WO2016041211A1 - 分子影像成像验证系统和方法 - Google Patents

分子影像成像验证系统和方法 Download PDF

Info

Publication number
WO2016041211A1
WO2016041211A1 PCT/CN2014/087072 CN2014087072W WO2016041211A1 WO 2016041211 A1 WO2016041211 A1 WO 2016041211A1 CN 2014087072 W CN2014087072 W CN 2014087072W WO 2016041211 A1 WO2016041211 A1 WO 2016041211A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
camera
white light
fluorescence
processing
Prior art date
Application number
PCT/CN2014/087072
Other languages
English (en)
French (fr)
Inventor
田捷
安羽
迟崇巍
杨鑫
Original Assignee
中国科学院自动化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院自动化研究所 filed Critical 中国科学院自动化研究所
Publication of WO2016041211A1 publication Critical patent/WO2016041211A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Definitions

  • the invention relates to the field of molecular imaging technology, in particular to a molecular imaging imaging verification system and method combining a frozen slicer and a CCD camera
  • molecular imaging technology can achieve non-invasive real-time in vivo imaging of physiological or pathological processes within the organism at the cellular, genetic and molecular levels, thereby functionalizing disease-associated genes, cell growth and development.
  • the mechanism of action of the mutation process, research and development of new drugs, etc. provide detailed qualitative, localized, quantitative data and effective means of information acquisition and analysis.
  • excitation fluorescence imaging can be described as: when external light is irradiated onto a biological tissue with a fluorophore, the fluorophore absorbs light energy to cause the electron to transition to an excited state, and electrons are released from the excited state back to the ground state. Fluorescence, which absorbs light toward the red end, that is, the emitted fluorescence is lower than the absorbed external light. The fluorescence propagates in the tissue and some of it reaches the body surface, and the fluorescence emitted from the body surface is received by the detector. Thereby forming a fluorescent image.
  • fluorescence The fluorescence emitted by the group is scattered by the tissue, the intensity of the light is already weak, and it is difficult to observe with the naked eye. Therefore, it is necessary to perform imaging in a dark box completely protected from light, and the sensitivity of the detector is required to be high, usually using a low temperature refrigeration.
  • a highly sensitive CCD camera detects fluorescent photons on the surface of the tissue. Another advantage of CCD cameras is the high spatial resolution.
  • imaging results are usually different from real results. Since the biological tissue that generates fluorescence is usually soft tissue, the true geometric information of the biological tissue cannot be obtained in some structural imaging modes (such as CT, MRI, etc.), and it is difficult to provide a true and reliable position of the fluorescent light source, so that the optical molecular imaging method is evaluated. The pros and cons become very difficult.
  • the object of the present invention is to provide a molecular imaging imaging verification system and method for the defect of the prior art, which can measure the cross section of the object to be detected, greatly simplifies the operation steps and operation flow, has a reasonable system structure, and has remarkable functions and operations. Convenience.
  • the present invention provides a molecular imaging imaging verification system, the system comprising an image acquisition portion and an image processing portion:
  • the image acquisition portion includes a frozen slicer (1), a camera (2), a camera lens (3), a capture device holder (4), a camera holder (5), a camera slide device (6), and an emission filter holder ( 7), a plurality of emission filters (8), an optical fiber (9), an excitation light source (10);
  • the cabinet of the frozen slicer (1) is connected to the collection device holder (4), and the collection device holder (4) is connected to the camera slide device (6), and the camera slide device (6) Connected to the camera holder (5), the camera holder (5) is connected to the camera (2);
  • the transmissive interface of the camera (2) is connected to the transmissive interface of the camera lens (3), and the light entrance of the camera lens (3) is connected to the emission filter holder (7), An emission filter (8) is embedded in the card slot of the emission filter holder (7);
  • An outlet of the excitation light source (10) is connected to one end of the optical fiber (9), and the optical fiber (9) The other end points to the object being observed;
  • the image processing portion includes an image processing system coupled to the camera (2) for receiving white light images and exciting fluorescent images, and automatically segmenting the fluorescent images, adding pseudo colors, and automatically counting photons of the automatically segmented regions, and automatically The geometric information of the segmentation area is measured, and the fluorescence image is superimposed with the white light image to obtain the true geometric position of the excitation fluorescence imaging region.
  • the image processing system includes: a pre-processing module (21), an analysis module (22), and a storage module (23);
  • the pre-processing module (21) is connected to the data output port of the camera (2) for performing fluorescence intensity uniformity correction processing and autofluorescence interference removal processing on the received fluorescent image, and receiving the white light image. Do not process;
  • the analysis module (22) is connected to the pre-processing module (21), and is configured to sequentially perform automatic segmentation, pseudo color addition, photon number statistics and automatic segmentation of the fluorescence image sent by the pre-processing module (21).
  • the geometric information of the divided area is measured, and the operation is superimposed with the white light image, and the image obtained by the automatic segmentation, the pseudo color addition, the photon number of the automatically segmented region and superimposed with the white light image is displayed;
  • the storage module (23) is connected to the pre-processing module (21) and the analysis module (22), and is configured to save the fluorescence image and the white light image processed by the pre-processing module (21), and analyze the module. (22) After the processing, the image obtained by the automatic segmentation, pseudo color addition, and the number of photons in the auto-divided region is superimposed and superimposed on the white light image is saved.
  • the camera (2) is a photodetector.
  • the present invention provides a verification method based on the above-described molecular imaging imaging verification system, characterized in that the method comprises:
  • Step S1 By controlling the position of the camera slide device and the camera bracket, the measurement area of the camera lens accurately corresponds to the detected slice, and the camera lens field of view includes the slice cross-sectional area of the detected slice to realize clear imaging of the detected slice by the camera;
  • Step S2 Turn on the white light of the frozen slicer, and control the camera to obtain a white light image, a white light image. Reaction cross-sectional information of the slice being tested;
  • Step S3 placing the emission filter into the emission filter holder, connecting the emission filter holder and the camera lens; turning on the excitation light source while turning off the white light; controlling the camera to obtain the fluorescent image; turning off the excitation light source; Detecting distribution information of the fluorescent light source included in the slice;
  • Step S4 the fluorescence image and the white light image are transmitted to a pre-processing module of the image processing portion; the pre-processing module performs an intensity correction operation and an autofluorescence removal processing operation on the fluorescence image;
  • Step S5 The analysis module sequentially performs automatic segmentation, pseudo color addition, photon number counting in the automatic segmentation region, geometric information measurement of the automatic segmentation region, and white light image superimposition processing on the fluorescence image sent by the preprocessing module, and displays the fluorescence image through automatic Image obtained by dividing, pseudo-color addition, photon number of auto-divided area and superimposed with white light image;
  • Step S6 the storage module saves the fluorescence image and the white light image processed by the pre-processing module, and after processing the analysis module, that is, the fluorescence image is automatically segmented, pseudo color added, and the photon number of the auto-divided region is counted and white light is The image obtained by superimposing the image is saved, and the measured fluorescence region geometric information is saved.
  • the beneficial effects of the invention are: a molecular imaging imaging verification system and a verification method combining a cryo slicer and a CCD camera are established.
  • the system and method can complete the cross-sectional slice measurement of the small animal waiting for the detection object, and automatically obtain the clear fluorescence data of the small animal slice after setting the parameters, complete the white light image acquisition, the fluorescence image acquisition and the superimposition with the white light image, and the fluorescence image.
  • Automatic segmentation, segmentation photon number statistics, fluorescence region geometry information measurement, etc. greatly simplify the operation steps and operation procedures, and provide a gold standard for molecular imaging imaging results.
  • the system of the invention has reasonable structure, remarkable function and convenient operation, and can be widely applied to the field of optical molecular imaging, and has broad market prospects.
  • FIG. 1 is a schematic view of a molecular imaging imaging verification system of the present invention
  • FIG. 2 is a flow chart of a molecular imaging imaging verification method of the present invention.
  • the system of the present invention includes an image acquisition portion and an image processing portion; the image acquisition portion includes a frozen slicer 1, a camera 2, a camera lens 3, and a collection device holder. 4.
  • the cabinet of the frozen slicer 1 is connected with the collection device bracket 4, the collection device holder 4 is connected with the camera slide device 6, the camera slide device 6 is connected with the camera holder 5, the camera holder 5 is connected with the camera 2, and the camera 2 is connected to the camera.
  • the transmissive interface of the lens 3 is connected, the light entrance of the camera lens 3 is connected with the emission filter holder 7, the emission filter 8 is embedded in the card slot of the emission filter holder 7, and the outlet of the excitation light source 10 is connected to the optical fiber 9. At one end, the other end of the optical fiber 9 is directed to the object to be observed.
  • the image processing portion includes an image processing system connected to the camera 2 of the image capturing portion, receives the white light image and the excited fluorescent image, and automatically segments the fluorescent image, adds false color, statistically processes the photon number of the automatically segmented region, and automatically segments the region. Geometric information measurement, superimposing the fluorescence image with the white light image to obtain the true geometric position of the excited fluorescence imaging region.
  • the camera 1 is a photodetector CCD camera capable of detecting a weak fluorescent signal.
  • the image processing system includes a pre-processing module 21, an analysis module 22, and a storage module 23.
  • the pre-processing module 21 is connected to the data output port of the camera 2 of the image acquisition portion, performs fluorescence intensity uniformity correction processing and autofluorescence interference removal processing on the received fluorescence image, and does not process the received white light image.
  • the analysis module 22 is connected to the pre-processing module 21, and sequentially performs automatic segmentation, pseudo color addition, photon number statistics of the automatic segmentation region, geometric information measurement of the automatic segmentation region, and superimposition with the white light image on the fluorescence image transmitted by the pre-processing module 21. And display the fluorescent image through the automatic The image obtained by dividing the pseudo-color addition, counting the photon number of the auto-divided area, and superimposing it with the white light image.
  • the storage module 23 is connected to the pre-processing module 21 and the analysis module 22, and saves the fluorescence image and the white light image processed by the pre-processing module 21, and processes the image after the analysis module 22, that is, the fluorescent image is automatically segmented and pseudo-color added.
  • the image obtained by automatically counting the photons in the divided area and superimposed with the white light image is saved.
  • FIG. 2 is a flow chart of a molecular imaging imaging verification method according to the present invention. As shown in the figure, the method specifically includes the following steps:
  • Step S1 By controlling the position of the camera slide device and the camera bracket, the measurement area of the camera lens accurately corresponds to the detected slice, and the camera lens field of view includes the slice cross-sectional area of the detected slice to realize clear imaging of the detected slice by the camera;
  • the small animal to be tested is injected with a fluorescent probe, and then frozen, and after being frozen, it is taken out and placed in a frozen slicer;
  • the position of the camera to the facing slice is adjusted. Adjust the aperture of the camera lens for clear imaging of the slice. The distance between the camera 2 and the slice being detected was adjusted to 20 cm.
  • Step S2 Turn on the freeze slicer white light, and control the camera 2 to obtain a white light image.
  • the white light image reflects the cross-sectional information of the detected slice;
  • Step S3 embedding the emission filter 8 into the emission filter holder 7, and connecting the emission filter holder 7 and the camera lens 3; turning on the excitation light source 10 while turning off the white light; controlling the camera 2 to obtain a fluorescent image; turning off the excitation light source 10; the fluorescence image reflects the distribution information of the fluorescent light source contained in the slice;
  • Step S4 the fluorescence image and the white light image are transmitted to the pre-processing module 21 of the image processing portion; the pre-processing module 21 performs an intensity correction operation and an autofluorescence removal processing operation on the fluorescence image;
  • Step S5 The analysis module 22 sequentially performs automatic segmentation, pseudo color addition, photon number counting in the automatic segmentation region, geometric information measurement of the automatic segmentation region, and superposition of the white light image on the fluorescence image sent by the pre-processing module 21, and Displaying an image obtained by automatic segmentation, pseudo color addition, photon number counting in an automatically segmented region, and superimposed with a white light image;
  • Step S6 The storage module 23 saves the fluorescence image and the white light image processed by the pre-processing module 21, and processes the photon number after the processing of the analysis module 22, that is, the automatic segmentation, pseudo color addition, and automatic segmentation of the fluorescence image. And the image obtained by superimposing the white light image is saved, and the measured fluorescence region geometric information is saved.
  • the camera 2 is raised in temperature to 25 ° C and the hardware is initialized.
  • the beneficial effects of the invention are: a molecular imaging imaging verification system and a verification method combining a cryo slicer and a CCD camera are established.
  • the system and method can complete the cross-sectional slice measurement of the small animal waiting for the detection object, and automatically obtain the clear fluorescence data of the small animal slice after setting the parameters, complete the white light image acquisition, the fluorescence image acquisition and the superimposition with the white light image, and the fluorescence image.
  • Automatic segmentation, segmentation photon number statistics, fluorescence region geometry information measurement, etc. greatly simplify the operation steps and operation procedures, and provide a gold standard for molecular imaging imaging results.
  • the system of the invention has reasonable structure, remarkable function and convenient operation, and can be widely applied to the field of optical molecular imaging, and has broad market prospects.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种分子影像成像验证系统和方法。系统包括图像采集部分与图像处理部分:图像采集部分包括:冰冻切片机的柜体与采集装置支架相连接,采集装置支架与相机滑动装置相连接,相机滑动装置与相机支架连接,相机支架与相机连接;相机的转接口与相机镜头的转接口相连接,相机镜头的进光口与发射滤光片支架相连接,发射滤光片内嵌于发射滤光片支架的卡槽中;激发光源出口连接光纤的一端,光纤的另一端指向被观测物体;图像处理部分包括图像处理系统。能够完成待检测物体的横截面切片测量,完成白光图像采集、荧光图像采集及与白光图像叠加、荧光图像自动分割、分割区域光子数统计、荧光区域几何信息测量,简化了操作步骤和操作流程。

Description

分子影像成像验证系统和方法 技术领域
本发明涉及分子成像技术领域,尤其涉及一种结合冰冻切片机及CCD相机的分子影像成像验证系统和方法
背景技术
随着基因组学、蛋白组学和疾病基因组学的迅速发展,疾病的诊断正在从传统的疾病表征观察、常规的生化实验检测,发展到多种基因和分子水平的微观特征认识,其中利用分子影成像技术可以从基因、蛋白质水平深刻认识疾病的发生、发展过程,能够实现现有微观分析所无法取代的整体、连续、无创的特异检测方法,生物在体分子成像理论及其技术将会提供全新的预防、诊断和治疗手段。与传统的医学影成像技术相比较而言,分子成像学着眼于构成疾病或病变的基础变化和基因分子水平的异常,而不是对由基因分子改变所构成的最终结果进行成像。在特异的分子探针的帮助下,分子成像技术可以在细胞、基因和分子水平上实现生物体内部生理或病理过程的无创实时动态在体成像,从而为疾病相关基因功能定位、细胞生长发育和突变过程的作用机制、新药研发等研究提供详细的定性、定位、定量资料以及有效的信息获取和分析处理的手段。
激发荧光成像的原理可以描述为:当外源光照射到带有荧光团的生物组织上时,荧光团吸收光能使得电子跃迁到了激发态,电子从激发态回到基态的过程中会释放出荧光,该荧光较吸收的光向红端移动,即发射的荧光比吸收的外源光的能量低,荧光在组织体内传播并有一部分达到体表,从体表发出的荧光被探测器接收到,从而形成荧光图像。一般而言,荧光 团发射出的荧光经过组织体散射,光的强度已经很弱,用肉眼很难观测到,因此需要在完全避光的暗箱中进行成像,并且要求探测器的灵敏度要高,通常利用一个低温制冷的高度灵敏的CCD相机来探测组织体表的荧光光子。CCD相机的另一个优势是空间分辨率较高。
由于光学分子成像固有的病态性及测量噪声等因素,成像结果通常与真实结果有一些差异。由于产生荧光的生物组织通常属于软组织,在一些结构成像模态(如CT、MRI等)中无法获得该生物组织的真实几何信息,难以提供真实可靠的荧光光源位置,使得评价光学分子成像方法的优劣性变得十分困难。
发明内容
本发明的目的是针对现有技术的缺陷,提供一种分子影像成像验证系统和方法,可以对待检测物体的横截面切片测量,大大简化了操作步骤和操作流程,系统结构合理,功能显著,操作方便。
为实现上述目的,本发明提供了一种分子影像成像验证系统,所述系统包括图像采集部分与图像处理部分:
所述图像采集部分包括冰冻切片机(1)、相机(2)、相机镜头(3)、采集装置支架(4)、相机支架(5)、相机滑动装置(6)、发射滤光片支架(7)、多个发射滤光片(8)、光纤(9)、激发光源(10);
所述冰冻切片机(1)的柜体与所述采集装置支架(4)相连接,所述采集装置支架(4)与所述相机滑动装置(6)相连接,所述相机滑动装置(6)与所述相机支架(5)连接,所述相机支架(5)与所述相机(2)连接;
所述相机(2)的转接口与所述相机镜头(3)的转接口相连接,所述相机镜头(3)的进光口与所述发射滤光片支架(7)相连接,所述发射滤光片(8)内嵌于所述发射滤光片支架(7)的卡槽中;
所述激发光源(10)出口连接所述光纤(9)的一端,所述光纤(9)的 另一端指向被观测物体;
所述图像处理部分包括图像处理系统,与所述相机(2)连接,用于接收白光图像及激发荧光图像,并对荧光图像自动分割、伪彩色添加、自动分割区域的光子数统计处理、自动分割区域的几何信息测量,将荧光图像同白光图像叠加后获得激发荧光成像区域的真实几何位置。
进一步的,所述图像处理系统包括:前处理模块(21)、分析模块(22)和存储模块(23);
所述前处理模块(21)与所述相机(2)的数据输出端口相连接,用于对接收到的荧光图像进行荧光强度均匀校正处理与自体荧光干扰去除处理,而对接收到的白光图像不做处理;
所述分析模块(22)与所述前处理模块(21)相连接,用于对前处理模块(21)发送的荧光图像依次进行自动分割、伪彩色添加、自动分割区域的光子数统计、自动分割区域的几何信息测量、与白光图像叠加的操作,并显示荧光图像经过自动分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像;
所述存储模块(23)与所述前处理模块(21)和所述分析模块(22)连接,用于对前处理模块(21)处理后的荧光图像和白光图像进行保存,并对分析模块(22)处理后的,在荧光图像经过自动分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像进行保存。
进一步的,所述相机(2)是光电探测器。
为实现上述目的,本发明提供了一种基于上述分子影像成像验证系统的验证方法,其特征在于,所述方法包括:
步骤S1:通过控制相机滑动装置及相机支架的位置,使相机镜头的测量区域准确对应被检测切片,相机镜头视野完整包括被检测切片横截面区域,实现相机对被检测切片的清晰成像;
步骤S2:开启冰冻切片机白光灯,并控制相机获取白光图像,白光图像 反应被检测切片的横截面信息;
步骤S3:将发射滤光片放入发射滤光片支架,并连接发射滤光片支架和相机镜头;开启激发光源,同时关闭白光灯;控制相机获取荧光图像;关闭激发光源;荧光图像反应被检测切片包含的荧光光源的分布信息;
步骤S4:荧光图像和白光图像传送到图像处理部分的前处理模块;前处理模块对荧光图像进行强度校正操作和自体荧光去除处理操作;
步骤S5:分析模块对前处理模块发送的荧光图像依次进行自动分割、伪彩色添加、自动分割区域的光子数统计、自动分割区域的几何信息测量、与白光图像叠加处理,并显示荧光图像经过自动分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像;
步骤S6:存储模块对前处理模块处理后的荧光图像和白光图像进行保存,并对分析模块处理后的,即在荧光图像经过自动分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像进行保存,并保存测量得到的荧光区域几何信息。
本发明的有益效果是:建立了一套结合冰冻切片机及CCD相机的分子影像成像验证系统及验证方法。该系统及方法能够完成对小动物等待检测物体的横截面切片测量,在设定参数后可自动获取清晰的小动物切片荧光数据,完成白光图像采集、荧光图像采集及与白光图像叠加、荧光图像自动分割、分割区域光子数统计、荧光区域几何信息测量等处理,大大简化了操作步骤和操作流程,为分子影像成像结果提供金标准。本发明系统结构合理,功能显著,操作方便,可广泛应用于光学分子成像领域,具有广阔的市场前景。
附图说明
图1为本发明分子影像成像验证系统的示意图;
图2为本发明分子影像成像验证方法的流程图。
具体实施方式
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
图1为本发明分子影像成像验证系统的示意图,如图所示,本发明的系统包括图像采集部分与图像处理部分;图像采集部分包括冰冻切片机1、相机2、相机镜头3、采集装置支架4、相机支架5、相机滑动装置6、发射滤光片支架7、多个发射滤光片8、光纤9、激发光源10。
冰冻切片机1的柜体同采集装置支架4连接,采集装置支架4同相机滑动装置6连接,相机滑动装置6同相机支架5连接,相机支架5同相机2连接;相机2的转接口同相机镜头3的转接口连接,相机镜头3的进光口同发射滤光片支架7连接,发射滤光片8内嵌于发射滤光片支架7的卡槽中;激发光源10出口连接光纤9的一端,光纤9的另一端指向被观测物体。
图像处理部分中包括图像处理系统,与图像采集部分的相机2连接,接收白光图像及激发荧光图像,并对荧光图像自动分割、伪彩色添加、自动分割区域的光子数统计处理、自动分割区域的几何信息测量,将荧光图像同白光图像叠加后获得激发荧光成像区域的真实几何位置。相机1是能探测到微弱的荧光信号的光电探测器CCD相机。
具体的如图所示,图像处理系统包括:前处理模块21、分析模块22和存储模块23。
前处理模块21与图像采集部分的相机2的数据输出端口连接,对接收到的荧光图像进行荧光强度均匀校正处理与自体荧光干扰去除处理,而对接收到的白光图像不做处理。
分析模块22与前处理模块21连接,对前处理模块21发送的荧光图像依次进行自动分割、伪彩色添加、自动分割区域的光子数统计、自动分割区域的几何信息测量、与白光图像叠加的操作,并显示荧光图像经过自动 分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像。
存储模块23与前处理模块21和分析模块22连接,对前处理模块21处理后的荧光图像和白光图像进行保存,并对分析模块22处理后的,即在荧光图像经过自动分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像进行保存。
图2为本发明分子影像成像验证方法的流程图,如图所示,本方法具体包括如下步骤:
步骤S1:通过控制相机滑动装置及相机支架的位置,使相机镜头的测量区域准确对应被检测切片,相机镜头视野完整包括被检测切片横截面区域,实现相机对被检测切片的清晰成像;
具体的,就是软件及硬件初始化操作。将相机2温度锁定到-70℃,以降低图像噪声;
首先将待检测小动物注射荧光探针,然后进行冰冻,待冰冻完成后取出放到冰冻切片机内;
通过调节相机支架5的角度以及相机滑动装置6,调节相机到正对切片的位置。调节相机镜头的光圈,实现切片的清晰成像。相机2与被检测切片间的距离调节为20cm。
步骤S2:开启冰冻切片机白光灯,控制相机2获取白光图像。白光图像反映被检测切片的横截面信息;
步骤S3:将发射滤光片8嵌入发射滤光片支架7,并连接发射滤光片支架7和相机镜头3;开启激发光源10,同时关闭白光灯;控制相机2获取荧光图像;关闭激发光源10;荧光图像反应被检测切片包含的荧光光源的分布信息;
步骤S4:荧光图像和白光图像传送到图像处理部分的前处理模块21;前处理模块21对荧光图像进行强度校正操作和自体荧光去除处理操作;
步骤S5:分析模块22对前处理模块21发送的荧光图像依次进行自动分割、伪彩色添加、自动分割区域的光子数统计、自动分割区域的几何信息测量、与白光图像叠加等一系列操作,并显示荧光图像经过自动分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像;
步骤S6:存储模块23对前处理模块21处理后的荧光图像和白光图像进行保存,并对分析模块22处理后的,即在荧光图像经过自动分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像进行保存,并保存测量得到的荧光区域几何信息。将相机2温度升高到25℃,硬件去初始化操作。
一次验证过程中,各步骤中人工控制极少,图像处理部分各模块所执行的所有操作及顺序均在软件中设置完毕。用户在连接系统完成后可不用关心整个验证过程的具体细节操作,便可以得到所需要的切片几何信息。此操作一体化设计大大方便了用户。
本发明的有益效果是:建立了一套结合冰冻切片机及CCD相机的分子影像成像验证系统及验证方法。该系统及方法能够完成对小动物等待检测物体的横截面切片测量,在设定参数后可自动获取清晰的小动物切片荧光数据,完成白光图像采集、荧光图像采集及与白光图像叠加、荧光图像自动分割、分割区域光子数统计、荧光区域几何信息测量等处理,大大简化了操作步骤和操作流程,为分子影像成像结果提供金标准。本发明系统结构合理,功能显著,操作方便,可广泛应用于光学分子成像领域,具有广阔的市场前景。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

  1. 一种分子影像成像验证系统,其特征在于,所述系统包括图像采集部分与图像处理部分:
    所述图像采集部分包括冰冻切片机(1)、相机(2)、相机镜头(3)、采集装置支架(4)、相机支架(5)、相机滑动装置(6)、发射滤光片支架(7)、多个发射滤光片(8)、光纤(9)、激发光源(10);
    所述冰冻切片机(1)的柜体与所述采集装置支架(4)相连接,所述采集装置支架(4)与所述相机滑动装置(6)相连接,所述相机滑动装置(6)与所述相机支架(5)连接,所述相机支架(5)与所述相机(2)连接;
    所述相机(2)的转接口与所述相机镜头(3)的转接口相连接,所述相机镜头(3)的进光口与所述发射滤光片支架(7)相连接,所述发射滤光片(8)内嵌于所述发射滤光片支架(7)的卡槽中;
    所述激发光源(10)出口连接所述光纤(9)的一端,所述光纤(9)的另一端指向被观测物体;
    所述图像处理部分包括图像处理系统,与所述相机(2)连接,用于接收白光图像及激发荧光图像,并对荧光图像自动分割、伪彩色添加、自动分割区域的光子数统计处理、自动分割区域的几何信息测量,将荧光图像同白光图像叠加后获得激发荧光成像区域的真实几何位置。
  2. 根据权利要求1所述的系统,其特征在于,所述图像处理系统包括:前处理模块(21)、分析模块(22)和存储模块(23);
    所述前处理模块(21)与所述相机(2)的数据输出端口相连接,用于对接收到的荧光图像进行荧光强度均匀校正处理与自体荧光干扰去除处理,而对接收到的白光图像不做处理;
    所述分析模块(22)与所述前处理模块(21)相连接,用于对前处理模块(21)发送的荧光图像依次进行自动分割、伪彩色添加、自动分割区 域的光子数统计、自动分割区域的几何信息测量、与白光图像叠加的操作,并显示荧光图像经过自动分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像;
    所述存储模块(23)与所述前处理模块(21)和所述分析模块(22)连接,用于对前处理模块(21)处理后的荧光图像和白光图像进行保存,并对分析模块(22)处理后的,在荧光图像经过自动分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像进行保存。
  3. 根据权利要求1所述的系统,其特征在于,所述相机(2)是光电探测器。
  4. 一种基于上述任一权利要求所述的分子影像成像验证系统的验证方法,其特征在于,所述方法包括:
    步骤S1:通过控制相机滑动装置及相机支架的位置,使相机镜头的测量区域准确对应被检测切片,相机镜头视野完整包括被检测切片横截面区域,实现相机对被检测切片的清晰成像;
    步骤S2:开启冰冻切片机白光灯,并控制相机获取白光图像,白光图像反应被检测切片的横截面信息;
    步骤S3:将发射滤光片放入发射滤光片支架,并连接发射滤光片支架和相机镜头;开启激发光源,同时关闭白光灯;控制相机获取荧光图像;关闭激发光源;荧光图像反应被检测切片包含的荧光光源的分布信息;
    步骤S4:荧光图像和白光图像传送到图像处理部分的前处理模块;前处理模块对荧光图像进行强度校正操作和自体荧光去除处理操作;
    步骤S5:分析模块对前处理模块发送的荧光图像依次进行自动分割、伪彩色添加、自动分割区域的光子数统计、自动分割区域的几何信息测量、与白光图像叠加处理,并显示荧光图像经过自动分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像;
    步骤S6:存储模块对前处理模块处理后的荧光图像和白光图像进行保 存,并对分析模块处理后的,即在荧光图像经过自动分割、伪彩色添加、自动分割区域的光子数统计并与白光图像叠加后得到的图像进行保存,并保存测量得到的荧光区域几何信息。
PCT/CN2014/087072 2014-09-19 2014-09-22 分子影像成像验证系统和方法 WO2016041211A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410482618.6 2014-09-19
CN201410482618.6A CN104181142A (zh) 2014-09-19 2014-09-19 分子影像成像验证系统和方法

Publications (1)

Publication Number Publication Date
WO2016041211A1 true WO2016041211A1 (zh) 2016-03-24

Family

ID=51962366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087072 WO2016041211A1 (zh) 2014-09-19 2014-09-22 分子影像成像验证系统和方法

Country Status (2)

Country Link
CN (1) CN104181142A (zh)
WO (1) WO2016041211A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113516649A (zh) * 2021-07-28 2021-10-19 亿嘉和科技股份有限公司 基于超像素分割的柜体表面检测方法
CN114136937A (zh) * 2021-11-16 2022-03-04 黑龙江省微甄光电科技有限责任公司 一种多功能微型荧光显微成像装置及其成像方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109799214B (zh) * 2018-12-14 2022-07-05 南京巨鲨显示科技有限公司 一种光学试验箱
CN111413342B (zh) * 2020-04-20 2021-03-26 华中科技大学 一种冰冻切片显微成像系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766476A (zh) * 2009-07-08 2010-07-07 中国科学院自动化研究所 自发荧光分子影像系统
CN102151122A (zh) * 2011-03-17 2011-08-17 中国科学院自动化研究所 激发荧光分子成像系统及一次荧光成像方法
CN102590155A (zh) * 2012-01-16 2012-07-18 华中科技大学 组织切片扫描成像装置
US20140001337A1 (en) * 2012-06-29 2014-01-02 General Electric Company Systems and methods for processing and imaging of biological samples

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422730A (en) * 1994-03-25 1995-06-06 Barlow; Clyde H. Automated optical detection of tissue perfusion by microspheres
WO2003077749A2 (en) * 2002-03-12 2003-09-25 Beth Israel Deaconess Medical Center Medical imaging systems
US7702139B2 (en) * 2006-10-13 2010-04-20 Carestream Health, Inc. Apparatus for caries detection
CN102106723B (zh) * 2011-03-17 2013-05-08 中国科学院自动化研究所 荧光分子成像装置
CN202351599U (zh) * 2011-11-01 2012-07-25 浙江吉利汽车研究院有限公司 安装支架
CN103385696B (zh) * 2013-07-24 2014-11-26 中国科学院自动化研究所 一种激发荧光实时成像系统及方法
CN103743714B (zh) * 2014-01-14 2015-12-30 苏州大猫单分子仪器研发有限公司 一种倾斜宽场光切片扫描成像显微系统及其成像方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101766476A (zh) * 2009-07-08 2010-07-07 中国科学院自动化研究所 自发荧光分子影像系统
CN102151122A (zh) * 2011-03-17 2011-08-17 中国科学院自动化研究所 激发荧光分子成像系统及一次荧光成像方法
CN102590155A (zh) * 2012-01-16 2012-07-18 华中科技大学 组织切片扫描成像装置
US20140001337A1 (en) * 2012-06-29 2014-01-02 General Electric Company Systems and methods for processing and imaging of biological samples

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113516649A (zh) * 2021-07-28 2021-10-19 亿嘉和科技股份有限公司 基于超像素分割的柜体表面检测方法
CN113516649B (zh) * 2021-07-28 2024-02-02 亿嘉和科技股份有限公司 基于超像素分割的柜体表面检测方法
CN114136937A (zh) * 2021-11-16 2022-03-04 黑龙江省微甄光电科技有限责任公司 一种多功能微型荧光显微成像装置及其成像方法

Also Published As

Publication number Publication date
CN104181142A (zh) 2014-12-03

Similar Documents

Publication Publication Date Title
CN100413460C (zh) 组织病灶的表征和绘图的方法和系统
Huang et al. In vivo detection of epithelial neoplasia in the stomach using image-guided Raman endoscopy
Pierce et al. A pilot study of low-cost, high-resolution microendoscopy as a tool for identifying women with cervical precancer
EP1978867B1 (en) Methods for characterizing tissues
WO2016041211A1 (zh) 分子影像成像验证系统和方法
CN111565624A (zh) 用于阿尔茨海默氏病病理的高光谱图像指导的raman眼科成像仪
CA2718938A1 (en) Ocular imaging
US20200323431A1 (en) Imaging method and system for intraoperative surgical margin assessment
KR20080069730A (ko) 다기능 디지털 피부 영상 장치 및 영상 분석 방법
US10413619B2 (en) Imaging device
US20230152231A1 (en) Information processing apparatus, information processing method, information processing system, and computer program
Isabelle et al. Multi-centre Raman spectral mapping of oesophageal cancer tissues: a study to assess system transferability
Li et al. Label-free multiphoton imaging to assess neoadjuvant therapy responses in breast carcinoma
JP2008261784A (ja) 生体観察方法
WO2012126346A1 (zh) 一种快速测定细胞核内dna含量的方法
US20220065782A1 (en) Forensic detector and the system thereof
CN204422419U (zh) 分子影像成像验证系统
Duraipandian et al. Effect of hormonal variation on in vivo high wavenumber Raman spectra improves cervical precancer detection
Schartner et al. A portable optical fiber pH probe for cancer margin detection
KR100945010B1 (ko) 암 진단 장치 및 그 방법
Wang et al. In vivo and in vitro hyperspectral imaging of cervical neoplasia
WO2021096950A1 (en) Cryostat or microtome with optical imaging detector
Mohamed et al. Advancements in Neurosurgical Intraoperative Histology With Particular Emphasis on Stimulated Raman Scattering (SRS) Microscopy
Qiang et al. Background: Uterine cervical neoplasms is widely concerned due to its high incidence rate. Early diagnosis is extremely important for prognosis. The purpose of this article is evaluating the efficacy of Raman spectroscopy in the diagnosis of suspected uterine cervical neoplasms.
US10605736B2 (en) Optical pathology systems and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902137

Country of ref document: EP

Kind code of ref document: A1