WO2016038917A1 - Focus control device, focus control method, focus control program, lens device, and imaging device - Google Patents

Focus control device, focus control method, focus control program, lens device, and imaging device Download PDF

Info

Publication number
WO2016038917A1
WO2016038917A1 PCT/JP2015/060541 JP2015060541W WO2016038917A1 WO 2016038917 A1 WO2016038917 A1 WO 2016038917A1 JP 2015060541 W JP2015060541 W JP 2015060541W WO 2016038917 A1 WO2016038917 A1 WO 2016038917A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
focus control
focus
imaging
subject
Prior art date
Application number
PCT/JP2015/060541
Other languages
French (fr)
Japanese (ja)
Inventor
文雄 中丸
賢司 今村
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016547710A priority Critical patent/JP6123034B2/en
Publication of WO2016038917A1 publication Critical patent/WO2016038917A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/672Focus control based on electronic image sensor signals based on the phase difference signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/34Systems for automatic generation of focusing signals using different areas in a pupil plane
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing
    • G03B13/36Autofocus systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/65Control of camera operation in relation to power supply
    • H04N23/651Control of camera operation in relation to power supply for reducing power consumption by affecting camera operations, e.g. sleep mode, hibernation mode or power off of selective parts of the camera

Definitions

  • the present invention relates to a focus control device, a lens device and an imaging device including the focus control device, a focus control method, and a focus control program.
  • an information device having the above imaging function is referred to as an imaging device.
  • a contrast AF (Auto Focus) method or a phase difference AF method (see, for example, Patent Documents 1 and 2) is adopted as a focusing control method for focusing on a main subject.
  • the phase difference AF method is effective for high-speed processing, and is effective for moving image capturing in which a subject is continuously imaged by an image sensor.
  • Patent Document 1 a light beam that has passed through an imaging optical system is split by a half mirror and is incident on a pair of AF line sensors. A phase difference is detected by the pair of line sensors, and based on the detected phase difference. An imaging device that performs focus control is described.
  • Patent Document 2 describes an imaging apparatus including an imaging element including imaging pixels and phase difference detection pixels.
  • this imaging device increases the signal readout rate from the imaging device, thereby enabling the subject in live view image display to be displayed. The visibility of movement is improved.
  • Patent Document 3 a part of a large number of pixels included in an image sensor is a first pixel group for AF, and the remaining pixels are a second pixel group for moving image capturing.
  • An imaging device is described in which the signal readout speed is higher than the signal readout speed from the second pixel group.
  • phase difference AF method focusing control by the phase difference AF method is effective during moving image capturing.
  • the phase difference is acquired at a higher speed than the high-speed signal readout rate in order to perform focus control with improved followability to the movement of the main subject.
  • the number of pixels of the sensor used to acquire the phase difference is large, a large amount of power is consumed for reading signals from the pixels.
  • the imaging apparatus described in Patent Document 3 sets a signal readout rate from the first pixel group for AF higher than a signal readout rate from the second pixel group for moving image imaging.
  • this method requires a large number of pixels because the number of pixels that can be used for moving image capturing is reduced. There is also a limit to increasing the signal readout rate from the first pixel group. Further, since the signal readout rate from the first pixel group is increased, the power consumption is large.
  • Patent Document 1 cannot perform AF during moving image imaging. Further, since the phase difference information is detected using a line sensor, the above-described power consumption is not a problem.
  • the imaging apparatus described in Patent Document 2 cannot change the signal readout rate by the imaging pixels and the phase difference detection pixels. It is conceivable that signals are separately read out by the phase difference detection pixel and the imaging pixel. However, with this method, the sampling period of the phase difference becomes longer during moving image capturing, and it is difficult to perform focus control with improved followability to the movement of the main subject.
  • the present invention has been made in view of the above circumstances, and a focusing control device capable of achieving both improvement in focusing control accuracy and low power consumption during moving image shooting, and a lens device and imaging device including the focusing control device. It is an object to provide a focusing control method and program.
  • the focus control apparatus of the present invention captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image and a focus lens.
  • An optical element that causes a part of subject light incident on the imaging optical system to be incident on a second imaging element, and that the remaining part of the subject light except the part is incident on the first imaging element;
  • a focus control unit that performs focusing control of the focus lens based on a phase difference between the pair of image signals output from one image sensor, and controls a readout rate of the image signal from the first image sensor A read rate control unit.
  • the focus control method of the present invention captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image and a focus lens.
  • An optical element that causes a part of the subject light incident on the imaging optical system to be incident on the second imaging element and causes the remaining part of the subject light other than the part to be incident on the first imaging element.
  • the focus control program of the present invention captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image, and a focus lens.
  • An optical element that causes a part of the subject light incident on the imaging optical system to be incident on the second imaging element and causes the remaining part of the subject light other than the part to be incident on the first imaging element.
  • a focus control step for controlling the focus lens based on a phase difference between the pair of image signals output from the first image sensor; And a readout rate control step for controlling the readout rate of the image signal.
  • the lens device of the present invention includes the focusing control device and the imaging optical system.
  • the imaging device of the present invention includes the focusing control device and the second imaging device.
  • a focus control device capable of achieving both improvement in focus control accuracy and low power consumption at the time of moving image capturing, a lens device including the focus control device, an imaging device, a focus control method, and a program. can do.
  • FIG. 1 It is a figure which shows schematic structure of the camera system for describing one Embodiment of this invention. It is a block diagram which shows the internal structure of the lens apparatus 1 shown in FIG. It is a figure which shows the modification of the camera system of FIG.
  • FIG. 1 is a diagram showing a schematic configuration of a camera system for explaining an embodiment of the present invention.
  • This camera system is suitable for a camera system for business use such as broadcasting or movie.
  • the lens device 1 includes a lens device 1 and a camera device 3 as an imaging device to which the lens device 1 is attached.
  • the lens device 1 includes a focus lens 11, zoom lenses 12 and 13, a diaphragm 14, and a master lens group 15, which are arranged in order from the subject side.
  • the focus lens 11, the zoom lenses 12, 13, the diaphragm 14, and the master lens group 15 constitute an imaging optical system.
  • the imaging optical system includes at least a focus lens 11.
  • the focus lens 11 is a lens for adjusting the focus of the imaging optical system, and is constituted by a single lens or a plurality of lenses. Focus adjustment is performed by moving the focus lens 11 in the direction of the optical axis K of the imaging optical system.
  • the lens apparatus 1 further includes a beam splitter 16 including a reflecting surface 16a, a mirror 17, an AF unit 21 including a condenser lens 18, a separator lens 19, and a first image sensor 20.
  • the first image sensor 20 is an image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels arranged two-dimensionally.
  • the beam splitter 16 is disposed on the optical axis K between the stop 14 and the master lens group 15.
  • the beam splitter 16 transmits a part of the subject light that has entered the imaging optical system and passed through the aperture 14 (for example, 80% of the subject light) as it is, and removes a part of the subject light (for example, 20% of the subject light). %) Is reflected by the reflecting surface 16a in a direction orthogonal to the optical axis K.
  • the position of the beam splitter 16 is not limited to that shown in FIG. 1, and it is sufficient that the beam splitter 16 is disposed behind the lens closest to the subject of the imaging optical system on the optical axis K.
  • the mirror 17 is disposed on the optical path of the light reflected by the reflecting surface 16 a of the beam splitter 16, and reflects this light so as to enter the condenser lens 18 of the AF unit 21.
  • the condensing lens 18 condenses the light reflected by the mirror 17.
  • the separator lens 19 includes two lenses arranged in one direction and two lenses arranged in a direction orthogonal to the one direction.
  • the subject light condensed by the condensing lens 18 passes through each of these four lenses and forms an image at different positions on the light receiving surface (surface on which a plurality of pixels are arranged) of the first image sensor 20. . That is, a pair of subject light images shifted in one direction and a pair of subject light images shifted in a direction orthogonal to one direction are formed on the light receiving surface of the first image sensor 20.
  • the beam splitter 16, the mirror 17, the condensing lens 18, and the separator lens 19 are used for one of the subject light incident on the imaging optical system to the second imaging element 31 of the camera device 3 that captures the subject light image through the imaging optical system.
  • the optical element functions as an optical element that causes the first imaging element 20 to enter the remaining part of the subject light.
  • the structure which deletes the mirror 17 and makes the light reflected by the beam splitter 16 inject into the condensing lens 18 directly may be sufficient.
  • the first image sensor 20 is an area sensor in which a plurality of pixels are two-dimensionally arranged on the light receiving surface, and outputs an image signal corresponding to each of four subject light images formed on the light receiving surface. That is, the first image sensor 20 has a pair of image signals shifted in one direction and a pair of image signals shifted in a direction orthogonal to one direction with respect to one subject light image formed by the imaging optical system. Are output.
  • an area sensor as the first image sensor 20 it is possible to avoid the difficulty of precisely aligning the positions of the line sensors as compared to a configuration using four line sensors.
  • the camera device 3 captures a subject light image with a second image sensor 31 such as a CCD image sensor or a CMOS image sensor disposed on the optical axis K of the lens device 1 and the second image sensor 31.
  • An image processing unit 32 that processes the obtained image signal and generates captured image data.
  • FIG. 2 is a block diagram showing an internal configuration of the lens apparatus 1 shown in FIG.
  • the lens device 1 includes an image sensor driving unit 22, a lens driving unit 23, a diaphragm driving unit 24, an operation unit 25, and a control unit 26 that performs overall control. Is provided.
  • the image sensor driving unit 22 drives the first image sensor 20 in accordance with a command from the control unit 26.
  • the image sensor driving unit 22 controls the exposure time of the first image sensor 20, or the first readout rate of the image signal from the first image sensor 20 (how many times the image signal is read out per second). Control the value shown).
  • the first readout rate can be set to a value larger than the second readout rate of the image signal from the second image sensor 31. For example, if the second read rate is 60 times / second, the first read rate can be set between 60 times / second and 120 times / second.
  • the lens drive unit 23 performs focus adjustment by driving the focus lens 11 in the optical axis K direction or changes the zoom magnification by driving the zoom lenses 12 and 13 in the optical axis K direction in accordance with instructions from the control unit 26. To do.
  • the diaphragm driving unit 24 adjusts the exposure amount by controlling the opening amount of the diaphragm 14 in accordance with a command from the control unit 26.
  • the lens device 1 includes a zoom ring, a focus ring, and an aperture ring (not shown).
  • the zoom ring is for manually changing the position of the zoom lenses 12 and 13 in the optical axis K direction.
  • the focus ring is for manually changing the position of the focus lens 11 in the optical axis K direction.
  • the aperture ring is for manually changing the opening amount of the aperture 14.
  • the operation unit 25 is a user interface for inputting an instruction signal to the control unit 26.
  • the operation unit 25 includes buttons for changing mode settings. Modes that can be set in the lens apparatus 1 include an AF mode that automatically performs focus control and an MF (manual focus) mode that manually performs focus control.
  • the control unit 26 outputs a phase difference between a pair of image signals output from the first image sensor 20 (a phase difference between two image signals shifted in one direction and two image signals shifted in a direction orthogonal to one direction). It functions as a focus control unit that performs focus control of the focus lens 11 based on the phase difference of the focus lens 11.
  • control unit 26 calculates a phase difference between the pair of image signals by performing a correlation operation between the pair of image signals output from the first image sensor 20 and shifted in one direction. A first defocus amount is obtained from the phase difference. Similarly, the control unit 26 calculates a phase difference between the pair of image signals by performing a correlation operation of the pair of image signals shifted in a direction orthogonal to the one direction output from the first image sensor 20. A second defocus amount is obtained from the calculated phase difference.
  • the control unit 26 generates a final defocus amount using the first defocus amount and the second defocus amount. For example, the control unit 26 determines the average of the first defocus amount and the second defocus amount or the larger value of the first defocus amount and the second defocus amount as the final defocus amount. And Then, the control unit 26 sets the drive direction and drive amount of the focus lens 11 based on the defocus amount. The control unit 26 controls the focus by causing the lens driving unit 23 to drive the focus lens 11 according to the set driving direction and driving amount. As described above, the control unit 26 performs focusing control by the phase difference AF method.
  • control unit 26 functions as a read rate control unit that controls the first read rate of the image signal from the first image sensor 20.
  • control methods 1 to 6 will be described.
  • Control method 1 The control unit 26 controls the first readout rate according to the brightness of the subject light image formed by the imaging optical system. Specifically, the control unit 26 decreases the first readout rate as the subject light image is darker.
  • the brightness of the subject light image is one of the conditions related to the subject light image formed by the imaging optical system.
  • control unit 26 calculates an average value or an integrated value of output signals for each pixel for any of four image signals output from the first image sensor 20, and uses the calculated value as the brightness of the subject light image. It is information indicating this.
  • an average value or an integrated value is calculated for each of the four image signals, and a value obtained by averaging the calculated four values is used as information indicating the brightness of the subject light image.
  • the dark subject light image means that the amount of light incident on the first image sensor 20 is reduced, and the accuracy of focusing control by the phase difference AF method is reduced. For this reason, the darker the subject light image, the lower the first readout rate and the control to extend the exposure time of the first image sensor 20, thereby increasing the amount of light incident on the first image sensor 20. It is possible to prevent the accuracy of focusing control from being lowered. Moreover, the power consumption of the lens apparatus 1 can be reduced by reducing the reading rate.
  • Control method 2 The control unit 26 controls the first readout rate according to the variation in the phase difference between the pair of image signals obtained by imaging with the first imaging element 20. Specifically, the control unit 26 increases the first reading rate as the variation in the phase difference increases. Since this phase difference changes depending on the subject light image formed by the imaging optical system, it is one of the conditions relating to the subject light image.
  • the control unit 26 stores the phase difference in the internal memory.
  • the internal memory is configured to store a phase difference for a past predetermined period (for example, 1 second).
  • the control part 26 calculates the fluctuation amount (for example, dispersion
  • the large fluctuation of the phase difference means that the distance between the main subject and the lens apparatus 1 is finely changed. That is, the followability of focusing control for the main subject is important. For this reason, when the fluctuation of the phase difference is large, the focus control with high accuracy following the movement of the main subject can be performed by increasing the first reading rate and finely controlling the focus. On the other hand, when the fluctuation of the phase difference is small, the accuracy of the focus control can be ensured without performing the fine focus control. Therefore, power consumption can be reduced by lowering the first reading rate.
  • Control method 3 The control unit 26 controls the first readout rate according to the speed of the moving object included in the subject light image formed by the imaging optical system. Specifically, the control unit 26 increases the first reading rate as the moving body speed increases.
  • the speed of the moving object is one of the conditions regarding the subject light image formed by the imaging optical system.
  • control unit 26 performs a known moving object detection process on any of the four image signals output from the first image sensor 20.
  • the control unit 26 detects the speed of the moving body, and sets the first read rate higher as the detected speed is higher.
  • the high speed of the moving object means that the distance between the main subject and the lens apparatus 1 or the position of the main subject in the subject optical image is finely changed. That is, the followability of focusing control for the main subject is important. For this reason, when the speed of the moving object is high, the first readout rate is increased and fine focusing control is performed, thereby enabling highly accurate focusing control following the movement of the main subject. On the other hand, when the speed of the moving body is low, the accuracy of the focus control can be ensured without performing the fine focus control. Therefore, power consumption can be reduced by lowering the first reading rate.
  • the first reading rate may be set to a value lower than the settable maximum value to reduce power consumption.
  • Control method 4 The control unit 26 controls the first readout rate according to changes in the operating state of movable optical elements such as the focus lens 11, the zoom lenses 12 and 13, and the diaphragm 14 included in the imaging optical system. Specifically, when the control unit 26 controls the first readout rate to a first value lower than the maximum value that can be set, the operation state of the movable optical element changes. Controls the first read rate to a value larger than the first value.
  • the first reading rate is set to the first value in a situation where the position of the focus lens 11 hardly fluctuates. From this state, when the distance between the main subject and the lens apparatus 1 changes greatly and the phase difference fluctuates greatly, the moving distance of the focus lens 11 becomes greater than or equal to the threshold value.
  • the control unit 26 determines that the operation state of the focus lens 11 has changed when the moving distance of the focus lens 11 is equal to or greater than the threshold value.
  • the fact that the movement distance changes by more than the threshold means that the situation where the movement of the main subject is stable has changed to the situation where the movement of the main subject becomes active. In such a situation, it can be determined that priority should be given to the accuracy of focus control over power consumption. For this reason, it is effective to make the first read rate larger than the first value.
  • the first read rate may be set to the first value. From this state, let us consider a case where the positions of the zoom lenses 12 and 13 are changed by the operation of the zoom ring, or the opening amount of the stop 14 is changed by the operation of the aperture ring.
  • the fact that the zoom magnification and the aperture opening amount change means that there is a possibility that the focus position so far may change greatly. That is, in such a situation, it can be determined that priority should be given to the accuracy of focus control over power consumption. For this reason, it is effective to make the first read rate larger than the first value.
  • Control method 5 The control unit 26 controls the first readout rate according to a change in the direction of the optical axis K of the imaging optical system. Specifically, when a change occurs in the direction of the optical axis K, the control unit 26 controls the first read rate to a value larger than the first value.
  • the first read rate may be set to the first value. From this state, consider a case where the user of the camera system greatly moves the camera system in the horizontal direction or moves the camera system largely in the vertical direction.
  • the movement of the camera system means that the subject light image to be captured changes greatly. That is, in such a situation, it can be determined that priority should be given to the accuracy of focus control over power consumption. For this reason, it is effective to make the first read rate larger than the first value.
  • the control unit 26 determines whether or not the captured subject light image has changed significantly due to the change in the direction of the optical axis K.
  • the direction of the optical axis K can be determined based on detection information of the motion detection unit provided with a motion detection unit such as an azimuth sensor, an acceleration sensor, and a gyro sensor in the lens device 1. Further, the control unit 26 performs pattern matching between two image signals continuously output from the first image sensor 20, and determines whether or not the direction of the optical axis K has greatly changed from the result. Good.
  • Control method 6 When the lens device 1 is set to the MF mode, the control unit 26 sets the first readout rate to a first value (preferably the lowest value among settable values). As described above, even in the MF mode, the first imaging device 20 is activated with low power consumption, so that it is possible to immediately shift to the AF mode.
  • control methods 1 to 6 may be implemented in combination as appropriate.
  • the optical elements (the beam splitter 16, the mirror 17, the condensing lens 18, and the separator lens 19), the first imaging element 20, and the control unit 26 in the lens apparatus 1 described above constitute a focusing control apparatus. .
  • the focusing control device is provided in the lens device 1, but the focusing control device may be included in the camera device 3.
  • FIG. 3 is a diagram showing a configuration example of a camera system in which the focusing control device is built in the camera device.
  • the lens device 1 includes the lens driving unit 23 and the aperture driving unit 24 shown in FIG. 2, and the focusing control device built in the camera device 3 and the lens device 1 can communicate with each other.
  • the camera system shown in FIG. 3 can be applied to both a digital camera with a replaceable lens device and a digital camera with an integrated lens device.
  • the battery capacity is limited, so it is effective to employ the control methods 1 to 6 described above.
  • the configuration of the AF unit 21 is not limited to that shown in FIG.
  • the first image sensor 20 an area in which a pair of phase difference detection pixels that are pupil-divided in one direction are two-dimensionally arranged on the light receiving surface as exemplified in Japanese Patent Application Laid-Open No. 2013-201466.
  • a sensor may be used and the separator lens 19 may be omitted.
  • an area sensor in which a pair of phase difference detection pixels that are pupil-divided in one direction and imaging pixels that are not pupil-divided are two-dimensionally arranged on the light receiving surface may be used.
  • the disclosed focus control apparatus captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image, and a focus lens.
  • An optical element that causes a part of subject light incident on the imaging optical system to be incident on a second imaging element, and that the remaining part of the subject light except the part is incident on the first imaging element;
  • a focus control unit that performs focusing control of the focus lens based on a phase difference between the pair of image signals output from one image sensor, and controls a readout rate of the image signal from the first image sensor
  • a read rate control unit A read rate control unit.
  • the readout rate of the image signal from the first image sensor is controlled, for example, by making the readout rate faster than the readout rate of the image signal from the second image sensor, high accuracy can be achieved.
  • Focus control can be performed. For example, in the case of a dark subject, the exposure time for obtaining a pair of image signals can be extended by slowing the readout rate, and focusing accuracy for a dark subject can be ensured. Also, for example, in a situation where the focus position of the focus lens does not change, power consumption can be reduced by slowing the readout rate. As shown in these examples, by controlling the reading rate of the first image sensor, it is possible to achieve both improvement in focusing control accuracy and reduction in power consumption.
  • the readout rate control unit controls the readout rate according to a condition relating to a subject light image formed by the imaging optical system.
  • the condition relating to the subject optical image includes the brightness of the subject optical image, and the readout rate control unit lowers the readout rate as the subject optical image becomes darker.
  • the dark subject light image means that the amount of light incident on the first image sensor is reduced, and the focusing accuracy is reduced. For this reason, by setting it as the said structure, the light quantity which injects into a 1st image pick-up element can be increased, and the fall of a focusing precision can be prevented. Further, power consumption can be reduced by reducing the reading rate.
  • the condition relating to the subject optical image includes a phase difference between the pair of image signals output with respect to the subject optical image, and the readout rate control unit is configured to change the phase difference. The larger the is, the higher the reading rate is.
  • the condition relating to the subject light image includes the speed of the moving object included in the subject light image
  • the reading rate control unit increases the reading rate as the speed of the moving object increases.
  • the high speed of the moving object means that the followability of focusing on the subject is important, so that the focusing accuracy can be increased by the above configuration.
  • the reading rate is low, so that power consumption can be reduced.
  • the readout rate control unit controls the readout rate in accordance with the state of the imaging optical system.
  • the readout rate control unit controls the movable optics included in the imaging optical system in a state where the readout rate is controlled to a first value lower than a maximum value that can be set.
  • the read rate is controlled to a value larger than the first value.
  • the movable optical element is a focus lens, zoom lens, diaphragm, etc.
  • these may be changed by a user's manual operation.
  • the subject light image to be captured may change greatly, so that it can be determined that the focusing accuracy should be prioritized over power consumption. Therefore, it is effective to make the reading rate larger than the first value.
  • the readout rate control unit controls the readout rate to the first value lower than the maximum value that can be set, and the direction of the optical axis of the imaging optical system When the change occurs, the reading rate is controlled to a value larger than the first value.
  • the subject optical image to be captured may change significantly, so that it is more suitable than the power consumption. It can be determined that the focus accuracy should be given priority. Therefore, it is effective to make the reading rate larger than the first value.
  • the readout rate control unit sets the readout rate to a value lower than a maximum value that can be set. To control.
  • the power consumption can be reduced by lowering the reading rate of the first image sensor 20. Further, it is possible to instantaneously shift from the manual focus mode to the auto focus mode in which the focus control unit performs the focus control.
  • the first imaging element is an area sensor in which a plurality of pixels are two-dimensionally arranged on a light receiving surface, and a pair of the first imaging elements arranged in the one direction and arranged to face the light receiving surface.
  • the separator lens is further provided.
  • the first imaging element includes an area sensor in which a pair of phase difference detection pixels that are pupil-divided in the one direction on the light receiving surface are two-dimensionally arranged.
  • the disclosed lens device includes the focusing control device and the imaging optical system.
  • this configuration it can be used in combination with a high-quality image pickup device for business use used in television broadcasting, movies, etc., and can fully meet the demand for higher image quality.
  • the disclosed imaging device includes the focusing control device and the second imaging device.
  • a compact digital camera or the like can sufficiently meet the demand for higher image quality.
  • the disclosed focus control method captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image, and a focus lens.
  • An optical element that causes a part of the subject light incident on the imaging optical system to be incident on the second imaging element and causes the remaining part of the subject light other than the part to be incident on the first imaging element.
  • the readout rate control step the readout rate is controlled in accordance with a condition relating to a subject light image formed by the imaging optical system.
  • the condition relating to the subject optical image includes the brightness of the subject optical image, and in the readout rate control step, the readout rate is lowered as the subject optical image is darker. .
  • the condition relating to the subject optical image includes a phase difference between the pair of image signals output with respect to the subject optical image, and in the readout rate control step, the variation in the phase difference is performed. The larger the is, the higher the reading rate is.
  • the condition relating to the subject optical image includes the speed of the moving object included in the subject optical image.
  • the readout rate control step the higher the speed of the moving object, the higher the readout rate. To do.
  • the readout rate control step controls the readout rate according to the state of the imaging optical system.
  • the movable optical included in the imaging optical system in a state where the read rate is controlled to a first value lower than a maximum value that can be set.
  • the read rate is controlled to a value larger than the first value.
  • the orientation of the optical axis of the imaging optical system is controlled in a state where the readout rate is controlled to a first value lower than a maximum value that can be set.
  • the reading rate is controlled to a value larger than the first value.
  • the readout rate control step sets the readout rate to a value lower than the maximum value that can be set. To control.
  • the first image sensor is an area sensor in which a plurality of pixels are two-dimensionally arranged on a light receiving surface, and the focus control device is disposed to face the light receiving surface. And a pair of separator lenses arranged in the one direction.
  • the first imaging device includes an area sensor in which a pair of phase difference detection pixels that are pupil-divided in the one direction are arranged two-dimensionally on a light receiving surface. .
  • the disclosed focus control program captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image and a focus lens.
  • An optical element that causes a part of the subject light incident on the imaging optical system to be incident on the second imaging element and causes the remaining part of the subject light other than the part to be incident on the first imaging element.
  • a focus control step for controlling the focus lens based on a phase difference between the pair of image signals output from the first image sensor; And a readout rate control step for controlling the readout rate of the image signal.
  • the present invention is particularly convenient and effective when applied to a commercial television camera system or a compact digital camera.

Abstract

The purpose of the present invention is to provide a focus control device capable of achieving both improved accuracy and lower power consumption during focus control when imaging a moving picture, a lens device and an imaging device equipped with the focus control device, and a focus control method and program. The focus control device comprises: a first imaging element (20) for outputting a pair of image signals deviated in one direction relative to one subject image; optical elements (a beam splitter (16), mirror (17), collecting lens (18), and a separator lens (19)) for introducing, onto a second imaging element (31) for imaging the subject image through an imaging optical system including a focus lens (11), a part of the subject light incident onto the imaging optical system and introducing the rest of the subject light onto the first imaging element (20); and a controller (26) for controlling the focusing of the focus lens (11) on the basis of the phase difference between the pair of image signals output from the first imaging element (20), and controlling the read out rate of the image signal from the first imaging element (20).

Description

合焦制御装置、合焦制御方法、合焦制御プログラム、レンズ装置、および撮像装置Focus control device, focus control method, focus control program, lens device, and imaging device
 本発明は、合焦制御装置と、これを備えるレンズ装置及び撮像装置、合焦制御方法と合焦制御プログラムに関する。 The present invention relates to a focus control device, a lens device and an imaging device including the focus control device, a focus control method, and a focus control program.
 近年、CCD(Charge Coupled Device)イメージセンサ、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等の撮像素子の高解像度化に伴い、デジタルスチルカメラ、デジタルビデオカメラ、スマートフォン等の携帯電話機、PDA(Personal Digital Assistant,携帯情報端末)等の撮影機能を有する情報機器の需要が急増している。なお、以上のような撮像機能を有する情報機器を撮像装置と称する。 In recent years, with the increase in resolution of image sensors such as CCD (Charge Coupled Device) image sensors and CMOS (Complementary Metal Oxide Semiconductor) image sensors, mobile phones such as digital still cameras, digital video cameras, and smartphones, PDAs (Personal Digital). , Portable information terminals) and other information devices having a photographing function are rapidly increasing. Note that an information device having the above imaging function is referred to as an imaging device.
 これら撮像装置では、主要な被写体に焦点を合わせる合焦制御方法として、コントラストAF(Auto Focus、自動合焦)方式や位相差AF方式(例えば特許文献1,2参照)が採用されている。位相差AF方式は、高速処理が可能なため、撮像素子により被写体を連続して撮像する動画撮像時には有効な方式である。 In these imaging apparatuses, a contrast AF (Auto Focus) method or a phase difference AF method (see, for example, Patent Documents 1 and 2) is adopted as a focusing control method for focusing on a main subject. The phase difference AF method is effective for high-speed processing, and is effective for moving image capturing in which a subject is continuously imaged by an image sensor.
 特許文献1には、撮像光学系を通過した光線をハーフミラーにより分岐してAF用の一対のラインセンサに入射させ、この一対のラインセンサによって位相差を検出し、検出した位相差に基づいて合焦制御を行う撮像装置が記載されている。 In Patent Document 1, a light beam that has passed through an imaging optical system is split by a half mirror and is incident on a pair of AF line sensors. A phase difference is detected by the pair of line sensors, and based on the detected phase difference. An imaging device that performs focus control is described.
 特許文献2には、撮像用画素と位相差検出用画素とを含む撮像素子を備える撮像装置が記載されている。この撮像装置は、位相差検出用画素の検出信号に基づいて算出したデフォーカス量の信頼性が高い場合に、撮像素子からの信号読み出しレートを高速にすることによって、ライブビュー画像表示における被写体の動きの視認性を向上させている。 Patent Document 2 describes an imaging apparatus including an imaging element including imaging pixels and phase difference detection pixels. When the defocus amount calculated based on the detection signal of the phase difference detection pixel is highly reliable, this imaging device increases the signal readout rate from the imaging device, thereby enabling the subject in live view image display to be displayed. The visibility of movement is improved.
 特許文献3には、撮像素子に含まれる多数の画素の一部をAF用の第一の画素群とし、残りの画素を動画撮像用の第二の画素群とし、第一の画素群からの信号読み出し速度を、第二の画素群からの信号読み出し速度よりも速くする撮像装置が記載されている。 In Patent Document 3, a part of a large number of pixels included in an image sensor is a first pixel group for AF, and the remaining pixels are a second pixel group for moving image capturing. An imaging device is described in which the signal readout speed is higher than the signal readout speed from the second pixel group.
特開平11-84221号公報JP-A-11-84221 特開2014-86872号公報JP 2014-88672 A 特開2014-143667号公報JP 2014-143667 A
 近年、撮像装置の撮像性能への要求は高まっており、撮像素子に搭載される画素の多画素化が進んでいる。例えば、テレビ放送等で用いるフルハイビジョンの4倍の解像度の高画質な動画像を生成するためには、撮像素子の画素数を大幅に増やし、かつ、撮像素子からの信号読み出しレートを高速にする必要がある。 In recent years, demands for imaging performance of imaging devices are increasing, and the number of pixels mounted on an imaging element is increasing. For example, in order to generate a high-quality moving image with a resolution four times that of full high-definition used in television broadcasting or the like, the number of pixels of the image sensor is greatly increased and the signal readout rate from the image sensor is increased. There is a need.
 上述したように、動画撮像時には位相差AF方式による合焦制御が有効である。しかし、高速な信号読み出しレートにより動画像を撮像する場合に、主要被写体の動きに対する追従性を高めた合焦制御を行うためには、この高速な信号読み出しレートよりも更に高速に位相差を取得する必要がある。しかし、位相差を取得するために用いるセンサの画素数が多い場合には、この画素からの信号読み出しに電力を大きく消費してしまう。 As described above, focusing control by the phase difference AF method is effective during moving image capturing. However, when moving images are captured at a high signal readout rate, the phase difference is acquired at a higher speed than the high-speed signal readout rate in order to perform focus control with improved followability to the movement of the main subject. There is a need to. However, when the number of pixels of the sensor used to acquire the phase difference is large, a large amount of power is consumed for reading signals from the pixels.
 特許文献3に記載の撮像装置は、AF用の第一の画素群からの信号読み出しレートを、動画撮像用の第二の画素群からの信号読み出しレートよりも高速にしている。しかし、この方法では、動画撮像用に使える画素数が少なくなるため、多くの画素が必要になる。また、第一の画素群からの信号読み出しレートの高速化にも限界がある。また、第一の画素群からの信号読み出しレートを高速化しているため、消費電力が大きい。 The imaging apparatus described in Patent Document 3 sets a signal readout rate from the first pixel group for AF higher than a signal readout rate from the second pixel group for moving image imaging. However, this method requires a large number of pixels because the number of pixels that can be used for moving image capturing is reduced. There is also a limit to increasing the signal readout rate from the first pixel group. Further, since the signal readout rate from the first pixel group is increased, the power consumption is large.
 特許文献1に記載の撮像装置は、動画撮像中にはAFを行うことができない。また、位相差情報はラインセンサを用いて検出しているため、上述した電力消費量についてはさほど問題にはならない。 The imaging apparatus described in Patent Document 1 cannot perform AF during moving image imaging. Further, since the phase difference information is detected using a line sensor, the above-described power consumption is not a problem.
 特許文献2に記載の撮像装置は、撮像用画素と位相差検出用画素により信号読み出しレートを変えることはできない。位相差検出用画素と撮像用画素により別々に信号を読みだすことも考えられる。しかし、この方法では、動画撮像中において、位相差のサンプリング周期が長くなってしまい、主要被写体の動きに対する追従性を高めた合焦制御を行うことが難しい。 The imaging apparatus described in Patent Document 2 cannot change the signal readout rate by the imaging pixels and the phase difference detection pixels. It is conceivable that signals are separately read out by the phase difference detection pixel and the imaging pixel. However, with this method, the sampling period of the phase difference becomes longer during moving image capturing, and it is difficult to perform focus control with improved followability to the movement of the main subject.
 本発明は、上記事情に鑑みてなされたものであり、動画撮像時における合焦制御の精度の向上と低消費電力とを両立させることのできる合焦制御装置とこれを備えるレンズ装置及び撮像装置と合焦制御方法及びプログラムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and a focusing control device capable of achieving both improvement in focusing control accuracy and low power consumption during moving image shooting, and a lens device and imaging device including the focusing control device. It is an object to provide a focusing control method and program.
 本発明の合焦制御装置は、1つの被写体光像に対し、一方向にずれた一対の画像信号を出力する第一の撮像素子と、フォーカスレンズを含む撮像光学系を通して被写体光像を撮像する第二の撮像素子に、上記撮像光学系に入射する被写体光の一部を入射させ、上記被写体光の上記一部を除いた残りを上記第一の撮像素子に入射させる光学素子と、上記第一の撮像素子から出力される上記一対の画像信号の位相差に基づいて上記フォーカスレンズの合焦制御を行う合焦制御部と、上記第一の撮像素子からの上記画像信号の読み出しレートを制御する読み出しレート制御部と、を備える。 The focus control apparatus of the present invention captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image and a focus lens. An optical element that causes a part of subject light incident on the imaging optical system to be incident on a second imaging element, and that the remaining part of the subject light except the part is incident on the first imaging element; A focus control unit that performs focusing control of the focus lens based on a phase difference between the pair of image signals output from one image sensor, and controls a readout rate of the image signal from the first image sensor A read rate control unit.
 本発明の合焦制御方法は、1つの被写体光像に対し、一方向にずれた一対の画像信号を出力する第一の撮像素子と、フォーカスレンズを含む撮像光学系を通して被写体光像を撮像する第二の撮像素子に、上記撮像光学系に入射する被写体光の一部を入射させ、上記被写体光の上記一部を除いた残りを上記第一の撮像素子に入射させる光学素子と、を有する合焦制御装置による合焦制御方法であって、上記第一の撮像素子から出力される上記一対の画像信号の位相差に基づいて上記フォーカスレンズの合焦制御を行う合焦制御ステップと、上記第一の撮像素子からの上記画像信号の読み出しレートを制御する読み出しレート制御ステップと、を備える。 The focus control method of the present invention captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image and a focus lens. An optical element that causes a part of the subject light incident on the imaging optical system to be incident on the second imaging element and causes the remaining part of the subject light other than the part to be incident on the first imaging element. A focus control method by a focus control device, the focus control step for performing focus control of the focus lens based on a phase difference between the pair of image signals output from the first image sensor, and A read rate control step for controlling a read rate of the image signal from the first image sensor.
 本発明の合焦制御プログラムは、1つの被写体光像に対し、一方向にずれた一対の画像信号を出力する第一の撮像素子と、フォーカスレンズを含む撮像光学系を通して被写体光像を撮像する第二の撮像素子に、上記撮像光学系に入射する被写体光の一部を入射させ、上記被写体光の上記一部を除いた残りを上記第一の撮像素子に入射させる光学素子と、を有する合焦制御装置に、上記第一の撮像素子から出力される上記一対の画像信号の位相差に基づいて上記フォーカスレンズの合焦制御を行う合焦制御ステップと、上記第一の撮像素子からの上記画像信号の読み出しレートを制御する読み出しレート制御ステップと、を実行させるためのプログラムである。 The focus control program of the present invention captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image, and a focus lens. An optical element that causes a part of the subject light incident on the imaging optical system to be incident on the second imaging element and causes the remaining part of the subject light other than the part to be incident on the first imaging element. A focus control step for controlling the focus lens based on a phase difference between the pair of image signals output from the first image sensor; And a readout rate control step for controlling the readout rate of the image signal.
 本発明のレンズ装置は、上記合焦制御装置と、上記撮像光学系と、を備えるものである。 The lens device of the present invention includes the focusing control device and the imaging optical system.
 本発明の撮像装置は、上記合焦制御装置と、上記第二の撮像素子と、を備えるものである。  The imaging device of the present invention includes the focusing control device and the second imaging device.
 本発明によれば、動画撮像時における合焦制御の精度の向上と低消費電力とを両立させることのできる合焦制御装置とこれを備えるレンズ装置及び撮像装置と合焦制御方法及びプログラムを提供することができる。 According to the present invention, there is provided a focus control device capable of achieving both improvement in focus control accuracy and low power consumption at the time of moving image capturing, a lens device including the focus control device, an imaging device, a focus control method, and a program. can do.
本発明の一実施形態を説明するためのカメラシステムの概略構成を示す図である。It is a figure which shows schematic structure of the camera system for describing one Embodiment of this invention. 図1に示すレンズ装置1の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the lens apparatus 1 shown in FIG. 図1のカメラシステムの変形例を示す図である。It is a figure which shows the modification of the camera system of FIG.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態を説明するためのカメラシステムの概略構成を示す図である。このカメラシステムは、放送用や映画用等の業務用のカメラシステムに好適である。 FIG. 1 is a diagram showing a schematic configuration of a camera system for explaining an embodiment of the present invention. This camera system is suitable for a camera system for business use such as broadcasting or movie.
 図1に示すカメラシステムは、レンズ装置1と、レンズ装置1が装着される撮像装置としてのカメラ装置3とを備える。 1 includes a lens device 1 and a camera device 3 as an imaging device to which the lens device 1 is attached.
 レンズ装置1は、フォーカスレンズ11と、ズームレンズ12,13と、絞り14と、マスターレンズ群15と、を備え、これらが被写体側から順に並べて配置されている。 The lens device 1 includes a focus lens 11, zoom lenses 12 and 13, a diaphragm 14, and a master lens group 15, which are arranged in order from the subject side.
 フォーカスレンズ11、ズームレンズ12,13、絞り14、及びマスターレンズ群15は、撮像光学系を構成する。撮像光学系は、少なくともフォーカスレンズ11を含む。 The focus lens 11, the zoom lenses 12, 13, the diaphragm 14, and the master lens group 15 constitute an imaging optical system. The imaging optical system includes at least a focus lens 11.
 フォーカスレンズ11は、撮像光学系の焦点を調節するためのレンズであり、単一のレンズ又は複数のレンズにより構成される。フォーカスレンズ11が撮像光学系の光軸K方向に移動することによって焦点調節が行われる。 The focus lens 11 is a lens for adjusting the focus of the imaging optical system, and is constituted by a single lens or a plurality of lenses. Focus adjustment is performed by moving the focus lens 11 in the direction of the optical axis K of the imaging optical system.
 レンズ装置1は、更に、反射面16aを含むビームスプリッタ16と、ミラー17と、集光レンズ18、セパレータレンズ19、及び第一の撮像素子20を含むAFユニット21と、を備える。第一の撮像素子20は、二次元状に配置された複数の画素を有するCCD型イメージセンサやCMOS型イメージセンサ等のイメージセンサである。 The lens apparatus 1 further includes a beam splitter 16 including a reflecting surface 16a, a mirror 17, an AF unit 21 including a condenser lens 18, a separator lens 19, and a first image sensor 20. The first image sensor 20 is an image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels arranged two-dimensionally.
 ビームスプリッタ16は、光軸K上で絞り14とマスターレンズ群15との間に配置されている。ビームスプリッタ16は、撮像光学系に入射し絞り14を通過した被写体光の一部(例えば被写体光の80%)をそのまま透過させ、この被写体光の一部を除いた残り(例えば被写体光の20%)を光軸Kに対して直交する方向に反射面16aにて反射させる。ビームスプリッタ16の位置は図1に示したものに限らず、光軸K上で撮像光学系の最も被写体側にあるレンズよりも後ろに配置されていればよい。 The beam splitter 16 is disposed on the optical axis K between the stop 14 and the master lens group 15. The beam splitter 16 transmits a part of the subject light that has entered the imaging optical system and passed through the aperture 14 (for example, 80% of the subject light) as it is, and removes a part of the subject light (for example, 20% of the subject light). %) Is reflected by the reflecting surface 16a in a direction orthogonal to the optical axis K. The position of the beam splitter 16 is not limited to that shown in FIG. 1, and it is sufficient that the beam splitter 16 is disposed behind the lens closest to the subject of the imaging optical system on the optical axis K.
 ミラー17は、ビームスプリッタ16の反射面16aにより反射された光の光路上に配置されており、この光を反射させてAFユニット21の集光レンズ18に入射させる。 The mirror 17 is disposed on the optical path of the light reflected by the reflecting surface 16 a of the beam splitter 16, and reflects this light so as to enter the condenser lens 18 of the AF unit 21.
 集光レンズ18は、ミラー17により反射した光を集光する。 The condensing lens 18 condenses the light reflected by the mirror 17.
 セパレータレンズ19は、一方向に並べた配置された2つのレンズと、この一方向に直交する方向に並べて配置された2つレンズとから構成される。 The separator lens 19 includes two lenses arranged in one direction and two lenses arranged in a direction orthogonal to the one direction.
 集光レンズ18によって集光された被写体光は、これら4つのレンズの各々を通過して、第一の撮像素子20の受光面(複数の画素が配置された面)の異なる位置に結像する。つまり、第一の撮像素子20の受光面には、一方向にずれた一対の被写体光像と、一方向に直交する方向にずれた一対の被写体光像とが結像する。 The subject light condensed by the condensing lens 18 passes through each of these four lenses and forms an image at different positions on the light receiving surface (surface on which a plurality of pixels are arranged) of the first image sensor 20. . That is, a pair of subject light images shifted in one direction and a pair of subject light images shifted in a direction orthogonal to one direction are formed on the light receiving surface of the first image sensor 20.
 ビームスプリッタ16、ミラー17、集光レンズ18、及びセパレータレンズ19は、撮像光学系を通して被写体光像を撮像するカメラ装置3の第二の撮像素子31に、撮像光学系に入射する被写体光の一部を入射させ、この被写体光の一部を除いた残りを第一の撮像素子20に入射させる光学素子として機能する。なお、ミラー17を削除し、ビームスプリッタ16により反射された光を集光レンズ18に直接入射させる構成であってもよい。 The beam splitter 16, the mirror 17, the condensing lens 18, and the separator lens 19 are used for one of the subject light incident on the imaging optical system to the second imaging element 31 of the camera device 3 that captures the subject light image through the imaging optical system. The optical element functions as an optical element that causes the first imaging element 20 to enter the remaining part of the subject light. In addition, the structure which deletes the mirror 17 and makes the light reflected by the beam splitter 16 inject into the condensing lens 18 directly may be sufficient.
 第一の撮像素子20は、受光面に複数の画素が二次元状に配置されたエリアセンサであり、受光面に結像した4つの被写体光像の各々に応じた画像信号を出力する。つまり、第一の撮像素子20は、撮像光学系によって結像される1つの被写体光像に対し、一方向にずれた一対の画像信号と、一方向と直交する方向にずれた一対の画像信号との4つの画像信号を出力する。第一の撮像素子20としてエリアセンサを使うことによって、4つのラインセンサを用いる構成と比較して、ラインセンサ同士の位置を精密に合わせる難しさを回避することができる。 The first image sensor 20 is an area sensor in which a plurality of pixels are two-dimensionally arranged on the light receiving surface, and outputs an image signal corresponding to each of four subject light images formed on the light receiving surface. That is, the first image sensor 20 has a pair of image signals shifted in one direction and a pair of image signals shifted in a direction orthogonal to one direction with respect to one subject light image formed by the imaging optical system. Are output. By using an area sensor as the first image sensor 20, it is possible to avoid the difficulty of precisely aligning the positions of the line sensors as compared to a configuration using four line sensors.
 カメラ装置3は、レンズ装置1の光軸K上に配置されたCCD型イメージセンサやCMOS型イメージセンサ等の第二の撮像素子31と、第二の撮像素子31により被写体光像を撮像して得られる画像信号を処理して撮像画像データを生成する画像処理部32と、を備える。 The camera device 3 captures a subject light image with a second image sensor 31 such as a CCD image sensor or a CMOS image sensor disposed on the optical axis K of the lens device 1 and the second image sensor 31. An image processing unit 32 that processes the obtained image signal and generates captured image data.
 図2は、図1に示すレンズ装置1の内部構成を示すブロック図である。 FIG. 2 is a block diagram showing an internal configuration of the lens apparatus 1 shown in FIG.
 レンズ装置1は、図1で説明した構成要素の他に、撮像素子駆動部22と、レンズ駆動部23と、絞り駆動部24と、操作部25と、全体を統括制御する制御部26と、を備える。 In addition to the components described in FIG. 1, the lens device 1 includes an image sensor driving unit 22, a lens driving unit 23, a diaphragm driving unit 24, an operation unit 25, and a control unit 26 that performs overall control. Is provided.
 撮像素子駆動部22は、制御部26の指令にしたがって第一の撮像素子20を駆動する。撮像素子駆動部22は、第一の撮像素子20の露光時間を制御したり、第一の撮像素子20からの画像信号の第一の読み出しレート(1秒間に画像信号を何回読みだすかを示す値)を制御したりする。 The image sensor driving unit 22 drives the first image sensor 20 in accordance with a command from the control unit 26. The image sensor driving unit 22 controls the exposure time of the first image sensor 20, or the first readout rate of the image signal from the first image sensor 20 (how many times the image signal is read out per second). Control the value shown).
 第一の読み出しレートは、第二の撮像素子31からの画像信号の第二の読み出しレートよりも大きな値に設定可能である。例えば、第二の読み出しレートが60回/秒であるとすると、第一の読み出しレートは、60回/秒~120回/秒の間で設定可能である。 The first readout rate can be set to a value larger than the second readout rate of the image signal from the second image sensor 31. For example, if the second read rate is 60 times / second, the first read rate can be set between 60 times / second and 120 times / second.
 レンズ駆動部23は、制御部26の指令にしたがって、フォーカスレンズ11を光軸K方向に駆動して焦点調節を行ったり、ズームレンズ12,13を光軸K方向に駆動してズーム倍率を変更したりする。 The lens drive unit 23 performs focus adjustment by driving the focus lens 11 in the optical axis K direction or changes the zoom magnification by driving the zoom lenses 12 and 13 in the optical axis K direction in accordance with instructions from the control unit 26. To do.
 絞り駆動部24は、制御部26の指令にしたがって、絞り14の開口量を制御して露光量を調整する。 The diaphragm driving unit 24 adjusts the exposure amount by controlling the opening amount of the diaphragm 14 in accordance with a command from the control unit 26.
 なお、レンズ装置1は、図示しないズームリング、フォーカスリングおよび絞りリングを備えている。ズームリングは、ズームレンズ12,13の光軸K方向位置を手動により変更するためのものである。フォーカスリングは、フォーカスレンズ11の光軸K方向位置を手動により変更するためのものである。絞りリングは、絞り14の開口量を手動により変更するためのものである。 The lens device 1 includes a zoom ring, a focus ring, and an aperture ring (not shown). The zoom ring is for manually changing the position of the zoom lenses 12 and 13 in the optical axis K direction. The focus ring is for manually changing the position of the focus lens 11 in the optical axis K direction. The aperture ring is for manually changing the opening amount of the aperture 14.
 操作部25は、制御部26に指示信号を入力するためのユーザインターフェースである。操作部25には、モード設定を変更するためのボタン等が含まれる。レンズ装置1に設定可能なモードは、自動で合焦制御を行うAFモードと、手動で合焦制御を行うMF(マニュアルフォーカス)モードと、がある。 The operation unit 25 is a user interface for inputting an instruction signal to the control unit 26. The operation unit 25 includes buttons for changing mode settings. Modes that can be set in the lens apparatus 1 include an AF mode that automatically performs focus control and an MF (manual focus) mode that manually performs focus control.
 制御部26は、第一の撮像素子20から出力される一対の画像信号の位相差(一方向にずれた2つの画像信号の位相差と、一方向に直交する方向にずれた2つの画像信号の位相差)に基づいてフォーカスレンズ11の合焦制御を行う合焦制御部として機能する。 The control unit 26 outputs a phase difference between a pair of image signals output from the first image sensor 20 (a phase difference between two image signals shifted in one direction and two image signals shifted in a direction orthogonal to one direction). It functions as a focus control unit that performs focus control of the focus lens 11 based on the phase difference of the focus lens 11.
 具体的には、制御部26は、第一の撮像素子20から出力された一方向にずれた一対の画像信号の相関演算を行って、この一対の画像信号の位相差を算出し、算出した位相差から第一のデフォーカス量を求める。同様に、制御部26は、第一の撮像素子20から出力された一方向と直交する方向にずれた一対の画像信号の相関演算を行って、この一対の画像信号の位相差を算出し、算出した位相差から第二のデフォーカス量を求める。 Specifically, the control unit 26 calculates a phase difference between the pair of image signals by performing a correlation operation between the pair of image signals output from the first image sensor 20 and shifted in one direction. A first defocus amount is obtained from the phase difference. Similarly, the control unit 26 calculates a phase difference between the pair of image signals by performing a correlation operation of the pair of image signals shifted in a direction orthogonal to the one direction output from the first image sensor 20. A second defocus amount is obtained from the calculated phase difference.
 制御部26は、第一のデフォーカス量と第二のデフォーカス量を用いて最終的なデフォーカス量を生成する。例えば、制御部26は、第一のデフォーカス量と第二のデフォーカス量の平均、又は、第一のデフォーカス量と第二のデフォーカス量の大きい方の値を最終的なデフォーカス量とする。そして制御部26は、このデフォーカス量に基づいてフォーカスレンズ11の駆動方向及び駆動量を設定する。制御部26は、設定した駆動方向及び駆動量にしたがってレンズ駆動部23にフォーカスレンズ11を駆動させて、合焦制御を行う。このように、制御部26は位相差AF方式による合焦制御を行う。 The control unit 26 generates a final defocus amount using the first defocus amount and the second defocus amount. For example, the control unit 26 determines the average of the first defocus amount and the second defocus amount or the larger value of the first defocus amount and the second defocus amount as the final defocus amount. And Then, the control unit 26 sets the drive direction and drive amount of the focus lens 11 based on the defocus amount. The control unit 26 controls the focus by causing the lens driving unit 23 to drive the focus lens 11 according to the set driving direction and driving amount. As described above, the control unit 26 performs focusing control by the phase difference AF method.
 また、制御部26は、第一の撮像素子20からの画像信号の第一の読み出しレートを制御する読み出しレート制御部として機能する。 Further, the control unit 26 functions as a read rate control unit that controls the first read rate of the image signal from the first image sensor 20.
 以下、第一の読み出しレートの制御方法の例(制御方法1~6)について説明する。 Hereinafter, an example of the first read rate control method (control methods 1 to 6) will be described.
 (制御方法1)
 制御部26は、撮像光学系によって結像される被写体光像の明るさに応じて第一の読み出しレートを制御する。具体的には、制御部26は、被写体光像が暗いほど、第一の読み出しレートを低くする。この被写体光像の明るさは、撮像光学系によって結像される被写体光像に関する条件の1つである。
(Control method 1)
The control unit 26 controls the first readout rate according to the brightness of the subject light image formed by the imaging optical system. Specifically, the control unit 26 decreases the first readout rate as the subject light image is darker. The brightness of the subject light image is one of the conditions related to the subject light image formed by the imaging optical system.
 例えば、制御部26は、第一の撮像素子20から出力される4つの画像信号のいずれかについて、画素毎の出力信号の平均値又は積算値を算出し、算出した値を被写体光像の明るさを示す情報とする。または、4つの画像信号の各々について、この平均値又は積算値を算出し、算出した4つの値を平均した値を被写体光像の明るさを示す情報とする。 For example, the control unit 26 calculates an average value or an integrated value of output signals for each pixel for any of four image signals output from the first image sensor 20, and uses the calculated value as the brightness of the subject light image. It is information indicating this. Alternatively, an average value or an integrated value is calculated for each of the four image signals, and a value obtained by averaging the calculated four values is used as information indicating the brightness of the subject light image.
 被写体光像が暗いということは第一の撮像素子20に入射する光量が減少することを意味し、位相差AF方式による合焦制御の精度が低下する方向に向かう。このため、被写体光像が暗いほど、第一の読み出しレートを低下させて、第一の撮像素子20の露光時間を延ばす制御を行うことによって、第一の撮像素子20に入射する光量を増やすことができ、合焦制御の精度低下を防ぐことができる。また、読み出しレートが低下することによってレンズ装置1の消費電力を削減することができる。 The dark subject light image means that the amount of light incident on the first image sensor 20 is reduced, and the accuracy of focusing control by the phase difference AF method is reduced. For this reason, the darker the subject light image, the lower the first readout rate and the control to extend the exposure time of the first image sensor 20, thereby increasing the amount of light incident on the first image sensor 20. It is possible to prevent the accuracy of focusing control from being lowered. Moreover, the power consumption of the lens apparatus 1 can be reduced by reducing the reading rate.
 (制御方法2)
 制御部26は、第一の撮像素子20により撮像して得られる一対の画像信号の位相差の変動に応じて第一の読み出しレートを制御する。具体的には、制御部26は、上記位相差の変動が大きいほど、第一の読み出しレートを高くする。この位相差は、撮像光学系によって結像される被写体光像によって変化するため、被写体光像に関する条件の1つとなる。
(Control method 2)
The control unit 26 controls the first readout rate according to the variation in the phase difference between the pair of image signals obtained by imaging with the first imaging element 20. Specifically, the control unit 26 increases the first reading rate as the variation in the phase difference increases. Since this phase difference changes depending on the subject light image formed by the imaging optical system, it is one of the conditions relating to the subject light image.
 例えば、制御部26は、第一の撮像素子20から出力される一対の画像信号の位相差を算出した後に、この位相差を内部メモリに記憶しておく。内部メモリには、過去所定期間(例えば1秒間)分の位相差が記憶される構成とする。そして、制御部26は、任意のタイミングで、内部メモリに記憶されている複数の位相差を用いて、過去1秒間の位相差の変動量(例えば、位相差の分散)を算出する。 For example, after calculating the phase difference between the pair of image signals output from the first image sensor 20, the control unit 26 stores the phase difference in the internal memory. The internal memory is configured to store a phase difference for a past predetermined period (for example, 1 second). And the control part 26 calculates the fluctuation amount (for example, dispersion | distribution of a phase difference) of the phase difference for the past 1 second using the several phase difference memorize | stored in the internal memory at arbitrary timings.
 位相差の変動が大きいということは、主要被写体とレンズ装置1との距離が細かく変化していることを意味する。つまり、主要被写体に対する合焦制御の追従性が重要になる。このため、位相差の変動が大きいときには第一の読み出しレートを高くして細かく合焦制御を行うことによって、主要被写体の動きに追従した精度の高い合焦制御が可能となる。一方、位相差の変動が小さいときには、細目な合焦制御を行わずとも合焦制御の精度は確保できる。そこで、第一の読み出しレートを低くすることによって、消費電力を削減することができる。 The large fluctuation of the phase difference means that the distance between the main subject and the lens apparatus 1 is finely changed. That is, the followability of focusing control for the main subject is important. For this reason, when the fluctuation of the phase difference is large, the focus control with high accuracy following the movement of the main subject can be performed by increasing the first reading rate and finely controlling the focus. On the other hand, when the fluctuation of the phase difference is small, the accuracy of the focus control can be ensured without performing the fine focus control. Therefore, power consumption can be reduced by lowering the first reading rate.
 (制御方法3)
 制御部26は、撮像光学系によって結像される被写体光像に含まれる動体の速度に応じて第一の読み出しレートを制御する。具体的には、制御部26は、動体の速度が大きいほど、第一の読み出しレートを高くする。動体の速度は、撮像光学系によって結像される被写体光像に関する条件の1つである。
(Control method 3)
The control unit 26 controls the first readout rate according to the speed of the moving object included in the subject light image formed by the imaging optical system. Specifically, the control unit 26 increases the first reading rate as the moving body speed increases. The speed of the moving object is one of the conditions regarding the subject light image formed by the imaging optical system.
 例えば、制御部26は、第一の撮像素子20から出力される4つの画像信号のいずれかについて、周知の動体検出処理を行う。制御部26は、動作を検出した場合には、その動体の速度を検出し、検出した速度が大きいほど、第一の読み出しレートを高く設定する。 For example, the control unit 26 performs a known moving object detection process on any of the four image signals output from the first image sensor 20. When detecting the motion, the control unit 26 detects the speed of the moving body, and sets the first read rate higher as the detected speed is higher.
 動体の速度が大きいということは、主要被写体とレンズ装置1との距離、又は、主要被写体の被写体光像内での位置が細かく変化していることを意味する。つまり、主要被写体に対する合焦制御の追従性が重要になる。このため、動体の速度が大きいときには第一の読み出しレートを高くして細かく合焦制御を行うことによって、主要被写体の動きに追従した精度の高い合焦制御が可能となる。一方、動体の速度が小さいときには、細目な合焦制御を行わずとも合焦制御の精度は確保できる。そこで、第一の読み出しレートを低くすることによって、消費電力を削減することができる。 The high speed of the moving object means that the distance between the main subject and the lens apparatus 1 or the position of the main subject in the subject optical image is finely changed. That is, the followability of focusing control for the main subject is important. For this reason, when the speed of the moving object is high, the first readout rate is increased and fine focusing control is performed, thereby enabling highly accurate focusing control following the movement of the main subject. On the other hand, when the speed of the moving body is low, the accuracy of the focus control can be ensured without performing the fine focus control. Therefore, power consumption can be reduced by lowering the first reading rate.
 なお、動体が検出されないときには、合焦位置の変動が少ないと予測できるため、第一の読み出しレートを、設定可能な最大値よりも低い値に設定し、消費電力の低減を図ってもよい。 It should be noted that when no moving object is detected, it can be predicted that the fluctuation of the in-focus position is small. Therefore, the first reading rate may be set to a value lower than the settable maximum value to reduce power consumption.
 (制御方法4)
 制御部26は、撮像光学系に含まれるフォーカスレンズ11、ズームレンズ12,13、及び絞り14等の可動光学素子の動作状態の変化に応じて第一の読み出しレートを制御する。具体的には、制御部26は、第一の読み出しレートを、設定可能な最大値よりも低い第一の値に制御している状態において、可動光学素子の動作状態に変化が生じた場合には、第一の読み出しレートを第一の値よりも大きな値に制御する。
(Control method 4)
The control unit 26 controls the first readout rate according to changes in the operating state of movable optical elements such as the focus lens 11, the zoom lenses 12 and 13, and the diaphragm 14 included in the imaging optical system. Specifically, when the control unit 26 controls the first readout rate to a first value lower than the maximum value that can be set, the operation state of the movable optical element changes. Controls the first read rate to a value larger than the first value.
 例えば、制御方法2が適用されている場合、フォーカスレンズ11の位置にほとんど変動がない状況では、第一の読み出しレートは第一の値に設定される。この状態から、主要被写体とレンズ装置1との距離が大きく変化して位相差が大きく変動すると、フォーカスレンズ11の移動距離は閾値以上となる。 For example, when the control method 2 is applied, the first reading rate is set to the first value in a situation where the position of the focus lens 11 hardly fluctuates. From this state, when the distance between the main subject and the lens apparatus 1 changes greatly and the phase difference fluctuates greatly, the moving distance of the focus lens 11 becomes greater than or equal to the threshold value.
 制御部26は、このようにフォーカスレンズ11の移動距離が閾値以上になった場合にフォーカスレンズ11の動作状態に変化が生じたと判定する。移動距離が閾値以上変化するということは、主要被写体の動きが安定していた状況から、主要被写体の動きが活発になった状況に変化したことを意味する。このような状況では、消費電力よりも合焦制御の精度を優先した方が良いと判断できる。このため、第一の読み出しレートを第一の値よりも大きくすることが有効となる。 The control unit 26 determines that the operation state of the focus lens 11 has changed when the moving distance of the focus lens 11 is equal to or greater than the threshold value. The fact that the movement distance changes by more than the threshold means that the situation where the movement of the main subject is stable has changed to the situation where the movement of the main subject becomes active. In such a situation, it can be determined that priority should be given to the accuracy of focus control over power consumption. For this reason, it is effective to make the first read rate larger than the first value.
 また、制御方法1~3が適用されている場合、第一の読み出しレートは第一の値に設定されることがある。この状態から、ズームリングの操作によってズームレンズ12,13の位置が変化されたり、絞りリングの操作によって絞り14の開口量が変化されたりした場合を考える。ズーム倍率や絞り開口量が変化するということは、これまでの合焦位置が大きく変わる可能性があることを意味する。つまり、このような状況では、消費電力よりも合焦制御の精度を優先した方が良いと判断できる。このため、第一の読み出しレートを第一の値よりも大きくすることが有効となる。 Also, when the control methods 1 to 3 are applied, the first read rate may be set to the first value. From this state, let us consider a case where the positions of the zoom lenses 12 and 13 are changed by the operation of the zoom ring, or the opening amount of the stop 14 is changed by the operation of the aperture ring. The fact that the zoom magnification and the aperture opening amount change means that there is a possibility that the focus position so far may change greatly. That is, in such a situation, it can be determined that priority should be given to the accuracy of focus control over power consumption. For this reason, it is effective to make the first read rate larger than the first value.
 (制御方法5)
 制御部26は、撮像光学系の光軸Kの向きの変化に応じて第一の読み出しレートを制御する。具体的には、制御部26は、光軸Kの向きに変化が生じた場合には、第一の読み出しレートを上記第一の値よりも大きな値に制御する。
(Control method 5)
The control unit 26 controls the first readout rate according to a change in the direction of the optical axis K of the imaging optical system. Specifically, when a change occurs in the direction of the optical axis K, the control unit 26 controls the first read rate to a value larger than the first value.
 例えば、制御方法1~3が適用されている場合、第一の読み出しレートは第一の値に設定されることがある。この状態から、カメラシステムの利用者がカメラシステムを水平方向に大きく移動させたり、カメラシステムを垂直方向に大きく移動させたりした場合を考える。 For example, when the control methods 1 to 3 are applied, the first read rate may be set to the first value. From this state, consider a case where the user of the camera system greatly moves the camera system in the horizontal direction or moves the camera system largely in the vertical direction.
 カメラシステムが移動するということは、撮像される被写体光像が大きく変化することを意味する。つまり、このような状況では、消費電力よりも合焦制御の精度を優先した方が良いと判断できる。このため、第一の読み出しレートを第一の値よりも大きくすることが有効となる。 The movement of the camera system means that the subject light image to be captured changes greatly. That is, in such a situation, it can be determined that priority should be given to the accuracy of focus control over power consumption. For this reason, it is effective to make the first read rate larger than the first value.
 制御部26は、光軸Kの向きの変化によって、撮像される被写体光像が大きく変化したかどうかを判定する。光軸Kの向きは、方位センサ、加速度センサ、及びジャイロセンサ等の動き検出部をレンズ装置1に設け、この動き検出部の検出情報に基づいて判定することができる。また、制御部26は、第一の撮像素子20から連続して出力される2つの画像信号のパターンマッチングを行い、その結果から、光軸Kの向きが大きく変化したかどうかを判定してもよい。 The control unit 26 determines whether or not the captured subject light image has changed significantly due to the change in the direction of the optical axis K. The direction of the optical axis K can be determined based on detection information of the motion detection unit provided with a motion detection unit such as an azimuth sensor, an acceleration sensor, and a gyro sensor in the lens device 1. Further, the control unit 26 performs pattern matching between two image signals continuously output from the first image sensor 20, and determines whether or not the direction of the optical axis K has greatly changed from the result. Good.
 (制御方法6)
 制御部26は、レンズ装置1がMFモードに設定された場合は、第一の読み出しレートを第一の値(好ましくは設定可能な値のうちの最低値)に設定する。このように、MFモードのときであっても、第一の撮像素子20を低消費電力で起動させておくことによって、AFモードにすぐに移行が可能となる。
(Control method 6)
When the lens device 1 is set to the MF mode, the control unit 26 sets the first readout rate to a first value (preferably the lowest value among settable values). As described above, even in the MF mode, the first imaging device 20 is activated with low power consumption, so that it is possible to immediately shift to the AF mode.
 なお、制御方法1~6は適宜組み合わせて実施してもよい。 Note that the control methods 1 to 6 may be implemented in combination as appropriate.
 以上説明したレンズ装置1における光学素子(ビームスプリッタ16、ミラー17、集光レンズ18、及びセパレータレンズ19)と、第一の撮像素子20と、制御部26とは、合焦制御装置を構成する。 The optical elements (the beam splitter 16, the mirror 17, the condensing lens 18, and the separator lens 19), the first imaging element 20, and the control unit 26 in the lens apparatus 1 described above constitute a focusing control apparatus. .
 図1のカメラシステムでは、この合焦制御装置がレンズ装置1に設けられているが、この合焦制御装置をカメラ装置3が有する構成としてもよい。 In the camera system of FIG. 1, the focusing control device is provided in the lens device 1, but the focusing control device may be included in the camera device 3.
 図3は、合焦制御装置をカメラ装置に内蔵するカメラシステムの構成例を示す図である。 FIG. 3 is a diagram showing a configuration example of a camera system in which the focusing control device is built in the camera device.
 図3に示すカメラシステムは、レンズ装置1が図2に示すレンズ駆動部23及び絞り駆動部24を備え、カメラ装置3に内蔵された合焦制御装置とレンズ装置1とが通信可能に構成される。図3に示すカメラシステムは、レンズ装置が交換可能なデジタルカメラと、レンズ装置が一体化されたデジタルカメラのどちらにも適用可能である。デジタルカメラの場合、業務用のカメラシステムと違って電池容量に制限があるため、上述した制御方法1~6を採用することが有効となる。 In the camera system shown in FIG. 3, the lens device 1 includes the lens driving unit 23 and the aperture driving unit 24 shown in FIG. 2, and the focusing control device built in the camera device 3 and the lens device 1 can communicate with each other. The The camera system shown in FIG. 3 can be applied to both a digital camera with a replaceable lens device and a digital camera with an integrated lens device. In the case of a digital camera, unlike the professional camera system, the battery capacity is limited, so it is effective to employ the control methods 1 to 6 described above.
 なお、AFユニット21の構成は、図1に示したものに限らない。例えば、第一の撮像素子20として、特開2013-201466号公報に例示されるように、一方向に瞳分割された一対の位相差検出用画素が受光面に二次元状に配置されたエリアセンサを用い、セパレータレンズ19を省略した構成としてもよい。または、一方向に瞳分割された一対の位相差検出用画素と、瞳分割されていない撮像用画素とが受光面に二次元状に配置されたエリアセンサを用いてもよい。 The configuration of the AF unit 21 is not limited to that shown in FIG. For example, as the first image sensor 20, an area in which a pair of phase difference detection pixels that are pupil-divided in one direction are two-dimensionally arranged on the light receiving surface as exemplified in Japanese Patent Application Laid-Open No. 2013-201466. A sensor may be used and the separator lens 19 may be omitted. Alternatively, an area sensor in which a pair of phase difference detection pixels that are pupil-divided in one direction and imaging pixels that are not pupil-divided are two-dimensionally arranged on the light receiving surface may be used.
 以上説明したように、本明細書には以下の事項が開示されている。 As described above, the following items are disclosed in this specification.
 開示された合焦制御装置は、1つの被写体光像に対し、一方向にずれた一対の画像信号を出力する第一の撮像素子と、フォーカスレンズを含む撮像光学系を通して被写体光像を撮像する第二の撮像素子に、上記撮像光学系に入射する被写体光の一部を入射させ、上記被写体光の上記一部を除いた残りを上記第一の撮像素子に入射させる光学素子と、上記第一の撮像素子から出力される上記一対の画像信号の位相差に基づいて上記フォーカスレンズの合焦制御を行う合焦制御部と、上記第一の撮像素子からの上記画像信号の読み出しレートを制御する読み出しレート制御部と、を備える。 The disclosed focus control apparatus captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image, and a focus lens. An optical element that causes a part of subject light incident on the imaging optical system to be incident on a second imaging element, and that the remaining part of the subject light except the part is incident on the first imaging element; A focus control unit that performs focusing control of the focus lens based on a phase difference between the pair of image signals output from one image sensor, and controls a readout rate of the image signal from the first image sensor A read rate control unit.
 この構成により、第一の撮像素子からの画像信号の読み出しレートが制御されるため、例えば、この読み出しレートを第二の撮像素子からの画像信号の読み出しレートよりも速くすることによって、高精度の合焦制御を行うことができる。また、例えば暗い被写体のときには、この読み出しレートを遅くすることによって、一対の画像信号を得るための露光時間を延ばすことができ、暗い被写体に対する合焦精度を確保することができる。また、例えば、フォーカスレンズの合焦位置が変化しない状況では、読み出しレートを遅くすることによって消費電力を減らすことができる。これらの例に示されるように、第一の撮像素子の読み出しレートが制御されることによって、合焦制御の精度向上、消費電力の低減を両立させることができる。 With this configuration, since the readout rate of the image signal from the first image sensor is controlled, for example, by making the readout rate faster than the readout rate of the image signal from the second image sensor, high accuracy can be achieved. Focus control can be performed. For example, in the case of a dark subject, the exposure time for obtaining a pair of image signals can be extended by slowing the readout rate, and focusing accuracy for a dark subject can be ensured. Also, for example, in a situation where the focus position of the focus lens does not change, power consumption can be reduced by slowing the readout rate. As shown in these examples, by controlling the reading rate of the first image sensor, it is possible to achieve both improvement in focusing control accuracy and reduction in power consumption.
 開示された合焦制御装置は、上記読み出しレート制御部は、上記撮像光学系によって結像される被写体光像に関する条件に応じて上記読み出しレートを制御するものである。 In the disclosed focus control device, the readout rate control unit controls the readout rate according to a condition relating to a subject light image formed by the imaging optical system.
 開示された合焦制御装置は、上記被写体光像に関する条件は、上記被写体光像の明るさを含み、上記読み出しレート制御部は、上記被写体光像が暗いほど上記読み出しレートを低くするものである。 In the disclosed focus control device, the condition relating to the subject optical image includes the brightness of the subject optical image, and the readout rate control unit lowers the readout rate as the subject optical image becomes darker. .
 被写体光像が暗いということは第一の撮像素子に入射する光量が減少することを意味し、合焦精度が低下する方向に向かう。このため、上記構成とすることによって第一の撮像素子に入射する光量を増やすことができ、合焦精度の低下を防ぐことができる。また、読み出しレートが低下することによって消費電力を削減することができる。 The dark subject light image means that the amount of light incident on the first image sensor is reduced, and the focusing accuracy is reduced. For this reason, by setting it as the said structure, the light quantity which injects into a 1st image pick-up element can be increased, and the fall of a focusing precision can be prevented. Further, power consumption can be reduced by reducing the reading rate.
 開示された合焦制御装置は、上記被写体光像に関する条件は、上記被写体光像に対して出力される上記一対の画像信号の位相差を含み、上記読み出しレート制御部は、上記位相差の変動が大きいほど、上記読み出しレートを高くするものである。 In the disclosed focus control device, the condition relating to the subject optical image includes a phase difference between the pair of image signals output with respect to the subject optical image, and the readout rate control unit is configured to change the phase difference. The larger the is, the higher the reading rate is.
 位相差の変動が大きいということは被写体への合焦の追従性が重要になることを意味するため、上記構成にすることによって合焦精度を高めることができる。一方、位相差の変動が小さいときには読み出しレートが低くなるため、消費電力を削減することができる。 The fact that the fluctuation of the phase difference is large means that the followability of focusing on the subject is important, so that the focusing accuracy can be increased by using the above configuration. On the other hand, when the fluctuation of the phase difference is small, the reading rate is lowered, so that power consumption can be reduced.
 開示された合焦制御装置は、上記被写体光像に関する条件は、上記被写体光像に含まれる動体の速度を含み、上記読み出しレート制御部は、上記動体の速度が大きいほど、上記読み出しレートを高くするものである。 In the disclosed focus control device, the condition relating to the subject light image includes the speed of the moving object included in the subject light image, and the reading rate control unit increases the reading rate as the speed of the moving object increases. To do.
 動体の速度が大きいということは被写体への合焦の追従性が重要になることを意味するため、上記構成にすることによって合焦精度を高めることができる。一方、動体の速度が小さいときには読み出しレートが低くなるため、消費電力を削減することができる。 The high speed of the moving object means that the followability of focusing on the subject is important, so that the focusing accuracy can be increased by the above configuration. On the other hand, when the speed of the moving object is low, the reading rate is low, so that power consumption can be reduced.
 開示された合焦制御装置は、上記読み出しレート制御部は、上記撮像光学系の状態に応じて上記読み出しレートを制御するものである。 In the disclosed focus control device, the readout rate control unit controls the readout rate in accordance with the state of the imaging optical system.
 開示された合焦制御装置は、上記読み出しレート制御部は、上記読み出しレートを、設定可能な最大値よりも低い第一の値に制御している状態において、上記撮像光学系に含まれる可動光学素子の動作状態に変化が生じた場合には、上記読み出しレートを上記第一の値よりも大きな値に制御するものである。 In the disclosed focus control device, the readout rate control unit controls the movable optics included in the imaging optical system in a state where the readout rate is controlled to a first value lower than a maximum value that can be set. When a change occurs in the operation state of the element, the read rate is controlled to a value larger than the first value.
 可動光学素子としてフォーカスレンズ、ズームレンズ、及び絞り等を想定すると、ユーザのマニュアル操作によってこれらが変更されることがある。このような状況では、撮像される被写体光像が大きく変化する可能性があるため、消費電力よりも合焦精度を優先すべきと判断できる。したがって、読み出しレートを第一の値よりも大きくすることが有効となる。 Assuming that the movable optical element is a focus lens, zoom lens, diaphragm, etc., these may be changed by a user's manual operation. In such a situation, there is a possibility that the subject light image to be captured may change greatly, so that it can be determined that the focusing accuracy should be prioritized over power consumption. Therefore, it is effective to make the reading rate larger than the first value.
 開示された合焦制御装置は、上記読み出しレート制御部は、上記読み出しレートを、設定可能な最大値よりも低い第一の値に制御している状態において、上記撮像光学系の光軸の向きに変化が生じた場合には、上記読み出しレートを上記第一の値よりも大きな値に制御するものである。 In the disclosed focusing control device, the readout rate control unit controls the readout rate to the first value lower than the maximum value that can be set, and the direction of the optical axis of the imaging optical system When the change occurs, the reading rate is controlled to a value larger than the first value.
 例えば、合焦制御装置を搭載する撮像装置のパン、チルト動作によって光軸方向に変化が生じた場合には、撮像される被写体光像が大きく変化する可能性があるため、消費電力よりも合焦精度を優先すべきと判断できる。したがって、読み出しレートを第一の値よりも大きくすることが有効となる。 For example, if there is a change in the optical axis direction due to panning and tilting operations of an imaging device equipped with a focus control device, the subject optical image to be captured may change significantly, so that it is more suitable than the power consumption. It can be determined that the focus accuracy should be given priority. Therefore, it is effective to make the reading rate larger than the first value.
 開示された合焦制御装置は、上記フォーカスレンズの位置を手動により変更するマニュアルフォーカスモードに設定された場合に、上記読み出しレート制御部は、上記読み出しレートを、設定可能な最大値よりも低い値に制御するものである。 When the disclosed focus control device is set to a manual focus mode in which the position of the focus lens is manually changed, the readout rate control unit sets the readout rate to a value lower than a maximum value that can be set. To control.
 このように、マニュアルフォーカスモードでは第一の撮像素子20の読み出しレートを低くしておくことによって消費電力を削減することができる。また、マニュアルフォーカスモードから、合焦制御部による合焦制御を行うオートフォーカスモードへの移行を瞬時に行うことが可能となる。 Thus, in the manual focus mode, the power consumption can be reduced by lowering the reading rate of the first image sensor 20. Further, it is possible to instantaneously shift from the manual focus mode to the auto focus mode in which the focus control unit performs the focus control.
 開示された合焦制御装置は、上記第一の撮像素子は、受光面に複数の画素が二次元状に配置されたエリアセンサであり、上記受光面に対向配置された上記一方向に並ぶ一対のセパレータレンズを更に備える。 In the disclosed focus control device, the first imaging element is an area sensor in which a plurality of pixels are two-dimensionally arranged on a light receiving surface, and a pair of the first imaging elements arranged in the one direction and arranged to face the light receiving surface. The separator lens is further provided.
 開示された合焦制御装置は、上記第一の撮像素子は、受光面に上記一方向に瞳分割された一対の位相差検出用画素が二次元状に配置されたエリアセンサであるものを含む。 In the disclosed focus control device, the first imaging element includes an area sensor in which a pair of phase difference detection pixels that are pupil-divided in the one direction on the light receiving surface are two-dimensionally arranged. .
 開示されたレンズ装置は、上記合焦制御装置と、上記撮像光学系と、を備える。 The disclosed lens device includes the focusing control device and the imaging optical system.
 この構成によれば、テレビ放送や映画等に用いる業務用の高画質な撮像装置と組み合わせて用いることができ、高まる高画質化への要求に十分に応えることができる。 According to this configuration, it can be used in combination with a high-quality image pickup device for business use used in television broadcasting, movies, etc., and can fully meet the demand for higher image quality.
 開示された撮像装置は、上記合焦制御装置と、上記第二の撮像素子と、を備える。 The disclosed imaging device includes the focusing control device and the second imaging device.
 この構成によれば、コンパクトデジタルカメラ等においても、高まる高画質化への要求に十分に応えることができる。 According to this configuration, a compact digital camera or the like can sufficiently meet the demand for higher image quality.
 開示された合焦制御方法は、1つの被写体光像に対し、一方向にずれた一対の画像信号を出力する第一の撮像素子と、フォーカスレンズを含む撮像光学系を通して被写体光像を撮像する第二の撮像素子に、上記撮像光学系に入射する被写体光の一部を入射させ、上記被写体光の上記一部を除いた残りを上記第一の撮像素子に入射させる光学素子と、を有する合焦制御装置による合焦制御方法であって、上記第一の撮像素子から出力される上記一対の画像信号の位相差に基づいて上記フォーカスレンズの合焦制御を行う合焦制御ステップと、上記第一の撮像素子からの上記画像信号の読み出しレートを制御する読み出しレート制御ステップと、を備える。 The disclosed focus control method captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image, and a focus lens. An optical element that causes a part of the subject light incident on the imaging optical system to be incident on the second imaging element and causes the remaining part of the subject light other than the part to be incident on the first imaging element. A focus control method by a focus control device, the focus control step for performing focus control of the focus lens based on a phase difference between the pair of image signals output from the first image sensor, and A read rate control step for controlling a read rate of the image signal from the first image sensor.
 開示された合焦制御方法は、上記読み出しレート制御ステップでは、上記撮像光学系によって結像される被写体光像に関する条件に応じて上記読み出しレートを制御するものである。 In the disclosed focus control method, in the readout rate control step, the readout rate is controlled in accordance with a condition relating to a subject light image formed by the imaging optical system.
 開示された合焦制御方法は、上記被写体光像に関する条件は、上記被写体光像の明るさを含み、上記読み出しレート制御ステップでは、上記被写体光像が暗いほど上記読み出しレートを低くするものである。 In the disclosed focus control method, the condition relating to the subject optical image includes the brightness of the subject optical image, and in the readout rate control step, the readout rate is lowered as the subject optical image is darker. .
 開示された合焦制御方法は、上記被写体光像に関する条件は、上記被写体光像に対して出力される上記一対の画像信号の位相差を含み、上記読み出しレート制御ステップでは、上記位相差の変動が大きいほど、上記読み出しレートを高くするものである。 In the disclosed focus control method, the condition relating to the subject optical image includes a phase difference between the pair of image signals output with respect to the subject optical image, and in the readout rate control step, the variation in the phase difference is performed. The larger the is, the higher the reading rate is.
 開示された合焦制御方法は、上記被写体光像に関する条件は、上記被写体光像に含まれる動体の速度を含み、上記読み出しレート制御ステップでは、上記動体の速度が大きいほど、上記読み出しレートを高くするものである。 In the disclosed focus control method, the condition relating to the subject optical image includes the speed of the moving object included in the subject optical image. In the readout rate control step, the higher the speed of the moving object, the higher the readout rate. To do.
 開示された合焦制御方法は、上記読み出しレート制御ステップでは、上記撮像光学系の状態に応じて上記読み出しレートを制御するものである。 In the disclosed focus control method, the readout rate control step controls the readout rate according to the state of the imaging optical system.
 開示された合焦制御方法は、上記読み出しレート制御ステップでは、上記読み出しレートを、設定可能な最大値よりも低い第一の値に制御している状態において、上記撮像光学系に含まれる可動光学素子の動作状態に変化が生じた場合には、上記読み出しレートを上記第一の値よりも大きな値に制御するものである。 In the disclosed focus control method, in the read rate control step, the movable optical included in the imaging optical system in a state where the read rate is controlled to a first value lower than a maximum value that can be set. When a change occurs in the operation state of the element, the read rate is controlled to a value larger than the first value.
 開示された合焦制御方法は、上記読み出しレート制御ステップでは、上記読み出しレートを、設定可能な最大値よりも低い第一の値に制御している状態において、上記撮像光学系の光軸の向きに変化が生じた場合には、上記読み出しレートを上記第一の値よりも大きな値に制御するものである。 In the disclosed focus control method, in the readout rate control step, the orientation of the optical axis of the imaging optical system is controlled in a state where the readout rate is controlled to a first value lower than a maximum value that can be set. When the change occurs, the reading rate is controlled to a value larger than the first value.
 開示された合焦制御方法は、上記フォーカスレンズの位置を手動により変更するマニュアルフォーカスモードに設定された場合に、上記読み出しレート制御ステップでは、上記読み出しレートを、設定可能な最大値よりも低い値に制御するものである。 In the disclosed focus control method, when the manual focus mode in which the position of the focus lens is manually changed is set, the readout rate control step sets the readout rate to a value lower than the maximum value that can be set. To control.
 開示された合焦制御方法は、上記第一の撮像素子は、受光面に複数の画素が二次元状に配置されたエリアセンサであり、上記合焦制御装置は、上記受光面に対向配置された上記一方向に並ぶ一対のセパレータレンズを更に備える。 In the disclosed focus control method, the first image sensor is an area sensor in which a plurality of pixels are two-dimensionally arranged on a light receiving surface, and the focus control device is disposed to face the light receiving surface. And a pair of separator lenses arranged in the one direction.
 開示された合焦制御方法は、上記第一の撮像素子は、受光面に上記一方向に瞳分割された一対の位相差検出用画素が二次元状に配置されたエリアセンサであるものを含む。 In the disclosed focus control method, the first imaging device includes an area sensor in which a pair of phase difference detection pixels that are pupil-divided in the one direction are arranged two-dimensionally on a light receiving surface. .
 開示された合焦制御プログラムは、1つの被写体光像に対し、一方向にずれた一対の画像信号を出力する第一の撮像素子と、フォーカスレンズを含む撮像光学系を通して被写体光像を撮像する第二の撮像素子に、上記撮像光学系に入射する被写体光の一部を入射させ、上記被写体光の上記一部を除いた残りを上記第一の撮像素子に入射させる光学素子と、を有する合焦制御装置に、上記第一の撮像素子から出力される上記一対の画像信号の位相差に基づいて上記フォーカスレンズの合焦制御を行う合焦制御ステップと、上記第一の撮像素子からの上記画像信号の読み出しレートを制御する読み出しレート制御ステップと、を実行させるためのプログラムである。 The disclosed focus control program captures a subject light image through an imaging optical system including a first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject light image and a focus lens. An optical element that causes a part of the subject light incident on the imaging optical system to be incident on the second imaging element and causes the remaining part of the subject light other than the part to be incident on the first imaging element. A focus control step for controlling the focus lens based on a phase difference between the pair of image signals output from the first image sensor; And a readout rate control step for controlling the readout rate of the image signal.
 本発明は、特に業務用のテレビカメラシステムやコンパクトタイプのデジタルカメラ等に適用して利便性が高く、有効である。 The present invention is particularly convenient and effective when applied to a commercial television camera system or a compact digital camera.
1 レンズ装置
3 カメラ装置
11 フォーカスレンズ
12,13 ズームレンズ
14 絞り
16 ビームスプリッタ
17 ミラー
18 集光レンズ
19 セパレータレンズ
20 第一の撮像素子
21 AFユニット
31 第二の撮像素子
DESCRIPTION OF SYMBOLS 1 Lens apparatus 3 Camera apparatus 11 Focus lens 12, 13 Zoom lens 14 Aperture 16 Beam splitter 17 Mirror 18 Condensing lens 19 Separator lens 20 First image sensor 21 AF unit 31 Second image sensor

Claims (25)

  1.  1つの被写体光像に対し、一方向にずれた一対の画像信号を出力する第一の撮像素子と、
     フォーカスレンズを含む撮像光学系を通して被写体光像を撮像する第二の撮像素子に、前記撮像光学系に入射する被写体光の一部を入射させ、前記被写体光の前記一部を除いた残りを前記第一の撮像素子に入射させる光学素子と、
     前記第一の撮像素子から出力される前記一対の画像信号の位相差に基づいて前記フォーカスレンズの合焦制御を行う合焦制御部と、
     前記第一の撮像素子からの前記画像信号の読み出しレートを制御する読み出しレート制御部と、を備える合焦制御装置。
    A first imaging device that outputs a pair of image signals shifted in one direction with respect to one subject light image;
    A part of subject light incident on the imaging optical system is incident on a second imaging element that captures a subject light image through an imaging optical system including a focus lens, and the remainder excluding the part of the subject light is An optical element that is incident on the first imaging element;
    A focus control unit that performs focus control of the focus lens based on a phase difference between the pair of image signals output from the first image sensor;
    And a read rate control unit that controls a read rate of the image signal from the first image sensor.
  2.  請求項1記載の合焦制御装置であって、
     前記読み出しレート制御部は、前記撮像光学系によって結像される被写体光像に関する条件に応じて前記読み出しレートを制御する合焦制御装置。
    The focus control device according to claim 1,
    The read rate control unit is a focus control device that controls the read rate according to a condition related to a subject light image formed by the imaging optical system.
  3.  請求項2記載の合焦制御装置であって、
     前記被写体光像に関する条件は、前記被写体光像の明るさを含み、
     前記読み出しレート制御部は、前記被写体光像が暗いほど前記読み出しレートを低くする合焦制御装置。
    The focusing control device according to claim 2,
    The condition relating to the subject optical image includes the brightness of the subject optical image,
    The read rate control unit is a focus control device that lowers the read rate as the subject light image is darker.
  4.  請求項2又は3記載の合焦制御装置であって、
     前記被写体光像に関する条件は、前記被写体光像に対して出力される前記一対の画像信号の位相差を含み、
     前記読み出しレート制御部は、前記位相差の変動が大きいほど、前記読み出しレートを高くする合焦制御装置。
    It is a focusing control apparatus of Claim 2 or 3,
    The condition relating to the subject optical image includes a phase difference between the pair of image signals output for the subject optical image,
    The focusing control device, wherein the reading rate control unit increases the reading rate as the variation in the phase difference increases.
  5.  請求項2~4のいずれか1項記載の合焦制御装置であって、
     前記被写体光像に関する条件は、前記被写体光像に含まれる動体の速度を含み、
     前記読み出しレート制御部は、前記動体の速度が大きいほど、前記読み出しレートを高くする合焦制御装置。
    The in-focus control device according to any one of claims 2 to 4,
    The condition relating to the subject light image includes the speed of a moving object included in the subject light image,
    The read rate control unit is a focusing control device that increases the read rate as the speed of the moving object increases.
  6.  請求項1~5のいずれか1項記載の合焦制御装置であって、
     前記読み出しレート制御部は、前記撮像光学系の状態に応じて前記読み出しレートを制御する合焦制御装置。
    The focusing control device according to any one of claims 1 to 5,
    The read rate control unit is a focus control device that controls the read rate according to a state of the imaging optical system.
  7.  請求項6記載の合焦制御装置であって、
     前記読み出しレート制御部は、前記読み出しレートを、設定可能な最大値よりも低い第一の値に制御している状態において、前記撮像光学系に含まれる可動光学素子の動作状態に変化が生じた場合には、前記読み出しレートを前記第一の値よりも大きな値に制御する合焦制御装置。
    The focusing control device according to claim 6,
    In the state where the readout rate control unit controls the readout rate to a first value lower than a maximum value that can be set, a change has occurred in the operating state of the movable optical element included in the imaging optical system In this case, a focus control device that controls the reading rate to a value larger than the first value.
  8.  請求項6又は7記載の合焦制御装置であって、
     前記読み出しレート制御部は、前記読み出しレートを、設定可能な最大値よりも低い第一の値に制御している状態において、前記撮像光学系の光軸の向きに変化が生じた場合には、前記読み出しレートを前記第一の値よりも大きな値に制御する合焦制御装置。
    The focusing control device according to claim 6 or 7,
    In the state where the readout rate control unit is controlling the readout rate to a first value lower than a maximum value that can be set, when a change occurs in the direction of the optical axis of the imaging optical system, A focus control device that controls the read rate to a value larger than the first value.
  9.  請求項1~8のいずれか1項記載の合焦制御装置であって、
     前記フォーカスレンズの位置を手動により変更するマニュアルフォーカスモードに設定された場合に、前記読み出しレート制御部は、前記読み出しレートを、設定可能な最大値よりも低い値に制御する合焦制御装置。
    The focusing control device according to any one of claims 1 to 8,
    When the manual focus mode in which the position of the focus lens is manually changed is set, the readout rate control unit controls the readout rate to a value lower than a maximum value that can be set.
  10.  請求項1~9のいずれか1項記載の合焦制御装置であって、
     前記第一の撮像素子は、受光面に複数の画素が二次元状に配置されたエリアセンサであり、
     前記受光面に対向配置された前記一方向に並ぶ一対のセパレータレンズを更に備える合焦制御装置。
    The focusing control device according to any one of claims 1 to 9,
    The first image sensor is an area sensor in which a plurality of pixels are two-dimensionally arranged on a light receiving surface,
    An in-focus control device further comprising a pair of separator lenses arranged in the one direction so as to face the light receiving surface.
  11.  請求項1~9のいずれか1項記載の合焦制御装置であって、
     前記第一の撮像素子は、受光面に前記一方向に瞳分割された一対の位相差検出用画素が二次元状に配置されたエリアセンサである合焦制御装置。
    The focusing control device according to any one of claims 1 to 9,
    The focus control device, wherein the first image sensor is an area sensor in which a pair of phase difference detection pixels that are pupil-divided in the one direction are arranged two-dimensionally on a light receiving surface.
  12.  請求項1~11のいずれか1項記載の合焦制御装置と、
     前記撮像光学系と、を備えるレンズ装置。
    A focusing control device according to any one of claims 1 to 11,
    A lens apparatus comprising the imaging optical system.
  13.  請求項1~11のいずれか1項記載の合焦制御装置と、
     前記第二の撮像素子と、を備える撮像装置。
    A focusing control device according to any one of claims 1 to 11,
    An imaging device comprising the second imaging device.
  14.  1つの被写体光像に対し、一方向にずれた一対の画像信号を出力する第一の撮像素子と、フォーカスレンズを含む撮像光学系を通して被写体光像を撮像する第二の撮像素子に、前記撮像光学系に入射する被写体光の一部を入射させ、前記被写体光の前記一部を除いた残りを前記第一の撮像素子に入射させる光学素子と、を有する合焦制御装置による合焦制御方法であって、
     前記第一の撮像素子から出力される前記一対の画像信号の位相差に基づいて前記フォーカスレンズの合焦制御を行う合焦制御ステップと、
     前記第一の撮像素子からの前記画像信号の読み出しレートを制御する読み出しレート制御ステップと、を備える合焦制御方法。
    The first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject optical image, and the second imaging element that captures the subject optical image through an imaging optical system including a focus lens. An in-focus control method using an in-focus control device comprising: an optical element that causes a part of subject light incident on an optical system to enter, and an optical element that causes the remaining part of the subject light to be incident on the first image sensor Because
    A focus control step for performing focus control of the focus lens based on a phase difference between the pair of image signals output from the first image sensor;
    A read rate control step of controlling a read rate of the image signal from the first image sensor.
  15.  請求項14記載の合焦制御方法であって、
     前記読み出しレート制御ステップでは、前記撮像光学系によって結像される被写体光像に関する条件に応じて前記読み出しレートを制御する合焦制御方法。
    The focus control method according to claim 14,
    In the read rate control step, a focus control method for controlling the read rate according to a condition relating to a subject light image formed by the imaging optical system.
  16.  請求項15記載の合焦制御方法であって、
     前記被写体光像に関する条件は、前記被写体光像の明るさを含み、
     前記読み出しレート制御ステップでは、前記被写体光像が暗いほど前記読み出しレートを低くする合焦制御方法。
    The focus control method according to claim 15, comprising:
    The condition relating to the subject optical image includes the brightness of the subject optical image,
    The focus control method in which, in the readout rate control step, the readout rate is lowered as the subject light image is darker.
  17.  請求項15又は16記載の合焦制御方法であって、
     前記被写体光像に関する条件は、前記被写体光像に対して出力される前記一対の画像信号の位相差を含み、
     前記読み出しレート制御ステップでは、前記位相差の変動が大きいほど、前記読み出しレートを高くする合焦制御方法。
    The focus control method according to claim 15 or 16,
    The condition relating to the subject optical image includes a phase difference between the pair of image signals output for the subject optical image,
    In the read rate control step, a focus control method in which the read rate is increased as the variation in the phase difference increases.
  18.  請求項15~17のいずれか1項記載の合焦制御方法であって、
     前記被写体光像に関する条件は、前記被写体光像に含まれる動体の速度を含み、
     前記読み出しレート制御ステップでは、前記動体の速度が大きいほど、前記読み出しレートを高くする合焦制御方法。
    The focus control method according to any one of claims 15 to 17,
    The condition relating to the subject light image includes the speed of a moving object included in the subject light image,
    In the readout rate control step, a focus control method in which the readout rate is increased as the speed of the moving body is increased.
  19.  請求項14~18のいずれか1項記載の合焦制御方法であって、
     前記読み出しレート制御ステップでは、前記撮像光学系の状態に応じて前記読み出しレートを制御する合焦制御方法。
    The focus control method according to any one of claims 14 to 18, comprising:
    A focus control method for controlling the readout rate in accordance with a state of the imaging optical system in the readout rate control step.
  20.  請求項19記載の合焦制御方法であって、
     前記読み出しレート制御ステップでは、前記読み出しレートを、設定可能な最大値よりも低い第一の値に制御している状態において、前記撮像光学系に含まれる可動光学素子の動作状態に変化が生じた場合には、前記読み出しレートを前記第一の値よりも大きな値に制御する合焦制御方法。
    The focus control method according to claim 19, comprising:
    In the readout rate control step, a change has occurred in the operating state of the movable optical element included in the imaging optical system in a state where the readout rate is controlled to a first value lower than a maximum value that can be set. In this case, a focus control method for controlling the reading rate to a value larger than the first value.
  21.  請求項19又は20記載の合焦制御方法であって、
     前記読み出しレート制御ステップでは、前記読み出しレートを、設定可能な最大値よりも低い第一の値に制御している状態において、前記撮像光学系の光軸の向きに変化が生じた場合には、前記読み出しレートを前記第一の値よりも大きな値に制御する合焦制御方法。
    The focus control method according to claim 19 or 20,
    In the read rate control step, in the state where the read rate is controlled to a first value lower than a settable maximum value, when a change occurs in the direction of the optical axis of the imaging optical system, A focus control method for controlling the reading rate to a value larger than the first value.
  22.  請求項14~21のいずれか1項記載の合焦制御方法であって、
     前記フォーカスレンズの位置を手動により変更するマニュアルフォーカスモードに設定された場合に、前記読み出しレート制御ステップでは、前記読み出しレートを、設定可能な最大値よりも低い値に制御する合焦制御方法。
    The focus control method according to any one of claims 14 to 21,
    A focus control method for controlling the readout rate to a value lower than a maximum value that can be set in the readout rate control step when a manual focus mode in which a position of the focus lens is manually changed is set.
  23.  請求項14~22のいずれか1項記載の合焦制御方法であって、
     前記第一の撮像素子は、受光面に複数の画素が二次元状に配置されたエリアセンサであり、
     前記合焦制御装置は、前記受光面に対向配置された前記一方向に並ぶ一対のセパレータレンズを更に備える合焦制御方法。
    The focusing control method according to any one of claims 14 to 22,
    The first image sensor is an area sensor in which a plurality of pixels are two-dimensionally arranged on a light receiving surface,
    The focus control apparatus further includes a pair of separator lenses arranged in the one direction and arranged to face the light receiving surface.
  24.  請求項14~22のいずれか1項記載の合焦制御方法であって、
     前記第一の撮像素子は、受光面に前記一方向に瞳分割された一対の位相差検出用画素が二次元状に配置されたエリアセンサである合焦制御方法。
    The focusing control method according to any one of claims 14 to 22,
    The focus control method, wherein the first image sensor is an area sensor in which a pair of phase difference detection pixels that are pupil-divided in the one direction are arranged in a two-dimensional manner on a light receiving surface.
  25.  1つの被写体光像に対し、一方向にずれた一対の画像信号を出力する第一の撮像素子と、フォーカスレンズを含む撮像光学系を通して被写体光像を撮像する第二の撮像素子に、前記撮像光学系に入射する被写体光の一部を入射させ、前記被写体光の前記一部を除いた残りを前記第一の撮像素子に入射させる光学素子と、を有する合焦制御装置に、
     前記第一の撮像素子から出力される前記一対の画像信号の位相差に基づいて前記フォーカスレンズの合焦制御を行う合焦制御ステップと、
     前記第一の撮像素子からの前記画像信号の読み出しレートを制御する読み出しレート制御ステップと、を実行させるための合焦制御プログラム。
    The first imaging element that outputs a pair of image signals shifted in one direction with respect to one subject optical image, and the second imaging element that captures the subject optical image through an imaging optical system including a focus lens. An in-focus control device having an optical element that makes a part of subject light incident on an optical system incident and makes the remaining part of the subject light except the part incident on the first image sensor;
    A focus control step for performing focus control of the focus lens based on a phase difference between the pair of image signals output from the first image sensor;
    And a read rate control step for controlling a read rate of the image signal from the first image sensor.
PCT/JP2015/060541 2014-09-12 2015-04-03 Focus control device, focus control method, focus control program, lens device, and imaging device WO2016038917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016547710A JP6123034B2 (en) 2014-09-12 2015-04-03 Focus control device, focus control method, focus control program, lens device, and imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014186787 2014-09-12
JP2014-186787 2014-09-12

Publications (1)

Publication Number Publication Date
WO2016038917A1 true WO2016038917A1 (en) 2016-03-17

Family

ID=55458680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060541 WO2016038917A1 (en) 2014-09-12 2015-04-03 Focus control device, focus control method, focus control program, lens device, and imaging device

Country Status (2)

Country Link
JP (1) JP6123034B2 (en)
WO (1) WO2016038917A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064659A1 (en) * 2020-09-25 2022-03-31 オリンパス株式会社 Autofocus system, endoscope system, and control method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006039396A (en) * 2004-07-29 2006-02-09 Kyocera Corp Photoelectric conversion system, focal point detecting device, focal point detecting method, and imaging apparatus
JP2006235616A (en) * 2005-01-25 2006-09-07 Canon Inc Camera, control method therefor, program and storage medium
JP2013254024A (en) * 2012-06-05 2013-12-19 Canon Inc Imaging device and control method of imaging device
JP2014086872A (en) * 2012-10-23 2014-05-12 Nikon Corp Digital camera and focus detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006039396A (en) * 2004-07-29 2006-02-09 Kyocera Corp Photoelectric conversion system, focal point detecting device, focal point detecting method, and imaging apparatus
JP2006235616A (en) * 2005-01-25 2006-09-07 Canon Inc Camera, control method therefor, program and storage medium
JP2013254024A (en) * 2012-06-05 2013-12-19 Canon Inc Imaging device and control method of imaging device
JP2014086872A (en) * 2012-10-23 2014-05-12 Nikon Corp Digital camera and focus detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022064659A1 (en) * 2020-09-25 2022-03-31 オリンパス株式会社 Autofocus system, endoscope system, and control method

Also Published As

Publication number Publication date
JP6123034B2 (en) 2017-04-26
JPWO2016038917A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
US9992421B2 (en) Image pickup apparatus having FA zoom function, method for controlling the apparatus, and recording medium
US10270978B2 (en) Zoom control device with scene composition selection, and imaging apparatus, control method of zoom control device, and recording medium therewith
JP5322783B2 (en) IMAGING DEVICE AND CONTROL METHOD OF IMAGING DEVICE
US9253410B2 (en) Object detection apparatus, control method therefor, image capturing apparatus, and storage medium
US9781351B2 (en) Zooming control device and method for controlling zooming control device
JP4874669B2 (en) Autofocus unit and digital camera
US9380201B2 (en) Image capture apparatus and control method therefor
US10277823B2 (en) Zoom control device, imaging apparatus, control method of zoom control device, and recording medium
US11435550B2 (en) Camera for limiting shifting of focus adjustment optical system
US11128805B2 (en) Zoom control device, zoom control method, control program, and imaging apparatus equipped with zoom control device
JP2012060371A (en) Imaging system and pixel signal reading method
JP2011217311A (en) Imaging apparatus and method of controlling the same
JP5744581B2 (en) Imaging apparatus and control method thereof
JP2015106116A (en) Imaging apparatus
JP6245923B2 (en) IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, IMAGING DEVICE CONTROL PROGRAM, AND STORAGE MEDIUM
CN102833484A (en) Image pickup apparatus and control method thereof
JP6123034B2 (en) Focus control device, focus control method, focus control program, lens device, and imaging device
KR20100085728A (en) Photographing apparatus and focus detecting method using the same
JP2016142924A (en) Imaging apparatus, method of controlling the same, program, and storage medium
JP2014103489A (en) Imaging apparatus and control method thereof
JP2021019255A (en) Imaging device and method of controlling the same
JP5790011B2 (en) Imaging device
JP2012133067A (en) Imaging apparatus
JP5619227B2 (en) IMAGING DEVICE AND CONTROL METHOD OF IMAGING DEVICE
US8340513B2 (en) Camera and method for performing auto-focusing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15839974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547710

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15839974

Country of ref document: EP

Kind code of ref document: A1