material aluminum alloy plate, the side wall The thickness of the bottom portion is reduced to a range of 0.2 to 0.6 mm, the thickness of the bottom portion is increased to a range of 0.6 to 1.0 mm, and the thickness of the bottom portion is increased. A method for manufacturing a rectangular battery case for an in-vehicle battery, wherein the thickness is partially thickened in advance so as to protrude toward the inside of the case.
  5.  前記側壁の上部の厚みを、この側壁の定常部の厚みの30%以上、部分的に予め厚肉化した請求項4に記載の車載電池用角形電池ケースの製造方法。 The method for manufacturing a rectangular battery case for an in-vehicle battery according to claim 4, wherein the thickness of the upper part of the side wall is partially thickened in advance by 30% or more of the thickness of the stationary part of the side wall.
  6.  前記側壁の上部の厚みを、前記ケースの内側に向かって、部分的に予め厚肉化するに際して、前記側壁の上部以外の部位にしごき加工を加えて厚みを減少させる一方で、前記側壁の上部は、前記しごき加工を加えず、元の側壁の厚みを有するとともに前記ケースの外側に向かって張り出す厚肉部としてそのまま残し、その上で、更に、前記側壁の上部の厚肉部に加工を加えて、前記厚肉部の張り出す方向を、前記ケースの内側に向かうよう反転させる、請求項4または5に記載の車載電池用角形電池ケースの製造方法。 When the thickness of the upper part of the side wall is partially thickened in advance toward the inside of the case, the thickness is reduced by applying a squeezing process to a part other than the upper part of the side wall, while the upper part of the side wall Does not apply the ironing process, has the original side wall thickness and leaves it as a thick wall part that projects toward the outside of the case, and further processes the thick wall part at the top of the side wall. In addition, the method of manufacturing a rectangular battery case for an in-vehicle battery according to claim 4 or 5, wherein the protruding direction of the thick part is reversed so as to be directed toward the inside of the case.
  7.  前記しごき加工に際して、前記側壁の上部の厚肉部の外側の壁面を、前記しごき加工された他の側壁部位の外側の壁面と同一平面に平坦化する、請求項4または5に記載の車載電池用角形電池ケースの製造方法。 6. The vehicle-mounted battery according to claim 4, wherein, during the ironing process, the outer wall surface of the thick portion at the upper part of the side wall is flattened in the same plane as the outer wall surface of the other side wall part subjected to the ironing process. Manufacturing method for prismatic battery case.
  8.  前記しごき加工に際して、前記側壁の上部の厚肉部の外側の壁面を、前記しごき加工された他の側壁部位の外側の壁面と同一平面に平坦化する、請求項6に記載の車載電池用角形電池ケースの製造方法。 The square for an in-vehicle battery according to claim 6, wherein, during the ironing process, the outer wall surface of the thick portion at the upper part of the side wall is flattened in the same plane as the outer wall surface of the other side wall part subjected to the ironing process. A battery case manufacturing method.
PCT/JP2015/074375 2014-09-18 2015-08-28 Quadrangular cell case for vehicle cell and method for manufacturing same WO2016043017A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580027384.9A CN106463655A (en) 2014-09-18 2015-08-28 Quadrangular cell case for vehicle cell and method for manufacturing same
KR1020177003358A KR101902132B1 (en) 2014-09-18 2015-08-28 Quadrangular cell case for vehicle cell and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014190279 2014-09-18
JP2014-190279 2014-09-18
JP2015064638A JP6030178B2 (en) 2014-09-18 2015-03-26 Rectangular battery case for in-vehicle battery and manufacturing method thereof
JP2015-064638 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016043017A1 true WO2016043017A1 (en) 2016-03-24

Family

ID=55533058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074375 WO2016043017A1 (en) 2014-09-18 2015-08-28 Quadrangular cell case for vehicle cell and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016043017A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025036A1 (en) * 1997-11-07 1999-05-20 Sony Corporation Square-shape closed battery
JP2002075293A (en) * 2000-08-28 2002-03-15 Hitachi Ltd Light-weight case, its manufacturing method and use
JP2007323845A (en) * 2006-05-30 2007-12-13 Wanotekku Japan:Kk Battery can
JP2009146645A (en) * 2007-12-12 2009-07-02 Toyota Motor Corp Welded structure manufacturing method and battery manufacturing method
JP2014086291A (en) * 2012-10-24 2014-05-12 Hitachi Vehicle Energy Ltd Square secondary battery and battery pack using the same
JP2014120470A (en) * 2012-12-18 2014-06-30 Samsung Sdi Co Ltd Secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025036A1 (en) * 1997-11-07 1999-05-20 Sony Corporation Square-shape closed battery
JP2002075293A (en) * 2000-08-28 2002-03-15 Hitachi Ltd Light-weight case, its manufacturing method and use
JP2007323845A (en) * 2006-05-30 2007-12-13 Wanotekku Japan:Kk Battery can
JP2009146645A (en) * 2007-12-12 2009-07-02 Toyota Motor Corp Welded structure manufacturing method and battery manufacturing method
JP2014086291A (en) * 2012-10-24 2014-05-12 Hitachi Vehicle Energy Ltd Square secondary battery and battery pack using the same
JP2014120470A (en) * 2012-12-18 2014-06-30 Samsung Sdi Co Ltd Secondary battery

Similar Documents

Publication Publication Date Title
JP6030178B2 (en) Rectangular battery case for in-vehicle battery and manufacturing method thereof
JP6193794B2 (en) Method for forming a rectangular battery case
JP5630699B2 (en) Laser lap welding method for galvanized steel plate parts
US6722009B2 (en) Metallic sheet hydroforming method, forming die, and formed part
WO2016103682A1 (en) Panel-shaped molded article and production method for panel-shaped molded article
JP2012094358A (en) Manufacturing method of metal closed bottom or sealed container
JP5677130B2 (en) Exterior can for lithium ion secondary battery
JP2012038603A (en) Metal bottomed or closed container and manufacturing method thereof
CN108080901A (en) Electric motor end cap manufacturing method
CN106891102A (en) A kind of welding procedure and welding structure
JP2007014979A (en) Method and apparatus for producing formed body
JP2014059954A (en) Prismatic battery can and manufacturing method therefor
JP6098630B2 (en) Manufacturing method of welded structure
WO2016043017A1 (en) Quadrangular cell case for vehicle cell and method for manufacturing same
US10501124B2 (en) Vehicle front structure and method for manufacturing same
JP2009018340A (en) Method for fixing lid member to container, metal hermetic container, and sealed battery
CN218005148U (en) Battery shell and battery
KR102394629B1 (en) Method for welding steel sheet made by hot stamping
JP2012152765A (en) Method and device for producing structural component with closed cross section
EP3473530A1 (en) Drawn body for automobile structural member, method for manufacturing drawn body for automobile structural member, and apparatus for manufacturing drawn body for automobile structural member
JP2016144817A (en) Member joining method
JPH10216849A (en) Production of metal end plate and production of fuel tank using the same
JP7410398B2 (en) Manufacturing method of riveted joint structure, riveted joint structure and automobile parts
JP2013048038A (en) Manufacturing method of cell and cell
CN107507941A (en) A kind of battery protection case and its manufacture method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177003358

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841799

Country of ref document: EP

Kind code of ref document: A1