WO2016042622A1 - Activation signal generation circuit - Google Patents

Activation signal generation circuit Download PDF

Info

Publication number
WO2016042622A1
WO2016042622A1 PCT/JP2014/074563 JP2014074563W WO2016042622A1 WO 2016042622 A1 WO2016042622 A1 WO 2016042622A1 JP 2014074563 W JP2014074563 W JP 2014074563W WO 2016042622 A1 WO2016042622 A1 WO 2016042622A1
Authority
WO
WIPO (PCT)
Prior art keywords
time constant
signal
circuit
power detection
intermittent operation
Prior art date
Application number
PCT/JP2014/074563
Other languages
French (fr)
Japanese (ja)
Inventor
暁人 平井
谷口 英司
恒次 堤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/074563 priority Critical patent/WO2016042622A1/en
Publication of WO2016042622A1 publication Critical patent/WO2016042622A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits

Definitions

  • the present invention relates to a start signal generation circuit that intermittently performs detection of a radio signal and outputs a start signal instructing start of another circuit if the radio signal exists.
  • the activation signal generation circuit disclosed in the following Patent Document 1 includes the following elements. (1) When a radio signal is input in a state where an intermittent operation signal instructing execution of radio signal detection processing is input, the radio signal is detected and a power detection signal indicating the power of the radio signal is obtained. Output power detection circuit (2) First-order lag processing for the power detection signal output from the power detection circuit (filter processing for attenuating some frequencies (for example, noise component and harmonic component) included in the power detection signal) ) Is executed with a preset time constant ⁇ and outputs a power detection signal after the first-order lag process. (3) A power detection signal after the first-order lag process output from the time constant circuit is set in advance. (4) If the comparison result output from the threshold processing circuit indicates that the power detection signal after the first-order lag processing is greater than the threshold ,other Start signal output circuit which outputs a start signal for instructing the start of the circuit
  • FIG. 6 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit disclosed in Patent Document 1.
  • the power detection circuit detects the wireless signal at the timing when the second intermittent operation signal is input. Detection processing is started, and a power detection signal indicating the power of the radio signal is output.
  • the time constant circuit performs a first-order lag process on the power detection signal with a preset time constant ⁇ , and outputs a power detection signal after the first-order lag process.
  • the threshold processing circuit When the threshold processing circuit receives the power detection signal after the first-order lag processing from the time constant circuit, the threshold processing circuit compares the power detection signal after the first-order lag processing with the threshold and outputs the comparison result. If the comparison result output from the threshold processing circuit indicates that the power detection signal after the first-order lag processing is greater than the threshold, the activation signal output circuit outputs an activation signal instructing activation of other circuits.
  • the threshold processing circuit when time T elapses after the power detection signal after the first-order lag processing is output from the time constant circuit, the power detection signal after the first-order lag processing becomes larger than the threshold value, and the start signal output circuit The start signal is output.
  • the subsequent circuit of the start signal generation circuit can be configured to perform a predetermined operation only when the start signal is output from the start signal generation circuit, thereby reducing the power consumption of the subsequent circuit. It becomes possible to do.
  • the activation signal generation circuit performs processing only when an intermittent operation signal is input, the power consumption of the activation signal generation circuit can be reduced.
  • the conventional start signal generation circuit is configured as described above, if a small time constant ⁇ is set in the time constant circuit, the response speed of the time constant circuit is increased, so that an intermittent operation signal is input. It is possible to shorten the current state (H level period), and the power consumption reduction effect can be enhanced. However, noise components and harmonic components contained in the power detection signal cannot be sufficiently attenuated, so that the detection accuracy of the radio signal is deteriorated, and the probability of erroneously starting the subsequent circuit is increased. is there. On the other hand, if a large time constant ⁇ is set in the time constant circuit, the response speed of the time constant circuit becomes slow, so that noise components and harmonic components contained in the power detection signal can be sufficiently attenuated. However, since it is necessary to lengthen the state (H level period) in which the intermittent operation signal is input, there is a problem that power consumption cannot be reduced sufficiently.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a start signal generation circuit capable of detecting a radio signal with high accuracy and sufficiently reducing power consumption.
  • the activation signal generation circuit detects a radio signal and inputs the radio signal when an intermittent operation signal instructing execution of the radio signal detection process is input.
  • a power detection circuit that outputs a power detection signal indicating power and a filter process that attenuates some frequencies included in the power detection signal output from the power detection circuit with a preset time constant
  • a time constant circuit for outputting a power detection signal after filtering, a threshold processing circuit for comparing a power detection signal after filtering output from the time constant circuit with a preset threshold, and input of an intermittent operation signal If the comparison result of the threshold processing circuit indicates that the filtered power detection signal is greater than the threshold, the start signal that outputs a start signal that instructs the start of another circuit
  • the time constant control unit changes the time constant set in the time constant circuit before the intermittent operation signal is interrupted after the intermittent operation signal is input. is there.
  • the time constant control unit is configured to change the time constant set in the time constant circuit after the intermittent operation signal is input and before the input of the intermittent operation signal is interrupted.
  • the wireless signal can be detected with high accuracy, and the power consumption can be sufficiently reduced.
  • FIG. 2 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit of FIG. 1. It is a block diagram which shows the starting signal generation circuit by Embodiment 2 of this invention. It is a block diagram which shows the starting signal generation circuit by Embodiment 3 of this invention.
  • FIG. 5 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit of FIG. 4.
  • FIG. 11 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit disclosed in Patent Document 1.
  • FIG. 1 is a block diagram showing an activation signal generation circuit according to Embodiment 1 of the present invention.
  • a start signal generation circuit 1 is a circuit that intermittently detects a radio signal and outputs a start signal instructing start of another circuit 2 if the radio signal exists.
  • the intermittent operation signal input terminal 11 is a terminal to which an intermittent operation signal for instructing execution of radio signal detection processing is input.
  • the radio signal input terminal 12 is a terminal to which a radio signal to be detected is input.
  • the power detection circuit 13 is in a state where an intermittent operation signal is input from the intermittent operation signal input terminal 11 (a state where an H level signal is input), and when a wireless signal is input from the wireless signal input terminal 12, This is a circuit that detects a radio signal and outputs a power detection signal indicating the power of the radio signal to the time constant circuit 14.
  • the time constant circuit 14 is output from the power detection circuit 13 as a filter process for attenuating a part of frequencies (for example, noise components and harmonic components) included in the power detection signal output from the power detection circuit 13.
  • This is a circuit that performs first-order lag processing on the power detection signal with a preset time constant ⁇ and outputs the power detection signal after the first-order lag processing (after filter processing) to the threshold processing circuit 15.
  • the time constant circuit 14 performs first-order lag processing as filter processing.
  • some frequencies for example, noise components and harmonic components included in the power detection signal are used.
  • it is not limited to the first-order lag processing, and for example, second-order lag processing may be performed.
  • the threshold processing circuit 15 is a circuit that compares the power detection signal after the first-order delay processing output from the time constant circuit 14 with a preset threshold and outputs the comparison result to the activation signal output circuit 16.
  • the start signal output circuit 16 outputs from the threshold processing circuit 15 at the timing when the intermittent operation signal input stops (timing when the signal level of the signal input from the intermittent operation signal input terminal 11 changes from H level to L level). If the comparison result indicates that the power detection signal after the first-order lag processing is larger than the threshold, the circuit outputs a start signal instructing start of another circuit 2.
  • the time constant control unit 17 supplies the intermittent operation signal as driving power to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15, and starts up.
  • the activation signal is output from the signal output circuit 16
  • the activation signal is supplied to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 as drive power.
  • the time constant controller 17 changes the time constant ⁇ set by the time constant circuit 14 after the intermittent operation signal is input from the intermittent operation signal input terminal 11 and before the input of the intermittent operation signal is interrupted. Circuit. That is, the time constant control unit 17 sets the time constant ⁇ of the time constant circuit 14 to the first time constant ⁇ a before the intermittent operation signal is input, and after the intermittent operation signal is input, the intermittent operation signal is set. Before the input is interrupted, the time constant ⁇ of the time constant circuit 14 is changed to a second time constant ⁇ b that is larger than the first time constant ⁇ a .
  • FIG. 2 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit of FIG.
  • the time constant control unit 17 When an intermittent operation signal is input from the intermittent operation signal input terminal 11, the time constant control unit 17 outputs the intermittent operation signal as a control signal to the start signal output circuit 16, and then uses the intermittent operation signal as drive power. This is supplied to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15. As a result, the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 can be operated.
  • the time constant control unit 17 outputs the time constant control signal to the time constant circuit 14, thereby setting the time constant ⁇ of the time constant circuit 14 to the first time constant ⁇ .
  • a time constant ⁇ a of 1 is set.
  • the first time constant ⁇ a is an output signal of the time constant circuit 14 when an intermittent operation signal is input from the intermittent operation signal input terminal 11 (a state where an H level signal is input).
  • the power detection signal after the first-order lag processing is a small value that rises sufficiently rapidly.
  • the power detection circuit 13 When the intermittent operation signal is input from the intermittent operation signal input terminal 11, that is, when the intermittent operation signal is supplied as driving power from the time constant control unit 17, the power detection circuit 13 inputs a radio signal. When a radio signal is input from the terminal 12, the radio signal is detected, and a power detection signal indicating the power of the radio signal is output to the time constant circuit 14 as shown in FIG. When the time constant circuit 14 receives the power detection signal from the power detection circuit 13 when the intermittent operation signal is supplied as the driving power from the time constant control unit 17, the time constant circuit 14 controls the first-order delay processing for the power detection signal. The first time constant ⁇ a set by the unit 17 is used to output the power detection signal after the first-order delay processing to the threshold processing circuit 15.
  • the response speed of the time constant circuit 14 is increased and an intermittent operation signal is input ( (H level period) can be shortened.
  • the DC component included in the power detection signal output from the power detection circuit 13 converges quickly, but the noise component and the harmonic component included in the power detection signal are not sufficiently attenuated. .
  • Time constant control unit 17 is aware of the duration T H of H level of the intermittent operation signal input from the intermittent operation signal input terminal 11, the time T H / 2 of half the duration T H has elapsed , by outputting the constant control signal to the time constant circuit 14 time, when changing the time constant tau of the time constant circuit 14 from the first time constant tau a to the second time constant tau b.
  • the second time constant ⁇ b is a large value that can sufficiently attenuate the noise component and the harmonic component included in the power detection signal output from the power detection circuit 13.
  • the time constant control unit 17 changes the time constant ⁇ from the first time constant ⁇ a to the second time constant ⁇ b , the time constant circuit 14 performs first-order lag processing on the power detection signal at the second time.
  • the power detection signal after the first-order lag processing is output to the threshold processing circuit 15 with the constant ⁇ b .
  • the time constant circuit 14 performs the first-order lag processing on the power detection signal with the second time constant ⁇ b , the DC component already included in the power detection signal has converged, so the time constant circuit 14 Even if the constant ⁇ is large, there is no problem in converging the DC component.
  • the threshold value processing circuit 15 receives the power detection signal after the first-order lag process from the time constant circuit 14 when the intermittent operation signal is supplied as the driving power from the time-constant control unit 17, the power detection after the first-order lag process is detected.
  • the signal is compared with a preset threshold value, and the comparison result is output to the activation signal output circuit 16.
  • a preset threshold value In the example of FIG. 2, if the power detection signal after the first-order lag processing is larger than the threshold as a signal indicating the comparison result of the threshold processing circuit 15, an H-level signal is output to the activation signal output circuit 16, and after the first-order lag processing. If the power detection signal is smaller than the threshold value, an L level signal is output to the activation signal output circuit 16.
  • the start signal output circuit 16 has a timing at which the input of the control signal output from the time constant control unit 17 is interrupted (a timing at which the signal level of the signal input from the intermittent operation signal input terminal 11 changes from H level to L level). ), The comparison result output from the threshold processing circuit 15 is confirmed, and if the comparison result indicates that the power detection signal after the first-order lag processing is greater than the threshold (the level of the output signal of the threshold processing circuit 15) Is at H level), a start signal for instructing start of another circuit 2 is output.
  • the threshold processing circuit 15 the level of the output signal of the threshold processing circuit 15
  • the time constant control unit 17 supplies the activation signal as drive power to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15. Therefore, the operations of the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 continue thereafter.
  • a power detection circuit 13 that outputs a detection signal, and first-order lag processing for the power detection signal output from the power detection circuit 13 is performed with a time constant ⁇ set by the time-constant control unit 17, and power after the first-order lag processing
  • a time constant circuit 14 that outputs a detection signal, and a threshold processing circuit 15 that compares a power detection signal after the first-order lag processing output from the time constant circuit 14 with a preset threshold value and outputs the comparison result.
  • the other circuit 2 is activated.
  • a time constant control unit 17 is set in the time constant circuit 14 after the intermittent operation signal is input and before the input of the intermittent operation signal is interrupted. Therefore, the wireless signal can be detected with high accuracy and the power consumption can be sufficiently reduced.
  • first-order lag processing is performed on the power detection signal with a small time constant ⁇ a.
  • the DC component included in the power detection signal can be converged in a shorter time than when the first-order lag processing is performed on the detection signal. Therefore, the state in which the intermittent operation signal is input (H level period) can be shortened, so that the power consumption reduction effect can be enhanced.
  • the first-order lag processing is performed on the power detection signal with a large time constant ⁇ b , so that the noise component and the harmonic component included in the power detection signal are sufficiently reduced. It is possible to attenuate and detect the radio signal with high accuracy. Therefore, both improvement in detection accuracy of the radio signal and improvement in power consumption reduction effect can be realized at the same time.
  • the time constant control unit 17 changes the time constant ⁇ of the time constant circuit 14 from the first time constant ⁇ a to the second time constant ⁇ b only once.
  • the number of changes of the time constant ⁇ of the time constant circuit 14 may be two or more.
  • the time constant controller 17, the half of the time T H / 2 of the duration T H of H level of the intermittent operation signal has elapsed the time constant ⁇ of the time constant circuit 14 first when it from constant tau a shows an example of changing the second time constant tau b, after the elapse of more than half of the time duration T H, the constant tau first time of the time constant circuit 14 of You may be changed from the time constant tau a to the second time constant tau b.
  • FIG. FIG. 3 is a block diagram showing an activation signal generation circuit according to Embodiment 2 of the present invention.
  • the internal structure of the time constant circuit 14 is not clearly shown, but as shown in FIG. 3, an RC circuit including a variable resistor 14a and a capacitor 14b can be used as the time constant circuit 14.
  • Time constant control unit 17 the time constant circuit the time constant tau of 14 to reduce the resistance of the variable resistor 14a when setting the first time constant tau a, when the time constant tau second constant circuit 14 it may be controlled so as to increase the resistance of the variable resistor 14a when setting the constant tau b when.
  • FIG. 4 is a block diagram showing a start signal generation circuit according to Embodiment 3 of the present invention.
  • the activation signal output circuit 16 includes a change request output unit 16a and an activation signal output unit 16b.
  • the change request output unit 16a monitors the comparison result of the threshold processing circuit 15, first specifies the timing when the power detection signal after the first-order lag processing becomes larger than the threshold, and requests to change the time constant ⁇ at that timing A constant change request signal is output to the time constant control unit 18.
  • the start signal output unit 16b outputs from the threshold processing circuit 15 at a timing when the input of the intermittent operation signal is interrupted (a timing when the signal level of the signal input from the intermittent operation signal input terminal 11 changes from the H level to the L level). If the comparison result indicates that the power detection signal after the first-order delay processing is larger than the threshold value, an activation signal instructing activation of the other circuit 2 is output.
  • the time constant control unit 18 supplies the intermittent operation signal as driving power to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15, and starts up.
  • the time constant change request signal is output from the change request output unit 16a of the signal output circuit 16
  • the time constant change request signal is supplied to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 as drive power.
  • the time constant controller 18 is the start signal output circuit when the 16 constants change request signal when a change request output section 16a of are output, the time constant circuit constant tau a second time constant tau of the first time of 14 to change to constant ⁇ b time of.
  • FIG. 5 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit of FIG.
  • the time constant control unit 18 When an intermittent operation signal is input from the intermittent operation signal input terminal 11, the time constant control unit 18 outputs the intermittent operation signal as a control signal to the start signal output unit 16b, and then uses the intermittent operation signal as drive power. This is supplied to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15. As a result, the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 can be operated.
  • the time constant control unit 18 outputs the time constant control signal to the time constant circuit 14, thereby setting the time constant ⁇ of the time constant circuit 14. A time constant ⁇ a of 1 is set.
  • the first time constant ⁇ a is the same as in the first embodiment when the intermittent operation signal is input from the intermittent operation signal input terminal 11 (the H level signal is input). Furthermore, the power detection signal after the first-order lag processing, which is the output signal of the time constant circuit 14, is a small value that rises sufficiently rapidly.
  • the power detection circuit 13 When the intermittent operation signal is input from the intermittent operation signal input terminal 11, that is, when the intermittent operation signal is supplied as driving power from the time constant control unit 18, the power detection circuit 13 inputs a radio signal. When a wireless signal is input from the terminal 12, the wireless signal is detected, and a power detection signal indicating the power of the wireless signal is output to the time constant circuit 14 as shown in FIG. When the time constant circuit 14 receives the power detection signal from the power detection circuit 13 when the intermittent operation signal is supplied as the driving power from the time constant control unit 18, the time constant circuit 14 controls the first-order delay processing for the power detection signal. The first time constant ⁇ a set by the unit 18 is used to output the power detection signal after the first-order lag processing to the threshold processing circuit 15.
  • the response speed of the time constant circuit 14 is increased and an intermittent operation signal is input ( (H level period) can be shortened.
  • the DC component included in the power detection signal output from the power detection circuit 13 converges quickly, but the noise component and the harmonic component included in the power detection signal are not sufficiently attenuated. .
  • the threshold value processing circuit 15 When the threshold value processing circuit 15 receives the power detection signal after the first-order lag process from the time-constant circuit 14 when the intermittent operation signal is supplied as the driving power from the time-constant control unit 18, the threshold value processing circuit 15 detects the power after the first-order lag process. The signal is compared with a preset threshold value, and the comparison result is output to the activation signal output circuit 16. In the example of FIG. 5, as a signal indicating the comparison result of the threshold processing circuit 15, if the power detection signal after the first-order lag processing is greater than the threshold, an H-level signal is output to the activation signal output circuit 16, and after the first-order lag processing If the power detection signal is smaller than the threshold value, an L level signal is output to the activation signal output circuit 16.
  • the change request output unit 16a of the activation signal output circuit 16 monitors the comparison result of the threshold processing circuit 15, and first specifies the timing at which the power detection signal after the first-order lag processing becomes larger than the threshold.
  • the change request output unit 16a first specifies the timing at which the power detection signal after the first-order lag processing becomes larger than the threshold, as shown in FIG. 5, the time constant change request signal for requesting the change of the time constant ⁇ at that timing. Is output to the time constant control unit 18.
  • the time constant control unit 18 receives the time constant change request signal from the change request output unit 16a of the start signal output circuit 16, the time constant ⁇ of the time constant circuit 14 is changed to the first time constant ⁇ as shown in FIG. Change from a to the second time constant ⁇ b .
  • the second time constant ⁇ b can sufficiently attenuate the noise component and the harmonic component included in the power detection signal output from the power detection circuit 13 as in the first embodiment. It is a big value.
  • the time constant control unit 18 receives the time constant change request signal from the change request output unit 16a of the activation signal output circuit 16, the time constant control unit 18 uses the time constant change request signal as driving power and the power detection circuit 13, the time constant circuit 14, and This is supplied to the threshold processing circuit 15. Therefore, the operations of the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 continue thereafter.
  • the time constant circuit 14 When the time constant control unit 18 changes the time constant ⁇ from the first time constant ⁇ a to the second time constant ⁇ b , the time constant circuit 14 performs first-order lag processing on the power detection signal at the second time.
  • the power detection signal after the first-order lag processing is output to the threshold processing circuit 15 with the constant ⁇ b .
  • the time constant circuit 14 In the period in which the time constant circuit 14 performs the first-order lag processing on the power detection signal with the second time constant ⁇ b , the DC component already included in the power detection signal has converged, so the time constant circuit 14 Even if the constant ⁇ is large, there is no problem in converging the DC component.
  • the threshold processing circuit 15 When the time constant change request signal is supplied as driving power from the time constant control unit 18 when the threshold processing circuit 15 receives the power detection signal after the first-order lag processing from the time-constant circuit 14, the threshold processing circuit 15 The power detection signal is compared with a preset threshold value, and the comparison result is output to the activation signal output circuit 16. In the example of FIG. 5, as a signal indicating the comparison result of the threshold processing circuit 15, if the power detection signal after the first-order lag processing is greater than the threshold, an H-level signal is output to the activation signal output circuit 16, and after the first-order lag processing. If the power detection signal is smaller than the threshold value, an L level signal is output to the activation signal output circuit 16.
  • the start signal output unit 16b of the start signal output circuit 16 has a timing at which the input of the intermittent operation signal stops (a timing at which the signal level of the signal input from the intermittent operation signal input terminal 11 changes from the H level to the L level).
  • the comparison result output from the threshold processing circuit 15 is confirmed, and if the comparison result indicates that the power detection signal after the first-order lag processing is greater than the threshold (the level of the output signal of the threshold processing circuit 15 is H Level), an activation signal instructing activation of the other circuit 2 is output.
  • the level of the output signal of the threshold processing circuit 15 is H Level
  • the start signal output circuit 16 monitors the comparison result of the threshold processing circuit 15, and the power detection signal after the first-order delay processing first becomes larger than the threshold.
  • the change request output unit 16a that outputs a time constant change request signal that specifies the timing and requests the change of the time constant ⁇ at that timing, and the comparison that is output from the threshold processing circuit 15 when the intermittent operation signal stops being input If the result indicates that the power detection signal after the first-order lag processing is larger than the threshold value, the start signal output unit 16b is configured to output the start signal, and the time constant control unit 18 includes the change request output unit.
  • the activation signal generation circuit reduces the power consumption while improving the detection accuracy of the radio signal when outputting the activation signal instructing activation of other circuits when the radio signal exists. Suitable for things that need to be increased.
  • 1 start signal generation circuit 2 other circuit, 11 intermittent operation signal input terminal, 12 wireless signal input terminal, 13 power detection circuit, 14 time constant circuit, 14a variable resistance, 14b capacity, 15 threshold processing circuit, 16 start signal output Circuit, 16a change request output unit, 16b start signal output unit, 17, 18 time constant control unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An activation signal generation circuit is provided with: a power detection circuit 13 which outputs a power detection signal indicating the power of a radio signal; a time constant circuit 14 which performs first-order lag processing on the power detection signal outputted from the power detection circuit 13 with a time constant τ and outputs the power detection signal after the first-order lag processing; a threshold value processing circuit 15 which compares the power detection signal after the first-order lag processing and a threshold value; and an activation signal output circuit 16 which outputs, when the input of an intermittent operation signal is lost, an activation signal if the result of the comparison by the threshold value processing circuit 15 indicates that the power detection signal after the first-order lag processing is larger than the threshold value. A time constant control unit 17 changes the time constant τ set in the time constant circuit 14 after the intermittent operation signal is inputted and before the input of the intermittent operation signal is lost.

Description

起動信号生成回路Start signal generation circuit
 この発明は、無線信号の検波を間欠的に実施し、その無線信号が存在していれば、他の回路の起動を指示する起動信号を出力する起動信号生成回路に関するものである。 The present invention relates to a start signal generation circuit that intermittently performs detection of a radio signal and outputs a start signal instructing start of another circuit if the radio signal exists.
 以下の特許文献1に開示されている起動信号生成回路は、以下の要素から構成されている。
(1)無線信号の検波処理の実行を指示する間欠動作信号が入力されている状態で無線信号が入力されると、その無線信号を検波して、その無線信号の電力を示す電力検出信号を出力する電力検出回路
(2)電力検出回路から出力された電力検出信号に対する一次遅れ処理(電力検出信号に含まれている一部の周波数(例えば、雑音成分、高調波成分)を減衰させるフィルタ処理)を予め設定されている時定数τで実施して、一次遅れ処理後の電力検出信号を出力する時定数回路
(3)時定数回路から出力された一次遅れ処理後の電力検出信号と予め設定されている閾値を比較して、その比較結果を出力する閾値処理回路
(4)閾値処理回路から出力された比較結果が、一次遅れ処理後の電力検出信号が閾値より大きい旨を示していれば、他の回路の起動を指示する起動信号を出力する起動信号出力回路
The activation signal generation circuit disclosed in the following Patent Document 1 includes the following elements.
(1) When a radio signal is input in a state where an intermittent operation signal instructing execution of radio signal detection processing is input, the radio signal is detected and a power detection signal indicating the power of the radio signal is obtained. Output power detection circuit (2) First-order lag processing for the power detection signal output from the power detection circuit (filter processing for attenuating some frequencies (for example, noise component and harmonic component) included in the power detection signal) ) Is executed with a preset time constant τ and outputs a power detection signal after the first-order lag process. (3) A power detection signal after the first-order lag process output from the time constant circuit is set in advance. (4) If the comparison result output from the threshold processing circuit indicates that the power detection signal after the first-order lag processing is greater than the threshold ,other Start signal output circuit which outputs a start signal for instructing the start of the circuit
 図6は特許文献1に開示されている起動信号生成回路の動作タイミングチャートを示す説明図である。
 図6の例では、2つ目の間欠動作信号が入力される前に、無線信号が入力されているため、2つ目の間欠動作信号が入力されるタイミングで、電力検出回路が無線信号の検波処理を開始して、その無線信号の電力を示す電力検出信号を出力する。
 時定数回路は、電力検出回路から電力検出信号を受けると、その電力検出信号に対する一次遅れ処理を予め設定されている時定数τで実施して、一次遅れ処理後の電力検出信号を出力する。
FIG. 6 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit disclosed in Patent Document 1. In FIG.
In the example of FIG. 6, since the wireless signal is input before the second intermittent operation signal is input, the power detection circuit detects the wireless signal at the timing when the second intermittent operation signal is input. Detection processing is started, and a power detection signal indicating the power of the radio signal is output.
When receiving the power detection signal from the power detection circuit, the time constant circuit performs a first-order lag process on the power detection signal with a preset time constant τ, and outputs a power detection signal after the first-order lag process.
 閾値処理回路は、時定数回路から一次遅れ処理後の電力検出信号を受けると、一次遅れ処理後の電力検出信号と閾値を比較して、その比較結果を出力する。
 起動信号出力回路は、閾値処理回路から出力された比較結果が、一次遅れ処理後の電力検出信号が閾値より大きい旨を示していれば、他の回路の起動を指示する起動信号を出力する。
 図6の例では、時定数回路から一次遅れ処理後の電力検出信号が出力されてから、時間Tを経過したとき、一次遅れ処理後の電力検出信号が閾値より大きくなり、起動信号出力回路から起動信号が出力されている。
 これにより、起動信号生成回路の後段の回路は、起動信号生成回路から起動信号が出力されたときだけ、所定の動作を実施するように構成することができるため、後段の回路の消費電力を削減することが可能になる。また、起動信号生成回路も間欠動作信号が入力されているときだけ処理を実施することになるため、起動信号生成回路の消費電力も削減することが可能になる。
When the threshold processing circuit receives the power detection signal after the first-order lag processing from the time constant circuit, the threshold processing circuit compares the power detection signal after the first-order lag processing with the threshold and outputs the comparison result.
If the comparison result output from the threshold processing circuit indicates that the power detection signal after the first-order lag processing is greater than the threshold, the activation signal output circuit outputs an activation signal instructing activation of other circuits.
In the example of FIG. 6, when time T elapses after the power detection signal after the first-order lag processing is output from the time constant circuit, the power detection signal after the first-order lag processing becomes larger than the threshold value, and the start signal output circuit The start signal is output.
As a result, the subsequent circuit of the start signal generation circuit can be configured to perform a predetermined operation only when the start signal is output from the start signal generation circuit, thereby reducing the power consumption of the subsequent circuit. It becomes possible to do. In addition, since the activation signal generation circuit performs processing only when an intermittent operation signal is input, the power consumption of the activation signal generation circuit can be reduced.
特開2006-50333号公報(段落番号[0016])JP 2006-50333 A (paragraph number [0016])
 従来の起動信号生成回路は以上のように構成されているので、小さな時定数τが時定数回路に設定されていれば、時定数回路の応答速度が早くなることから、間欠動作信号が入力されている状態(Hレベルの期間)を短くすることが可能になり、消費電力の削減効果を高めることができる。しかし、電力検出信号に含まれている雑音成分や高調波成分を十分に減衰することができずに、無線信号の検出精度が劣化して、後段の回路を誤起動する確率が高くなることがある。一方、大きな時定数τが時定数回路に設定されていれば、時定数回路の応答速度が遅くなることから、電力検出信号に含まれている雑音成分や高調波成分を十分に減衰することができるが、間欠動作信号が入力されている状態(Hレベルの期間)を長くする必要があるため、十分に消費電力を削減することができないという課題があった。 Since the conventional start signal generation circuit is configured as described above, if a small time constant τ is set in the time constant circuit, the response speed of the time constant circuit is increased, so that an intermittent operation signal is input. It is possible to shorten the current state (H level period), and the power consumption reduction effect can be enhanced. However, noise components and harmonic components contained in the power detection signal cannot be sufficiently attenuated, so that the detection accuracy of the radio signal is deteriorated, and the probability of erroneously starting the subsequent circuit is increased. is there. On the other hand, if a large time constant τ is set in the time constant circuit, the response speed of the time constant circuit becomes slow, so that noise components and harmonic components contained in the power detection signal can be sufficiently attenuated. However, since it is necessary to lengthen the state (H level period) in which the intermittent operation signal is input, there is a problem that power consumption cannot be reduced sufficiently.
 この発明は上記のような課題を解決するためになされたもので、高精度に無線信号を検出することができるとともに、十分に消費電力を削減することができる起動信号生成回路を得ることを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a start signal generation circuit capable of detecting a radio signal with high accuracy and sufficiently reducing power consumption. And
 この発明に係る起動信号生成回路は、無線信号の検波処理の実行を指示する間欠動作信号が入力されている状態で無線信号が入力されると、その無線信号を検波して、その無線信号の電力を示す電力検出信号を出力する電力検出回路と、電力検出回路から出力された電力検出信号に含まれている一部の周波数を減衰させるフィルタ処理を予め設定されている時定数で実施して、フィルタ処理後の電力検出信号を出力する時定数回路と、時定数回路から出力されたフィルタ処理後の電力検出信号と予め設定されている閾値を比較する閾値処理回路と、間欠動作信号の入力が途絶えたとき、閾値処理回路の比較結果が、フィルタ処理後の電力検出信号が閾値より大きい旨を示していれば、他の回路の起動を指示する起動信号を出力する起動信号出力回路とを設け、時定数制御部が、間欠動作信号が入力されてから、その間欠動作信号の入力が途絶える前に、時定数回路に設定されている時定数を変更するようにしたものである。 The activation signal generation circuit according to the present invention detects a radio signal and inputs the radio signal when an intermittent operation signal instructing execution of the radio signal detection process is input. A power detection circuit that outputs a power detection signal indicating power and a filter process that attenuates some frequencies included in the power detection signal output from the power detection circuit with a preset time constant A time constant circuit for outputting a power detection signal after filtering, a threshold processing circuit for comparing a power detection signal after filtering output from the time constant circuit with a preset threshold, and input of an intermittent operation signal If the comparison result of the threshold processing circuit indicates that the filtered power detection signal is greater than the threshold, the start signal that outputs a start signal that instructs the start of another circuit The time constant control unit changes the time constant set in the time constant circuit before the intermittent operation signal is interrupted after the intermittent operation signal is input. is there.
 この発明によれば、時定数制御部が、間欠動作信号が入力されてから、その間欠動作信号の入力が途絶える前に、時定数回路に設定されている時定数を変更するように構成したので、高精度に無線信号を検出することができるとともに、十分に消費電力を削減することができる効果がある。 According to the present invention, the time constant control unit is configured to change the time constant set in the time constant circuit after the intermittent operation signal is input and before the input of the intermittent operation signal is interrupted. The wireless signal can be detected with high accuracy, and the power consumption can be sufficiently reduced.
この発明の実施の形態1による起動信号生成回路を示す構成図である。It is a block diagram which shows the starting signal generation circuit by Embodiment 1 of this invention. 図1の起動信号生成回路の動作タイミングチャートを示す説明図である。FIG. 2 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit of FIG. 1. この発明の実施の形態2による起動信号生成回路を示す構成図である。It is a block diagram which shows the starting signal generation circuit by Embodiment 2 of this invention. この発明の実施の形態3による起動信号生成回路を示す構成図である。It is a block diagram which shows the starting signal generation circuit by Embodiment 3 of this invention. 図4の起動信号生成回路の動作タイミングチャートを示す説明図である。FIG. 5 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit of FIG. 4. 特許文献1に開示されている起動信号生成回路の動作タイミングチャートを示す説明図である。FIG. 11 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit disclosed in Patent Document 1.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1はこの発明の実施の形態1による起動信号生成回路を示す構成図である。
 図1において、起動信号生成回路1は無線信号の検波を間欠的に実施し、その無線信号が存在していれば、他の回路2の起動を指示する起動信号を出力する回路である。
 間欠動作信号入力端子11は無線信号の検波処理の実行を指示する間欠動作信号が入力される端子である。
 無線信号入力端子12は検波対象の無線信号が入力される端子である。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing an activation signal generation circuit according to Embodiment 1 of the present invention.
In FIG. 1, a start signal generation circuit 1 is a circuit that intermittently detects a radio signal and outputs a start signal instructing start of another circuit 2 if the radio signal exists.
The intermittent operation signal input terminal 11 is a terminal to which an intermittent operation signal for instructing execution of radio signal detection processing is input.
The radio signal input terminal 12 is a terminal to which a radio signal to be detected is input.
 電力検出回路13は間欠動作信号入力端子11から間欠動作信号が入力されている状態(Hレベルの信号が入力されている状態)で、無線信号入力端子12から無線信号が入力されると、その無線信号を検波して、その無線信号の電力を示す電力検出信号を時定数回路14に出力する回路である。
 時定数回路14は電力検出回路13から出力された電力検出信号に含まれている一部の周波数(例えば、雑音成分、高調波成分)を減衰させるフィルタ処理として、電力検出回路13から出力された電力検出信号に対する一次遅れ処理を予め設定されている時定数τで実施して、一次遅れ処理後(フィルタ処理後)の電力検出信号を閾値処理回路15に出力する回路である。
 この実施の形態1では、時定数回路14がフィルタ処理として一次遅れ処理を実施する例を説明するが、電力検出信号に含まれている一部の周波数(例えば、雑音成分、高調波成分)を減衰させることができれば、一次遅れ処理に限るものではなく、例えば、二次遅れ処理を実施するようにしてもよい。
The power detection circuit 13 is in a state where an intermittent operation signal is input from the intermittent operation signal input terminal 11 (a state where an H level signal is input), and when a wireless signal is input from the wireless signal input terminal 12, This is a circuit that detects a radio signal and outputs a power detection signal indicating the power of the radio signal to the time constant circuit 14.
The time constant circuit 14 is output from the power detection circuit 13 as a filter process for attenuating a part of frequencies (for example, noise components and harmonic components) included in the power detection signal output from the power detection circuit 13. This is a circuit that performs first-order lag processing on the power detection signal with a preset time constant τ and outputs the power detection signal after the first-order lag processing (after filter processing) to the threshold processing circuit 15.
In the first embodiment, an example in which the time constant circuit 14 performs first-order lag processing as filter processing will be described. However, some frequencies (for example, noise components and harmonic components) included in the power detection signal are used. As long as it can be attenuated, it is not limited to the first-order lag processing, and for example, second-order lag processing may be performed.
 閾値処理回路15は時定数回路14から出力された一次遅れ処理後の電力検出信号と予め設定されている閾値を比較して、その比較結果を起動信号出力回路16に出力する回路である。
 起動信号出力回路16は間欠動作信号の入力が途絶えたタイミング(間欠動作信号入力端子11から入力されている信号の信号レベルがHレベルからLレベルに変化したタイミング)で、閾値処理回路15から出力された比較結果が、一次遅れ処理後の電力検出信号が閾値より大きい旨を示していれば、他の回路2の起動を指示する起動信号を出力する回路である。
The threshold processing circuit 15 is a circuit that compares the power detection signal after the first-order delay processing output from the time constant circuit 14 with a preset threshold and outputs the comparison result to the activation signal output circuit 16.
The start signal output circuit 16 outputs from the threshold processing circuit 15 at the timing when the intermittent operation signal input stops (timing when the signal level of the signal input from the intermittent operation signal input terminal 11 changes from H level to L level). If the comparison result indicates that the power detection signal after the first-order lag processing is larger than the threshold, the circuit outputs a start signal instructing start of another circuit 2.
 時定数制御部17は間欠動作信号入力端子11から間欠動作信号が入力されると、その間欠動作信号を駆動用電力として電力検出回路13、時定数回路14及び閾値処理回路15に供給し、起動信号出力回路16から起動信号が出力されると、その起動信号を駆動用電力として電力検出回路13、時定数回路14及び閾値処理回路15に供給する。
 また、時定数制御部17は間欠動作信号入力端子11から間欠動作信号が入力されてから、その間欠動作信号の入力が途絶える前に、時定数回路14により設定されている時定数τを変更する回路である。
 即ち、時定数制御部17は間欠動作信号が入力される前に時定数回路14の時定数τを第1の時定数τに設定し、間欠動作信号が入力された後、その間欠動作信号の入力が途絶える前に、時定数回路14の時定数τを第1の時定数τより大きな第2の時定数τに変更する回路である。
When an intermittent operation signal is input from the intermittent operation signal input terminal 11, the time constant control unit 17 supplies the intermittent operation signal as driving power to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15, and starts up. When the activation signal is output from the signal output circuit 16, the activation signal is supplied to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 as drive power.
The time constant controller 17 changes the time constant τ set by the time constant circuit 14 after the intermittent operation signal is input from the intermittent operation signal input terminal 11 and before the input of the intermittent operation signal is interrupted. Circuit.
That is, the time constant control unit 17 sets the time constant τ of the time constant circuit 14 to the first time constant τ a before the intermittent operation signal is input, and after the intermittent operation signal is input, the intermittent operation signal is set. Before the input is interrupted, the time constant τ of the time constant circuit 14 is changed to a second time constant τ b that is larger than the first time constant τ a .
 次に動作について説明する。
 図2は図1の起動信号生成回路の動作タイミングチャートを示す説明図である。
 時定数制御部17は、間欠動作信号入力端子11から間欠動作信号が入力されると、その間欠動作信号を制御信号として起動信号出力回路16に出力したのち、その間欠動作信号を駆動用電力として電力検出回路13、時定数回路14及び閾値処理回路15に供給する。
 これにより、電力検出回路13、時定数回路14及び閾値処理回路15の動作が可能になる。
 また、時定数制御部17は、間欠動作信号入力端子11から間欠動作信号が入力されると、時定数制御信号を時定数回路14に出力することで、時定数回路14の時定数τを第1の時定数τに設定する。なお、第1の時定数τは、間欠動作信号入力端子11から間欠動作信号が入力されている状態(Hレベルの信号が入力されている状態)のときに、時定数回路14の出力信号である一次遅れ処理後の電力検出信号が十分急伸に立ち上がるような小さな値である。
Next, the operation will be described.
FIG. 2 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit of FIG.
When an intermittent operation signal is input from the intermittent operation signal input terminal 11, the time constant control unit 17 outputs the intermittent operation signal as a control signal to the start signal output circuit 16, and then uses the intermittent operation signal as drive power. This is supplied to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15.
As a result, the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 can be operated.
In addition, when the intermittent operation signal is input from the intermittent operation signal input terminal 11, the time constant control unit 17 outputs the time constant control signal to the time constant circuit 14, thereby setting the time constant τ of the time constant circuit 14 to the first time constant τ. A time constant τa of 1 is set. The first time constant τ a is an output signal of the time constant circuit 14 when an intermittent operation signal is input from the intermittent operation signal input terminal 11 (a state where an H level signal is input). The power detection signal after the first-order lag processing is a small value that rises sufficiently rapidly.
 電力検出回路13は、間欠動作信号入力端子11から間欠動作信号が入力されている状態のとき、即ち、時定数制御部17から駆動用電力として間欠動作信号が供給されているとき、無線信号入力端子12から無線信号が入力されると、その無線信号を検波し、図2に示すように、その無線信号の電力を示す電力検出信号を時定数回路14に出力する。
 時定数回路14は、時定数制御部17から駆動用電力として間欠動作信号が供給されているとき、電力検出回路13から電力検出信号を受けると、その電力検出信号に対する一次遅れ処理を時定数制御部17により設定されている第1の時定数τで実施して、一次遅れ処理後の電力検出信号を閾値処理回路15に出力する。
 ここで、時定数制御部17により設定されている第1の時定数τは、小さな時定数であるため、時定数回路14の応答速度が早くなり、間欠動作信号が入力されている状態(Hレベルの期間)を短くすることが可能になる。
 これにより、電力検出回路13から出力された電力検出信号に含まれている直流成分が早くに収束するが、その電力検出信号に含まれている雑音成分と高調波成分は十分に減衰されていない。
When the intermittent operation signal is input from the intermittent operation signal input terminal 11, that is, when the intermittent operation signal is supplied as driving power from the time constant control unit 17, the power detection circuit 13 inputs a radio signal. When a radio signal is input from the terminal 12, the radio signal is detected, and a power detection signal indicating the power of the radio signal is output to the time constant circuit 14 as shown in FIG.
When the time constant circuit 14 receives the power detection signal from the power detection circuit 13 when the intermittent operation signal is supplied as the driving power from the time constant control unit 17, the time constant circuit 14 controls the first-order delay processing for the power detection signal. The first time constant τ a set by the unit 17 is used to output the power detection signal after the first-order delay processing to the threshold processing circuit 15.
Here, since the first time constant τ a set by the time constant control unit 17 is a small time constant, the response speed of the time constant circuit 14 is increased and an intermittent operation signal is input ( (H level period) can be shortened.
As a result, the DC component included in the power detection signal output from the power detection circuit 13 converges quickly, but the noise component and the harmonic component included in the power detection signal are not sufficiently attenuated. .
 時定数制御部17は、間欠動作信号入力端子11から入力される間欠動作信号のHレベルの継続時間Tを認識しており、その継続時間Tの半分の時間T/2が経過すると、時定数制御信号を時定数回路14に出力することで、時定数回路14の時定数τを第1の時定数τから第2の時定数τに変更する。なお、第2の時定数τは、電力検出回路13から出力された電力検出信号に含まれている雑音成分と高調波成分を十分に減衰することが可能な大きな値である。
 時定数回路14は、時定数制御部17によって時定数τが第1の時定数τから第2の時定数τに変更されると、その電力検出信号に対する一次遅れ処理を第2の時定数τで実施して、一次遅れ処理後の電力検出信号を閾値処理回路15に出力する。
 時定数回路14が電力検出信号に対する一次遅れ処理を第2の時定数τで実施する期間では、既に電力検出信号に含まれている直流成分が収束しているので、時定数回路14の時定数τが大きくても、直流成分を収束させる上で問題にならない。
Time constant control unit 17 is aware of the duration T H of H level of the intermittent operation signal input from the intermittent operation signal input terminal 11, the time T H / 2 of half the duration T H has elapsed , by outputting the constant control signal to the time constant circuit 14 time, when changing the time constant tau of the time constant circuit 14 from the first time constant tau a to the second time constant tau b. Note that the second time constant τ b is a large value that can sufficiently attenuate the noise component and the harmonic component included in the power detection signal output from the power detection circuit 13.
When the time constant control unit 17 changes the time constant τ from the first time constant τ a to the second time constant τ b , the time constant circuit 14 performs first-order lag processing on the power detection signal at the second time. The power detection signal after the first-order lag processing is output to the threshold processing circuit 15 with the constant τ b .
In the period in which the time constant circuit 14 performs the first-order lag processing on the power detection signal with the second time constant τ b , the DC component already included in the power detection signal has converged, so the time constant circuit 14 Even if the constant τ is large, there is no problem in converging the DC component.
 閾値処理回路15は、時定数制御部17から駆動用電力として間欠動作信号が供給されているとき、時定数回路14から一次遅れ処理後の電力検出信号を受けると、一次遅れ処理後の電力検出信号と予め設定されている閾値を比較して、その比較結果を起動信号出力回路16に出力する。
 図2の例では、閾値処理回路15の比較結果を示す信号として、一次遅れ処理後の電力検出信号が閾値より大きければ、Hレベルの信号を起動信号出力回路16に出力し、一次遅れ処理後の電力検出信号が閾値より小さければ、Lレベルの信号を起動信号出力回路16に出力している。
When the threshold value processing circuit 15 receives the power detection signal after the first-order lag process from the time constant circuit 14 when the intermittent operation signal is supplied as the driving power from the time-constant control unit 17, the power detection after the first-order lag process is detected. The signal is compared with a preset threshold value, and the comparison result is output to the activation signal output circuit 16.
In the example of FIG. 2, if the power detection signal after the first-order lag processing is larger than the threshold as a signal indicating the comparison result of the threshold processing circuit 15, an H-level signal is output to the activation signal output circuit 16, and after the first-order lag processing. If the power detection signal is smaller than the threshold value, an L level signal is output to the activation signal output circuit 16.
 起動信号出力回路16は、時定数制御部17から出力された制御信号の入力が途絶えたタイミング(間欠動作信号入力端子11から入力されている信号の信号レベルがHレベルからLレベルに変化したタイミング)で、閾値処理回路15から出力された比較結果を確認し、その比較結果が、一次遅れ処理後の電力検出信号が閾値より大きい旨を示していれば(閾値処理回路15の出力信号のレベルがHレベル)、他の回路2の起動を指示する起動信号を出力する。
 図2の例では、閾値処理回路15の出力信号のレベルがHレベルであるため、他の回路2の起動を指示する起動信号を出力しているが、閾値処理回路15の出力信号のレベルがLレベルであれば、他の回路2の起動を指示する起動信号を出力しない。
 時定数制御部17は、起動信号出力回路16から起動信号が出力されると、その起動信号を駆動用電力として電力検出回路13、時定数回路14及び閾値処理回路15に供給する。このため、以後、電力検出回路13、時定数回路14及び閾値処理回路15の動作は継続する。
The start signal output circuit 16 has a timing at which the input of the control signal output from the time constant control unit 17 is interrupted (a timing at which the signal level of the signal input from the intermittent operation signal input terminal 11 changes from H level to L level). ), The comparison result output from the threshold processing circuit 15 is confirmed, and if the comparison result indicates that the power detection signal after the first-order lag processing is greater than the threshold (the level of the output signal of the threshold processing circuit 15) Is at H level), a start signal for instructing start of another circuit 2 is output.
In the example of FIG. 2, since the level of the output signal of the threshold processing circuit 15 is H level, an activation signal instructing activation of the other circuit 2 is output, but the level of the output signal of the threshold processing circuit 15 is If it is at the L level, the activation signal that instructs activation of the other circuit 2 is not output.
When the activation signal is output from the activation signal output circuit 16, the time constant control unit 17 supplies the activation signal as drive power to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15. Therefore, the operations of the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 continue thereafter.
 以上で明らかなように、この実施の形態1によれば、間欠動作信号が入力されている状態で無線信号が入力されると、その無線信号を検波して、その無線信号の電力を示す電力検出信号を出力する電力検出回路13と、電力検出回路13から出力された電力検出信号に対する一次遅れ処理を時定数制御部17により設定される時定数τで実施して、一次遅れ処理後の電力検出信号を出力する時定数回路14と、時定数回路14から出力された一次遅れ処理後の電力検出信号と予め設定されている閾値を比較して、その比較結果を出力する閾値処理回路15と、その間欠動作信号の入力が途絶えたとき、閾値処理回路15から出力された比較結果が、一次遅れ処理後の電力検出信号が閾値より大きい旨を示していれば、他の回路2の起動を指示する起動信号を出力する起動信号出力回路16とを設け、時定数制御部17が、間欠動作信号が入力されてから、その間欠動作信号の入力が途絶える前に、時定数回路14に設定されている時定数τを変更するように構成したので、高精度に無線信号を検出することができるとともに、十分に消費電力を削減することができる効果を奏する。 As is apparent from the above, according to the first embodiment, when a radio signal is input in a state where an intermittent operation signal is input, the radio signal is detected and the power indicating the power of the radio signal is detected. A power detection circuit 13 that outputs a detection signal, and first-order lag processing for the power detection signal output from the power detection circuit 13 is performed with a time constant τ set by the time-constant control unit 17, and power after the first-order lag processing A time constant circuit 14 that outputs a detection signal, and a threshold processing circuit 15 that compares a power detection signal after the first-order lag processing output from the time constant circuit 14 with a preset threshold value and outputs the comparison result. When the input of the intermittent operation signal is interrupted, if the comparison result output from the threshold processing circuit 15 indicates that the power detection signal after the first-order lag processing is larger than the threshold, the other circuit 2 is activated. finger And a time constant control unit 17 is set in the time constant circuit 14 after the intermittent operation signal is input and before the input of the intermittent operation signal is interrupted. Therefore, the wireless signal can be detected with high accuracy and the power consumption can be sufficiently reduced.
 即ち、間欠動作信号が入力されている前半の期間では、小さな時定数τで電力検出信号に対する一次遅れ処理を実施するため、間欠動作信号が入力されている全期間において、大きな時定数で電力検出信号に対する一次遅れ処理を実施する場合よりも、短時間で電力検出信号に含まれている直流成分が収束させることができる。したがって、間欠動作信号が入力されている状態(Hレベルの期間)を短くすることが可能になるため、消費電力の削減効果を高めることができる。
 また、間欠動作信号が入力されている後半の期間では、大きな時定数τで電力検出信号に対する一次遅れ処理を実施するため、電力検出信号に含まれている雑音成分と高調波成分を十分に減衰させて、高精度に無線信号を検出することができる。
 したがって、無線信号の検出精度の向上と、消費電力の削減効果の向上の双方を同時に実現することができる。
That is, in the first half period in which the intermittent operation signal is input, first-order lag processing is performed on the power detection signal with a small time constant τa. The DC component included in the power detection signal can be converged in a shorter time than when the first-order lag processing is performed on the detection signal. Therefore, the state in which the intermittent operation signal is input (H level period) can be shortened, so that the power consumption reduction effect can be enhanced.
In the latter half of the period when the intermittent operation signal is input, the first-order lag processing is performed on the power detection signal with a large time constant τ b , so that the noise component and the harmonic component included in the power detection signal are sufficiently reduced. It is possible to attenuate and detect the radio signal with high accuracy.
Therefore, both improvement in detection accuracy of the radio signal and improvement in power consumption reduction effect can be realized at the same time.
 この実施の形態1では、時定数制御部17が、時定数回路14の時定数τを第1の時定数τから第2の時定数τに1回だけ変更する例を示しているが、時定数回路14の時定数τの変更回数が2以上であってもよい。
 また、この実施の形態1では、時定数制御部17が、間欠動作信号のHレベルの継続時間Tの半分の時間T/2が経過すると、時定数回路14の時定数τを第1の時定数τから第2の時定数τに変更する例を示しているが、継続時間Tの半分以上の時間が経過してから、時定数回路14の時定数τを第1の時定数τから第2の時定数τに変更するようにしてもよい。このとき、第2の時定数τの期間として、無線信号の1波長以上の期間確保されていればよい。
In the first embodiment, the time constant control unit 17 changes the time constant τ of the time constant circuit 14 from the first time constant τ a to the second time constant τ b only once. The number of changes of the time constant τ of the time constant circuit 14 may be two or more.
Further, in this first embodiment, the time constant controller 17, the half of the time T H / 2 of the duration T H of H level of the intermittent operation signal has elapsed, the time constant τ of the time constant circuit 14 first when it from constant tau a shows an example of changing the second time constant tau b, after the elapse of more than half of the time duration T H, the constant tau first time of the time constant circuit 14 of You may be changed from the time constant tau a to the second time constant tau b. At this time, it is only necessary to secure a period of one wavelength or more of the radio signal as the period of the second time constant τ b .
実施の形態2.
 図3はこの発明の実施の形態2による起動信号生成回路を示す構成図である。
 上記実施の形態1では、時定数回路14の内部構成を明示していないが、図3に示すように、時定数回路14として、可変抵抗14aと容量14bからなるRC回路を用いることができる。
 時定数制御部17は、時定数回路14の時定数τを第1の時定数τに設定する際には可変抵抗14aの抵抗値を小さくし、時定数回路14の時定数τを第2の時定数τに設定する際には可変抵抗14aの抵抗値を大きくするように制御すればよい。
Embodiment 2. FIG.
FIG. 3 is a block diagram showing an activation signal generation circuit according to Embodiment 2 of the present invention.
In the first embodiment, the internal structure of the time constant circuit 14 is not clearly shown, but as shown in FIG. 3, an RC circuit including a variable resistor 14a and a capacitor 14b can be used as the time constant circuit 14.
Time constant control unit 17, the time constant circuit the time constant tau of 14 to reduce the resistance of the variable resistor 14a when setting the first time constant tau a, when the time constant tau second constant circuit 14 it may be controlled so as to increase the resistance of the variable resistor 14a when setting the constant tau b when.
実施の形態3.
 図4はこの発明の実施の形態3による起動信号生成回路を示す構成図であり、図4において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 この実施の形態3では、起動信号出力回路16は変更要求出力部16aと起動信号出力部16bとから構成されている。
 変更要求出力部16aは閾値処理回路15の比較結果を監視して、最初に一次遅れ処理後の電力検出信号が閾値より大きくなるタイミングを特定し、そのタイミングで時定数τの変更を要求する時定数変更要求信号を時定数制御部18に出力する。
 起動信号出力部16bは間欠動作信号の入力が途絶えたタイミング(間欠動作信号入力端子11から入力されている信号の信号レベルがHレベルからLレベルに変化したタイミング)で、閾値処理回路15から出力された比較結果が、一次遅れ処理後の電力検出信号が閾値より大きい旨を示していれば、他の回路2の起動を指示する起動信号を出力する。
Embodiment 3 FIG.
4 is a block diagram showing a start signal generation circuit according to Embodiment 3 of the present invention. In FIG. 4, the same reference numerals as those in FIG.
In the third embodiment, the activation signal output circuit 16 includes a change request output unit 16a and an activation signal output unit 16b.
The change request output unit 16a monitors the comparison result of the threshold processing circuit 15, first specifies the timing when the power detection signal after the first-order lag processing becomes larger than the threshold, and requests to change the time constant τ at that timing A constant change request signal is output to the time constant control unit 18.
The start signal output unit 16b outputs from the threshold processing circuit 15 at a timing when the input of the intermittent operation signal is interrupted (a timing when the signal level of the signal input from the intermittent operation signal input terminal 11 changes from the H level to the L level). If the comparison result indicates that the power detection signal after the first-order delay processing is larger than the threshold value, an activation signal instructing activation of the other circuit 2 is output.
 時定数制御部18は間欠動作信号入力端子11から間欠動作信号が入力されると、その間欠動作信号を駆動用電力として電力検出回路13、時定数回路14及び閾値処理回路15に供給し、起動信号出力回路16の変更要求出力部16aから時定数変更要求信号が出力されると、その時定数変更要求信号を駆動用電力として電力検出回路13、時定数回路14及び閾値処理回路15に供給する。
 また、時定数制御部18は起動信号出力回路16の変更要求出力部16aから時定数変更要求信号が出力されると、時定数回路14の時定数τを第1の時定数τから第2の時定数τに変更する。
When the intermittent operation signal is input from the intermittent operation signal input terminal 11, the time constant control unit 18 supplies the intermittent operation signal as driving power to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15, and starts up. When the time constant change request signal is output from the change request output unit 16a of the signal output circuit 16, the time constant change request signal is supplied to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 as drive power.
Further, the time constant controller 18 is the start signal output circuit when the 16 constants change request signal when a change request output section 16a of are output, the time constant circuit constant tau a second time constant tau of the first time of 14 to change to constant τ b time of.
 次に動作について説明する。
 図5は図4の起動信号生成回路の動作タイミングチャートを示す説明図である。
 時定数制御部18は、間欠動作信号入力端子11から間欠動作信号が入力されると、その間欠動作信号を制御信号として起動信号出力部16bに出力したのち、その間欠動作信号を駆動用電力として電力検出回路13、時定数回路14及び閾値処理回路15に供給する。
 これにより、電力検出回路13、時定数回路14及び閾値処理回路15の動作が可能になる。
 また、時定数制御部18は、間欠動作信号入力端子11から間欠動作信号が入力されると、時定数制御信号を時定数回路14に出力することで、時定数回路14の時定数τを第1の時定数τに設定する。なお、第1の時定数τは、上記実施の形態1と同様に、間欠動作信号入力端子11から間欠動作信号が入力されている状態(Hレベルの信号が入力されている状態)のときに、時定数回路14の出力信号である一次遅れ処理後の電力検出信号が十分急伸に立ち上がるような小さな値である。
Next, the operation will be described.
FIG. 5 is an explanatory diagram showing an operation timing chart of the activation signal generation circuit of FIG.
When an intermittent operation signal is input from the intermittent operation signal input terminal 11, the time constant control unit 18 outputs the intermittent operation signal as a control signal to the start signal output unit 16b, and then uses the intermittent operation signal as drive power. This is supplied to the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15.
As a result, the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 can be operated.
In addition, when an intermittent operation signal is input from the intermittent operation signal input terminal 11, the time constant control unit 18 outputs the time constant control signal to the time constant circuit 14, thereby setting the time constant τ of the time constant circuit 14. A time constant τa of 1 is set. The first time constant τ a is the same as in the first embodiment when the intermittent operation signal is input from the intermittent operation signal input terminal 11 (the H level signal is input). Furthermore, the power detection signal after the first-order lag processing, which is the output signal of the time constant circuit 14, is a small value that rises sufficiently rapidly.
 電力検出回路13は、間欠動作信号入力端子11から間欠動作信号が入力されている状態のとき、即ち、時定数制御部18から駆動用電力として間欠動作信号が供給されているとき、無線信号入力端子12から無線信号が入力されると、その無線信号を検波し、図5に示すように、その無線信号の電力を示す電力検出信号を時定数回路14に出力する。
 時定数回路14は、時定数制御部18から駆動用電力として間欠動作信号が供給されているとき、電力検出回路13から電力検出信号を受けると、その電力検出信号に対する一次遅れ処理を時定数制御部18により設定されている第1の時定数τで実施して、一次遅れ処理後の電力検出信号を閾値処理回路15に出力する。
 ここで、時定数制御部18により設定されている第1の時定数τは、小さな時定数であるため、時定数回路14の応答速度が早くなり、間欠動作信号が入力されている状態(Hレベルの期間)を短くすることが可能になる。
 これにより、電力検出回路13から出力された電力検出信号に含まれている直流成分が早くに収束するが、その電力検出信号に含まれている雑音成分と高調波成分は十分に減衰されていない。
When the intermittent operation signal is input from the intermittent operation signal input terminal 11, that is, when the intermittent operation signal is supplied as driving power from the time constant control unit 18, the power detection circuit 13 inputs a radio signal. When a wireless signal is input from the terminal 12, the wireless signal is detected, and a power detection signal indicating the power of the wireless signal is output to the time constant circuit 14 as shown in FIG.
When the time constant circuit 14 receives the power detection signal from the power detection circuit 13 when the intermittent operation signal is supplied as the driving power from the time constant control unit 18, the time constant circuit 14 controls the first-order delay processing for the power detection signal. The first time constant τ a set by the unit 18 is used to output the power detection signal after the first-order lag processing to the threshold processing circuit 15.
Here, since the first time constant τ a set by the time constant control unit 18 is a small time constant, the response speed of the time constant circuit 14 is increased and an intermittent operation signal is input ( (H level period) can be shortened.
As a result, the DC component included in the power detection signal output from the power detection circuit 13 converges quickly, but the noise component and the harmonic component included in the power detection signal are not sufficiently attenuated. .
 閾値処理回路15は、時定数制御部18から駆動用電力として間欠動作信号が供給されているとき、時定数回路14から一次遅れ処理後の電力検出信号を受けると、一次遅れ処理後の電力検出信号と予め設定されている閾値を比較して、その比較結果を起動信号出力回路16に出力する。
 図5の例では、閾値処理回路15の比較結果を示す信号として、一次遅れ処理後の電力検出信号が閾値より大きければ、Hレベルの信号を起動信号出力回路16に出力し、一次遅れ処理後の電力検出信号が閾値より小さければ、Lレベルの信号を起動信号出力回路16に出力している。
When the threshold value processing circuit 15 receives the power detection signal after the first-order lag process from the time-constant circuit 14 when the intermittent operation signal is supplied as the driving power from the time-constant control unit 18, the threshold value processing circuit 15 detects the power after the first-order lag process. The signal is compared with a preset threshold value, and the comparison result is output to the activation signal output circuit 16.
In the example of FIG. 5, as a signal indicating the comparison result of the threshold processing circuit 15, if the power detection signal after the first-order lag processing is greater than the threshold, an H-level signal is output to the activation signal output circuit 16, and after the first-order lag processing If the power detection signal is smaller than the threshold value, an L level signal is output to the activation signal output circuit 16.
 起動信号出力回路16の変更要求出力部16aは、閾値処理回路15の比較結果を監視して、最初に一次遅れ処理後の電力検出信号が閾値より大きくなるタイミングを特定する。
 変更要求出力部16aは、最初に一次遅れ処理後の電力検出信号が閾値より大きくなるタイミングを特定すると、図5に示すように、そのタイミングで時定数τの変更を要求する時定数変更要求信号を時定数制御部18に出力する。
 時定数制御部18は、起動信号出力回路16の変更要求出力部16aから時定数変更要求信号を受けると、図5に示すように、時定数回路14の時定数τを第1の時定数τから第2の時定数τに変更する。なお、第2の時定数τは、上記実施の形態1と同様に、電力検出回路13から出力された電力検出信号に含まれている雑音成分と高調波成分を十分に減衰することが可能な大きな値である。
 また、時定数制御部18は、起動信号出力回路16の変更要求出力部16aから時定数変更要求信号を受けると、その時定数変更要求信号を駆動用電力として電力検出回路13、時定数回路14及び閾値処理回路15に供給する。このため、以後、電力検出回路13、時定数回路14及び閾値処理回路15の動作は継続する。
The change request output unit 16a of the activation signal output circuit 16 monitors the comparison result of the threshold processing circuit 15, and first specifies the timing at which the power detection signal after the first-order lag processing becomes larger than the threshold.
When the change request output unit 16a first specifies the timing at which the power detection signal after the first-order lag processing becomes larger than the threshold, as shown in FIG. 5, the time constant change request signal for requesting the change of the time constant τ at that timing. Is output to the time constant control unit 18.
When the time constant control unit 18 receives the time constant change request signal from the change request output unit 16a of the start signal output circuit 16, the time constant τ of the time constant circuit 14 is changed to the first time constant τ as shown in FIG. Change from a to the second time constant τ b . Note that the second time constant τ b can sufficiently attenuate the noise component and the harmonic component included in the power detection signal output from the power detection circuit 13 as in the first embodiment. It is a big value.
When the time constant control unit 18 receives the time constant change request signal from the change request output unit 16a of the activation signal output circuit 16, the time constant control unit 18 uses the time constant change request signal as driving power and the power detection circuit 13, the time constant circuit 14, and This is supplied to the threshold processing circuit 15. Therefore, the operations of the power detection circuit 13, the time constant circuit 14, and the threshold processing circuit 15 continue thereafter.
 時定数回路14は、時定数制御部18によって時定数τが第1の時定数τから第2の時定数τに変更されると、その電力検出信号に対する一次遅れ処理を第2の時定数τで実施して、一次遅れ処理後の電力検出信号を閾値処理回路15に出力する。
 時定数回路14が電力検出信号に対する一次遅れ処理を第2の時定数τで実施する期間では、既に電力検出信号に含まれている直流成分が収束しているので、時定数回路14の時定数τが大きくても、直流成分を収束させる上で問題にならない。
When the time constant control unit 18 changes the time constant τ from the first time constant τ a to the second time constant τ b , the time constant circuit 14 performs first-order lag processing on the power detection signal at the second time. The power detection signal after the first-order lag processing is output to the threshold processing circuit 15 with the constant τ b .
In the period in which the time constant circuit 14 performs the first-order lag processing on the power detection signal with the second time constant τ b , the DC component already included in the power detection signal has converged, so the time constant circuit 14 Even if the constant τ is large, there is no problem in converging the DC component.
 閾値処理回路15は、時定数制御部18から駆動用電力として時定数変更要求信号が供給されているとき、時定数回路14から一次遅れ処理後の電力検出信号を受けると、一次遅れ処理後の電力検出信号と予め設定されている閾値を比較して、その比較結果を起動信号出力回路16に出力する。
 図5の例では、閾値処理回路15の比較結果を示す信号として、一次遅れ処理後の電力検出信号が閾値より大きければ、Hレベルの信号を起動信号出力回路16に出力し、一次遅れ処理後の電力検出信号が閾値より小さければ、Lレベルの信号を起動信号出力回路16に出力している。
When the time constant change request signal is supplied as driving power from the time constant control unit 18 when the threshold processing circuit 15 receives the power detection signal after the first-order lag processing from the time-constant circuit 14, the threshold processing circuit 15 The power detection signal is compared with a preset threshold value, and the comparison result is output to the activation signal output circuit 16.
In the example of FIG. 5, as a signal indicating the comparison result of the threshold processing circuit 15, if the power detection signal after the first-order lag processing is greater than the threshold, an H-level signal is output to the activation signal output circuit 16, and after the first-order lag processing. If the power detection signal is smaller than the threshold value, an L level signal is output to the activation signal output circuit 16.
 起動信号出力回路16の起動信号出力部16bは、間欠動作信号の入力が途絶えたタイミング(間欠動作信号入力端子11から入力されている信号の信号レベルがHレベルからLレベルに変化したタイミング)で、閾値処理回路15から出力された比較結果を確認し、その比較結果が、一次遅れ処理後の電力検出信号が閾値より大きい旨を示していれば(閾値処理回路15の出力信号のレベルがHレベル)、他の回路2の起動を指示する起動信号を出力する。
 図5の例では、閾値処理回路15の出力信号のレベルがHレベルであるため、他の回路2の起動を指示する起動信号を出力しているが、閾値処理回路15の出力信号のレベルがLレベルであれば、他の回路2の起動を指示する起動信号を出力しない。
The start signal output unit 16b of the start signal output circuit 16 has a timing at which the input of the intermittent operation signal stops (a timing at which the signal level of the signal input from the intermittent operation signal input terminal 11 changes from the H level to the L level). The comparison result output from the threshold processing circuit 15 is confirmed, and if the comparison result indicates that the power detection signal after the first-order lag processing is greater than the threshold (the level of the output signal of the threshold processing circuit 15 is H Level), an activation signal instructing activation of the other circuit 2 is output.
In the example of FIG. 5, since the level of the output signal of the threshold processing circuit 15 is H level, the activation signal instructing activation of the other circuit 2 is output, but the level of the output signal of the threshold processing circuit 15 is If it is at the L level, the activation signal that instructs activation of the other circuit 2 is not output.
 以上で明らかなように、この実施の形態3によれば、起動信号出力回路16が、閾値処理回路15の比較結果を監視して、最初に一次遅れ処理後の電力検出信号が閾値より大きくなるタイミングを特定し、そのタイミングで時定数τの変更を要求する時定数変更要求信号を出力する変更要求出力部16aと、間欠動作信号の入力が途絶えたとき、閾値処理回路15から出力された比較結果が、一次遅れ処理後の電力検出信号が閾値より大きい旨を示していれば、起動信号を出力する起動信号出力部16bとから構成されており、時定数制御部18が、変更要求出力部16aから時定数変更要求信号が出力されると、時定数回路14の時定数τを第1の時定数τから第2の時定数τに変更するように構成したので、上記実施の形態1と同様の効果を奏するほか、最初に、一次遅れ処理後の電力検出信号が閾値より大きくなった時点で、時定数回路14の時定数τを第1の時定数τから第2の時定数τに変更することができるようになる。その結果、上記実施の形態1よりも、第1の時定数τの期間が短縮されるため、間欠動作信号のHレベルの継続時間Tを短くすることが可能になる。間欠動作信号のHレベルの継続時間Tが短くなれば、消費電力の削減効果を高めることができる。 As is apparent from the above, according to the third embodiment, the start signal output circuit 16 monitors the comparison result of the threshold processing circuit 15, and the power detection signal after the first-order delay processing first becomes larger than the threshold. The change request output unit 16a that outputs a time constant change request signal that specifies the timing and requests the change of the time constant τ at that timing, and the comparison that is output from the threshold processing circuit 15 when the intermittent operation signal stops being input If the result indicates that the power detection signal after the first-order lag processing is larger than the threshold value, the start signal output unit 16b is configured to output the start signal, and the time constant control unit 18 includes the change request output unit. when constant change request signal is output when the 16a, when since the time constant tau of the time constant circuit 14 is composed of a first time constant tau a to change the second time constant tau b, the above-described embodiment Same as 1 In addition to the effects, first, when the power detection signal after the first-order delay processing becomes larger than the threshold, the time constant τ of the time constant circuit 14 is changed from the first time constant τ a to the second time constant τ b . Will be able to change. As a result, than the first embodiment, since the period of the first time constant tau a is shortened, it becomes possible to shorten the duration T H of H level of the intermittent operation signal. If the duration T H of H level of the intermittent operation signal becomes short, it is possible to enhance the effect of reducing power consumption.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, free combinations of the respective embodiments, modifications of arbitrary components of the respective embodiments, or omission of arbitrary components of the respective embodiments are possible. .
 この発明に係る起動信号生成回路は、無線信号が存在しているときに、他の回路の起動を指示する起動信号を出力する際、無線信号の検出精度を高めらながら、消費電力の削減効果を高める必要があるものに適している。 The activation signal generation circuit according to the present invention reduces the power consumption while improving the detection accuracy of the radio signal when outputting the activation signal instructing activation of other circuits when the radio signal exists. Suitable for things that need to be increased.
 1 起動信号生成回路、2 他の回路、11 間欠動作信号入力端子、12 無線信号入力端子、13 電力検出回路、14 時定数回路、14a 可変抵抗、14b 容量、15 閾値処理回路、16 起動信号出力回路、16a 変更要求出力部、16b 起動信号出力部、17,18 時定数制御部。 1 start signal generation circuit, 2 other circuit, 11 intermittent operation signal input terminal, 12 wireless signal input terminal, 13 power detection circuit, 14 time constant circuit, 14a variable resistance, 14b capacity, 15 threshold processing circuit, 16 start signal output Circuit, 16a change request output unit, 16b start signal output unit, 17, 18 time constant control unit.

Claims (3)

  1.  無線信号の検波処理の実行を指示する間欠動作信号が入力されている状態で前記無線信号が入力されると、前記無線信号を検波して、前記無線信号の電力を示す電力検出信号を出力する電力検出回路と、
     前記電力検出回路から出力された電力検出信号に含まれている一部の周波数を減衰させるフィルタ処理を予め設定されている時定数で実施して、フィルタ処理後の電力検出信号を出力する時定数回路と、
     前記時定数回路から出力されたフィルタ処理後の電力検出信号と予め設定されている閾値を比較する閾値処理回路と、
     前記間欠動作信号の入力が途絶えたとき、前記閾値処理回路の比較結果が、前記フィルタ処理後の電力検出信号が前記閾値より大きい旨を示していれば、他の回路の起動を指示する起動信号を出力する起動信号出力回路と、
     前記間欠動作信号が入力されてから、前記間欠動作信号の入力が途絶える前に、前記時定数回路に設定されている時定数を変更する時定数制御部と
     を備えた起動信号生成回路。
    When the wireless signal is input in a state where an intermittent operation signal instructing execution of detection processing of the wireless signal is input, the wireless signal is detected and a power detection signal indicating the power of the wireless signal is output. A power detection circuit;
    A time constant for performing a filter process for attenuating a part of the frequency included in the power detection signal output from the power detection circuit with a preset time constant and outputting a power detection signal after the filter process Circuit,
    A threshold processing circuit for comparing the power detection signal after filtering output from the time constant circuit with a preset threshold;
    When input of the intermittent operation signal is interrupted, if the comparison result of the threshold processing circuit indicates that the power detection signal after the filter processing is larger than the threshold, an activation signal that instructs activation of another circuit A start signal output circuit for outputting
    A start signal generation circuit comprising: a time constant controller configured to change a time constant set in the time constant circuit after the intermittent operation signal is input and before the input of the intermittent operation signal is interrupted.
  2.  前記時定数制御部は、前記間欠動作信号が入力される前に前記時定数回路の時定数を第1の時定数に設定し、前記間欠動作信号が入力された後、前記間欠動作信号の入力が途絶える前に、前記時定数回路の時定数を前記第1の時定数より大きな第2の時定数に変更することを特徴とする請求項1記載の起動信号生成回路。 The time constant control unit sets the time constant of the time constant circuit to a first time constant before the intermittent operation signal is input, and inputs the intermittent operation signal after the intermittent operation signal is input. 2. The start signal generating circuit according to claim 1, wherein the time constant of the time constant circuit is changed to a second time constant larger than the first time constant before the time constant is interrupted.
  3.  前記起動信号出力回路は、前記閾値処理回路の比較結果を監視して、前記フィルタ処理後の電力検出信号が前記閾値より大きくなるタイミングを特定し、前記タイミングで時定数の変更を要求する時定数変更要求信号を出力する変更要求出力部と、前記間欠動作信号の入力が途絶えたとき、前記閾値処理回路から出力された比較結果が、前記フィルタ処理後の電力検出信号が前記閾値より大きい旨を示していれば、起動信号を出力する起動信号出力部とから構成されており、
     前記時定数制御部は、前記変更要求出力部から時定数変更要求信号が出力されると、前記時定数回路の時定数を前記第1の時定数から前記第2の時定数に変更することを特徴とする請求項2記載の起動信号生成回路。
    The activation signal output circuit monitors a comparison result of the threshold processing circuit, specifies a timing at which the power detection signal after the filter processing becomes larger than the threshold, and requests a time constant to be changed at the timing. When a change request output unit that outputs a change request signal and the intermittent operation signal input are interrupted, the comparison result output from the threshold processing circuit indicates that the power detection signal after the filtering is greater than the threshold. If it is shown, it consists of a start signal output unit that outputs a start signal,
    When the time constant change request signal is output from the change request output unit, the time constant control unit changes the time constant of the time constant circuit from the first time constant to the second time constant. The activation signal generation circuit according to claim 2, wherein:
PCT/JP2014/074563 2014-09-17 2014-09-17 Activation signal generation circuit WO2016042622A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074563 WO2016042622A1 (en) 2014-09-17 2014-09-17 Activation signal generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/074563 WO2016042622A1 (en) 2014-09-17 2014-09-17 Activation signal generation circuit

Publications (1)

Publication Number Publication Date
WO2016042622A1 true WO2016042622A1 (en) 2016-03-24

Family

ID=55532688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074563 WO2016042622A1 (en) 2014-09-17 2014-09-17 Activation signal generation circuit

Country Status (1)

Country Link
WO (1) WO2016042622A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120704A (en) * 1976-04-05 1977-10-11 Nec Corp Individual selection call receiver
JP2011188264A (en) * 2010-03-09 2011-09-22 Alps Electric Co Ltd Receiver
WO2013133069A1 (en) * 2012-03-07 2013-09-12 三菱電機株式会社 Startup signal generation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52120704A (en) * 1976-04-05 1977-10-11 Nec Corp Individual selection call receiver
JP2011188264A (en) * 2010-03-09 2011-09-22 Alps Electric Co Ltd Receiver
WO2013133069A1 (en) * 2012-03-07 2013-09-12 三菱電機株式会社 Startup signal generation device

Similar Documents

Publication Publication Date Title
US9778711B2 (en) Control device and reset system utilizing the same
JP2020025444A5 (en)
JP2017200306A5 (en)
US10050585B2 (en) Ultra-low power crystal oscillator with adaptive self-start
JP2017199948A5 (en)
WO2020021814A1 (en) Automatic adjustment method for feedback control system, and feedback control apparatus
JP6100913B2 (en) Tactile sensation presentation apparatus and control method for tactile sensation presentation apparatus
JP4643551B2 (en) Automatic frequency monitoring circuit, electronic device, automatic frequency monitoring method, and automatic frequency monitoring program
WO2016042622A1 (en) Activation signal generation circuit
JP5091936B2 (en) Dynamic current supply pump
JP2007096955A (en) Noise filter and filtering method
WO2013133069A1 (en) Startup signal generation device
JP2008049262A (en) Drive circuit of ultrasonic oscillator
JP3921428B2 (en) Audio signal denoising device
US9735770B2 (en) Method for controlling switching edges for switched output stages, control device, and output stage
JP2006352269A (en) Pulse width modulation circuit and switching amplifier
JP2004096815A (en) Method of synchronizing carriers in pwm control action, and pwm controller
KR101732833B1 (en) Noise determination device
JP6787203B2 (en) Control circuit of semiconductor device
JP2017158399A (en) Switching power source device
JP5086306B2 (en) Programmable controller
JP2015106748A (en) Noise elimination device and noise elimination method
JP2017207382A (en) Electronic controller
JP2018137502A (en) Communication terminal device
JP2015188168A (en) Sensor device and control system using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP