WO2016039571A1 - 방송 신호 송신 방법, 방송 신호 송신 장치, 방송 신호 수신 방법 및 방송 신호 수신 장치 - Google Patents
방송 신호 송신 방법, 방송 신호 송신 장치, 방송 신호 수신 방법 및 방송 신호 수신 장치 Download PDFInfo
- Publication number
- WO2016039571A1 WO2016039571A1 PCT/KR2015/009532 KR2015009532W WO2016039571A1 WO 2016039571 A1 WO2016039571 A1 WO 2016039571A1 KR 2015009532 W KR2015009532 W KR 2015009532W WO 2016039571 A1 WO2016039571 A1 WO 2016039571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- view
- service
- present
- broadcast
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 133
- 230000011664 signaling Effects 0.000 claims abstract description 230
- 230000008054 signal transmission Effects 0.000 claims description 28
- 101000596046 Homo sapiens Plastin-2 Proteins 0.000 description 73
- 102100035182 Plastin-2 Human genes 0.000 description 73
- 238000010586 diagram Methods 0.000 description 67
- 230000008569 process Effects 0.000 description 61
- 108091006146 Channels Proteins 0.000 description 44
- 230000005540 biological transmission Effects 0.000 description 41
- 230000006870 function Effects 0.000 description 32
- 238000013507 mapping Methods 0.000 description 29
- 238000012545 processing Methods 0.000 description 29
- 101000596041 Homo sapiens Plastin-1 Proteins 0.000 description 27
- 102100035181 Plastin-1 Human genes 0.000 description 27
- 238000003780 insertion Methods 0.000 description 18
- 230000037431 insertion Effects 0.000 description 18
- 239000000284 extract Substances 0.000 description 12
- 230000006978 adaptation Effects 0.000 description 11
- 239000000872 buffer Substances 0.000 description 10
- 230000002441 reversible effect Effects 0.000 description 10
- 230000008859 change Effects 0.000 description 9
- 230000006835 compression Effects 0.000 description 9
- 238000007906 compression Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 8
- 230000003068 static effect Effects 0.000 description 8
- 238000012986 modification Methods 0.000 description 7
- 230000004048 modification Effects 0.000 description 7
- 235000007682 pyridoxal 5'-phosphate Nutrition 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 230000006854 communication Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 6
- 238000007726 management method Methods 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 101150071746 Pbsn gene Proteins 0.000 description 4
- 230000001174 ascending effect Effects 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 238000012937 correction Methods 0.000 description 3
- 238000012217 deletion Methods 0.000 description 3
- 230000037430 deletion Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000001824 photoionisation detection Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 208000023414 familial retinal arterial macroaneurysm Diseases 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 230000004913 activation Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000036626 alertness Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007175 bidirectional communication Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005388 cross polarization Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000001997 free-flow electrophoresis Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000033772 system development Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/234—Processing of video elementary streams, e.g. splicing of video streams or manipulating encoded video stream scene graphs
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/23—Processing of content or additional data; Elementary server operations; Server middleware
- H04N21/235—Processing of additional data, e.g. scrambling of additional data or processing content descriptors
Definitions
- the present invention relates to a method and apparatus for transmitting and receiving broadcast signals.
- the digital broadcast signal may include a larger amount of video / audio data than the analog broadcast signal, and may further include various types of additional data as well as the video / audio data.
- the digital broadcasting system may provide high definition (HD) images, multichannel audio, and various additional services.
- HD high definition
- data transmission efficiency for a large amount of data transmission, robustness of a transmission / reception network, and network flexibility in consideration of a mobile receiving device should be improved.
- the broadcast signal transmission method includes encoding signaling information including a broadcast service and information on one or more views constituting the broadcast service, and encoding the encoded broadcast service and signaling information.
- the method may include generating a broadcast signal including the broadcast signal and transmitting the generated broadcast signal.
- the signaling information includes information indicating the number of views constituting the service, information indicating the type of the view, information indicating the role of the view, and whether the view can be toggled.
- the display information may include location information on the screen of the view, time information at which the view starts to be displayed on the screen, and time information at which the view disappears on the screen.
- the location information may include coordinate system information used to indicate the location of the corresponding view and coordinate information where the corresponding view on the screen is located.
- the location information may include information indicating a ratio of a point where the corresponding view is located based on the entire size of the screen.
- the signaling information includes information indicating whether or not the corresponding view is a hidden view, and the signaling information includes location information to be displayed on the screen when the corresponding view is a hidden view, and the corresponding view. It may include the size information, the information about the view as a reference for determining the position and size of the view and the time information from when the view is displayed on the screen to disappear.
- the broadcast signal includes program signaling information including information about a broadcast program, and the program signaling information includes information on an app-based enhancement component related to the broadcast program.
- the information about the app-based enhancement component includes information indicating whether the app-based enhancement component is a component displayed on a screen, information indicating whether the app-based enhancement component can be toggled, and the app-based enhancement. It may include information indicating a role of the component.
- a method for receiving a broadcast signal including receiving a broadcast signal including signaling information including a broadcast service and information about one or more views constituting the broadcast service. Parsing the broadcast service and signaling information from a broadcast signal, and decoding the parsed broadcast service and signaling information.
- the signaling information includes information indicating the number of views constituting the service, information indicating the type of the view, information indicating the role of the view, and whether the view can be toggled.
- the display information may include location information on the screen of the view, time information at which the view starts to be displayed on the screen, and time information at which the view disappears on the screen.
- the location information may include coordinate system information used to indicate the location of the corresponding view and coordinate information where the corresponding view on the screen is located.
- the location information may include information indicating a ratio of a point where the corresponding view is located based on the entire size of the screen.
- the signaling information includes information indicating whether or not the corresponding view is a hidden view, and the signaling information includes location information to be displayed on the screen when the corresponding view is a hidden view, and the corresponding view. It may include the size information, the information about the view as a reference for determining the position and size of the view and the time information from when the view is displayed on the screen to disappear.
- the broadcast signal includes program signaling information including information about a broadcast program, and the program signaling information includes information on an app-based enhancement component related to the broadcast program.
- the information about the app-based enhancement component includes information indicating whether the app-based enhancement component is a component displayed on a screen, information indicating whether the app-based enhancement component can be toggled, and the app-based enhancement. It may include information indicating a role of the component.
- An apparatus for transmitting broadcast signals includes an encoder for encoding signaling information including broadcast service and information about one or more views constituting the broadcast service, the encoded broadcast service and signaling information. It may include a broadcast signal generator for generating a broadcast signal including a and a transmitter for transmitting the generated broadcast signal.
- the signaling information includes information indicating the number of views constituting the service, information indicating the type of the view, information indicating the role of the view, and whether the view can be toggled.
- the display information may include location information on the screen of the view, time information at which the view starts to be displayed on the screen, and time information at which the view disappears on the screen.
- An apparatus for receiving broadcast signals is a receiver for receiving a broadcast signal including a broadcast service and signaling information including information about one or more views constituting the broadcast service. It may include a parser for parsing the broadcast service and signaling information from a broadcast signal and a decoder for decoding the parsed broadcast service and signaling information.
- the present invention can provide various broadcast services by processing data according to service characteristics to control a quality of service (QoS) for each service or service component.
- QoS quality of service
- the present invention can achieve transmission flexibility by transmitting various broadcast services through the same radio frequency (RF) signal bandwidth.
- RF radio frequency
- the present invention can improve data transmission efficiency and robustness of transmission and reception of broadcast signals using a multiple-input multiple-output (MIMO) system.
- MIMO multiple-input multiple-output
- the present invention it is possible to provide a broadcast signal transmission and reception method and apparatus capable of receiving a digital broadcast signal without errors even when using a mobile reception device or in an indoor environment.
- FIG. 1 shows a structure of a broadcast signal transmission apparatus for a next generation broadcast service according to an embodiment of the present invention.
- FIG 2 illustrates an input formatting block according to an embodiment of the present invention.
- FIG 3 illustrates an input formatting block according to another embodiment of the present invention.
- BICM bit interleaved coding & modulation
- FIG. 5 illustrates a BICM block according to another embodiment of the present invention.
- FIG. 6 illustrates a frame building block according to an embodiment of the present invention.
- FIG 7 illustrates an orthogonal frequency division multiplexing (OFDM) generation block according to an embodiment of the present invention.
- OFDM orthogonal frequency division multiplexing
- FIG. 8 illustrates a structure of a broadcast signal receiving apparatus for a next generation broadcast service according to an embodiment of the present invention.
- FIG. 9 shows a frame structure according to an embodiment of the present invention.
- FIG. 10 illustrates a signaling hierarchy structure of a frame according to an embodiment of the present invention.
- FIG 11 illustrates preamble signaling data according to an embodiment of the present invention.
- FIG 13 illustrates PLS2 data according to an embodiment of the present invention.
- FIG 14 illustrates PLS2 data according to another embodiment of the present invention.
- FIG. 15 illustrates a logical structure of a frame according to an embodiment of the present invention.
- PLS 16 illustrates physical layer signaling (PLS) mapping according to an embodiment of the present invention.
- EAC emergency alert channel
- FEC forward error correction
- 21 illustrates the basic operation of a twisted row-column block interleaver according to an embodiment of the present invention.
- FIG. 22 illustrates an operation of a twisted row-column block interleaver according to another embodiment of the present invention.
- FIG. 23 illustrates a diagonal read pattern of a twisted row-column block interleaver according to an embodiment of the present invention.
- FIG. 24 illustrates XFECBLOCKs interleaved from each interleaving array according to an embodiment of the present invention.
- FIG. 25 illustrates signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- FIG. 26 is a diagram illustrating FI schemes for FSS in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
- FIG. 27 illustrates an operation of a reset mode for FES in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
- FIG. 28 is a diagram for mathematically representing an input and an output of a frequency interleaver in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- 29 is a view illustrating equations of a logical operation mechanism of frequency interleaving according to FI scheme # 1 and FI scheme # 2 in signaling for single memory deinterleaving unaffected by the number of symbols in a frame according to an embodiment of the present invention. Indicates.
- FIG. 30 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- 31 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- 32 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- 33 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- 34 is a diagram illustrating the operation of a frequency deinterleaver in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
- 35 is a conceptual diagram illustrating a variable data-rate system according to another embodiment of the present invention.
- FIG. 39 illustrates equations for reading after virtual FEC blocks are inserted according to an embodiment of the present invention.
- 40 is a flowchart illustrating a process of time interleaving according to an embodiment of the present invention.
- FIG. 41 is an equation illustrating a process of determining a shift value and a size of a maximum TI block according to an embodiment of the present invention.
- 44 is a view illustrating a result of a skip operation performed in a reading operation according to an embodiment of the present invention.
- 45 illustrates a writing process of time deinterleaving according to an embodiment of the present invention.
- FIG. 47 is a equation illustrating reading operation of time deinterleaving according to another embodiment of the present invention.
- 48 is a flowchart illustrating a process of time deinterleaving according to an embodiment of the present invention.
- FIG. 49 is a table showing interleaving types applied according to the number of PLPs.
- 50 is a block diagram including the first embodiment of the above-described hybrid time interleaver structure.
- 51 is a block diagram including a second embodiment of the above-described hybrid time interleaver structure.
- 52 is a block diagram including the first embodiment of the structure of the hybrid time deinterleaver.
- 53 is a block diagram including the second embodiment of the structure of the hybrid time deinterleaver.
- FIG. 54 is a diagram illustrating the configuration of a main physical device and a companion physical device according to an embodiment of the present invention.
- 55 is a diagram illustrating a protocol stack for supporting hybrid broadcast service according to an embodiment of the present invention.
- FIG. 56 is a diagram showing the configuration of a broadcast reception device according to one embodiment of the present invention.
- 57 is a diagram illustrating a configuration of a broadcast signal receiving apparatus according to another embodiment of the present invention.
- 58 is a diagram showing the configuration of a broadcast reception device according to another embodiment of the present invention.
- 59 is a diagram showing the configuration of service_map_table according to an embodiment of the present invention.
- 60 is a diagram illustrating a configuration of a Multi_view_descriptor and a description of a coordinate_system field according to an embodiment of the present invention.
- 61 is a diagram illustrating an operation of a broadcast signal receiving apparatus according to an embodiment of the present invention.
- FIG. 62 is a diagram illustrating a screen state of a receiving apparatus when the Multi_view_descriptor is included in the SMT and transmitted according to an embodiment of the present invention.
- FIG. 63 is a diagram illustrating a screen state of a receiving device when Multi_view_descriptor is included in an SMT and transmitted according to another embodiment of the present invention.
- 64 is a diagram illustrating a configuration of program signaling information according to an embodiment of the present invention.
- 65 is a diagram illustrating an operation of a broadcast signal receiving apparatus according to another embodiment of the present invention.
- FIG. 66 is a diagram illustrating a screen state of a receiving device when app-based enhancement related information is included in program signaling information and transmitted according to an embodiment of the present invention.
- 67 is a diagram illustrating the configuration of a Multi_view_descriptor according to another embodiment of the present invention.
- FIG. 68 is a diagram illustrating a screen state of a receiving apparatus when Multi_view_descriptor is included in an SMT and transmitted according to another embodiment of the present invention.
- 69 is a diagram showing the configuration of a Multi_view_descriptor according to another embodiment of the present invention.
- 70 is a diagram illustrating a screen state of a receiving apparatus when Multi_view_descriptor is included in an SMT and transmitted according to another embodiment of the present invention.
- 71 is a diagram showing the configuration of a Multi_view_descriptor according to another embodiment of the present invention.
- FIG. 72 is a diagram illustrating a screen state of a reception device when Multi_view_descriptor is included in an SMT and transmitted according to another embodiment of the present invention.
- 73 is a view showing a broadcast signal transmission method according to an embodiment of the present invention.
- 74 is a view showing a broadcast signal receiving method according to an embodiment of the present invention.
- 75 is a diagram illustrating a configuration of a broadcast signal transmission apparatus according to an embodiment of the present invention.
- 76 is a diagram showing the configuration of a broadcast signal receiving apparatus according to an embodiment of the present invention.
- 'signaling' refers to transmitting / receiving service information (SI) provided by a broadcasting system, an internet broadcasting system, and / or a broadcasting / internet convergence system.
- the service information includes broadcast service information (eg, ATSC-SI and / or DVB-SI) provided in each broadcast system that currently exists.
- the term 'broadcast signal' refers to bidirectional communication such as internet broadcasting, broadband broadcasting, communication broadcasting, data broadcasting, and / or video on demand, in addition to terrestrial broadcasting, cable broadcasting, satellite broadcasting, and / or mobile broadcasting. This is defined as a concept including a signal and / or data provided in a broadcast.
- 'PLP' means a certain unit for transmitting data belonging to a physical layer. Accordingly, the content named 'PLP' in this specification may be referred to as 'data unit' or 'data pipe'.
- DTV digital broadcasting
- the hybrid broadcasting service allows a user to transmit enhancement data related to broadcasting A / V (Audio / Video) content or a portion of broadcasting A / V content transmitted through a terrestrial broadcasting network in real time through an internet network. Lets you experience various contents.
- the present invention provides an apparatus and method for transmitting and receiving broadcast signals for next generation broadcast services.
- the next generation broadcast service includes a terrestrial broadcast service, a mobile broadcast service, a UHDTV service, and the like.
- a broadcast signal for a next generation broadcast service may be processed through a non-multiple input multiple output (MIMO) or MIMO scheme.
- MIMO multiple input multiple output
- the non-MIMO scheme may include a multiple input single output (MISO) scheme, a single input single output (SISO) scheme, and the like.
- the MISO or MIMO scheme uses two antennas, but the present invention can be applied to a system using two or more antennas.
- the present invention can define three physical profiles (base, handheld, advanced) that are optimized to minimize receiver complexity while achieving the performance required for a particular application. have.
- the physical profile is a subset of all the structures that the corresponding receiver must implement.
- the three physical profiles share most of the functional blocks, but differ slightly in certain blocks and / or parameters. Further physical profiles can be defined later.
- a future profile may be multiplexed with a profile present in a single radio frequency (RF) channel through a future extension frame (FEF). Details of each physical profile will be described later.
- RF radio frequency
- FEF future extension frame
- the base profile mainly indicates the main use of a fixed receiving device in connection with a roof-top antenna.
- the base profile can be moved to any place but can also include portable devices that fall into a relatively stationary reception category.
- the use of the base profile can be extended for handheld devices or vehicles with some improved implementation, but such use is not expected in base profile receiver operation.
- the target signal-to-noise ratio range of reception is approximately 10-20 dB, which includes the 15 dB signal-to-noise ratio receiving capability of existing broadcast systems (eg, ATSC A / 53). Receiver complexity and power consumption are not as important as in battery powered handheld devices that will use the handheld profile. Key system parameters for the base profile are listed in Table 1 below.
- the handheld profile is designed for use in battery powered handheld and in-vehicle devices.
- the device may move at pedestrian or vehicle speed.
- the power consumption as well as the receiver complexity is very important for the implementation of the device of the handheld profile.
- the target signal-to-noise ratio range of the handheld profile is approximately 0-10 dB, but can be set to reach below 0 dB if intended for lower indoor reception.
- the advance profile provides higher channel capability in exchange for greater execution complexity.
- the profile requires the use of MIMO transmission and reception, and the UHDTV service is a target use, for which the profile is specifically designed.
- the enhanced capability may also be used to allow for an increase in the number of services at a given bandwidth, for example multiple SDTV or HDTV services.
- the target signal to noise ratio range of the advanced profile is approximately 20 to 30 dB.
- MIMO transmissions initially use existing elliptic polarization transmission equipment and can later be extended to full power cross polarization transmissions. Key system parameters for the advance profile are listed in Table 3 below.
- the base profile may be used as a profile for both terrestrial broadcast service and mobile broadcast service. That is, the base profile can be used to define the concept of a profile that includes a mobile profile. Also, the advanced profile can be divided into an advanced profile for the base profile with MIMO and an advanced profile for the handheld profile with MIMO. The three profiles can be changed according to the designer's intention.
- Auxiliary stream A sequence of cells carrying data of an undefined modulation and coding that can be used as a future extension or as required by a broadcaster or network operator.
- Base data pipe a data pipe that carries service signaling data
- Baseband Frame (or BBFRAME): A set of Kbch bits that form the input for one FEC encoding process (BCH and LDPC encoding).
- Coded block one of an LDPC encoded block of PLS1 data or an LDPC encoded block of PLS2 data
- Data pipe a logical channel in the physical layer that carries service data or related metadata that can carry one or more services or service components
- Data pipe unit A basic unit that can allocate data cells to data pipes in a frame
- Data symbol OFDM symbol in a frame that is not a preamble symbol (frame signaling symbols and frame edge symbols are included in the data symbols)
- DP_ID This 8-bit field uniquely identifies a data pipe within the system identified by SYSTEM_ID.
- Dummy cell A cell that carries a pseudo-random value used to fill the remaining unused capacity for physical layer signaling (PLS) signaling, data pipes, or auxiliary streams.
- PLS physical layer signaling
- FAC Emergency alert channel
- Frame A physical layer time slot starting with a preamble and ending with a frame edge symbol.
- Frame repetition unit A set of frames belonging to the same or different physical profile that contains an FEF that is repeated eight times in a super-frame.
- FEC Fast information channel
- FECBLOCK set of LDPC encoded bits of data pipe data
- FFT size The nominal FFT size used for a particular mode equal to the active symbol period Ts expressed in cycles of the fundamental period T.
- Frame signaling symbol The higher pilot density used at the start of a frame in a particular combination of FFT size, guard interval, and scattered pilot pattern, which carries a portion of the PLS data. Having OFDM symbol
- Frame edge symbol An OFDM symbol with a higher pilot density used at the end of the frame in a particular combination of FFT size, guard interval, and scatter pilot pattern.
- Frame-group set of all frames with the same physical profile type in a superframe
- Future extention frame A physical layer time slot within a super frame that can be used for future expansion, starting with a preamble.
- Futurecast UTB system A proposed physical layer broadcast system whose input is one or more MPEG2-TS or IP (Internet protocol) or generic streams and the output is an RF signal.
- Input stream A stream of data for the coordination of services delivered to the end user by the system.
- Normal data symbols data symbols except frame signaling symbols and frame edge symbols
- PHY profile A subset of all structures that the corresponding receiver must implement
- PLS physical layer signaling data consisting of PLS1 and PLS2
- PLS1 The first set of PLS data carried in a frame signaling symbol (FSS) with fixed size, coding, and modulation that conveys basic information about the system as well as the parameters needed to decode PLS2.
- FSS frame signaling symbol
- PLS2 The second set of PLS data sent to the FSS carrying more detailed PLS data about data pipes and systems.
- PLS2 dynamic data PLS2 data that changes dynamically from frame to frame
- PLS2 static data PLS2 data that is static during the duration of a frame group
- Preamble signaling data signaling data carried by the preamble symbol and used to identify the basic mode of the system
- Preamble symbol a fixed length pilot symbol carrying basic PLS data and positioned at the beginning of a frame
- Preamble symbols are primarily used for fast initial band scans to detect system signals, their timings, frequency offsets, and FFT sizes.
- Superframe set of eight frame repeat units
- Time interleaving block A set of cells in which time interleaving is performed, corresponding to one use of time interleaver memory.
- Time interleaving group A unit in which dynamic capacity allocation is performed for a particular data pipe, consisting of an integer, the number of XFECBLOCKs that change dynamically.
- a time interleaving group can be directly mapped to one frame or mapped to multiple frames.
- the time interleaving group may include one or more time interleaving blocks.
- Type 1 DP A data pipe in a frame where all data pipes are mapped to frames in a time division multiplexing (TDM) manner
- Type 2 DPs Types of data pipes in a frame where all data pipes are mapped to frames in an FDM fashion.
- XFECBLOCK set of N cells cells carrying all the bits of one LDPC FECBLOCK
- FIG. 1 shows a structure of a broadcast signal transmission apparatus for a next generation broadcast service according to an embodiment of the present invention.
- a broadcast signal transmission apparatus for a next generation broadcast service includes an input format block 1000, a bit interleaved coding & modulation (BICM) block 1010, and a frame building block 1020, orthogonal frequency division multiplexing (OFDM) generation block (OFDM generation block) 1030, and signaling generation block 1040. The operation of each block of the broadcast signal transmission apparatus will be described.
- BICM bit interleaved coding & modulation
- OFDM generation block orthogonal frequency division multiplexing
- signaling generation block 1040 The operation of each block of the broadcast signal transmission apparatus will be described.
- IP streams / packets and MPEG2-TS are the main input formats and other stream types are treated as general streams.
- management information is input to control the scheduling and allocation of the corresponding bandwidth for each input stream.
- One or multiple TS streams, IP streams and / or general stream inputs are allowed at the same time.
- the input format block 1000 can demultiplex each input stream into one or multiple data pipes to which independent coding and modulation is applied.
- the data pipe is the basic unit for controlling robustness, which affects the quality of service (QoS).
- QoS quality of service
- One or multiple services or service components may be delivered by one data pipe. Detailed operations of the input format block 1000 will be described later.
- a data pipe is a logical channel at the physical layer that carries service data or related metadata that can carry one or multiple services or service components.
- the data pipe unit is a basic unit for allocating data cells to data pipes in one frame.
- parity data is added for error correction and the encoded bit stream is mapped to a complex value constellation symbol.
- the symbols are interleaved over the specific interleaving depth used for that data pipe.
- MIMO encoding is performed at BICM block 1010 and additional data paths are added to the output for MIMO transmission. Detailed operations of the BICM block 1010 will be described later.
- the frame building block 1020 may map data cells of an input data pipe to OFDM solid balls within one frame. After mapping, frequency interleaving is used for frequency domain diversity, in particular to prevent frequency selective fading channels. Detailed operations of the frame building block 1020 will be described later.
- the OFDM generation block 1030 can apply existing OFDM modulation having a cyclic prefix as the guard interval.
- a distributed MISO scheme is applied across the transmitter.
- a peak-to-average power ratio (PAPR) scheme is implemented in the time domain.
- PAPR peak-to-average power ratio
- the proposal provides a variety of FFT sizes, guard interval lengths, and sets of corresponding pilot patterns. Detailed operations of the OFDM generation block 1030 will be described later.
- the signaling generation block 1040 may generate physical layer signaling information used for the operation of each functional block.
- the signaling information is also transmitted such that the service of interest is properly recovered at the receiver side. Detailed operations of the signaling generation block 1040 will be described later.
- 2 illustrates an input format block according to an embodiment of the present invention. 2 shows an input format block when the input signal is a single input stream.
- the input format block illustrated in FIG. 2 corresponds to an embodiment of the input format block 1000 described with reference to FIG. 1.
- Input to the physical layer may consist of one or multiple data streams. Each data stream is carried by one data pipe.
- the mode adaptation module slices the input data stream into a data field of a baseband frame (BBF).
- BBF baseband frame
- the system supports three types of input data streams: MPEG2-TS, IP, and GS (generic stream).
- MPEG2-TS features a fixed length (188 bytes) packet where the first byte is a sync byte (0x47).
- An IP stream consists of variable length IP datagram packets signaled in IP packet headers.
- the system supports both IPv4 and IPv6 for IP streams.
- the GS may consist of variable length packets or constant length packets signaled in the encapsulation packet header.
- (a) shows a mode adaptation block 2000 and a stream adaptation (stream adaptation) 2010 for a signal data pipe
- PLS generation block 2020 and PLS scrambler 2030 are shown. The operation of each block will be described.
- the input stream splitter splits the input TS, IP, GS streams into multiple service or service component (audio, video, etc.) streams.
- the mode adaptation module 2010 is composed of a CRC encoder, a baseband (BB) frame slicer, and a BB frame header insertion block.
- the CRC encoder provides three types of CRC encoding, CRC-8, CRC-16, and CRC-32, for error detection at the user packet (UP) level.
- the calculated CRC byte is appended after the UP.
- CRC-8 is used for the TS stream
- CRC-32 is used for the IP stream. If the GS stream does not provide CRC encoding, then the proposed CRC encoding should be applied.
- the BB Frame Slicer maps the input to an internal logical bit format.
- the first receive bit is defined as MSB.
- the BB frame slicer allocates the same number of input bits as the available data field capacity. In order to allocate the same number of input bits as the BBF payload, the UP stream is sliced to fit the data field of the BBF.
- the BB frame header insertion block can insert a 2 bytes fixed length BBF header before the BB frame.
- the BBF header consists of STUFFI (1 bit), SYNCD (13 bit), and RFU (2 bit).
- the BBF may have an extension field (1 or 3 bytes) at the end of the 2-byte BBF header.
- Stream adaptation 2010 consists of a stuffing insertion block and a BB scrambler.
- the stuffing insertion block may insert the stuffing field into the payload of the BB frame. If the input data for the stream adaptation is sufficient to fill the BB frame, STUFFI is set to 0, and the BBF has no stuffing field. Otherwise, STUFFI is set to 1 and the stuffing field is inserted immediately after the BBF header.
- the stuffing field includes a 2-byte stuffing field header and variable sized stuffing data.
- the BB scrambler scrambles the complete BBF for energy dissipation.
- the scrambling sequence is synchronized with the BBF.
- the scrambling sequence is generated by the feedback shift register.
- the PLS generation block 2020 may generate PLS data.
- PLS provides a means by which a receiver can connect to a physical layer data pipe.
- PLS data consists of PLS1 data and PLS2 data.
- PLS1 data is the first set of PLS data delivered to the FSS in frames with fixed size, coding, and modulation that convey basic information about the system as well as the parameters needed to decode the PLS2 data.
- PLS1 data provides basic transmission parameters including the parameters required to enable reception and decoding of PLS2 data.
- the PLS1 data is constant during the duration of the frame group.
- PLS2 data is the second set of PLS data sent to the FSS that carries more detailed PLS data about the data pipes and systems.
- PLS2 contains parameters that provide enough information for the receiver to decode the desired data pipe.
- PLS2 signaling further consists of two types of parameters: PLS2 static data (PLS2-STAT data) and PLS2 dynamic data (PLS2-DYN data).
- PLS2 static data is PLS2 data that is static during the duration of a frame group
- PLS2 dynamic data is PLS2 data that changes dynamically from frame to frame.
- the PLS scrambler 2030 may scramble PLS data generated for energy distribution.
- the aforementioned blocks may be omitted or may be replaced by blocks having similar or identical functions.
- FIG 3 illustrates an input format block according to another embodiment of the present invention.
- the input format block illustrated in FIG. 3 corresponds to an embodiment of the input format block 1000 described with reference to FIG. 1.
- FIG. 3 illustrates a mode adaptation block of an input format block when the input signal corresponds to a multi input stream.
- a mode adaptation block of an input format block for processing multi input streams may independently process multiple input streams.
- a mode adaptation block for processing a multi input stream may be an input stream splitter 3000 or an input stream synchro.
- Each block of the mode adaptation block will be described.
- Operations of the CRC encoder 3050, the BB frame slicer 3060, and the BB header insertion block 3070 correspond to the operations of the CRC encoder, the BB frame slicer, and the BB header insertion block described with reference to FIG. Is omitted.
- the input stream splitter 3000 splits the input TS, IP, and GS streams into a plurality of service or service component (audio, video, etc.) streams.
- the input stream synchronizer 3010 may be called ISSY.
- ISSY can provide suitable means to ensure constant bit rate (CBR) and constant end-to-end transmission delay for any input data format.
- CBR constant bit rate
- ISSY is always used in the case of multiple data pipes carrying TS, and optionally in multiple data pipes carrying GS streams.
- Compensating delay block 3020 may delay the split TS packet stream following the insertion of ISSY information to allow TS packet recombination mechanisms without requiring additional memory at the receiver. have.
- the null packet deletion block 3030 is used only for the TS input stream. Some TS input streams or split TS streams may have a large number of null packets present to accommodate variable bit-rate (VBR) services in the CBR TS stream. In this case, to avoid unnecessary transmission overhead, null packets may be acknowledged and not transmitted. At the receiver, the discarded null packet can be reinserted in the exact place it originally existed with reference to the deleted null-packet (DNP) counter inserted in the transmission, ensuring CBR and time stamp (PCR) updates. There is no need.
- VBR variable bit-rate
- the header compression block 3040 can provide packet header compression to increase transmission efficiency for the TS or IP input stream. Since the receiver may have a priori information for a particular portion of the header, this known information may be deleted at the transmitter.
- the receiver may have a priori information about the sync byte configuration (0x47) and the packet length (188 bytes). If the input TS delivers content with only one PID, that is, one service component (video, audio, etc.) or service subcomponent (SVC base layer, SVC enhancement layer, MVC base view, or MVC dependent view) Only, TS packet header compression may (optionally) be applied to the TS. TS packet header compression is optionally used when the input stream is an IP stream. The block may be omitted or replaced with a block having similar or identical functions.
- FIG. 4 illustrates a BICM block according to an embodiment of the present invention.
- the BICM block illustrated in FIG. 4 corresponds to an embodiment of the BICM block 1010 described with reference to FIG. 1.
- the broadcast signal transmission apparatus for the next generation broadcast service may provide a terrestrial broadcast service, a mobile broadcast service, a UHDTV service, and the like.
- the BICM block according to an embodiment of the present invention can independently process each data pipe by independently applying the SISO, MISO, and MIMO schemes to the data pipes corresponding to the respective data paths.
- the apparatus for transmitting broadcast signals for the next generation broadcast service according to an embodiment of the present invention may adjust QoS for each service or service component transmitted through each data pipe.
- the BICM block shared by the base profile and the handheld profile and the BICM block of the advanced profile may include a plurality of processing blocks for processing each data pipe.
- the processing block 5000 of the BICM block for the base profile and the handheld profile includes a data FEC encoder 5010, a bit interleaver 5020, a constellation mapper 5030, a signal space diversity (SSD) encoding block ( 5040, and a time interleaver 5050.
- a data FEC encoder 5010 a bit interleaver 5020
- a constellation mapper 5030 a signal space diversity (SSD) encoding block ( 5040, and a time interleaver 5050.
- SSD signal space diversity
- the data FEC encoder 5010 performs FEC encoding on the input BBF to generate the FECBLOCK procedure using outer coding (BCH) and inner coding (LDPC).
- Outer coding (BCH) is an optional coding method. The detailed operation of the data FEC encoder 5010 will be described later.
- the bit interleaver 5020 may interleave the output of the data FEC encoder 5010 while providing a structure that can be efficiently realized to achieve optimized performance by a combination of LDPC codes and modulation schemes. The detailed operation of the bit interleaver 5020 will be described later.
- Constellation mapper 5030 can be QPSK, QAM-16, non-uniform QAM (NUQ-64, NUQ-256, NUQ-1024) or non-uniform constellation (NUC-16, NUC-64, NUC-256, NUC-1024)
- NUQ-64, NUQ-256, NUQ-1024 non-uniform QAM
- NUC-16, NUC-64, NUC-256, NUC-1024 A constellation point whose power is normalized by modulating each cell word from the bit interleaver 5020 in the base and handheld profiles or the cell word from the cell word demultiplexer 5010-1 in the advanced profile. e l can be provided.
- the constellation mapping applies only to data pipes. It is observed that NUQ has any shape, while QAM-16 and NUQ have a square shape. If each constellation is rotated by a multiple of 90 degrees, the rotated constellation overlaps exactly with the original. Due to the rotational symmetry characteristic, the real and imaginary components have the same capacity and average power. Both NUQ and N
- the time interleaver 5050 may operate at the data pipe level.
- the parameters of time interleaving can be set differently for each data pipe. The specific operation of the time interleaver 5050 will be described later.
- the processing block 5000-1 of the BICM block for the advanced profile may include a data FEC encoder, a bit interleaver, a constellation mapper, and a time interleaver.
- the processing block 5000-1 is distinguished from the processing block 5000 in that it further includes a cell word demultiplexer 5010-1 and a MIMO encoding block 5020-1.
- operations of the data FEC encoder, the bit interleaver, the constellation mapper, and the time interleaver in the processing block 5000-1 may be performed by the data FEC encoder 5010, the bit interleaver 5020, and the constellation mapper 5030. Since this corresponds to the operation of the time interleaver 5050, the description thereof will be omitted.
- Cell word demultiplexer 5010-1 is used by an advanced profile data pipe to separate a single cell word stream into a dual cell word stream for MIMO processing. A detailed operation of the cell word demultiplexer 5010-1 will be described later.
- the MIMO encoding block 5020-1 may process the output of the cell word demultiplexer 5010-1 using the MIMO encoding scheme.
- MIMO encoding scheme is optimized for broadcast signal transmission. MIMO technology is a promising way to gain capacity, but depends on the channel characteristics. Especially for broadcast, the difference in received signal power between two antennas due to different signal propagation characteristics or the strong LOS component of the channel makes it difficult to obtain capacity gains from MIMO.
- the proposed MIMO encoding scheme overcomes this problem by using phase randomization and rotation based precoding of one of the MIMO output signals.
- MIMO encoding is intended for a 2x2 MIMO system that requires at least two antennas at both the transmitter and the receiver.
- Two MIMO encoding modes are defined in this proposal, full-rate spatial multiplexing (FR-SM) and full-rate full-diversity spatial multiplexing (FRFD-SM).
- FR-SM encoding provides increased capacity with a relatively small complexity increase at the receiver side, while FRFD-SM encoding provides increased capacity and additional diversity gain with a larger complexity increase at the receiver side.
- the proposed MIMO encoding scheme does not limit the antenna polarity arrangement.
- MIMO processing is required for the advanced profile frame, which means that all data pipes in the advanced profile frame are processed by the MIMO encoder. MIMO processing is applied at the data pipe level.
- the pair of constellation mapper outputs, NUQ (e 1, i and e 2, i ), are fed to the input of the MIMO encoder.
- MIMO encoder output pairs g1, i and g2, i are transmitted by the same carrier k and OFDM symbol l of each transmit antenna.
- FIG. 5 illustrates a BICM block according to another embodiment of the present invention.
- the BICM block illustrated in FIG. 5 corresponds to an embodiment of the BICM block 1010 described with reference to FIG. 1.
- the EAC is part of a frame carrying EAS information data
- the FIC is a logical channel in a frame carrying mapping information between a service and a corresponding base data pipe. Detailed description of the EAC and FIC will be described later.
- a BICM block for protecting PLS, EAC, and FIC may include a PLS FEC encoder 6000, a bit interleaver 6010, and a constellation mapper 6020.
- the PLS FEC encoder 6000 may include a scrambler, a BCH encoding / zero insertion block, an LDPC encoding block, and an LDPC parity puncturing block. Each block of the BICM block will be described.
- the PLS FEC encoder 6000 may encode scrambled PLS 1/2 data, EAC and FIC sections.
- the scrambler may scramble PLS1 data and PLS2 data before BCH encoding and shortening and punctured LDPC encoding.
- the BCH encoding / zero insertion block may perform outer encoding on the scrambled PLS 1/2 data using the shortened BCH code for PLS protection, and insert zero bits after BCH encoding. For PLS1 data only, the output bits of zero insertion can be permutated before LDPC encoding.
- the LDPC encoding block may encode the output of the BCH encoding / zero insertion block using the LDPC code.
- C ldpc and parity bits P ldpc are encoded systematically from each zero-inserted PLS information block I ldpc and appended after it.
- LDPC code parameters for PLS1 and PLS2 are shown in Table 4 below.
- the LDPC parity puncturing block may perform puncturing on the PLS1 data and the PLS2 data.
- LDPC parity bits are punctured after LDPC encoding.
- the LDPC parity bits of PLS2 are punctured after LDPC encoding. These punctured bits are not transmitted.
- the bit interleaver 6010 may interleave each shortened and punctured PLS1 data and PLS2 data.
- the constellation mapper 6020 may map bit interleaved PLS1 data and PLS2 data to constellations.
- FIG. 6 illustrates a frame building block according to an embodiment of the present invention.
- the frame building block illustrated in FIG. 7 corresponds to an embodiment of the frame building block 1020 described with reference to FIG. 1.
- the frame building block may include a delay compensation block 7000, a cell mapper 7010, and a frequency interleaver 7020. have. Each block of the frame building block will be described.
- the delay compensation block 7000 adjusts the timing between the data pipes and the corresponding PLS data to ensure co-time between the data pipes and the corresponding PLS data at the transmitter. have.
- PLS data is delayed by the data pipe.
- the delay of the BICM block is mainly due to the time interleaver 5050.
- In-band signaling data may cause information of the next time interleaving group to be delivered one frame ahead of the data pipe to be signaled.
- the delay compensation block delays the in-band signaling data accordingly.
- the cell mapper 7010 may map a PLS, an EAC, an FIC, a data pipe, an auxiliary stream, and a dummy cell to an active carrier of an OFDM symbol in a frame.
- the basic function of the cell mapper 7010 is to activate the data cells generated by time interleaving for each data pipe, PLS cell, and EAC / FIC cell, if any, corresponding to each OFDM symbol in one frame. (active) mapping to an array of OFDM cells.
- Service signaling data (such as program specific information (PSI) / SI) may be collected separately and sent by a data pipe.
- PSI program specific information
- SI program specific information
- the frequency interleaver 7020 may randomly interleave data cells received by the cell mapper 7010 to provide frequency diversity.
- the frequency interleaver 7020 may operate in an OFDM symbol pair consisting of two sequential OFDM symbols using different interleaving seed order to obtain the maximum interleaving gain in a single frame.
- FIG 7 illustrates an OFDM generation block according to an embodiment of the present invention.
- the OFDM generation block illustrated in FIG. 7 corresponds to an embodiment of the OFDM generation block 1030 described with reference to FIG. 1.
- the OFDM generation block modulates the OFDM carrier by inserting a pilot by the cell generated by the frame building block, inserts a pilot, and generates a time domain signal for transmission.
- the block sequentially inserts a guard interval and applies a PAPR reduction process to generate a final RF signal.
- the OFDM generation block includes a pilot and reserved tone insertion block (8000), a 2D-single frequency network (eSFN) encoding block 8010, an inverse fast fourier transform (IFFT).
- Block 8020 PAPR reduction block 8030, guard interval insertion block 8040, preamble insertion block 8050, other system insertion block 8060, and DAC block ( 8070).
- the other system insertion block 8060 may multiplex signals of a plurality of broadcast transmission / reception systems in a time domain so that data of two or more different broadcast transmission / reception systems providing a broadcast service may be simultaneously transmitted in the same RF signal band.
- two or more different broadcast transmission / reception systems refer to a system that provides different broadcast services.
- Different broadcast services may refer to terrestrial broadcast services or mobile broadcast services.
- FIG. 8 illustrates a structure of a broadcast signal receiving apparatus for a next generation broadcast service according to an embodiment of the present invention.
- the broadcast signal receiving apparatus for the next generation broadcast service may correspond to the broadcast signal transmitting apparatus for the next generation broadcast service described with reference to FIG. 1.
- An apparatus for receiving broadcast signals for a next generation broadcast service includes a synchronization & demodulation module 9000, a frame parsing module 9010, a demapping and decoding module a demapping & decoding module 9020, an output processor 9030, and a signaling decoding module 9040. The operation of each module of the broadcast signal receiving apparatus will be described.
- the synchronization and demodulation module 9000 receives an input signal through m reception antennas, performs signal detection and synchronization on a system corresponding to the broadcast signal receiving apparatus, and performs a reverse process of the procedure performed by the broadcast signal transmitting apparatus. Demodulation can be performed.
- the frame parsing module 9010 may parse an input signal frame and extract data in which a service selected by a user is transmitted.
- the frame parsing module 9010 may execute deinterleaving corresponding to the reverse process of interleaving. In this case, positions of signals and data to be extracted are obtained by decoding the data output from the signaling decoding module 9040, so that the scheduling information generated by the broadcast signal transmission apparatus may be restored.
- the demapping and decoding module 9020 may convert the input signal into bit region data and then deinterleave the bit region data as necessary.
- the demapping and decoding module 9020 can perform demapping on the mapping applied for transmission efficiency, and correct an error generated in the transmission channel through decoding. In this case, the demapping and decoding module 9020 can obtain transmission parameters necessary for demapping and decoding by decoding the data output from the signaling decoding module 9040.
- the output processor 9030 may perform a reverse process of various compression / signal processing procedures applied by the broadcast signal transmission apparatus to improve transmission efficiency.
- the output processor 9030 may obtain necessary control information from the data output from the signaling decoding module 9040.
- the output of the output processor 8300 corresponds to a signal input to the broadcast signal transmission apparatus and may be MPEG-TS, IP stream (v4 or v6), and GS.
- the signaling decoding module 9040 may obtain PLS information from the signal demodulated by the synchronization and demodulation module 9000. As described above, the frame parsing module 9010, the demapping and decoding module 9200, and the output processor 9300 may execute the function using data output from the signaling decoding module 9040.
- FIG. 9 shows a frame structure according to an embodiment of the present invention.
- FIG. 9 shows a structural example of a frame time and a frame repetition unit (FRU) in a super frame.
- (a) shows a super frame according to an embodiment of the present invention
- (b) shows a FRU according to an embodiment of the present invention
- (c) shows a frame of various physical profile (PHY profile) in the FRU
- (D) shows the structure of the frame.
- Super frame may consist of eight FRUs.
- the FRU is the basic multiplexing unit for the TDM of the frame and is repeated eight times in the super frame.
- Each frame in the FRU belongs to one of the physical profiles (base, handheld, advanced profile) or FEF.
- the maximum allowable number of frames in a FRU is 4, and a given physical profile may appear any number of times from 0 to 4 times in the FRU (eg, base, base, handheld, advanced).
- the physical profile definition may be extended using the reserved value of PHY_PROFILE in the preamble if necessary.
- the FEF portion is inserted at the end of the FRU if included. If the FEF is included in the FRU, the maximum number of FEFs is 8 in a super frame. It is not recommended that the FEF parts be adjacent to each other.
- One frame is further separated into multiple OFDM symbols and preambles. As shown in (d), the frame includes a preamble, one or more FSS, normal data symbols, and FES.
- the preamble is a special symbol that enables fast Futurecast UTB system signal detection and provides a set of basic transmission parameters for efficient transmission and reception of the signal. Details of the preamble will be described later.
- the main purpose of the FSS is to carry PLS data.
- the FSS For fast synchronization and channel estimation, and hence for fast decoding of PLS data, the FSS has a higher density pilot pattern than normal data symbols.
- the FES has a pilot that is exactly the same as the FSS, which allows frequency only interpolation and temporal interpolation within the FES without extrapolation for symbols immediately preceding the FES.
- FIG. 10 illustrates a signaling hierarchy structure of a frame according to an embodiment of the present invention.
- PLS 10 shows a signaling hierarchy, which is divided into three main parts: preamble signaling data 11000, PLS1 data 11010, and PLS2 data 11020.
- the purpose of the preamble carried by the preamble signal every frame is to indicate the basic transmission parameters and transmission type of the frame.
- PLS1 allows the receiver to access and decode PLS2 data that includes parameters for connecting to the data pipe of interest.
- PLS2 is delivered every frame and divided into two main parts, PLS2-STAT data and PLS2-DYN data. The static and dynamic parts of the PLS2 data are followed by padding if necessary.
- FIG 11 illustrates preamble signaling data according to an embodiment of the present invention.
- the preamble signaling data carries 21 bits of information needed to enable the receiver to access the PLS data and track the data pipes within the frame structure. Details of the preamble signaling data are as follows.
- PHY_PROFILE This 3-bit field indicates the physical profile type of the current frame. The mapping of different physical profile types is given in Table 5 below.
- FFT_SIZE This 2-bit field indicates the FFT size of the current frame in the frame group as described in Table 6 below.
- GI_FRACTION This 3-bit field indicates a guard interval fraction value in the current super frame as described in Table 7 below.
- EAC_FLAG This 1-bit field indicates whether EAC is provided in the current frame. If this field is set to 1, EAS is provided in the current frame. If this field is set to 0, EAS is not delivered in the current frame. This field may be converted to dynamic within a super frame.
- PILOT_MODE This 1-bit field indicates whether the pilot mode is a mobile mode or a fixed mode for the current frame in the current frame group. If this field is set to 0, mobile pilot mode is used. If the field is set to '1', fixed pilot mode is used.
- PAPR_FLAG This 1-bit field indicates whether PAPR reduction is used for the current frame in the current frame group. If this field is set to 1, tone reservation is used for PAPR reduction. If this field is set to 0, no PAPR reduction is used.
- This 3-bit field indicates the physical profile type configuration of the FRU present in the current super frame. In the corresponding field in all preambles in the current super frame, all profile types carried in the current super frame are identified. The 3-bit field is defined differently for each profile as shown in Table 8 below.
- PLS1 data provides basic transmission parameters including the parameters needed to enable the reception and decoding of PLS2. As mentioned above, the PLS1 data does not change during the entire duration of one frame group. A detailed definition of the signaling field of the PLS1 data is as follows.
- PREAMBLE_DATA This 20-bit field is a copy of the preamble signaling data excluding EAC_FLAG.
- NUM_FRAME_FRU This 2-bit field indicates the number of frames per FRU.
- PAYLOAD_TYPE This 3-bit field indicates the format of payload data carried in the frame group. PAYLOAD_TYPE is signaled as shown in Table 9.
- NUM_FSS This 2-bit field indicates the number of FSS in the current frame.
- SYSTEM_VERSION This 8-bit field indicates the version of the signal format being transmitted. SYSTEM_VERSION is separated into two 4-bit fields: major and minor.
- the 4-bit MSB in the SYSTEM_VERSION field indicates major version information. Changes in the major version field indicate incompatible changes. The default value is 0000. For the version described in that standard, the value is set to 0000.
- Minor Version A 4-bit LSB in the SYSTEM_VERSION field indicates minor version information. Changes in the minor version field are compatible.
- CELL_ID This is a 16-bit field that uniquely identifies a geographic cell in an ATSC network. ATSC cell coverage may consist of one or more frequencies depending on the number of frequencies used per Futurecast UTB system. If the value of CELL_ID is unknown or not specified, this field is set to zero.
- NETWORK_ID This is a 16-bit field that uniquely identifies the current ATSC network.
- SYSTEM_ID This 16-bit field uniquely identifies a Futurecast UTB system within an ATSC network.
- Futurecast UTB systems are terrestrial broadcast systems whose input is one or more input streams (TS, IP, GS) and the output is an RF signal.
- the Futurecast UTB system conveys the FEF and one or more physical profiles, if present.
- the same Futurecast UTB system can carry different input streams and use different RFs in different geographic regions, allowing for local service insertion.
- Frame structure and scheduling are controlled in one place and are the same for all transmissions within a Futurecast UTB system.
- One or more Futurecast UTB systems may have the same SYSTEM_ID meaning that they all have the same physical structure and configuration.
- the following loop is composed of FRU_PHY_PROFILE, FRU_FRAME_LENGTH, FRU_GI_FRACTION, and RESERVED indicating the length and FRU configuration of each frame type.
- the loop size is fixed such that four physical profiles (including FFEs) are signaled within the FRU. If NUM_FRAME_FRU is less than 4, the unused fields are filled with zeros.
- FRU_PHY_PROFILE This 3-bit field indicates the physical profile type of the (i + 1) th frame (i is a loop index) of the associated FRU. This field uses the same signaling format as shown in Table 8.
- FRU_FRAME_LENGTH This 2-bit field indicates the length of the (i + 1) th frame of the associated FRU. Using FRU_FRAME_LENGTH with FRU_GI_FRACTION, the exact value of frame duration can be obtained.
- FRU_GI_FRACTION This 3-bit field indicates the guard interval partial value of the (i + 1) th frame of the associated FRU.
- FRU_GI_FRACTION is signaled according to Table 7.
- the following fields provide parameters for decoding PLS2 data.
- PLS2_FEC_TYPE This 2-bit field indicates the FEC type used by the PLS2 protection.
- the FEC type is signaled according to Table 10. Details of the LDPC code will be described later.
- PLS2_MOD This 3-bit field indicates the modulation type used by PLS2.
- the modulation type is signaled according to Table 11.
- PLS2_SIZE_CELL This 15-bit field indicates C total_partial_block which is the size (specified by the number of QAM cells) of all coding blocks for PLS2 carried in the current frame group . This value is constant for the entire duration of the current frame-group.
- PLS2_STAT_SIZE_BIT This 14-bit field indicates the size, in bits, of the PLS2-STAT for the current frame-group. This value is constant for the entire duration of the current frame-group.
- PLS2_DYN_SIZE_BIT This 14-bit field indicates the size, in bits, of the PLS2-DYN for the current frame-group. This value is constant for the entire duration of the current frame-group.
- PLS2_REP_FLAG This 1-bit flag indicates whether the PLS2 repeat mode is used in the current frame group. If the value of this field is set to 1, PLS2 repeat mode is activated. If the value of this field is set to 0, PLS2 repeat mode is deactivated.
- PLS2_REP_SIZE_CELL This 15-bit field indicates C total_partial_block , which is the size (specified by the number of QAM cells) of the partial coding block for PLS2 delivered every frame of the current frame group when PLS2 repetition is used. If iteration is not used, the value of this field is equal to zero. This value is constant for the entire duration of the current frame-group.
- PLS2_NEXT_FEC_TYPE This 2-bit field indicates the FEC type used for PLS2 delivered in every frame of the next frame-group.
- the FEC type is signaled according to Table 10.
- PLS2_NEXT_MOD This 3-bit field indicates the modulation type used for PLS2 delivered in every frame of the next frame-group.
- the modulation type is signaled according to Table 11.
- PLS2_NEXT_REP_FLAG This 1-bit flag indicates whether the PLS2 repeat mode is used in the next frame group. If the value of this field is set to 1, PLS2 repeat mode is activated. If the value of this field is set to 0, PLS2 repeat mode is deactivated.
- PLS2_NEXT_REP_SIZE_CELL This 15-bit field indicates C total_full_block , which is the size (specified in the number of QAM cells) of the entire coding block for PLS2 delivered every frame of the next frame-group when PLS2 repetition is used. If iteration is not used in the next frame-group, the value of this field is equal to zero. This value is constant for the entire duration of the current frame-group.
- PLS2_NEXT_REP_STAT_SIZE_BIT This 14-bit field indicates the size, in bits, of the PLS2-STAT for the next frame-group. The value is constant in the current frame group.
- PLS2_NEXT_REP_DYN_SIZE_BIT This 14-bit field indicates the size of the PLS2-DYN for the next frame-group, in bits. The value is constant in the current frame group.
- PLS2_AP_MODE This 2-bit field indicates whether additional parity is provided for PLS2 in the current frame group. This value is constant for the entire duration of the current frame-group. Table 12 below provides the values for this field. If the value of this field is set to 00, no additional parity is used for PLS2 in the current frame group.
- PLS2_AP_SIZE_CELL This 15-bit field indicates the size (specified by the number of QAM cells) of additional parity bits of PLS2. This value is constant for the entire duration of the current frame-group.
- PLS2_NEXT_AP_MODE This 2-bit field indicates whether additional parity is provided for PLS2 signaling for every frame of the next frame-group. This value is constant for the entire duration of the current frame-group. Table 12 defines the values of this field.
- PLS2_NEXT_AP_SIZE_CELL This 15-bit field indicates the size (specified by the number of QAM cells) of additional parity bits of PLS2 for every frame of the next frame-group. This value is constant for the entire duration of the current frame-group.
- RESERVED This 32-bit field is reserved for future use.
- FIG 13 illustrates PLS2 data according to an embodiment of the present invention.
- PLS2-STAT data of the PLS2 data.
- PLS2-STAT data is the same within a frame group, while PLS2-DYN data provides specific information about the current frame.
- FIC_FLAG This 1-bit field indicates whether the FIC is used in the current frame group. If the value of this field is set to 1, the FIC is provided in the current frame. If the value of this field is set to 0, FIC is not delivered in the current frame. This value is constant for the entire duration of the current frame-group.
- AUX_FLAG This 1-bit field indicates whether the auxiliary stream is used in the current frame group. If the value of this field is set to 1, the auxiliary stream is provided in the current frame. If the value of this field is set to 0, the auxiliary frame is not transmitted in the current frame. This value is constant for the entire duration of the current frame-group.
- NUM_DP This 6-bit field indicates the number of data pipes carried in the current frame. The value of this field is between 1 and 64, and the number of data pipes is NUM_DP + 1.
- DP_ID This 6-bit field uniquely identifies within the physical profile.
- DP_TYPE This 3-bit field indicates the type of data pipe. This is signaled according to Table 13 below.
- DP_GROUP_ID This 8-bit field identifies the data pipe group with which the current data pipe is associated. This can be used to connect to the data pipe of the service component associated with a particular service that the receiver will have the same DP_GROUP_ID.
- BASE_DP_ID This 6-bit field indicates a data pipe that carries service signaling data (such as PSI / SI) used in the management layer.
- the data pipe indicated by BASE_DP_ID may be a normal data pipe for delivering service signaling data together with service data or a dedicated data pipe for delivering only service signaling data.
- DP_FEC_TYPE This 2-bit field indicates the FEC type used by the associated data pipe.
- the FEC type is signaled according to Table 14 below.
- DP_COD This 4-bit field indicates the code rate used by the associated data pipe.
- the code rate is signaled according to Table 15 below.
- DP_MOD This 4-bit field indicates the modulation used by the associated data pipe. Modulation is signaled according to Table 16 below.
- DP_SSD_FLAG This 1-bit field indicates whether the SSD mode is used in the associated data pipe. If the value of this field is set to 1, the SSD is used. If the value of this field is set to 0, the SSD is not used.
- DP_MIMO This 3-bit field indicates what type of MIMO encoding processing is applied to the associated data pipe.
- the type of MIMO encoding process is signaled according to Table 17 below.
- DP_TI_TYPE This 1-bit field indicates the type of time interleaving. A value of 0 indicates that one time interleaving group corresponds to one frame and includes one or more time interleaving blocks. A value of 1 indicates that one time interleaving group is delivered in more than one frame and contains only one time interleaving block.
- DP_TI_LENGTH The use of this 2-bit field (only allowed values are 1, 2, 4, 8) is determined by the value set in the DP_TI_TYPE field as follows.
- N TI the number of time interleaving block per time interleaving group
- This 2-bit field represents the frame interval (I JUMP ) within the frame group for the associated data pipe, and allowed values are 1, 2, 4, 8 (the corresponding 2-bit fields are 00, 01, 10, 11). For data pipes that do not appear in every frame of a frame group, the value of this field is equal to the interval between sequential frames. For example, if a data pipe appears in frames 1, 5, 9, 13, etc., the value of this field is set to 4. For data pipes that appear in every frame, the value of this field is set to 1.
- DP_TI_BYPASS This 1-bit field determines the availability of time interleaver 5050. If time interleaving is not used for the data pipe, this field value is set to 1. On the other hand, if time interleaving is used, the corresponding field value is set to zero.
- DP_FIRST_FRAME_IDX This 5-bit field indicates the index of the first frame of the super frame in which the current data pipe occurs.
- the value of DP_FIRST_FRAME_IDX is between 0 and 31.
- DP_NUM_BLOCK_MAX This 10-bit field indicates the maximum value of DP_NUM_BLOCKS for the data pipe. The value of this field has the same range as DP_NUM_BLOCKS.
- DP_PAYLOAD_TYPE This 2-bit field indicates the type of payload data carried by a given data pipe. DP_PAYLOAD_TYPE is signaled according to Table 19 below.
- DP_INBAND_MODE This 2-bit field indicates whether the current data pipe carries in-band signaling information. In-band signaling type is signaled according to Table 20 below.
- DP_PROTOCOL_TYPE This 2-bit field indicates the protocol type of the payload carried by the given data pipe.
- the protocol type of payload is signaled according to Table 21 below when the input payload type is selected.
- DP_CRC_MODE This 2-bit field indicates whether CRC encoding is used in the input format block. CRC mode is signaled according to Table 22 below.
- DNP_MODE This 2-bit field indicates the null packet deletion mode used by the associated data pipe when DP_PAYLOAD_TYPE is set to TS ('00'). DNP_MODE is signaled according to Table 23 below. If DP_PAYLOAD_TYPE is not TS ('00'), DNP_MODE is set to a value of 00.
- ISSY_MODE This 2-bit field indicates the ISSY mode used by the associated data pipe when DP_PAYLOAD_TYPE is set to TS ('00'). ISSY_MODE is signaled according to Table 24 below. If DP_PAYLOAD_TYPE is not TS ('00'), ISSY_MODE is set to a value of 00.
- HC_MODE_TS This 2-bit field indicates the TS header compression mode used by the associated data pipe when DP_PAYLOAD_TYPE is set to TS ('00'). HC_MODE_TS is signaled according to Table 25 below.
- HC_MODE_IP This 2-bit field indicates the IP header compression mode when DP_PAYLOAD_TYPE is set to IP ('01'). HC_MODE_IP is signaled according to Table 26 below.
- PID This 13-bit field indicates the number of PIDs for TS header compression when DP_PAYLOAD_TYPE is set to TS ('00') and HC_MODE_TS is set to 01 or 10.
- FIC_VERSION This 8-bit field indicates the version number of the FIC.
- FIC_LENGTH_BYTE This 13-bit field indicates the length of the FIC in bytes.
- NUM_AUX This 4-bit field indicates the number of auxiliary streams. Zero indicates that no auxiliary stream is used.
- AUX_CONFIG_RFU This 8-bit field is reserved for future use.
- AUX_STREAM_TYPE This 4 bits is reserved for future use to indicate the type of the current auxiliary stream.
- AUX_PRIVATE_CONFIG This 28-bit field is reserved for future use for signaling the secondary stream.
- FIG 14 illustrates PLS2 data according to another embodiment of the present invention.
- the value of the PLS2-DYN data may change during the duration of one frame group, while the size of the field is constant.
- FRAME_INDEX This 5-bit field indicates the frame index of the current frame within the super frame. The index of the first frame of the super frame is set to zero.
- PLS_CHANGE_COUNTER This 4-bit field indicates the number of super frames before the configuration changes. The next super frame whose configuration changes is indicated by the value signaled in that field. If the value of this field is set to 0000, this means that no scheduled change is expected. For example, a value of 1 indicates that there is a change in the next super frame.
- FIC_CHANGE_COUNTER This 4-bit field indicates the number of super frames before the configuration (i.e., the content of the FIC) changes. The next super frame whose configuration changes is indicated by the value signaled in that field. If the value of this field is set to 0000, this means that no scheduled change is expected. For example, a value of 0001 indicates that there is a change in the next super frame.
- NUM_DP NUM_DP that describes the parameters related to the data pipe carried in the current frame.
- DP_ID This 6-bit field uniquely represents a data pipe within the physical profile.
- DP_START This 15-bit (or 13-bit) field indicates the first starting position of the data pipe using the DPU addressing technique.
- the DP_START field has a length different according to the physical profile and the FFT size as shown in Table 27 below.
- DP_NUM_BLOCK This 10-bit field indicates the number of FEC blocks in the current time interleaving group for the current data pipe.
- the value of DP_NUM_BLOCK is between 0 and 1023.
- the next field indicates the FIC parameter associated with the EAC.
- EAC_FLAG This 1-bit field indicates the presence of an EAC in the current frame. This bit is equal to EAC_FLAG in the preamble.
- EAS_WAKE_UP_VERSION_NUM This 8-bit field indicates the version number of the automatic activation indication.
- EAC_FLAG field If the EAC_FLAG field is equal to 1, the next 12 bits are allocated to the EAC_LENGTH_BYTE field. If the EAC_FLAG field is equal to 0, the next 12 bits are allocated to EAC_COUNTER.
- EAC_LENGTH_BYTE This 12-bit field indicates the length of the EAC in bytes.
- EAC_COUNTER This 12-bit field indicates the number of frames before the frame in which the EAC arrives.
- AUX_PRIVATE_DYN This 48-bit field is reserved for future use for signaling the secondary stream. The meaning of this field depends on the value of AUX_STREAM_TYPE in configurable PLS2-STAT.
- CRC_32 32-bit error detection code that applies to the entire PLS2.
- FIG. 15 illustrates a logical structure of a frame according to an embodiment of the present invention.
- the PLS, EAC, FIC, data pipe, auxiliary stream, and dummy cell are mapped to the active carrier of the OFDM symbol in the frame.
- PLS1 and PLS2 are initially mapped to one or more FSS. Then, if there is an EAC, the EAC cell is mapped to the immediately following PLS field. If there is an FIC next, the FIC cell is mapped.
- the data pipes are mapped after the PLS or, if present, after the EAC or FIC. Type 1 data pipes are mapped first, and type 2 data pipes are mapped next. Details of the type of data pipe will be described later. In some cases, the data pipe may carry some special data or service signaling data for the EAS.
- auxiliary stream or stream if present, is mapped to the data pipe next, followed by a dummy cell in turn. Mapping all together in the order described above, namely PLS, EAC, FIC, data pipe, auxiliary stream, and dummy cell, will correctly fill the cell capacity in the frame.
- FIG 16 illustrates PLS mapping according to an embodiment of the present invention.
- the PLS cell is mapped to an active carrier of the FSS. According to the number of cells occupied by the PLS, one or more symbols are designated as FSS, and the number N FSS of the FSS is signaled by NUM_FSS in PLS1.
- FSS is a special symbol that carries a PLS cell. Since alertness and latency are critical issues in PLS, the FSS has a high pilot density, enabling fast synchronization and interpolation only on frequencies within the FSS.
- the PLS cell is mapped to an active carrier of the FSS from the top down as shown in the example of FIG.
- PLS1 cells are initially mapped in ascending order of cell index from the first cell of the first FSS.
- the PLS2 cell follows immediately after the last cell of PLS1 and the mapping continues downward until the last cell index of the first FSS. If the total number of required PLS cells exceeds the number of active carriers of one FSS, the mapping proceeds to the next FSS and continues in exactly the same way as the first FSS.
- EAC, FIC or both are present in the current frame, EAC and FIC are placed between the PLS and the normal data pipe.
- FIG 17 illustrates EAC mapping according to an embodiment of the present invention.
- the EAC is a dedicated channel for delivering EAS messages and is connected to the data pipes for the EAS. EAS support is provided, but the EAC itself may or may not be present in every frame. If there is an EAC, the EAC is mapped immediately after the PLS2 cell. Except for PLS cells, none of the FIC, data pipes, auxiliary streams or dummy cells are located before the EAC. The mapping procedure of the EAC cell is exactly the same as that of the PLS.
- EAC cells are mapped in ascending order of cell index from the next cell of PLS2 as shown in the example of FIG. Depending on the EAS message size, as shown in FIG. 17, the EAC cell may occupy few symbols.
- the EAC cell follows immediately after the last cell of PLS2 and the mapping continues downward until the last cell index of the last FSS. If the total number of required EAC cells exceeds the number of remaining active carriers of the last FSS, the EAC mapping proceeds to the next symbol and continues in exactly the same way as the FSS. In this case, the next symbol to which the EAC is mapped is a normal data symbol, which has more active carriers than the FSS.
- the FIC is passed next if present. If no FIC is sent (as signaling in the PLS2 field), the data pipe follows immediately after the last cell of the EAC.
- FIC is a dedicated channel that carries cross-layer information to enable fast service acquisition and channel scan.
- the information mainly includes channel binding information between data pipes and services of each broadcaster.
- the receiver can decode the FIC and obtain information such as broadcaster ID, number of services, and BASE_DP_ID.
- BASE_DP_ID For high-speed service acquisition, not only the FIC but also the base data pipe can be decoded using BASE_DP_ID. Except for the content that the base data pipe transmits, the base data pipe is encoded and mapped to the frame in exactly the same way as a normal data pipe. Thus, no further explanation of the base data pipe is needed.
- FIC data is generated and consumed at the management layer. The content of the FIC data is as described in the management layer specification.
- FIC data is optional and the use of FIC is signaled by the FIC_FLAG parameter in the static part of the PLS2. If FIC is used, FIC_FLAG is set to 1 and the signaling field for FIC is defined in the static part of PLS2. Signaled in this field is FIC_VERSION, FIC_LENGTH_BYTE. FIC uses the same modulation, coding, and time interleaving parameters as PLS2. The FIC shares the same signaling parameters as PLS2_MOD and PLS2_FEC. FIC data is mapped after PLS2 if present, or immediately after EAC if EAC is present. None of the normal data pipes, auxiliary streams, or dummy cells are located before the FIC. The method of mapping the FIC cells is exactly the same as the EAC, which in turn is identical to the PLS.
- the FIC cells are mapped in ascending order of cell index from the next cell of PLS2 as shown in the example of (a).
- FIC cells are mapped for several symbols.
- the FIC cell follows immediately after the last cell of PLS2 and the mapping continues downward until the last cell index of the last FSS. If the total number of required FIC cells exceeds the number of remaining active carriers of the last FSS, the mapping of the remaining FIC cells proceeds to the next symbol, which continues in exactly the same way as the FSS. In this case, the next symbol to which the FIC is mapped is a normal data symbol, which has more active carriers than the FSS.
- the EAC is mapped before the FIC and the FIC cells are mapped in ascending order of cell index from the next cell of the EAC as shown in (b).
- one or more data pipes are mapped, followed by auxiliary streams and dummy cells if present.
- FIG 19 shows an FEC structure according to an embodiment of the present invention.
- the data FEC encoder may perform FEC encoding on the input BBF to generate the FECBLOCK procedure using outer coding (BCH) and inner coding (LDPC).
- BCH outer coding
- LDPC inner coding
- the illustrated FEC structure corresponds to FECBLOCK.
- the FECBLOCK and FEC structures have the same value corresponding to the length of the LDPC codeword.
- N ldpc 64800 bits (long FECBLOCK) or 16200 bits (short FECBLOCK).
- Tables 28 and 29 below show the FEC encoding parameters for the long FECBLOCK and the short FECBLOCK, respectively.
- a 12-error correcting BCH code is used for the outer encoding of the BBF.
- the BBF-generated polynomials for short FECBLOCK and long FECBLOCK are obtained by multiplying all polynomials.
- LDPC codes are used to encode the output of the outer BCH encoding.
- ldpc P parity bits
- I ldpc - is systematically encoded from the (BCH encoded BBF), it is attached to the I ldpc.
- the finished B ldpc (FECBLOCK) is expressed by the following equation.
- N ldpc for long FECBLOCK - specific procedures for calculating the K ldpc parity bits is as follows.
- x represents the address of the parity bit accumulator corresponding to the first bit i 0
- Q ldpc is a code rate dependent constant specified in the address of the parity check matrix.
- Equation 6 x represents the address of the parity bit accumulator corresponding to information bit i 360 , that is, the entry of the second row of the parity check matrix.
- the final parity bits are obtained as follows.
- the corresponding LDPC encoding procedure for short FECBLOCK is t LDPC for long FECBLOCK.
- the time interleaver operates at the data pipe level.
- the parameters of time interleaving can be set differently for each data pipe.
- DP_TI_TYPE (allowed values: 0 or 1): Represents the time interleaving mode.
- 0 indicates a mode with multiple time interleaving blocks (one or more time interleaving blocks) per time interleaving group. In this case, one time interleaving group is directly mapped to one frame (without interframe interleaving).
- 1 indicates a mode having only one time interleaving block per time interleaving group. In this case, the time interleaving block is spread over one or more frames (interframe interleaving).
- DP_NUM_BLOCK_MAX (allowed values: 0 to 1023): Represents the maximum number of XFECBLOCKs per time interleaving group.
- DP_FRAME_INTERVAL (allowed values: 1, 2, 4, 8): Represents the number of frames I JUMP between two sequential frames carrying the same data pipe of a given physical profile.
- DP_TI_BYPASS (allowed values: 0 or 1): If time interleaving is not used for the data frame, this parameter is set to one. If time interleaving is used, it is set to zero.
- the parameter DP_NUM_BLOCK from the PLS2-DYN data indicates the number of XFECBLOCKs carried by one time interleaving group of the data group.
- each time interleaving group is a set of integer number of XFECBLOCKs, and will contain a dynamically varying number of XFECBLOCKs.
- N xBLOCK_Group (n) The number of XFECBLOCKs in the time interleaving group at index n is represented by N xBLOCK_Group (n) and signaled as DP_NUM_BLOCK in the PLS2-DYN data.
- N xBLOCK_Group (n) may vary from the minimum value 0 to the maximum value N xBLOCK_Group_MAX (corresponding to DP_NUM_BLOCK_MAX ) having the largest value 1023.
- Each time interleaving group is either mapped directly to one frame or spread over P I frames.
- Each time interleaving group is further divided into one or more (N TI ) time interleaving blocks.
- each time interleaving block corresponds to one use of the time interleaver memory.
- the time interleaving block in the time interleaving group may include some other number of XFECBLOCKs. If the time interleaving group is divided into multiple time interleaving blocks, the time interleaving group is directly mapped to only one frame. As shown in Table 32 below, there are three options for time interleaving (except for the additional option of omitting time interleaving).
- the time interleaver will also act as a buffer for the data pipe data before the frame generation process. This is accomplished with two memory banks for each data pipe.
- the first time interleaving block is written to the first bank.
- the second time interleaving block is written to the second bank while reading from the first bank.
- Time interleaving is a twisted row-column block interleaver.
- the number of columns N c is equal to N xBLOCK_TI (n, s)
- 21 illustrates the basic operation of a twisted row-column block interleaver according to an embodiment of the present invention.
- Fig. 21A shows a write operation in the time interleaver
- Fig. 21B shows a read operation in the time interleaver.
- the first XFECBLOCK is written in the column direction to the first column of the time interleaving memory
- the second XFECBLOCK is written to the next column, followed by this operation.
- the cells are read diagonally.
- Cells are read. Specifically, Assuming that this is a time interleaving memory cell position to be read sequentially, the read operation in this interleaving array is a row index as in the equation below. Column index Related twist parameters Is executed by calculating.
- the cell position to be read is coordinate Calculated by
- FIG. 22 illustrates an operation of a twisted row-column block interleaver according to another embodiment of the present invention.
- FIG. 22 Denotes an interleaving array in the time interleaving memory for each time interleaving group including the virtual XFECBLOCK.
- the interleaving array for twisted row-column block interleaver inserts a virtual XFECBLOCK into the time interleaving memory. It is set to the size of, and the reading process is made as follows.
- the number of time interleaving groups is set to three.
- the maximum number of XFECBLOCKs is signaled in PLS2-STAT data by NxBLOCK_Group_MAX, which Leads to.
- Figure 23 illustrates a diagonal read pattern of a twisted row-column block interleaver according to one embodiment of the present invention.
- FIG. 25 illustrates signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- the frequency interleaver according to the present invention performs interleaving using different interleaving sequences for each OFDM symbol, but the frequency deinterleaver may perform single memory deinterleaving on the received OFDM symbol.
- the present invention proposes a method in which a frequency deinterleaver can perform single memory deinterleaving regardless of whether the number of OFDM symbols in a frame is even or odd.
- the above-described structure of the frequency interleaver may operate differently depending on whether the number of OFDM symbols is even or odd.
- signaling information related thereto may be further defined in the aforementioned preamble and / or PLS (Physical Layer Signaling).
- PLS Physical Layer Signaling
- the PLS may be included in the frame starting symbol (FSS) of each frame and transmitted.
- the PLS may be included in the first OFDM symbol and transmitted.
- signaling corresponding to the PLS may be included in the preamble and transmitted.
- signaling information corresponding to the preamble and / or the PLS may be included in the bootstrap information and transmitted.
- the bootstrap information may be an information part located in front of the preamble.
- FI_mode field As information on a processing operation used in the frequency interleaver of the transmitter, there may be a FI_mode field and an N_sym field.
- the FI_mode field may be a 1-bit field that may be located in the preamble.
- the FI_mode field may indicate an interleaving scheme used for the frame starting symbol (FSS) or the first OFDM symbol of each frame.
- Interleaving schemes indicated by the FI_mode field may include FI scheme # 1 and FI scheme # 2.
- FI scheme # 1 may refer to a case in which the frequency interleaver performs a linear reading operation on the FSS after performing a random writing operation on the FSS. This case may correspond to a case where the FI_mode field value is 0.
- random write and linear read operations may be performed in the memory.
- the linear read may mean an operation of sequentially reading.
- FI scheme # 2 may mean a case in which the frequency interleaver performs a random reading operation after performing a linear writing operation on the FSS at the transmitting side. This case may correspond to a case where the FI_mode field value is 1. Similarly, linear write and random read operations can be performed in a memory using values generated by an arbitrary random sequence generator using PRBS. In this case, the linear writing may mean performing a writing operation sequentially.
- the FI_mode field may indicate an interleaving scheme used for the frame edge symbol (FES) or the last OFDM symbol of each frame.
- the interleaving scheme applied to the FES may be indicated differently according to the value of the N_sym field transmitted by the PLS. That is, the interleaving scheme indicated by the FI_mode field may vary depending on whether the number of OFDM symbols is odd or even.
- the relationship between the two fields may be previously defined as a table on the transmitting and receiving side.
- the FI_mode field may be defined and transmitted in another part of the frame in addition to the preamble.
- the N_sym field may be a field that may be located in the PLS part.
- the number of bits of the N_sym field may vary according to an embodiment.
- the N_sym field may indicate the number of OFDM symbols included in one frame. Accordingly, the receiving side can determine whether the number of OFDM symbols is even or odd.
- the operation of the frequency deinterleaver corresponding to the frequency interleaver irrespective of the number of OFDM symbols in one frame described above is as follows.
- the frequency deinterleaver may perform single memory deinterleaving using the proposed signaling fields regardless of whether the number of OFDM symbols is even or odd.
- the frequency deinterleaver may perform frequency deinterleaving on the FSS using information of the FI_mode field of the preamble. This is because the frequency interleaving scheme utilized for the FSS is indicated by FI_mode.
- the frequency deinterleaver may perform frequency deinterleaving on the FES using signaling information of the FI_mode field and signaling information of the N_sym field of the PLS. At this time, the relationship between the two fields may be grasped using a predefined table.
- the predefined table will be described later.
- the overall deinterleaving process of the other symbols may be performed in the reverse order of the interleaving process of the transmitter. That is, the frequency deinterleaver may perform deinterleaving by using one interleaving sequence with respect to a pair of input OFDM symbols.
- one interleaving sequence may be an interleaving sequence used by the corresponding frequency interleaver for reading and writing.
- the frequency deinterleaver may perform the read & write process in reverse order using the interleaving sequence.
- the frequency deinterleaver according to the present invention may not use a ping pong structure using a double memory.
- the frequency deinterleaver may perform deinterleaving using a single memory for successive input OFDM symbols. This can increase the memory usage efficiency of the frequency deinterleaver.
- FIG. 26 is a diagram illustrating FI schemes for FSS in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
- An interleaving scheme applied in the frequency interleaving process may be determined using the aforementioned FI_mode field and the N_sym field.
- FI scheme # 1 may be performed on the FSS regardless of the FI_mode field value.
- FI scheme # 1 When the number of OFDM symbols indicated by the N_sym field is odd, if the FI_mode field has a value of 0, FI scheme # 1 is applied to the FSS, and if it has a value of 1, FI scheme # 2 may be applied to the FSS. That is, when the number of OFDM symbols is odd, FI schemes # 1 and # 2 may be alternately applied to the FSS in frequency interleaving.
- FIG. 27 illustrates an operation of a reset mode for FES in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
- the aforementioned symbol offset generator may introduce a new concept called a reset mode.
- the reset mode may mean a mode in which a symbol offset value generated by the symbol offset generator is '0'.
- the reset mode of the symbol offset generator may not be operated regardless of the value of the FI_mode field.
- the symbol offset generator may operate according to the reset mode (on).
- the reset mode of the symbol offset generator may not operate. That is, when the number of OFDM symbols is an odd number, the reset mode may be alternately turned on / off in frequency interleaving.
- FIG. 28 is a diagram for mathematically representing an input and an output of a frequency interleaver in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- interleaving may utilize a variety of other interleaving seeds generated by one main interleaving seed being cyclic-shifted.
- the interleaving seed may be referred to as an interleaving sequence.
- the interleaving seed may be referred to as an interleaving address value, an address value, or an interleaving address.
- the term interleaving address value may be used to indicate a plurality of objects in the meaning of a set of a plurality of address values, or may be used to indicate a singular object in the meaning of an interleaving seed. That is, according to the embodiment, the interleaving address value may mean each address value of H (p) or may mean H (p) itself.
- An input of frequency interleaving to be interleaved in one OFDM symbol may be denoted by O m, l (t50010).
- each of the data cells may be represented by x m, l, 0 ,... X m, l, Ndata-1 .
- p may mean a cell index
- l may mean an OFDM symbol index
- m may mean an index of a frame. That is, x m, l, p may refer to the p th data cell of the m th frame, the l th OFDM symbol.
- N data may mean the number of data cells.
- N sym may mean the number of symbols (frame signaling symbol, normal data symbol, frame edge symbol).
- Data cells after interleaving by the above operation may be denoted by P m, l (t50020).
- Each interleaved data cell may be denoted by v m, l, 0 ,... V m, l, Ndata-1 .
- p, l, m may have the same index value as described above.
- 29 is a view illustrating equations of a logical operation mechanism of frequency interleaving according to FI scheme # 1 and FI scheme # 2 in signaling for single memory deinterleaving unaffected by the number of symbols in a frame according to an embodiment of the present invention. Indicates.
- frequency interleaving may be performed using an interleaving sequence (interleaving address) of each memory bank.
- frequency interleaving may be performed using an interleaving sequence (interleaving address) to obtain an output v.
- the p th input data x may be mixed in order to be equal to the H (p) th output data v.
- a random write process may be performed first using an interleaving sequence, and then a linear read process may be sequentially read again.
- the interleaving sequence (interleaving address) may be a value generated by an arbitrary random sequence generator using PRBS.
- frequency interleaving may be performed using an interleaving sequence (interleaving address) to obtain an output v.
- the H (p) th input data x may be mixed in order to be equal to the pth output data v. That is, when compared to the interleaving process for even-numbered symbols, the interleaving sequence (interleaving address) may be applied inversely (inversely, inverse).
- a linear write operation of writing data to a memory in order may be performed first, and then a random read process may be performed to read randomly using an interleaving sequence.
- the interleaving sequence (interleaving address) may be a value generated by any random sequence generator using PRBS or the like.
- a random read operation may be performed after the linear write operation with respect to the even number symbol according to the illustrated equation (t51020).
- a linear read operation may be performed after the random write operation according to the equation (t51010). Details are the same as described in FI Scheme # 1.
- the symbol index l may be represented by 0, 1, ..., N sym- 1, and the cell index p by 0, 1, ..., N data- 1.
- frequency interleaving schemes for even-numbered symbols and odd-numbered symbols may be reversed.
- frequency interleaving schemes according to FI scheme # 1 and FI scheme # 2 may be reversed.
- FIG. 30 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- the N_sym field may indicate that the number of OFDM is even in one frame. In this embodiment, it is assumed that one frame has one preamble and eight OFDM symbols.
- the bootstrap information may be further included in front of the preamble. Bootstrap information is not shown.
- one frame may include one FSS and FES, respectively. It is assumed here that the lengths of the FSS and the FES are the same.
- the frequency deinterleaver may check this after FSS decoding.
- decoding for the N_sym field is completed before the operation for FES is performed.
- the value of the symbol offset generator can be reset to zero.
- each first and second symbol can be processed by the same interleaving sequence.
- the sequence # 0 may be used for operation again at the beginning of each frame.
- the sequence # 1 and # 2 may be used to operate the frequency interleaver / deinterleaver.
- 31 is a diagram illustrating an embodiment in which the number of symbols is even in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- the FSS In the first frame, information on how the FSS is interleaved can be obtained from the FI_mode field of the preamble. In this embodiment, since the OFDM symbols are even, only FI scheme # 1 may be used.
- the FSS may be decoded to obtain N_sym information. It can be seen from the N_sym information that the number of symbols in the frame is even. Thereafter, when the frequency deinterleaver decodes the FES, decoding may be performed using the obtained FI_mode information and N_sym information. Since the number of symbols is an even number, the symbol offset generator does not operate according to the above-described reset mode. That is, the reset mode may be in an off state.
- the frequency deinterleaver may operate in the same manner. That is, the FI scheme to be used in the FSS is FI scheme # 1, and the reset mode to be used in the FES may be in an off state.
- 32 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- the N_sym field may indicate that the number of OFDM is odd in one frame. In this embodiment, it is assumed that one frame has one preamble and seven OFDM symbols.
- the bootstrap information may be further included in front of the preamble. Bootstrap information is not shown.
- one frame may include one FSS and FES, respectively. It is assumed here that the lengths of the FSS and the FES are the same.
- the frequency deinterleaver since the information of the N_sym field is included in the PLS part and transmitted, the frequency deinterleaver may check this after FSS decoding. In addition, in the present embodiment, it is assumed that decoding for the N_sym field is completed before the operation for FES is performed.
- the value of the symbol offset generator can be reset to zero.
- the symbol offset generator may operate according to the reset mode according to the values of the FI_mode field and the N_sym field.
- the value of the symbol offset generator may or may not be reset to zero. This reset process may be performed alternately every frame.
- a reset of the symbol offset generator may occur at the last symbol of the first frame shown, FES.
- the interleaving sequence can be reset to the # 0 sequence.
- the frequency interleaver / deinterleaver may process the corresponding FES according to the sequence # 0 (t54010).
- the symbol offset generator is reset again so that the # 0 sequence may be used (t54010).
- a reset may not occur in the FES of the second frame (frame # 1), but again, a reset may occur in the FES of the third frame (frame # 2).
- 33 is a diagram illustrating an embodiment in which the number of symbols is odd in signaling for single memory deinterleaving not affected by the number of symbols in a frame according to an embodiment of the present invention.
- FI scheme # 1 In the first frame, information on how the FSS is interleaved can be obtained from the FI_mode field of the preamble. Since the number of OFDM symbols is odd, FI scheme # 1 and FI scheme # 2 may be used. In the first frame of this embodiment, FI scheme # 1 is used.
- the FSS may be decoded to obtain N_sym information. It can be seen from the N_sym information that the number of symbols in the frame is odd. Thereafter, when the frequency deinterleaver decodes the FES, decoding may be performed using the obtained FI_mode information and N_sym information. Since the number of symbols is an odd number and the FI scheme # 1 is used, the FI_mode field value is 0. Since FI_mode is 0, the symbol offset generator may operate according to the above-described reset mode. That is, the reset mode may be in an on state.
- the symbol offset generator can be reset to zero. Since the value of the FI_mode field is 1 in the second frame, it can be seen that the FSS has been processed by the FI scheme # 2. Again, it can be seen that the number of symbols is odd through the N_sym field. In the case of the second frame, since the FI_mode field value is 1 and the number of symbols is odd, the symbol offset generator may not operate according to the reset mode.
- the FI scheme to be used in the FSS can be set alternately between the FI schemes # 1 and # 2.
- the reset mode to be used in the FES can be set alternately on and off. In some embodiments, the setting may not change every frame.
- 34 is a diagram illustrating the operation of a frequency deinterleaver in signaling for single memory deinterleaving that is not affected by the number of symbols in a frame according to an embodiment of the present invention.
- the frequency deinterleaver may perform frequency deinterleaving using information of the FI_mode field and / or the N_sym field defined above. As described above, the frequency deinterleaver may operate using a single memory. Basically, frequency deinterleaving may be a process of performing an inverse process of the frequency interleaving process performed by the transmitter so that the original data may be restored.
- the frequency deinterleaving for the FSS may be operated based on the information about the FI scheme obtained by using the FI_mode field and the N_sym field of the preamble.
- Frequency deinterleaving for FES may be operated based on whether the reset mode is operated through the FI_mode field and the N_sym field.
- the frequency deinterleaver may perform a reverse process of the read / write operation of the frequency interleaver with respect to the pair of OFDM symbols input. In this process, one interleaving sequence may be used.
- the frequency interleaver follows a ping-pong structure using a double memory, but the frequency deinterleaver may perform deinterleaving with a single memory.
- This single memory frequency deinterleaving may be performed using information of the FI_mode field and the N_sym field. With this information, single memory frequency deinterleaving may be possible even for a frame having an odd number of OFDM symbols without being affected by the number of OFDM symbols.
- the frequency interleaver according to the present invention can perform frequency interleaving on all data cells of an OFDM symbol.
- the frequency interleaver may perform an operation of mapping data cells to an available data carrier of each symbol.
- the frequency interleaver according to the present invention may operate in different interleaving modes according to the FFT size. For example, if the FFT size is 32K, the frequency interleaver performs random write / linear read operation on the even symbol and linear write / random read operation on the odd symbol as in the FI scheme # 1 described above. can do. In addition, when the FFT size is 16K or 8K, the frequency interleaver may perform a linear read / random write operation on all symbols regardless of even / odd.
- the FFT size for determining the interleaving mode switching may be changed according to an embodiment. That is, in the case of 32K and 16K, the operation may be performed as in FI scheme # 1, and in the case of 8K, an even / odd independent operation may be performed. In addition, it may operate like FI scheme # 1 for all FFT sizes, and may perform an even / odd independent operation for all FFT sizes. In addition, according to an embodiment, the specific FFT size may operate as FI scheme # 2.
- Such frequency interleaving may be performed using the above-described interleaving sequence (interleaving address).
- the interleaving sequence may be variously generated using the offset value as described above.
- an address check may be performed to generate various interleaving sequences.
- 35 is a conceptual diagram illustrating a variable data-rate system according to another embodiment of the present invention.
- one transmission super frame shown in this figure is composed of NTI_NUM TI groups, and each TI group may include N BLOCK_TI FEC blocks.
- the number of FEC blocks included in each TI group may be different.
- the TI group according to an embodiment of the present invention may be defined as a block for performing time interleaving and may be used in the same meaning as the above-described TI block or IF.
- interleaving the TI groups using one twisted row-column block interleaving rule is performed. For example. This allows the receiver to perform deinterleaving using a single memory.
- VBR variable bit-rate
- Equation shown in the figure represents block interleaving applied to each TI group unit.
- the shift value may be calculated when the number of FEC blocks included in the TI group is odd and even. That is, in the block interleaving according to an embodiment of the present invention, the number of FEC blocks is made odd and the shift value can be calculated.
- the time interleaver may determine parameters related to interleaving based on a TI group having the largest number of FEC blocks in a super frame. This allows the receiver to perform deinterleaving using a single memory. In this case, virtual FEC blocks corresponding to the number of insufficient FEC blocks may be added to the TI group having fewer FEC blocks than the number of FEC blocks of the TI group including the most determined FEC blocks.
- Virtual FEC blocks according to an embodiment of the present invention may be inserted before actual FEC blocks. Subsequently, the time interleaver according to an embodiment of the present invention performs interleaving for TI groups using one twisted row-column block interleaving rule in consideration of virtual FEC blocks. Can be done. In addition, the time interleaver according to an embodiment of the present invention may perform the skip operation described above when a memory-index corresponding to virtual FEC blocks occurs in a reading operation. After writing, the number of FEC blocks of the input TI group and the number of FEC blocks of the output TI group match when reading.
- the left side of the figure shows a parameter and a number of virtual FEC blocks indicating the difference between the number of maximum FEC blocks and the number of actual FEC blocks included in the TI group and the number of maximum FEC blocks and the number of actual FEC blocks.
- the equation is shown.
- the right side of the figure shows an embodiment in which virtual FEC blocks are inserted into a TI group.
- virtual FEC blocks may be inserted before the actual FEC block.
- FIG. 39 illustrates equations for reading after virtual FEC blocks are inserted according to an embodiment of the present invention.
- the skip operation shown in the figure may play a role of skipping virtual FEC blocks in a reading operation.
- 40 is a flowchart illustrating a process of time interleaving according to an embodiment of the present invention.
- the time interleaver according to an embodiment of the present invention may set an initial value (S67000).
- the time interleaver may write actual FEC blocks in consideration of virtual FEC blocks (S67100).
- the time interleaver may generate a temporal TI address (S67200).
- the time interleaver according to an embodiment of the present invention may evaluate the availability of the generated TI reading address (S67300). Thereafter, the time interleaver according to the embodiment of the present invention may generate a final TI reading address (S67400).
- time interleaver may read actual FEC blocks (S67500).
- FIG. 41 is an equation illustrating a process of determining a shift value and a size of a maximum TI block according to an embodiment of the present invention.
- the figure shows an embodiment in which there are two TI groups, the number of cells in the TI group is 30, the number of FEC blocks included in the first TI group is 5, and the number of FEC blocks included in the second TI block is 6. Indicates.
- the number of maximum FEC blocks is 6, but is even, so that the number of adjusted maximum FEC blocks for obtaining the shift value can be 7, and the shift value can be calculated as four.
- 42 to 44 are diagrams illustrating the TI process of the above-described embodiment in the previous figure.
- This figure shows the writing operations for the two TI groups described in the previous figures.
- the block shown on the left side of the figure represents a TI memory address array, and the block shown on the right side of the figure shows two and one virtual FEC blocks, respectively, for two consecutive TI groups. Represents a writing operation when a dog is inserted. Since the number of adjusted maximum FEC blocks is 7 as described above, two virtual FEC blocks are inserted into the first TI group, and one virtual FEC block is inserted into the second TI group.
- the block shown on the left side of the figure represents a TI memory address array, and the block shown on the right side of the figure shows two and one virtual FEC blocks, respectively, for two consecutive TI groups.
- 44 is a view illustrating a result of a skip operation performed in a reading operation according to an embodiment of the present invention.
- virtual FEC blocks may be skipped in two TI groups.
- FIG. 45 shows time deinterleaving for the first TI group
- FIG. 46 shows time deinterleaving for the second TI group.
- 45 illustrates a writing process of time deinterleaving according to an embodiment of the present invention.
- the block shown on the left side of the figure represents a TI memory address array
- the block shown in the middle of the figure represents the first TI group input to the time deinterleaver
- the block shown on the right side of the figure represents the first consecutive A writing process performed taking into account virtual FEC blocks skipped for a TI group is shown.
- two virtual FEC blocks that are skipped in the TI process may be restored in the writing process for accurate reading operation.
- the location and amount of the two virtual FEC blocks that were skipped can be estimated through any algorithm.
- the block shown on the left side of the figure represents a TI memory address array
- the block shown in the middle of the figure represents the second TI group input to the time deinterleaver
- the block shown on the right side of the figure represents the second consecutive.
- a writing process performed taking into account virtual FEC blocks skipped for a TI group is shown.
- one virtual FEC blocks skipped in the TI process may be restored in the writing process for accurate reading operation.
- the location and amount of one virtual FEC blocks that were skipped can be estimated through any algorithm.
- FIG. 47 is a equation illustrating reading operation of time deinterleaving according to another embodiment of the present invention.
- the TDI shift value used in the receiver may be determined by the shift value used in the transmitter, and the skip operation plays a role of skipping virtual FEC blocks in a reading operation similar to the transmitter. Can be.
- 48 is a flowchart illustrating a process of time deinterleaving according to an embodiment of the present invention.
- the time deinterleaver according to an embodiment of the present invention may set an initial value (S75000).
- the time interleaver may write actual FEC blocks in consideration of virtual FEC blocks (S75100).
- the time interleaver may generate a temporal TDI address (S75200).
- the time interleaver according to an embodiment of the present invention may evaluate the availability of the generated TDI reading address (S75300). Thereafter, the time interleaver according to an embodiment of the present invention may generate a final TDI reading address (S75400).
- time interleaver may read actual FEC blocks (S75500).
- PLP physical layer pipe
- the PLP mode may include a single PLP mode or a multiple PLP mode according to the number of PLPs processed by the broadcast signal transmitter or the broadcast signal transmitter.
- the single PLP mode refers to a case where the number of PLPs processed by the broadcast signal transmission apparatus is one.
- the single PLP mode may be referred to as a single PLP.
- the multiple PLP mode is a case where the number of PLPs processed by the broadcast signal transmission apparatus is one or more, and the multiple PLP mode may be referred to as multiple PLPs.
- time interleaving using different time interleaving methods according to the PLP mode may be referred to as hybrid time interleaving.
- Hybrid time interleaving according to an embodiment of the present invention is applied to each PLP (or at a PLP level) in the multiple PLP mode.
- FIG. 49 is a table showing interleaving types applied according to the number of PLPs.
- an interleaving type may be determined based on the value of PLP_NUM.
- PLP_NUM is a signaling field indicating the PLP mode. If the value of PLP_NUM is 1, the PLP mode is a single PLP.
- a single PLP according to an embodiment of the present invention may apply only a convolutional interleaver (CI).
- the PLP mode is multiple PLPs.
- a convolutional interleaver (CI) and a block interleaver (BI) may be applied.
- the convolution interleaver may perform inter frame interleaving
- the block interleaver may perform intra frame interleaving. Details of inter frame interleaving and intra frame interleaving are the same as those described above.
- the hybrid time interleaver according to the first embodiment may include a block interleaver (BI) and a convolution interleaver (CI).
- the time interleaver of the present invention may be located between a BICM chain block and a frame builder.
- the BICM chain block illustrated in FIGS. 50 to 51 may include blocks excluding the time interleaver 5050 of the processing block 5000 of the BICM block illustrated in FIG. 5.
- the frame builders illustrated in FIGS. 50 to 51 may perform the same role as the block building block 1020 of FIG. 1.
- 51 is a block diagram including a second embodiment of the above-described hybrid time interleaver structure.
- each block included in the second embodiment of the hybrid time interleaver structure is the same as the content described with reference to FIG. 50.
- Whether to apply the block interleaver according to the second embodiment of the hybrid time interleaver structure may be determined according to the PLP_NUM value.
- Each block of the hybrid time interleaver according to the second embodiment may perform operations according to the embodiment of the present invention.
- 52 is a block diagram including the first embodiment of the structure of the hybrid time deinterleaver.
- the hybrid time deinterleaver according to the first embodiment may perform an operation corresponding to the reverse operation of the hybrid time interleaver according to the first embodiment described above. Accordingly, the hybrid time deinterleaver according to the first embodiment of FIG. 52 may include a convolutional deinterleaver (CDI) and a block deinterleaver (BDI).
- CDI convolutional deinterleaver
- BDI block deinterleaver
- the convolutional deinterleaver of the hybrid time deinterleaver may perform inter frame deinterleaving, and the block deinterleaver may perform intra frame deinterleaving. Details of inter frame deinterleaving and intra frame deinterleaving are the same as those described above.
- the BICM decoding block illustrated in FIGS. 52 to 53 may perform a reverse operation of the BICM chain block of FIGS. 50 to 51.
- 53 is a block diagram including the second embodiment of the structure of the hybrid time deinterleaver.
- the hybrid time deinterleaver according to the second embodiment may perform an operation corresponding to the reverse operation of the hybrid time interleaver according to the second embodiment. Operation of each block included in the second embodiment of the hybrid time deinterleaver structure may be the same as the content described with reference to FIG. 52.
- Whether the block deinterleaver according to the second embodiment of the hybrid time deinterleaver structure is applied may be determined according to a PLP_NUM value.
- Each block of the hybrid time deinterleaver according to the second embodiment may perform operations according to the embodiment of the present invention.
- FIG. 54 is a diagram illustrating the configuration of a main physical device and a companion physical device according to an embodiment of the present invention.
- An embodiment of the present invention may provide a service guide in a terrestrial broadcast or mobile broadcast environment.
- an embodiment of the present invention may provide a service guide for a service that may be possible in a next generation hybrid broadcasting environment based on the interworking of the terrestrial broadcasting network and the Internet network.
- An embodiment of the present invention may inform a user of various services that can be provided in a next generation hybrid broadcasting system and content and / or component elements configuring the same. Through this, the user may provide convenience in checking, selecting, and enjoying a corresponding service.
- An embodiment of the present invention may structure and refer to a service and various content and / or component elements configuring the same. Through this, the broadcast receiver can easily configure and provide a corresponding service and allow a user to easily grasp the corresponding service.
- An embodiment of the present invention extends a reference structure that associates a service with various content and / or component elements constituting the service, thereby allowing a broadcast receiver and / or user to select content and / or component elements constituting a service. You can save resources and / or time spent searching.
- This figure shows the overall configuration of the main physical device and the companion physical device according to an embodiment of the present invention.
- the main physical device L25010 is one of devices for an interactive service, and mainly indicates a device to be controlled by a companion physical device L25020. Can be.
- the main physical device may be referred to as a main device, a main receiving device, a main receiver, a main display, a main screen, and the like.
- the main physical device L25010 is a broadcast interface (L25030), a network interface (L25040), a memory unit (L25050), a control unit (L25060), a display unit (L25070), and a multimedia module (L25080). , storage (L25090), power supply (L25100), and / or user input interface (L25110).
- the broadcast interface L25030 may represent a physical device that enables message and / or data transmission between the broadcaster and the device such as an AV stream, service guide, and notification.
- the broadcast interface may receive broadcast signals, signaling information, data, and the like from the broadcaster.
- the network interface L25040 refers to a physical device that enables message, advertise, and / or data transfer such as command, request, action, response, etc. between devices (eg, main physical device and companion physical device). Can be.
- the network interface may receive a broadcast service, broadcast content, signaling information, applications, data, etc. from an internet service provider.
- the memory unit L25050 is an optional device implemented in various types of devices and may represent a volatile physical device capable of temporarily storing various types of data.
- the control unit L25060 is a device that controls the overall operation of the source device and / or sink device, and may be software or hardware.
- the source device may represent a device for transmitting a message and / or data
- the sink device may represent a device for receiving a message and / or data. Therefore, the main physical device and the companion physical device according to an embodiment of the present invention may correspond to a source device or a sink device.
- the display unit L25070 may display data received through a network interface or data stored in a storage on a screen. At this time, the display unit may be operated by the control of the control unit.
- the multimedia module L25080 may play various kinds of multimedia.
- the multimedia module may be included in the control unit and may exist separately from the control unit.
- the storage L25090 may represent a nonvolatile physical device capable of storing various kinds of data.
- an SD card may correspond to storage.
- the power supply L25100 may represent a device that supplies power required for the operation of other components by receiving external power and / or internal power by controlling the control unit.
- the user input interface L25110 may represent a device capable of receiving an input such as a command from the user.
- a companion physical device may be a device for controlling a main device as one of devices for an interactive service.
- the companion physical device can receive input directly from the user.
- the companion physical device may be called a companion device, a second device, an additional device, an auxiliary device, a companion receiving device, a companion receiver, a companion display, a second screen, or the like.
- the companion physical device L25020 may include a network interface, a memory unit, a control unit, a display unit, a multimedia module, a storage, a power supply, and / or a user input interface.
- components constituting the companion physical device may have the same function as the components constituting the main device described above. .
- An embodiment of the present invention can provide a multi-view service in a next generation hybrid broadcasting environment based on interworking terrestrial broadcasting network and Internet network. Furthermore, an embodiment of the present invention may provide a multi-view service using a plurality of video images in a terrestrial broadcasting and / or mobile broadcasting environment.
- One embodiment of the present invention may provide a service signaling method for configuring a multi-view in a next generation hybrid broadcasting system.
- An embodiment of the present invention may provide a method of defining App-based enhancement for configuring multi-view in a next generation hybrid broadcasting system.
- An embodiment of the present invention may provide a method of signaling top location information for configuring a multi-view in a next generation hybrid broadcasting system.
- An embodiment of the present invention may provide a method for configuring hidden-view in a next generation hybrid broadcasting system.
- An embodiment of the present invention can inform the user of the various services that can be provided in the next generation hybrid broadcasting system and its constituent elements, thereby providing convenience for the user to check, select, and / or enjoy the corresponding service. can do.
- One embodiment of the present invention can configure a multi-view through a combination of a video component and App-based enhancement.
- 55 is a diagram illustrating a protocol stack for supporting hybrid broadcast service according to an embodiment of the present invention.
- the physical layer may receive the terrestrial broadcast signal and convert it to an appropriate form.
- IP Encapsulation may obtain an IP datagram using information obtained from a physical layer.
- the obtained IP datagram may be converted into a specific frame (eg, RS Frame, GSE, etc.).
- MPEG-2 TS Encapsulation may acquire MPEG-2 TS using information obtained from a physical layer.
- the obtained MPEG-2 TS datagram may be converted into a specific frame (eg, RS Frame, GSE, etc.).
- a fast information channel may carry information (eg, mapping information between a service ID and a frame) for making a service and / or content accessible.
- Signaling may include signaling information to support effective acquisition of services and / or content.
- the signaling information may be expressed in binary and / or XML format and may be transmitted through a terrestrial broadcasting network and / or broadband.
- Real-time broadcast A / V (Audio / Video) content and data may be represented in an ISO Base Media File Format (ISOBMFF) and the like, and may be transmitted in real time through a terrestrial broadcasting network and / or broadband.
- Non-real-time content may be transmitted based on IP / UDP / FLUTE.
- the real-time broadcast A / V (Audio / Video) content, data, and / or signaling information may be transmitted in real time through an internet network using DASH.
- real-time broadcast A / V (Audio / Video) content, data, and / or signaling information may be transmitted by request, or may be transmitted by real-time streaming.
- various enhanced services such as an interactive service and a second screen service may be provided to a viewer by combining data transmitted through the above-described protocol stack.
- FIG. 56 is a diagram showing the configuration of a broadcast reception device according to one embodiment of the present invention.
- the broadcast reception device 100 includes a broadcast receiver 110, an Internet Protocol (IP) transceiver 130, and / or a controller 150.
- IP Internet Protocol
- the broadcast receiver 110 includes a channel synchronizer 111, a channel equalizer 113, and a channel decoder 115.
- the channel synchronizer 110 synchronizes the symbol frequency and timing to enable decoding in a baseband that can receive a broadcast signal.
- the channel equalizer 113 compensates for the distortion of the synchronized broadcast signal.
- the channel equalizer 113 compensates for the distortion of the synchronized broadcast signal due to the multipath and the Doppler effect.
- the channel decoder 115 decodes the broadcast signal whose distortion is compensated for.
- the channel decoder 115 extracts a transport frame from a broadcast signal whose distortion is compensated.
- the channel decoder 115 may perform forward error correction (FEC).
- FEC forward error correction
- the IP transceiver 130 receives and transmits data through the Internet.
- the control unit 150 includes a signaling decoder 151, a transport packet interface 153, a broadband packet interface 155, a baseband operation control unit 157, a common protocol stack 159, and a service map database 161.
- the signaling decoder 151 decodes signaling information of a broadcast signal.
- the transport packet interface 153 extracts a transport packet from a broadcast signal.
- the transport packet interface 153 may extract data such as signaling information or an IP datagram from the extracted transport packet.
- the broadband packet interface 155 extracts an IP packet from data received from the Internet.
- the broadband packet interface 155 may extract signaling data or IP datagram from the IP packet.
- the baseband operation control unit 157 controls an operation related to receiving broadcast information reception information from the baseband.
- the common protocol stack 159 extracts audio or video from the transport packet.
- a / V processor 547 processes the audio or video.
- the service signaling channel processing buffer and parser 163 parses and buffers signaling information signaling a broadcast service.
- the service signaling channel processing buffer and parser 163 may parse and buffer signaling information signaling a broadcast service from an IP datagram.
- the service map database 165 stores a broadcast service list including information on broadcast services.
- the service guide processor 167 processes terrestrial broadcast service guide data for guiding a program of a terrestrial broadcast service.
- the application processor 169 extracts and processes application related information from a broadcast signal.
- the service guide database 171 stores program information of a broadcast service.
- the general configuration and operation of the broadcast reception device 100 have been described above. However, this focuses on the operation and transmission protocol of the conventional broadcast reception device 100. However, in order to receive the hybrid broadcast service, the broadcast reception device 100 should be able to process data of various transmission protocols. A detailed configuration and operation of the broadcast reception device 100 for receiving a hybrid broadcast service will be described with reference to FIGS. 82 to 87.
- 57 is a diagram illustrating a configuration of a broadcast signal receiving apparatus according to another embodiment of the present invention.
- a broadcast signal receiving apparatus includes a physical layer controller (L57010), a tuner (L57020), a physical frame parser (L57030), a link layer frame parser (L57040), an IP / UDP datagram filter (L57050), and an ATSC.
- L57060 DTV Control Engine
- L57070 ALC / LCT + Client
- L57080 Timing Control
- L57090 Signaling Parser
- L57100 DASH Client
- ISO BMFF Parser L57110
- Media Decoder L57120
- HTTP Access Client L57130
- HTTP Server L57140
- the physical layer controller may control operations of a tuner, a physical frame parser, etc. using RF information of a broadcast channel to be received.
- the tuner can receive and process broadcast-related signals through terrestrial broadcast channels and convert them into appropriate forms (such as physical frames).
- the physical frame parser may acquire the link layer frame through parsing the received physical frame and processing related thereto.
- the link layer frame parser may acquire link layer signaling from a link layer frame or perform an operation for acquiring an IP / UDP datagram.
- the IP / UDP Datagram Filter may filter a specific IP / UDP datagram from the received IP / UDP datagrams. That is, ALC / LCT + packets can be obtained.
- the ATSC 3.0 DTV Control Engine may serve as an interface between modules constituting the broadcast signal receiving apparatus according to an embodiment of the present invention, and may control the operation of each module by transferring parameters to each module.
- the ALC / LCT + Client can generate one or more ISO Base Media File Format objects by processing ALC / LCT + packets and collecting and processing several ALC / LCT + packets.
- Timing Control can process packets containing system time information and control the system clock accordingly.
- Signaling Parser may acquire and parse signaling information related to DTV broadcasting service, and generate and manage a channel map based on this.
- the DASH Client can perform calculations related to real-time streaming or adaptive streaming, and can process the obtained DASH Segment.
- the ISO BMFF Parser can extract audio / video data from an ISO Base Media File Format object.
- Media Decoder can decode and play received audio and video data.
- the HTTP Access Client may request specific information from an HTTP server and process a response to the request.
- the HTTP Server can process requests from HTTP clients (HTTP Access Clients) and provide responses to them.
- 58 is a diagram showing the configuration of a broadcast reception device according to another embodiment of the present invention.
- the broadcast reception device 100 includes a broadcast receiver 110, an Internet Protocol (IP) transceiver 130, and a controller 150.
- IP Internet Protocol
- the broadcast receiver 110 performs one or more processors to perform each of a plurality of functions performed by the broadcast receiver 110. It may include one or more circuits and one or more hardware modules.
- the broadcast receiving unit 110 may be a system on chip (SOC) in which various semiconductor components are integrated into one.
- the SOC may be a semiconductor in which various multimedia components such as graphics, audio, video, and modem, and a semiconductor such as a processor and a DRAM are integrated into one.
- the broadcast receiving unit 110 may include a physical layer module 119 and a physical layer IP frame module 117.
- the physical layer module 119 receives and processes a broadcast related signal through a broadcast channel of a broadcast network.
- the physical layer IP frame module 117 converts a data packet such as an IP datagram obtained from the physical layer module 119 into a specific frame.
- the physical layer module 119 may convert the IP datagram into RS Fraem or GSE.
- IP transceiver 130 is one or a plurality of processors to perform each of a plurality of functions performed by the IP transceiver 130. It may include one or more circuits and one or more hardware modules.
- the IP transceiver 130 may be a System On Chip (SOC) in which various semiconductor components are integrated into one.
- SOC System On Chip
- the SOC may be a semiconductor in which various multimedia components such as graphics, audio, video, and modem, and a semiconductor such as a processor and a DRAM are integrated into one.
- the IP transceiver 130 may include an internet access control module 131.
- the internet access control module 131 controls an operation of the broadcast reception device 100 for acquiring at least one of service, content, and signaling data through a broadband.
- the controller 150 is one or a plurality of processors to perform each of a plurality of functions that the controller 150 performs. It may include one or more circuits and one or more hardware modules.
- the controller 150 may be a system on chip (SOC) in which various semiconductor components are integrated into one.
- the SOC may be a semiconductor in which various multimedia components such as graphics, audio, video, and modem, and a semiconductor such as a processor and a DRAM are integrated into one.
- the controller 150 may include the signaling decoder 151, the service map database 161, the service signaling channel parser 163, the application signaling parser 166, the alert signaling parser 168, the targeting signaling parser 170, and the targeting.
- the service / content acquisition controller 187 controls an operation of a receiver for acquiring signaling data related to a service, content, service, or content acquired through a broadcasting network or a communication network.
- the signaling decoder 151 decodes the signaling information.
- the service signaling parser 163 parses the service signaling information.
- the application signaling parser 166 extracts and parses signaling information related to the service.
- the signaling information related to the service may be signaling information related to the service scan.
- the signaling information related to the service may be signaling information related to content provided through the service.
- Alert signaling parser 168 extracts and parses alerting related signaling information.
- the targeting signaling parser 170 extracts and parses information for signaling a targeting information or information for personalizing a service or content.
- the targeting processor 173 processes the information for personalizing the service or the content.
- the alerting processor 162 processes the signaling information related to alerting.
- the application processor 169 controls the application related information and the execution of the application. Specifically, the application processor 169 processes the status and display parameters of the downloaded application.
- the A / V processor 161 processes an audio / video rendering related operation based on decoded audio or video, application data, and the like.
- the scheduled streaming decoder 181 decodes the scheduled streaming, which is the content that is streamed on a schedule determined by a content provider such as a broadcaster in advance.
- the file decoder 182 decodes the downloaded file. In particular, the file decoder 182 decodes the file downloaded through the communication network.
- the user request streaming decoder 183 decodes on demand content provided by the user request.
- File database 184 stores the file.
- the file database 184 may store a file downloaded through a communication network.
- the component synchronizer 185 synchronizes content or services.
- the component synchronizer 185 synchronizes content decoded by at least one of the scheduled streaming decoder 181, the file decoder 182, and the user request streaming decoder 183.
- the service / content acquisition control unit 187 controls an operation of a receiver for obtaining at least one of service, content, service, or signaling information related to the content.
- the redistribution module 189 When the redistribution module 189 fails to receive a service or content through a broadcasting network, the redistribution module 189 performs an operation for supporting at least one of service, content, service-related information, and content-related information.
- an external management device 300 may request at least one of a service, content, service-related information, and content-related information.
- the external management device 300 may be a content server 50.
- the device manager 193 manages interoperable external devices.
- the device manager 193 may perform at least one of adding, deleting, and updating an external device.
- the external device may be able to connect and exchange data with the broadcast receiving device 100.
- the data sharing unit 191 performs a data transmission operation between the broadcast receiving device 100 and an external device and processes exchange related information.
- the data sharing unit 191 may transmit A / V data or signaling information to an external device.
- the data sharing unit 191 may receive A / V data or signaling information from an external device.
- 59 is a diagram showing the configuration of service_map_table according to an embodiment of the present invention.
- the service map table according to an embodiment of the present invention may be divided into one or more sections and transmitted.
- the service map table according to an embodiment of the present invention is a table_id field, num_services field, service_id field, service_type field, short_service_name_length field, short_service_name field, channel_number field, num_components field, component_id field, essential_component_indicator field, num_component_level_descriptors field, component_level_descriptors () Field and / or service_level_descriptor ().
- the table_id field represents an ID indicating that this table is a service map table (SMT).
- the num_services field represents the number of services transmitted by the SMT.
- the service_id field represents a unique identifier of a service. According to an embodiment of the present invention, this field may identify a next generation broadcast service such as ATSC 3.0.
- the service_type field may indicate the type of a corresponding service.
- the type of service indicated by this field may include Basic TV, Basic Radio, RI service, Service Guide, Emergency Alerting, and the like.
- the Basic TV may include a Linear A / V service
- the Basic Radio may include a Linear audio only service
- the RI service may include an App-based service.
- the short_service_name_length field represents the length of a corresponding service name.
- the short_service_name field represents a name of a corresponding service.
- the channel_number field may indicate a corresponding frequency at which the corresponding service is actually transmitted. This field may include a major channel number and / or a minor channel number.
- the num_components field represents the number of components included in the corresponding service.
- the component_id field may identify a corresponding component.
- the essential_component_indicator field represents whether a corresponding component is essential.
- the num_component_level_descriptors field represents the number of component level descriptors.
- component_level_descriptor () may indicate a descriptor including the content of the corresponding component.
- the num_service_level_descriptors field represents the number of service level descriptors.
- service_level_descriptor may indicate a descriptor including the content of the corresponding service.
- the multi view descriptor to be described later may be included in the service_level_descriptor of the SMT.
- 60 is a diagram illustrating a configuration of a Multi_view_descriptor and a description of a coordinate_system field according to an embodiment of the present invention.
- the multi-view descriptor according to an embodiment of the present invention may correspond to a service level descriptor. If a multi-view descriptor exists in the SMT according to an embodiment of the present invention, it may represent that multi-view configuration is possible in a corresponding service.
- an emergency alert message may correspond to a service and / or a component according to an embodiment of the present invention.
- the multi-view descritor may signal information about the emergency alarm message.
- a position_flag field, a coordinate_system field, an icon_horizontal_origin field, an icon_vertical_origin field, a left field, a top field, and / or a view_location field to be described later may indicate information on a screen display position of an emergency alarm message.
- the information about the display position on the screen of the emergency alarm message described above may indicate the display position on the screen of the emergency alert message banner.
- One embodiment of the present invention may provide a location of a burned in emergency alarm message veneer by signaling information about a display position on the screen of the emergency alarm message vener described above, whereby the corresponding location provided is an emergency. It can provide information that an alarm message should not be obscured for it to be displayed.
- the multi view descriptor L60010 includes a descriptor_tag field, a descriptor_length field, a num_of_views field, a view_type field, a view_role field, a component_id_length field, a component_id field, an app_id field, an app_url_length field, an app_url field, a view_toggle_flag field, and a position_flag field. It may include a coordinate_system field, an icon_horizontal_origin field and / or an icon_vertical_origin field.
- the descriptor_tag field may identify this descriptor.
- the descriptor_length field represents the length of this descriptor.
- the num_of_views field represents the number of views included in the service.
- the view_type field may indicate the type of the corresponding view. This field value 0x00 indicates not specified, 0x01 indicates a video component, 0x02 indicates app-based enhancement, and 0x03-0x0F may indicate reserved.
- the view_role field may identify a role of the corresponding view. This field may have an unsigned integer value of 4 bits. This field value 0x00 may indicate not specified, 0x01 may indicate a main view, and 0x02-0x0F may indicate reserved for future use.
- the component_id_length field may indicate the length of the component_id field.
- the component_id field may indicate an identifier of a corresponding component.
- this field may be configured by combining MPD @ id, Period @ id, AdaptationSet @ id, Representation @ id, etc. of MPEG DASH.
- the app_id field may indicate an identifier of the corresponding application. According to an embodiment of the present invention, it may have the same value as @appID of the Triggered Declarative Object (TDO) transmitted in the TDO parameters table (TPT).
- TDO Triggered Declarative Object
- the app_url_length field represents the length of the app_url string.
- the app_url field may indicate URL information for executing an application.
- the view_toggle_flag field indicates whether a corresponding view can be toggled in a multi-view. This field value of 1 may indicate that toggle is possible according to the user's selection. Furthermore, it can have a true value when View_role of the view is not main.
- the position_flag field represents whether position information of a corresponding view is included in this descriptor. If this field value is '1', this descriptor may include location information of the corresponding view.
- the coordinate_system field L60020 may indicate a coordinate system on which the icon position is based. This field value 0x00 indicates that the coordinate system is 720x576, 0x01 indicates that the coordinate system is 1280x720, 0x02 is 1920x1080, 0x03 is 3840x2160, 0x04 is 7680x7320, and 0x05-0x07 is reserved.
- the icon_horizontal_origin field may indicate a horizontal pixel position used as an icon origin on the screen. If this field value is zero, the leftmost column of icon pixels may be located in the leftmost pixel column of the display. (The horizontal pixel position on the screen to be used as icon origin (top-left) .When this field is set to zero the left most column of pixels of the icon canbe positioned in the left most pixel column of the display.)
- the icon_vertical_origin field may indicate a vertical pixel position used as an icon origin on the screen. If this field value is zero, the top row of icon pixels may be located in the top pixel row of the display. (The vertical pixel position on the screen to be used as icon origin (top-left) .When this field is set to zero the upper most row of pixels of the icon can be positioned in the upper most pixel row of the display.)
- 61 is a diagram illustrating an operation of a broadcast signal receiving apparatus according to an embodiment of the present invention.
- a receiving device may receive service signaling.
- the service signaling may include a service map table that describes signaling information about a broadcast service.
- the receiving device may determine whether a multi-view descriptor exists in service signaling. In this case, if the multi-view descriptor does not exist, the receiving device may receive component information of a corresponding service and play a video component screen. That is, it may not support multi-view. On the other hand, if a multi-view descriptor exists, the receiving device can inform the user that the corresponding service is a multi-view capable service and can prepare a multi-view service according to the view type of the corresponding view. The receiving device may check the view type field in the multi-view descriptor.
- the receiving device may receive the transmission information of the component in component location signaling and play the video component screen.
- the receiving device may receive app transmission information at the App signaling location and receive TPT and / or TDO to obtain capability information of the corresponding app.
- the receiving device may check whether the corresponding view is toggleable by checking the view_toggle_flag field in the multi-view descriptor. (SL61040)
- the receiving device may render the corresponding view as a multi-view on the screen in consideration of the roll and position of the view.
- the receiving device may render the view of the main role on the screen and activate the toggle function to render the multi-view on the screen once the user selects the multi-view service.
- FIG. 62 is a diagram illustrating a screen state of a receiving apparatus when the Multi_view_descriptor is included in the SMT and transmitted according to an embodiment of the present invention.
- Multi_view_descriptor L62010 may describe information about two views. (the number of views represented by the num_of_views field is two)
- view_type 0x02
- view_toggle_flag 1
- view_toggle_flag 1
- coordinate system 1920x1080
- the receiving device may display a notification icon indicating that a primary video component called ABC and a multi-view service are available on the screen. (L62020)
- the receiving device may additionally display an App-based enhancement component called 123 on the screen.
- FIG. 63 is a diagram illustrating a screen state of a receiving device when Multi_view_descriptor is included in an SMT and transmitted according to another embodiment of the present invention.
- Multi_view_descriptor L63010 may describe information about two views. (the number of views represented by the num_of_views field is two)
- the receiving device may display a primary video component called ABC and an App-based enhancement component called 123 on the screen. (L63020)
- 64 is a diagram illustrating a configuration of program signaling information according to an embodiment of the present invention.
- An embodiment of the present invention may configure a multi-view service by adding a role attribute to an App-based enhancement indicating program information.
- Program signaling information may include attribute information and / or relationship information. Attributes information may include ProgramIdentifier, StartTime, ProgramDuration, TextualTitle, TextualDescription, Genre, GraphicalIcon, Content advisoryRating, Targeting / personalization properties and / or Content / Service protection properties.
- Relationships information includes "ProgramOf” relationship with Linear Service class, “ContentItemOf” relationship with App-Based Service class, “OnDemandComponentOf” relationship with App Based Service Class, "Contains” relationship with Presentable Video Component class, “Contains” relationship with Presentable Audio Component class, “Contains” relationship with Presentable CC Component class, "Contains” relationship with App-Based Enhancement class, "Contains” relationship with Time Base class, “Based-on” relationship with Show class and / or "Contains” relationship with May contain a Segment class.
- the "Contains" relationship with Presentable Video Component class may have a Role of video component as an attribute, and the Role of video component may be Primary video, Alternative camera view, Other alternative video component, Sign language (eg, ASL) inset and / or follow Can have a subject video value.
- the "Contains" relationship with Segment class may have a RelativeSegmentStartTime attribute indicating the start time of the segment associated with the start of the program.
- a "Contains" relationship with App-Based Enhancement class is an attribute and / or sub-element that is presentable of app-based enhancement component, toggle of app-based enhancement component, and / or Role of app-based enhancement. It may include a component. If the Presentable of app-based enhancement component value is True, the app-based enhancement may indicate that it is presentable on the screen. On the other hand, if False, the app-based enhancement may be invisible. If the Toggle of App-based Enhancement component value is True, this App-based enhancement may indicate that the App-based Enhancement can be shown in a Toggle mode but not visible.
- the App-based enhancement may not be operated in the Toggle method and may be displayed on the screen. If the role of app-based enhancement component is the primary app, the app-based enhancement may have a main role in the multi-view and this value may be the default value. If the app is a real-time independent app, the app is updated in real time, and the update content of the app can be managed independently of the app itself. If it is another alternative app, it may indicate that the app can be used as another role for further expansion.
- 65 is a diagram illustrating an operation of a broadcast signal receiving apparatus according to another embodiment of the present invention.
- a receiving device may receive program signaling information.
- the program signaling information may include the program signaling information described above in the previous drawing.
- the receiving device can check the Presentable Video Component Role in the program signaling information. If the Presentable Video Component Role is Alternative, the receiving device may receive video component information and configure a multi-view to render a video component. When the Presentable Video Component Role is Primary, the receiving device may receive video component information and render the corresponding video component on the main screen. The receiving device may check whether the App-based enhancement is present by checking the Presentable of app-based enhancement component in the program signaling information.
- the receiving device may receive App transmission information at the App signaling location and receive TPT and / or TDO to acquire capability information of the corresponding app.
- the receiving device may check whether the corresponding app is toggleable by checking the Toggle of app-based enhancement component in the program signaling information.
- the receiving device may render the view (app) as a multi-view on the screen in consideration of the role of the view (app).
- the receiving device may render the view of the main role on the screen and activate the toggle function to render the multi-view on the screen once the user selects the multi-view service.
- FIG. 66 is a diagram illustrating a screen state of a receiving device when app-based enhancement related information is included in program signaling information and transmitted according to an embodiment of the present invention.
- Program signaling information L66010 may describe information about a program called 123.
- the receiving device may inform only that multi-view is possible when the program is first started.
- the receiving device may display a primary video component (main role) constituting a program 123 and a notification icon indicating that multi-view service is available on the screen. (L66020)
- the receiving device may additionally display the first app-based enhancement on the screen.
- the first app-based enhancement may correspond to a payment application
- the second app-based enhancement may correspond to a security application. Therefore, according to an embodiment of the present invention, although not presentable while the payment application is executed, the security application may be simultaneously executed in the background in real-time.
- 67 is a diagram illustrating the configuration of a Multi_view_descriptor according to another embodiment of the present invention.
- Multi_view_descriptor (L27010) is an embodiment in which a method of indicating location information of a view is added to the above-described embodiment. Through this, an embodiment of the present invention can configure a multi-view at a designated position of the screen.
- the multi-view descriptor according to an embodiment of the present invention may correspond to a service level descriptor. If a multi-view descriptor exists in the SMT according to an embodiment of the present invention, it may represent that multi-view configuration is possible in a corresponding service.
- the multi view descriptor L67010 includes a descriptor_tag field, a descriptor_length field, a num_of_views field, a view_type field, a view_role field, a component_id_length field, a component_id field, an app_id field, an app_url_length field, an app_url field, a view_toggle_flag field, and a position_flag field. It may include a coordinate_system field, an icon_horizontal_origin field, an icon_vertical_origin field, a left field and / or a top field.
- the position_flag field represents whether position information of a corresponding view is included in this descriptor. Furthermore, this field may indicate a method of indicating location information of the corresponding view. If the value of this field is '0x01', this descriptor may include absolute location information of the corresponding view. If the value of this field is '0x02', this descriptor may include position information indicating the starting point position of the upper left of the view as a percentage of the entire screen.
- the left field may indicate at what percentage position the left end of the view is from the left end of the entire screen.
- the top field can indicate what percentage of the top edge of the view is from the top edge of the entire screen.
- FIG. 68 is a diagram illustrating a screen state of a receiving apparatus when Multi_view_descriptor is included in an SMT and transmitted according to another embodiment of the present invention.
- Multi_view_descriptor L68010 may describe information about two views. (the number of views represented by the num_of_views field is two)
- the receiving device may display a notification icon indicating that a primary video component called ABC and a multi-view service are available on the screen. (L68020)
- the receiving device When the receiving device according to an embodiment of the present invention activates the multi-view service function by selecting a notification icon indicating that the multi-view service is available, the receiving device activates an App-based enhancement component called 123 on the left side of the screen of the main device. Additional display can be made at positions 70% from the end and 0% from the top end. (L68030)
- 69 is a diagram showing the configuration of a Multi_view_descriptor according to another embodiment of the present invention.
- multi-view may be displayed on a screen when temporal information is added to the Multi_view_descriptor according to the above-described embodiment of the present invention at a time specified independently of the user's selection.
- the multi-view descriptor according to an embodiment of the present invention may correspond to a service level descriptor. If a multi-view descriptor exists in the SMT according to an embodiment of the present invention, it may represent that multi-view configuration is possible in a corresponding service.
- the multi view descriptor L69010 includes a descriptor_tag field, a descriptor_length field, a num_of_views field, a view_type field, a view_role field, a component_id_length field, a component_id field, an app_id field, an app_url_length field, an app_url field, a begin field, and / or It may include an end field. Furthermore, the multi view descriptor L69010 according to an embodiment of the present invention may further include information related to the position of the view.
- the begin field may indicate the time when the view starts to be displayed on the multi-view. If the view_role is not main, this field can have a value. If the view is a main view, this field can have a value of 0x00.
- the end field may indicate the time when the view disappears from the screen in the multi-view. If the view_role is not main, this field can have a value. If the view is a main view, this field can have a value of 0x00.
- 70 is a diagram illustrating a screen state of a receiving apparatus when Multi_view_descriptor is included in an SMT and transmitted according to another embodiment of the present invention.
- Multi_view_descriptor L70010 may describe information about two views. (the number of views represented by the num_of_views field is two)
- a receiving apparatus displays only a primary video component (main role) called ABC from a start time of service to '12345' time (L70020) and then displays a primary video called ABC from '12345' time to '67890' time.
- a component (main role) and an App-based enhancement component called 123 may be displayed at the same time (L70030). From '67890' time, only a primary video component (main role) called ABC may be displayed again. (L70040)
- 71 is a diagram showing the configuration of a Multi_view_descriptor according to another embodiment of the present invention.
- Multi_view_descriptor L71010 is an embodiment in which hidden-view related information is added to the above-described embodiment. Through this, an embodiment of the present invention may provide a hidden-view related service.
- the multi-view descriptor according to an embodiment of the present invention may correspond to a service level descriptor. If a multi-view descriptor exists in the SMT according to an embodiment of the present invention, it may represent that multi-view configuration is possible in a corresponding service.
- the multi view descriptor L71010 includes a descriptor_tag field, descriptor_length field, num_of_views field, view_type field, view_role field, view_index field, view_hidden_flag field, position_flag field, coordinate_system field, icon_horizontal_origin field, icon_vertical_origin field, left field , top field, view_location field, relative_view_index field, view_scale field, and / or max_viewing_time field.
- the view_index field may indicate the index of each sub view when the view_role is not the main view.
- the view_hidden_flag field may indicate whether the corresponding view is hidden in the multi-view. If this field value is 1, an embodiment of the present invention may show a corresponding view on the screen according to a user's selection. This field may have a true value when the view_role of the view is not main.
- the position_flag field represents whether position information of a corresponding view is included in this descriptor. Furthermore, this field may indicate a method of indicating location information of the corresponding view. In addition, this field may be used to indicate location information of a hidden view. If the value of this field is '0x01', this descriptor may include absolute location information of the corresponding view. If the value of this field is '0x02', this descriptor may include position information indicating the starting point position of the upper left of the view as a percentage of the entire screen. If this field value is '0x03', this descriptor may include related information such as the position and size of the hidden view.
- the view_location field may indicate location information of the corresponding view when the corresponding view is hidden. If this field value is 0x00, it is not specified, if 0x01 is top, if 0x02 is right, if 0x03 is bottom, and if 0x04, this view may be located on left.
- the relative_view_index field may indicate the index of the view that is the reference of the location of the view when the corresponding view is hidden.
- the view_scale field may indicate information about the size of the corresponding view when the corresponding view is hidden. This field may indicate a value that is proportional to the size of the relative view, which is the view that is the basis of the view. For example, if this field represents a value of 100%, this may indicate that the view is the same size as the relative view.
- the max_viewing_time field may indicate the maximum time from when a hidden view is displayed on the screen to disappearing from the screen when there is no user input. That is, it can represent the maximum time from the hidden view to the main view again.
- FIG. 72 is a diagram illustrating a screen state of a reception device when Multi_view_descriptor is included in an SMT and transmitted according to another embodiment of the present invention.
- Multi_view_descriptor L72010 may describe information about two views. (the number of views represented by the num_of_views field is two)
- component_id ABC).
- the receiving device may display a notification icon (that is, an icon indicating that there is a hidden view) indicating that a primary video component called ABC and a multi-view service are available.
- a notification icon that is, an icon indicating that there is a hidden view
- an App-123 called 123
- An additional enhancement component can be displayed on the right side of the screen, 30% of the size of the main view. At this time, the left portion of the main view as large as the hidden view may not be displayed on the screen, and in one embodiment of the present invention, if there is no input of the user for a time indicated by max_viewing_time information, the original main You can return to the view screen.
- 73 is a view showing a broadcast signal transmission method according to an embodiment of the present invention.
- the broadcast signal transmission method includes the steps of encoding signaling information including information on a broadcast service and at least one view constituting the broadcast service (SL73010), the encoded broadcast service and Generating a broadcast signal including signaling information (SL73020) and / or transmitting the generated broadcast signal (SL73030).
- the signaling information may indicate multi_view_descriptor. Detailed description thereof has been given above with reference to FIG. 60.
- the signaling information includes information indicating the number of views constituting the service, information indicating the type of the view, information indicating the role of the view, and the corresponding view toggle ( toggle information), location information on the screen of the view, time information when the view starts to be displayed on the screen and / or time information when the view disappears on the screen.
- the information indicating the number of views constituting the service is num_of_views
- the information indicating the type of the view is view_type
- the information indicating the role of the view is view_role
- whether the view can be toggled is indicating the number of views constituting the service, information indicating the type of the view, information indicating the role of the view.
- the indicating information may indicate view_toggle_flag
- the position information on the screen of the view may indicate information related to position_flag
- the time information at which the view starts to be displayed on the screen the begin field
- the time information when the view disappears on the screen may indicate the end field.
- the location information may include coordinate system information used to indicate the location of the corresponding view and / or coordinate information where the corresponding view on the screen is located.
- the coordinate system information may indicate coordinate_system
- the coordinate information may indicate icon_horizontal_orgin and / or icon_vertical_origin. Detailed description thereof has been given above with reference to FIG. 60.
- the location information may include information indicating a ratio of a point where the corresponding view is located based on the entire size of the screen.
- the information representing the ratio of the position where the corresponding view is located based on the entire size of the screen may indicate the left and / or top fields when the position_flag is 0x02. Detailed description thereof has been given above with reference to FIG. 67.
- the signaling information includes information indicating whether a corresponding view is a hidden view or not, and the signaling information is displayed on the screen when the corresponding view is a hidden view. It may include location information, size information of the corresponding view, information about a view which is a reference for determining the location and size of the corresponding view, and / or time information from when the corresponding view is displayed to disappear.
- the information indicating whether or not the corresponding view is a hidden view is view_hidden_flag
- the location information to be displayed on the screen is view_location
- the view size information is view_scale
- the location and size of the view are determined based on
- the information about the view may be relative_view_index
- the time information from when the view is displayed on the screen to disappear may indicate max_viewing_time. Detailed description thereof has been given above with reference to FIG. 71.
- the broadcast signal includes program signaling information including information about a broadcast program, and the program signaling information includes an app-based enhancement component related to the broadcast program. comoponent), wherein the information about the app-based enhancement component includes information indicating whether the app-based enhancement component is a component displayed on a screen and indicating whether the app-based enhancement component can be toggled. Information and / or information representing a role of the app-based enhancement component.
- the program signaling information may indicate signaling information of a program level
- information on an app-based enhancement component related to the broadcast program may include a "Contains" relationship with App-Based Enhancement class
- information indicating whether the app-based enhancement component can be toggled is Toggle of app-based enhancement component
- the app The information indicating the role of the base enhancement component may indicate a role of app-based enhancement component. Detailed description thereof has been given above with reference to FIG. 64.
- an emergency alert message may correspond to a service and / or a component according to an embodiment of the present invention.
- the multi-view descritor may signal information about the emergency alarm message.
- the above-described position_flag field, coordinate_system field, icon_horizontal_origin field, icon_vertical_origin field, left field, top field and / or view_location field may indicate information on the screen display position of the emergency alarm message.
- the information about the display position on the screen of the emergency alarm message described above may indicate the display position on the screen of the emergency alert message banner.
- One embodiment of the present invention may provide a location of a burned in emergency alarm message veneer by signaling information about a display position on the screen of the emergency alarm message vener described above, whereby the corresponding location provided is an emergency. It can provide information that an alarm message should not be obscured for it to be displayed.
- 74 is a view showing a broadcast signal receiving method according to an embodiment of the present invention.
- the method includes receiving a broadcast signal including a broadcast service and signaling information including information about one or more views constituting the broadcast service (SL74010). Parsing the broadcast service and signaling information from the received broadcast signal (SL74020) and / or decoding the parsed broadcast service and signaling information (SL74030).
- the signaling information may indicate multi_view_descriptor. Detailed description thereof has been given above with reference to FIG. 60.
- the receiving may be performed by the above-described broadcast interface, network interface, channel synchronizer, IP communication unit, transport packet interface, broadband packet interface, tuner, and / or HTTP access client.
- the parsing may include the above-described Control Unit, Signaling Decoder, Service Signaling Channel Processing Buffer and Parser, A / V Processor, Signaling Parser, Physicla Frame Parser, Link Layer Frams processor, IP / UDP Diagam Filter, ALC / CLT + Client, DASH Client, ISO BMFF Parser and / or ATSC3.0 DTV Control Engine.
- the decoding may be performed by the above-described Media Decoder, A / V Processor, Service Signaling Channel Processing Buffer and Parser, Service Guide Processor and / or Application Processor.
- the signaling information includes information indicating the number of views constituting the service, information indicating the type of the view, information indicating the role of the view, and the corresponding view toggle ( toggle information), location information on the screen of the view, time information when the view starts to be displayed on the screen and / or time information when the view disappears on the screen.
- the information indicating the number of views constituting the service is num_of_views
- the information indicating the type of the view is view_type
- the information indicating the role of the view is view_role
- whether the view can be toggled is indicating the number of views constituting the service, information indicating the type of the view, information indicating the role of the view.
- the indicating information may indicate view_toggle_flag
- the position information on the screen of the view may indicate information related to position_flag
- the time information at which the view starts to be displayed on the screen the begin field
- the time information when the view disappears on the screen may indicate the end field.
- the location information may include coordinate system information used to indicate the location of the corresponding view and / or coordinate information where the corresponding view on the screen is located.
- the coordinate system information may indicate coordinate_system
- the coordinate information may indicate icon_horizontal_orgin and / or icon_vertical_origin. Detailed description thereof has been given above with reference to FIG. 60.
- the location information may include information indicating a ratio of a point where the corresponding view is located based on the entire size of the screen.
- the information representing the ratio of the position where the corresponding view is located based on the entire size of the screen may indicate the left and / or top fields when the position_flag is 0x02. Detailed description thereof has been given above with reference to FIG. 67.
- the signaling information includes information indicating whether a corresponding view is a hidden view or not, and the signaling information is displayed on the screen when the corresponding view is a hidden view. It may include location information, size information of the corresponding view, information about a view which is a reference for determining the location and size of the corresponding view, and / or time information from when the corresponding view is displayed to disappear.
- the information indicating whether or not the corresponding view is a hidden view is view_hidden_flag
- the location information to be displayed on the screen is view_location
- the view size information is view_scale
- the location and size of the view are determined based on
- the information about the view may be relative_view_index
- the time information from when the view is displayed on the screen to disappear may indicate max_viewing_time. Detailed description thereof has been given above with reference to FIG. 71.
- the broadcast signal includes program signaling information including information about a broadcast program, and the program signaling information includes an app-based enhancement component related to the broadcast program. comoponent), wherein the information about the app-based enhancement component includes information indicating whether the app-based enhancement component is a component displayed on a screen and indicating whether the app-based enhancement component can be toggled. Information and / or information representing a role of the app-based enhancement component.
- the program signaling information may indicate signaling information of a program level
- information on an app-based enhancement component related to the broadcast program may include a "Contains" relationship with App-Based Enhancement class
- information indicating whether the app-based enhancement component can be toggled is Toggle of app-based enhancement component
- the app The information indicating the role of the base enhancement component may indicate a role of app-based enhancement component. Detailed description thereof has been given above with reference to FIG. 64.
- 75 is a diagram illustrating a configuration of a broadcast signal transmission apparatus according to an embodiment of the present invention.
- the broadcast signal transmission apparatus L75010 may include an encoder L75020, a broadcast signal generator L75030, and / or a transmitter L75040.
- the encoder may encode signaling information including information about a broadcast service and one or more views constituting the broadcast service.
- the broadcast signal generator may generate a broadcast signal including the encoded broadcast service and signaling information.
- the transmitter may transmit the generated broadcast signal.
- the above-described components may perform each step of the above-described broadcast signal transmission method.
- the signaling information includes information indicating the number of views constituting the service, information indicating the type of the view, information indicating the role of the view, and the corresponding view toggle ( toggle information), location information on the screen of the view, time information when the view starts to be displayed on the screen and / or time information when the view disappears on the screen.
- 76 is a diagram showing the configuration of a broadcast signal receiving apparatus according to an embodiment of the present invention.
- the broadcast signal receiving apparatus L76010 may include a receiver L76020, a parser L76030, and / or a decoder L76040.
- the receiver may receive a broadcast signal including a broadcast service and signaling information including information about one or more views constituting the broadcast service.
- the parser may parse the broadcast service and signaling information from the received broadcast signal.
- the decoder may decode the parsed broadcast service and signaling information.
- the receiver may include the aforementioned broadcast interface, network interface, channel synchronizer, IP communication unit, transport packet interface, broadband packet interface, tuner, and / or HTTP access client.
- the parser includes the above-described Control Unit, Signaling Decoder, Service Signaling Channel Processing Buffer and Parser, A / V Processor, Signaling Parser, Physicla Frame Parser, Link Layer Frams processor, IP / UDP Diagam Filter, ALC / CLT + Client, DASH Client, It may include an ISO BMFF Parser and / or an ATSC3.0 DTV Control Engine.
- the decoder may include the above-described Media Decoder, A / V Processor, Service Signaling Channel Processing Buffer and Parser, Service Guide Processor, and / or Application Processor.
- the module or unit may be processors that execute successive procedures stored in a memory (or storage unit). Each of the steps described in the above embodiments may be performed by hardware / processors. Each module / block / unit described in the above embodiments can operate as a hardware / processor.
- the methods proposed by the present invention can be executed as code. This code can be written to a processor readable storage medium and thus read by a processor provided by an apparatus.
- Apparatus and method according to the present invention is not limited to the configuration and method of the embodiments described as described above, the above-described embodiments may be selectively all or part of each embodiment so that various modifications can be made It may be configured in combination.
- the processor-readable recording medium includes all kinds of recording devices that store data that can be read by the processor.
- Examples of the processor-readable recording medium include ROM, RAM, CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like, and may also be implemented in the form of a carrier wave such as transmission over the Internet.
- the processor-readable recording medium can also be distributed over network coupled computer systems so that the processor-readable code is stored and executed in a distributed fashion.
- the present invention is used in the field of providing a series of broadcast signals.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
Abstract
본 발명은 방송 신호를 송수신하는 방법 및 장치에 관한 것이다. 본 발명의 일 실시예에 따른 방송 신호 송신 방법은 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰에 대한 정보를 포함하는 시그널링 정보를 인코딩하는 단계, 상기 인코딩된 방송 서비스 및 시그널링 정보를 포함하는 방송 신호를 생성하는 단계 및 상기 생성된 방송 신호를 전송하는 단계를 포함한다.
Description
본 발명은 방송 신호를 송수신하는 방법 및 장치에 관한 것이다.
아날로그 방송 신호 송신이 종료됨에 따라, 디지털 방송 신호를 송수신하기 위한 다양한 기술이 개발되고 있다. 디지털 방송 신호는 아날로그 방송 신호에 비해 더 많은 양의 비디오/오디오 데이터를 포함할 수 있고, 비디오/오디오 데이터뿐만 아니라 다양한 종류의 부가 데이터를 더 포함할 수 있다.
즉, 디지털 방송 시스템은 HD(High Definition) 이미지, 멀티채널(multi channel, 다채널) 오디오, 및 다양한 부가 서비스를 제공할 수 있다. 그러나, 디지털 방송을 위해서는, 많은 양의 데이터 전송에 대한 데이터 전송 효율, 송수신 네트워크의 견고성(robustness), 및 모바일 수신 장치를 고려한 네트워크 유연성(flexibility)이 향상되어야 한다.
본 발명의 일 실시예에 따른 방송 신호 송신 방법은 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 인코딩하는 단계, 상기 인코딩된 방송 서비스 및 시그널링 정보를 포함하는 방송 신호를 생성하는 단계 및 상기 생성된 방송 신호를 전송하는 단계를 포함할 수 있다.
바람직하게는, 상기 시그널링 정보는 상기 서비스를 구성하는 뷰의 개수를 나타내는 정보, 해당 뷰의 타입을 나타내는 정보, 해당 뷰의 롤 (role)을 나타내는 정보, 해당 뷰가 토글 (toggle)이 가능한지 여부를 나타내는 정보, 해당 뷰의 스크린 상 위치 정보, 해당 뷰가 스크린 상에 표시되기 시작되는 시간 정보 및 해당 뷰가 스크린 상에서 사라지는 시간 정보를 포함할 수 있다.
바람직하게는, 상기 위치 정보는 해당 뷰의 위치를 나타내기 위해 사용되는 좌표계 정보 및 스크린 상 해당 뷰가 위치하는 좌표 정보를 포함할 수 있다.
바람직하게는, 상기 위치 정보는 스크린의 전체 크기를 기준으로 해당 뷰가 위치하는 지점의 비율을 나타내는 정보를 포함할 수 있다.
바람직하게는, 상기 시그널링 정보는 해당 뷰가 히든 뷰 (hidden view)인지 아닌지 여부를 나타내는 정보를 포함하고, 상기 시그널링 정보는 해당 뷰가 히든 뷰인 경우, 해당 뷰가 스크린에서 표시될 위치 정보, 해당 뷰의 크기 정보, 해당 뷰의 위치 및 크기를 판단하는데 기준이 되는 뷰에 대한 정보 및 해당 뷰가 스크린에 표시될 때부터 사라질 때까지의 시간 정보를 포함할 수 있다.
바람직하게는, 상기 방송 신호는 방송 프로그램에 대한 정보를 포함하는 프로그램 시그널링 정보를 포함하고, 상기 프로그램 시그널링 정보는 상기 방송 프로그램과 관련있는 앱 기반 인핸스먼트 컴포넌트 (app-based enhancement comoponent)에 대한 정보를 포함하고, 상기 앱 기반 인핸스먼트 컴포넌트에 대한 정보는 상기 앱 기반 인핸스먼트 컴포넌트가 스크린에 표시되는 컴포넌트인지 여부를 나타내는 정보, 상기 앱 기반 인핸스먼트 컴포넌트가 토글이 가능한지 여부를 나타내는 정보 및 상기 앱 기반 인핸스먼트 컴포넌트의 롤을 나타내는 정보를 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 방송 신호 수신 방법은 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 포함하는 방송 신호를 수신하는 단계, 상기 수신한 방송 신호에서 상기 방송 서비스 및 시그널링 정보를 파싱하는 단계 및 상기 파싱된 방송 서비스 및 시그널링 정보를 디코딩하는 단계를 포함할 수 있다.
바람직하게는, 상기 시그널링 정보는 상기 서비스를 구성하는 뷰의 개수를 나타내는 정보, 해당 뷰의 타입을 나타내는 정보, 해당 뷰의 롤 (role)을 나타내는 정보, 해당 뷰가 토글 (toggle)이 가능한지 여부를 나타내는 정보, 해당 뷰의 스크린 상 위치 정보, 해당 뷰가 스크린 상에 표시되기 시작되는 시간 정보 및 해당 뷰가 스크린 상에서 사라지는 시간 정보를 포함할 수 있다.
바람직하게는, 상기 위치 정보는 해당 뷰의 위치를 나타내기 위해 사용되는 좌표계 정보 및 스크린 상 해당 뷰가 위치하는 좌표 정보를 포함할 수 있다.
바람직하게는, 상기 위치 정보는 스크린의 전체 크기를 기준으로 해당 뷰가 위치하는 지점의 비율을 나타내는 정보를 포함할 수 있다.
바람직하게는, 상기 시그널링 정보는 해당 뷰가 히든 뷰 (hidden view)인지 아닌지 여부를 나타내는 정보를 포함하고, 상기 시그널링 정보는 해당 뷰가 히든 뷰인 경우, 해당 뷰가 스크린에서 표시될 위치 정보, 해당 뷰의 크기 정보, 해당 뷰의 위치 및 크기를 판단하는데 기준이 되는 뷰에 대한 정보 및 해당 뷰가 스크린에 표시될 때부터 사라질 때까지의 시간 정보를 포함할 수 있다.
바람직하게는, 상기 방송 신호는 방송 프로그램에 대한 정보를 포함하는 프로그램 시그널링 정보를 포함하고, 상기 프로그램 시그널링 정보는 상기 방송 프로그램과 관련있는 앱 기반 인핸스먼트 컴포넌트 (app-based enhancement comoponent)에 대한 정보를 포함하고, 상기 앱 기반 인핸스먼트 컴포넌트에 대한 정보는 상기 앱 기반 인핸스먼트 컴포넌트가 스크린에 표시되는 컴포넌트인지 여부를 나타내는 정보, 상기 앱 기반 인핸스먼트 컴포넌트가 토글이 가능한지 여부를 나타내는 정보 및 상기 앱 기반 인핸스먼트 컴포넌트의 롤을 나타내는 정보를 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 방송 신호 송신 장치는 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 인코딩하는 인코더, 상기 인코딩된 방송 서비스 및 시그널링 정보를 포함하는 방송 신호를 생성하는 방송 신호 생성부 및 상기 생성된 방송 신호를 전송하는 전송부를 포함할 수 있다.
바람직하게는, 상기 시그널링 정보는 상기 서비스를 구성하는 뷰의 개수를 나타내는 정보, 해당 뷰의 타입을 나타내는 정보, 해당 뷰의 롤 (role)을 나타내는 정보, 해당 뷰가 토글 (toggle)이 가능한지 여부를 나타내는 정보, 해당 뷰의 스크린 상 위치 정보, 해당 뷰가 스크린 상에 표시되기 시작되는 시간 정보 및 해당 뷰가 스크린 상에서 사라지는 시간 정보를 포함할 수 있다.
본 발명의 다른 일 실시예에 따른 방송 신호 수신 장치는 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 포함하는 방송 신호를 수신하는 수신부, 상기 수신한 방송 신호에서 상기 방송 서비스 및 시그널링 정보를 파싱하는 파싱부 및 상기 파싱된 방송 서비스 및 시그널링 정보를 디코딩하는 디코더를 포함할 수 있다.
본 발명은 서비스 특성에 따라 데이터를 처리하여 각 서비스 또는 서비스 컴포넌트에 대한 QoS (Quality of Service)를 제어함으로써 다양한 방송 서비스를 제공할 수 있다.
본 발명은 동일한 RF (radio frequency) 신호 대역폭을 통해 다양한 방송 서비스를 전송함으로써 전송 유연성(flexibility)을 달성할 수 있다.
본 발명은 MIMO (Multiple-Input Multiple-Output) 시스템을 이용하여 데이터 전송 효율 및 방송 신호의 송수신 견고성(Robustness)을 향상시킬 수 있다.
본 발명에 따르면, 모바일 수신 장치를 사용하거나 실내 환경에 있더라도, 에러 없이 디지털 방송 신호를 수신할 수 있는 방송 신호 송신 및 수신 방법 및 장치를 제공할 수 있다.
본 발명에 대해 더욱 이해하기 위해 포함되며 본 출원에 포함되고 그 일부를 구성하는 첨부된 도면은 본 발명의 원리를 설명하는 상세한 설명과 함께 본 발명의 실시예를 나타낸다.
도 1은 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치의 구조를 나타낸다.
도 2는 본 발명의 일 실시예에 따른 인풋 포맷팅(Input formatting, 입력 포맷) 블록을 나타낸다.
도 3은 본 발명의 다른 일 실시예에 따른 인풋 포맷팅(Input formatting, 입력 포맷) 블록을 나타낸다.
도 4는 본 발명의 일 실시예에 따른 BICM (bit interleaved coding & modulation) 블록을 나타낸다.
도 5는 본 발명의 다른 일 실시예에 따른 BICM 블록을 나타낸다.
도 6은 본 발명의 일 실시예에 따른 프레임 빌딩(Frame Building, 프레임 생성) 블록을 나타낸다.
도 7은 본 발명의 일 실시예에 따른 OFDM (orthogonal frequency division multiplexing) 제너레이션(generation, 생성) 블록을 나타낸다.
도 8은 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 수신 장치의 구조를 나타낸다.
도 9는 본 발명의 일 실시예에 따른 프레임 구조를 나타낸다.
도 10은 본 발명의 일 실시예에 따른 프레임의 시그널링 계층 구조를 나타낸다.
도 11은 본 발명의 일 실시예에 따른 프리앰블 시그널링 데이터를 나타낸다.
도 12는 본 발명의 일 실시예에 따른 PLS1 데이터를 나타낸다.
도 13은 본 발명의 일 실시예에 따른 PLS2 데이터를 나타낸다.
도 14는 본 발명의 다른 일 실시예에 따른 PLS2 데이터를 나타낸다.
도 15는 본 발명의 일 실시예에 따른 프레임의 로지컬(logical, 논리) 구조를 나타낸다.
도 16은 본 발명의 일 실시예에 따른 PLS (physical layer signalling) 매핑을 나타낸다.
도 17은 본 발명의 일 실시예에 따른 EAC (emergency alert channel) 매핑을 나타낸다.
도 18은 본 발명의 일 실시예에 따른 FIC (fast information channel) 매핑을 나타낸다.
도 19는 본 발명의 일 실시예에 따른 FEC (forward error correction) 구조를 나타낸다.
도 20은 본 발명의 일 실시예에 따른 타임 인터리빙을 나타낸다.
도 21은 본 발명의 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 기본 동작을 나타낸다.
도 22는 본 발명의 다른 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 동작을 나타낸다.
도 23은 본 발명의 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 대각선 방향 읽기 패턴을 나타낸다.
도 24는 본 발명의 일 실시예에 따른 각 인터리빙 어레이(array)로부터 인터리빙된 XFECBLOCK을 나타낸다.
도 25는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링을 도시한 도면이다.
도 26은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링에 있어서, FSS 를 위한 FI 스킴들을 도시한 도면이다.
도 27은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링에 있어서, FES 를 위한 리셋 모드의 동작을 도시한 도면이다.
도 28은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 주파수 인터리버의 입력과 출력을 수학식으로 표시한 도면이다.
도 29는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, FI 스킴 #1 및 FI 스킴 #2 에 따른 주파수 인터리빙의 논리적 동작 매커니즘의 수학식을 나타낸다.
도 30은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 짝수인 경우의 실시예를 도시한 도면이다.
도 31은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 짝수인 경우의 실시예를 도시한 도면이다.
도 32는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 홀수인 경우의 실시예를 도시한 도면이다.
도 33은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 홀수인 경우의 실시예를 도시한 도면이다.
도 34는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 주파수 디인터리버의 동작을 도시한 도면이다.
도 35는 본 발명의 다른 실시예에 따른 variable data-rate 시스템을 나타낸 개념도이다.
도 36은 본 발명의 블록 인터리빙의 라이팅(writing) 및 리딩 (reading) 오퍼레이션의 일 실시예를 나타낸다. 이에 대한 구체적인 내용은 전술하였다.
도 37은 본 발명의 일 실시예에 따른 블록 인터리빙을 나타낸 수학식이다.
도 38은 본 발명의 일 실시예에 따른 버츄얼 (virtual) FEC 블록들을 나타낸 도면이다.
도 39는 본 발명의 일 실시예에 따른 버츄얼 (virtual) FEC 블록들이 삽입된 이후 리딩 (reading) 동작을 나타낸 수학식이다.
도 40은 본 발명의 일 실시예에 따른 타임 인터리빙의 프로세스를 나타낸 순서도이다.
도 41은 본 발명의 일 실시예에 따른 시프트 밸류 및 맥시멈 TI 블록의 크기를 결정하는 과정을 나타낸 수학식이다.
도 42는 본 발명의 일 실시예에 따른 라이팅 (writing) 오퍼레이션을 나타낸다.
도 43은 본 발명의 일 실시예에 따른 리딩 (reading) 오퍼레이션을 나타낸다.
도 44는 본 발명의 일 실시예에 따른 리딩 (reading) 오퍼레이션에서 스킵 오퍼레이션이 수행된 결과를 나타낸다.
도 45는 본 발명의 일 실시예에 따른 타임 디인터리빙의 라이팅 (writing) 과정을 나타낸다.
도 46은 본 발명의 다른 실시예에 따른 타임 디인터리빙의 라이팅 (writing) 과정을 나타낸다.
도 47은 본 발명의 다른 실시예에 따른 타임 디인터리빙의 리딩 (reading) 오퍼레이션을 나타내는 수학식이다.
도 48은 본 발명의 일 실시예에 따른 타임 디인터리빙의 프로세스를 나타낸 순서도이다.
도 49는 PLP 개수에 따라 적용하는 인터리빙 타입을 표로 도시한 도면이다.
도 50은 상술한 하이브리드 타임 인터리버 구조의 제 1 실시예를 포함하는 블록도이다.
도 51은 상술한 하이브리드 타임 인터리버 구조의 제 2 실시예를 포함하는 블록도이다.
도 52는 하이브리드 타임 디인터리버의 구조의 제 1 실시예를 포함하는 블록도이다.
도 53은 하이브리드 타임 디인터리버의 구조의 제 2 실시예를 포함하는 블록도이다.
도 54는 본 발명의 일 실시예에 따른 메인 피지컬 디바이스 (Main Physical Device) 및 컴페니언 피지컬 디바이스 (Companion Physical Device)의 구성을 나타낸 도면이다.
도 55는 본 발명의 일 실시예에 따른 하이브리드 방송 서비스를 지원하기 위한 프로토콜 스택을 나타낸 도면이다.
도 56은 본 발명의 일 실시예에 따른 방송 수신 장치의 구성을 보여준다.
도 57은 본 발명의 다른 일 실시예에 따른 방송 신호 수신 장치의 구성을 나타낸 도면이다.
도 58은 본 발명의 다른 일 실시예에 따른 방송 수신 장치의 구성을 나타낸다.
도 59는 본 발명의 일 실시예에 따른 service_map_table의 구성을 나타낸 도면이다.
도 60은 본 발명의 일 실시예에 따른 Multi_view_descriptor의 구성 및 coordinate_system 필드의 설명을 나타낸 도면이다.
도 61은 본 발명의 일 실시예에 따른 방송 신호 수신 장치의 동작을 나타낸 도면이다.
도 62는 본 발명의 일 실시예에 따른 Multi_view_descriptor가 SMT에 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
도 63은 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor가 SMT에 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
도 64는 본 발명의 일 실시예에 따른 프로그램 시그널링 정보의 구성을 나타낸 도면이다.
도 65는 본 발명의 다른 일 실시예에 따른 방송 신호 수신 장치의 동작을 나타낸 도면이다.
도 66은 본 발명의 일 실시예에 따른 프로그램 시그널링 정보에 app-based enhancement 관련 정보가 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
도 67은 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor의 구성을 나타낸 도면이다.
도 68은 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor가 SMT에 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
도 69는 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor의 구성을 나타낸 도면이다.
도 70은 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor가 SMT에 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
도 71은 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor의 구성을 나타낸 도면이다.
도 72는 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor가 SMT에 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
도 73은 본 발명의 일 실시예에 따른 방송 신호 송신 방법을 나타낸 도면이다.
도 74는 본 발명의 일 실시예에 따른 방송 신호 수신 방법을 나타낸 도면이다.
도 75는 본 발명의 일 실시예에 따른 방송 신호 송신 장치의 구성을 나타낸 도면이다.
도 76은 본 발명의 일 실시예에 따른 방송 신호 수신 장치의 구성을 나타낸 도면이다.
본 발명의 바람직한 실시예에 대해 구체적으로 설명하며, 그 예는 첨부된 도면에 나타낸다. 첨부된 도면을 참조한 아래의 상세한 설명은 본 발명의 실시예에 따라 구현될 수 있는 실시예만을 나타내기보다는 본 발명의 바람직한 실시예를 설명하기 위한 것이다. 다음의 상세한 설명은 본 발명에 대한 철저한 이해를 제공하기 위해 세부 사항을 포함한다. 그러나 본 발명이 이러한 세부 사항 없이 실행될 수 있다는 것은 당업자에게 자명하다.
본 발명에서 사용되는 대부분의 용어는 해당 분야에서 널리 사용되는 일반적인 것들에서 선택되지만, 일부 용어는 출원인에 의해 임의로 선택되며 그 의미는 필요에 따라 다음 설명에서 자세히 서술한다. 따라서 본 발명은 용어의 단순한 명칭이나 의미가 아닌 용어의 의도된 의미에 근거하여 이해되어야 한다.
본 명세서에서 '시그널링 (signaling)' 이라 함은 방송 시스템, 인터넷 방송 시스템 및/또는 방송/인터넷 융합 시스템에서 제공되는 서비스 정보 (Service Information; SI)를 전송/수신하는 것을 나타낸다. 서비스 정보는 현재 존재하는 각 방송 시스템에서 제공되는 방송 서비스 정보 (예를 들면, ATSC-SI 및/또는 DVB-SI)를 포함한다.
본 명세서에서 '방송 신호' 라 함은, 지상파 방송, 케이블 방송, 위성 방송, 및/또는 모바일 방송 이외에도, 인터넷 방송, 브로드밴드 방송, 통신 방송, 데이터 방송 및/또는 VOD (Video On Demand) 등의 양방향 방송에서 제공되는 신호 및/또는 데이터를 포함하는 개념으로 정의한다.
본 명세서에서 'PLP' 라 함은, 물리적 계층에 속하는 데이터를 전송하는 일정한 유닛을 의미한다. 따라서, 본 명세서에서 'PLP'로 명명된 내용은, '데이터 유닛' 또는 '데이터 파이프 (data pipe)' 로 바꾸어 명명될 수도 있다.
디지털 방송 (DTV) 서비스에서 활용될 유력한 어플리케이션 (application) 중의 하나로, 방송 망과 인터넷 망과의 연동을 통한 하이브리드 방송 서비스를 꼽을 수 있다. 하이브리드 방송 서비스는 지상파 방송망을 통해서 전송되는 방송 A/V (Audio/Video) 컨텐츠와 연관된 인핸스먼트 데이터 (enhancement data) 혹은 방송 A/V 컨텐츠의 일부를 인터넷 망을 통하여 실시간으로 전송함으로써, 사용자로 하여금 다양한 컨텐츠를 경험할 수 있도록 한다.
본 발명은 차세대 방송 서비스에 대한 방송 신호 송신 및 수신 장치 및 방법을 제공한다. 본 발명의 일 실시예에 따른 차세대 방송 서비스는 지상파 방송 서비스, 모바일 방송 서비스, UHDTV 서비스 등을 포함한다. 본 발명은 일 실시예에 따라 비-MIMO (non-Multiple Input Multiple Output) 또는 MIMO 방식을 통해 차세대 방송 서비스에 대한 방송 신호를 처리할 수 있다. 본 발명의 일 실시예에 따른 비-MIMO 방식은 MISO (Multiple Input Single Output) 방식, SISO (Single Input Single Output) 방식 등을 포함할 수 있다.
이하에서는 설명의 편의를 위해 MISO 또는 MIMO 방식은 두 개의 안테나를 사용하지만, 본 발명은 두 개 이상의 안테나를 사용하는 시스템에 적용될 수 있다. 본 발명은 특정 용도에 요구되는 성능을 달성하면서 수신기 복잡도를 최소화하기 위해 최적화된 세 개의 피지컬 프로파일(PHY profile) (베이스(base), 핸드헬드(handheld), 어드벤스(advanced) 프로파일)을 정의할 수 있다. 피지컬 프로파일은 해당하는 수신기가 구현해야 하는 모든 구조의 서브셋이다.
세 개의 피지컬 프로파일은 대부분의 기능 블록을 공유하지만, 특정 블록 및/또는 파라미터에서는 약간 다르다. 추후에 추가로 피지컬 프로파일이 정의될 수 있다. 시스템 발전을 위해, 퓨처 프로파일은 FEF (future extension frame)을 통해 단일 RF (radio frequency) 채널에 존재하는 프로파일과 멀티플렉싱 될 수도 있다. 각 피지컬 프로파일에 대한 자세한 내용은 후술한다.
1. 베이스 프로파일
베이스 프로파일은 주로 루프 톱(roof-top) 안테나와 연결되는 고정된 수신 장치의 주된 용도를 나타낸다. 베이스 프로파일은 어떤 장소로 이동될 수 있지만 비교적 정지된 수신 범주에 속하는 휴대용 장치도 포함할 수 있다. 베이스 프로파일의 용도는 약간의 개선된 실행에 의해 핸드헬드 장치 또는 차량용으로 확장될 수 있지만, 이러한 사용 용도는 베이스 프로파일 수신기 동작에서는 기대되지 않는다.
수신의 타겟 신호 대 잡음비 범위는 대략 10 내지 20 dB인데, 이는 기존 방송 시스템(예를 들면, ATSC A/53)의 15 dB 신호 대 잡음비 수신 능력을 포함한다. 수신기 복잡도 및 소비 전력은 핸드헬드 프로파일을 사용할 배터리로 구동되는 핸드헬드 장치에서만큼 중요하지 않다. 베이스 프로파일에 대한 중요 시스템 파라미터가 아래 표 1에 기재되어 있다.
2. 핸드헬드 프로파일
핸드헬드 프로파일은 배터리 전원으로 구동되는 핸드헬드 및 차량용 장치에서의 사용을 위해 설계된다. 해당 장치는 보행자 또는 차량 속도로 이동할 수 있다. 수신기 복잡도뿐만 아니라 소비 전력은 핸드헬드 프로파일의 장치의 구현을 위해 매우 중요하다. 핸드헬드 프로파일의 타겟 신호 대 잡음비 범위는 대략 0 내지 10 dB이지만, 더 낮은 실내 수신을 위해 의도된 경우 0 dB 아래에 달하도록 설정될 수 있다.
저 신호 대 잡음비 능력뿐만 아니라, 수신기 이동성에 의해 나타난 도플러 효과에 대한 복원력은 핸드헬드 프로파일의 가장 중요한 성능 속성이다. 핸드헬드 프로파일에 대한 중요 시스템 파라미터가 아래 표 2에 기재되어 있다.
3. 어드벤스 프로파일
어드벤스 프로파일은 더 큰 실행 복잡도에 대한 대가로 더 높은 채널 능력을 제공한다. 해당 프로파일은 MIMO 송신 및 수신을 사용할 것을 요구하며, UHDTV 서비스는 타겟 용도이고, 이를 위해 해당 프로파일이 특별히 설계된다. 향상된 능력은 주어진 대역폭에서 서비스 수의 증가, 예를 들면, 다수의 SDTV 또는 HDTV 서비스를 허용하는 데도 사용될 수 있다.
어드벤스 프로파일의 타겟 신호 대 잡음비 범위는 대략 20 내지 30 dB이다. MIMO 전송은 초기에는 기존의 타원 분극 전송 장비를 사용하고, 추후에 전출력 교차 분극 전송으로 확장될 수 있다. 어드벤스 프로파일에 대한 중요 시스템 파라미터가 아래 표 3에 기재되어 있다.
이 경우, 베이스 프로파일은 지상파 방송 서비스 및 모바일 방송 서비스 모두에 대한 프로파일로 사용될 수 있다. 즉, 베이스 프로파일은 모바일 프로파일을 포함하는 프로파일의 개념을 정의하기 위해 사용될 수 있다. 또한, 어드벤스 프로파일은 MIMO을 갖는 베이스 프로파일에 대한 어드벤스 프로파일 및 MIMO을 갖는 핸드헬드 프로파일에 대한 어드벤스 프로파일로 구분될 수 있다. 그리고 해당 세 프로파일은 설계자의 의도에 따라 변경될 수 있다.
다음의 용어 및 정의는 본 발명에 적용될 수 있다. 다음의 용어 및 정의는 설계에 따라 변경될 수 있다.
보조 스트림: 퓨처 익스텐션(future extension, 추후 확장) 또는 방송사나 네트워크 운영자에 의해 요구됨에 따라 사용될 수 있는 아직 정의되지 않은 변조 및 코딩의 데이터를 전달하는 셀의 시퀀스
베이스 데이터 파이프(base data pipe): 서비스 시그널링 데이터를 전달하는 데이터 파이프
베이스밴드 프레임 (또는 BBFRAME): 하나의 FEC 인코딩 과정 (BCH 및 LDPC 인코딩)에 대한 입력을 형성하는 Kbch 비트의 집합
셀(cell): OFDM 전송의 하나의 캐리어에 의해 전달되는 변조값
코딩 블록(coded block): PLS1 데이터의 LDPC 인코딩된 블록 또는 PLS2 데이터의 LDPC 인코딩된 블록들 중 하나
데이터 파이프(data pipe): 하나 또는 다수의 서비스 또는 서비스 컴포넌트를 전달할 수 있는 서비스 데이터 또는 관련된 메타데이터를 전달하는 물리 계층(physical layer)에서의 로지컬 채널
데이터 파이프 유닛(DPU, data pipe unit): 데이터 셀을 프레임에서의 데이터 파이프에 할당할 수 있는 기본 유닛
데이터 심볼(data symbol): 프리앰블 심볼이 아닌 프레임에서의 OFDM 심볼 (프레임 시그널링 심볼 및 프레임 엣지(edge) 심볼은 데이터 심볼에 포함된다.)
DP_ID: 해당 8비트 필드는 SYSTEM_ID에 의해 식별된 시스템 내에서 데이터 파이프를 유일하게 식별한다.
더미 셀(dummy cell): PLS (physical layer signalling) 시그널링, 데이터 파이프, 또는 보조 스트림을 위해 사용되지 않은 남아 있는 용량을 채우는 데 사용되는 의사 랜덤값을 전달하는 셀
FAC (emergency alert channel, 비상 경보 채널): EAS 정보 데이터를 전달하는 프레임 중 일부
프레임(frame): 프리앰블로 시작해서 프레임 엣지 심볼로 종료되는 물리 계층(physical layer) 타임 슬롯
프레임 리피티션 유닛(frame repetition unit, 프레임 반복 단위): 슈퍼 프레임(super-frame)에서 8회 반복되는 FEF를 포함하는 동일한 또는 다른 피지컬 프로파일에 속하는 프레임의 집합
FIC (fast information channel, 고속 정보 채널): 서비스와 해당 베이스 데이터 파이프 사이에서의 매핑 정보를 전달하는 프레임에서 로지컬 채널
FECBLOCK: 데이터 파이프 데이터의 LDPC 인코딩된 비트의 집합
FFT 사이즈: 기본 주기 T의 사이클로 표현된 액티브 심볼 주기 Ts와 동일한 특정 모드에 사용되는 명목상의 FFT 사이즈
프레임 시그널링 심볼(frame signaling symbol): PLS 데이터의 일부를 전달하는, FFT 사이즈, 가드 인터벌(guard interval), 및 스캐터(scattered) 파일럿 패턴의 특정 조합에서 프레임의 시작에서 사용되는 더 높은 파일럿 밀도를 갖는 OFDM 심볼
프레임 엣지 심볼(frame edge symbol): FFT 사이즈, 가드 인터벌, 및 스캐터 파일럿 패턴의 특정 조합에서 프레임의 끝에서 사용되는 더 높은 파일럿 밀도를 갖는 OFDM 심볼
프레임 그룹(frame-group): 슈퍼 프레임에서 동일한 피지컬 프로파일 타입을 갖는 모든 프레임의 집합
퓨쳐 익스텐션 프레임(future extention frame, 추후 확장 프레임): 프리앰블로 시작하는, 추후 확장에 사용될 수 있는 슈퍼 프레임 내에서 물리 계층(physical layer) 타임 슬롯
퓨처캐스트(futurecast) UTB 시스템: 입력이 하나 이상의 MPEG2-TS 또는 IP (Internet protocol) 또는 일반 스트림이고 출력이 RF 시그널인 제안된 물리 계층(physical layer) 방송 시스템
인풋 스트림(input stream, 입력 스트림): 시스템에 의해 최종 사용자에게 전달되는 서비스의 조화(ensemble)를 위한 데이터의 스트림
노멀(normal) 데이터 심볼: 프레임 시그널링 심볼 및 프레임 엣지 심볼을 제외한 데이터 심볼
피지컬 프로파일(PHY profile): 해당하는 수신기가 구현해야 하는 모든 구조의 서브셋
PLS: PLS1 및 PLS2로 구성된 물리 계층(physical layer) 시그널링 데이터
PLS1: PLS2를 디코딩하는 데 필요한 파라미터뿐만 아니라 시스템에 관한 기본 정보를 전달하는 고정된 사이즈, 코딩, 변조를 갖는 FSS (frame signalling symbol)로 전달되는 PLS 데이터의 첫 번째 집합
NOTE: PLS1 데이터는 프레임 그룹의 듀레이션(duration) 동안 일정하다.
PLS2: 데이터 파이프 및 시스템에 관한 더욱 상세한 PLS 데이터를 전달하는 FSS로 전송되는 PLS 데이터의 두 번째 집합
PLS2 다이나믹(dynamic, 동적) 데이터: 프레임마다 다이나믹(dynamic, 동적)으로 변화하는 PLS2 데이터
PLS2 스태틱(static, 정적) 데이터: 프레임 그룹의 듀레이션 동안 스태틱(static, 정적)인 PLS2 데이터
프리앰블 시그널링 데이터(preamble signaling data): 프리앰블 심볼에 의해 전달되고 시스템의 기본 모드를 확인하는 데 사용되는 시그널링 데이터
프리앰블 심볼(preamble symbol): 기본 PLS 데이터를 전달하고 프레임의 시작에 위치하는 고정된 길이의 파일럿 심볼
NOTE: 프리앰블 심볼은 시스템 신호, 그 타이밍, 주파수 오프셋, 및 FFT 사이즈를 검출하기 위해 고속 초기 밴드 스캔에 주로 사용된다.
추후 사용(future use)을 위해 리저브드(reserved): 현재 문서에서 정의되지 않지만 추후에 정의될 수 있음
슈퍼 프레임(superframe): 8개의 프레임 반복 단위의 집합
타임 인터리빙 블록(time interleaving block, TI block): 타임 인터리버 메모리의 하나의 용도에 해당하는, 타임 인터리빙이 실행되는 셀의 집합
타임 인터리빙 그룹(time interleaving group, TI group): 정수, 다이나믹(dynamic, 동적)으로 변화하는 XFECBLOCK의 수로 이루어진, 특정 데이터 파이프에 대한 다이나믹(dynamic, 동적) 용량 할당이 실행되는 단위
NOTE: 타임 인터리빙 그룹은 하나의 프레임에 직접 매핑되거나 다수의 프레임에 매핑될 수 있다. 타임 인터리빙 그룹은 하나 이상의 타임 인터리빙 블록을 포함할 수 있다.
타입 1 데이터 파이프(Type 1 DP): 모든 데이터 파이프가 프레임에 TDM (time division multiplexing) 방식으로 매핑되는 프레임의 데이터 파이프
타입 2 데이터 파이프(Type 2 DP): 모든 데이터 파이프가 프레임에 FDM 방식으로 매핑되는 프레임의 데이터 파이프
XFECBLOCK: 하나의 LDPC FECBLOCK의 모든 비트를 전달하는 Ncells 셀들의 집합
도 1은 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치의 구조를 나타낸다.
본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치는 인풋 포맷 블록 (Input Format block) (1000), BICM (bit interleaved coding & modulation) 블록(1010), 프레임 빌딩 블록 (Frame building block) (1020), OFDM (orthogonal frequency division multiplexing) 제너레이션 블록 (OFDM generation block)(1030), 및 시그널링 생성 블록(1040)을 포함할 수 있다. 방송 신호 송신 장치의 각 블록의 동작에 대해 설명한다.
IP 스트림/패킷 및 MPEG2-TS은 주요 입력 포맷이고, 다른 스트림 타입은 일반 스트림으로 다루어진다. 이들 데이터 입력에 추가로, 관리 정보가 입력되어 각 입력 스트림에 대한 해당 대역폭의 스케줄링 및 할당을 제어한다. 하나 또는 다수의 TS 스트림, IP 스트림 및/또는 일반 스트림 입력이 동시에 허용된다.
인풋 포맷 블록(1000)은 각각의 입력 스트림을 독립적인 코딩 및 변조가 적용되는 하나 또는 다수의 데이터 파이프로 디멀티플렉싱 할 수 있다. 데이터 파이프는 견고성(robustness) 제어를 위한 기본 단위이며, 이는 QoS (Quality of Service)에 영향을 미친다. 하나 또는 다수의 서비스 또는 서비스 컴포넌트가 하나의 데이터 파이프에 의해 전달될 수 있다. 인풋 포맷 블록(1000)의 자세한 동작은 후술한다.
데이터 파이프는 하나 또는 다수의 서비스 또는 서비스 컴포넌트를 전달할 수 있는 서비스 데이터 또는 관련 메타데이터를 전달하는 물리 계층(physical layer)에서의 로지컬 채널이다.
또한, 데이터 파이프 유닛은 하나의 프레임에서 데이터 셀을 데이터 파이프에 할당하기 위한 기본 유닛이다.
인풋 포맷 블록(1000)에서, 패리티(parity) 데이터는 에러 정정을 위해 추가되고, 인코딩된 비트 스트림은 복소수값 컨스텔레이션 심볼에 매핑된다. 해당 심볼은 해당 데이터 파이프에 사용되는 특정 인터리빙 깊이에 걸쳐 인터리빙 된다. 어드벤스 프로파일에 있어서, BICM 블록(1010)에서 MIMO 인코딩이 실행되고 추가 데이터 경로가 MIMO 전송을 위해 출력에 추가된다. BICM 블록(1010)의 자세한 동작은 후술한다.
프레임 빌딩 블록(1020)은 하나의 프레임 내에서 입력 데이터 파이프의 데이터 셀을 OFDM 실볼로 매핑할 수 있다. 매핑 후, 주파수 영역 다이버시티를 위해, 특히 주파수 선택적 페이딩 채널을 방지하기 위해 주파수 인터리빙이 이용된다. 프레임 빌딩 블록(1020)의 자세한 동작은 후술한다.
프리앰블을 각 프레임의 시작에 삽입한 후, OFDM 제너레이션 블록(1030)은 사이클릭 프리픽스(cyclic prefix)을 가드 인터벌로 갖는 기존의 OFDM 변조를 적용할 수 있다. 안테나 스페이스 다이버시티를 위해, 분산된(distributed) MISO 방식이 송신기에 걸쳐 적용된다. 또한, PAPR (peak-to-average power ratio) 방식이 시간 영역에서 실행된다. 유연한 네트워크 방식을 위해, 해당 제안은 다양한 FFT 사이즈, 가드 인터벌 길이, 해당 파일럿 패턴의 집합을 제공한다. OFDM 제너레이션 블록(1030)의 자세한 동작은 후술한다.
시그널링 생성 블록(1040)은 각 기능 블록의 동작에 사용되는 물리 계층(physical layer) 시그널링 정보를 생성할 수 있다. 해당 시그널링 정보는 또한 관심 있는 서비스가 수신기 측에서 적절히 복구되도록 전송된다. 시그널링 생성 블록(1040)의 자세한 동작은 후술한다.
도 2, 3, 4는 본 발명의 실시예에 따른 인풋 포맷 블록(1000)을 나타낸다. 각 도면에 대해 설명한다.
도 2는 본 발명의 일 실시예에 따른 인풋 포맷 블록을 나타낸다. 도 2는 입력 신호가 단일 입력 스트림(single input stream)일 때의 인풋 포맷 블록을 나타낸다.
도 2에 도시된 인풋 포맷 블록은 도 1을 참조하여 설명한 인풋 포맷 블록(1000)의 일 실시예에 해당한다.
물리 계층(physical layer)으로의 입력은 하나 또는 다수의 데이터 스트림으로 구성될 수 있다. 각각의 데이터 스트림은 하나의 데이터 파이프에 의해 전달된다. 모드 어댑테이션(mode adaptaion, 모드 적응) 모듈은 입력되는 데이터 스트림을 BBF (baseband frame)의 데이터 필드로 슬라이스한다. 해당 시스템은 세 가지 종류의 입력 데이터 스트림, 즉 MPEG2-TS, IP, GS (generic stream)을 지원한다. MPEG2-TS는 첫 번째 바이트가 동기 바이트(0x47)인 고정된 길이(188 바이트)의 패킷을 특징으로 한다. IP 스트림은 IP 패킷 헤더 내에서 시그널링 되는 가변 길이 IP 데이터그램 패킷으로 구성된다. 해당 시스템은 IP 스트림에 대해 IPv4와 IPv6을 모두 지원한다. GS는 캡슐화 패킷 헤더 내에서 시그널링되는 가변 길이 패킷 또는 일정 길이 패킷으로 구성될 수 있다.
(a)는 신호 데이터 파이프에 대한 모드 어댑테이션(mode adaptaion, 모드 적응) 블록(2000) 및 스트림 어댑테이션(stream adaptation, 스트림 적응)(2010)을 나타내고, (b)는 PLS 데이터를 생성 및 처리하기 위한 PLS 생성 블록(2020) 및 PLS 스크램블러(2030)를 나타낸다. 각 블록의 동작에 대해 설명한다.
입력 스트림 스플리터는 입력된 TS, IP, GS 스트림을 다수의 서비스 또는 서비스 컴포넌트(오디오, 비디오 등) 스트림으로 분할한다. 모드 어댑테이션(mode adaptaion, 모드 적응) 모듈(2010)은 CRC 인코더, BB (baseband) 프레임 슬라이서, 및 BB 프레임 헤더 삽입 블록으로 구성된다.
CRC 인코더는 유저 패킷 (user packet, UP)레벨에서의 에러 검출을 위한 세 종류의 CRC 인코딩, 즉 CRC-8, CRC-16, CRC-32를 제공한다. 산출된 CRC 바이트는 UP 뒤에 첨부된다. CRC-8은 TS 스트림에 사용되고, CRC-32는 IP 스트림에 사용된다. GS 스트림이 CRC 인코딩을 제공하지 않으면, 제안된 CRC 인코딩이 적용되어야 한다.
BB 프레임 슬라이서는 입력을 내부 로지컬 비트 포맷에 매핑한다. 첫 번째 수신 비트는 MSB라고 정의한다. BB 프레임 슬라이서는 가용 데이터 필드 용량과 동일한 수의 입력 비트를 할당한다. BBF 페이로드와 동일한 수의 입력 비트를 할당하기 위해, UP 스트림이 BBF의 데이터 필드에 맞게 슬라이스된다.
BB 프레임 헤더 삽입 블록은 2바이트의 고정된 길이의 BBF 헤더를 BB 프레임의 앞에 삽입할 수 있다. BBF 헤더는 STUFFI (1비트), SYNCD (13비트), 및 RFU (2비트)로 구성된다. 고정된 2바이트 BBF 헤더뿐만 아니라, BBF는 2바이트 BBF 헤더 끝에 확장 필드(1 또는 3바이트)를 가질 수 있다.
스트림 어댑테이션(stream adaptation, 스트림 적응)(2010)은 스터핑(stuffing) 삽입 블록 및 BB 스크램블러로 구성된다. 스터핑 삽입 블록은 스터핑 필드를 BB 프레임의 페이로드에 삽입할 수 있다. 스트림 어댑테이션(stream adaptation, 스트림 적응)에 대한 입력 데이터가 BB 프레임을 채우기에 충분하면, STUFFI는 0으로 설정되고, BBF는 스터핑 필드를 갖지 않는다. 그렇지 않으면, STUFFI는 1로 설정되고, 스터핑 필드는 BBF 헤더 직후에 삽입된다. 스터핑 필드는 2바이트의 스터핑 필드 헤더 및 가변 사이즈의 스터핑 데이터를 포함한다.
BB 스크램블러는 에너지 분산을 위해 완전한 BBF를 스크램블링한다. 스크램블링 시퀀스는 BBF와 동기화된다. 스크램블링 시퀀스는 피드백 시프트 레지스터에 의해 생성된다.
PLS 생성 블록(2020)은 PLS 데이터를 생성할 수 있다. PLS는 수신기에서 피지컬 레이어(physical layer) 데이터 파이프에 접속할 수 있는 수단을 제공한다. PLS 데이터는 PLS1 데이터 및 PLS2 데이터로 구성된다.
PLS1 데이터는 PLS2 데이터를 디코딩하는 데 필요한 파라미터뿐만 아니라 시스템에 관한 기본 정보를 전달하는 고정된 사이즈, 코딩, 변조를 갖는 프레임에서 FSS로 전달되는 PLS 데이터의 첫 번째 집합이다. PLS1 데이터는 PLS2 데이터의 수신 및 디코딩을 가능하게 하는 데 요구되는 파라미터를 포함하는 기본 송신 파라미터를 제공한다. 또한, PLS1 데이터는 프레임 그룹의 듀레이션 동안 일정하다.
PLS2 데이터는 데이터 파이프 및 시스템에 관한 더욱 상세한 PLS 데이터를 전달하는 FSS로 전송되는 PLS 데이터의 두 번째 집합이다. PLS2는 수신기가 원하는 데이터 파이프를 디코딩하는 데 충분한 정보를 제공하는 파라미터를 포함한다. PLS2 시그널링은 PLS2 스태틱(static, 정적) 데이터(PLS2-STAT 데이터) 및 PLS2 다이나믹(dynamic, 동적) 데이터(PLS2-DYN 데이터)의 두 종류의 파라미터로 더 구성된다. PLS2 스태틱(static, 정적) 데이터는 프레임 그룹의 듀레이션 동안 스태틱(static, 정적)인 PLS2 데이터이고, PLS2 다이나믹(dynamic, 동적) 데이터는 프레임마다 다이나믹(dynamic, 동적)으로 변화하는 PLS2 데이터이다.
PLS 데이터에 대한 자세한 내용은 후술한다.
PLS 스크램블러(2030)는 에너지 분산을 위해 생성된 PLS 데이터를 스크램블링 할 수 있다.
전술한 블록은 생략될 수도 있고 유사 또는 동일 기능을 갖는 블록에 의해 대체될 수도 있다.
도 3은 본 발명의 다른 일 실시예에 따른 인풋 포맷 블록을 나타낸다.
도 3에 도시된 인풋 포맷 블록은 도 1을 참조하여 설명한 인풋 포맷 블록(1000)의 일 실시예에 해당한다.
도 3은 입력 신호가 멀티 인풋 스트림(multi input stream, 다수의 입력 스트림)에 해당하는 경우 인풋 포맷 블록의 모드 어댑테이션(mode adaptaion, 모드 적응) 블록을 나타낸다.
멀티 인풋 스트림(multi input stream, 다수의 입력 스트림)을 처리하기 위한 인풋 포맷 블록의 모드 어댑테이션(mode adaptaion, 모드 적응) 블록은 다수 입력 스트림을 독립적으로 처리할 수 있다.
도 3을 참조하면, 멀티 인풋 스트림(multi input stream, 다수의 입력 스트림)을 각각 처리하기 위한 모드 어댑테이션(mode adaptaion, 모드 적응) 블록은 인풋 스트림 스플리터 (input stream splitter) (3000), 인풋 스트림 싱크로나이저 (input stream synchronizer) (3010), 컴펜세이팅 딜레이(compensatin delay, 보상 지연) 블록(3020), 널 패킷 딜리션 블록 (null packet deletion block) (3030), 헤더 컴프레션 블록 (header compression block) (3040), CRC 인코더 (CRC encoder) (3050), BB 프레임 슬라이서(BB frame slicer) (3060), 및 BB 헤더 삽입 블록 (BB header insertion block) (3070)을 포함할 수 있다. 모드 어댑테이션(mode adaptaion, 모드 적응) 블록의 각 블록에 대해 설명한다.
CRC 인코더(3050), BB 프레임 슬라이서(3060), 및 BB 헤더 삽입 블록(3070)의 동작은 도 2를 참조하여 설명한 CRC 인코더, BB 프레임 슬라이서, 및 BB 헤더 삽입 블록의 동작에 해당하므로, 그 설명은 생략한다.
인풋 스트림 스플리터(3000)는 입력된 TS, IP, GS 스트림을 다수의 서비스 또는 서비스 컴포넌트(오디오, 비디오 등) 스트림으로 분할한다.
인풋 스트림 싱크로나이저(3010)는 ISSY라 불릴 수 있다. ISSY는 어떠한 입력 데이터 포맷에 대해서도 CBR (constant bit rate) 및 일정한 종단간 전송(end-to-end transmission) 지연을 보장하는 적합한 수단을 제공할 수 있다. ISSY는 TS를 전달하는 다수의 데이터 파이프의 경우에 항상 이용되고, GS 스트림을 전달하는 다수의 데이터 파이프에 선택적으로 이용된다.
컴펜세이팅 딜레이(compensatin delay, 보상 지연) 블록(3020)은 수신기에서 추가로 메모리를 필요로 하지 않고 TS 패킷 재결합 메커니즘을 허용하기 위해 ISSY 정보의 삽입에 뒤따르는 분할된 TS 패킷 스트림을 지연시킬 수 있다.
널 패킷 딜리션 블록(3030)은 TS 입력 스트림 경우에만 사용된다. 일부 TS 입력 스트림 또는 분할된 TS 스트림은 VBR (variable bit-rate) 서비스를 CBR TS 스트림에 수용하기 위해 존재하는 많은 수의 널 패킷을 가질 수 있다. 이 경우, 불필요한 전송 오버헤드를 피하기 위해, 널 패킷은 확인되어 전송되지 않을 수 있다. 수신기에서, 제거된 널 패킷은 전송에 삽입된 DNP(deleted null-packet, 삭제된 널 패킷) 카운터를 참조하여 원래 존재했던 정확한 장소에 재삽입될 수 있어, CBR이 보장되고 타임 스탬프(PCR) 갱신의 필요가 없어진다.
헤더 컴프레션 블록(3040)은 TS 또는 IP 입력 스트림에 대한 전송 효율을 증가시키기 위해 패킷 헤더 압축을 제공할 수 있다. 수신기는 헤더의 특정 부분에 대한 선험적인(a priori) 정보를 가질 수 있기 때문에, 이 알려진 정보(known information)는 송신기에서 삭제될 수 있다.
TS에 대해, 수신기는 동기 바이트 구성(0x47) 및 패킷 길이(188 바이트)에 관한 선험적인 정보를 가질 수 있다. 입력된 TS가 하나의 PID만을 갖는 콘텐트를 전달하면, 즉, 하나의 서비스 컴포넌트(비디오, 오디오 등) 또는 서비스 서브 컴포넌트(SVC 베이스 레이어, SVC 인헨스먼트 레이어, MVC 베이스 뷰, 또는 MVC 의존 뷰)에 대해서만, TS 패킷 헤더 압축이 TS에 (선택적으로) 적용될 수 있다. TS 패킷 헤더 압축은 입력 스트림이 IP 스트림인 경우 선택적으로 사용된다. 상기 블록은 생략되거나 유사 또는 동일 기능을 갖는 블록으로 대체될 수 있다.
도 4는 본 발명의 일 실시예에 따른 BICM 블록을 나타낸다.
도 4에 도시된 BICM 블록은 도 1을 참조하여 설명한 BICM 블록(1010)의 일 실시예에 해당한다.
전술한 바와 같이, 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치는 지상파 방송 서비스, 모바일 방송 서비스, UHDTV 서비스 등을 제공할 수 있다.
QoS가 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치에 의해 제공되는 서비스의 특성에 의존하므로, 각각의 서비스에 해당하는 데이터는 서로 다른 방식을 통해 처리되어야 한다. 따라서, 본 발명의 일 실시예에 따른 BICM 블록은 SISO, MISO, MIMO 방식을 각각의 데이터 경로에 해당하는 데이터 파이프에 독립적으로 적용함으로써 각데이터 파이프를 독립적으로 처리할 수 있다. 결과적으로, 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 송신 장치는 각각의 데이터 파이프를 통해 전송되는 각 서비스 또는 서비스 컴포넌트에 대한 QoS를 조절할 수 있다.
(a)는 베이스 프로파일 및 핸드헬드 프로파일에 의해 공유되는 BICM 블록을 나타내고, (b)는 어드벤스 프로파일의 BICM 블록을 나타낸다.
베이스 프로파일 및 핸드헬드 프로파일에 의해 공유되는 BICM 블록 및 어드벤스 프로파일의 BICM 블록은 각각의 데이터 파이프를 처리하기 위한 복수의 처리 블록을 포함할 수 있다.
베이스 프로파일 및 핸드헬드 프로파일에 대한 BICM 블록 및 어드벤스 프로파일에 대한 BICM 블록의 각각의 처리 블록에 대해 설명한다.
베이스 프로파일 및 핸드헬드 프로파일에 대한 BICM 블록의 처리 블록(5000)은 데이터 FEC 인코더(5010), 비트 인터리버(5020), 컨스텔레이션 매퍼(mapper)(5030), SSD (signal space diversity) 인코딩 블록(5040), 타임 인터리버(5050)를 포함할 수 있다.
데이터 FEC 인코더(5010)는 외부 코딩(BCH) 및 내부 코딩(LDPC)을 이용하여 FECBLOCK 절차를 생성하기 위해 입력 BBF에 FEC 인코딩을 실행한다. 외부 코딩(BCH)은 선택적인 코딩 방법이다. 데이터 FEC 인코더(5010)의 구체적인 동작에 대해서는 후술한다.
비트 인터리버(5020)는 효율적으로 실현 가능한 구조를 제공하면서 데이터 FEC 인코더(5010)의 출력을 인터리빙하여 LDPC 코드 및 변조 방식의 조합으로 최적화된 성능을 달성할 수 있다. 비트 인터리버(5020)의 구체적인 동작에 대해서는 후술한다.
컨스텔레이션 매퍼(5030)는 QPSK, QAM-16, 불균일 QAM (NUQ-64, NUQ-256, NUQ-1024) 또는 불균일 컨스텔레이션 (NUC-16, NUC-64, NUC-256, NUC-1024)을 이용해서 베이스 및 핸드헬드 프로파일에서 비트 인터리버(5020)로부터의 각각의 셀 워드를 변조하거나 어드벤스 프로파일에서 셀 워드 디멀티플렉서(5010-1)로부터의 셀 워드를 변조하여 파워가 정규화된 컨스텔레이션 포인트 el을 제공할 수 있다. 해당 컨스텔레이션 매핑은 데이터 파이프에 대해서만 적용된다. NUQ가 임의의 형태를 갖는 반면, QAM-16 및 NUQ는 정사각형 모양을 갖는 것이 관찰된다. 각각의 컨스텔레이션이 90도의 배수만큼 회전되면, 회전된 컨스텔레이션은 원래의 것과 정확히 겹쳐진다. 회전 대칭 특성으로 인해 실수 및 허수 컴포넌트의 용량 및 평균 파워가 서로 동일해진다. NUQ 및 NUC는 모두 각 코드 레이트(code rate)에 대해 특별히 정의되고, 사용되는 특정 하나는 PLS2 데이터에 보관된 파라미터 DP_MOD에 의해 시그널링 된다.
타임 인터리버(5050)는 데이터 파이프 레벨에서 동작할 수 있다. 타임 인터리빙의 파라미터는 각각의 데이터 파이프에 대해 다르게 설정될 수 있다. 타임 인터리버(5050)의 구체적인 동작에 관해서는 후술한다.
어드벤스 프로파일에 대한 BICM 블록의 처리 블록(5000-1)은 데이터 FEC 인코더, 비트 인터리버, 컨스텔레이션 매퍼, 및 타임 인터리버를 포함할 수 있다.
단, 처리 블록(5000-1)은 셀 워드 디멀티플렉서(5010-1) 및 MIMO 인코딩 블록(5020-1)을 더 포함한다는 점에서 처리 블록(5000)과 구별된다.
또한, 처리 블록(5000-1)에서의 데이터 FEC 인코더, 비트 인터리버, 컨스텔레이션 매퍼, 타임 인터리버의 동작은 전술한 데이터 FEC 인코더(5010), 비트 인터리버(5020), 컨스텔레이션 매퍼(5030), 타임 인터리버(5050)의 동작에 해당하므로, 그 설명은 생략한다.
셀 워드 디멀티플렉서(5010-1)는 어드벤스 프로파일의 데이터 파이프가 MIMO 처리를 위해 단일 셀 워드 스트림을 이중 셀 워드 스트림으로 분리하는 데 사용된다. 셀 워드 디멀티플렉서(5010-1)의 구체적인 동작에 관해서는 후술한다.
MIMO 인코딩 블록(5020-1)은 MIMO 인코딩 방식을 이용해서 셀 워드 디멀티플렉서(5010-1)의 출력을 처리할 수 있다. MIMO 인코딩 방식은 방송 신호 송신을 위해 최적화되었다. MIMO 기술은 용량 증가를 얻기 위한 유망한 방식이지만, 채널 특성에 의존한다. 특별히 방송에 대해서, 서로 다른 신호 전파 특성으로 인한 두 안테나 사이의 수신 신호 파워 차이 또는 채널의 강한 LOS 컴포넌트는 MIMO로부터 용량 이득을 얻는 것을 어렵게 한다. 제안된 MIMO 인코딩 방식은 MIMO 출력 신호 중 하나의 위상 랜덤화 및 회전 기반 프리코딩을 이용하여 이 문제를 극복한다.
MIMO 인코딩은 송신기 및 수신기 모두에서 적어도 두 개의 안테나를 필요로 하는 2x2 MIMO 시스템을 위해 의도된다. 두 개의 MIMO 인코딩 모드는 본 제안인 FR-SM (full-rate spatial multiplexing) 및 FRFD-SM (full-rate full-diversity spatial multiplexing)에서 정의된다. FR-SM 인코딩은 수신기 측에서의 비교적 작은 복잡도 증가로 용량 증가를 제공하는 반면, FRFD-SM 인코딩은 수신기 측에서의 큰 복잡도 증가로 용량 증가 및 추가적인 다이버시티 이득을 제공한다. 제안된 MIMO 인코딩 방식은 안테나 극성 배치를 제한하지 않는다.
MIMO 처리는 어드벤스 프로파일 프레임에 요구되는데, 이는 어드벤스 프로파일 프레임에서의 모든 데이터 파이프가 MIMO 인코더에 의해 처리된다는 것을 의미한다. MIMO 처리는 데이터 파이프 레벨에서 적용된다. 컨스텔레이션 매퍼 출력의 페어(pair, 쌍)인 NUQ (e1,i 및 e2,i)는 MIMO 인코더의 입력으로 공급된다. MIMO 인코더 출력 페어(pair, 쌍)(g1,i 및 g2,i)은 각각의 송신 안테나의 동일한 캐리어 k 및 OFDM 심볼 l에 의해 전송된다.
전술한 블록은 생략되거나 유사 또는 동일 기능을 갖는 블록으로 대체될 수 있다.
도 5는 본 발명의 다른 실시예에 따른 BICM 블록을 나타낸다.
도 5에 도시된 BICM 블록은 도 1을 참조하여 설명한 BICM 블록(1010)의 일 실시예에 해당한다.
도 5는 PLS, EAC, 및 FIC의 보호를 위한 BICM 블록을 나타낸다. EAC는 EAS 정보 데이터를 전달하는 프레임의 일부이고, FIC는 서비스와 해당하는 베이스 데이터 파이프 사이에서 매핑 정보를 전달하는 프레임에서의 로지컬 채널이다. EAC 및 FIC에 대한 상세한 설명은 후술한다.
도 5를 참조하면, PLS, EAC, 및 FIC의 보호를 위한 BICM 블록은 PLS FEC 인코더(6000), 비트 인터리버(6010), 및 컨스텔레이션 매퍼(6020)를 포함할 수 있다.
또한, PLS FEC 인코더(6000)는 스크램블러, BCH 인코딩/제로 삽입 블록, LDPC 인코딩 블록, 및 LDPC 패리티 펑처링(puncturing) 블록을 포함할 수 있다. BICM 블록의 각 블록에 대해 설명한다.
PLS FEC 인코더(6000)는 스크램블링된 PLS 1/2 데이터, EAC 및 FIC 섹션을 인코딩할 수 있다.
스크램블러는 BCH 인코딩 및 쇼트닝(shortening) 및 펑처링된 LDPC 인코딩 전에 PLS1 데이터 및 PLS2 데이터를 스크램블링 할 수 있다.
BCH 인코딩/제로 삽입 블록은 PLS 보호를 위한 쇼트닝된 BCH 코드를 이용하여 스크램블링된 PLS 1/2 데이터에 외부 인코딩을 수행하고, BCH 인코딩 후에 제로 비트를 삽입할 수 있다. PLS1 데이터에 대해서만, 제로 삽입의 출력 비트가 LDPC 인코딩 전에 퍼뮤테이션(permutation) 될 수 있다.
LDPC 인코딩 블록은 LDPC 코드를 이용하여 BCH 인코딩/제로 삽입 블록의 출력을 인코딩할 수 있다. 완전한 코딩 블록을 생성하기 위해, Cldpc 및 패리티 비트 Pldpc는 각각의 제로가 삽입된 PLS 정보 블록 Ildpc로부터 조직적으로 인코딩되고, 그 뒤에 첨부된다.
PLS1 및 PLS2에 대한 LDPC 코드 파라미터는 다음의 표 4와 같다.
LDPC 패리티 펑처링 블록은 PLS1 데이터 및 PLS2 데이터에 대해 펑처링을 수행할 수 있다.
쇼트닝이 PLS1 데이터 보호에 적용되면, 일부 LDPC 패리티 비트는 LDPC 인코딩 후에 펑처링된다. 또한, PLS2 데이터 보호를 위해, PLS2의 LDPC 패리티 비트가 LDPC 인코딩 후에 펑처링된다. 이들 펑처링된 비트는 전송되지 않는다.
비트 인터리버(6010)는 각각의 쇼트닝 및 펑처링된 PLS1 데이터 및 PLS2 데이터를 인터리빙할 수 있다.
컨스텔레이션 매퍼(6020)는 비트 인터리빙된 PLS1 데이터 및 PLS2 데이터를 컨스텔레이션에 매핑할 수 있다.
전술한 블록은 생략되거나 유사 또는 동일 기능을 갖는 블록으로 대체될 수 있다.
도 6은 본 발명의 일 실시예에 따른 프레임 빌딩 블록(frame building block)을 나타낸다.
도 7에 도시한 프레임 빌딩 블록은 도 1을 참조하여 설명한 프레임 빌딩 블록(1020)의 일 실시예에 해당한다.
도 6을 참조하면, 프레임 빌딩 블록은 딜레이 컴펜세이션(delay compensation, 지연보상) 블록(7000), 셀 매퍼 (cell mapper) (7010), 및 프리퀀시 인터리버 (frequency interleaver) (7020)를 포함할 수 있다. 프레임 빌딩 블록의 각 블록에 관해 설명한다.
딜레이 컴펜세이션(delay compensation, 지연보상) 블록(7000)은 데이터 파이프와 해당하는 PLS 데이터 사이의 타이밍을 조절하여 송신기 측에서 데이터 파이프와 해당하는 PLS 데이터 간의 동시성(co-time)을 보장할 수 있다. 인풋 포맷 블록 및 BICM 블록으로 인한 데이터 파이프의 지연을 다룸으로써 PLS 데이터는 데이터 파이프만큼 지연된다. BICM 블록의 지연은 주로 타임 인터리버(5050)로 인한 것이다. 인 밴드(In-band) 시그널링 데이터는 다음 타임 인터리빙 그룹의 정보를 시그널링될 데이터 파이프보다 하나의 프레임 앞서 전달되도록 할 수 있다. 딜레이 컴펜세이션(delay compensation, 지연보상) 블록은 그에 맞추어 인 밴드(In-band) 시그널링 데이터를 지연시킨다.
셀 매퍼(7010)는 PLS, EAC, FIC, 데이터 파이프, 보조 스트림, 및 더미 셀을 프레임 내에서 OFDM 심볼의 액티브(active) 캐리어에 매핑할 수 있다. 셀 매퍼(7010)의 기본 기능은 각각의 데이터 파이프, PLS 셀, 및 EAC/FIC 셀에 대한 타임 인터리빙에 의해 생성된 데이터 셀을, 존재한다면, 하나의 프레임 내에서 각각의 OFDM 심볼에 해당하는 액티브(active) OFDM 셀의 어레이에 매핑하는 것이다. (PSI(program specific information)/SI와 같은) 서비스 시그널링 데이터는 개별적으로 수집되어 데이터 파이프에 의해 보내질 수 있다. 셀 매퍼는 프레임 구조의 구성 및 스케줄러에 의해 생성된 다이나믹 인포메이션(dynamic information, 동적 정보)에 따라 동작한다. 프레임에 관한 자세한 내용은 후술한다.
주파수 인터리버(7020)는 셀 매퍼(7010)로부터 의해 수신된 데이터 셀을 랜덤하게 인터리빙하여 주파수 다이버시티를 제공할 수 있다. 또한, 주파수 인터리버(7020)는 단일 프레임에서 최대의 인터리빙 이득을 얻기 위해 다른 인터리빙 시드(seed) 순서를 이용하여 두 개의 순차적인 OFDM 심볼로 구성된 OFDM 심볼 페어(pair, 쌍)에서 동작할 수 있다.
전술한 블록은 생략되거나 유사 또는 동일 기능을 갖는 블록으로 대체될 수 있다.
도 7은 본 발명의 일 실시예에 따른 OFDM 제너레이션 블록을 나타낸다.
도 7에 도시된 OFDM 제너레이션 블록은 도 1을 참조하여 설명한 OFDM 제너레이션 블록(1030)의 일 실시예에 해당한다.
OFDM 제너레이션 블록은 프레임 빌딩 블록에 의해 생성된 셀에 의해 OFDM 캐리어를 변조하고, 파일럿을 삽입하고, 전송을 위한 시간 영역 신호를 생성한다. 또한, 해당 블록은 순차적으로 가드 인터벌을 삽입하고, PAPR 감소 처리를 적용하여 최종 RF 신호를 생성한다.
도 8을 참조하면, OFDM 제너레이션 블록은 파일럿 및 리저브드 톤 삽입 블록 (pilot and revserved tone insertion block) (8000), 2D-eSFN (single frequency network) 인코딩 블록(8010), IFFT (inverse fast Fourier transform) 블록(8020), PAPR 감소 블록(8030), 가드 인터벌 삽입 블록 (guard interval insertion block)(8040), 프리앰블 삽입 블록 (preamble insertion block)(8050), 기타 시스템 삽입 블록(8060), 및 DAC 블록(8070)을 포함할 수 있다.
기타 시스템 삽입 블록(8060)은 방송 서비스를 제공하는 둘 이상의 서로 다른 방송 송신/수신 시스템의 데이터가 동일한 RF 신호 대역에서 동시에 전송될 수 있도록 시간 영역에서 복수의 방송 송신/수신 시스템의 신호를 멀티플렉싱 할 수 있다. 이 경우, 둘 이상의 서로 다른 방송 송신/수신 시스템은 서로 다른 방송 서비스를 제공하는 시스템을 말한다. 서로 다른 방송 서비스는 지상파 방송 서비스, 모바일 방송 서비스 등을 의미할 수 있다.
도 8은 본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 수신 장치의 구조를 나타낸다.
본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 수신 장치는 도 1을 참조하여 설명한 차세대 방송 서비스에 대한 방송 신호 송신 장치에 대응할 수 있다.
본 발명의 일 실시예에 따른 차세대 방송 서비스에 대한 방송 신호 수신 장치는 동기 및 복조 모듈 (synchronization & demodulation module) (9000), 프레임 파싱 모듈 (frame parsing module) (9010), 디매핑 및 디코딩 모듈 (demapping & decoding module) (9020), 출력 프로세서 (output processor) (9030), 및 시그널링 디코딩 모듈 (signaling decoding module) (9040)을 포함할 수 있다. 방송 신호 수신 장치의 각 모듈의 동작에 대해 설명한다.
동기 및 복조 모듈(9000)은 m개의 수신 안테나를 통해 입력 신호를 수신하고, 방송 신호 수신 장치에 해당하는 시스템에 대해 신호 검출 및 동기화를 실행하고, 방송 신호 송신 장치에 의해 실행되는 절차의 역과정에 해당하는 복조를 실행할 수 있다.
프레임 파싱 모듈(9010)은 입력 신호 프레임을 파싱하고, 사용자에 의해 선택된 서비스가 전송되는 데이터를 추출할 수 있다. 방송 신호 송신 장치가 인터리빙을 실행하면, 프레임 파싱 모듈(9010)은 인터리빙의 역과정에 해당하는 디인터리빙을 실행할 수 있다. 이 경우, 추출되어야 하는 신호 및 데이터의 위치가 시그널링 디코딩 모듈(9040)로부터 출력된 데이터를 디코딩함으로써 획득되어, 방송 신호 송신 장치에 의해 생성된 스케줄링 정보가 복원될 수 있다.
디매핑 및 디코딩 모듈(9020)은 입력 신호를 비트 영역 데이터로 변환한 후, 필요에 따라 비트 영역 데이터들을 디인터리빙할 수 있다. 디매핑 및 디코딩 모듈(9020)은 전송 효율을 위해 적용된 매핑에 대한 디매핑을 실행하고, 디코딩을 통해 전송 채널에서 발생한 에러를 정정할 수 있다. 이 경우, 디매핑 및 디코딩 모듈(9020)은 시그널링 디코딩 모듈(9040)로부터 출력된 데이터를 디코딩함으로써 디매핑 및 디코딩을 위해 필요한 전송 파라미터를 획득할 수 있다.
출력 프로세서(9030)는 전송 효율을 향상시키기 위해 방송 신호 송신 장치에 의해 적용되는 다양한 압축/신호 처리 절차의 역과정을 실행할 수 있다. 이 경우, 출력 프로세서(9030)는 시그널링 디코딩 모듈(9040)로부터 출력된 데이터에서 필요한 제어 정보를 획득할 수 있다. 출력 프로세서(8300)의 출력은 방송 신호 송신 장치에 입력되는 신호에 해당하고, MPEG-TS, IP 스트림 (v4 또는 v6) 및 GS일 수 있다.
시그널링 디코딩 모듈(9040)은 동기 및 복조 모듈(9000)에 의해 복조된 신호로부터 PLS 정보를 획득할 수 있다. 전술한 바와 같이, 프레임 파싱 모듈(9010), 디매핑 및 디코딩 모듈(9200), 출력 프로세서(9300)는 시그널링 디코딩 모듈(9040)로부터 출력된 데이터를 이용하여 그 기능을 실행할 수 있다.
도 9는 본 발명의 일 실시예에 따른 프레임 구조를 나타낸다.
도 9는 프레임 타임의 구성예 및 슈퍼 프레임에서의 FRU (frame repetition unit, 프레임 반복 단위)를 나타낸다. (a)는 본 발명의 일 실시예에 따른 슈퍼 프레임을 나타내고, (b)는 본 발명의 일 실시예에 따른 FRU를 나타내고, (c)는 FRU에서의 다양한 피지컬 프로파일(PHY profile)의 프레임을 나타내고, (d)는 프레임의 구조를 나타낸다.
슈퍼 프레임은 8개의 FRU로 구성될 수 있다. FRU는 프레임의 TDM에 대한 기본 멀티플렉싱 단위이고, 슈퍼 프레임에서 8회 반복된다.
FRU에서 각 프레임은 피지컬 프로파일(베이스, 핸드헬드, 어드벤스 프로파일) 중 하나 또는 FEF에 속한다. FRU에서 프레임의 최대 허용수는 4이고, 주어진 피지컬 프로파일은 FRU에서 0회 내지 4회 중 어느 횟수만큼 나타날 수 있다(예를 들면, 베이스, 베이스, 핸드헬드, 어드벤스). 피지컬 프로파일 정의는 필요시 프리앰블에서의 PHY_PROFILE의 리저브드 값을 이용하여 확장될 수 있다.
FEF 부분은 포함된다면 FRU의 끝에 삽입된다. FEF가 FRU에 포함되는 경우, FEF의 최대수는 슈퍼 프레임에서 8이다. FEF 부분들이 서로 인접할 것이 권장되지 않는다.
하나의 프레임은 다수의 OFDM 심볼 및 프리앰블로 더 분리된다. (d)에 도시한 바와 같이, 프레임은 프리앰블, 하나 이상의 FSS, 노멀 데이터 심볼, FES를 포함한다.
프리앰블은 고속 퓨처캐스트 UTB 시스템 신호 검출을 가능하게 하고, 신호의 효율적인 송신 및 수신을 위한 기본 전송 파라미터의 집합을 제공하는 특별한 심볼이다. 프리앰블에 대한 자세한 내용은 후술한다.
FSS의 주된 목적은 PLS 데이터를 전달하는 것이다. 고속 동기화 및 채널 추정을 위해, 이에 따른 PLS 데이터의 고속 디코딩을 위해, FSS는 노멀 데이터 심볼보다 고밀도의 파일럿 패턴을 갖는다. FES는 FSS와 완전히 동일한 파일럿을 갖는데, 이는 FES에 바로 앞서는 심볼에 대해 외삽(extrapolation) 없이 FES 내에서의 주파수만의 인터폴레이션(interpolation, 보간) 및 시간적 보간(temporal interpolation)을 가능하게 한다.
도 10은 본 발명의 일 실시예에 따른 프레임의 시그널링 계층 구조(signaling hierarchy structure) 를 나타낸다.
도 10은 시그널링 계층 구조를 나타내는데, 이는 세 개의 주요 부분인 프리앰블 시그널링 데이터(11000), PLS1 데이터(11010), 및 PLS2 데이터(11020)로 분할된다. 매 프레임마다 프리앰블 신호에 의해 전달되는 프리앰블의 목적은 프레임의 기본 전송 파라미터 및 전송 타입을 나타내는 것이다. PLS1은 수신기가 관심 있는 데이터 파이프에 접속하기 위한 파라미터를 포함하는 PLS2 데이터에 접속하여 디코딩할 수 있게 한다. PLS2는 매 프레임마다 전달되고, 두 개의 주요 부분인 PLS2-STAT 데이터와 PLS2-DYN 데이터로 분할된다. PLS2 데이터의 스태틱(static, 정적) 및 다이나믹(dynamic, 동적) 부분에는 필요시 패딩이 뒤따른다.
도 11은 본 발명의 일 실시예에 따른 프리앰블 시그널링 데이터를 나타낸다.
프리앰블 시그널링 데이터는 수신기가 프레임 구조 내에서 PLS 데이터에 접속하고 데이터 파이프를 추적할 수 있게 하기 위해 필요한 21비트의 정보를 전달한다. 프리앰블 시그널링 데이터에 대한 자세한 내용은 다음과 같다.
PHY_PROFILE: 해당 3비트 필드는 현 프레임의 피지컬 프로파일 타입을 나타낸다. 서로 다른 피지컬 프로파일 타입의 매핑은 아래 표 5에 주어진다.
FFT_SIZE: 해당 2비트 필드는 아래 표 6에서 설명한 바와 같이 프레임 그룹 내에서 현 프레임의 FFT 사이즈를 나타낸다.
GI_FRACTION: 해당 3비트 필드는 아래 표 7에서 설명한 바와 같이 현 슈퍼 프레임에서의 가드 인터벌 일부(fraction) 값을 나타낸다.
EAC_FLAG: 해당 1비트 필드는 EAC가 현 프레임에 제공되는지 여부를 나타낸다. 해당 필드가 1로 설정되면, EAS가 현 프레임에 제공된다. 해당 필드가 0으로 설정되면, EAS가 현 프레임에서 전달되지 않는다. 해당 필드는 슈퍼 프레임 내에서 다이나믹(dynamic, 동적)으로 전환될 수 있다.
PILOT_MODE: 해당 1비트 필드는 현 프레임 그룹에서 현 프레임에 대해 파일럿 모드가 모바일 모드인지 또는 고정 모드인지 여부를 나타낸다. 해당 필드가 0으로 설정되면, 모바일 파일럿 모드가 사용된다. 해당 필드가 1로 설정되면, 고정 파일럿 모드가 사용된다.
PAPR_FLAG: 해당 1비트 필드는 현 프레임 그룹에서 현 프레임에 대해 PAPR 감소가 사용되는지 여부를 나타낸다. 해당 필드가 1로 설정되면, 톤 예약(tone reservation)이 PAPR 감소를 위해 사용된다. 해당 필드가 0으로 설정되면, PAPR 감소가 사용되지 않는다.
FRU_CONFIGURE: 해당 3비트 필드는 현 슈퍼 프레임에서 존재하는 FRU의 피지컬 프로파일 타입 구성을 나타낸다. 현 슈퍼 프레임에서 모든 프리앰블에서의 해당 필드에서, 현 슈퍼 프레임에서 전달되는 모든 프로파일 타입이 식별된다. 해당 3비트 필드는 아래 표 8에 나타낸 바와 같이 각각의 프로파일에 대해 다르게 정의된다.
RESERVED: 해당 7비트 필드는 추후 사용을 위해 리저브드(reserved)된다.
도 12는 본 발명의 일 실시예에 따른 PLS1 데이터를 나타낸다.
PLS1 데이터는 PLS2의 수신 및 디코딩을 가능하게 하기 위해 필요한 파라미터를 포함한 기본 전송 파라미터를 제공한다. 전술한 바와 같이, PLS1 데이터는 하나의 프레임 그룹의 전체 듀레이션 동안 변화하지 않는다. PLS1 데이터의 시그널링 필드의 구체적인 정의는 다음과 같다.
PREAMBLE_DATA: 해당 20비트 필드는 EAC_FLAG를 제외한 프리앰블 시그널링 데이터의 카피이다.
NUM_FRAME_FRU: 해당 2비트 필드는 FRU당 프레임 수를 나타낸다.
PAYLOAD_TYPE: 해당 3비트 필드는 프레임 그룹에서 전달되는 페이로드 데이터의 포맷을 나타낸다. PAYLOAD_TYPE은 표 9에 나타낸 바와 같이 시그널링 된다.
NUM_FSS: 해당 2비트 필드는 현 프레임에서 FSS의 수를 나타낸다.
SYSTEM_VERSION: 해당 8비트 필드는 전송되는 신호 포맷의 버전을 나타낸다. SYSTEM_VERSION은 주 버전 및 부 버전의 두 개의 4비트 필드로 분리된다.
주 버전: SYSTEM_VERSION 필드의 MSB인 4비트는 주 버전 정보를 나타낸다. 주 버전 필드에서의 변화는 호환이 불가능한 변화를 나타낸다. 디폴트 값은 0000이다. 해당 표준에서 서술된 버전에 대해, 값이 0000으로 설정된다.
부 버전: SYSTEM_VERSION 필드의 LSB인 4비트는 부 버전 정보를 나타낸다. 부 버전 필드에서의 변화는 호환이 가능하다.
CELL_ID: 이는 ATSC 네트워크에서 지리적 셀을 유일하게 식별하는 16비트 필드이다. ATSC 셀 커버리지는 퓨처캐스트 UTB 시스템당 사용되는 주파수 수에 따라 하나 이상의 주파수로 구성될 수 있다. CELL_ID의 값이 알려지지 않거나 특정되지 않으면, 해당 필드는 0으로 설정된다.
NETWORK_ID: 이는 현 ATSC 네트워크를 유일하게 식별하는 16비트 필드이다.
SYSTEM_ID: 해당 16비트 필드는 ATSC 네트워크 내에서 퓨처캐스트 UTB 시스템을 유일하게 식별한다. 퓨처캐스트 UTB 시스템은 입력이 하나 이상의 입력 스트림(TS, IP, GS)이고 출력이 RF 신호인 지상파 방송 시스템이다. 퓨처캐스트 UTB 시스템은 존재한다면 FEF 및 하나 이상의 피지컬 프로파일을 전달한다. 동일한 퓨처캐스트 UTB 시스템은 서로 다른 입력 스트림을 전달하고 서로 다른 지리적 영역에서 서로 다른 RF를 사용할 수 있어, 로컬 서비스 삽입을 허용한다. 프레임 구조 및 스케줄링은 하나의 장소에서 제어되고, 퓨처캐스트 UTB 시스템 내에서 모든 전송에 대해 동일하다. 하나 이상의 퓨처캐스트 UTB 시스템은 모두 동일한 피지컬 구조 및 구성을 갖는다는 동일한 SYSTEM_ID 의미를 가질 수 있다.
다음의 루프(loop)는 각 프레임 타입의 길이 및 FRU 구성을 나타내는 FRU_PHY_PROFILE, FRU_FRAME_LENGTH, FRU_GI_FRACTION, RESERVED로 구성된다. 루프(loop) 사이즈는 FRU 내에서 4개의 피지컬 프로파일(FEF 포함)이 시그널링되도록 고정된다. NUM_FRAME_FRU가 4보다 작으면, 사용되지 않는 필드는 제로로 채워진다.
FRU_PHY_PROFILE: 해당 3비트 필드는 관련된 FRU의 (i+1)번째 프레임(i는 루프(loop) 인덱스)의 피지컬 프로파일 타입을 나타낸다. 해당 필드는 표 8에 나타낸 것과 동일한 시그널링 포맷을 사용한다.
FRU_FRAME_LENGTH: 해당 2비트 필드는 관련된 FRU의 (i+1)번째 프레임의 길이를 나타낸다. FRU_GI_FRACTION와 함께 FRU_FRAME_LENGTH를 사용하면, 프레임 듀레이션의 정확한 값이 얻어질 수 있다.
FRU_GI_FRACTION: 해당 3비트 필드는 관련된 FRU의 (i+1)번째 프레임의 가드 인터벌 일부 값을 나타낸다. FRU_GI_FRACTION은 표 7에 따라 시그널링 된다.
RESERVED: 해당 4비트 필드는 추후 사용을 위해 리저브드(reserved)된다.
다음의 필드는 PLS2 데이터를 디코딩하기 위한 파라미터를 제공한다.
PLS2_FEC_TYPE: 해당 2비트 필드는 PLS2 보호에 의해 사용되는 FEC 타입을 나타낸다. FEC 타입은 표 10에 따라 시그널링 된다. LDPC 코드에 대한 자세한 내용은 후술한다.
PLS2_MOD: 해당 3비트 필드는 PLS2에 의해 사용되는 변조 타입을 나타낸다. 변조 타입은 표 11에 따라 시그널링 된다.
PLS2_SIZE_CELL: 해당 15비트 필드는 현 프레임 그룹에서 전달되는 PLS2에 대한 모든 코딩 블록의 사이즈(QAM 셀의 수로 특정됨)인 C
total_partial_block
를 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.
PLS2_STAT_SIZE_BIT: 해당 14비트 필드는 현 프레임 그룹에 대한 PLS2-STAT의 사이즈를 비트수로 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.
PLS2_DYN_SIZE_BIT: 해당 14비트 필드는 현 프레임 그룹에 대한 PLS2-DYN의 사이즈를 비트수로 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.
PLS2_REP_FLAG: 해당 1비트 플래그는 PLS2 반복 모드가 현 프레임 그룹에서 사용되는지 여부를 나타낸다. 해당 필드의 값이 1로 설정되면, PLS2 반복 모드는 활성화된다. 해당 필드의 값이 0으로 설정되면, PLS2 반복 모드는 비활성화된다.
PLS2_REP_SIZE_CELL: 해당 15비트 필드는 PLS2 반복이 사용되는 경우 현 프레임 그룹의 매 프레임마다 전달되는 PLS2에 대한 부분 코딩 블록의 사이즈(QAM 셀의 수로 특정됨)인 Ctotal_partial_block를 나타낸다. 반복이 사용되지 않는 경우, 해당 필드의 값은 0과 동일하다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.
PLS2_NEXT_FEC_TYPE: 해당 2비트 필드는 다음 프레임 그룹의 매 프레임에서 전달되는 PLS2에 사용되는 FEC 타입을 나타낸다. FEC 타입은 표 10에 따라 시그널링 된다.
PLS2_NEXT_MOD: 해당 3비트 필드는 다음 프레임 그룹의 매 프레임에서 전달되는 PLS2에 사용되는 변조 타입을 나타낸다. 변조 타입은 표 11에 따라 시그널링 된다.
PLS2_NEXT_REP_FLAG: 해당 1비트 플래그는 PLS2 반복 모드가 다음 프레임 그룹에서 사용되는지 여부를 나타낸다. 해당 필드의 값이 1로 설정되면, PLS2 반복 모드는 활성화된다. 해당 필드의 값이 0으로 설정되면, PLS2 반복 모드는 비활성화된다.
PLS2_NEXT_REP_SIZE_CELL: 해당 15비트 필드는 PLS2 반복이 사용되는 경우 다음 프레임 그룹의 매 프레임마다 전달되는 PLS2에 대한 전체 코딩 블록의 사이즈(QAM 셀의 수로 특정됨)인 Ctotal_full_block를 나타낸다. 다음 프레임 그룹에서 반복이 사용되지 않는 경우, 해당 필드의 값은 0과 동일하다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.
PLS2_NEXT_REP_STAT_SIZE_BIT: 해당 14비트 필드는 다음 프레임 그룹에 대한 PLS2-STAT의 사이즈를 비트수로 나타낸다. 해당 값은 현 프레임 그룹에서 일정하다.
PLS2_NEXT_REP_DYN_SIZE_BIT: 해당 14비트 필드는 다음 프레임 그룹에 대한 PLS2-DYN의 사이즈를 비트수로 나타낸다. 해당 값은 현 프레임 그룹에서 일정하다.
PLS2_AP_MODE: 해당 2비트 필드는 현 프레임 그룹에서 PLS2에 대해 추가 패리티가 제공되는지 여부를 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다. 아래의 표 12는 해당 필드의 값을 제공한다. 해당 필드의 값이 00으로 설정되면, 현 프레임 그룹에서 추가 패리티가 PLS2에 대해 사용되지 않는다.
PLS2_AP_SIZE_CELL: 해당 15비트 필드는 PLS2의 추가 패리티 비트의 사이즈(QAM 셀의 수로 특정됨)를 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.
PLS2_NEXT_AP_MODE: 해당 2비트 필드는 다음 프레임 그룹의 매 프레임마다 PLS2 시그널링에 대해 추가 패리티가 제공되는지 여부를 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다. 표 12는 해당 필드의 값을 정의한다.
PLS2_NEXT_AP_SIZE_CELL: 해당 15비트 필드는 다음 프레임 그룹의 매 프레임마다 PLS2의 추가 패리티 비트의 사이즈(QAM 셀의 수로 특정됨)를 나타낸다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.
RESERVED: 해당 32비트 필드는 추후 사용을 위해 리저브드(reserved)된다.
CRC_32: 전체 PLS1 시그널링에 적용되는 32비트 에러 검출 코드
도 13은 본 발명의 일 실시예에 따른 PLS2 데이터를 나타낸다.
도 13은 PLS2 데이터의 PLS2-STAT 데이터를 나타낸다. PLS2-STAT 데이터는 프레임 그룹 내에서 동일한 반면, PLS2-DYN 데이터는 현 프레임에 대해 특정한 정보를 제공한다.
PLS2-STAT 데이터의 필드에 대해 다음에 구체적으로 설명한다.
FIC_FLAG: 해당 1비트 필드는 FIC가 현 프레임 그룹에서 사용되는지 여부를 나타낸다. 해당 필드의 값이 1로 설정되면, FIC는 현 프레임에서 제공된다. 해당 필드의 값이 0으로 설정되면, FIC는 현 프레임에서 전달되지 않는다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.
AUX_FLAG: 해당 1비트 필드는 보조 스트림이 현 프레임 그룹에서 사용되는지 여부를 나타낸다. 해당 필드의 값이 1로 설정되면, 보조 스트림은 현 프레임에서 제공된다. 해당 필드의 값이 0으로 설정되면, 보조 프레임은 현 프레임에서 전달되지 않는다. 해당 값은 현 프레임 그룹의 전체 듀레이션 동안 일정하다.
NUM_DP: 해당 6비트 필드는 현 프레임 내에서 전달되는 데이터 파이프의 수를 나타낸다. 해당 필드의 값은 1에서 64 사이이고, 데이터 파이프의 수는 NUM_DP+1이다.
DP_ID: 해당 6비트 필드는 피지컬 프로파일 내에서 유일하게 식별한다.
DP_TYPE: 해당 3비트 필드는 데이터 파이프의 타입을 나타낸다. 이는 아래의 표 13에 따라 시그널링 된다.
DP_GROUP_ID: 해당 8비트 필드는 현 데이터 파이프가 관련되어 있는 데이터 파이프 그룹을 식별한다. 이는 수신기가 동일한 DP_GROUP_ID를 갖게 되는 특정 서비스와 관련되어 있는 서비스 컴포넌트의 데이터 파이프에 접속하는 데 사용될 수 있다.
BASE_DP_ID: 해당 6비트 필드는 관리 계층에서 사용되는 (PSI/SI와 같은) 서비스 시그널링 데이터를 전달하는 데이터 파이프를 나타낸다. BASE_DP_ID에 의해 나타내는 데이터 파이프는 서비스 데이터와 함께 서비스 시그널링 데이터를 전달하는 노멀 데이터 파이프이거나, 서비스 시그널링 데이터만을 전달하는 전용 데이터 파이프일 수 있다.
DP_FEC_TYPE: 해당 2비트 필드는 관련된 데이터 파이프에 의해 사용되는 FEC 타입을 나타낸다. FEC 타입은 아래의 표 14에 따라 시그널링 된다.
DP_COD: 해당 4비트 필드는 관련된 데이터 파이프에 의해 사용되는 코드 레이트(code rate)을 나타낸다. 코드 레이트(code rate)은 아래의 표 15에 따라 시그널링 된다.
DP_MOD: 해당 4비트 필드는 관련된 데이터 파이프에 의해 사용되는 변조를 나타낸다. 변조는 아래의 표 16에 따라 시그널링 된다.
DP_SSD_FLAG: 해당 1비트 필드는 SSD 모드가 관련된 데이터 파이프에서 사용되는지 여부를 나타낸다. 해당 필드의 값이 1로 설정되면, SSD는 사용된다. 해당 필드의 값이 0으로 설정되면, SSD는 사용되지 않는다.
다음의 필드는 PHY_PROFILE가 어드벤스 프로파일을 나타내는 010과 동일할 때에만 나타난다.
DP_MIMO: 해당 3비트 필드는 어떤 타입의 MIMO 인코딩 처리가 관련된 데이터 파이프에 적용되는지 나타낸다. MIMO 인코딩 처리의 타입은 아래의 표 17에 따라 시그널링 된다.
DP_TI_TYPE: 해당 1비트 필드는 타임 인터리빙의 타입을 나타낸다. 0의 값은 하나의 타임 인터리빙 그룹이 하나의 프레임에 해당하고 하나 이상의 타임 인터리빙 블록을 포함하는 것을 나타낸다. 1의 값은 하나의 타임 인터리빙 그룹이 하나보다 많은 프레임으로 전달되고 하나의 타임 인터리빙 블록만을 포함하는 것을 나타낸다.
DP_TI_LENGTH: 해당 2비트 필드(허용된 값은 1, 2, 4, 8뿐이다)의 사용은 다음과 같은 DP_TI_TYPE 필드 내에서 설정되는 값에 의해 결정된다.
DP_TI_TYPE의 값이 1로 설정되면, 해당 필드는 각각의 타임 인터리빙 그룹이 매핑되는 프레임의 수인 PI를 나타내고, 타임 인터리빙 그룹당 하나의 타임 인터리빙 블록이 존재한다 (NTI=1). 해당 2비트 필드로 허용되는 PI의 값은 아래의 표 18에 정의된다.
DP_TI_TYPE의 값이 0으로 설정되면, 해당 필드는 타임 인터리빙 그룹당 타임 인터리빙 블록의 수 NTI를 나타내고, 프레임당 하나의 타임 인터리빙 그룹이 존재한다 (PI=1). 해당 2비트 필드로 허용되는 PI의 값은 아래의 표 18에 정의된다.
DP_FRAME_INTERVAL: 해당 2비트 필드는 관련된 데이터 파이프에 대한 프레임 그룹 내에서 프레임 간격(IJUMP)을 나타내고, 허용된 값은 1, 2, 4, 8 (해당하는 2비트 필드는 각각 00, 01, 10, 11)이다. 프레임 그룹의 모든 프레임에 나타나지 않는 데이터 파이프에 대해, 해당 필드의 값은 순차적인 프레임 사이의 간격과 동일하다. 예를 들면, 데이터 파이프가 1, 5, 9, 13 등의 프레임에 나타나면, 해당 필드의 값은 4로 설정된다. 모든 프레임에 나타나는 데이터 파이프에 대해, 해당 필드의 값은 1로 설정된다.
DP_TI_BYPASS: 해당 1비트 필드는 타임 인터리버(5050)의 가용성을 결정한다. 데이터 파이프에 대해 타임 인터리빙이 사용되지 않으면, 해당 필드 값은 1로 설정된다. 반면, 타임 인터리빙이 사용되면, 해당 필드 값은 0으로 설정된다.
DP_FIRST_FRAME_IDX: 해당 5비트 필드는 현 데이터 파이프가 발생하는 슈퍼 프레임의 첫 번째 프레임의 인덱스를 나타낸다. DP_FIRST_FRAME_IDX의 값은 0에서 31 사이다.
DP_NUM_BLOCK_MAX: 해당 10비트 필드는 해당 데이터 파이프에 대한 DP_NUM_BLOCKS의 최대값을 나타낸다. 해당 필드의 값은 DP_NUM_BLOCKS와 동일한 범위를 갖는다.
DP_PAYLOAD_TYPE: 해당 2비트 필드는 주어진 데이터 파이프에 의해 전달되는 페이로드 데이터의 타입을 나타낸다. DP_PAYLOAD_TYPE은 아래의 표 19에 따라 시그널링 된다.
DP_INBAND_MODE: 해당 2비트 필드는 현 데이터 파이프가 인 밴드(In-band) 시그널링 정보를 전달하는지 여부를 나타낸다. 인 밴드(In-band) 시그널링 타입은 아래의 표 20에 따라 시그널링 된다.
DP_PROTOCOL_TYPE: 해당 2비트 필드는 주어진 데이터 파이프에 의해 전달되는 페이로드의 프로토콜 타입을 나타낸다. 페이로드의 프로토콜 타입은 입력 페이로드 타입이 선택되면 아래의 표 21에 따라 시그널링 된다.
DP_CRC_MODE: 해당 2비트 필드는 CRC 인코딩이 인풋 포맷 블록에서 사용되는지 여부를 나타낸다. CRC 모드는 아래의 표 22에 따라 시그널링 된다.
DNP_MODE: 해당 2비트 필드는 DP_PAYLOAD_TYPE이 TS ('00')로 설정되는 경우에 관련된 데이터 파이프에 의해 사용되는 널 패킷 삭제 모드를 나타낸다. DNP_MODE는 아래의 표 23에 따라 시그널링 된다. DP_PAYLOAD_TYPE이 TS ('00')가 아니면, DNP_MODE는 00의 값으로 설정된다.
ISSY_MODE: 해당 2비트 필드는 DP_PAYLOAD_TYPE이 TS ('00')로 설정되는 경우에 관련된 데이터 파이프에 의해 사용되는 ISSY 모드를 나타낸다. ISSY_MODE는 아래의 표 24에 따라 시그널링 된다. DP_PAYLOAD_TYPE이 TS ('00')가 아니면, ISSY_MODE는 00의 값으로 설정된다.
HC_MODE_TS: 해당 2비트 필드는 DP_PAYLOAD_TYPE이 TS ('00')로 설정되는 경우에 관련된 데이터 파이프에 의해 사용되는 TS 헤더 압축 모드를 나타낸다. HC_MODE_TS는 아래의 표 25에 따라 시그널링 된다.
HC_MODE_IP: 해당 2비트 필드는 DP_PAYLOAD_TYPE이 IP ('01')로 설정되는 경우에 IP 헤더 압축 모드를 나타낸다. HC_MODE_IP는 아래의 표 26에 따라 시그널링 된다.
PID: 해당 13비트 필드는 DP_PAYLOAD_TYPE이 TS ('00')로 설정되고 HC_MODE_TS가 01 또는 10으로 설정되는 경우에 TS 헤더 압축을 위한 PID 수를 나타낸다.
RESERVED: 해당 8비트 필드는 추후 사용을 위해 리저브드(reserved)된다.
다음 필드는 FIC_FLAG가 1과 동일할 때만 나타난다.
FIC_VERSION: 해당 8비트 필드는 FIC의 버전 넘버를 나타낸다.
FIC_LENGTH_BYTE: 해당 13비트 필드는 FIC의 길이를 바이트 단위로 나타낸다.
RESERVED: 해당 8비트 필드는 추후 사용을 위해 리저브드(reserved)된다.
다음 필드는 AUX_FLAG가 1과 동일할 때만 나타난다.
NUM_AUX: 해당 4비트 필드는 보조 스트림의 수를 나타낸다. 제로는 보조 스트림이 사용되지 않는 것을 나타낸다.
AUX_CONFIG_RFU: 해당 8비트 필드는 추후 사용을 위해 리저브드(reserved)된다.
AUX_STREAM_TYPE: 해당 4비트는 현 보조 스트림의 타입을 나타내기 위한 추후 사용을 위해 리저브드(reserved)된다.
AUX_PRIVATE_CONFIG: 해당 28비트 필드는 보조 스트림을 시그널링 하기 위한 추후 사용을 위해 리저브드(reserved)된다.
도 14는 본 발명의 다른 일 실시예에 따른 PLS2 데이터를 나타낸다.
도 14는 PLS2 데이터의 PLS2-DYN을 나타낸다. PLS2-DYN 데이터의 값은 하나의 프레임 그룹의 듀레이션 동안 변화할 수 있는 반면, 필드의 사이즈는 일정하다.
PLS2-DYN 데이터의 필드의 구체적인 내용은 다음과 같다.
FRAME_INDEX: 해당 5비트 필드는 슈퍼 프레임 내에서 현 프레임의 프레임 인덱스를 나타낸다. 슈퍼 프레임의 첫 번째 프레임의 인덱스는 0으로 설정된다.
PLS_CHANGE_COUNTER: 해당 4비트 필드는 구성이 변화하기 전의 슈퍼 프레임의 수를 나타낸다. 구성이 변화하는 다음 슈퍼 프레임은 해당 필드 내에서 시그널링 되는 값에 의해 나타낸다. 해당 필드의 값이 0000으로 설정되면, 이는 어떠한 예정된 변화도 예측되지 않는 것을 의미한다. 예를 들면, 1의 값은 다음 슈퍼 프레임에 변화가 있다는 것을 나타낸다.
FIC_CHANGE_COUNTER: 해당 4비트 필드는 구성(즉, FIC의 콘텐츠)이 변화하기 전의 슈퍼 프레임의 수를 나타낸다. 구성이 변화하는 다음 슈퍼 프레임은 해당 필드 내에서 시그널링 되는 값에 의해 나타낸다. 해당 필드의 값이 0000으로 설정되면, 이는 어떠한 예정된 변화도 예측되지 않는 것을 의미한다. 예를 들면, 0001의 값은 다음 슈퍼 프레임에 변화가 있다는 것을 나타낸다.
RESERVED: 해당 16비트 필드는 추후 사용을 위해 리저브드(reserved)된다.
다음 필드는 현 프레임에서 전달되는 데이터 파이프와 관련된 파라미터를 설명하는 NUM_DP에서의 루프(loop)에 나타난다.
DP_ID: 해당 6비트 필드는 피지컬 프로파일 내에서 데이터 파이프를 유일하게 나타낸다.
DP_START: 해당 15비트 (또는 13비트) 필드는 DPU 어드레싱(addressing) 기법을 사용하여 데이터 파이프의 첫 번째의 시작 위치를 나타낸다. DP_START 필드는 아래의 표 27에 나타낸 바와 같이 피지컬 프로파일 및 FFT 사이즈에 따라 다른 길이를 갖는다.
DP_NUM_BLOCK: 해당 10비트 필드는 현 데이터 파이프에 대한 현 타임 인터리빙 그룹에서 FEC 블록의 수를 나타낸다. DP_NUM_BLOCK의 값은 0에서 1023 사이에 있다.
RESERVED: 해당 8비트 필드는 추후 사용을 위해 리저브드(reserved)된다.
다음의 필드는 EAC와 관련된 FIC 파라미터를 나타낸다.
EAC_FLAG: 해당 1비트 필드는 현 프레임에서 EAC의 존재를 나타낸다. 해당 비트는 프리앰블에서 EAC_FLAG와 같은 값이다.
EAS_WAKE_UP_VERSION_NUM: 해당 8비트 필드는 자동 활성화 지시의 버전 넘버를 나타낸다.
EAC_FLAG 필드가 1과 동일하면, 다음의 12비트가 EAC_LENGTH_BYTE 필드에 할당된다. EAC_FLAG 필드가 0과 동일하면, 다음의 12비트가 EAC_COUNTER에 할당된다.
EAC_LENGTH_BYTE: 해당 12비트 필드는 EAC의 길이를 바이트로 나타낸다.
EAC_COUNTER: 해당 12비트 필드는 EAC가 도달하는 프레임 전의 프레임의 수를 나타낸다.
다음 필드는 AUX_FLAG 필드가 1과 동일한 경우에만 나타난다.
AUX_PRIVATE_DYN: 해당 48비트 필드는 보조 스트림을 시그널링 하기 위한 추후 사용을 위해 리저브드(reserved)된다. 해당 필드의 의미는 설정 가능한 PLS2-STAT에서 AUX_STREAM_TYPE의 값에 의존한다.
CRC_32: 전체 PLS2에 적용되는 32비트 에러 검출 코드.
도 15는 본 발명의 일 실시예에 따른 프레임의 로지컬(logical) 구조를 나타낸다.
전술한 바와 같이, PLS, EAC, FIC, 데이터 파이프, 보조 스트림, 더미 셀은 프레임에서 OFDM 심볼의 액티브(active) 캐리어에 매핑된다. PLS1 및 PLS2는 처음에 하나 이상의 FSS에 매핑된다. 그 후, EAC가 존재한다면 EAC 셀은 바로 뒤따르는 PLS 필드에 매핑된다. 다음에 FIC가 존재한다면 FIC 셀이 매핑된다. 데이터 파이프는 PLS 다음에 매핑되거나, EAC 또는 FIC가 존재하는 경우, EAC 또는 FIC 이후에 매핑된다. 타입 1 데이터 파이프가 처음에 매핑되고, 타입 2 데이터 파이프가 다음에 매핑된다. 데이터 파이프의 타입의 구체적인 내용은 후술한다. 일부 경우, 데이터 파이프는 EAS에 대한 일부 특수 데이터 또는 서비스 시그널링 데이터를 전달할 수 있다. 보조 스트림 또는 스트림은 존재한다면 데이터 파이프를 다음에 매핑되고 여기에는 차례로 더미 셀이 뒤따른다. 전술한 순서, 즉, PLS, EAC, FIC, 데이터 파이프, 보조 스트림, 및 더미 셀의 순서로 모두 함께 매핑하면 프레임에서 셀 용량을 정확히 채운다.
도 16은 본 발명의 일 실시예에 따른 PLS 매핑을 나타낸다.
PLS 셀은 FSS의 액티브(active) 캐리어에 매핑된다. PLS가 차지하는 셀의 수에 따라, 하나 이상의 심볼이 FSS로 지정되고, FSS의 수 NFSS는 PLS1에서의 NUM_FSS에 의해 시그널링된다. FSS는 PLS 셀을 전달하는 특수한 심볼이다. 경고성 및 지연 시간(latency)은 PLS에서 중대한 사안이므로, FSS는 높은 파일럿 밀도를 가지고 있어 고속 동기화 및 FSS 내에서의 주파수만의 인터폴레이션(interpoloation, 보간)을 가능하게 한다.
PLS 셀은 도 16의 예에 나타낸 바와 같이 하향식으로 FSS의 액티브(active) 캐리어에 매핑된다. PLS1 셀은 처음에 첫 FSS의 첫 셀부터 셀 인덱스의 오름차순으로 매핑된다. PLS2 셀은 PLS1의 마지막 셀 직후에 뒤따르고, 매핑은 첫 FSS의 마지막 셀 인덱스까지 아래방향으로 계속된다. 필요한 PLS 셀의 총 수가 하나의 FSS의 액티브(active) 캐리어의 수를 초과하면, 매핑은 다음 FSS로 진행되고 첫 FSS와 완전히 동일한 방식으로 계속된다.
PLS 매핑이 완료된 후, 데이터 파이프가 다음에 전달된다. EAC, FIC 또는 둘 다 현 프레임에 존재하면, EAC 및 FIC는PLS와 노멀 데이터 파이프 사이에 배치된다.
도 17은 본 발명의 일 실시예에 따른 EAC 매핑을 나타낸다.
EAC는 EAS 메시지를 전달하는 전용 채널이고 EAS에 대한 데이터 파이프에 연결된다. EAS 지원은 제공되지만, EAC 자체는 모든 프레임에 존재할 수도 있고 존재하지 않을 수도 있다. EAC가 존재하는 경우, EAC는 PLS2 셀의 직후에 매핑된다. PLS 셀을 제외하고 FIC, 데이터 파이프, 보조 스트림 또는 더미 셀 중 어느 것도 EAC 앞에 위치하지 않는다. EAC 셀의 매핑 절차는 PLS와 완전히 동일하다.
EAC 셀은 도 17의 예에 나타낸 바와 같이 PLS2의 다음 셀부터 셀 인덱스의 오름차순으로 매핑된다. EAS 메시지 크기에 따라, 도 17에 나타낸 바와 같이 EAC 셀은 적은 심볼을 차지할 수 있다.
EAC 셀은 PLS2의 마지막 셀 직후에 뒤따르고, 매핑은 마지막 FSS의 마지막 셀 인덱스까지 아래방향으로 계속된다. 필요한 EAC 셀의 총 수가 마지막 FSS의 남아 있는 액티브(active) 캐리어의 수를 초과하면, EAC 매핑은 다음 심볼로 진행되며, FSS와 완전히 동일한 방식으로 계속된다. 이 경우 EAC의 매핑이 이루어지는 다음 심볼은 노멀 데이터 심볼이고, 이는 FSS보다 더 많은 액티브(active) 캐리어를 갖는다.
EAC 매핑이 완료된 후, 존재한다면 FIC가 다음에 전달된다. FIC가 전송되지 않으면(PLS2 필드에서 시그널링으로), 데이터 파이프가 EAC의 마지막 셀 직후에 뒤따른다.
도 18은 본 발명의 일 실시예에 따른 FIC 매핑을 나타낸다.
(a)는 EAC 없이 FIC 셀의 매핑의 예를 나타내고, (b)는 EAC와 함께 FIC 셀의 매핑의 예를 나타낸다.
FIC는 고속 서비스 획득 및 채널 스캔을 가능하게 하기 위해 계층간 정보(cross-layer information)를 전달하는 전용 채널이다. 해당 정보는 주로 데이터 파이프 사이의 채널 바인딩 (channel binding) 정보 및 각 방송사의 서비스를 포함한다. 고속 스캔을 위해, 수신기는 FIC를 디코딩하고 방송사 ID, 서비스 수, BASE_DP_ID와 같은 정보를 획득할 수 있다. 고속 서비스 획득을 위해, FIC뿐만 아니라 베이스 데이터 파이프도 BASE_DP_ID를 이용해서 디코딩 될 수 있다. 베이스 데이터 파이프가 전송하는 콘텐트를 제외하고, 베이스 데이터 파이프는 노멀 데이터 파이프와 정확히 동일한 방식으로 인코딩되어 프레임에 매핑된다. 따라서, 베이스 데이터 파이프에 대한 추가 설명이 필요하지 않다. FIC 데이터가 생성되어 관리 계층에서 소비된다. FIC 데이터의 콘텐트는 관리 계층 사양에 설명된 바와 같다.
FIC 데이터는 선택적이고, FIC의 사용은 PLS2의 스태틱(static, 정적)인 부분에서 FIC_FLAG 파라미터에 의해 시그널링 된다. FIC가 사용되면, FIC_FLAG는 1로 설정되고, FIC에 대한 시그널링 필드는 PLS2의 스태틱(static, 정적)인 부분에서 정의된다. 해당 필드에서 시그널링되는 것은 FIC_VERSION이고, FIC_LENGTH_BYTE. FIC는 PLS2와 동일한 변조, 코딩, 타임 인터리빙 파라미터를 사용한다. FIC는 PLS2_MOD 및 PLS2_FEC와 같은 동일한 시그널링 파라미터를 공유한다. FIC 데이터는 존재한다면 PLS2 후에 매핑되거나, EAC가 존재하는 경우 EAC 직후에 매핑된다. 노멀 데이터 파이프, 보조 스트림, 또는 더미 셀 중 어느 것도 FIC 앞에 위치하지 않는다. FIC 셀을 매핑하는 방법은 EAC와 완전히 동일하고, 이는 다시 PLS와 동일하다.
PLS 후의 EAC가 존재하지 않는 경우, FIC 셀은 (a)의 예에 나타낸 바와 같이 PLS2의 다음 셀부터 셀 인덱스의 오름차순으로 매핑된다. FIC 데이터 사이즈에 따라, (b)에 나타낸 바와 같이, FIC 셀은 수 개의 심볼에 대해서 매핑된다.
FIC 셀은 PLS2의 마지막 셀 직후에 뒤따르고, 매핑은 마지막 FSS의 마지막 셀 인덱스까지 아래방향으로 계속된다. 필요한 FIC 셀의 총 수가 마지막 FSS의 남아 있는 액티브(active) 캐리어의 수를 초과하면, 나머지 FIC 셀의 매핑은 다음 심볼로 진행되며 이는 FSS와 완전히 동일한 방식으로 계속된다. 이 경우, FIC가 매핑되는 다음 심볼은 노멀 데이터 심볼이며, 이는 FSS보다 더 많은 액티브(active) 캐리어를 갖는다.
EAS 메시지가 현 프레임에서 전송되면, EAC는 FIC 보다 먼저 매핑되고 (b)에 나타낸 바와 같이 EAC의 다음 셀부터 FIC 셀은 셀 인덱스의 오름차순으로 매핑된다.
FIC 매핑이 완료된 후, 하나 이상의 데이터 파이프가 매핑되고, 이후 존재한다면 보조 스트림, 더미 셀이 뒤따른다.
도 19는 본 발명의 일 실시예에 따른 FEC 구조를 나타낸다.
도 19는 비트 인터리빙 전의 본 발명의 일 실시예에 따른 FEC 구조를 나타낸다. 전술한 바와 같이, 데이터 FEC 인코더는 외부 코딩(BCH) 및 내부 코딩(LDPC)을 이용하여 FECBLOCK 절차를 생성하기 위해 입력 BBF에 FEC 인코딩을 실행할 수 있다. 도시된 FEC 구조는 FECBLOCK에 해당한다. 또한, FECBLOCK 및 FEC 구조는 LDPC 코드워드의 길이에 해당하는 동일한 값을 갖는다.
도 19에 도시된 바와 같이, BCH 인코딩이 각각의 BBF(Kbch 비트)에 적용된 후, LDPC 인코딩이 BCH - 인코딩된 BBF(Kldpc 비트 = Nbch 비트)에 적용된다.
Nldpc의 값은 64800 비트 (롱 FECBLOCK) 또는 16200 비트 (쇼트 FECBLOCK)이다.
아래의 표 28 및 표 29는 롱 FECBLOCK 및 쇼트 FECBLOCK 각각에 대한 FEC 인코딩 파라미터를 나타낸다.
BCH 인코딩 및 LDPC 인코딩의 구체적인 동작은 다음과 같다.
12-에러 정정 BCH 코드가 BBF의 외부 인코딩에 사용된다. 쇼트 FECBLOCK 및 롱 FECBLOCK에 대한 BBF 생성 다항식은 모든 다항식을 곱함으로써 얻어진다.
LDPC 코드는 외부 BCH 인코딩의 출력을 인코딩하는 데 사용된다. 완성된 Bldpc (FECBLOCK)를 생성하기 위해, Pldpc (패리티 비트)가 각각의 Ildpc (BCH - 인코딩된 BBF)로부터 조직적으로 인코딩되고, Ildpc에 첨부된다. 완성된 Bldpc (FECBLOCK)는 다음의 수학식으로 표현된다.
롱 FECBLOCK 및 쇼트 FECBLOCK에 대한 파라미터는 위의 표 28 및 29에 각각 주어진다.
롱 FECBLOCK에 대해 Nldpc - Kldpc 패리티 비트를 계산하는 구체적인 절차는 다음과 같다.
1) 패리티 비트 초기화
2) 패리티 체크 매트릭스의 어드레스의 첫 번째 행에서 특정된 패리티 비트 어드레스에서 첫 번째 정보 비트 i0 누산(accumulate). 패리티 체크 매트릭스의 어드레스의 상세한 내용은 후술한다. 예를 들면, 비율 13/15에 대해,
3) 다음 359개의 정보 비트 is, s=1, 2, …, 359에 대해, 다음의 수학식을 이용하여 패리티 비트 어드레스에서 is 누산(accumulate).
여기서, x는 첫 번째 비트 i0에 해당하는 패리티 비트 누산기의 어드레스를 나타내고, Qldpc는 패리티 체크 매트릭스의 어드레서에서 특정된 코드 레이트(code rate) 의존 상수이다. 상기 예인, 비율 13/15에 대한, 따라서 정보 비트 i1에 대한 Qldpc = 24에 계속해서, 다음 동작이 실행된다.
4) 361번째 정보 비트 i360에 대해, 패리티 비트 누산기의 어드레스는 패리티 체크 매트릭스의 어드레스의 두 번째 행에 주어진다. 마찬가지 방식으로, 다음 359개의 정보 비트 is, s= 361, 362, …, 719에 대한 패리티 비트 누산기의 어드레스는 수학식 6을 이용하여 얻어진다. 여기서, x는 정보 비트 i360에 해당하는 패리티 비트 누산기의 어드레스, 즉 패리티 체크 매트릭스의 두 번째 행의 엔트리를 나타낸다.
5) 마찬가지 방식으로, 360개의 새로운 정보 비트의 모든 그룹에 대해, 패리티 체크 매트릭스의 어드레스로부터의 새로운 행은 패리티 비트 누산기의 어드레스를 구하는 데 사용된다.
모든 정보 비트가 이용된 후, 최종 패리티 비트가 다음과 같이 얻어진다.
6) i=1로 시작해서 다음 동작을 순차적으로 실행
여기서 pi, i=0,1,...Nldpc - Kldpc - 1의 최종 콘텐트는 패리티 비트 pi와 동일하다.
표 30을 표 31로 대체하고, 롱 FECBLOCK에 대한 패리티 체크 매트릭스의 어드레스를 쇼트 FECBLOCK에 대한 패리티 체크 매트릭스의 어드레스로 대체하는 것을 제외하고, 쇼트 FECBLOCK에 대한 해당 LDPC 인코딩 절차는 롱 FECBLOCK에 대한 t LDPC 인코딩 절차에 따른다.
도 20은 본 발명의 일 실시예에 따른 타임 인터리빙을 나타낸다.
(a) 내지 (c)는 타임 인터리빙 모드의 예를 나타낸다.
타임 인터리버는 데이터 파이프 레벨에서 동작한다. 타임 인터리빙의 파라미터는 각각의 데이터 파이프에 대해 다르게 설정될 수 있다.
PLS2-STAT 데이터의 일부에 나타나는 다음의 파라미터는 타임 인터리빙을 구성한다.
DP_TI_TYPE (허용된 값: 0 또는 1): 타임 인터리빙 모드를 나타낸다. 0은 타임 인터리빙 그룹당 다수의 타임 인터리빙 블록(하나 이상의 타임 인터리빙 블록)을 갖는 모드를 나타낸다. 이 경우, 하나의 타임 인터리빙 그룹은 하나의 프레임에 (프레임간 인터리빙 없이) 직접 매핑된다. 1은 타임 인터리빙 그룹당 하나의 타임 인터리빙 블록만을 갖는 모드를 나타낸다. 이 경우, 타임 인터리빙 블록은 하나 이상의 프레임에 걸쳐 확산된다(프레임간 인터리빙).
DP_TI_LENGTH: DP_TI_TYPE = '0'이면, 해당 파라미터는 타임 인터리빙 그룹당 타임 인터리빙 블록의 수 NTI이다. DP_TI_TYPE = '1'인 경우, 해당 파라미터는 하나의 타임 인터리빙 그룹으로부터 확산되는 프레임의 수 PI이다.
DP_NUM_BLOCK_MAX (허용된 값: 0 내지 1023): 타임 인터리빙 그룹당 XFECBLOCK의 최대 수를 나타낸다.
DP_FRAME_INTERVAL (허용된 값: 1, 2, 4, 8): 주어진 피지컬 프로파일의 동일한 데이터 파이프를 전달하는 두 개의 순차적인 프레임 사이의 프레임의 수 IJUMP를 나타낸다.
DP_TI_BYPASS (허용된 값: 0 또는 1): 타임 인터리빙이 데이터 프레임에 이용되지 않으면, 해당 파라미터는 1로 설정된다. 타임 인터리빙이 이용되면, 0으로 설정된다.
추가로, PLS2-DYN 데이터로부터의 파라미터 DP_NUM_BLOCK은 데이터 그룹의 하나의 타임 인터리빙 그룹에 의해 전달되는 XFECBLOCK의 수를 나타낸다.
타임 인터리빙이 데이터 프레임에 이용되지 않으면, 다음의 타임 인터리빙 그룹, 타임 인터리빙 동작, 타임 인터리빙 모드는 고려되지 않는다. 그러나 스케줄러부터의 다이나믹(dynamic, 동적) 구성 정보를 위한 딜레이 컴펜세이션(delay compensation, 지연보상) 블록은 여전히 필요하다. 각각의 데이터 파이프에서, SSD/MIMO 인코딩으로부터 수신한 XFECBLOCK은 타임 인터리빙 그룹으로 그루핑된다. 즉, 각각의 타임 인터리빙 그룹은 정수 개의 XFECBLOCK의 집합이고, 다이나믹(dynamic, 동적)으로 변화하는 수의 XFECBLOCK을 포함할 것이다. 인덱스 n의 타임 인터리빙 그룹에 있는 XFECBLOCK의 수는 NxBLOCK_Group(n)로 나타내고, PLS2-DYN 데이터에서 DP_NUM_BLOCK으로 시그널링된다. 이때, NxBLOCK_Group(n)은 최소값 0에서 가장 큰 값이 1023인 최대값 NxBLOCK_Group_MAX (DP_NUM_BLOCK_MAX에 해당)까지 변화할 수 있다.
각각의 타임 인터리빙 그룹은 하나의 프레임에 직접 매핑되거나 PI개의 프레임에 걸쳐 확산된다. 또한 각각의 타임 인터리빙 그룹은 하나 이상(NTI개)의 타임 인터리빙 블록으로 분리된다. 여기서 각각의 타임 인터리빙 블록은 타임 인터리버 메모리의 하나의 사용에 해당한다. 타임 인터리빙 그룹 내의 타임 인터리빙 블록은 약간의 다른 수의 XFECBLOCK을 포함할 수 있다. 타임 인터리빙 그룹이 다수의 타임 인터리빙 블록으로 분리되면, 타임 인터리빙 그룹은 하나의 프레임에만 직접 매핑된다. 아래의 표 32에 나타낸 바와 같이, 타임 인터리빙에는 세 가지 옵션이 있다(타임 인터리빙을 생략하는 추가 옵션 제외).
일반적으로, 타임 인터리버는 프레임 생성 과정 이전에 데이터 파이프 데이터에 대한 버퍼로도 작용할 것이다. 이는 각각의 데이터 파이프에 대해 2개의 메모리 뱅크로 달성된다. 첫 번째 타임 인터리빙 블록은 첫 번째 뱅크에 기입된다. 첫 번째 뱅크에서 판독되는 동안 두 번째 타임 인터리빙 블록이 두 번째 뱅크에 기입된다.
타임 인터리빙은 트위스트된 행-열 블록 인터리버이다. n번째 타임 인터리빙 그룹의 s번째 타임 인터리빙 블록에 대해, 열의 수 Nc 가 NxBLOCK_TI(n,s) 와 동일한 반면, 타임 인터리빙 메모리의 행의 수 Nr 는 셀의 수 Ncells 와 동일하다 (즉, Nr = Ncells).
도 21은 본 발명의 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 기본 동작을 나타낸다.
도 21(a)는 타임 인터리버에서 기입 동작을 나타내고, 도 21(b)는 타임 인터리버에서 판독 동작을 나타낸다. (a)에 나타낸 바와 같이, 첫 번째 XFECBLOCK은 타임 인터리빙 메모리의 첫 번째 열에 열 방향으로 기입되고, 두 번째 XFECBLOCK은 다음 열에 기입되고, 이러한 동작이 이어진다. 그리고 인터리빙 어레이에서, 셀이 대각선 방향으로 판독된다. (b)에 나타낸 바와 같이 첫 번째 행으로부터 (가장 왼쪽 열을 시작으로 행을 따라 오른쪽으로) 마지막 행까지 대각선 방향 판독이 진행되는 동안, 개의 셀이 판독된다. 구체적으로, 이 순차적으로 판독될 타임 인터리빙 메모리 셀 위치라고 가정하면, 이러한 인터리빙 어레이에서의 판독 동작은 아래 식에서와 같이 행 인덱스 , 열 인덱스 , 관련된 트위스트 파라미터 를 산출함으로써 실행된다.
도 22는 본 발명의 다른 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 동작을 나타낸다.
변수 는 보다 작거나 같을 것이다. 따라서, 에 상관없이 수신기 측에서 단일 메모리 디인터리빙을 달성하기 위해, 트위스트된 행-열 블록 인터리버용 인터리빙 어레이는 가상 XFECBLOCK을 타임 인터리빙 메모리에 삽입함으로써 의 크기로 설정되고, 판독 과정은 다음 식과 같이 이루어진다.
타임 인터리빙 그룹의 수는 3으로 설정된다. 타임 인터리버의 옵션은 DP_TI_TYPE='0', DP_FRAME_INTERVAL='1', DP_TI_LENGTH='1', 즉 NTI=1, IJUMP=1, PI=1에 의해 PLS2-STAT 데이터에서 시그널링된다. 각각 Ncells = 30인 XFECBLOCK의 타임 인터리빙 그룹당 수는 각각의 NxBLOCK_TI(0,0) = 3, NxBLOCK_TI(1,0) = 6, NxBLOCK_TI(2,0) = 5에 의해 PLS2-DYN 데이터에서 시그널링된다. XFECBLOCK의 최대 수는 NxBLOCK_Group_MAX에 의해 PLS2-STAT 데이터에서 시그널링 되고, 이는 로 이어진다.
도 23은 본 발명의 일 실시예에 따른 트위스트된 행-열 블록 인터리버의 대각선 방향 판독 패턴을 나타낸다.
더 구체적으로, 도 23은 파라미터 및 Sshift=(7-1)/2=3을 갖는 각각의 인터리빙 어레이로부터의 대각선 방향 판독 패턴을 나타낸다. 이때 위에 유사 코드로 나타낸 판독 과정에서, 이면, Vi의 값이 생략되고, Vi의 다음 계산값이 사용된다.
도 24는 본 발명의 일 실시예에 따른 각각의 인터리빙 어레이로부터의 인터리빙된 XFECBLOCK을 나타낸다.
도 25는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링을 도시한 도면이다.
전술한 바와 같이, 본 발명에 따른 주파수 인터리버는 OFDM 심볼마다 다른 인터리빙 시퀀스를 사용하여 인터리빙을 수행하나, 주파수 디인터리버는 수신한 OFDM 심볼에 대하여 싱글 메모리 디인터리빙을 수행할 수 있다.
본 발명에서는, 한 프레임 내의 OFDM 심볼 수가 짝수인지 홀수인지에 무관하게 주파수 디인터리버가 싱글 메모리 디인터리빙을 수행할 수 있는 방법을 제안한다. 이를 위하여, OFDM 심볼 수가 짝수개인지 홀수개인지에 따라 전술한 주파수 인터리버의 구조가 다르게 운영될 수 있다. 또한, 이와 관련된 시그널링 정보가 전술한 프리앰블 및/또는 PLS(Physical Layer Signaling) 에 추가로 정의될 수 있다. 이를 통하여 OFDM 심볼의 개수가 짝수인 경우에 한정되지 않고, 언제든지 싱글 메모리 디인터리빙이 가능해질 수 있다.
여기서, PLS 는 매 프레임의 FSS(Frame Starting Symbol, FSS) 에 포함되어 전송될 수 있다. 또는 실시예에 따라, PLS 는 첫번째 OFDM 심볼에 포함되어 전송될 수 있다. 또는 PLS 존재여부에 따라, PLS 에 해당하는 시그널링은 프리앰블에 모두 포함되어 전송될 수 있다. 또는 프리앰블 및/또는 PLS 에 해당하는 시그널링 정보들은 부트 스트랩 정보에 포함되어 전송될 수도 있다. 부트 스트랩 정보는 프리앰블의 앞에 위치하는 정보 파트일 수 있다.
송신부의 주파수 인터리버에서 활용된 처리동작 등에 관한 정보로서, FI_mode 필드와 N_sym 필드가 있을 수 있다.
FI_mode 필드는 프리앰블에 위치할 수 있는 1 비트 필드일 수 있다. FI_mode 필드는 매 프레임의 FSS(Frame Starting Symbol) 또는 첫번째 OFDM 심볼에 사용된 인터리빙 스킴을 나타낼 수 있다.
FI_mode 필드가 지시하는 인터리빙 스킴에는 FI 스킴 #1 와 FI 스킴 #2 가 있을 수 있다.
FI 스킴 #1 은 송신측에서 주파수 인터리버가 FSS 에 대하여, 랜덤 쓰기(random writing) 동작 수행 후 선형 읽기(linear reading) 동작을 수행한 경우를 의미할 수 있다. 이 경우는 FI_mode 필드 값이 0 인 경우에 해당될 수 있다. PRBS 등을 이용한 임의의 랜덤 시퀀스 제너레이터에 의해 발생되는 값을 이용해, 메모리에 랜덤쓰기, 선형 읽기 동작을 수행할 수 있다. 여기서 선형 읽기란 순차적으로 읽어들이는 동작을 의미할 수 있다.
FI 스킴 #2 는 송신측에서 주파수 인터리버가 FSS 에 대하여, 선형 쓰기(linear writing) 동작 수행 후 랜덤 읽기(random reading) 동작을 수행한 경우를 의미할 수 있다. 이 경우는 FI_mode 필드 값이 1 인 경우에 해당될 수 있다. 마찬가지로, PRBS 등을 이용한 임의의 랜덤 시퀀스 제너레이터에 의해 발생되는 값을 이용해, 메모리에 선형쓰기, 랜덤읽기 동작을 수행할 수 있다. 여기서 선형 쓰기란 순차적으로 쓰는 동작을 수행하는 것을 의미할 수 있다.
또한, FI_mode 필드는 매 프레임의 FES(Frame Edge Symbol) 또는 마지막 OFDM 심볼에 사용된 인터리빙 스킴을 나타낼 수 있다. FES 에 적용되는 인터리빙 스킴은 PLS 에 의해 전송되는 N_sym 필드의 값에 따라 다르게 지시될 수 있다. 즉, OFDM 심볼 수가 홀수인지 짝수인지에 따라 FI_mode 필드가 지시하는 인터리빙 스킴이 달라질 수 있다. 두 필드들간의 관계는 미리 송수신측에 테이블로서 정의되어 있을 수 있다.
FI_mode 필드는 실시예에 따라 프리앰블 외에 프레임의 다른 부분에 정의되어 전송될 수 있다.
N_sym 필드는 PLS 파트에 위치할 수 있는 필드일 수 있다. N_sym 필드의 비트수는 실시예에 따라 가변적일 수 있다. N_sym 필드는 한 프레임에 포함된 OFDM 심볼의 개수를 지시할 수 있다. 이에 따라, 수신측에서는 OFDM 심볼의 개수가 짝수개인지 홀수개인지 파악할 수 있다.
전술한 한 프레임 내의 OFDM 심볼 수에 무관한 주파수 인터리버에 대응되는 주파수 디인터리버의 동작은 다음과 같다. 이 주파수 디인터리버는 제안된 시그널링 필드들을 활용하여 OFDM 심볼 수가 짝수인지 홀수인지 여부에 무관하게 싱글 메모리 디인터리빙을 수행할 수 있다.
주파수 디인터리버는 먼저, 프리앰블의 FI_mode 필드의 정보를 이용하여 FSS 에 대하여 주파수 디인터리빙을 수행할 수 있다. FSS 에 활용된 주파수 인터리빙 스킴이 FI_mode 에 의해 지시되기 때문이다.
주파수 디인터리버는 FI_mode 필드의 시그널링 정보와 PLS 의 N_sym 필드의 시그널링 정보를 이용하여, FES 에 대하여 주파수 디인터리빙을 수행할 수 있다. 이 때, 미리 정의된 테이블을 이용하여 두 필드간의 관계가 파악될 수 있다. 기 정의된 테이블에 대하여는 후술한다.
이 외의 심볼들의 전반적인 디인터리빙 과정은, 송신측의 인터리빙 과정의 역순으로 수행될 수 있다. 즉, 입력되는 연속된 한쌍의 OFDM 심볼에 대해서, 주파수 디인터리버는 하나의 인터리빙 시퀀스를 활용하여 디인터리빙을 수행할 수 있다. 여기서, 하나의 인터리빙 시퀀스는 해당 주파수 인터리버가 읽기&쓰기에 사용했던 인터리빙 시퀀스일 수 있다. 주파수 디인터리버는 그 인터리빙 시퀀스를 이용하여 역순으로 읽기&쓰기 과정을 수행할 수 있다.
허나, 본 발명에 따른 주파수 디인터리버는 더블 메모리를 사용하는 핑퐁(ping pong) 구조를 사용하지 않을 수 있다. 주파수 디인터리버는 연속된 입력 OFDM 심볼들에 대하여, 싱글 메모리를 활용해 디인터리빙을 수행할 수 있다. 이로써 주파수 디인터리버의 메모리 사용 효율성이 증대될 수 있다.
도 26은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링에 있어서, FSS 를 위한 FI 스킴들을 도시한 도면이다.
전술한 FI_mode 필드와 N_sym 필드를 이용하여 주파수 인터리빙 과정에서 적용되는 인터리빙 스킴을 결정할 수 있다.
FSS 의 경우에 있어서, N_sym 필드가 지시하는 OFDM 심볼의 수가 짝수인 경우, FI_mode 필드 값에 무관하게 FI 스킴 #1 이 FSS 에 수행될 수 있다.
N_sym 필드가 지시하는 OFDM 심볼의 수가 홀수인 경우, FI_mode 필드가 0 의 값을 가지면, FI 스킴 #1 이 FSS 에 적용되고, 1 의 값을 가지면, FI 스킴 #2 가 FSS 에 적용될 수 있다. 즉, OFDM 심볼의 수가 홀수인 경우, 주파수 인터리빙에 있어 FI 스킴 #1 과 #2 가 번갈아가면서 FSS 에 적용될 수 있다.
도 27은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디 인터리빙을 위한 시그널링에 있어서, FES 를 위한 리셋 모드의 동작을 도시한 도면이다.
FES 에 대한 주파수 인터리빙에 있어서, 전술한 심볼 오프셋 생성기는 리셋 모드(Reset mode) 라는 새로운 개념을 도입할 수 있다. 리셋 모드는, 심볼 오프셋 생성기에 의해 발생되는 심볼 오프셋 값이 '0' 인 모드를 의미할 수 있다.
FES 에 대한 주파수 인터리빙에 있어서, 전술한 FI_mode 필드와 N_sym 필드를 이용하여 리셋 모드의 사용여부를 결정할 수 있다.
N_sym 필드가 지시하는 OFDM 심볼의 수가 짝수인 경우, FI_mode 필드의 값에 무관하게 심볼 오프셋 생성기의 리셋 모드는 동작하지 않을 수 있다(off).
N_sym 필드가 지시하는 OFDM 심볼의 수가 홀수인 경우, FI_mode 필드의 값이 0 일 경우 심볼 오프셋 생성기가 리셋 모드에 따라 동작할 수 있다(on). 또한, FI_mode 필드의 값이 1 일 경우 심볼 오프셋 생성기의 리셋 모드는 동작하지 않을 수 있다(off). 즉, OFDM 심볼의 수가 홀수인 경우, 주파수 인터리빙에 있어 리셋모드가 번갈아가며 온/오프 될 수 있다.
도 28은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 주파수 인터리버의 입력과 출력을 수학식으로 표시한 도면이다.
전술한 바와 같이, 각각의 메모리 뱅크-A 및 메모리 뱅크-B 의 OFDM 심볼 페어들은 전술한 인터리빙 과정에 의해 처리될 수 있다. 전술한 바와 같이, 인터리빙에는 하나의 메인 인터리빙 시드가 순환 천이(cyclic-shifting)되어 생성된 다양한 다른 인터리빙 시드가 활용될 수 있다. 여기서, 인터리빙 시드는 인터리빙 시퀀스라고 칭해질 수도 있다. 또한, 인터리빙 시드는 인터리빙 주소값(interleaving address value) 내지는 주소값(address value), 인터리빙 주소(interleaving address) 라고 칭해질 수 있다. 여기서, 인터리빙 주소값이라는 용어는 복수개의 주소값들의 집합의 의미로 복수의 대상을 지시하는데 사용될 수도 있고, 인터리빙 시드의 의미로 단수의 대상을 지시하는데 사용될 수도 있다. 즉 실시예에 따라, 인터리빙 주소값이라 함은 H(p) 의 각각의 주소값을 의미하거나, H(p) 자체를 의미할 수도 있다.
하나의 OFDM 심볼 내에서 인터리빙될 주파수 인터리빙의 입력은 Om,l 으로 표기될 수 있다(t50010). 여기서, 각각의 데이터 셀들은 xm,l,0, .... xm,l,Ndata-1 로 표기될 수 있다. p 는 셀 인덱스, l 은 OFDM 심볼 인덱스, m 은 프레임의 인덱스를 의미할 수 있다. 즉, xm,l,p 는 m 번째 프레임, l 번째 OFDM 심볼의 p 번째 데이터 셀을 의미할 수 있다. Ndata 는 데이터 셀들의 개수를 의미할 수 있다. Nsym 은 심볼(프레임 시그널링 심볼, 노말 데이터 심볼, 프레임 엣지 심볼)들의 개수를 의미할 수 있다.
전술한 동작에 의해 인터리빙을 거친 후의 데이터 셀들은 Pm,l 로 표기될 수 있다(t50020). 각각의 인터리빙된 데이터 셀들은 vm,l,0, .... vm,l,Ndata-1 로 표기될 수 있다. p, l, m 은 전술한것과 같은 인덱스 값을 가질 수 있다.
도 29는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, FI 스킴 #1 및 FI 스킴 #2 에 따른 주파수 인터리빙의 논리적 동작 매커니즘의 수학식을 나타낸다.
먼저, FI 스킴 #1 에 따른 주파수 인터리빙을 설명한다. 전술한 바와 같이, 각 메모리 뱅크의 인터리빙 시퀀스(인터리빙 주소)를 이용하여 주파수 인터리빙이 수행될 수 있다.
짝수번째 심볼(j mod 2 = 0)에 대한 인터리빙 동작은 도시된 수학식(t51010)과 같이 수학적으로 기술될 수 있다. 입력 데이터 x 에 대하여, 인터리빙 시퀀스(인터리빙 주소)를 이용하여 주파수 인터리빙이 수행되어 출력 v 를 얻을 수 있다. 여기서, p 번째 입력 데이터 x 는, H(p) 번째 출력 데이터 v 와 같아지도록 순서가 섞일 수 있다.
즉, 짝수번째 심볼(첫번째 심볼)에 대해서는, 인터리빙 시퀀스를 이용하여 랜덤 쓰기 과정이 먼저 수행된 후, 다시 이를 순차적으로 읽는 선형 읽기 과정이 수행될 수 있다. 여기서, 인터리빙 시퀀스(인터리빙 주소)는 PRBS 등을 이용한 임의의 랜덤 시퀀스 제너레이터에 의해 발생되는 값일 수 있다.
홀수번째 심볼(j mod 2 = 1)에 대한 인터리빙 동작은 도시된 수학식(t51020)과 같이 수학적으로 기술될 수 있다. 입력 데이터 x 에 대하여, 인터리빙 시퀀스(인터리빙 주소)를 이용하여 주파수 인터리빙이 수행되어 출력 v 를 얻을 수 있다. 여기서, H(p) 번째 입력 데이터 x 는, p 번째 출력 데이터 v 와 같아지도록 순서가 섞일 수 있다. 즉, 짝수번째 심볼에 대한 인터리빙 처리와 비교했을 때, 인터리빙 시퀀스(인터리빙 주소)가 반대로(역으로, inverse) 적용될 수 있다.
즉, 홀수번째 심볼(두번째 심볼)에 대해서는, 순서대로 메모리에 데이터를 쓰는 선형쓰기 동작이 먼저 수행된 후, 다시 이를 인터리빙 시퀀스를 이용하여 랜덤하게 읽는 랜덤 읽기 과정이 수행될 수 있다. 마찬가지로, 인터리빙 시퀀스(인터리빙 주소)는 PRBS 등을 이용한 임의의 랜덤 시퀀스 제너레이터에 의해 발생되는 값일 수 있다.
먼저, FI 스킴 #2 에 따른 주파수 인터리빙을 설명한다.
FI 스킴 #2 에 따른 주파수 인터리빙의 경우, 짝/홀수번째 심볼에 대한 동작이 FI 스킴 #1 과 반대로 수행될 수 있다.
즉, 짝수번째 심볼에 대해서는 도시된 수학식(t51020)에 따라, 선형쓰기 동작 후, 랜덤 읽기 동작이 수행될 수 있다. 또한, 홀수번째 심볼에 대해서는 도시된 수학식(t51010)에 따라, 랜덤쓰기 동작 후, 선형 읽기 동작이 수행될 수 있다. 자세한 사항은, FI 스킴 #1 에서 설명한 것과 같다.
심볼 인덱스 l 은 0, 1, ... , Nsym-1, 셀 인덱스 p 는 0, 1, ... , Ndata-1 로 표현될 수 있다. 실시예에 따라 짝수번째 심볼과 홀수번째 심볼에 대한 주파수 인터리빙 방식이 서로 뒤바뀔 수 있다. 또한, 실시예에 따라, FI 스킴 #1 과 FI 스킴 #2 에 따른 주파수 인터리빙 방식이 서로 뒤바뀔 수 있다.
도 30은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 짝수인 경우의 실시예를 도시한 도면이다.
본 실시예에서, N_sym 필드는 한 프레임 내에 OFDM 개수가 짝수개임을 지시할 수 있다. 본 실시예에서, 하나의 프레임은 하나의 프리앰블과 8 개의 OFDM 심볼을 가지고 있음을 가정한다. 실시예에 따라 프리앰블 앞에 부트 스트랩 정보가 더 포함될 수 있다. 부트 스트랩 정보는 도시되지 않았다.
본 실시예에서, 한 프레임은 각각 하나의 FSS 와 FES 를 포함할 수 있다. 여기서, FSS 와 FES 의 길이는 같다고 가정한다. 또한, N_sym 필드의 정보는 PLS 파트에 포함되어 전송되므로, 주파수 디인터리버가 FSS 디코딩 후에 이를 확인할 수 있다. 또한, 본 실시예에서, FES 에 대한 동작이 수행되기 이전에 N_sym 필드에 대한 디코딩이 완료된다고 가정한다.
각각의 프레임의 FSS 에서, 심볼 오프셋 생성기의 값은 0 으로 리셋될 수 있다. 따라서, 각 첫번째, 두번째 심볼들은 같은 인터리빙 시퀀스에 의해 처리될 수 있다. 또한, 각 프레임의 시작마다 다시 #0 시퀀스가 동작에 사용될 수 있다. 그 이후 차례대로 #1, #2 시퀀스가 주파수 인터리버/디인터리버의 동작에 사용될 수 있다.
도 31은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 짝수인 경우의 실시예를 도시한 도면이다.
첫번째 프레임에서, 프리앰블의 FI_mode 필드로부터, FSS 가 어떠한 방식으로 인터리빙되었는지에 대한 정보를 얻을 수 있다. 본 실시예는 OFDM 심볼이 짝수개인 경우이므로 FI 스킴 #1 만 사용될 수 있다.
이 후, FSS 가 디코딩되어, N_sym 정보가 획득될 수 있다. N_sym 정보로부터 본 프레임의 심볼 개수가 짝수개임을 알 수 있다. 이 후, 주파수 디인터리버가 FES 를 디코딩하게 될 때, 획득된 FI_mode 정보와 N_sym 정보를 이용하여 디코딩이 수행될 수 있다. 심볼의 개수가 짝수개인 경우이므로, 심볼 오프셋 생성기는 전술한 리셋모드에 따라 동작하지 않는다. 즉, 리셋 모드는 오프(off)된 상태일 수 있다.
이 후 다른 프레임에 대해서도, 짝수개의 OFDM 심볼들이 포함되어 있으므로 주파수 디인터리버가 같은 방식으로 동작할 수 있다. 즉, FSS 에서 사용될 FI 스킴은 FI 스킴 #1 이며, FES 에서 사용될 리셋 모드는 오프(off) 된 상태일 수 있다.
도 32는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 홀수인 경우의 실시예를 도시한 도면이다.
본 실시예에서, N_sym 필드는 한 프레임 내에 OFDM 개수가 홀수개임을 지시할 수 있다. 본 실시예에서, 하나의 프레임은 하나의 프리앰블과 7 개의 OFDM 심볼을 가지고 있음을 가정한다. 실시예에 따라 프리앰블 앞에 부트 스트랩 정보가 더 포함될 수 있다. 부트 스트랩 정보는 도시되지 않았다.
본 실시예에서, 심볼의 개수가 짝수인 경우와 마찬가지로, 한 프레임은 각각 하나의 FSS 와 FES 를 포함할 수 있다. 여기서, FSS 와 FES 의 길이는 같다고 가정한다. 또한, N_sym 필드의 정보는 PLS 파트에 포함되어 전송되므로, 주파수 디인터리버가 FSS 디코딩 후에 이를 확인할 수 있다. 또한, 본 실시예에서, FES 에 대한 동작이 수행되기 이전에 N_sym 필드에 대한 디코딩이 완료된다고 가정한다.
각각의 프레임의 FSS 에서, 심볼 오프셋 생성기의 값은 0 으로 리셋될 수 있다. 또한 임의의 프레임의 FES 에서, FI_mode 필드와 N_sym 필드의 값에 따라 심볼 오프셋 생성기가 리셋모드에 따라 동작할 수 있다. 따라서, 임의의 프레임의 FES에서, 심볼 오프셋 생성기의 값이 0 으로 리셋되거나, 리셋되지 않을 수 있다. 이러한 리셋 과정은 매 프레임마다 교대로 수행될 수 있다.
도시된 첫번째 프레임의 마지막 심볼, FES 에서 심볼 오프셋 생성기의 리셋이 발생될 수 있다. 따라서, 인터리빙 시퀀스는 #0 시퀀스로 리셋될 수 있다. 따라서, 주파수 인터리버/디인터리버는 해당 FES 를 #0 시퀀스에 따라 처리할 수 있다(t54010).
다음 프레임의 FSS 에서는 심볼 오프셋 생성기가 다시 리셋되어 #0 시퀀스가 사용될 수 있다(t54010). 두번째 프레임(프레임 #1) 의 FES 에서는 리셋이 발생되지 않고, 다시 세번째 프레임(프레임 #2) 의 FES 에서는 리셋이 발생될 수 있다.
도 33은 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 심볼의 개수가 홀수인 경우의 실시예를 도시한 도면이다.
첫번째 프레임에서, 프리앰블의 FI_mode 필드로부터, FSS 가 어떠한 방식으로 인터리빙되었는지에 대한 정보를 얻을 수 있다. OFDM 심볼이 홀수개인 경우이므로 FI 스킴 #1 과 FI 스킴 #2 가 사용될 수 있다. 본 실시예의 첫번째 프레임에서는 FI 스킴 #1 이 사용되었다.
이 후, FSS 가 디코딩되어, N_sym 정보가 획득될 수 있다. N_sym 정보로부터 본 프레임의 심볼 개수가 홀수개임을 알 수 있다. 이 후, 주파수 디인터리버가 FES 를 디코딩하게 될 때, 획득된 FI_mode 정보와 N_sym 정보를 이용하여 디코딩이 수행될 수 있다. 심볼의 개수가 홀수개이고, FI 스킴#1 가 사용된 경우이므로, FI_mode 필드 값은 0임을 알 수 있다. FI_mode 가 0 이므로 심볼 오프셋 생성기는 전술한 리셋모드에 따라 동작할 수 있다. 즉, 리셋 모드는 온(on) 상태일 수 있다.
리셋모드에 따라 동작되어, 심볼 오프셋 생성기는 0 으로 리셋될 수 있다. 두번째 프레임에서 FI_mode 필드 값이 1 이므로, FI 스킴 #2 에 의해 FSS 가 처리되었음을 알 수 있다. 역시, N_sym 필드를 통해, 심볼의 개수가 홀수개임을 알 수 있다. 두번째 프레임의 경우에는 FI_mode 필드 값이 1 이고, 심볼 개수가 홀수개이므로 심볼 오프셋 생성기는 리셋모드에 따라 동작하지 않을 수 있다.
이러한 방식으로, FSS 에서 사용될 FI 스킴은 FI 스킴 #1 과 #2 가 번갈아가며 세팅될 수 있다. 또한, FES 에서 사용될 리셋 모드는 온(on) 과 오프(off) 가 번갈아가며 세팅될 수 있다. 실시예에 따라 매 프레임마다 세팅이 바뀌지 않을 수도 있다.
도 34는 본 발명의 일 실시예에 따른 프레임 내의 심볼 수에 영향받지 않는 싱글 메모리 디인터리빙을 위한 시그널링에 있어서, 주파수 디인터리버의 동작을 도시한 도면이다.
주파수 디인터리버는 앞서 정의된 FI_mode 필드 및/또는 N_sym 필드의 정보를 이용하여 주파수 디인터리빙을 수행할 수 있다. 전술한 바와 같이 주파수 디인터리버는 싱글 메모리를 이용하여 동작할 수 있다. 기본적으로 주파수 디인터리빙은 송신단에서 수행한 주파수 인터리빙 과정의 역과정을 수행하여 원래의 데이터가 순서가 복원되도록 하는 과정일 수 있다.
전술한 것과 같이, FSS 에 대한 주파수 디인터리빙은 프리앰블의 FI_mode 필드 및 N_sym 필드를 이용하여 얻은 FI 스킴에 관한 정보를 기반으로 동작될 수 있다. FES 에 대한 주파수 디인터리빙은 FI_mode 필드와 N_sym 필드를 통해 리셋 모드의 동작 여부를 파악한뒤 그에 기반하여 동작될 수 있다.
즉, 입력되는 한쌍의 OFDM 심볼에 대하여, 주파수 디인터리버는 주파수 인터리버의 읽기/쓰기 동작의 역과정을 수행할 수 있다. 이 과정에서 하나의 인터리빙 시퀀스가 사용될 수 있다.
단, 전술한 바와 같이 주파수 인터리버는 더블 메모리를 사용하는 핑퐁 구조를 따르지만, 주파수 디인터리버는 싱글 메모리로 디인터리빙을 수행할 수 있다. 이 싱글 메모리 주파수 디인터리빙은 FI_mode 필드 및 N_sym 필드의 정보들을 이용하여 수행될 수 있다. 이 정보들을 통해, OFDM 심볼 개수에 영향을 받지 않고, 홀수개의 OFDM 심볼을 가진 프레임에 대해서도 싱글 메모리 주파수 디인터리빙이 가능할 수 있다.
본 발명에 따른 주파수 인터리버는 OFDM 심볼의 모든 데이터 셀들을 대상으로 주파수 인터리빙을 수행할 수 있다. 주파수 인터리버는 데이터 셀들을, 각 심볼의 가능한(available) 데이터 캐리어에 매핑시키는 동작을 수행할 수 있다.
본 발명에 따른 주파수 인터리버는 FFT 사이즈에 따라 다른 인터리빙 모드로 동작할 수 있다. 예를 들어, FFT 사이즈가 32K 인 경우, 주파수 인터리버는 전술한 FI 스킴 #1 과 같이 짝수번째 심볼에 대해서는 랜덤쓰기/선형읽기 동작을 수행하고, 홀수번째 심볼에 대해서는 선형쓰기/랜덤읽기 동작을 수행할 수 있다. 또한, FFT 사이즈가 16K 또는 8K 인 경우, 주파수 인터리버는 짝수/홀수에 무관하게 모든 심볼들에 대하여 선형읽기/랜덤쓰기 동작을 수행할 수 있다.
인터리빙 모드 전환을 결정하는 FFT 사이즈는 실시예에 따라 변경될 수 있다. 즉, 32K 및 16K 일 경우 FI 스킴 #1 과 같이 동작하고, 8K 일 경우 짝수/홀수에 무관한 동작을 수행할 수도 있다. 또한, 모든 FFT 사이즈에 대해 FI 스킴 #1 과 같이 동작할 수도 있고, 모든 FFT 사이즈에 대해 짝수/홀수에 무관한 동작을 수행할 수도 있다. 또한 실시예에 따라, 특정 FFT 사이즈에 대해서는 FI 스킴 #2 와 같이 동작할 수도 있다.
이러한 주파수 인터리빙은 전술한 인터리빙 시퀀스(인터리빙 주소)를 이용하여 수행될 수 있다. 인터리빙 시퀀스는 전술한대로 오프셋 값을 이용하여 다양하게 생성될 수 있다. 또한, 주소값 체크(address check) 가 수행되어 다양한 인터리빙 시퀀스가 생성될 수 있다.
도 35는 본 발명의 다른 실시예에 따른 variable data-rate 시스템을 나타낸 개념도이다.
구체적으로, 이 도면에 도시된 하나의 전송 슈퍼 프레임은 NTI_NUM개의 TI 그룹들로 구성되며, 각 TI 그룹은 N BLOCK_TI 개의 FEC 블록들을 포함할 수 있다. 이 경우, 각 TI 그룹에 포함된 FEC 블록의 개수는 서로 다를 수 있다. 본 발명의 일 실시예에 따른 TI 그룹은 타임 인터리빙을 수행하기 위한 블록으로 정의될 수 있으며, 상술한 TI 블록 또는 IF와 동일한 의미로 사용될 수 있다.
본 발명에서는 TI 그룹 내에 포함된 FEC 블록들의 개수가 서로 다른 경우, 하나의 트위스티드 로-컬럼 블록 인터리빙 룰(twisted row-column block interleaving rule)을 이용하여 TI 그룹들에 대한 인터리빙을 수행하는 것을 일 실시예로 할 수 있다. 이를 통해 수신기는 단일 메모리를 사용하여 디인터리빙을 수행할 수 있다. 이하에서는 매 TI 그룹마다 FEC 블록 개수가 변할 수 있는 베리어블 비트-레이트 (variable bit-rate, VBR) 전송을 고려한 입력 FEC block의 메모리 배열 방법 및 타임 인터리버의 리딩 (reading) 동작을 설명한다.
도 36은 본 발명의 블록 인터리빙의 라이팅(writing) 및 리딩 (reading) 오퍼레이션의 일 실시예를 나타낸다. 이에 대한 구체적인 내용은 전술하였다.
도 37은 본 발명의 일 실시예에 따른 블록 인터리빙을 나타낸 수학식이다.
도면에 도시된 수학식은 각 TI 그룹 단위로 적용되는 블록 인터리빙을 나타낸다. 수학식에 도시된 바와 같이, 시프트 밸류는 TI 그룹에 포함된 FEC 블록들의 개수가 홀수인 경우 및 짝수인 경우 각각 계산될 수 있다. 즉, 본 발명의 일 실시예에 따른 블록 인터리빙은 FEC 블록들의 개수를 홀수로 만든 후 시프트 밸류를 계산할 수 있다.
본 발명의 일 실싱예에 따른 타임 인터리버는 수퍼 프레임 내에서 가장 큰 FEC 블록 개수를 갖는 TI group을 기준으로 인터리빙과 관련된 파라미터들을 결정할 수 있다. 이를 통해 수신기는 단일 메모리 사용하여 디인터리빙을 수행할 수 있다. 이때, 결정된 FEC 블록을 가장 많이 포함하고 있는 TI 그룹의 FEC 블록 개수보다 적은 FEC 블록을 갖는 TI 그룹에 대해서는 부족한 FEC 블록의 개수에 해당하는 버츄얼 (virtual) FEC 블록들을 추가할 수 있다.
본 발명의 일 실시예에 따른 버츄얼 (virtual) FEC 블록들은 실제 FEC 블록들 앞에 삽입될 수 있다. 이후, 본 발명의 일 실시예에 따른 타임 인터리버는 버츄얼 (virtual) FEC 블록들을 고려하여 하나의 트위스티드 로-컬럼 블록 인터리빙 룰(twisted row-column block interleaving rule)을 이용하여 TI 그룹들에 대한 인터리빙을 수행할 수 있다. 또한 본 발명의 일 실시예에 따른 타임 인터리버는 리딩(reading) 동작에서 버츄얼 (virtual) FEC 블록들에 해당되는 메모리-인덱스 (memory-index)가 발생하는 경우 상술한 스킵 오퍼레이션을 수행할 수 있다. 이후 라이팅 (writing) 동작 시, 입력된 TI 그룹의 FEC 블록들의 개수와 리딩 (reading)시 출력 TI 그룹의 FEC 블록들의 개수를 일치 시킨다. 결과적으로, 본 발명의 일 실시예에 따른 타임 인터리빙에 따르면, 수신기에서 효율적인 싱글-메모리 디인터리빙(single-memory deinterleaving)을 수행하기 위하여 버츄얼 (virtual) FEC 블록을 삽입하더라도 스킵 오퍼레이션을 통해 실제 전송되는 데이터-레이트의 손실은 발생하지 않을 수 있다.
도 38은 본 발명의 일 실시예에 따른 버츄얼 (virtual) FEC 블록들을 나타낸 도면이다.
도면의 좌측은 맥시멈 FEC 블록들의 개수와 TI 그룹에 포함된 실제 FEC 블록들의 개수 및 맥시멈 FEC 블록들의 개수와 실제 FEC 블록들의 개수간의 차이를 나타낸 파라미터 및 버츄얼 (virtual) FEC 블록들의 개수를 도출하기 위한 수학식을 나타낸다.
도면의 우측은 TI 그룹 내에 버츄얼 (virtual) FEC 블록들이 삽입된 실시예를 나타낸다. 이 경우 상술한 바와 같이 버츄얼 (virtual) FEC 블록들은 실제 FEC 블록의 앞에 삽입될 수 있디.
도 39는 본 발명의 일 실시예에 따른 버츄얼 (virtual) FEC 블록들이 삽입된 이후 리딩 (reading) 동작을 나타낸 수학식이다.
도면에 표시된 스킵 오퍼레이션은 리딩(reading) 동작에서 버츄얼 (virtual) FEC 블록들을 스킵하는 역할을 수행할 수 있다.
도 40은 본 발명의 일 실시예에 따른 타임 인터리빙의 프로세스를 나타낸 순서도이다.
본 발명의 일 실시예에 따른 타임 인터리버는 이니셜 밸류(initial value)를 셋업할 수 있다(S67000).
이후 본 발명의 일 실시예에 따른 타임 인터리버는 버츄얼 (virtual) FEC 블록들을 고려하여 실제 FEC 블록들을 라이팅 (writing)할 수 있다(S67100).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 템포럴 TI 어드레스(temporal TI address)를 생성할 수 있다(S67200).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 생성된 TI 리딩 어드레스 (reading address)의 가용성 (availiability)를 평가할 수 있다(S67300). 이후, 본 발명의 일 실시예에 따른 타임 인터리버는 최종 TI 리딩 어드레스 (reading address)를 생성할 수 있다(S67400).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 실제 FEC 블록들을 리딩(reading)할 수 있다(S67500).
도 41은 본 발명의 일 실시예에 따른 시프트 밸류 및 맥시멈 TI 블록의 크기를 결정하는 과정을 나타낸 수학식이다.
본 도면은 TI 그룹이 2개이고, TI 그룹내의 셀의 개수는 30이고, 첫번째 TI 그룹에 포함된 FEC 블록의 개수가 5이고 두번째 TI 블록에 포함된 FEC 블록의 개수가 6인 경우의 실시예를 나타낸다. 맥시멈 FEC 블록의 개수는 6이 되나, 짝수이므로, 시프트 밸류를 구하기 위한 조정된 맥시멈 FEC 블록의 개수는 7이 될 수 있으며, 시프트 밸류는 4로 계산될 수 있다.
도 42 내지 도 44는 이전도면에서 전술한 실시예의 TI 과정을 나타낸 도면이다.
도 42는 본 발명의 일 실시예에 따른 라이팅 (writing) 오퍼레이션을 나타낸다.
이 도면은 이전도면에서 설명한 두 개의 TI 그룹에 대한 라이팅 (writing) 오퍼레이션을 나타낸다.
도면의 왼쪽에 도시된 블록은 TI 메모리 어드레스 어레이(memory address array)를 나타내며, 도면의 오른쪽에 도시된 블록은 연속한 두 개의 TI 그룹들에 대해 각각 버츄얼(virtual) FEC 블록들이 각각 2개 및 1개가 삽입된 경우의 라이팅 (writing) 오퍼레이션을 나타낸다. 상술한 바와 같이 조정된 맥시멈 FEC 블록의 개수는 7이므로, 첫번째 TI 그룹에는 두 개의 버츄얼(virtual) FEC 블록들이 삽입되며, 두번째 TI 그룹에는 한 개의 버츄얼(virtual) FEC 블록이 삽입된다.
도 43은 본 발명의 일 실시예에 따른 리딩 (reading) 오퍼레이션을 나타낸다.
도면의 왼쪽에 도시된 블록은 TI 메모리 어드레스 어레이(memory address array)를 나타내며, 도면의 오른쪽에 도시된 블록은 연속한 두 개의 TI 그룹들에 대해 각각 버츄얼(virtual) FEC 블록들이 각각 2개 및 1개가 삽입된 경우의 리딩 (reading) 오퍼레이션을 나타낸다. 이 경우, 버츄얼(virtual) FEC 블록들에도 실제 FEC 블록과 동일하게 리딩 (reading) 오퍼레이션이 수행될 수 있다.
도 44는 본 발명의 일 실시예에 따른 리딩 (reading) 오퍼레이션에서 스킵 오퍼레이션이 수행된 결과를 나타낸다.
도면에 도시된 바와 같이 두 개의 TI 그룹내에는 버츄얼(virtual) FEC 블록들이 스킵될 수 있다.
도 45 내지 46은 전술한 TI의 역과정인 타임 디인터리빙을 나타낸다.
구체적으로 도 45는 첫번째 TI 그룹에 대한 타임 디인터리빙을 나타내며 도 46은 두번째 TI 그룹에 대한 타임 디인터리빙을 나타낸다.
도 45는 본 발명의 일 실시예에 따른 타임 디인터리빙의 라이팅 (writing) 과정을 나타낸다.
도면의 왼쪽에 도시된 블록은 TI 메모리 어드레스 어레이(memory address array)를 나타내며, 도면의 가운데 도시된 블록은 타임 디인터리버에 입력된 첫번째 TI 그룹을 나타내며, 도면의 오른쪽에 도시된 블록은 연속한 첫번째 TI 그룹에 대해 스킵된 버츄얼(virtual) FEC 블록들을 고려하여 수행된 라이팅 (writing) 과정을 나타낸다.
도면에 도시된 바와 같이, TI 과정에서 스킵된 2 개의 버츄얼 (virtual) FEC 블록들은 정확한 리딩 (reading) 오퍼레이션을 위해 라이팅 (writing) 과정에서 복원될 수 있다. 이 경우, 스킵된 2 개의 버츄얼 (virtual) FEC 블록들의 위치 및 양은 임의의 알고리즘을 통해 추정될 수 있다.
도 46은 본 발명의 다른 실시예에 따른 타임 디인터리빙의 라이팅 (writing) 과정을 나타낸다.
도면의 왼쪽에 도시된 블록은 TI 메모리 어드레스 어레이(memory address array)를 나타내며, 도면의 가운데 도시된 블록은 타임 디인터리버에 입력된 두번째 TI 그룹을 나타내며, 도면의 오른쪽에 도시된 블록은 연속한 두번째 TI 그룹에 대해 스킵된 버츄얼(virtual) FEC 블록들을 고려하여 수행된 라이팅 (writing) 과정을 나타낸다.
도면에 도시된 바와 같이, TI 과정에서 스킵된 1 개의 버츄얼 (virtual) FEC 블록들은 정확한 리딩 (reading) 오퍼레이션을 위해 라이팅 (writing) 과정에서 복원될 수 있다. 이 경우, 스킵된 1 개의 버츄얼 (virtual) FEC 블록들의 위치 및 양은 임의의 알고리즘을 통해 추정될 수 있다.
도 47은 본 발명의 다른 실시예에 따른 타임 디인터리빙의 리딩 (reading) 오퍼레이션을 나타내는 수학식이다.
수신기에서 사용되는 TDI 시프트 밸류는 송신기에서 사용된 시프트 밸류에 의해 결정될 수 있으며, 스킵 오퍼레이션 (skip operation)은 송신부와 유사하게 리딩 (reading) 오퍼레이션에서 버츄얼 (virtual) FEC 블록들을 스킵하는 역할을 수행할 수 있다.
도 48은 본 발명의 일 실시예에 따른 타임 디인터리빙의 프로세스를 나타낸 순서도이다.
본 발명의 일 실시예에 따른 타임 디인터리버는 이니셜 밸류(initial value)를 셋업할 수 있다(S75000).
이후 본 발명의 일 실시예에 따른 타임 인터리버는 버츄얼 (virtual) FEC 블록들을 고려하여 실제 FEC 블록들을 라이팅 (writing)할 수 있다(S75100).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 템포럴 TDI 어드레스(temporal TDI address)를 생성할 수 있다(S75200).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 생성된 TDI 리딩 어드레스 (reading address)의 가용성 (availiability)를 평가할 수 있다(S75300). 이후, 본 발명의 일 실시예에 따른 타임 인터리버는 최종 TDI 리딩 어드레스 (reading address)를 생성할 수 있다(S75400).
이후, 본 발명의 일 실시예에 따른 타임 인터리버는 실제 FEC 블록들을 리딩(reading)할 수 있다(S75500).
이하, PLP (Physical Layer Pipe) 모드에 따라 컨볼루션 인터리버(Convolution Interleaver, CI)와 블록 인터리버(Block Interleaver, BI)를 선택적으로 사용하거나, 모두 사용하는 타임 인터리버의 구조 및 타임 인터리빙 방법을 설명한다. 본 발명의 일 실시예에 따른 PLP는 상술한 DP와 동일한 개념으로 사용되는 피지컬 패스(physical path)로서, 호칭은 설계자의 의도에 따라 변경 가능하다.
본 발명의 일 실시예에 따른 PLP 모드는 방송 신호 송신기 또는 방송 신호 송신 장치에서 처리하는 PLP 개수에 따라 싱글 PLP(single PLP) 모드 또는 멀티플 PLP(multiple PLP)모드를 포함할 수 있다. 싱글 PLP 모드는 방송 신호 송신 장치에서 처리하는 PLP 개수가 하나인 경우를 의미한다. 싱글 PLP 모드는 싱글 PLP로 호칭할 수도 있다.
멀티플 PLP모드는 방송 신호 송신 장치에서 처리하는 PLP 개수가 하나 이상인 경우로서, 멀티플 PLP 모드는 멀티플 PLP로 호칭할 수도 있다.
본 발명에서는 PLP 모드에 따라 서로 다른 타임 인터리빙 방법을 적용하는 타임 인터리빙을 하이브리드 타임 인터리빙(Hybrid Time Interleaving)이라 호칭할 수 있다. 본 발명의 일 실시예에 따른 하이브리드 타임 인터리빙은 멀티플 PLP 모드의 경우, 각 PLP별로 (혹은 PLP 레벨에서) 적용된다.
도 49는 PLP 개수에 따라 적용하는 인터리빙 타입을 표로 도시한 도면이다. 본 발명의 일실시예에 따른 타임 인터리버는 PLP_NUM의 값을 기반으로 인터리빙 타입(Interleaving type)이 결정될 수 있다. PLP_NUM는 PLP 모드를 나타내는 시그널링 필드(signaling field) 이다. PLP_NUM의 값이 1인 경우, PLP 모드는 싱글 PLP이다. 본 발명의 일 실시예에 따른 싱글 PLP는 컨볼루션 인터리버(Convolutional Interleaver, CI)만 적용될 수 있다.
PLP_NUM의 값이 1보다 큰 경우, PLP 모드는 멀티플 PLP이다. 본 발명의 일 실시예에 따른 멀티플 PLP는 컨볼루션 인터리버(Convolutional Interleaver, CI)와 블록 인터리버(Block Interleaver, BI)가 적용될 수 있다. 이 경우, 컨볼루션 인터리버는 인터 프레임 인터리빙(Inter frame interleaving)을 수행할 수 있으며, 블록 인터리버는 인트라 프레임 인터리빙(Intra frame interleaving)을 수행할 수 있다. 인터 프레임 인터리빙 및 인트라 프레임 인터리빙의 구체적인 내용은 전술한 내용과 동일하다.
도 50은 상술한 하이브리드 타임 인터리버 구조의 제 1 실시예를 포함하는 블록도이다. 제 1 실시예에 따른 하이브리드 타임 인터리버는 블록 인터리버(BI)와 컨볼루션 인터리버(CI)를 포함할 수 있다. 본 발명의 타임 인터리버는 BICM 체인(BICM chain) 블록과 프레임 빌더(Frame Builder) 사이에 위치할 수 있다. 도 50 내지 도 51에 도시된 BICM 체인 블록은 도 5에 도시된 BICM 블록의 처리 블록(5000) 중 타임 인터리버(5050)를 제외한 블록들을 포함할 수 있다. 도 50 내지 도 51에 도시된 프레임 빌더는 도 1의 프레임 빌딩(1020)블록의 동일한 역할을 수행할 수 있다.
상술한 바와 같이 하이브리드 타임 인터리버 구조의 제 1 실시예에 따른 블록 인터리버는 PLP_NUM 값에 따라 적용 여부가 결정될 수 있다. 즉, PLP_NUM=1인 경우, 블록 인터리버는 적용되지 않고(블록인터리버 오프(off)), 컨볼루션 인터리버만 적용된다. PLP_NUM>1인 경우, 블록 인터리버와 컨볼루션 인터리버가 모두 적용(블록 인터리버 온(on))될 수 있다. PLP_NUM>1인 경우 적용되는 컨볼루션 인터리버의 구조 및 동작은 PLP_NUM=1인 경우 적용되는 컨볼루션 인터리버의 구조 및 동작과 동일하거나 유사할 수 있다.
도 51은 상술한 하이브리드 타임 인터리버 구조의 제 2 실시예를 포함하는 블록도이다.
하이브리드 타임 인터리버 구조의 제 2 실시예에 포함되는 각 블록의 동작은 도 50에서 설명한 내용과 동일하다. 하이브리드 타임 인터리버 구조의 제 2 실시예에 따른 블록 인터리버는 PLP_NUM 값에 따라 적용 여부가 결정될 수 있다. 제 2 실시예에 따른 하이브리드 타임 인터리버의 각 블록들은 본 발명의 실시예에 따른 동작들을 수행할 수 있다. 이 때, PLP_NUM=1인 경우와 PLP_NUM>1인 경우 적용되는 컨볼루션 인터리버의 구조 및 동작이 서로 다를 수 있다.
도 52는 하이브리드 타임 디인터리버의 구조의 제 1 실시예를 포함하는 블록도이다.
제 1 실시예에 따른 하이브리드 타임 디인터리버는 상술한 제 1 실시예에 따른 하이브리드 타임 인터리버의 역동작에 상응하는 동작을 수행할 수 있다. 따라서, 도 52의 제 1 실시예에 따른 하이브리드 타임 디인터리버는 컨볼루션 디인터리버(Convolutional deinterleaver, CDI)와 블록 디인터리버(Block deinterleaver, BDI)를 포함할 수 있다.
PLP_NUM>1인 경우 적용되는 컨볼루션 디인터리버의 구조 및 동작은 PLP_NUM=1인 경우 적용되는 컨볼루션 디인터리버의 구조 및 동작과 동일하거나 유사할 수 있다.
하이브리드 타임 디인터리버 구조의 제 1 실시예에 따른 블록 디인터리버는 PLP_NUM 값에 따라 적용 여부가 결정될 수 있다. 즉, PLP_NUM=1인 경우, 블록 디인터리버는 적용되지 않고(블록 디인터리버 오프(off)), 컨볼루션 디인터리버만 적용된다.
하이브리드 타임 디인터리버의 컨볼루션 디인터리버는 인터 프레임 디인터리빙(Inter frame deinterleaving)을 수행할 수 있으며, 블록 디인터리버는 인트라 프레임 디인터리빙(Intra frame deinterleaving)을 수행할 수 있다. 인터 프레임 디인터리빙 및 인트라 프레임 디인터리빙의 구체적인 내용은 전술한 내용과 동일하다.
도 52 내지 도 53에 도시된 BICM 디코딩(BICM decoding) 블록은 도 50 내지 도 51의 BICM 체인(BICM chain)블록의 역동작을 수행할 수 있다.
도 53은 하이브리드 타임 디인터리버의 구조의 제 2 실시예를 포함하는 블록도이다.
제 2 실시예에 따른 하이브리드 타임 디인터리버는 상술한 제 2 실시예에 따른 하이브리드 타임 인터리버의 역동작에 상응하는 동작을 수행할 수 있다. 하이브리드 타임 디인터리버 구조의 제 2 실시예에 포함되는 각 블록의 동작은 도 52에서 설명한 내용과 동일할 수 있다.
하이브리드 타임 디인터리버 구조의 제 2 실시예에 따른 블록 디인터리버는 PLP_NUM 값에 따라 적용 여부가 결정될 수 있다. 제 2 실시예에 따른 하이브리드 타임 디인터리버의 각 블록들은 본 발명의 실시예에 따른 동작들을 수행할 수 있다. 이 때, PLP_NUM=1인 경우와 PLP_NUM>1인 경우 적용되는 컨볼루션 디인터리버의 구조 및 동작이 서로 다를 수 있다.
도 54는 본 발명의 일 실시예에 따른 메인 피지컬 디바이스 (Main Physical Device) 및 컴페니언 피지컬 디바이스 (Companion Physical Device)의 구성을 나타낸 도면이다.
본 발명의 일 실시예는 지상파 방송 또는 모바일 방송 환경에서 서비스 가이드 (service guide)를 제공할 수 있다. 또한, 본 발명의 일 실시예는 지상파 방송망과 인터넷망의 연동을 기반으로 하는 차세대 하이브리드 방송 환경에서 가능할 수 있는 서비스에 대한 서비스 가이드를 제공할 수 있다.
본 발명의 일 실시예는 차세대 하이브리드 방송 시스템에서 제공할 수 있는 다양한 서비스와 이를 구성하는 content 및/또는 component 요소들을 사용자에게 알려줄 수 있다. 이를 통하여, 사용자가 해당 서비스를 확인, 선택 및 감상하는데 편의를 제공할 수 있다.
본 발명의 일 실시예는 하나의 서비스와 이를 구성하는 다양한 content 및/또는 component 요소들을 구조화하고 상호간 연계 (reference)시켜줄 수 있다. 이를 통하여, 방송 수신기는 해당 서비스를 용이하게 구성하고 제공할 수 있고, 사용자로 하여금 해당 서비스에 대한 쉽게 파악할 수 있도록 할 수 있다.
본 발명의 일 실시예는 하나의 서비스와 이를 구성하는 다양한 content 및/또는 component 요소들을 연계시키는 reference 구조를 확장함으로써 방송 수신기 및/또는 사용자로 하여금 하나의 서비스를 구성하는 content 및/또는 component 요소들을 검색하는데 소요되는 resource 및/또느 시간을 절약하도록 할 수 있다.
이 도면은 본 발명의 일 실시예에 따른 메인 피지컬 디바이스 및 컴페니언 피지컬 디바이스의 전체적인 구성을 나타낸 도면이다.
본 발명의 일 실시예에 따른 메인 피지컬 디바이스 (main physical device, L25010)은 interactive service를 위한 디바이스 중 하나로서, 주로 컴페니언 피지컬 디바이스 (companion physical device, L25020)에 의한 제어 대상이 되는 기기를 나타낼 수 있다. 메인 피지컬 디바이스는 메인 디바이스, 메인 수신 장치, 메인 수신기, 메인 디스플레이, 메인 스크린 등으로 명명될 수 있다.
본 발명의 일 실시예에 따른 메인 피지컬 디바이스 (L25010)는 broadcast interface (L25030), network interface (L25040), memory unit (L25050), control unit (L25060), display unit (L25070), multimedia module (L25080), storage (L25090), power supply (L25100) 및/또는 user input interface (L25110)를 포함할 수 있다.
broadcast interface (L25030)는 broadcaster와 디바이스 사이에 AV stream, service guide, notification 등의 message 및/또는 데이터 전송을 가능하게 해주는 물리적 장치를 나타낼 수 있다. broadcast interface는 broadcaster로부터 방송 신호, 시그널링 정보, 데이터 등을 수신할 수 있다.
network interface (L25040)는 디바이스들 (예를 들어, 메인 피지컬 디바이스와 컴페니언 피지컬 디바이스) 사이에 command, request, action, response 등의 message, advertise 및/또는 데이터 전송을 가능하게 해주는 물리적 장치를 나타낼 수 있다. network interface는 internet service provider로부터 방송 서비스, 방송 컨텐츠, 시그널링 정보, 어플리케이션, 데이터 등을 수신할 수 있다.
memory unit (L25050)는 다양한 종류의 디바이스에서 구현되는 선택적인 장치로서, 다양한 종류의 데이터를 임시적으로 저장할 수 있는 휘발성 성질의 물리적 장치를 나타낼 수 있다.
control unit (L25060)은 source device 및/또는 sink device의 전반적인 동작을 제어하는 장치로서 소프트웨어 또는 하드웨어일 수 있다. 여기서, source device는 message 및/또는 데이터를 전송하는 디바이스를 나타낼 수 있고, sink device는 message 및/또는 데이터를 수신하는 디바이스를 나타낼 수 있다. 따라서, 본 발명의 일 실시예에 따른 메인 피지컬 디바이스 및 컴페니언 피지컬 디바이스는 source device 또는 sink device에 해당할 수 있다.
display unit (L25070)은 network interface를 통해 수신된 데이터 또는 storage에 저장되어 있는 데이터를 화면상에 디스플레이할 수 있다. 이 때, display unit은 control unit의 제어에 의해 동작할 수 있다.
multimedia module (L25080)은 다양한 종류의 멀티미디어를 재생할 수 있다. multimedia module은 control unit에 포함될 수 있고, control unit과 별개로 존재할 수 있다.
storage (L25090)는 다양한 종류의 데이터를 저장할 수 있는 비휘발성 성질의 물리적 장치를 나타낼 수 있다. 예를 들어, SD 카드가 storage에 해당할 수 있다.
power supply (L25100)는 control unit의 제어에 의하여, 외부의 전원 및/또는 내부의 전원을 인가 받아 다른 구성 요소들의 동작에 필요한 전원을 공급해주는 장치를 나타낼 수 있다.
user input interface (L25110)는 user로부터 명령 등의 입력을 수신할 수 있는 장치를 나타낼 수 있다.
본 발명의 일 실시예에 따른 컴페니언 피지컬 디바이스 (companion physical device, L25020)은 interactive service를 위한 디바이스 중 하나로서, 메인 디바이스를 제어하는 기기를 나타낼 수 있다. 컴페니언 피지컬 디바이스는 주로 사용자로부터 직접 input을 입력받을 수 있다. 컴페니언 피지컬 디바이스는 컴페니언 디바이스, 세컨드 디바이스, 부가 디바이스, 보조 디바이스, 컴페니언 수신 장치, 컴페니언 수신기, 컴페니언 디스플레이, 세컨드 스크린 등으로 명명될 수 있다.
본 발명의 일 실시예에 따른 컴페니언 피지컬 디바이스 (L25020)는 network interface, memory unit, control unit, display unit, multimedia module, storage, power supply 및/또는 user input interface 를 포함할 수 있다.
본 발명의 일 실시예에 따른 컴페니언 피지컬 디바이스를 구성하는 구성 요소들 중에 메인 디바이스를 구성하는 구성 요소와 동일한 명칭의 구성요소는 전술한 메인 디바이스를 구성하는 구성 요소와 동일한 기능을 할 수 있다.
본 발명의 일 실시예는 지상파 방송망과 인터넷망 연동 기반의 차세대 하이브리드 방송 환경에서 멀티 뷰 (Multi-View) 서비스를 제공할 수 있다. 나아가, 본 발명의 일 실시예는 지상파 방송 및/또는 모바일 방송 환경에서 여러 개의 비디오 영상을 이용하여 멀티 뷰 서비스를 제공할 수 있다.
본 발명의 일 실시예는 차세대 하이브리드 방송 시스템에서 멀티 뷰를 구성하기 위한 서비스 시그널링 방법을 제공할 수 있다.
본 발명의 일 실시예는 차세대 하이브리드 방송 시스템에서 멀티 뷰를 구성하기 위한 App-based enhancement를 정의하는 방법을 제공할 수 있다.
본 발명의 일 실시예는 차세대 하이브리드 방송 시스템에서 멀티 뷰를 구성하기 위한 상개 위치 정보를 시그널링하는 방법을 제공할 수 있다.
본 발명의 일 실시예는 차세대 하이브리드 방송 시스템에서 Hidden-view를 구성하기 위한 방법을 제공할 수 있다.
본 발명의 일 실시예는 차세대 하이브리드 방송 시스템에서 제공할 수 있는 다양한 서비스와 이를 구성하는 요소들을 사용자에게 알려줄 수 있고, 이를 통해 사용자가 해당 서비스를 확인, 선택 및/또는 감상할 수 있도록 편의를 제공할 수 있다.
본 발명의 일 실시예는 비디오 컴포넌트와 App-based enhancement의 조합을 통하여 멀티 뷰를 구성할 수 있다.
도 55는 본 발명의 일 실시예에 따른 하이브리드 방송 서비스를 지원하기 위한 프로토콜 스택을 나타낸 도면이다.
Physical layer는 지상파 방송 신호를 수신하고 이를 적절한 형태로 변환할 수 있다.
IP (Internet Protocol) Encapsulation은 Physical layer로부터 획득된 정보를 이용하여 IP 데이터그램을 획득할 수 있다. 또한, 획득된 IP 데이터그램을 특정 프레임 (예를 들어, RS Frame, GSE 등)으로 변환할 수 있다.
MPEG-2 TS Encapsulation은 Physical layer로부터 획득된 정보를 이용하여 MPEG-2 TS을 획득할 수 있다. 또한, 획득된 MPEG-2 TS 데이터그램을 특정 프레임 (예를 들어, RS Frame, GSE 등)으로 변환할 수 있다.
FIC (fast information channel)는 서비스 및/또는 컨텐츠에 접근할 수 있도록 하기 위한 정보 (예를 들어, 서비스 ID와 프레임 간의 매핑 정보 등)를 전달할 수 있다.
Signaling은 서비스 및/또는 컨텐츠의 효과적인 획득을 지원하기 위한 시그널링 정보를 포함할 수 있다. 시그널링 정보는 바이너리 및/또는 XML 형태로 표현될 수 있고 지상파 방송망 및/또는 broadband를 통하여 전송될 수 있다.
실시간 방송 A/V (Audio/Video) 컨텐츠 및 Data는 ISO Base Media File Format (ISOBMFF) 등으로 표현 될 수 있고 지상파 방송망 및/또는 브로드밴드를 통하여 실시간으로 전송될 수 있다. 비실시간 컨테츠는 IP/UDP/FLUTE를 기반으로 전송될 수 있다. 그리고, 실시간 방송 A/V (Audio/Video) 컨텐츠, Data 및/또는 시그널링 정보는 DASH 등을 이용하여 인터넷망을 통해 실시간으로 전송될 수 있다. 이 때, 실시간 방송 A/V (Audio/Video) 컨텐츠, Data 및/또는 시그널링 정보는 요청에 의해 전송될 수 있고, 아니면 실시간 스트리밍에 의해 전송될 수 있다.
본 발명의 일 실시예는 상술한 프로토콜 스택을 거쳐 전달받은 데이터를 조합하여 Interactive 서비스, second screen 서비스 등의 다양한 enhanced service를 시청자에게 제공할 수 있다.
도 56은 본 발명의 일 실시예에 따른 방송 수신 장치의 구성을 보여준다.
본 발명의 일 실시예에 따른 방송 수신 장치(100)는 방송 수신부(110), 인터넷 프로토콜(Internet Protocol, IP) 송수신부(130) 및/또는 제어부(150)를 포함한다.
방송 수신부(110)는 채널 동기화부(Channel Synchronizer)(111), 채널 이퀄라이저(channel equalizer)(113) 및 채널 디코더(channel decoder)(115)를 포함한다.
채널 동기화부(110)는 방송 신호를 수신할 수 있는 기저 대역대(baseband)에서 디코딩이 가능하도록 심볼 주파수와 타이밍을 동기화한다.
채널 이퀄라이저(113)는 동기화된 방송 신호의 왜곡을 보상한다. 구체적으로 채널 이퀄라이저(113)는 멀티패스(multipath), 도플러 효과 등으로 인한 동기화된 방송 신호의 왜곡을 보상한다.
채널 디코더(115)는 왜곡이 보상된 방송 신호를 디코딩한다. 구체적으로 채널 디코더(115)는 왜곡이 보상된 방송 신호로부터 전송 프레임(transport frame)을 추출한다. 이때 채널 디코더(115)는 전진 에러 수정(Forward Error Correction, FEC)를 수행할 수 있다.
IP 송수신부(130)는 인터넷 망을 통해 데이터를 수신하고 전송한다.
제어부(150)는 시그널링 디코더(151), 전송 패킷 인터페이스(153), 광대역 패킷 인터페이스(155), 기저대역 동작 제어부(157), 공통 프로토콜 스택(Common Protocol Stack)(159), 서비스 맵 데이터베이스(161), 서비스 시그널링 채널 프로세싱 버퍼(buffer) 및 파서(parser)(163), A/V 프로세서(165), 방송 서비스 가이드 프로세서(167), 어플리케이션 프로세서(169) 및/또는 서비스 가이드 데이터 베이스(171)를 포함한다.
시그널링 디코더(151)는 방송 신호의 시그널링 정보를 디코딩한다.
전송 패킷 인터페이스(153)는 방송 신호로부터 전송 패킷을 추출한다. 이때 전송 패킷 인터페이스(153)는 추출한 전송 패킷으로부터 시그널링 정보 또는 IP 데이터그램 등의 데이터를 추출할 수 있다.
광대역 패킷 인터페이스(155)는 인터넷 망으로부터 수신한 데이터로부터 IP 패킷을 추출한다. 이때 광대역 패킷 인터페이스(155)는 IP 패킷으로부터 시그널링 데이터 또는 IP 데이터그램을 추출할 수 있다.
기저대역 동작 제어부(157)는 기저대역으로부터 방송 정보 수신 정보를 수신하는 것과 관련된 동작을 제어한다.
공통 프로토콜 스택(159)은 전송 패킷으로부터 오디오 또는 비디오를 추출한다.
A/V 프로세서(547)는 오디오 또는 비디오를 처리한다.
서비스 시그널링 채널 프로세싱 버퍼(buffer) 및 파서(parser)(163)는 방송 서비스를 시그널링하는 시그널링 정보를 파싱하고 버퍼링한다. 구체적으로 서비스 시그널링 채널 프로세싱 버퍼 및 파서(163)는 IP 데이터그램으로부터 방송 서비스를 시그널링하는 시그널링 정보를 파싱하고 버퍼링할 수 있다.
서비스 맵 데이터 베이스(165)는 방송 서비스들에 대한 정보를 포함하는 방송 서비스 리스트를 저장한다.
서비스 가이드 프로세서(167)는 지상파 방송 서비스의 프로그램을 안내하는 지상파 방송 서비스 가이드 데이터를 처리한다.
어플리케이션 프로세서(169)는 방송 신호로부터 어플리케이션 관련 정보를 추출하고 처리한다.
서비스 가이드 데이터베이스(171)는 방송 서비스의 프로그램 정보를 저장한다.
앞서 방송 수신 장치(100)의 대략적인 구성과 동작을 설명하였다. 다만, 이는 전통적인 방송 수신 장치(100)의 동작과 전송 프로토콜에 초점이 맞추어있다. 다만, 하이브리드 방송 서비스를 수신하기 위해 방송 수신 장치(100)는 다양한 전송 프로토콜의 데이터를 처리할 수 있어야 한다. 도 82 내지 87을 통해서 하이브리드 방송 서비스를 수신하기 위한 방송 수신 장치(100)의 자세한 구성과 동작을 설명한다.
도 57은 본 발명의 다른 일 실시예에 따른 방송 신호 수신 장치의 구성을 나타낸 도면이다.
본 발명의 일 실시예에 따른 방송 신호 수신 장치는 Physical Layer Controller (L57010), Tuner (L57020), Physical Frame Parser (L57030), Link Layer Frame Parser (L57040), IP/UDP Datagram Filter (L57050), ATSC 3.0 DTV Control Engine (L57060), ALC/LCT+ Client (L57070), Timing Control (L57080), Signaling Parser (L57090), DASH Client (L57100), ISO BMFF Parser (L57110), Media Decoder (L57120), HTTP Access Client (L57130) 및/또는 HTTP Server (L57140)을 포함할 수 있다.
Physical Layer Controller는 수신하고자 하는 방송 채널의 RF 정보 등을 이용하여 Tuner, Physical Frame Parser 등의 동작을 제어할 수 있다.
Tuner는 지상파 방송 채널을 통하여 방송 관련 신호를 수신 및 처리하고 이를 적절한 형태 (Physical Frame 등)로 변환할 수 있다.
Physical Frame Parser는 수신된 Physical Frame을 파싱하고 이와 관련된 프로세싱을 통하여 Link Layer Frame 등을 획득할 수 있다.
Link Layer Frame Parser는 Link Layer Frame으로 부터 Link Layer signaling 등을 획득하거나 IP/UDP 데이터그램 획득을 위한 연산을 수행할 수 있다.
IP/UDP Datagram Filter는 수신된 IP/UDP 데이터 그램들로부터 특정 IP/UDP 데이터 그램을 필터링할 수 있다. 즉, ALC/LCT+ 패킷을 획득할 수 있다.
ATSC 3.0 DTV Control Engine은 본 발명의 일 실시예에 따른 방송 신호 수신 장치를 구성하는 모듈들 간의 인터페이스의 역할을 할 수 있고, 각 모듈에게 파라미터 등을 전달하여 각 모듈의 동작을 제어할 수 있다.
ALC/LCT+ Client는 ALC/LCT+ 패킷을 처리하고 여러 ALC/LCT+ 패킷들을 수집 및 처리하여 하나 이상의 ISO Base Media File Format 오브젝트를 생성할 수 있다.
Timing Control은 시스템 타임 정보를 포함하는 패킷을 처리하고 이에 따라 시스템 클럭을 제어할 수 있다.
Signaling Parser는 DTV 방송 서비스 관련 시그널링 정보를 획득 및 파싱하고 이를 기반으로 채널 맵 등을 생성하고 관리할 수 있다.
DASH Client은 실시간 스트리밍 혹은 적응적 스트리밍 관련된 연산을 할 수 있고 획득된 DASH Segment 등을 처리할 수 있다.
ISO BMFF Parser는 ISO Base Media File Format 오브젝트로부터 오디오/비디오 데이터를 추출할 수 있다.
Media Decoder는 수신된 audio 및 video data를 디코딩하고 재생할 수 있다.
HTTP Access Client는 HTTP 서버로 특정 정보를 요청하고 상기 요청에 대한 응답을 처리할 수 있다.
HTTP Server는 HTTP 클라이언트 (HTTP Access Client)로 부터 전달 받은 요청을 처리하고 이에 대한 응답을 제공할 수 있다.
도 58은 본 발명의 다른 일 실시예에 따른 방송 수신 장치의 구성을 나타낸다.
본 발명의 일 실시예에 따른 방송 수신 장치(100)는 방송 수신부(110), 인터넷 프로토콜(Internet Protocol, IP) 송수신부(130) 및 제어부(150)를 포함한다.
방송 수신부(110)는 방송 수신부(110)가 수행하는 복수의 기능 각각을 수행하는 하나 또는 복수의 프로세서. 하나 또는 복수의 회로 및 하나 또는 복수의 하드웨어 모듈을 포함할 수 있다. 구체적으로 방송 수신부(110)는 여러가지 반도체 부품이 하나로 집적되는 시스템 온 칩(System On Chip, SOC)일 수 있다. 이때, SOC는 그래픽, 오디오, 비디오, 모뎀 등 각종 멀티미디어용 부품과 프로세서와 D램 등 반도체가 하나로 통합된 반도체일 수 있다. 방송 수신부(110)는 피지컬 레이어 모듈(119), 피지컬 레이어 IP 프레임 모듈(117)을 포함할 수 있다. 피지컬 레이어 모듈(119)는 방송망의 방송 채널을 통하여 방송 관련 신호를 수신하고 처리한다. 피지컬 레이어 IP 프레임 모듈(117)은 피지컬 레이어 모듈(119)로부터 획득한 IP 데이터그램 등의 데이터 패킷을 특정 프레임으로 변환한다. 예컨대, 피지컬 레이어 모듈(119)은 IP 데이터그램 등을 RS Fraem 또는 GSE 등으로 변환할 수 있다.
IP 송수신부(130)는 IP 송수신부(130)가 수행하는 복수의 기능 각각을 수행하는 하나 또는 복수의 프로세서. 하나 또는 복수의 회로 및 하나 또는 복수의 하드웨어 모듈을 포함할 수 있다. 구체적으로 IP 송수신부(130)는 여러가지 반도체 부품이 하나로 집적되는 시스템 온 칩(System On Chip, SOC)일 수 있다. 이때, SOC는 그래픽, 오디오, 비디오, 모뎀 등 각종 멀티미디어용 부품과 프로세서와 D램 등 반도체가 하나로 통합된 반도체일 수 있다. IP 송수신부(130)는 인터넷 접근 제어 모듈(131)을 포함할 수 있다. 인터넷 접근 제어 모듈(131)은 통신망(broadband)을 통하여 서비스, 컨텐츠 및 시그널링 데이터 중 적어도 어느 하나를 획득하기 위한 방송 수신 장치(100)의 동작을 제어한다.
제어부(150)는 제어부(150)가 수행하는 복수의 기능 각각을 수행하는 하나 또는 복수의 프로세서. 하나 또는 복수의 회로 및 하나 또는 복수의 하드웨어 모듈을 포함할 수 있다. 구체적으로 제어부(150)는 여러가지 반도체 부품이 하나로 집적되는 시스템 온 칩(System On Chip, SOC)일 수 있다. 이때, SOC는 그래픽, 오디오, 비디오, 모뎀 등 각종 멀티미디어용 부품과 프로세서와 D램 등 반도체가 하나로 통합된 반도체일 수 있다. 제어부(150)는 시그널링 디코더(151), 서비스 맵 데이터 베이스(161), 서비스 시그널링 채널 파서(163), 어플리케이션 시그널링 파서(166), 얼러트 시그널링 파서(168), 타겟팅 시그널링 파서(170), 타겟팅 프로세서(173), A/V 프로세서(165), 얼러팅 프로세서(162), 어플리케이션 프로세서(169), 스케쥴드 스트리밍 디코더(181), 파일 디코더(182), 사용자 요청 스트리밍 디코더(183), 파일 데이터베이스(184), 컴포넌트 동기화부(185), 서비스/컨텐츠 획득 제어부(187), 재분배 모듈(189), 장치 관리자(193) 및 데이터 쉐어링부(191) 중 적어도 어느 하나를 포함할 수 있다.
서비스/컨텐츠 획득 제어부(187)는 방송망 또는 통신망을 통해 획득한 서비스, 컨텐츠, 서비스 또는 컨텐츠와 관련된 시그널링 데이터 획득을 위한 수신기의 동작을 제어한다.
시그널링 디코더(151)는 시그널링 정보를 디코딩한다.
서비스 시그널링 파서(163)는 서비스 시그널링 정보를 파싱한다.
어플리케이션 시그널링 파서(166)는 서비스와 관련된 시그널링 정보를 추출하고 파싱한다. 이때, 서비스와 관련된 시그널링 정보는 서비스 스캔과 관련된 시그널링 정보일 수 있다. 또한 서비스와 관련된 시그널링 정보는 서비스를 통해 제공되는 컨텐츠와 관련된 시그널링 정보일 수 있다.
얼러트 시그널링 파서(168)는 얼러팅 관련된 시그널링 정보를 추출하고 파싱한다.
타겟팅 시그널링 파서(170)는 서비스 또는 컨텐츠를 개인화(personalization)하기 위한 정보 또는 타겟팅 정보를 시그널링하는 정보를 추출하고 파싱한다.
타겟팅 프로세서(173)는 서비스 또는 컨텐츠를 개인화하기 위한 정보를 처리한다.
얼러팅 프로세서(162)는 얼리팅 관련된 시그널링 정보를 처리한다.
어플리케이션 프로세서(169)는 어플리케이션 관련 정보 및 어플리케이션의 실행을 제어한다. 구체적으로 어플리케이션 프로세서(169)는 다운로드된 어플리케이션의 상태 및 디스플레이 파라미터를 처리한다.
A/V 프로세서(161)는 디코딩된 오디오 또는 비디오, 어플리케이션 데이터 등에 기초하여 오디오/비디오의 렌더링 관련 동작을 처리한다.
스케쥴드 스트리밍 디코더(181)는 미리 방송사 등의 컨텐츠 제공업자가 정한 일정 대로 스트리밍 되는 컨텐츠인 스케쥴드 스트리밍을 디코딩한다.
파일 디코더(182)는 다운로드된 파일을 디코드한다. 특히 파일 디코더(182)는 통신망을 통하여 다운로드된 파일을 디코드한다.
사용자 요청 스트리밍 디코더(183)는 사용자 요청에 의하여 제공되는 컨텐츠(On Demand Content)를 디코드한다.
파일 데이터베이스(184)는 파일을 저장한다. 구체적으로 파일 데이터베이스(184)는 통신망을 통하여 다운로드한 파일을 저장할 수 있다.
컴포넌트 동기화부(185)는 컨텐츠 또는 서비스를 동기화한다. 구체적으로 컴포넌트 동기화부(185)는 스케쥴드 스트리밍 디코더(181), 파일 디코더(182) 및 사용자 요청 스트리밍 디코더(183) 중 적어도 어느 하나가 디코딩한 컨텐츠를 동기화한다.
서비스/컨텐츠 획득 제어부(187)는 서비스, 컨텐츠, 서비스 또는 컨텐츠와 관련된 시그널링 정보 중 적어도 어느 하나를 획득하기 위한 수신기의 동작을 제어한다.
재분배 모듈(189)은 방송망을 통하여 서비스 또는 컨텐츠를 수신하지 못하는 경우, 서비스, 컨텐츠, 서비스와 관련 정보 및 컨텐츠 관련 정보 중 적어도 어느 하나의 획득을 지원하기 위한 동작을 수행한다. 구체적으로 외부의 관리 장치(300)에게 서비스, 컨텐츠, 서비스와 관련 정보 및 컨텐츠 관련 정보 중 적어도 어느 하나를 요청할 수 있다. 이때 외부의 관리 장치(300)는 컨텐츠 서버(50)일 수 있다.
장치 관리자(193)는 연동 가능한 외부 장치를 관리한다. 구체적으로 장치 관리자(193)는 외부 장치의 추가, 삭제 및 갱신 중 적어도 어느 하나를 수행할 수 있다. 또한 외부 장치는 방송 수신 장치(100)와 연결 및 데이터 교환이 가능할 수 있다.
데이터 쉐어링부(191)는 방송 수신 장치(100)와 외부 장치 간의 데이터 전송 동작을 수행하고, 교환 관련 정보를 처리한다. 구체적으로 데이터 쉐어링부(191)는 외부 장치에 A/V 데이터 또는 시그널링 정보를 전송할 수 있다. 또한 데이터 쉐어링부(191)는 외부 장치에 A/V 데이터 또는 시그널링 정보를 수신할 수 있다.
도 59는 본 발명의 일 실시예에 따른 service_map_table의 구성을 나타낸 도면이다.
본 발명의 일 실시예에 따른 service map table은 하나 이상의 섹션으로 분할되어 전송될 수 있다. 본 발명의 일 실시에에 따른 service map table은 table_id 필드, num_services 필드, service_id 필드, service_type 필드, short_service_name_length 필드, short_service_name 필드, channel_number 필드, num_components 필드, component_id 필드, essential_component_indicator 필드, num_component_level_descriptors 필드, component_level_descriptor(), num_service_level_descriptors 필드 및/또는 service_level_descriptor()를 포함할 수 있다.
table_id 필드는 이 테이블이 SMT (Service Map Table)임을 나타내는 ID를 나타낸다.
num_services 필드는 SMT에서 전송하는 서비스의 수를 나타낸다.
service_id 필드는 Service의 고유 식별자를 나타낸다. 본 발명의 일 실시예에 따르면 이 필드는 ATSC 3.0과 같은 차세대 방송 서비스를 식별할 수 있다.
service_type 필드는 해당 서비스의 종류를 나타낼 수 있다. 예를 들어, 이 필드가 나타내는 서비스의 종류는 Basic TV, Basic Radio, RI service, Service Guide, Emergency Alerting 등을 포함할 수 있다. 여기서, Basic TV는 Linear A/V service를 포함할 수 있고, Basic Radio는 Linear audio only service를 포함할 수 있고, RI service는 App-based service를 포함할 수 있다.
short_service_name_length 필드는 해당 Service 이름의 길이를 나타낸다.
short_service_name 필드는 해당 서비스의 이름을 나타낸다.
channel_number 필드는 해당 Service가 실제로 전송되는 해당 주파수를 나타낼 수 있다. 이 필드는 메이저 채널 넘버 및/또는 마이너 채널 넘버를 포함할 수 있다.
num_components 필드는 해당 서비스가 포함하는 컴포넌트의 개수를 나타낸다.
component_id 필드는 해당 컴포넌트를 식별할 수 있다.
essential_component_indicator 필드는 해당 컴포넌트가 essential인지를 나타낸다.
num_component_level_descriptors 필드는 컴포넌트 레벨 디스크립터의 개수를 나타낸다.
component_level_descriptor()는 해당 컴포넌트에 대한 내용을 포함하는 디스크립터를 나타낼 수 있다.
num_service_level_descriptors 필드는 서비스 레벨 디스크립터의 개수를 나타낸다.
service_level_descriptor()는 해당 서비스에 대한 내용을 포함하는 디스크립터를 나타낼 수 있다. 본 발명의 일 실시예에 따르면, 후술할 multi view descriptor는 SMT의 service_level_descriptor에 포함될 수 있다.
도 60은 본 발명의 일 실시예에 따른 Multi_view_descriptor의 구성 및 coordinate_system 필드의 설명을 나타낸 도면이다.
본 발명의 일 실시예에 따른 Multi-view descriptor는 서비스 레벨 디스크립터에 해당할 수 있다. 본 발명의 일 실시예에 따른 SMT에 Multi-view descriptor가 존재하면 해당 서비스에서 multi-view 구성이 가능함을 나타낼 수 있다.
본 발명의 일 실시예에 따르면, 긴급 알람 메시지 (emergency alert message)는 본 발명의 일 실시예에 따른 서비스 및/또는 컴포넌트에 해당할 수 있다. 본 발명의 일 실시예에 따르면, 긴급 알람 메시지가 서비스 및/또는 컴포넌트에 해당하여 하나의 뷰 (view)를 구성한다면, Multi-view descritor는 긴급 알람 메시지에 대한 정보를 시그널링할 수 있다. 본 발명의 일 실시예에 따르면, 후술할 position_flag 필드, coordinate_system 필드, icon_horizontal_origin 필드, icon_vertical_origin 필드, left 필드, top 필드 및/또는 view_location 필드는 긴급 알람 메시지의 스크린상 표시 위치에 대한 정보를 나타낼 수 있다. 이 때, 상술한 긴급 알람 메시지의 스크린상 표시 위치에 대한 정보는 긴급 알람 메시지 베너 (emergency alert banner)의 스크린상 표시 위치를 나타낼 수 있다. 본 발명의 일 실시예에는 상술한 긴급 알람 메시지 베너의 스크린상 표시 위치에 대한 정보를 시그널링함으로써 숨겨져 있는 (burned in) 긴급 알람 메시지 베너의 위치를 제공할 수 있고 이에 따라, 상기 제공된 해당 위치는 긴급 알람 메시지가 표시되기 위해 모호하면 (obscured) 안된다는 정보를 제공할 수 있다.
본 발명의 일 실시예에 따른 multi view descriptor (L60010)는 descriptor_tag 필드, descriptor_length 필드, num_of_views 필드, view_type 필드, view_role 필드, component_id_length 필드, component_id 필드, app_id 필드, app_url_length 필드, app_url 필드, view_toggle_flag 필드, position_flag 필드, coordinate_system 필드, icon_horizontal_origin 필드 및/또는 icon_vertical_origin 필드를 포함할 수 있다.
descriptor_tag 필드는 이 디스크립터를 식별할 수 있다.
descriptor_length 필드는 이 디스크립터의 길이를 나타낸다.
num_of_views 필드는 해당 서비스에 포함되는 뷰 (view)의 개수를 나타낸다.
view_type 필드는 해당 뷰의 타입을 나타낼 수 있다. 이 필드 값 0x00은 not specified임을 나타내고, 0x01은 video component임을 나타내고, 0x02는 app-based enhancement임을 나타내고, 0x03-0x0F는 reserved임을 나타낼 수 있다.
view_role 필드는 해당 뷰의 롤 (role)을 식별할 수 있다. 이 필드는 4 비트의 unsigned 정수값을 가질 수 있다. 이 필드 값 0x00은 not specified임을 나타내고, 0x01은 main view임을 나타내고, 0x02-0x0F는 reserved for future use임을 나타낼 수 있다.
component_id_length 필드는 component_id 필드의 길이를 나타낼 수 있다.
component_id 필드는 해당 컴포넌트의 식별자를 나타낼 수 있다. 예를 들어, 이 필드는 MPEG DASH의 MPD@id, Period@id, AdaptationSet@id, Representation@id 등이 조합되어 구성될 수 있다.
app_id 필드는 해당 application의 식별자를 나타낼 수 있다. 본 발명의 일 실시예에 따르면, TPT (TDO parameters table)에서 전송되는 TDO (Triggered Declarative Object)의 @appID와 동일한 값을 가질 수 있다.
app_url_length 필드는 app_url 문자열의 길이를 나타낸다.
app_url 필드는 application을 실행할 수 있는 URL 정보를 나타낼 수 있다.
view_toggle_flag 필드는 Multi-view에서 해당 뷰 (view)가 토글 (toggle)이 가능한지 아닌지를 나타낸다. 이 필드값 1은 사용자의 선택에 따라 toggle이 가능함을 나타낼 수 있다. 나아가, 해당 뷰의 View_role이 main이 아닌 경우에 true 값을 가질 수 있다.
position_flag 필드는 이 descriptor 내에 해당 뷰 (view)의 위치 정보가 포함되어 있는지 여부를 나타낸다. 이 필드 값이 '1'이면 이 디스크립터는 해당 view의 위치 정보를 포함할 수 있다.
coordinate_system 필드 (L60020)는 아이콘 위치의 기반이 되는 좌표계 (coordinate system)을 나타낼 수 있다. 이 필드 값 0x00은 좌표계가 720x576임을 나타내고, 0x01은 좌표계가 1280x720, 0x02는 1920x1080, 0x03은 3840x2160, 0x04는 7680x7320, 0x05-0x07은 reserved임을 나타낼 수 있다.
icon_horizontal_origin 필드는 스크린 상에서 아이콘 오리진으로 사용되는 수평적 픽셀 위치를 나타낼 수 있다. 이 필드 값이 0이면, 아이콘 픽셀들의 가장 좌측 열은 디스플레이의 가장 좌측의 픽셀 열에 위치할 수 있다. (The horizontal pixel position on the screen to be used as icon origin (top-left). When this field is set to zero the left most column of pixels of the icon canbe positioned in the left most pixel column of the display.)
icon_vertical_origin 필드는 스크린 상에서 아이콘 오리진으로 사용되는 수직적 픽셀 위치를 나타낼 수 있다. 이 필드 값이 0이면, 아이콘 픽셀들의 가장 상위의 행은 디스플레이의 가장 상위의 픽셀 행에 위치할 수 있다. (The vertical pixel position on the screen to be used as icon origin (top-left). When this field is set to zero the upper most row of pixels of the icon can be positioned in the upper most pixel row of the display.)
도 61은 본 발명의 일 실시예에 따른 방송 신호 수신 장치의 동작을 나타낸 도면이다.
본 발명의 일 실시예에 따른 수신 장치는 서비스 시그널링을 수신할 수 있다. (SL61010) 이 때, 서비스 시그널링은 방송 서비스에 대한 시그널링 정보를 기술하는 service map table을 포함할 수 있다. 수신 장치는 서비스 시그널링 내에 Multi-view descriptor이 존재하는지 여부를 판단할 수 있다. (SL61020) 이 때, Multi-view descriptor가 존재하지 않으면, 수신 장치는 해당 서비스의 컴포넌트 정보를 수신하고 비디오 컴포넌트 화면을 재생할 수 있다. 즉, Multi-view를 지원하지 않을 수 있다. 반면에, Multi-view descriptor가 존재하면, 수신 장치는 사용자에게 해당 서비스가 Multi-view가 가능한 서비스임을 알려줄 수 있고 해당 뷰의 view type에 맞춰 Multi-view 서비스를 준비할 수 있다. 수신 장치는 Multi-view descriptor 내의 view type 필드를 확인할 수 있다. (SL61030) View type이 video compoent인 경우, 수신 장치는 component location signaling에서 component의 전송 정보를 수신하고 해당 비디오 컴포넌트 화면을 재생할 수 있다. View type이 App-based enhancement인 경우, 수신 장치는 App signaling location에서 app 전송 정보를 수신하고 TPT 및/또는 TDO 수신하여 해당 app의 capability 정보를 획득할 수 있다. 수신 장치는 Multi-view descriptor 내의 view_toggle_flag 필드를 확인하여 해당 뷰가 토글이 가능한지 여부를 확인할 수 있다. (SL61040) 토글 기능을 지원하지 않는 경우, 수신 장치는 뷰의 롤과 position을 고려하여 화면에 Multi-view로 해당 뷰를 렌더링할 수 있다. 토글 기능을 지원하는 경우, 수신 장치는 일단 Main Role의 뷰를 화면에 렌더링하고 사용자가 Multi-view 서비스를 선택하는 경우에 토글 기능을 활성화하여 Multi-view를 화면에 렌더링할 수 있다.
도 62는 본 발명의 일 실시예에 따른 Multi_view_descriptor가 SMT에 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
본 발명의 일 실시예에 따른 Multi_view_descriptor (L62010)는 두 개의 뷰에 대한 정보를 기술할 수 있다. (num_of_views 필드가 나타내는 뷰의 개수가 2개)
본 발명의 일 실시예에 따른 제 1 뷰는 video component (view_type=0x01), main view (view_role=0x01), 토글 기능을 지원하지 않는 (view_toggle_flag=0), (0,0)의 위치에서부터 디스플레이되는 ABC (component_id=ABC)라는 뷰를 나타낼 수 있다.
본 발명의 일 실시예에 따른 제 2 뷰는 app-based enhancement (view_type=0x02), not specified 롤을 갖고 있고 (view_role=0x00), 토글 기능을 지원하고 (view_toggle_flag=1), 1920x1080의 좌표계 (coordinate_system=0x02)에서 수평적으로 1800 및 수직적으로 0의 위치 (icon_horizontal_origin=1800, icon_vertical_origin=0)에서부터 디스플레이되는 123 (app_id=123, app_url=http://lge.com/app123)이라는 뷰를 나타낼 수 있다.
본 발명의 일 실시예에 따른 수신 장치는 ABC라는 primary 비디오 컴포넌트 (main role) 및 Multi-view 서비스가 가능함을 알려주는 notification 아이콘을 스크린에 디스플레이할 수 있다. (L62020)
본 발명의 일 실시예에 따른 수신 장치는 사용자가 Multi-view 서비스가 가능함을 알려주는 notification 아이콘을 선택하여 Multi-view 서비스 기능을 활성화 시키면, 123이라는 App-based enhancement 컴포넌트를 추가로 스크린에 디스플레이할 수 있다. (L62030)
도 63은 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor가 SMT에 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
본 발명의 일 실시예에 따른 Multi_view_descriptor (L63010)는 두 개의 뷰에 대한 정보를 기술할 수 있다. (num_of_views 필드가 나타내는 뷰의 개수가 2개)
본 발명의 일 실시예에 따른 제 1 뷰는 video component (view_type=0x01), main view (view_role=0x01), 토글 기능을 지원하지 않는 (view_toggle_flag=0), (0,0)의 위치에서부터 디스플레이되는 ABC (component_id=ABC)라는 뷰를 나타낼 수 있다.
본 발명의 일 실시예에 따른 제 2 뷰는 app-based enhancement (view_type=0x02), not specified 롤을 갖고 있고 (view_role=0x00), 토글 기능을 지원하지 않고 (view_toggle_flag=0), 1920x1080의 좌표계 (coordinate_system=0x02)에서 수평적으로 1800 및 수직적으로 0의 위치 (icon_horizontal_origin=1800, icon_vertical_origin=0)에서부터 디스플레이되는 123 (app_id=123, app_url=http://lge.com/app123)이라는 뷰를 나타낼 수 있다.
본 발명의 일 실시예에 따른 수신 장치는 ABC라는 primary 비디오 컴포넌트 (main role) 및 123이라는 App-based enhancement 컴포넌트를 스크린에 디스플레이할 수 있다. (L63020)
도 64는 본 발명의 일 실시예에 따른 프로그램 시그널링 정보의 구성을 나타낸 도면이다.
본 발명의 일 실시예는 프로그램 정보를 나타내는 App-based enhancement에 Role 속성을 추가하여 Multi-view 서비스를 구성하도록 할 수 있다.
본 발명의 일 실시예에 따른 프로그램 시그널링 정보는 Attributes 정보 및/또는 Relationships 정보를 포함할 수 있다. Attributes 정보는 ProgramIdentifier, StartTime, ProgramDuration, TextualTitle, TextualDescription, Genre, GraphicalIcon, ContentAdvisoryRating, Targeting/personalization properties 및/또는 Content/Service protection properties를 포함할 수 있다. Relationships 정보는 "ProgramOf" relationship with Linear Service class, "ContentItemOf" relationship with App-Based Service class, "OnDemandComponentOf" relationship with App Based Service Class, "Contains" relationship with Presentable Video Component class, "Contains" relationship with Presentable Audio Component class, "Contains" relationship with Presentable CC Component class, "Contains" relationship with App-Based Enhancement class, "Contains" relationship with Time Base class, "Based-on" relationship with Show class 및/또는 "Contains" relationship with Segment class를 포함할 수 있다. "Contains" relationship with Presentable Video Component class는 어트리뷰트로 Role of video component를 가질 수 있고, Role of video component는 Primary video, Alternative camera view, Other alternative video component, Sign language (e.g., ASL) inset 및/또는 Follow subject video 값을 가질 수 있다. "Contains" relationship with Segment class는 어트리뷰트로 프로그램의 시작과 관련있는 세그먼트의 시작 시간을 나타내는 RelativeSegmentStartTime를 가질 수 있다.
본 발명의 일 실시예에 따른 "Contains" relationship with App-Based Enhancement class는 어트리뷰트 및/또는 하위 엘레먼트로 Presentable of app-based enhancement component, Toggle of app-based enhancement component 및/또는 Role of app-based enhancement component를 포함할 수 있다. Presentable of app-based enhancement component 값이 True이면, 해당 app-based enhancement는 화면에 보여질 수 있음 (presentable)을 나타낼 수 있다. 반면, False이면, 해당 app-based enhancement는 화면에 보여지지 않을 수 있음을 나타낼 수 있다. Toggle of app-based enhancement component 값이 True이면, 해당 App-based enhancement는 화면에 Toggle 방식으로 보였다가 안보였다가 할 수 있음을 나타낼 수 있다. 반면, False이면, 해당 App-based enhancement는 Toggle 방식으로 운용되지 않고, 화면에 보여져야 함을 나타낼 수 있다. Role of app-based enhancement component가 Primary app이면, 해당 app-based enhancement는 multi-view에서 main role을 가질 수 있고 이 값은 default 값이 될 수 있다. Real-time independent app이면, 해당 app은 실시간 update되며, app의 update 내용은 app 자체적으로 독립적으로 관리될 수 있다. Other alternative app이면, 추후 확장을 위해 해당 app은 다른 role로 사용될 수 있음을 나타낼 수 있다.
도 65는 본 발명의 다른 일 실시예에 따른 방송 신호 수신 장치의 동작을 나타낸 도면이다.
본 발명의 일 실시예에 따른 수신 장치는 프로그램 시그널링 정보를 수신할 수 있다. (SL65010) 여기서, 프로그램 시그널링 정보는 이전 도면에서 전술한 프로그램 시그널링 정보를 포함할 수 있다. 수신 장치는 프로그램 시그널링 정보 내의 Presentable Video Component Role을 확인할 수 있다. (SL65020) 수신 장치는 Presentable Video Component Role이 Alternative이면 Video Component 정보를 수신하고 Multi-view를 구성하여 video component를 렌더링할 수 있다. 수신 장치는 Presentable Video Component Role이 Primary이면 Video component 정보를 수신하고 메인 화면에 해당 video component를 렌더링할 수 있다. 수신 장치는 프로그램 시그널링 정보 내의 Presentable of app-based enhancement component를 확인하여 App-based enhancement가 Presentable한지 여부를 알 수 있다. (SL65030) 수신 장치는 App-based enhancement가 Presentable하지 않은 경우, App signaling location에서 App 전송 정보를 수신하고 TPT 및/또는 TDO 수신하여 해당 app의 capability 정보를 획득할 수 있다. 수신 장치는 프로그램 시그널링 정보 내의 Toggle of app-based enhancement component를 확인하여 해당 앱이 토글이 가능한지 여부를 확인할 수 있다. (SL65040) 토글 기능을 지원하지 않는 경우, 수신 장치는 뷰 (앱)의 롤을 고려하여 화면에 Multi-view로 해당 뷰 (앱)를 렌더링할 수 있다. 토글 기능을 지원하는 경우, 수신 장치는 일단 Main Role의 뷰를 화면에 렌더링하고 사용자가 Multi-view 서비스를 선택하는 경우에 토글 기능을 활성화하여 Multi-view를 화면에 렌더링할 수 있다.
도 66은 본 발명의 일 실시예에 따른 프로그램 시그널링 정보에 app-based enhancement 관련 정보가 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
본 발명의 일 실시예에 따른 프로그램 시그널링 정보 (L66010)는 123이라는 프로그램에 대한 정보를 기술할 수 있다. (ProgramIdentifier="123") 본 발명의 일 실시예에 따른 해당 프로그램 (ProgramIdentifier="123")은 Video 컴포넌트, 제 1 app-based enhancement 및 제 2 app-based enhancement를 포함할 수 있다. Video 컴포넌트의 role은 primary이고, 제 1 app-based enhancement는 presentable하고 (Presentable="1"), 토글 기능을 지원하고 (Toggle="1"), not specified의 role (Role="0")을 가질 수 있다. 제 2 app-based enhancement는 presentable하지 않고 (Presentable="0"), reserved의 role (Role="2")을 가질 수 있다. 제 1 app-based enhancement는 토글 기능을 지원하므로 토글 기능의 온/오프를 통하여 App의 뷰를 온/오프할 수 있다. 제 1 app-based enhancement는 not specified의 role을 가지므로 primary App이 아니고 따라서, 수신 장치는 처음 프로그램이 시작할 때 Multi-view가 가능하다는 내용만을 알려줄 수 있다.
본 발명의 일 실시예에 따른 수신 장치는 123이라는 프로그램을 구성하는 primary 비디오 컴포넌트 (main role) 및 Multi-view 서비스가 가능함을 알려주는 notification 아이콘을 스크린에 디스플레이할 수 있다. (L66020)
본 발명의 일 실시예에 따른 수신 장치는 사용자가 Multi-view 서비스가 가능함을 알려주는 notification 아이콘을 선택하여 Multi-view 서비스 기능을 활성화 시키면, 제 1 app-based enhancement를 추가로 스크린에 디스플레이할 수 있다. (L66030) 이 때, 본 발명의 일 실시예에 따르면, 제 1 app-based enhancement는 결제 어플리케이션에 해당할 수 있고, 제 2 app-based enhancement는 보안 어플리케이션에 해당할 수 있다. 따라서, 본 발명의 일 실시예에 따르면 결제 어플리케이션이 실행되는 동안 presentable하진 않지만 real-time으로 보안 어플리케이션이 동시에 background로 실행될 수 있다. (L66040)
도 67은 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor의 구성을 나타낸 도면이다.
본 발명의 일 실시예에 따른 Multi_view_descriptor (L27010)는 전술한 실시예에 뷰의 위치 정보를 나타내는 방법을 추가한 실시예이다. 이를 통해, 본 발명의 일 실시예는 스크린의 지정된 위치에 multi-view를 구성할 수 있다.
본 발명의 일 실시예에 따른 Multi-view descriptor는 서비스 레벨 디스크립터에 해당할 수 있다. 본 발명의 일 실시예에 따른 SMT에 Multi-view descriptor가 존재하면 해당 서비스에서 multi-view 구성이 가능함을 나타낼 수 있다.
본 발명의 일 실시예에 따른 multi view descriptor (L67010)는 descriptor_tag 필드, descriptor_length 필드, num_of_views 필드, view_type 필드, view_role 필드, component_id_length 필드, component_id 필드, app_id 필드, app_url_length 필드, app_url 필드, view_toggle_flag 필드, position_flag 필드, coordinate_system 필드, icon_horizontal_origin 필드, icon_vertical_origin 필드, left 필드 및/또는 top 필드를 포함할 수 있다.
position_flag 필드는 이 descriptor 내에 해당 뷰 (view)의 위치 정보가 포함되어 있는지 여부를 나타낸다. 나아가 이 필드는 해당 뷰의 위치 정보를 나타내는 방법을 나타낼 수 있다. 이 필드 값이 '0x01'이면 이 디스크립터는 해당 view의 절대 위치 (apsolute location) 정보를 포함할 수 있다. 이 필드 값이 '0x02'이면 이 디스크립터는 해당 view의 왼쪽 상단의 시작점 위치를 전체 스크린에 대한 percentage로 나타낸 위치 정보를 포함할 수 있다.
left 필드는 해당 뷰의 좌측 끝 부분이 전체 스크린의 좌측 끝으로부터 몇 퍼센트의 위치에서부터 존재하는지를 나타낼 수 있다.
top 필드는 해당 뷰의 위쪽 끝 부분이 전체 스크린의 위쪽 끝으로부터 몇 퍼센트의 위치에서부터 존재하는지를 나타낼 수 있다.
본 발명의 일 실시예에 따른 multi view descriptor (L67010)에 포함된 필드 중 상술한 필드를 제외한 필드들에 대한 상세한 설명은 전술하였다.
도 68은 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor가 SMT에 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
본 발명의 일 실시예에 따른 Multi_view_descriptor (L68010)는 두 개의 뷰에 대한 정보를 기술할 수 있다. (num_of_views 필드가 나타내는 뷰의 개수가 2개)
본 발명의 일 실시예에 따른 제 1 뷰는 video component (view_type=0x01), main view (view_role=0x01), 토글 기능을 지원하지 않는 (view_toggle_flag=0), (0,0)의 위치에서부터 디스플레이되는 ABC (component_id=ABC)라는 뷰를 나타낼 수 있다.
본 발명의 일 실시예에 따른 제 2 뷰는 app-based enhancement (view_type=0x02), not specified 롤을 갖고 있고 (view_role=0x00), 토글 기능을 지원하고 (view_toggle_flag=1), 스크린의 좌측 끝으로부터 70 퍼센트의 위치 및 스크린의 위쪽 끝으로부터 0 퍼센트의 위치 (position_flag=0x02, left (70%), top (0%)) 에서부터 디스플레이되는 123 (app_id=123, app_url=http://lge.com/app123)이라는 뷰를 나타낼 수 있다.
본 발명의 일 실시예에 따른 수신 장치는 ABC라는 primary 비디오 컴포넌트 (main role) 및 Multi-view 서비스가 가능함을 알려주는 notification 아이콘을 스크린에 디스플레이할 수 있다. (L68020)
본 발명의 일 실시예에 따른 수신 장치는 사용자가 Multi-view 서비스가 가능함을 알려주는 notification 아이콘을 선택하여 Multi-view 서비스 기능을 활성화 시키면, 123이라는 App-based enhancement 컴포넌트를 메인 디바이스의 스크린의 좌측 끝으로부터 70 % 및 위쪽 끝으로부터 0 %의 위치에 추가로 디스플레이할 수 있다. (L68030)
도 69는 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor의 구성을 나타낸 도면이다.
본 발명의 일 실시예는 전술한 본 발명의 일 실시예에 따른 Multi_view_descriptor에 Temporal 정보를 추가하여 사용자의 선택에 독립적으로 지정된 시간이 되면 multi-view가 화면에 디스플레이되도록 할 수 있다.
본 발명의 일 실시예에 따른 Multi-view descriptor는 서비스 레벨 디스크립터에 해당할 수 있다. 본 발명의 일 실시예에 따른 SMT에 Multi-view descriptor가 존재하면 해당 서비스에서 multi-view 구성이 가능함을 나타낼 수 있다.
본 발명의 일 실시예에 따른 multi view descriptor (L69010)는 descriptor_tag 필드, descriptor_length 필드, num_of_views 필드, view_type 필드, view_role 필드, component_id_length 필드, component_id 필드, app_id 필드, app_url_length 필드, app_url 필드, begin 필드 및/또는 end 필드를 포함할 수 있다. 나아가, 본 발명의 일 실시예에 따른 multi view descriptor (L69010)는 뷰의 위치와 관련된 정보를 더 포함할 수 있다.
begin 필드는 Multi-view에서 해당 뷰가 화면에 보이기 시작하는 시간을 나타낼 수 있다. view_role이 main이 아닌 경우에 이 필드는 값을 가질 수 있고, 해당 뷰가 main view인 경우, 이 필드는 0x00 값을 가질 수 있다.
end 필드는 Multi-view에서 해당 뷰가 화면에서 사라지는 시간을 나타낼 수 있다. view_role이 main이 아닌 경우에 이 필드는 값을 가질 수 있고, 해당 뷰가 main view인 경우, 이 필드는 0x00 값을 가질 수 있다.
본 발명의 일 실시예에 따른 multi view descriptor (L69010)에 포함된 필드 중 상술한 필드를 제외한 필드들에 대한 상세한 설명은 전술하였다.
도 70은 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor가 SMT에 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
본 발명의 일 실시예에 따른 Multi_view_descriptor (L70010)는 두 개의 뷰에 대한 정보를 기술할 수 있다. (num_of_views 필드가 나타내는 뷰의 개수가 2개)
본 발명의 일 실시예에 따른 제 1 뷰는 video component (view_type=0x01), main view (view_role=0x01)로서 서비스의 처음부터 끝까지 디스플레이되는 ABC (component_id=ABC)라는 뷰를 나타낼 수 있다.
본 발명의 일 실시예에 따른 제 2 뷰는 app-based enhancement (view_type=0x02), not specified 롤을 갖고 있고 (view_role=0x00), '12345'라는 시간부터 '67890'이라는 시간까지 (begin='12345', end='67890') 디스플레이되는 123 (app_id=123, app_url=http://lge.com/app123)이라는 뷰를 나타낼 수 있다.
본 발명의 일 실시예에 따른 수신 장치는 ABC라는 primary 비디오 컴포넌트 (main role)만을 서비스의 시작시간부터 '12345'시간까지 디스플레이하다가 (L70020) '12345'시간부터 '67890'시간까지 ABC라는 primary 비디오 컴포넌트 (main role) 및 123이라는 App-based enhancement 컴포넌트를 동시에 디스플레이할 수 있고 (L70030), '67890'시간부터는 다시 ABC라는 primary 비디오 컴포넌트 (main role)만을 디스플레이할 수 있다. (L70040)
도 71은 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor의 구성을 나타낸 도면이다.
본 발명의 일 실시예에 따른 Multi_view_descriptor (L71010)는 전술한 실시예에 Hidden-view 관련 정보를 추가한 실시예이다. 이를 통해, 본 발명의 일 실시예는 Hidden-view 관련 서비스를 제공할 수 있다.
본 발명의 일 실시예에 따른 Multi-view descriptor는 서비스 레벨 디스크립터에 해당할 수 있다. 본 발명의 일 실시예에 따른 SMT에 Multi-view descriptor가 존재하면 해당 서비스에서 multi-view 구성이 가능함을 나타낼 수 있다.
본 발명의 일 실시예에 따른 multi view descriptor (L71010)는 descriptor_tag 필드, descriptor_length 필드, num_of_views 필드, view_type 필드, view_role 필드, view_index 필드, view_hidden_flag 필드, position_flag 필드, coordinate_system 필드, icon_horizontal_origin 필드, icon_vertical_origin 필드, left 필드, top 필드, view_location 필드, relative_view_index 필드, view_scale 필드 및/또는 max_viewing_time 필드를 포함할 수 있다.
view_index 필드는 view_role이 main view가 아닌 경우, 각 sub view의 index를 나타낼 수 있다.
view_hidden_flag 필드는 Multi-view에서 해당 뷰가 hidden인지 아닌지를 나타낼 수 있다. 이 필드 값이 1이면 본 발명의 일 실시예는 사용자의 선택에 따라 해당 뷰를 화면에 보여줄 수 있다. 이 필드는 해당 뷰의 view_role이 main이 아닌 경우에 true 값을 가질 수 있다.
position_flag 필드는 이 descriptor 내에 해당 뷰 (view)의 위치 정보가 포함되어 있는지 여부를 나타낸다. 나아가 이 필드는 해당 뷰의 위치 정보를 나타내는 방법을 나타낼 수 있다. 또한, 이 필드는 히든 뷰 (hidden view)의 위치 정보를 나타내기 위해 사용될 수 있다. 이 필드 값이 '0x01'이면 이 디스크립터는 해당 view의 절대 위치 (apsolute location) 정보를 포함할 수 있다. 이 필드 값이 '0x02'이면 이 디스크립터는 해당 view의 왼쪽 상단의 시작점 위치를 전체 스크린에 대한 percentage로 나타낸 위치 정보를 포함할 수 있다. 이 필드 값이 '0x03'이면 이 디스크립터는 hidden view의 위치, 크기 등의 관련 정보를 포함할 수 있다.
view_location 필드는 해당 뷰가 hidden일 경우, 해당 뷰의 위치 정보를 나타낼 수 있다. 이 필드 값이 0x00이면 not specified, 0x01이면 top, 0x02이면 right, 0x03이면 bottom, 0x04이면 left에 해당 뷰가 위치함을 나타낼 수 있다.
relative_view_index 필드는 해당 뷰가 hidden인 경우, 해당 뷰의 위치의 기준이 되는 뷰의 index를 나타낼 수 있다.
view_scale 필드는 해당 뷰가 hidden인 경우, 해당 뷰의 크기에 대한 정보를 나타낼 수 있다. 이 필드는 해당 뷰의 기준이 되는 뷰인 relative 뷰의 크기에 비례하는 값을 나타낼 수 있다. 예를 들어, 이 필드가 100% 값을 나타내는 경우, 이는 해당 뷰가 relative 뷰와 동일한 크기임을 나타낼 수 있다.
max_viewing_time 필드는 사용자의 input이 없을 때, hidden 뷰가 화면에 디스플레이된 이후로부터 화면에서 사라질 때까지의 최대 시간을 나타낼 수 있다. 즉, hidden view에서 main view 상태로 다시 돌아갈 때까지의 최대 시간을 나타낼 수 있다.
본 발명의 일 실시예에 따른 multi view descriptor (L71010)에 포함된 필드 중 상술한 필드를 제외한 필드들에 대한 상세한 설명은 전술하였다.
도 72는 본 발명의 다른 일 실시예에 따른 Multi_view_descriptor가 SMT에 포함되어 전송되는 경우, 수신 장치의 스크린 모습을 나타낸 도면이다.
본 발명의 일 실시예에 따른 Multi_view_descriptor (L72010)는 두 개의 뷰에 대한 정보를 기술할 수 있다. (num_of_views 필드가 나타내는 뷰의 개수가 2개)
본 발명의 일 실시예에 따른 제 1 뷰는 video component (view_type=0x01), main view (view_role=0x01), hidden이 아닌 (view_hidden_flag=0), (0,0)의 절대 위치에서부터 디스플레이되는 ABC (component_id=ABC)라는 뷰를 나타낼 수 있다.
본 발명의 일 실시예에 따른 제 2 뷰는 app-based enhancement (view_type=0x02), not specified 롤을 갖고 있고 (view_role=0x00), relaive 뷰가 main view인 hidden 뷰이고 (view_hidden_flag=1, position_flag=0x03, relaive_view_index=0x00:main), relative 뷰의 30% 크기를 갖고 스크린의 오른편에 위치하고 (view_scale=30%, view_location=0x02), 사용자의 input이 없을 때 hidden 뷰가 화면에 디스플레이된 이후로부터 화면에서 사라질 때까지 최대 60초가 소요되는 (max_viewing_time=60s) 123 (app_id=123, app_url=http://lge.com/app123)이라는 뷰를 나타낼 수 있다.
본 발명의 일 실시예에 따른 수신 장치는 ABC라는 primary 비디오 컴포넌트 (main role) 및 Multi-view 서비스가 가능함을 알려주는 notification 아이콘 (즉, Hidden view가 있음을 알려주는 아이콘)을 스크린에 디스플레이할 수 있다. (L72020)
본 발명의 일 실시예에 따른 수신 장치는 사용자가 Multi-view 서비스가 가능함을 알려주는 notification 아이콘 (Hidden view가 있음을 알려주는 아이콘)을 선택하여 Multi-view 서비스 기능을 활성화 시키면, 123이라는 App-based enhancement 컴포넌트를 main view의 30%되는 크기로 스크린의 오른편에 추가로 디스플레이할 수 있다. (L72030) 이 때, main view에서 hidden view의 크기만큼의 왼쪽 부분은 스크린에 표시되지 않을 수 있고, 본 발명의 일 실시예는 max_viewing_time 정보가 나타내는 시간동안 사용자의 별다른 input이 없는 경우, 원래의 main view 화면으로 돌아가도록 할 수 있다.
도 73은 본 발명의 일 실시예에 따른 방송 신호 송신 방법을 나타낸 도면이다.
본 발명의 일 실시예에 따른 방송 신호 송신 방법은 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 인코딩하는 단계 (SL73010), 상기 인코딩된 방송 서비스 및 시그널링 정보를 포함하는 방송 신호를 생성하는 단계 (SL73020) 및/또는 상기 생성된 방송 신호를 전송하는 단계 (SL73030)를 포함할 수 있다. 여기서, 상기 시그널링 정보는 Multi_view_descriptor를 나타낼 수 있다. 이에 대한 상세한 설명은 도 60에서 전술하였다.
본 발명의 다른 일 실시예에 따르면, 상기 시그널링 정보는 상기 서비스를 구성하는 뷰의 개수를 나타내는 정보, 해당 뷰의 타입을 나타내는 정보, 해당 뷰의 롤 (role)을 나타내는 정보, 해당 뷰가 토글 (toggle)이 가능한지 여부를 나타내는 정보, 해당 뷰의 스크린 상 위치 정보, 해당 뷰가 스크린 상에 표시되기 시작되는 시간 정보 및/또는 해당 뷰가 스크린 상에서 사라지는 시간 정보를 포함할 수 있다. 여기서, 상기 서비스를 구성하는 뷰의 개수를 나타내는 정보는 num_of_views, 해당 뷰의 타입을 나타내는 정보는 view_type, 해당 뷰의 롤 (role)을 나타내는 정보는 view_role, 해당 뷰가 토글 (toggle)이 가능한지 여부를 나타내는 정보는 view_toggle_flag, 해당 뷰의 스크린 상 위치 정보는 position_flag와 관련된 정보들, 해당 뷰가 스크린 상에 표시되기 시작되는 시간 정보는 begin 필드, 해당 뷰가 스크린 상에서 사라지는 시간 정보는 end 필드를 나타낼 수 있다. 이에 대한 상세한 설명은 도 60, 69에서 전술하였다.
본 발명의 다른 일 실시예에 따르면, 상기 위치 정보는 해당 뷰의 위치를 나타내기 위해 사용되는 좌표계 정보 및/또는 스크린 상 해당 뷰가 위치하는 좌표 정보를 포함할 수 있다. 여기서, 상기 좌표계 정보는 coordinate_system, 좌표 정보는 icon_horizontal_orgin 및/또는 icon_vertical_origin을 나타낼 수 있다. 이에 대한 상세한 설명은 도 60에서 전술하였다.
본 발명의 다른 일 실시예에 따르면, 상기 위치 정보는 스크린의 전체 크기를 기준으로 해당 뷰가 위치하는 지점의 비율을 나타내는 정보를 포함할 수 있다. 여기서, 스크린의 전체 크기를 기준으로 해당 뷰가 위치하는 지점의 비율을 나타내는 정보는 position_flag가 0x02인 경우 left 및/또는 top 필드를 나타낼 수 있다. 이에 대한 상세한 설명은 도 67에서 전술하였다.
본 발명의 다른 일 실시예에 따르면, 상기 시그널링 정보는 해당 뷰가 히든 뷰 (hidden view)인지 아닌지 여부를 나타내는 정보를 포함하고, 상기 시그널링 정보는 해당 뷰가 히든 뷰인 경우, 해당 뷰가 스크린에서 표시될 위치 정보, 해당 뷰의 크기 정보, 해당 뷰의 위치 및 크기를 판단하는데 기준이 되는 뷰에 대한 정보 및/또는 해당 뷰가 스크린에 표시될 때부터 사라질 때까지의 시간 정보를 포함할 수 있다. 여기서, 해당 뷰가 히든 뷰 (hidden view)인지 아닌지 여부를 나타내는 정보는 view_hidden_flag, 해당 뷰가 스크린에서 표시될 위치 정보는 view_location, 해당 뷰의 크기 정보는 view_scale, 해당 뷰의 위치 및 크기를 판단하는데 기준이 되는 뷰에 대한 정보는 relative_view_index, 해당 뷰가 스크린에 표시될 때부터 사라질 때까지의 시간 정보는 max_viewing_time을 나타낼 수 있다. 이에 대한 상세한 설명은 도 71에서 전술하였다.
본 발명의 다른 일 실시예에 따르면, 상기 방송 신호는 방송 프로그램에 대한 정보를 포함하는 프로그램 시그널링 정보를 포함하고, 상기 프로그램 시그널링 정보는 상기 방송 프로그램과 관련있는 앱 기반 인핸스먼트 컴포넌트 (app-based enhancement comoponent)에 대한 정보를 포함하고, 상기 앱 기반 인핸스먼트 컴포넌트에 대한 정보는 상기 앱 기반 인핸스먼트 컴포넌트가 스크린에 표시되는 컴포넌트인지 여부를 나타내는 정보, 상기 앱 기반 인핸스먼트 컴포넌트가 토글이 가능한지 여부를 나타내는 정보 및/또는 상기 앱 기반 인핸스먼트 컴포넌트의 롤을 나타내는 정보를 포함할 수 있다. 여기서, 프로그램 시그널링 정보는 프로그램 레벨의 시그널링 정보를 나타낼 수 있고, 상기 방송 프로그램과 관련있는 앱 기반 인핸스먼트 컴포넌트 (app-based enhancement comoponent)에 대한 정보는 "Contains" relationship with App-Based Enhancement class, 상기 앱 기반 인핸스먼트 컴포넌트가 스크린에 표시되는 컴포넌트인지 여부를 나타내는 정보는 Presentable of app-based enhancement component, 상기 앱 기반 인핸스먼트 컴포넌트가 토글이 가능한지 여부를 나타내는 정보는 Toggle of app-based enhancement component, 상기 앱 기반 인핸스먼트 컴포넌트의 롤을 나타내는 정보는 Role of app-based enhancement component를 나타낼 수 있다. 이에 대한 상세한 설명은 도 64에서 전술하였다.
본 발명의 일 실시예에 따르면, 긴급 알람 메시지 (emergency alert message)는 본 발명의 일 실시예에 따른 서비스 및/또는 컴포넌트에 해당할 수 있다. 본 발명의 일 실시예에 따르면, 긴급 알람 메시지가 서비스 및/또는 컴포넌트에 해당하여 하나의 뷰 (view)를 구성한다면, Multi-view descritor는 긴급 알람 메시지에 대한 정보를 시그널링할 수 있다. 본 발명의 일 실시예에 따르면, 전술한 position_flag 필드, coordinate_system 필드, icon_horizontal_origin 필드, icon_vertical_origin 필드, left 필드, top 필드 및/또는 view_location 필드는 긴급 알람 메시지의 스크린상 표시 위치에 대한 정보를 나타낼 수 있다. 이 때, 상술한 긴급 알람 메시지의 스크린상 표시 위치에 대한 정보는 긴급 알람 메시지 베너 (emergency alert banner)의 스크린상 표시 위치를 나타낼 수 있다. 본 발명의 일 실시예에는 상술한 긴급 알람 메시지 베너의 스크린상 표시 위치에 대한 정보를 시그널링함으로써 숨겨져 있는 (burned in) 긴급 알람 메시지 베너의 위치를 제공할 수 있고 이에 따라, 상기 제공된 해당 위치는 긴급 알람 메시지가 표시되기 위해 모호하면 (obscured) 안된다는 정보를 제공할 수 있다.
도 74는 본 발명의 일 실시예에 따른 방송 신호 수신 방법을 나타낸 도면이다.
본 발명의 일 실시예에 따른 방송 신호 수신 방법은 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 포함하는 방송 신호를 수신하는 단계 (SL74010), 상기 수신한 방송 신호에서 상기 방송 서비스 및 시그널링 정보를 파싱하는 단계 (SL74020) 및/또는 상기 파싱된 방송 서비스 및 시그널링 정보를 디코딩하는 단계 (SL74030)를 포함할 수 있다. 여기서, 상기 시그널링 정보는 Multi_view_descriptor를 나타낼 수 있다. 이에 대한 상세한 설명은 도 60에서 전술하였다. 여기서, 상기 수신하는 단계는 전술한 Broadcast Interface, Network Interface, Channel Synchronizer, IP Communication Unit, Transport Packet Interface, Broadband Packet Interface, Tuner 및/또는 HTTP Access Client에 의해 수행될 수 있다. 상기 파싱하는 단계는 전술한 Control Unit, Signaling Decoder, Service Signaling Channel Processing Buffer and Parser, A/V Processor, Signaling Parser, Physicla Frame Parser, Link Layer Frams processor, IP/UDP Diagam Filter, ALC/CLT+ Client, DASH Client, ISO BMFF Parser 및/또는 ATSC3.0 DTV Control Engine에 의해 수행될 수 있다. 상기 디코딩하는 단계는 전술한 Media Decoder, A/V Processor, Service Signaling Channel Processing Buffer and Parser, Service Guide Processor 및/또는 Application Processor에 의해 수행될 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 시그널링 정보는 상기 서비스를 구성하는 뷰의 개수를 나타내는 정보, 해당 뷰의 타입을 나타내는 정보, 해당 뷰의 롤 (role)을 나타내는 정보, 해당 뷰가 토글 (toggle)이 가능한지 여부를 나타내는 정보, 해당 뷰의 스크린 상 위치 정보, 해당 뷰가 스크린 상에 표시되기 시작되는 시간 정보 및/또는 해당 뷰가 스크린 상에서 사라지는 시간 정보를 포함할 수 있다. 여기서, 상기 서비스를 구성하는 뷰의 개수를 나타내는 정보는 num_of_views, 해당 뷰의 타입을 나타내는 정보는 view_type, 해당 뷰의 롤 (role)을 나타내는 정보는 view_role, 해당 뷰가 토글 (toggle)이 가능한지 여부를 나타내는 정보는 view_toggle_flag, 해당 뷰의 스크린 상 위치 정보는 position_flag와 관련된 정보들, 해당 뷰가 스크린 상에 표시되기 시작되는 시간 정보는 begin 필드, 해당 뷰가 스크린 상에서 사라지는 시간 정보는 end 필드를 나타낼 수 있다. 이에 대한 상세한 설명은 도 60, 69에서 전술하였다.
본 발명의 다른 일 실시예에 따르면, 상기 위치 정보는 해당 뷰의 위치를 나타내기 위해 사용되는 좌표계 정보 및/또는 스크린 상 해당 뷰가 위치하는 좌표 정보를 포함할 수 있다. 여기서, 상기 좌표계 정보는 coordinate_system, 좌표 정보는 icon_horizontal_orgin 및/또는 icon_vertical_origin을 나타낼 수 있다. 이에 대한 상세한 설명은 도 60에서 전술하였다.
본 발명의 다른 일 실시예에 따르면, 상기 위치 정보는 스크린의 전체 크기를 기준으로 해당 뷰가 위치하는 지점의 비율을 나타내는 정보를 포함할 수 있다. 여기서, 스크린의 전체 크기를 기준으로 해당 뷰가 위치하는 지점의 비율을 나타내는 정보는 position_flag가 0x02인 경우 left 및/또는 top 필드를 나타낼 수 있다. 이에 대한 상세한 설명은 도 67에서 전술하였다.
본 발명의 다른 일 실시예에 따르면, 상기 시그널링 정보는 해당 뷰가 히든 뷰 (hidden view)인지 아닌지 여부를 나타내는 정보를 포함하고, 상기 시그널링 정보는 해당 뷰가 히든 뷰인 경우, 해당 뷰가 스크린에서 표시될 위치 정보, 해당 뷰의 크기 정보, 해당 뷰의 위치 및 크기를 판단하는데 기준이 되는 뷰에 대한 정보 및/또는 해당 뷰가 스크린에 표시될 때부터 사라질 때까지의 시간 정보를 포함할 수 있다. 여기서, 해당 뷰가 히든 뷰 (hidden view)인지 아닌지 여부를 나타내는 정보는 view_hidden_flag, 해당 뷰가 스크린에서 표시될 위치 정보는 view_location, 해당 뷰의 크기 정보는 view_scale, 해당 뷰의 위치 및 크기를 판단하는데 기준이 되는 뷰에 대한 정보는 relative_view_index, 해당 뷰가 스크린에 표시될 때부터 사라질 때까지의 시간 정보는 max_viewing_time을 나타낼 수 있다. 이에 대한 상세한 설명은 도 71에서 전술하였다.
본 발명의 다른 일 실시예에 따르면, 상기 방송 신호는 방송 프로그램에 대한 정보를 포함하는 프로그램 시그널링 정보를 포함하고, 상기 프로그램 시그널링 정보는 상기 방송 프로그램과 관련있는 앱 기반 인핸스먼트 컴포넌트 (app-based enhancement comoponent)에 대한 정보를 포함하고, 상기 앱 기반 인핸스먼트 컴포넌트에 대한 정보는 상기 앱 기반 인핸스먼트 컴포넌트가 스크린에 표시되는 컴포넌트인지 여부를 나타내는 정보, 상기 앱 기반 인핸스먼트 컴포넌트가 토글이 가능한지 여부를 나타내는 정보 및/또는 상기 앱 기반 인핸스먼트 컴포넌트의 롤을 나타내는 정보를 포함할 수 있다. 여기서, 프로그램 시그널링 정보는 프로그램 레벨의 시그널링 정보를 나타낼 수 있고, 상기 방송 프로그램과 관련있는 앱 기반 인핸스먼트 컴포넌트 (app-based enhancement comoponent)에 대한 정보는 "Contains" relationship with App-Based Enhancement class, 상기 앱 기반 인핸스먼트 컴포넌트가 스크린에 표시되는 컴포넌트인지 여부를 나타내는 정보는 Presentable of app-based enhancement component, 상기 앱 기반 인핸스먼트 컴포넌트가 토글이 가능한지 여부를 나타내는 정보는 Toggle of app-based enhancement component, 상기 앱 기반 인핸스먼트 컴포넌트의 롤을 나타내는 정보는 Role of app-based enhancement component를 나타낼 수 있다. 이에 대한 상세한 설명은 도 64에서 전술하였다.
도 75는 본 발명의 일 실시예에 따른 방송 신호 송신 장치의 구성을 나타낸 도면이다.
본 발명의 일 실시예에 따른 방송 신호 송신 장치 (L75010)는 인코더 (L75020), 방송 신호 생성부 (L75030) 및/또는 전송부 (L75040)를 포함할 수 있다. 인코더는 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 인코딩할 수 있다. 방송 신호 생성부는 상기 인코딩된 방송 서비스 및 시그널링 정보를 포함하는 방송 신호를 생성할 수 있다. 전송부는 상기 생성된 방송 신호를 전송할 수 있다. 상술한 구성요소들은 전술한 방송 신호 송신 방법의 각 단계를 수행할 수 있다.
본 발명의 다른 일 실시예에 따르면, 상기 시그널링 정보는 상기 서비스를 구성하는 뷰의 개수를 나타내는 정보, 해당 뷰의 타입을 나타내는 정보, 해당 뷰의 롤 (role)을 나타내는 정보, 해당 뷰가 토글 (toggle)이 가능한지 여부를 나타내는 정보, 해당 뷰의 스크린 상 위치 정보, 해당 뷰가 스크린 상에 표시되기 시작되는 시간 정보 및/또는 해당 뷰가 스크린 상에서 사라지는 시간 정보를 포함할 수 있다.
도 76은 본 발명의 일 실시예에 따른 방송 신호 수신 장치의 구성을 나타낸 도면이다.
본 발명의 일 실시예에 따른 방송 신호 수신 장치 (L76010)는 수신부 (L76020), 파싱부 (L76030) 및/또는 디코더 (L76040)를 포함할 수 있다. 수신부는 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 포함하는 방송 신호를 수신할 수 있다. 파싱부는 상기 수신한 방송 신호에서 상기 방송 서비스 및 시그널링 정보를 파싱할 수 있다. 디코더는 상기 파싱된 방송 서비스 및 시그널링 정보를 디코딩할 수 있다. 여기서, 상기 수신부는 전술한 Broadcast Interface, Network Interface, Channel Synchronizer, IP Communication Unit, Transport Packet Interface, Broadband Packet Interface, Tuner 및/또는 HTTP Access Client를 포함할 수 있다. 상기 파싱부는 전술한 Control Unit, Signaling Decoder, Service Signaling Channel Processing Buffer and Parser, A/V Processor, Signaling Parser, Physicla Frame Parser, Link Layer Frams processor, IP/UDP Diagam Filter, ALC/CLT+ Client, DASH Client, ISO BMFF Parser 및/또는 ATSC3.0 DTV Control Engine를 포함할 수 있다. 상기 디코더는 전술한 Media Decoder, A/V Processor, Service Signaling Channel Processing Buffer and Parser, Service Guide Processor 및/또는 Application Processor를 포함할 수 있다.
모듈 또는 유닛은 메모리(또는 저장 유닛)에 저장된 연속된 수행과정들을 실행하는 프로세서들일 수 있다. 전술한 실시예에 기술된 각 단계들은 하드웨어/프로세서들에 의해 수행될 수 있다. 전술한 실시예에 기술된 각 모듈/블락/유닛들은 하드웨어/프로세서로서 동작할 수 있다. 또한, 본 발명이 제시하는 방법들은 코드로서 실행될 수 있다. 이 코드는 프로세서가 읽을 수 있는 저장매체에 쓰여질 수 있고, 따라서 장치(apparatus)가 제공하는 프로세서에 의해 읽혀질 수 있다.
설명의 편의를 위하여 각 도면을 나누어 설명하였으나, 각 도면에 서술되어 있는 실시 예들을 병합하여 새로운 실시 예를 구현하도록 설계하는 것도 가능하다. 그리고, 통상의 기술자의 필요에 따라, 이전에 설명된 실시 예들을 실행하기 위한 프로그램이 기록되어 있는 컴퓨터에서 판독 가능한 기록 매체를 설계하는 것도 본 발명의 권리범위에 속한다.
본 발명에 따른 장치 및 방법은 상술한 바와 같이 설명된 실시 예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상술한 실시 예들은 다양한 변형이 이루어질 수 있도록 각 실시 예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
한편, 본 발명이 제안하는 방법을 네트워크 디바이스에 구비된, 프로세서가 읽을 수 있는 기록매체에, 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 기록매체는 프로세서에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 프로세서가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한, 인터넷을 통한 전송 등과 같은 캐리어 웨이브의 형태로 구현되는 것도 포함한다. 또한, 프로세서가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 프로세서가 읽을 수 있는 코드가 저장되고 실행될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해돼서는 안 될 것이다.
그리고, 당해 명세서에서는 물건 발명과 방법 발명이 모두 설명되고 있으며, 필요에 따라 양 발명의 설명은 보충적으로 적용될 수가 있다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 이해된다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.
본 명세서에서 장치 및 방법 발명이 모두 언급되고, 장치 및 방법 발명 모두의 설명은 서로 보완하여 적용될 수 있다.
다양한 실시예가 본 발명을 실시하기 위한 최선의 형태에서 설명되었다.
본 발명은 일련의 방송 신호 제공 분야에서 이용된다.
본 발명의 사상이나 범위를 벗어나지 않고 본 발명에서 다양한 변경 및 변형이 가능함은 당업자에게 자명하다. 따라서, 본 발명은 첨부된 청구항 및 그 동등 범위 내에서 제공되는 본 발명의 변경 및 변형을 포함하는 것으로 의도된다.
Claims (15)
- 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 인코딩하는 단계;상기 인코딩된 방송 서비스 및 시그널링 정보를 포함하는 방송 신호를 생성하는 단계; 및상기 생성된 방송 신호를 전송하는 단계;를 포함하는 방송 신호 송신 방법.
- 제 1 항에 있어서,상기 시그널링 정보는 상기 서비스를 구성하는 뷰의 개수를 나타내는 정보, 해당 뷰의 타입을 나타내는 정보, 해당 뷰의 롤 (role)을 나타내는 정보, 해당 뷰가 토글 (toggle)이 가능한지 여부를 나타내는 정보, 해당 뷰의 스크린 상 위치 정보, 해당 뷰가 스크린 상에 표시되기 시작되는 시간 정보 및 해당 뷰가 스크린 상에서 사라지는 시간 정보를 포함하는 방송 신호 송신 방법.
- 제 2 항에 있어서,상기 위치 정보는 해당 뷰의 위치를 나타내기 위해 사용되는 좌표계 정보 및 스크린 상 해당 뷰가 위치하는 좌표 정보를 포함하는 방송 신호 송신 방법.
- 제 2 항에 있어서,상기 위치 정보는 스크린의 전체 크기를 기준으로 해당 뷰가 위치하는 지점의 비율을 나타내는 정보를 포함하는 방송 신호 송신 방법.
- 제 2 항에 있어서,상기 시그널링 정보는 해당 뷰가 히든 뷰 (hidden view)인지 아닌지 여부를 나타내는 정보를 포함하고, 상기 시그널링 정보는 해당 뷰가 히든 뷰인 경우, 해당 뷰가 스크린에서 표시될 위치 정보, 해당 뷰의 크기 정보, 해당 뷰의 위치 및 크기를 판단하는데 기준이 되는 뷰에 대한 정보 및 해당 뷰가 스크린에 표시될 때부터 사라질 때까지의 시간 정보를 포함하는 방송 신호 송신 방법.
- 제 1 항에 있어서,상기 방송 신호는 방송 프로그램에 대한 정보를 포함하는 프로그램 시그널링 정보를 포함하고, 상기 프로그램 시그널링 정보는 상기 방송 프로그램과 관련있는 앱 기반 인핸스먼트 컴포넌트 (app-based enhancement comoponent)에 대한 정보를 포함하고, 상기 앱 기반 인핸스먼트 컴포넌트에 대한 정보는 상기 앱 기반 인핸스먼트 컴포넌트가 스크린에 표시되는 컴포넌트인지 여부를 나타내는 정보, 상기 앱 기반 인핸스먼트 컴포넌트가 토글이 가능한지 여부를 나타내는 정보 및 상기 앱 기반 인핸스먼트 컴포넌트의 롤을 나타내는 정보를 포함하는 방송 신호 송신 방법.
- 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 포함하는 방송 신호를 수신하는 단계;상기 수신한 방송 신호에서 상기 방송 서비스 및 시그널링 정보를 파싱하는 단계; 및상기 파싱된 방송 서비스 및 시그널링 정보를 디코딩하는 단계;를 포함하는 방송 신호 수신 방법.
- 제 7 항에 있어서,상기 시그널링 정보는 상기 서비스를 구성하는 뷰의 개수를 나타내는 정보, 해당 뷰의 타입을 나타내는 정보, 해당 뷰의 롤 (role)을 나타내는 정보, 해당 뷰가 토글 (toggle)이 가능한지 여부를 나타내는 정보, 해당 뷰의 스크린 상 위치 정보, 해당 뷰가 스크린 상에 표시되기 시작되는 시간 정보 및 해당 뷰가 스크린 상에서 사라지는 시간 정보를 포함하는 방송 신호 수신 방법.
- 제 8 항에 있어서,상기 위치 정보는 해당 뷰의 위치를 나타내기 위해 사용되는 좌표계 정보 및 스크린 상 해당 뷰가 위치하는 좌표 정보를 포함하는 방송 신호 수신 방법.
- 제 8 항에 있어서,상기 위치 정보는 스크린의 전체 크기를 기준으로 해당 뷰가 위치하는 지점의 비율을 나타내는 정보를 포함하는 방송 신호 수신 방법.
- 제 8 항에 있어서,상기 시그널링 정보는 해당 뷰가 히든 뷰 (hidden view)인지 아닌지 여부를 나타내는 정보를 포함하고, 상기 시그널링 정보는 해당 뷰가 히든 뷰인 경우, 해당 뷰가 스크린에서 표시될 위치 정보, 해당 뷰의 크기 정보, 해당 뷰의 위치 및 크기를 판단하는데 기준이 되는 뷰에 대한 정보 및 해당 뷰가 스크린에 표시될 때부터 사라질 때까지의 시간 정보를 포함하는 방송 신호 수신 방법.
- 제 7 항에 있어서,상기 방송 신호는 방송 프로그램에 대한 정보를 포함하는 프로그램 시그널링 정보를 포함하고, 상기 프로그램 시그널링 정보는 상기 방송 프로그램과 관련있는 앱 기반 인핸스먼트 컴포넌트 (app-based enhancement comoponent)에 대한 정보를 포함하고, 상기 앱 기반 인핸스먼트 컴포넌트에 대한 정보는 상기 앱 기반 인핸스먼트 컴포넌트가 스크린에 표시되는 컴포넌트인지 여부를 나타내는 정보, 상기 앱 기반 인핸스먼트 컴포넌트가 토글이 가능한지 여부를 나타내는 정보 및 상기 앱 기반 인핸스먼트 컴포넌트의 롤을 나타내는 정보를 포함하는 방송 신호 수신 방법.
- 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 인코딩하는 인코더;상기 인코딩된 방송 서비스 및 시그널링 정보를 포함하는 방송 신호를 생성하는 방송 신호 생성부; 및상기 생성된 방송 신호를 전송하는 전송부;를 포함하는 방송 신호 송신 장치.
- 제 13 항에 있어서,상기 시그널링 정보는 상기 서비스를 구성하는 뷰의 개수를 나타내는 정보, 해당 뷰의 타입을 나타내는 정보, 해당 뷰의 롤 (role)을 나타내는 정보, 해당 뷰가 토글 (toggle)이 가능한지 여부를 나타내는 정보, 해당 뷰의 스크린 상 위치 정보, 해당 뷰가 스크린 상에 표시되기 시작되는 시간 정보 및 해당 뷰가 스크린 상에서 사라지는 시간 정보를 포함하는 방송 신호 송신 장치.
- 방송 서비스 및 상기 방송 서비스를 구성하는 하나 이상의 뷰 (view)에 대한 정보를 포함하는 시그널링 정보를 포함하는 방송 신호를 수신하는 수신부;상기 수신한 방송 신호에서 상기 방송 서비스 및 시그널링 정보를 파싱하는 파싱부; 및상기 파싱된 방송 서비스 및 시그널링 정보를 디코딩하는 디코더;를 포함하는 방송 신호 수신 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462049324P | 2014-09-11 | 2014-09-11 | |
US62/049,324 | 2014-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016039571A1 true WO2016039571A1 (ko) | 2016-03-17 |
Family
ID=55459274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/009532 WO2016039571A1 (ko) | 2014-09-11 | 2015-09-10 | 방송 신호 송신 방법, 방송 신호 송신 장치, 방송 신호 수신 방법 및 방송 신호 수신 장치 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016039571A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120103510A (ko) * | 2011-03-10 | 2012-09-19 | 한국전자통신연구원 | 프로그램 연동형 스테레오스코픽 방송 서비스를 제공하기 위한 송신 장치 및 방법, 및 수신 장치 및 방법 |
KR20130016219A (ko) * | 2010-03-11 | 2013-02-14 | 엘지전자 주식회사 | 비실시간 방송 서비스 처리 시스템 및 그 처리방법 |
KR20140000676A (ko) * | 2010-09-01 | 2014-01-03 | 엘지전자 주식회사 | 삼차원 디스플레이를 위한 디지털 방송 신호를 처리하는 방법 및 장치 |
KR20140005227A (ko) * | 2011-02-15 | 2014-01-14 | 엘지전자 주식회사 | 방송 서비스 전송 방법, 그 수신 방법 및 그 수신 장치 |
KR101435840B1 (ko) * | 2007-08-24 | 2014-08-29 | 엘지전자 주식회사 | 디지털 방송 시스템 및 데이터 처리 방법 |
-
2015
- 2015-09-10 WO PCT/KR2015/009532 patent/WO2016039571A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101435840B1 (ko) * | 2007-08-24 | 2014-08-29 | 엘지전자 주식회사 | 디지털 방송 시스템 및 데이터 처리 방법 |
KR20130016219A (ko) * | 2010-03-11 | 2013-02-14 | 엘지전자 주식회사 | 비실시간 방송 서비스 처리 시스템 및 그 처리방법 |
KR20140000676A (ko) * | 2010-09-01 | 2014-01-03 | 엘지전자 주식회사 | 삼차원 디스플레이를 위한 디지털 방송 신호를 처리하는 방법 및 장치 |
KR20140005227A (ko) * | 2011-02-15 | 2014-01-14 | 엘지전자 주식회사 | 방송 서비스 전송 방법, 그 수신 방법 및 그 수신 장치 |
KR20120103510A (ko) * | 2011-03-10 | 2012-09-19 | 한국전자통신연구원 | 프로그램 연동형 스테레오스코픽 방송 서비스를 제공하기 위한 송신 장치 및 방법, 및 수신 장치 및 방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015178603A1 (ko) | 방송 전송 장치, 방송 전송 장치의 동작 방법. 방송 수신 장치 및 방송 수신 장치의 동작 방법 | |
WO2015102381A1 (en) | Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals | |
WO2016010404A1 (ko) | 방송 송신 장치, 방송 송신 장치의 데이터 처리 방법, 방송 수신 장치 및 방송 수신 장치의 데이터 처리 방법 | |
WO2016028119A1 (ko) | 방송 신호 송신 방법, 방송 신호 송신 장치, 방송 신호 수신 방법 및 방송 신호 수신 장치 | |
WO2015156625A1 (ko) | 방송 전송 장치, 방송 수신 장치, 방송 전송 장치의 동작 방법 및 방송 수신 장치의 동작 방법 | |
WO2015102395A1 (en) | Broadcast receiving device and operating method thereof | |
WO2016060410A1 (ko) | 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법 | |
WO2015105400A1 (en) | Apparatuses and methods for transmitting or receiving a broadcast content via one or more networks | |
WO2015156607A1 (ko) | 방송 신호 송/수신 처리 방법 및 장치 | |
WO2015178690A1 (ko) | 방송 신호 송/수신 처리 방법 및 장치 | |
WO2015167184A1 (ko) | 방송 전송 장치, 방송 전송 장치의 동작 방법, 방송 수신 장치 및 방송 수신 장치의 동작 방법 | |
WO2015065104A1 (en) | Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals | |
WO2016028052A2 (ko) | 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법 | |
WO2015108305A1 (en) | Method and apparatus for transmitting/receiving broadcasting signal including robust header compression packet stream and fast information | |
WO2016048090A1 (ko) | 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법 | |
WO2015190791A1 (ko) | 서비스 가이드 정보 송신 방법, 서비스 가이드 정보 수신 방법, 서비스 가이드 정보 송신 장치 및 서비스 가이드 정보 수신 장치 | |
WO2015156618A1 (ko) | 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법 | |
WO2015167177A1 (ko) | 방송 전송 장치, 방송 수신 장치, 방송 전송 장치의 동작 방법 및 방송 수신 장치의 동작 방법 | |
WO2015102394A1 (en) | Broadcast transmission device and operating method thereof, and broadcast reception device and operating method thereof | |
WO2015088292A1 (en) | Broadcast transmission device and operating method thereof, and broadcast reception device and operating method thereof | |
WO2015199439A1 (ko) | 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법 | |
WO2016036167A1 (ko) | 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법 | |
WO2016028118A1 (ko) | 방송 전송 장치, 방송 전송 장치의 동작 방법. 방송 수신 장치 및 방송 수신 장치의 동작 방법 | |
WO2016039555A1 (ko) | 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법 | |
WO2015099409A1 (en) | Apparatuses and methods for transmitting or receiving a broadcast content via one or more networks |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15839666 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15839666 Country of ref document: EP Kind code of ref document: A1 |