WO2016038667A1 - X-ray imaging method and device - Google Patents

X-ray imaging method and device Download PDF

Info

Publication number
WO2016038667A1
WO2016038667A1 PCT/JP2014/073737 JP2014073737W WO2016038667A1 WO 2016038667 A1 WO2016038667 A1 WO 2016038667A1 JP 2014073737 W JP2014073737 W JP 2014073737W WO 2016038667 A1 WO2016038667 A1 WO 2016038667A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorption coefficient
rays
subject
ray
ray imaging
Prior art date
Application number
PCT/JP2014/073737
Other languages
French (fr)
Japanese (ja)
Inventor
明男 米山
馬場 理香
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/073737 priority Critical patent/WO2016038667A1/en
Publication of WO2016038667A1 publication Critical patent/WO2016038667A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs

Definitions

  • the present invention relates to a method and apparatus for imaging an object using X-rays.
  • the X-ray imaging method is a method for observing the structure inside the subject in a non-destructive manner by utilizing the high X-ray transmittance, and is widely used in various fields ranging from product inspections to airport security checks. Further, there is X-ray CT (Computed Tomography) that uses transmission images from a plurality of different angles acquired by rotating a subject relative to an X-ray source to calculate a cross-sectional image of the subject. X-ray CT is an indispensable technique for medical diagnosis because it allows non-destructive observation of the internal structure of a subject in three dimensions.
  • the X-ray imaging method detects the change in signal intensity that occurs when X-rays pass through the subject using the principle that the density of the X-ray absorption increases as the density of the image increases. Is forming. That is, in the X-ray imaging method, since the spatial density distribution in the subject can be measured, an area having a large density change (such as a boundary area (shape) or an internal structure having a different composition) can be visualized with high definition.
  • the conventional X-ray imaging method detects only the spatial density distribution in the subject, and information such as what elements the subject is composed of (ie, information on constituent elements (composition)). ) Is not expected to obtain. For this reason, in order to identify the elements contained in the subject, it is necessary to combine with other methods using fluorescent X-rays or absorption edges, but the fluorescence detector has no spatial resolution (only intensity detection) ), It is necessary to limit the region where fluorescent X-rays are generated by narrowing down X-rays, and a large sample cannot be measured at one time. In addition, in the method using the absorption edge, the number of elements that can be detected is limited to one, and it is not possible to detect all the elements contained in a composite material or compound composed of a plurality of elements.
  • the present application adopts, for example, the technical configuration described in the claims.
  • the present specification includes a plurality of means for solving the above-described problems, as an example thereof, a technique is adopted in which a processing procedure shown below is executed by an arithmetic device such as a computer.
  • each of three or more types of X-rays having different average energies is irradiated from a plurality of angles to the same region of the subject.
  • Intensity I (En, X, Y) of each pixel of the cross-sectional image calculated from the transmission image acquired for the X-ray having the same average energy transmitted through the same region (corresponding to the processing (2) described above)
  • This is a technique for causing a computer to execute the above-described processes (1), (3), (5) and (6).
  • “measured absorption coefficient ⁇ ′” is used instead of “relative measured absorption coefficient ⁇ ′”.
  • the flowchart explaining an example of the X-ray imaging procedure to propose The figure which shows the example which calculated the element contained in a to-be-photographed object (metal foil) using the proposal method. The figure explaining the change (difference) which arises in the linear absorption coefficient of each element when the energy of X-ray is changed from 10 keV to 20 keV. The figure explaining the relationship between the absorption edge (K edge) and energy of each element.
  • 1 is a diagram illustrating a schematic configuration of an X-ray imaging apparatus according to Embodiment 1.
  • FIG. 3 is a flowchart for explaining measurement processing in the first embodiment.
  • FIG. 9 is a flowchart for explaining an initial value setting method according to the second embodiment.
  • FIG. 10 is a diagram illustrating an example of measurement of the transmittance of a subject by the method of the third embodiment. 10 is a flowchart for explaining an initial value setting method according to the third embodiment.
  • FIG. 6 is a diagram illustrating a schematic configuration of an X-ray imaging apparatus according to Embodiment 4. 10 is a flowchart for explaining measurement processing in the fourth embodiment.
  • Equation (2) if the X-ray energy is known, the linear absorption coefficient ⁇ i of each element is also known. However, in addition to the thickness t, since the formula is one for a plurality of unknowns (i.e. content sigma i), (2) can not be uniquely determined the content of sigma i of each element from the equation. When the subject includes n elements, theoretically, n + 1 different formulas (2) including the thickness t are required to uniquely determine the content ⁇ i of each element. Therefore, the X-ray energy is changed, the same measurement is performed for a plurality of X-rays having different energies, and n + 1 equations (2), that is, I (E) / I o (E) are obtained from each transmission image. get.
  • obtaining the three content rates ⁇ 1 , ⁇ 2 , and ⁇ 3 corresponds to solving simultaneous linear equations represented by the following matrix.
  • the content of each element can be uniquely determined by Gaussian elimination or the like. As described above, if the elements contained in the subject are limited and the data of the absorption coefficient acquired by X-rays of different energy is larger than the number of elements contained in the subject, it is included in the subject. It is possible to quantitatively detect the amount of the element.
  • FIG. 1 shows an outline of an X-ray imaging procedure executed in the X-ray imaging apparatus.
  • Step S1 The X-ray imaging apparatus acquires the average intensity I 0 (En, X, Y) in the background area of the subject for each X-ray having different average energies.
  • Step S2 The X-ray imaging apparatus irradiates the same region of the subject with the X-rays having different average energies, and obtains the intensity I (En, X, Y) of each pixel in the transmission image for each X-ray having different average energies.
  • Steps S1 and S2 may be executed in time sequence every time X-rays having different average energies are set, or after step S1 is executed for all X-rays having different average energies, the average energies differ.
  • Step S2 may be executed for all X-rays.
  • Step S3 The X-ray imaging apparatus divides each intensity I (En, X, Y) acquired in step S2 by the average intensity I 0 (En, X, Y) acquired using X-rays having the same average energy. Further, by calculating-(minus) (-ln (x)) of the natural logarithm, the measured absorption coefficient ⁇ of the subject with respect to the X-ray having each average energy is obtained.
  • This process may be executed after all the processes of steps S1 and S2 are completed, or in parallel with the processes of steps S1 and S2, the average intensity of step S1 and the process of step S2 for one average energy. The processing may be started when both of the intensities are acquired.
  • Step S4 The X-ray imaging apparatus sets the average energy of one of the three or more types of X-rays as the reference energy E 0 , and has the other average energy according to the measured absorption coefficient ⁇ determined for the reference energy E 0.
  • the relative measured absorption coefficient ⁇ ′ is calculated by dividing the individually determined measured absorption coefficient ⁇ for the line. This process is executed for the purpose of removing the unknown variable a (the reciprocal of the object thickness t) from the relational expression described above. By executing step S4, the only unknown variable remaining in the relational expression is the element content ⁇ i expected to be included in the subject.
  • the X-ray imaging apparatus calculates, for each average energy, a theoretical synthetic absorption coefficient ⁇ Ic that is theoretically synthesized from each theoretical absorption coefficient ⁇ Ii and each content rate ⁇ i of an element expected to be included in the subject. .
  • the X-ray imaging apparatus compares the theoretical synthetic absorption coefficient ⁇ Ic calculated for each average energy and the relative measured absorption coefficient ⁇ ′, and each of the objects included in the subject so that the sum of squares of the difference is minimized.
  • the element content ⁇ i is obtained by repeated calculation.
  • step S6 can be reduced to a non-linear optimization problem.
  • Specific calculation methods include various methods such as a direct search method, a gradient method, and a Gauss-Newton method that have been developed as an optimization method. Can be used.
  • the point p (that is, the content ratio ⁇ i of each element) at which the error E is minimized can be obtained.
  • Figure 2 shows the measurement of X-rays with energy of 8, 10, 15, 20, 30, 40, and 50 keV for metal foils composed of aluminum, iron, copper, molybdenum, and tin. It is the result of calculating (simulating) the content ⁇ i of each metal by calculating the absorption coefficient (transmittance) ⁇ and repeating the calculation based on the optimization method.
  • calculation is performed including titanium, cobalt, and nickel having relatively close atomic numbers in addition to the above metals.
  • the above simplex method is used, and the content ratio ⁇ i of each element is set to the same ratio as an initial value. From this result, it can be seen that the assumed content rate ⁇ i is almost calculated.
  • the converged solution may be a minimum value and may not be the correct minimum value.
  • FIG. 3 is a result of calculating a change (difference) that occurs when the X-ray energy is changed from 10 keV to 20 keV with respect to the linear absorption coefficient ⁇ i of each element.
  • FIG. 3 shows that the amount of change in the linear absorption coefficient ⁇ i has a unique value for each element. That is, the contained element can be estimated to some extent from the change to energy.
  • the inventor obtains a change from data acquired (measured) with each energy of X-ray, compares the obtained change with a change obtained by theoretical calculation, and further tends to be similar. Based on the assumption that the subject contains the largest number of elements indicating the above, a method is proposed that employs an initial value with a higher content of elements that show similar tendencies and elements in the vicinity thereof. In the calculation process employing this method, compared to a method not employing this method, the initial value generally approaches a correct solution, and the content rate ⁇ i can be obtained more accurately.
  • each element has an energy called an absorption edge, and the linear absorption coefficient ⁇ i changes abruptly.
  • the energy interval to be measured is narrow, projection images are obtained before and after such an absorption edge, so that the linear absorption coefficient ⁇ i changes abruptly for a specific element. Therefore, the projection images acquired for each energy are arranged in order of energy, and it is determined whether or not the transmittance with respect to the energy changes abruptly in each pixel, and the element contained in the subject based on the energy in which the abrupt change is recognized
  • the projection image (two-dimensional image) is described.
  • the subject is rotated relative to the X-ray source, and the cross-sectional image is obtained nondestructively from the acquired projection images at the respective rotation angles.
  • X-ray CT it is possible to three-dimensionally acquire information on the elements of a subject by performing similar processing on images (cross-sectional images) obtained with different X-ray energies.
  • the theoretical synthetic absorption coefficient ⁇ Ic that minimizes the residual from the relative measured absorption coefficient ⁇ ′ acquired by irradiating the same region of the subject with three or more types of X-rays having different average energies.
  • Example Below, the Example of the X-ray imaging method and apparatus based on the above-mentioned view is described in order.
  • FIG. 5 illustrates a schematic configuration of the X-ray imaging apparatus according to the first embodiment.
  • the X-ray imaging apparatus shown in FIG. 5 includes an X-ray source 1, a subject 2, a subject holder 3, a subject positioning mechanism 4, an X-ray image detector 5, a control unit 6, an estimated content rate calculation unit 7, and a display device 8. is doing.
  • the X-ray beam emitted from the X-ray source 1 is held by the subject holder 3 and irradiated to the subject 2 positioned by the subject positioning mechanism 4.
  • the X-ray beam transmitted through the subject 2 is detected by the X-ray image detector 5.
  • the detection result of the X-ray image detector 5 is given to the control unit 6.
  • the control unit 6 executes setting of irradiation conditions (energy change, etc.) of the X-ray source 1 and imaging processing of a projected image (background image and transmission image) under each energy according to a measurement procedure described later.
  • the estimated content rate calculation unit 7 receives images captured by three or more types of X-rays having different average energies and executes the above-described repetitive calculation to obtain the content rate of the elements contained in the subject.
  • the processing operations of the control unit 6 and the estimated content rate calculation unit 7 are realized, for example, through execution of a program by a computer (computer).
  • the program is stored in a storage device (not shown).
  • part or all of the processing operations executed by the control unit 6 and the estimated content rate calculation unit 7 may be realized as an ASIC or a dedicated calculation module.
  • the display device 8 displays an image (element map) representing the calculated spatial distribution of each element on the display screen based on the calculation result of the estimated content calculation unit 7.
  • the display device 8 is connected to the estimated content rate calculation unit 7, but the printing device as the output device is replaced with the display device 8 or together with the display device 8 in the estimated content rate calculation unit 7. It may be connected.
  • the printing apparatus prints the element map described above. Further, instead of the display device 8 or together with the display device 8, a communication device may be connected so that transmission to an external device is possible.
  • Step S11 The control unit 6 transmits a drive signal to a drive unit (x-axis direction drive device, y-axis direction drive device, z-axis direction drive device) (not shown) of the subject positioning mechanism 4, and the subject 2 is an X-ray beam.
  • a coordinate for example, X1 located at the center is set. If necessary, a coordinate Y1 on the y axis and a coordinate Z1 on the z axis are also set.
  • Step S12 The controller 6 moves the subject 2 to a position X0 where the subject 2 is completely retracted from the X-ray beam.
  • the completely retracted position means a position where the X-ray beam does not pass through the subject 2.
  • Step S13 The control unit 6 sets the irradiation condition of the X-ray source 1.
  • the control unit 6 selects one of n setting conditions (n is 3 or more) set in advance.
  • the irradiation condition corresponds to any of the energy E1 to En.
  • the setting order here may be determined in advance or one of the setting conditions that are not used may be selected each time.
  • Step S14 The control unit 6 controls the X-ray source 1 to irradiate the X-ray beam, and the intensity I o is detected by the X-ray image detector 5.
  • the X-ray beam in this step does not pass through the subject 2. Therefore, the X-ray image detector 5 acquires a background image of the subject 2 (a projection image that is the background of the subject 2).
  • Step S15 The control unit 6 transmits a drive signal to a drive unit (an x-axis direction drive device, a y-axis direction drive device, and a z-axis direction drive device) (not shown) of the subject positioning mechanism 4 and changes the coordinates from X0 to coordinates X1. change. Thereby, the subject 2 is positioned at the center of the X-ray beam.
  • a drive unit an x-axis direction drive device, a y-axis direction drive device, and a z-axis direction drive device
  • Step S16 The control unit 6 controls the X-ray source 1 to irradiate the X-ray beam, and detects the intensity I by the X-ray image detector 5.
  • the X-ray beam in this step passes through the subject 2. Therefore, the X-ray image detector 5 acquires a transmission image of the subject 2.
  • Step S17 The controller 6 determines whether or not the measurement (imaging) of the background image and the transmission image has been completed for all irradiation conditions set in advance. When the irradiation conditions that are not used for measurement (imaging) remain, the control unit 6 returns to step S12. This operation is repeated for all irradiation conditions.
  • a background image and a transmission image are acquired for one energy at a time, but after acquiring a background image for all the energy as in steps S ⁇ b> 1 and S ⁇ b> 2 of FIG. 1 described above, You may acquire a transmission image about all the energy anew.
  • step S13 the tube voltage may be changed to a preset voltage, and each projection image (background image and transmission image) may be captured.
  • X-rays used for capturing the projected image X-rays generated by radiated light or inverse Compton scattering can be used.
  • the energy of these X-rays cannot be easily changed by changing the conditions of the source. Therefore, it is necessary to newly provide a mechanism capable of changing the energy distribution of the generated X-rays between the X-ray source and the subject.
  • a crystal spectrometer that can extract only X-rays having specific energy using X-ray diffraction is installed.
  • FIG. 7 shows an example of a double crystal spectrometer.
  • the two-crystal spectrometer here is composed of a rotary stage 71 and two single crystal plates 72 and 73 disposed on the upper surface thereof, and the two single crystal plates 72 and 73 are parallel to each other so as to sandwich the rotation axis. Is arranged.
  • the rotation stage 71 is rotated by a predetermined angle around the rotation axis, and the incident angle of the white X-rays with respect to the single crystal plate 72 is changed.
  • a monochromatic X-ray having a corresponding energy can be output toward the subject.
  • FIG. 8 shows an example of a rotating revolver type energy changing mechanism (also referred to as a metal foil rotating mechanism) in which a plurality of metal plates having different thicknesses and types are arranged along the circumferential direction of the disc.
  • the type and thickness of the metal film 82 through which X-rays pass are changed in a very short time by rotating the disk 81 (that is, the X-ray energy is changed). Can do.
  • the method for obtaining the content rate of the element contained in the subject from the plurality of projection images acquired with the X-rays of different energy described above is divided into the following cases (1) and (2). It is good to handle. (1) When the number of contained elements is less than the number of projected images (2) When there are more projections (including unknown cases)
  • the direct search method searches for a direction in which the square sum of the difference between the theoretical synthetic absorption coefficient ⁇ Ic calculated from the expected content and the relative measured absorption coefficient ⁇ ′ obtained by measurement becomes smaller.
  • This method is intuitive and has the advantage of being able to monitor the iteration process, but has the feature of slow convergence.
  • the differential coefficient of the function related to the content rate is calculated in each process of the iterative calculation, and a condition (content rate) that minimizes the sum of squares of the difference in the direction in which the deviation becomes smaller is searched. Is the method.
  • the convergence speed of these methods is faster than the convergence speed of the direct search method, it is less affected by the initial value and often converges to a minimum point.
  • the X-ray imaging apparatus performs the above-described calculation processing for each pixel (pixel) of a plurality of projection images acquired for X-rays having different energies, and obtains the content rate for each element for each pixel. Thereafter, a spatial distribution image of the selected element is displayed on the display device 8 in accordance with an operator instruction. In addition, if it is possible to display a composite image of the projected image and element content ratio image at the selected energy, the operator can better understand what structure of the element is distributed. It can be easy.
  • Example 2 When the number of elements contained in the subject is larger than the number of projection images or when the number of elements is completely unknown, the X-ray imaging apparatus described in the first embodiment results in a nonlinear optimization problem, and the optimum value (Content) is obtained by repeated calculation.
  • the direct search method may converge to a local minimum value (minimum value) and may not be able to accurately determine the content. . Therefore, in this example, a method for improving the reliability of the obtained solution by setting the content rate predicted from the measured absorption coefficient as the initial content rate will be described.
  • the linear absorption coefficient ⁇ i of each element has a unique value for each energy of the X-ray, and the amount of change in the linear absorption coefficient ⁇ i between two specific energies is also determined. It will have a unique value. Therefore, the X-ray imaging apparatus according to the present embodiment sets the initial value of the content rate by the method shown in FIG. First, the estimated content rate calculation unit 7 calculates the amount of change in the linear absorption coefficient between the two energies for each pixel of the transmission image acquired for each energy (step S21). Next, the estimated content calculation unit 7 theoretically calculates the amount of change in the linear absorption coefficient between the same two energies (step S22).
  • the estimated content rate calculation unit 7 compares the amount of change of the linear absorption coefficient calculated in step 21 with the theoretical amount of change calculated in step S22, and predicts the element contained in the subject (step S23). Furthermore, the estimated content rate calculation unit 7 sets initial values so that the content rates of the element predicted in step S23 and the elements in the vicinity thereof are increased (step S24).
  • the initial value obtained by the above processing is generally close to the correct solution as compared with the first embodiment. Therefore, the estimated content rate calculation unit 7 using the initial value can determine the elements included in the subject and their contents more accurately than in the first embodiment.
  • Example 3 In the case of Example 2 described above, the initial value of the content rate was determined based on a comparison between the change amount of the linear absorption coefficient ⁇ i measured between two energies and the theoretical change amount calculated theoretically. However, the initial value can be determined by other methods. This is a technique that uses a change at the absorption edge when an X-ray having a small energy step width and high monochromaticity such as radiated light is used as an X-ray source.
  • FIG. 10 shows the transmittance calculated for the metal foil assumed in FIG. 2 with a step width of 1 keV when the energy is between 7 and 35 keV.
  • the transmittance changes abruptly in the vicinity of 9, 20, and 29 keV.
  • the estimated content calculation unit 7 in this example calculates the initial content values of these elements. Set higher than other elements.
  • FIG. 11 shows processing (steps S31 to S33) executed in the estimated content rate calculation unit 7.
  • step S33 how much the element content determined in step S32 is set may be determined from information on the change in transmittance. For example, in the case of FIG. 10, since the magnitude of the change of Mo and Sn is about 1/4 with respect to the magnitude of the change of Cu, it is sufficient to set the ratio of 4: 1: 1 and other elements to about 0.5.
  • the estimated content rate calculation unit 7 calculates the element contained in the subject and its content. As compared with the first embodiment, it can be obtained more accurately.
  • Example 4 In the X-ray imaging apparatus according to the above-described embodiment, only a projection image of a subject can be acquired, and when different elements are multiplexed in the X-ray transmission direction, an accurate content rate of the element can be obtained. was difficult.
  • information related to elements is acquired from a plurality of cross-sectional images acquired at different energies in combination with an X-ray CT (Computed Tomography) method.
  • step S6 a predetermined process is performed on “measured absorption coefficient ⁇ ′” instead of “relative measured absorption coefficient ⁇ ′”.
  • FIG. 12 shows a configuration example of the X-ray imaging apparatus according to the present embodiment.
  • the X-ray imaging apparatus shown in FIG. 12 has a new sample rotation mechanism 9 that can rotate the sample with respect to the X-ray source, and the subject positioning mechanism 4
  • a control unit 160 that also controls the rotation of the sample rotation mechanism 9 and an estimated content rate calculation unit 170 that can calculate the content rate for each pixel of the cross-sectional image are used.
  • the sample rotation mechanism 9 may be of any drive system as long as it is a mechanism that is rotationally driven in one or both directions by a drive mechanism (for example, a motor) (not shown).
  • the subject positioning mechanism 4 is placed on the upper surface of the sample rotating mechanism 9.
  • the X-ray imaging procedure in the present embodiment is the same as that shown in FIG. 1 except that the X-ray image acquired for each energy is a cross-sectional image, and the element estimation process for each pixel is also executed for each pixel of the cross-sectional image. It is the same. Therefore, hereinafter, a measurement procedure for obtaining a cross-sectional image will be described with reference to FIG. The measurement procedure is executed through the control unit 160.
  • the control unit 160 performs measurement operations in the following order.
  • Step S41 The control unit 160 uses the subject positioning mechanism 4 to set coordinates (for example, X1) at which the subject 2 is positioned at the center of the X-ray beam. If necessary, a coordinate Y1 on the y axis and a coordinate Z1 on the z axis are also set.
  • coordinates for example, X1
  • a coordinate Y1 on the y axis and a coordinate Z1 on the z axis are also set.
  • Step S42 The controller 160 moves the subject 2 to the position X0 where the subject 2 is completely retracted from the X-ray beam.
  • Step S43 The controller 160 sets the irradiation conditions for the X-ray source 1. As in the case of the first embodiment, for example, one of n preset conditions (n is 3 or more) is selected.
  • the irradiation condition corresponds to any of the energy E1 to En.
  • the setting order here may be determined in advance or one of the setting conditions that are not used may be selected each time.
  • Step S44 The control unit 160 controls the X-ray source 1 to irradiate the X-ray beam, and detects the intensity I o with the X-ray image detector 5.
  • the X-ray beam in this step does not pass through the subject 2. Therefore, the X-ray image detector 5 acquires a background image of the subject 2 (a projection image that is the background of the subject 2).
  • Step S45 The control unit 160 transmits a drive signal to a drive unit (x-axis direction drive device, y-axis direction drive device, z-axis direction drive device) (not shown) of the subject positioning mechanism 4 and changes the coordinates from X0 to coordinates X1. change. Thereby, the subject 2 is positioned at the center of the X-ray beam.
  • a drive unit x-axis direction drive device, y-axis direction drive device, z-axis direction drive device
  • Step S46 The control unit 160 controls the X-ray source 1 to irradiate the X-ray beam, and the intensity I is detected by the X-ray image detector 5.
  • the X-ray beam in this step passes through the subject 2. Therefore, the X-ray image detector 5 acquires a transmission image of the subject 2 at the current rotation position of the sample rotation mechanism 9.
  • Steps S47 and S48 The control unit 160 rotates the sample rotation mechanism 9 to rotate the subject 2 with respect to the X-ray source 1 by a preset angle. Thereafter, the control unit 160 determines whether or not the position after rotation reaches a preset rotation angle, and returns to step S46 while a negative result is obtained. That is, until reaching a preset rotation angle, the X-ray image detector 5 acquires a transmission image obtained by X-ray beams incident from different angles on the same coordinates of the subject 2.
  • Step S49 The control unit 160 that has obtained a positive result in step S48 moves the subject 2 to the position X0 completely retracted from the X-ray beam.
  • Step S50 The control unit 160 acquires a background image again for the retracted position.
  • an X-ray background image having the same energy is acquired because there is a change in the energy of the X-ray output from the X-ray source 1 between the start of rotation of the subject 2 and the end of rotation. It is for confirming. If a change is detected, the intensity of the transmission image acquired for each rotation angle is corrected based on the intensity of the X-ray background image acquired in steps S44 and S50. For example, the intensity is corrected by linear interpolation.
  • Step S51 The controller 160 determines whether or not the measurement (imaging) of the background image and the transmission image has been completed for all irradiation conditions set in advance. If irradiation conditions that are not used for measurement (imaging) remain, the control unit 160 returns to step S43. This operation is repeated for all irradiation conditions. Through the above processing, transmission images with different angles and different energy are acquired for each coordinate of the subject 2.
  • the estimated inclusion The rate calculation unit 170 calculates a cross-sectional image of the subject 2 for each energy by a normal reconstruction process (filtered back projection method or the like). Thereafter, the estimated content rate calculation unit 170 performs the same process as described above for each pixel of each cross-sectional image, and calculates the content rate of each element included in each pixel. In the case of the present embodiment, since the term relating to the thickness of the subject is not included, if the number of elements is n, the content rate can be uniquely determined if there are n cross-sectional images.
  • an image representing the three-dimensional distribution of the content of each element contained in the subject is accurately obtained by repeated calculation from a plurality of cross-sectional images acquired with X-rays having different energies. Can be sought.
  • the present invention is not limited to the configuration of the embodiment described above, and includes various modifications.
  • some of the embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention does not necessarily have all the configurations described.
  • a part of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be partly or entirely realized as, for example, an integrated circuit or other hardware.
  • Each of the above-described configurations, functions, and the like may be realized by a processor interpreting and executing a program that realizes each function. That is, each configuration may be realized by software.
  • information such as programs, tables, and files for realizing each function can be stored in a storage device such as a memory, a hard disk, an SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, or a DVD.
  • control lines and information lines indicate what is considered necessary for explanation, and do not represent all control lines and information lines necessary for the product. In practice, it can be considered that almost all components are connected to each other.
  • Reference Signs List 1 X-ray source 2 Subject 3 Subject holder 4 Subject positioning mechanism 5 X-ray image detector 6 Control unit 7 Estimated content rate calculation unit 8 Display device 9 Subject rotation mechanism 71 Rotation stage 72 Single crystal plate 73 Single crystal plate 81 Disc 82 Metal film 160 Control unit 170 Estimated content rate calculation unit

Abstract

For each of at least three types of X-ray radiation with different average energies, the average intensity I0 (En, X, Y) of a background region of an object and the intensity I (En, X, Y) of each pixel in a transmission image of X-rays transmitted through the same region of the object are obtained. For each average energy, the measured absorption coefficient μ of the object is determined by dividing each intensity I (En, X, Y) by the average intensity I0 (En, X, Y) at the same average energy, and calculating the minus natural logarithm (-ln(x)). One of the at least three types of X-ray radiation is set as a standard energy E0, and a relative measured absorption coefficient μ' is calculated by dividing, by the measured absorption coefficient μ corresponding to the standard energy E0, a measured absorption coefficient μ corresponding to another average energy. Then, the theoretical composite absorption coefficient μIc of each expected element is calculated for each average energy on the basis of the theoretical absorption coefficient μI and content σi of the element. The content σi with which the sum of squares of the differences from the relative measured absorption coefficients μ' calculated for each average energy is smallest is calculated by repeated computation.

Description

X線撮像方法及び装置X-ray imaging method and apparatus
 本発明は、X線を用いた被写体の撮像方法及び装置に関する。 The present invention relates to a method and apparatus for imaging an object using X-rays.
 X線撮像法は、X線の高い透過能の利用により、被写体内部の構造を非破壊で観察する方法であり、製品の検査から空港におけるセキュリティーチェックに至る様々な分野において幅広く利用されている。また、X線源に対して被写体を相対的に回転することにより取得した複数の異なる角度からの透過像を使用し、被写体の断面像を計算するX線CT(Computed Tomography)がある。X線CTは、非破壊で被写体の内部構造を三次元的に観察できるため、医療診断には不可欠な技術になっている。 The X-ray imaging method is a method for observing the structure inside the subject in a non-destructive manner by utilizing the high X-ray transmittance, and is widely used in various fields ranging from product inspections to airport security checks. Further, there is X-ray CT (Computed Tomography) that uses transmission images from a plurality of different angles acquired by rotating a subject relative to an X-ray source to calculate a cross-sectional image of the subject. X-ray CT is an indispensable technique for medical diagnosis because it allows non-destructive observation of the internal structure of a subject in three dimensions.
 X線撮像法は、密度が大きい領域ほどX線の吸収もほぼ大きくなるという原理を使用して、X線が被写体を透過した際に生じる信号強度の変化を検出し、X線透過領域の画像を形成している。すなわち、X線撮像法では、被写体内の空間的な密度分布を測定できるため、密度変化の大きな領域(境界領域(形状)や組成の異なる内部構造など)を高精細に可視化することができる。 The X-ray imaging method detects the change in signal intensity that occurs when X-rays pass through the subject using the principle that the density of the X-ray absorption increases as the density of the image increases. Is forming. That is, in the X-ray imaging method, since the spatial density distribution in the subject can be measured, an area having a large density change (such as a boundary area (shape) or an internal structure having a different composition) can be visualized with high definition.
特開2010-509180号公報JP 2010-509180 A
発明が解決しようする課題Problems to be solved by the invention
 ただし、従来のX線撮像法は、被写体内の空間的な密度分布だけを検出するものであり、被写体がどのような元素で構成されているか等の情報(すなわち、構成元素(組成)に関する情報)を得ることは想定されていない。このため、被写体に含有されている元素を同定するためには、蛍光X線や吸収端を利用した別の手法と組み合わせる必要があるが、蛍光検出器には空間分解能がないため(強度検出のみ)、X線を細く絞って蛍光X線が発生している領域を限定する必要があり、大きな試料を一度に測定できない。また、吸収端を利用する方法では、検出できる元素は1種類に限定され、複数の元素から構成される複合材料や化合物に含まれる全ての元素を検出することはできない。 However, the conventional X-ray imaging method detects only the spatial density distribution in the subject, and information such as what elements the subject is composed of (ie, information on constituent elements (composition)). ) Is not expected to obtain. For this reason, in order to identify the elements contained in the subject, it is necessary to combine with other methods using fluorescent X-rays or absorption edges, but the fluorescence detector has no spatial resolution (only intensity detection) ), It is necessary to limit the region where fluorescent X-rays are generated by narrowing down X-rays, and a large sample cannot be measured at one time. In addition, in the method using the absorption edge, the number of elements that can be detected is limited to one, and it is not possible to detect all the elements contained in a composite material or compound composed of a plurality of elements.
 この他、近年では、X線源であるX線管に印加する電圧を変化する等により発生させた異なる2つのエネルギーのX線を用いて取得した透過像に基づいて、ある特定の元素を強調するデュアルエネルギーX線撮像法が開発されている(特許文献1参照)。ところが、この撮像法によっても、例えば造影剤に含まれるヨウ素や骨などを強調した画像を取得することができるだけであり、被写体の構成元素(組成)に関する情報を取得することはできないという課題があることを発明者は発見した。 In addition, in recent years, certain elements have been emphasized based on transmission images acquired using X-rays of two different energies generated by changing the voltage applied to the X-ray tube as an X-ray source. A dual energy X-ray imaging method has been developed (see Patent Document 1). However, even with this imaging method, there is a problem that, for example, it is only possible to acquire an image in which iodine or bones contained in a contrast medium are emphasized, and it is not possible to acquire information on a constituent element (composition) of a subject. The inventor discovered that.
 上記課題を解決するため、本願は、例えば請求の範囲に記載の技術構成を採用する。また、本明細書は上記課題を解決する手段を複数含んでいるが、その一例として、以下に示す処理手順を計算機等の演算装置に実行させる手法を採用する。
(1) 平均エネルギーの異なる3種類以上のX線毎に、被写体の背景領域における平均強度I0(En、X、Y)を取得する第1の処理
(2) 平均エネルギーの異なる前記X線を被写体の同一領域に照射し、前記X線毎の透過像における各画素の強度I(En、X、Y)を取得する第2の処理
(3) 第2の処理で取得された各強度I(En、X、Y)を、同じ平均エネルギーのX線について取得された平均強度I0(En、X、Y)で除算し、さらに自然対数の-(マイナス)(-ln(x))を計算することで、各平均エネルギーを有するX線に対する被写体の測定吸収係数μを求める第3の処理
(4) 3種類以上のX線のうちの1つの平均エネルギーを基準エネルギーE0に設定し、当該基準エネルギーE0について求められた測定吸収係数μによって、他の平均エネルギーを有するX線について個別に求められた測定吸収係数μを除算して相対的な測定吸収係数μ’を計算する第4の処理
(5) 被写体に含まれると予想される元素の各理論吸収係数μIと各含有率σiとから理論的に合成される理論合成吸収係数μIcを、各平均エネルギーについて計算する第5の処理
(6) 平均エネルギー毎に計算された理論合成吸収係数μIcと相対的な測定吸収係数μ’とを比較し、その差分の二乗和が最も小さくなるように、被写体に含まれる各元素の含有率σを繰り返し計算により求める第6の処理
In order to solve the above-described problems, the present application adopts, for example, the technical configuration described in the claims. In addition, although the present specification includes a plurality of means for solving the above-described problems, as an example thereof, a technique is adopted in which a processing procedure shown below is executed by an arithmetic device such as a computer.
(1) First processing for obtaining the average intensity I 0 (En, X, Y) in the background area of the subject for each of three or more types of X-rays having different average energies
(2) Second processing for irradiating the same region of the subject with the X-rays having different average energies and obtaining the intensity I (En, X, Y) of each pixel in the transmission image for each X-ray
(3) Each intensity I (En, X, Y) acquired in the second process is divided by the average intensity I 0 (En, X, Y) acquired for X-rays of the same average energy, and further natural A third process for calculating the measured absorption coefficient μ of the subject for X-rays having respective average energies by calculating the logarithm-(minus) (-ln (x))
(4) 3 sets one of the mean energy of the kinds of X-rays to the reference energy E 0, by measuring the absorption coefficient obtained μ for the reference energy E 0, separately for X-rays having other average energy The fourth process of calculating the relative measured absorption coefficient μ ′ by dividing the measured absorption coefficient μ obtained by
(5) A fifth method of calculating a theoretical composite absorption coefficient μ Ic theoretically synthesized from each theoretical absorption coefficient μ I and each content rate σ i of an element expected to be included in the subject for each average energy processing
(6) Comparing the theoretically synthesized absorption coefficient μ Ic calculated for each average energy and the relative measured absorption coefficient μ ′, and including each element contained in the subject so that the sum of squares of the difference is minimized. A sixth process for determining the rate σ by repeated calculation
 また、本明細書が含む上記課題を解決する手段の他の一例を挙げるならば、平均エネルギーが異なる3種類以上のX線のそれぞれを被写体の同一領域に対して複数の角度から照射し、被写体の同一領域を透過した同じ平均エネルギーを有するX線について取得される透過像より計算される断面像の各画素の強度I(En、X、Y)について(前述の処理(2)に対応する)、前述の処理(1)、(3)、(5)及び(6)を計算機に実行させる手法である。ただし、処理(6)では、「相対的な測定吸収係数μ’」に代えて「測定吸収係数μ’」を使用する。 Further, as another example of the means for solving the above-mentioned problem included in the present specification, each of three or more types of X-rays having different average energies is irradiated from a plurality of angles to the same region of the subject. Intensity I (En, X, Y) of each pixel of the cross-sectional image calculated from the transmission image acquired for the X-ray having the same average energy transmitted through the same region (corresponding to the processing (2) described above) This is a technique for causing a computer to execute the above-described processes (1), (3), (5) and (6). However, in the process (6), “measured absorption coefficient μ ′” is used instead of “relative measured absorption coefficient μ ′”.
 本発明によれば、被写体に含まれる元素が未知の場合や被写体に含まれる元素の数が投影像の数より多い場合にも、被写体の構成元素に関する情報を精度よく検出することができる。前述した以外の課題、構成及び効果は、以下の実施の形態の説明により明らかにされる。 According to the present invention, it is possible to accurately detect information about constituent elements of a subject even when the element contained in the subject is unknown or the number of elements contained in the subject is larger than the number of projection images. Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.
提案するX線撮像手順の一例を説明するフローチャート。The flowchart explaining an example of the X-ray imaging procedure to propose. 提案方法を利用して被写体(金属箔)に含まれる元素を計算した例を示す図。The figure which shows the example which calculated the element contained in a to-be-photographed object (metal foil) using the proposal method. X線のエネルギーを10keVから20keVに変化させた場合に各元素の線吸収係数に生じる変化(差)を説明する図。The figure explaining the change (difference) which arises in the linear absorption coefficient of each element when the energy of X-ray is changed from 10 keV to 20 keV. 各元素の吸収端(K端)とエネルギーの関係を説明する図。The figure explaining the relationship between the absorption edge (K edge) and energy of each element. 実施例1に係るX線撮像装置の概略構成を示す図。1 is a diagram illustrating a schematic configuration of an X-ray imaging apparatus according to Embodiment 1. FIG. 実施例1における測定処理を説明するフローチャート。3 is a flowchart for explaining measurement processing in the first embodiment. 特定のエネルギーを有するX線の取り出しに使用する結晶分光器の構成例を示す図。The figure which shows the structural example of the crystal spectrometer used for taking out the X-ray which has specific energy. 特定のエネルギーを有するX線の取り出しに使用する回転リボルバー式のエネルギー変更機構の構成例を示す図。The figure which shows the structural example of the rotation revolver type energy change mechanism used for taking out the X-ray which has specific energy. 実施例2における初期値の設定手法を説明するフローチャート。9 is a flowchart for explaining an initial value setting method according to the second embodiment. 実施例3の手法による被写体の透過率の測定例を示す図。FIG. 10 is a diagram illustrating an example of measurement of the transmittance of a subject by the method of the third embodiment. 実施例3における初期値の設定手法を説明するフローチャート。10 is a flowchart for explaining an initial value setting method according to the third embodiment. 実施例4に係るX線撮像装置の概略構成を示す図。FIG. 6 is a diagram illustrating a schematic configuration of an X-ray imaging apparatus according to Embodiment 4. 実施例4における測定処理を説明するフローチャート。10 is a flowchart for explaining measurement processing in the fourth embodiment.
 以下、図面に基づいて、本発明の実施の形態を説明する。なお、本発明の実施の態様は、後述する形態例に限定されるものではなく、その技術思想の範囲において、種々の変形が可能である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment of the present invention is not limited to the embodiments described later, and various modifications are possible within the scope of the technical idea.
(基本的な考え方)
 最初に、被写体を透過したX線を撮像した像(透過像)を用いて、被写体の構成元素に関する情報を精度よく検出するための手法について説明する。本明細書で提案する手法は、エネルギーの異なる3種類以上のX線を用いて被写体を観察し、各X線について撮像された透過像(測定情報)に対する繰り返し計算により、被写体に含まれる全ての元素に関する情報を取得することを特徴とする。以下、具体的に説明する。
(basic way of thinking)
First, a method for accurately detecting information about constituent elements of a subject using an image (transmission image) obtained by imaging an X-ray that has passed through the subject will be described. The technique proposed in this specification observes a subject using three or more types of X-rays having different energies, and repeats calculation for a transmission image (measurement information) captured for each X-ray, whereby all the subjects included in the subject are observed. It is characterized by acquiring information on elements. This will be specifically described below.
 入射X線の強度をIo、透過X線の強度をI、被写体の線吸収係数をμ、厚さをtとすると、これらの変数の間には、一般に、次式の関係が成り立つ。
 μt=-Ln(I/Io)   …(1)式
When the intensity of incident X-rays is I o , the intensity of transmitted X-rays is I, the linear absorption coefficient of the subject is μ, and the thickness is t, generally, the following relationship is established between these variables.
μt = -Ln (I / Io ) (1)
 被写体が複数の元素で構成されており、各元素の線吸収係数をμi、含有率(百分率)をσiとすると、(1)式は、次式で与えられる。
 Σiσiμit=-Ln(I/Io)   …(2)式
If the subject is composed of a plurality of elements, and the linear absorption coefficient of each element is μ i and the content rate (percentage) is σ i , the expression (1) is given by the following expression.
Σ i σ i μ i t = −Ln (I / I o ) (2)
 式(2)において、X線のエネルギーが既知であれば、各元素の線吸収係数μiも既知である。しかし、厚さtに加え、複数の未知数(すなわち含有率σi)に対して式が一つであるために、(2)式から各元素の含有率σiを一意に求めることはできない。被写体にn個の元素が含まれている場合、各元素の含有率σiを一意に求めるためには、理論上、厚さtを含めたn+1個の異なる(2)式が必要となる。このため、X線のエネルギーを変化させ、エネルギーが異なる複数のX線について同様の測定を実行し、各透過像からn+1個の(2)式、すなわちI(E)/Io(E)を取得する。 In equation (2), if the X-ray energy is known, the linear absorption coefficient μ i of each element is also known. However, in addition to the thickness t, since the formula is one for a plurality of unknowns (i.e. content sigma i), (2) can not be uniquely determined the content of sigma i of each element from the equation. When the subject includes n elements, theoretically, n + 1 different formulas (2) including the thickness t are required to uniquely determine the content σ i of each element. Therefore, the X-ray energy is changed, the same measurement is performed for a plurality of X-rays having different energies, and n + 1 equations (2), that is, I (E) / I o (E) are obtained from each transmission image. get.
 ここで、X線のエネルギーをE1、E2、E3、…、Enとすると、含有率σiと厚さtはエネルギーに対して不変であるため、各測定値の(2)式への代入により、以下のn個の関係式で与えらえる(3)式が得られる。
 Σσi×μi(E1)×t=-Ln(I(E1)/Io(E1)) 
 Σσi×μi(E2)×t=-Ln(I(E2)/Io(E2)) 
 Σσi×μi(E3)×t=-Ln(I(E3)/Io(E3)) 
 …
 Σσi×μi(En)×t=-Ln(I(En)/Io(En))    …(3)式
Here, if the energy of the X-ray is E1, E2, E3,..., En, the content rate σ i and the thickness t are invariant with respect to the energy. (3) given by the following n relational expressions is obtained.
Σσ i × μ i (E1) × t = −Ln (I (E1) / Io (E1))
Σσ i × μ i (E2) × t = −Ln (I (E2) / Io (E2))
Σσ i × μ i (E3) × t = −Ln (I (E3) / Io (E3))
...
Σσ i × μ i (En) × t = −Ln (I (En) / Io (En)) (3)
 例えば被写体に含まれる3種類の元素の含有率σiが未知の場合、4種類の異なるエネルギーのX線で測定を行ったとき、厚さtの逆数を-aとすると(3)式は、以下によって表される。
 σ1×μ1(E1)+σ2×μ2(E1) +σ3×μ3(E1) = a Ln(I(E1)/Io(E1))
 σ1×μ1(E2)+σ2×μ2(E2) +σ3×μ3(E2) = a Ln(I(E2)/Io(E2))
 σ1×μ1(E3)+σ2×μ2(E3) +σ3×μ3(E3) = a Ln(I(E3)/Io(E3))
 σ1×μ1(E4)+σ2×μ2(E4) +σ3×μ3(E4) = a Ln(I(E4)/Io(E4)) 
 …(4)式
For example, when the content σ i of three types of elements contained in the subject is unknown, when measurement is performed with four types of X-rays having different energies, assuming that the reciprocal of the thickness t is −a, Equation (3) is It is represented by
σ 1 × μ 1 (E1) + σ 2 × μ 2 (E1) + σ 3 × μ 3 (E1) = a Ln (I (E1) / I o (E1))
σ 1 × μ 1 (E2) + σ 2 × μ 2 (E2) + σ 3 × μ 3 (E2) = a Ln (I (E2) / I o (E2))
σ 1 × μ 1 (E3) + σ 2 × μ 2 (E3) + σ 3 × μ 3 (E3) = a Ln (I (E3) / I o (E3))
σ 1 × μ 1 (E4) + σ 2 × μ 2 (E4) + σ 3 × μ 3 (E4) = a Ln (I (E4) / I o (E4))
... (4) formula
 この場合、3つの含有率σ1、σ2、σ3を求めることは、以下の行列で表記される連立一次方程式を解くことに対応する。
Figure JPOXMLDOC01-appb-I000001
In this case, obtaining the three content rates σ 1 , σ 2 , and σ 3 corresponds to solving simultaneous linear equations represented by the following matrix.
Figure JPOXMLDOC01-appb-I000001
 (5)式は、未知数3に対してプラス1個(4個)の既知情報があるため、ガウスの消去法などにより各元素の含有率を一意に求めることができる。以上の通り、被写体に含まれている元素が限定されており、かつ、異なるエネルギーのX線によって取得された吸収係数のデータが被写体に含まれる元素の数よりも多い場合には、被写体に含まれている元素の量を定量的に検出することができる。 (5) Since there is one (4) known information for the unknown 3 plus one, the content of each element can be uniquely determined by Gaussian elimination or the like. As described above, if the elements contained in the subject are limited and the data of the absorption coefficient acquired by X-rays of different energy is larger than the number of elements contained in the subject, it is included in the subject. It is possible to quantitatively detect the amount of the element.
 これに対し、被写体にどのような元素が含まれているか不明な場合は、エネルギースキャンの数に限りがあるため、基本的に、測定によって得られるデータの数よりも未知数の方が多くなる。このために、上記の方法によっては、理論上、含有率を一意に求めることができない。 On the other hand, if it is unknown what kind of element is contained in the subject, the number of energy scans is limited, so that the number of unknowns is basically larger than the number of data obtained by measurement. For this reason, theoretically, the content rate cannot be uniquely determined by the above method.
 そこで、発明者は、被写体に含まれていそうな元素(全くの不明であれば全ての元素)の各含有率σiを変数として各元素の理論合成吸収係数μIを計算し、当該理論合成吸収係数μIと測定値から計算される測定吸収係数μとの比較を繰り返すことにより、被写体にどのような元素がどの程度含まれているかを求める手法を提案する。図1に、X線撮像装置において実行されるX線撮像手順の概略を示す。 Therefore, the inventor calculates the theoretical synthetic absorption coefficient μ I of each element using the contents σ i of each element (all elements if completely unknown) that are likely to be contained in the subject as variables, and calculates the theoretical synthesis. We propose a method to determine what elements are contained in the subject by repeating the comparison between the absorption coefficient μ I and the measured absorption coefficient μ calculated from the measured values. FIG. 1 shows an outline of an X-ray imaging procedure executed in the X-ray imaging apparatus.
・ステップS1
 X線撮像装置は、平均エネルギーの異なるX線毎の被写体の背景領域における平均強度I0(En、X、Y)を取得する。
・ Step S1
The X-ray imaging apparatus acquires the average intensity I 0 (En, X, Y) in the background area of the subject for each X-ray having different average energies.
・ステップS2
 X線撮像装置は、平均エネルギーの異なる前記X線を被写体の同一領域に照射して、平均エネルギーの異なる前記X線毎の透過像における各画素の強度I(En、X、Y)を取得する。なお、ステップS1とS2は、平均エネルギーが異なるX線が設定される度に時間順次に実行されても良いし、平均エネルギーの異なる全てのX線についてステップS1を実行した後に、平均エネルギーの異なる全てのX線についてステップS2を実行しても良い。
・ Step S2
The X-ray imaging apparatus irradiates the same region of the subject with the X-rays having different average energies, and obtains the intensity I (En, X, Y) of each pixel in the transmission image for each X-ray having different average energies. . Steps S1 and S2 may be executed in time sequence every time X-rays having different average energies are set, or after step S1 is executed for all X-rays having different average energies, the average energies differ. Step S2 may be executed for all X-rays.
・ステップS3
 X線撮像装置は、ステップS2で取得された各強度I(En、X、Y)を、同じ平均エネルギーのX線を用いて取得された平均強度I0(En、X、Y)で除算し、さらに自然対数の-(マイナス)(-ln(x))を計算することで、各平均エネルギーを有するX線に対する被写体の測定吸収係数μを求める。なお、当該処理は、ステップS1とS2の処理が全て終了した後に実行しても良いし、ステップS1とステップS2の処理と並行して、1つの平均エネルギーについてステップS1の平均強度とステップS2の強度の両方が取得された時点で処理を開始しても良い。
・ Step S3
The X-ray imaging apparatus divides each intensity I (En, X, Y) acquired in step S2 by the average intensity I 0 (En, X, Y) acquired using X-rays having the same average energy. Further, by calculating-(minus) (-ln (x)) of the natural logarithm, the measured absorption coefficient μ of the subject with respect to the X-ray having each average energy is obtained. This process may be executed after all the processes of steps S1 and S2 are completed, or in parallel with the processes of steps S1 and S2, the average intensity of step S1 and the process of step S2 for one average energy. The processing may be started when both of the intensities are acquired.
・ステップS4
 X線撮像装置は、3種類以上のX線のうちの1つの平均エネルギーを基準エネルギーE0に設定し、当該基準エネルギーE0について求められた測定吸収係数μによって、他の平均エネルギーを有するX線について個別に求められた測定吸収係数μを除算して相対的な測定吸収係数μ’を計算する。当該処理は、前述の関係式から、未知の変数a(被写体の厚さtの逆数)を取り除く目的で実行される。ステップS4の実行により、関係式に残る未知の変数は、被写体に含まれると予想される元素の含有率σiのみとなる。
・ Step S4
The X-ray imaging apparatus sets the average energy of one of the three or more types of X-rays as the reference energy E 0 , and has the other average energy according to the measured absorption coefficient μ determined for the reference energy E 0. The relative measured absorption coefficient μ ′ is calculated by dividing the individually determined measured absorption coefficient μ for the line. This process is executed for the purpose of removing the unknown variable a (the reciprocal of the object thickness t) from the relational expression described above. By executing step S4, the only unknown variable remaining in the relational expression is the element content σ i expected to be included in the subject.
・ステップS5
 X線撮像装置は、被写体に含まれると予想される元素の各理論吸収係数μIiと各含有率σiとから理論的に合成される理論合成吸収係数μIcを、各平均エネルギーについて計算する。
・ Step S5
The X-ray imaging apparatus calculates, for each average energy, a theoretical synthetic absorption coefficient μ Ic that is theoretically synthesized from each theoretical absorption coefficient μ Ii and each content rate σ i of an element expected to be included in the subject. .
・ステップS6
 X線撮像装置は、平均エネルギー毎に計算された理論合成吸収係数μIcと相対的な測定吸収係数μ’とを比較し、その差分の二乗和が最も小さくなるように、被写体に含まれる各元素の含有率σiを繰り返し計算により求める。
・ Step S6
The X-ray imaging apparatus compares the theoretical synthetic absorption coefficient μ Ic calculated for each average energy and the relative measured absorption coefficient μ ′, and each of the objects included in the subject so that the sum of squares of the difference is minimized. The element content σ i is obtained by repeated calculation.
 ここで、ステップS6の処理は、非線形の最適化問題に帰着することができ、具体的な計算方法としては、最適化手法として開発されている直接探索法、勾配法、ガウスニュートン法などの各種の法を用いることができる。 Here, the process of step S6 can be reduced to a non-linear optimization problem. Specific calculation methods include various methods such as a direct search method, a gradient method, and a Gauss-Newton method that have been developed as an optimization method. Can be used.
 例えば直接探索法であるシンプレックス法では、以下のようにして計算を行う。各元素の含有率σiは、それぞれが完全に独立であるため、n次元空間上の1点pと考えることができる。ここで、直線上にないn+1個の点p1,p2,…,pn+1をとると、n+1角形を仮想的に形成する。本法では、このようにして形成された各点において測定吸収係数(透過率)との残差2乗和(以下、「誤差E」という。)を計算し、予め定義した法則に基づいて各点を変形又は移動して最適解に近づけていく。ここでの変形又は移動は、一般には、以下のように行う。
(1)n+1個の各点pにおける誤差E(pi)を計算し、大きい順に並べる。
(2)Eが最大となる点p0を除いたn個の点piを用い、重心pgを、pg = (Σpi)/n、として求める。
(3)仮想空間における点p0とpgを結んだ直線上で以下の各点pについて誤差Eを計算する。
(3-1)pr = p1+2(pg-p1)
(3-2)pe = p1+3(pg-p1)
(3-3)pcr = p1+1.5(pg-p1)
(3-4)pcw = p1+0.5(pg-p1)
(4)前記(3)で求めた誤差Eのうち、最初にE(p0)より小さくなる点pを点p0と交換する。
(5)前記(1)~(4)を、誤差Eが予め設定した値より小さくなるか、又は、各点p間の平均的な距離が一定値より小さくなるまで繰り返す。
For example, in the simplex method, which is a direct search method, calculation is performed as follows. Since the content rate σ i of each element is completely independent, it can be considered as one point p on the n-dimensional space. Here, no (n + 1) points on a line p 1, p 2, ..., taking the p n + 1, to form an n + 1 prismatic virtually. In this method, the residual sum of squares (hereinafter referred to as “error E”) with the measured absorption coefficient (transmittance) is calculated at each point thus formed, and each point is determined based on a pre-defined law. The point is deformed or moved to approach the optimal solution. The deformation or movement here is generally performed as follows.
(1) The error E (pi) at each of n + 1 points p is calculated and arranged in descending order.
(2) Using the n points p i excluding the point p 0 where E is maximum, the center of gravity p g is obtained as p g = (Σp i ) / n.
(3) An error E is calculated for each of the following points p on a straight line connecting the points p 0 and p g in the virtual space.
(3-1) p r = p 1 +2 (p g -p 1 )
(3-2) p e = p 1 +3 (p g -p 1 )
(3-3) p cr = p 1 +1.5 (p g -p 1 )
(3-4) p cw = p 1 +0.5 (p g -p 1 )
(4) Of the error E obtained in the above (3), the point p first smaller than E (p 0 ) is exchanged with the point p 0 .
(5) The above (1) to (4) are repeated until the error E becomes smaller than a preset value or the average distance between the points p becomes smaller than a certain value.
 以上の計算手法により、誤差Eが最小となる点p(すなわち、各元素の含有率σi)を求めることができる。図2は、アルミ、鉄、銅、モリブデン、スズから構成された金属箔を対象として、エネルギーが8、 10、15、20、30、 40、 50 keVのX線で測定したと仮定して測定吸収係数(透過率)μを計算し、最適化手法に基づいた繰り返し計算により各金属の含有率σiを求めた(シミュレートした)結果である。なお、繰り返し計算に含める元素として、上記金属の他に、原子番号が比較的近いチタン、コバルト、ニッケルを含めて計算を行っている。また、繰り返し計算には、上記シンプレックス法を用い、初期値として各元素の含有率σiを同率としている。この結果から、仮定した含有率σiをほぼ算出できていることが分かる。 With the above calculation method, the point p (that is, the content ratio σ i of each element) at which the error E is minimized can be obtained. Figure 2 shows the measurement of X-rays with energy of 8, 10, 15, 20, 30, 40, and 50 keV for metal foils composed of aluminum, iron, copper, molybdenum, and tin. It is the result of calculating (simulating) the content σ i of each metal by calculating the absorption coefficient (transmittance) μ and repeating the calculation based on the optimization method. In addition, as elements to be included in repeated calculations, calculation is performed including titanium, cobalt, and nickel having relatively close atomic numbers in addition to the above metals. In the repeated calculation, the above simplex method is used, and the content ratio σ i of each element is set to the same ratio as an initial value. From this result, it can be seen that the assumed content rate σ i is almost calculated.
 ただし、上記の繰り返し計算は、n次元における収束解を求めることになるために、初期値と計算手法の選択によっては、収束した解が極小値となり、正しい最小値にならない可能性もある。正しい最小値が得られるようにするには、初期値を少しでも正しい含有率σiに設定し、計算を始めることが極めて重要である。 However, since the above iterative calculation finds a convergent solution in n dimensions, depending on the selection of the initial value and the calculation method, the converged solution may be a minimum value and may not be the correct minimum value. In order to obtain the correct minimum value, it is extremely important to set the initial value to the correct content rate σ i and start the calculation.
 望ましい初期値を与えるための手法には、例えば各元素の線吸収係数μiに着目する手法がある。各元素の線吸収係数μiは、X線の各エネルギーに対して固有の値を持つことが知られている。このため、ある特定のエネルギー間における線吸収係数μiの変化量にも特徴がある。図3は、各元素の線吸収係数μiについて、X線のエネルギーを10 keVから20 keVに変化させた場合に生じる変化(差)を計算した結果である。図3より、線吸収係数μiの変化量は元素毎に固有の値を持つことが分かる。すなわち、エネルギーに対する変化から含有されている元素をある程度推測することができる。 As a method for giving a desirable initial value, for example, there is a method focusing on the linear absorption coefficient μ i of each element. It is known that the linear absorption coefficient μ i of each element has a unique value for each energy of X-rays. For this reason, the amount of change in the linear absorption coefficient μ i between specific energy is also characteristic. FIG. 3 is a result of calculating a change (difference) that occurs when the X-ray energy is changed from 10 keV to 20 keV with respect to the linear absorption coefficient μ i of each element. FIG. 3 shows that the amount of change in the linear absorption coefficient μ i has a unique value for each element. That is, the contained element can be estimated to some extent from the change to energy.
 そこで、発明者は、X線の各エネルギーで取得(測定)したデータ間から変化を求めた後、求めた変化と理論的な計算により得られる変化とを比較し、更に、類似している傾向を示す元素が被写体に最も多く含まれているとの仮定の下、類似している傾向を示す元素とその近傍の元素の含有率を多めとした初期値を採用する手法を提案する。この手法を採用した計算処理では、この手法を採用しない手法に比べ、一般に初期値が正しい解に近づくことになり、より正確に含有率σiを求めることができる。 Therefore, the inventor obtains a change from data acquired (measured) with each energy of X-ray, compares the obtained change with a change obtained by theoretical calculation, and further tends to be similar. Based on the assumption that the subject contains the largest number of elements indicating the above, a method is proposed that employs an initial value with a higher content of elements that show similar tendencies and elements in the vicinity thereof. In the calculation process employing this method, compared to a method not employing this method, the initial value generally approaches a correct solution, and the content rate σ i can be obtained more accurately.
 望ましい初期値を与えるための別の手法には、例えば吸収端に着目する手法がある。各元素には、図4に示すように吸収端と呼ばれ、線吸収係数μiが急激に変化するエネルギーが存在する。測定するエネルギーの間隔が狭い場合には、このような吸収端の前後で投影像が得られるので、ある特定の元素だけ急激に線吸収係数μiが変化することになる。したがって、エネルギー毎に取得した投影像をエネルギー順に並べて、各画素においてエネルギーに対する透過率が急激に変化するかどうかを判定し、急激な変化が認められたエネルギーに基づいて被写体に含有されている元素を仮定し、この元素の含有率σiを多めに与えた初期値を設定する手法を提案する。この手法を採用した計算処理では、この手法を採用しない手法に比べ、一般に初期値が正しい解に近づくことになり、より正確に含有率σiを求めることができる。 As another method for giving a desirable initial value, for example, there is a method focusing on the absorption edge. As shown in FIG. 4, each element has an energy called an absorption edge, and the linear absorption coefficient μ i changes abruptly. When the energy interval to be measured is narrow, projection images are obtained before and after such an absorption edge, so that the linear absorption coefficient μ i changes abruptly for a specific element. Therefore, the projection images acquired for each energy are arranged in order of energy, and it is determined whether or not the transmittance with respect to the energy changes abruptly in each pixel, and the element contained in the subject based on the energy in which the abrupt change is recognized We propose a method for setting an initial value with a large content σ i of this element. In the calculation process employing this method, compared to a method not employing this method, the initial value generally approaches a correct solution, and the content rate σ i can be obtained more accurately.
 前述の例においては、投影像(2次元像)について説明しているが、被写体をX線源に対して相対的に回転させ、取得した各回転角における投影像から断面像を非破壊で得るX線CTにおいても、異なるX線のエネルギーで得られた画像(断面像)について同様の処理を行うことによって、被写体の元素に関する情報を3次元的に取得することが可能になる。 In the above-described example, the projection image (two-dimensional image) is described. However, the subject is rotated relative to the X-ray source, and the cross-sectional image is obtained nondestructively from the acquired projection images at the respective rotation angles. In X-ray CT, it is possible to three-dimensionally acquire information on the elements of a subject by performing similar processing on images (cross-sectional images) obtained with different X-ray energies.
 以上のように、平均エネルギーが異なる3種類以上のX線を被写体の同一領域に照射することにより取得される相対的な測定吸収係数μ’との残差を最小とする理論合成吸収係数μIcを繰り返し演算により求める最適化計算により、含有元素が未知である被写体に含有される各元素の含有率σiを求めることができるようになる。 As described above, the theoretical synthetic absorption coefficient μ Ic that minimizes the residual from the relative measured absorption coefficient μ ′ acquired by irradiating the same region of the subject with three or more types of X-rays having different average energies. By the optimization calculation for repeatedly calculating the content ratio σ i of each element contained in the subject whose element is unknown, it becomes possible to obtain the content ratio σ i of the element.
(実施例)
 以下では、前述の考え方に基づいたX線撮像方法及び装置の実施例を順番に説明する。
(Example)
Below, the Example of the X-ray imaging method and apparatus based on the above-mentioned view is described in order.
(実施例1)
 図5に、実施例1に係るX線撮像装置の概略構成を示す。図5に示すX線撮像装置は、X線源1、被写体2、被写体ホルダー3、被写体位置決め機構4、X線画像検出器5、制御部6、推定含有率計算部7、表示装置8を有している。X線源1から放射されたX線ビームは、被写体ホルダー3で保持され、被写体位置決め機構4で位置決めされた被写体2に照射される。被写体2を透過したX線ビームはX線画像検出器5で検出される。X線画像検出器5の検出結果は、制御部6に与えられる。
(Example 1)
FIG. 5 illustrates a schematic configuration of the X-ray imaging apparatus according to the first embodiment. The X-ray imaging apparatus shown in FIG. 5 includes an X-ray source 1, a subject 2, a subject holder 3, a subject positioning mechanism 4, an X-ray image detector 5, a control unit 6, an estimated content rate calculation unit 7, and a display device 8. is doing. The X-ray beam emitted from the X-ray source 1 is held by the subject holder 3 and irradiated to the subject 2 positioned by the subject positioning mechanism 4. The X-ray beam transmitted through the subject 2 is detected by the X-ray image detector 5. The detection result of the X-ray image detector 5 is given to the control unit 6.
 制御部6は、後述する測定手順に従い、X線源1の照射条件の設定(エネルギーの変更等)と各エネルギーの下での投影像(背景像及び透過像)の撮像処理とを実行する。推定含有率計算部7は、3種類以上の平均エネルギーが異なるX線によって撮像された画像を入力し、前述の繰り返し計算を実行することにより、被写体に含まれている元素の含有率を求める。ここで、制御部6と推定含有率計算部7の処理動作は、例えば計算機(コンピュータ)によるプログラムの実行を通じて実現される。プログラムは、不図示の記憶装置に格納されている。もっとも、制御部6や推定含有率計算部7で実行される処理動作の一部又は全部は、ASICや専用の計算モジュールとして実現されてもよい。 The control unit 6 executes setting of irradiation conditions (energy change, etc.) of the X-ray source 1 and imaging processing of a projected image (background image and transmission image) under each energy according to a measurement procedure described later. The estimated content rate calculation unit 7 receives images captured by three or more types of X-rays having different average energies and executes the above-described repetitive calculation to obtain the content rate of the elements contained in the subject. Here, the processing operations of the control unit 6 and the estimated content rate calculation unit 7 are realized, for example, through execution of a program by a computer (computer). The program is stored in a storage device (not shown). However, part or all of the processing operations executed by the control unit 6 and the estimated content rate calculation unit 7 may be realized as an ASIC or a dedicated calculation module.
 表示装置8は、推定含有率計算部7の計算結果に基づいて、算出された各元素の空間的な分布を表す像(元素マップ)を表示画面上に表示する。なお、図5では、表示装置8が推定含有率計算部7に接続されているが、出力装置としての印刷装置が、表示装置8に代えて又は表示装置8とともに、推定含有率計算部7に接続されていてもよい。印刷装置は、前述の元素マップを印刷する。また、表示装置8に代えて又は表示装置8とともに通信装置を接続し、外部装置に送信できるようにしてもよい。 The display device 8 displays an image (element map) representing the calculated spatial distribution of each element on the display screen based on the calculation result of the estimated content calculation unit 7. In FIG. 5, the display device 8 is connected to the estimated content rate calculation unit 7, but the printing device as the output device is replaced with the display device 8 or together with the display device 8 in the estimated content rate calculation unit 7. It may be connected. The printing apparatus prints the element map described above. Further, instead of the display device 8 or together with the display device 8, a communication device may be connected so that transmission to an external device is possible.
 続いて、制御部6の制御による強度情報の測定動作を、図6を用いて説明する。 Subsequently, the intensity information measurement operation under the control of the control unit 6 will be described with reference to FIG.
・ステップS11
 制御部6は、被写体位置決め機構4の不図示の駆動部(x軸方向駆動装置、y軸方向駆動装置、z軸方向駆動装置)に対して駆動信号を送信し、被写体2がX線ビームの中心に位置する座標(例えばX1)を設定する。必要に応じ、y軸上の座標Y1及びz軸上の座標Z1も設定される。
Step S11
The control unit 6 transmits a drive signal to a drive unit (x-axis direction drive device, y-axis direction drive device, z-axis direction drive device) (not shown) of the subject positioning mechanism 4, and the subject 2 is an X-ray beam. A coordinate (for example, X1) located at the center is set. If necessary, a coordinate Y1 on the y axis and a coordinate Z1 on the z axis are also set.
・ステップS12
 制御部6は、被写体2をX線ビームから完全に待避した位置X0に移動する。完全に退避した位置とは、X線ビームが被写体2を透過しない位置の意味である。
・ Step S12
The controller 6 moves the subject 2 to a position X0 where the subject 2 is completely retracted from the X-ray beam. The completely retracted position means a position where the X-ray beam does not pass through the subject 2.
・ステップS13
 制御部6は、X線源1の照射条件を設定する。この実施例の場合、制御部6は、事前に設定されたn個(nは3以上)の設定条件のうちの1つを選択する。照射条件は、エネルギーE1~Enのいずれかに対応する。ここでの設定順序は予め決まっていても良いし、その都度、使用されていない設定条件の中から1つを選択しても良い。
Step S13
The control unit 6 sets the irradiation condition of the X-ray source 1. In the case of this embodiment, the control unit 6 selects one of n setting conditions (n is 3 or more) set in advance. The irradiation condition corresponds to any of the energy E1 to En. The setting order here may be determined in advance or one of the setting conditions that are not used may be selected each time.
・ステップS14
 制御部6は、X線源1を制御してX線ビームを照射させ、その強度IoをX線画像検出器5で検出する。このステップにおけるX線ビームは被写体2を透過しない。従って、X線画像検出器5は、被写体2の背景像(被写体2の背景となる投影像)を取得する。
・ Step S14
The control unit 6 controls the X-ray source 1 to irradiate the X-ray beam, and the intensity I o is detected by the X-ray image detector 5. The X-ray beam in this step does not pass through the subject 2. Therefore, the X-ray image detector 5 acquires a background image of the subject 2 (a projection image that is the background of the subject 2).
・ステップS15
 制御部6は、被写体位置決め機構4の不図示の駆動部(x軸方向駆動装置、y軸方向駆動装置、z軸方向駆動装置)に対して駆動信号を送信し、座標をX0から座標X1に変更する。これにより、被写体2は、X線ビームの中心に位置決めされる。
・ Step S15
The control unit 6 transmits a drive signal to a drive unit (an x-axis direction drive device, a y-axis direction drive device, and a z-axis direction drive device) (not shown) of the subject positioning mechanism 4 and changes the coordinates from X0 to coordinates X1. change. Thereby, the subject 2 is positioned at the center of the X-ray beam.
・ステップS16
 制御部6は、X線源1を制御してX線ビームを照射させ、その強度IをX線画像検出器5で検出する。このステップにおけるX線ビームは被写体2を透過する。従って、X線画像検出器5は、被写体2の透過像を取得する。
・ Step S16
The control unit 6 controls the X-ray source 1 to irradiate the X-ray beam, and detects the intensity I by the X-ray image detector 5. The X-ray beam in this step passes through the subject 2. Therefore, the X-ray image detector 5 acquires a transmission image of the subject 2.
・ステップS17
 制御部6は、事前に設定された全ての照射条件について、背景像と透過像の測定(撮像)が終了したか否かを判定する。測定(撮像)に使用されていない照射条件が残る場合、制御部6は、ステップS12に戻る。この動作を、全ての照射条件について繰り返す。
Step S17
The controller 6 determines whether or not the measurement (imaging) of the background image and the transmission image has been completed for all irradiation conditions set in advance. When the irradiation conditions that are not used for measurement (imaging) remain, the control unit 6 returns to step S12. This operation is repeated for all irradiation conditions.
 図6に示す処理手順では、1つのエネルギーについて一度に背景像と透過像を取得しているが、前述した図1のステップS1及びS2のように、全てのエネルギーについて背景像を取得した後に、改めて全てのエネルギーについて透過像を取得しても良い。 In the processing procedure shown in FIG. 6, a background image and a transmission image are acquired for one energy at a time, but after acquiring a background image for all the energy as in steps S <b> 1 and S <b> 2 of FIG. 1 described above, You may acquire a transmission image about all the energy anew.
 次に、X線のエネルギーを変更する手法について説明する。X線源1として、実験室等で一般に利用されているX線管を用いる場合、X線管に印加する電圧(管電圧)を変更するだけで、X線の平均的なエネルギーを変更することができる。したがって、この場合は、前述のステップS13において、管電圧を予め設定した電圧に変更し、各投影像(背景像及び透過像)を撮像すれば良い。 Next, a method for changing X-ray energy will be described. When an X-ray tube generally used in a laboratory or the like is used as the X-ray source 1, the average energy of the X-ray is changed only by changing the voltage (tube voltage) applied to the X-ray tube. Can do. Therefore, in this case, in step S13 described above, the tube voltage may be changed to a preset voltage, and each projection image (background image and transmission image) may be captured.
 なお、投影像の撮像に使用するX線には、他に、放射光や逆コンプトン散乱によって生じたX線などを用いることができる。ただし、これらのX線は、発生源の条件の変更によっては、エネルギーを容易に変更することができない。従って、発生したX線のエネルギー分布を変更可能な機構をX線源と被写体の間に新たに設ける必要がある。例えばX線回折を利用して特定のエネルギーを有するX線だけを取り出すことができる結晶分光器を設置する。図7に、二結晶分光器の一例を示す。 In addition, as the X-rays used for capturing the projected image, X-rays generated by radiated light or inverse Compton scattering can be used. However, the energy of these X-rays cannot be easily changed by changing the conditions of the source. Therefore, it is necessary to newly provide a mechanism capable of changing the energy distribution of the generated X-rays between the X-ray source and the subject. For example, a crystal spectrometer that can extract only X-rays having specific energy using X-ray diffraction is installed. FIG. 7 shows an example of a double crystal spectrometer.
 ここでの二結晶分光器は、回転ステージ71と、その上面に配置された2つの単結晶板72及び73で構成され、2つの単結晶板72及び73は、回転軸を挟むように互いに平行に配置されている。二結晶分光器を用いる場合、前述のステップS13において、回転ステージ71を回転軸の周りに所定の角度だけ回転させて、単結晶板72に対する白色X線の入射角度を変更すれば、入射角に応じたエネルギーを有する単色X線を被写体に向けて出力することができる。 The two-crystal spectrometer here is composed of a rotary stage 71 and two single crystal plates 72 and 73 disposed on the upper surface thereof, and the two single crystal plates 72 and 73 are parallel to each other so as to sandwich the rotation axis. Is arranged. When using a double crystal spectrometer, in step S13 described above, the rotation stage 71 is rotated by a predetermined angle around the rotation axis, and the incident angle of the white X-rays with respect to the single crystal plate 72 is changed. A monochromatic X-ray having a corresponding energy can be output toward the subject.
 ここで、単結晶板72及び73においては、ブラッグの回折条件 λ=2d sin θ(ただし、dは回折に関係する結晶の格子面間隔、λはX線の波長、θは結晶に対するX線の入射角)を満す単色X線だけが二結晶分光器を透過する。よって、エネルギーバンド幅の極めて狭いX線を得ることができる。二結晶分光器を利用すると、X線管を利用する場合に比べて純度の高い単色のX線を利用でき、より正確に元素の含有率を求めることができる。 Here, in the single crystal plates 72 and 73, Bragg's diffraction condition = 2λ = 2d sin θ (where d is the lattice spacing of the crystal related to diffraction, λ is the X-ray wavelength, and θ is the X-ray wavelength relative to the crystal. Only monochromatic X-rays satisfying (incident angle) are transmitted through the double crystal spectrometer. Therefore, X-rays having an extremely narrow energy bandwidth can be obtained. When a double crystal spectrometer is used, it is possible to use monochromatic X-rays with higher purity than when an X-ray tube is used, and the element content can be determined more accurately.
 この他、被写体に照射されるX線のエネルギーを変更するための手法として、X線源と被写体の間に厚さや種類の異なる複数枚の金属板を挿入できる機構を設けてもよい。図8に、円板の円周方向に沿って厚さや種類の異なる複数枚の金属板を配置する回転リボルバー式のエネルギー変更機構(金属箔回転機構ともいう。)の例を示す。図8に示すエネルギー変更機構では、円板81を回転することにより、X線が透過する金属膜82の種類や厚さを極めて短時間に変更する(すなわち、X線のエネルギーを変更する)ことができる。この結果、被写体の経時変化が短時間で生じる場合にも、ほぼ同じショットの投影像を異なるエネルギーのX線について撮像することができる。なお、図7に例示した二結晶分光器や図8に例示した回転リボルバー式のエネルギー変換機構と通常のX線管を組み合わせることももちろん可能であり、同時に管電圧を最適化することによって、より効率的にX線のエネルギーを変更することもできる。 In addition, as a method for changing the energy of X-rays irradiated to the subject, a mechanism capable of inserting a plurality of metal plates having different thicknesses and types between the X-ray source and the subject may be provided. FIG. 8 shows an example of a rotating revolver type energy changing mechanism (also referred to as a metal foil rotating mechanism) in which a plurality of metal plates having different thicknesses and types are arranged along the circumferential direction of the disc. In the energy changing mechanism shown in FIG. 8, the type and thickness of the metal film 82 through which X-rays pass are changed in a very short time by rotating the disk 81 (that is, the X-ray energy is changed). Can do. As a result, even when the change of the subject with time occurs in a short time, it is possible to capture the projected image of substantially the same shot with X-rays having different energy. It is of course possible to combine the double crystal spectrometer illustrated in FIG. 7 and the rotary revolver type energy conversion mechanism illustrated in FIG. 8 with a normal X-ray tube, and at the same time, by optimizing the tube voltage, The energy of X-rays can be changed efficiently.
 ところで、前述した異なるエネルギーのX線で取得された複数の投影像から被写体に含有されている元素の含有率を求める方法は、以下に示す(1)の場合と(2)の場合に分けて扱うとよい。
(1)含有されている元素の数が投影像の数より少ない場合
(2)投影数より多い場合(未知の場合も含む)
By the way, the method for obtaining the content rate of the element contained in the subject from the plurality of projection images acquired with the X-rays of different energy described above is divided into the following cases (1) and (2). It is good to handle.
(1) When the number of contained elements is less than the number of projected images
(2) When there are more projections (including unknown cases)
 前者の場合、前述した(5)式より解(含有率σi)を求める連立一次方程式に帰着でき、各元素の含有率σiをガウスの消去法などにより一意に求めることができる。一方、後者の場合、含有率σiを求める計算は非線形の最適化問題に帰着され、各エネルギーにおける計算による理論合成吸収係数σIcと測定で得た相対的な測定吸収係数μ’の差分の二乗和が最も小さくなるように最適化の繰り返し計算により、含有率σiを求めることができる。 In the former case, it can result in simultaneous linear equations for obtaining the aforementioned (5) solution from the equation (content sigma i), can be determined uniquely content sigma i of each element due to Gaussian elimination. On the other hand, in the latter case, the calculation for determining the content rate σ i is reduced to a nonlinear optimization problem, and the difference between the theoretical synthetic absorption coefficient σ Ic calculated by calculation at each energy and the relative measured absorption coefficient μ ′ obtained by measurement is calculated. The content rate σ i can be obtained by repeated calculation of optimization so that the sum of squares is minimized.
 最適化の手法は、現在のところ、おおよそ下記の3つの種類に分類することができる。
(1)直接探索法
(2)勾配法
(3)逆行列演算法
At present, optimization methods can be roughly classified into the following three types.
(1) Direct search method
(2) Gradient method
(3) Inverse matrix operation method
 ここで、直接探索法は、予想される含有率から計算した理論合成吸収係数μIcと、測定で得た相対的な測定吸収係数μ’の差分の二乗和がより小さくなる方向を探索し、繰り返しの計算によって最も確からしい解(含有率)を求める方法である。この方法は、直感的であり、繰り返しの過程をモニターできるという利点があるが、その一方、収束が遅いという特徴がある。後者の2つの方法は、繰り返し計算の各過程で含有率に関連した関数の微分係数を計算し、偏差が小さくなる方向に向かって差分の二乗和が最小となる条件(含有率)を探索する方法である。これらの方法の収束速度は、直接探索法の収束速度に比べて速いが、初期値の影響を受け安く、極小点に収束してしまうことも多い。 Here, the direct search method searches for a direction in which the square sum of the difference between the theoretical synthetic absorption coefficient μ Ic calculated from the expected content and the relative measured absorption coefficient μ ′ obtained by measurement becomes smaller, This is a method for obtaining the most probable solution (content ratio) by repeated calculation. This method is intuitive and has the advantage of being able to monitor the iteration process, but has the feature of slow convergence. In the latter two methods, the differential coefficient of the function related to the content rate is calculated in each process of the iterative calculation, and a condition (content rate) that minimizes the sum of squares of the difference in the direction in which the deviation becomes smaller is searched. Is the method. Although the convergence speed of these methods is faster than the convergence speed of the direct search method, it is less affected by the initial value and often converges to a minimum point.
 このため、含有率を算出する計算として、以下の処理を実行すれば、正確な解(含有率)を求めることができる。
(1)被写体に含まれていると考えられる元素をリストアップする。
(2)各元素の含有率を同率として、直接探索法により含有率を求める。
(3)前記の(2)で得られた含有率を更に初期含有率として勾配法又は逆行列演算法により、より正確な含有率を求める。
For this reason, if the following processes are performed as calculation which calculates a content rate, an exact solution (content rate) can be calculated | required.
(1) List the elements considered to be contained in the subject.
(2) The content ratio of each element is set to the same ratio, and the content ratio is obtained by a direct search method.
(3) Using the content obtained in (2) above as the initial content, the more accurate content is determined by the gradient method or the inverse matrix calculation method.
 本実施例に係るX線撮像装置は、エネルギーの異なるX線について取得された複数の投影像の各画素(ピクセル)について前述した計算処理を実行し、画素毎に各元素に関する含有率を求める。その後、オペレーターの指示により、選択された元素の空間的な分布像を表示装置8に表示する。また、選択されたエネルギーにおける投影像と元素の含有率像を合成した像も表示できるようにしておけば、どのような構造の箇所に注目する元素が分布しているかのオペレーターによる把握を、より容易なものにできる。 The X-ray imaging apparatus according to the present embodiment performs the above-described calculation processing for each pixel (pixel) of a plurality of projection images acquired for X-rays having different energies, and obtains the content rate for each element for each pixel. Thereafter, a spatial distribution image of the selected element is displayed on the display device 8 in accordance with an operator instruction. In addition, if it is possible to display a composite image of the projected image and element content ratio image at the selected energy, the operator can better understand what structure of the element is distributed. It can be easy.
(実施例2)
 前述の実施例1で説明したX線撮像装置は、被写体に含まれる元素数が投影像の数よりも多い場合、又は、全く未知である場合、非線形の最適化問題に帰着し、その最適値(含有率)を繰り返し計算によって求めている。しかし、各元素の初期含有率を同率として扱う実施例1の場合、直接探索法では、局地的な最小値(極小値)に収束し、正確に含有率を求めることができない可能性がある。そこで、本実施例では、測定吸収係数から予想された含有率を初期含有率とすることにより、求められる解の信頼性を高める手法について説明する。
(Example 2)
When the number of elements contained in the subject is larger than the number of projection images or when the number of elements is completely unknown, the X-ray imaging apparatus described in the first embodiment results in a nonlinear optimization problem, and the optimum value (Content) is obtained by repeated calculation. However, in the case of Example 1 in which the initial content of each element is treated as the same, the direct search method may converge to a local minimum value (minimum value) and may not be able to accurately determine the content. . Therefore, in this example, a method for improving the reliability of the obtained solution by setting the content rate predicted from the measured absorption coefficient as the initial content rate will be described.
 図3について説明したように、各元素の線吸収係数μiは、X線が有する各エネルギーに対して固有の値を持ち、ある特定の2つのエネルギー間における線吸収係数μiの変化量も固有の値を持つことになる。そこで、本実施例に係るX線撮像装置は、図9に示す手法により、含有率の初期値を設定する。まず、推定含有率計算部7は、各エネルギーについて取得された透過像の各画素について、2つのエネルギー間における線吸収係数の変化量を計算で求める(ステップS21)。次に、推定含有率計算部7は、同じ2つのエネルギー間における線吸収係数の変化量を理論的に計算する(ステップS22)。この後、推定含有率計算部7は、ステップ21で計算された線吸収係数の変化量とステップS22で計算された理論変化量とを比較し、被写体に含まれている元素を予想する(ステップS23)。さらに、推定含有率計算部7は、ステップS23で予想された元素とその近傍の元素の含有率が多くなるように初期値を設定する(ステップS24)。 As described with reference to FIG. 3, the linear absorption coefficient μ i of each element has a unique value for each energy of the X-ray, and the amount of change in the linear absorption coefficient μ i between two specific energies is also determined. It will have a unique value. Therefore, the X-ray imaging apparatus according to the present embodiment sets the initial value of the content rate by the method shown in FIG. First, the estimated content rate calculation unit 7 calculates the amount of change in the linear absorption coefficient between the two energies for each pixel of the transmission image acquired for each energy (step S21). Next, the estimated content calculation unit 7 theoretically calculates the amount of change in the linear absorption coefficient between the same two energies (step S22). Thereafter, the estimated content rate calculation unit 7 compares the amount of change of the linear absorption coefficient calculated in step 21 with the theoretical amount of change calculated in step S22, and predicts the element contained in the subject (step S23). Furthermore, the estimated content rate calculation unit 7 sets initial values so that the content rates of the element predicted in step S23 and the elements in the vicinity thereof are increased (step S24).
 以上の処理により得られる初期値は、一般に、実施例1に比して正しい解に近いものである。よって、当該初期値を用いる推定含有率計算部7は、被写体に含まれる元素とその含有量を、実施例1に比してより正確に求めることができる。 The initial value obtained by the above processing is generally close to the correct solution as compared with the first embodiment. Therefore, the estimated content rate calculation unit 7 using the initial value can determine the elements included in the subject and their contents more accurately than in the first embodiment.
(実施例3)
 前述の実施例2の場合には、2つのエネルギー間について測定された線吸収係数μiの変化量と理論的に計算された理論変化量との比較に基づいて含有率の初期値を定めたが、他の手法によっても初期値を定めることができる。エネルギーのステップ幅が小さく、かつ、X線源として放射光などの単色性の高いX線を用いる場合に、吸収端における変化を利用する手法である。
(Example 3)
In the case of Example 2 described above, the initial value of the content rate was determined based on a comparison between the change amount of the linear absorption coefficient μ i measured between two energies and the theoretical change amount calculated theoretically. However, the initial value can be determined by other methods. This is a technique that uses a change at the absorption edge when an X-ray having a small energy step width and high monochromaticity such as radiated light is used as an X-ray source.
 図10は、図2で仮定した金属箔について、エネルギーが7~35 keVの間において、ステップ幅1 keVで算出した透過率である。図10では、9、 20、 29 keVの近傍において透過率が急激に変化していることが分かる。これらのエネルギーにおいて急激に透過率が変化するのは図4から、Cu、 Mo、 Snであることが分かるので、本実施例における推定含有率計算部7は、これら元素の初期含有率の値を他の元素に対して高めに設定する。図11に、推定含有率計算部7において実行される処理(ステップS31~S33)を示す。 FIG. 10 shows the transmittance calculated for the metal foil assumed in FIG. 2 with a step width of 1 keV when the energy is between 7 and 35 keV. In FIG. 10, it can be seen that the transmittance changes abruptly in the vicinity of 9, 20, and 29 keV. It can be seen from FIG. 4 that the transmittance changes suddenly at these energies from Cu, CuMo, and Sn. Therefore, the estimated content calculation unit 7 in this example calculates the initial content values of these elements. Set higher than other elements. FIG. 11 shows processing (steps S31 to S33) executed in the estimated content rate calculation unit 7.
 本実施例の手法によっても、実施例2と同様、より正確な含有率を求めることが可能となる。因みに、ステップS33において、ステップS32で求めた元素の含有率をどの程度多めに設定するかは透過率の変化の情報から決定すれば良い。例えば図10の場合、Cuの変化の大きさに対し、MoとSnの変化の大きさは1/4程度であるので、4:1:1とし、他の元素を0.5程度にすれば良い。 Even with the method of this example, it is possible to obtain a more accurate content rate as in Example 2. Incidentally, in step S33, how much the element content determined in step S32 is set may be determined from information on the change in transmittance. For example, in the case of FIG. 10, since the magnitude of the change of Mo and Sn is about 1/4 with respect to the magnitude of the change of Cu, it is sufficient to set the ratio of 4: 1: 1 and other elements to about 0.5.
 以上の通り、本実施例では、含有される可能性が高い元素の含有率を高めた初期値を用いることができるため、推定含有率計算部7は、被写体に含まれる元素とその含有量を、実施例1に比してより正確に求めることができる。 As described above, in this embodiment, since an initial value in which the content rate of an element that is highly likely to be contained can be increased, the estimated content rate calculation unit 7 calculates the element contained in the subject and its content. As compared with the first embodiment, it can be obtained more accurately.
(実施例4)
 前述の実施例に係るX線撮像装置では、被写体の投影像しか取得することができず、X線の透過方向に異なる元素が多重になっている場合、元素の正確な含有率を求めることが難しかった。本実施例では上記の問題を解決するために、X線CT(Computed Tomography)法と組み合わせ、異なるエネルギーで取得した複数の断面像から元素に関する情報を取得する。
Example 4
In the X-ray imaging apparatus according to the above-described embodiment, only a projection image of a subject can be acquired, and when different elements are multiplexed in the X-ray transmission direction, an accurate content rate of the element can be obtained. was difficult. In this embodiment, in order to solve the above problem, information related to elements is acquired from a plurality of cross-sectional images acquired at different energies in combination with an X-ray CT (Computed Tomography) method.
 X線CT法は、X線源に対して被写体を相対的に回転し、異なる投影角から取得した複数の投影像から再構成と呼ばれる計算を実行して被写体の断面像を得る手法である。得られた断面像は被写体内部における線吸収係数の分布を表すので、各画素位置における各元素の含有率をσi、各元素の線吸収係数をμiとしたとき、次式となる。
 μ=Σiμiσi   …(6)式
The X-ray CT method is a method of obtaining a cross-sectional image of a subject by rotating a subject relative to an X-ray source and executing a calculation called reconstruction from a plurality of projection images acquired from different projection angles. Since the obtained cross-sectional image represents the distribution of the linear absorption coefficient inside the subject, when the content ratio of each element at each pixel position is σ i and the linear absorption coefficient of each element is μ i , the following expression is obtained.
μ = Σ i μ i σ i (6)
 (6)式は、式(2)と比較して、厚さtが除かれた以外は全く同じである。したがって、投影像と同様に異なるエネルギーで取得した断面像から、同様な繰り返し計算によって断面像内の各画素位置における元素を求めることができる。ただし、本実施例の場合、厚さtの情報を除くためのステップS4(図1)の実行は不要である。このため、ステップS6(図1)では、「相対的な測定吸収係数μ’」に代えて「測定吸収係数μ’」に対して所定の処理を実行する。 (6) The formula (6) is completely the same as the formula (2) except that the thickness t is removed. Therefore, an element at each pixel position in the cross-sectional image can be obtained from a cross-sectional image acquired with different energy in the same manner as the projected image by the same iterative calculation. However, in the case of the present embodiment, it is not necessary to perform step S4 (FIG. 1) for removing information on the thickness t. Therefore, in step S6 (FIG. 1), a predetermined process is performed on “measured absorption coefficient μ ′” instead of “relative measured absorption coefficient μ ′”.
 図12に、本実施例に係るX線撮像装置の構成例を示す。図12には、図5との対応部分に同一符号を付して示している。図5と異なる点は、図12に示すX線撮像装置には、X線源に対して試料を回転することができる試料回転機構9が新たに追加されている点と、被写体位置決め機構4に加えて試料回転機構9の回転も制御する制御部160と断面像の各画素について含有率を計算できる推定含有率計算部170を用いる点である。なお、試料回転機構9は、不図示の駆動機構(例えばモータ)により、一方向又は両方向に回転駆動される機構であれば駆動方式は任意である。図12に示すように、試料回転機構9の上面に、被写体位置決め機構4が載置される。 FIG. 12 shows a configuration example of the X-ray imaging apparatus according to the present embodiment. In FIG. 12, parts corresponding to those in FIG. The difference from FIG. 5 is that the X-ray imaging apparatus shown in FIG. 12 has a new sample rotation mechanism 9 that can rotate the sample with respect to the X-ray source, and the subject positioning mechanism 4 In addition, a control unit 160 that also controls the rotation of the sample rotation mechanism 9 and an estimated content rate calculation unit 170 that can calculate the content rate for each pixel of the cross-sectional image are used. The sample rotation mechanism 9 may be of any drive system as long as it is a mechanism that is rotationally driven in one or both directions by a drive mechanism (for example, a motor) (not shown). As shown in FIG. 12, the subject positioning mechanism 4 is placed on the upper surface of the sample rotating mechanism 9.
 本実施例におけるX線撮像手順は、各エネルギーについて取得されるX線像が断面像であり、各画素についての元素の推定処理も断面像の各画素について実行される点を除き、図1と同様である。そこで、以下では、断面像を取得するための測定手順を、図13を用いて説明する。当該測定手順は、制御部160を通じて実行される。 The X-ray imaging procedure in the present embodiment is the same as that shown in FIG. 1 except that the X-ray image acquired for each energy is a cross-sectional image, and the element estimation process for each pixel is also executed for each pixel of the cross-sectional image. It is the same. Therefore, hereinafter, a measurement procedure for obtaining a cross-sectional image will be described with reference to FIG. The measurement procedure is executed through the control unit 160.
 制御部160は、以下の順番に測定動作を実行する。 The control unit 160 performs measurement operations in the following order.
・ステップS41
 制御部160は、被写体位置決め機構4により、被写体2をX線ビームの中心に位置する座標(例えばX1)を設定する。必要に応じ、y軸上の座標Y1及びz軸上の座標Z1も設定される。
Step S41
The control unit 160 uses the subject positioning mechanism 4 to set coordinates (for example, X1) at which the subject 2 is positioned at the center of the X-ray beam. If necessary, a coordinate Y1 on the y axis and a coordinate Z1 on the z axis are also set.
・ステップS42
 制御部160は、被写体2をX線ビームから完全に待避した位置X0に移動する。
Step S42
The controller 160 moves the subject 2 to the position X0 where the subject 2 is completely retracted from the X-ray beam.
・ステップS43
 制御部160は、X線源1の照射条件を設定する。実施例1の場合と同様、例えば事前に設定されたn個(nは3以上)の設定条件のうちの1つが選択される。照射条件は、エネルギーE1~Enのいずれかに対応する。ここでの設定順序は予め決まっていても良いし、その都度、使用されていない設定条件の中から1つを選択しても良い。
Step S43
The controller 160 sets the irradiation conditions for the X-ray source 1. As in the case of the first embodiment, for example, one of n preset conditions (n is 3 or more) is selected. The irradiation condition corresponds to any of the energy E1 to En. The setting order here may be determined in advance or one of the setting conditions that are not used may be selected each time.
・ステップS44
 制御部160は、X線源1を制御してX線ビームを照射させ、その強度IoをX線画像検出器5で検出する。このステップにおけるX線ビームは被写体2を透過しない。従って、X線画像検出器5は、被写体2の背景像(被写体2の背景となる投影像)を取得する。
Step S44
The control unit 160 controls the X-ray source 1 to irradiate the X-ray beam, and detects the intensity I o with the X-ray image detector 5. The X-ray beam in this step does not pass through the subject 2. Therefore, the X-ray image detector 5 acquires a background image of the subject 2 (a projection image that is the background of the subject 2).
・ステップS45
 制御部160は、被写体位置決め機構4の不図示の駆動部(x軸方向駆動装置、y軸方向駆動装置、z軸方向駆動装置)に対して駆動信号を送信し、座標をX0から座標X1に変更する。これにより、被写体2は、X線ビームの中心に位置決めされる。
Step S45
The control unit 160 transmits a drive signal to a drive unit (x-axis direction drive device, y-axis direction drive device, z-axis direction drive device) (not shown) of the subject positioning mechanism 4 and changes the coordinates from X0 to coordinates X1. change. Thereby, the subject 2 is positioned at the center of the X-ray beam.
・ステップS46
 制御部160は、X線源1を制御してX線ビームを照射させ、その強度IをX線画像検出器5で検出する。このステップにおけるX線ビームは被写体2を透過する。従って、X線画像検出器5は、試料回転機構9の現在の回転位置についての被写体2の透過像を取得する。
Step S46
The control unit 160 controls the X-ray source 1 to irradiate the X-ray beam, and the intensity I is detected by the X-ray image detector 5. The X-ray beam in this step passes through the subject 2. Therefore, the X-ray image detector 5 acquires a transmission image of the subject 2 at the current rotation position of the sample rotation mechanism 9.
・ステップS47及びS48
 制御部160は、試料回転機構9を回転駆動させ、被写体2を予め設定した角度だけX線源1に対して回転させる。この後、制御部160は、回転後の位置が予め設定した回転角度に達するか否か判定し、否定結果が得られている間、ステップS46に戻る。すなわち、予め設定された回転角度に達するまで、X線画像検出器5では、被写体2の同一座標について異なる角度から入射されたX線ビームにより得られる透過像が取得される。
Steps S47 and S48
The control unit 160 rotates the sample rotation mechanism 9 to rotate the subject 2 with respect to the X-ray source 1 by a preset angle. Thereafter, the control unit 160 determines whether or not the position after rotation reaches a preset rotation angle, and returns to step S46 while a negative result is obtained. That is, until reaching a preset rotation angle, the X-ray image detector 5 acquires a transmission image obtained by X-ray beams incident from different angles on the same coordinates of the subject 2.
・ステップS49
 ステップS48で肯定結果を得た制御部160は、被写体2をX線ビームから完全に待避した位置X0に移動させる。
Step S49
The control unit 160 that has obtained a positive result in step S48 moves the subject 2 to the position X0 completely retracted from the X-ray beam.
・ステップS50
 制御部160は、当該退避位置について、再び、背景像を取得する。ステップS44とステップS50において、同じエネルギーを有するX線の背景像を取得するのは、被写体2を回転開始から回転終了までの間にX線源1から出力されるX線のエネルギーの変化の有無を確認するためである。もし、変化が検出された場合には、ステップS44とステップS50で取得されたX線の背景像の強度に基づいて、各回転角度について取得された透過像の強度を補正する。例えば線形補間法により、強度を補正する。
・ Step S50
The control unit 160 acquires a background image again for the retracted position. In step S44 and step S50, an X-ray background image having the same energy is acquired because there is a change in the energy of the X-ray output from the X-ray source 1 between the start of rotation of the subject 2 and the end of rotation. It is for confirming. If a change is detected, the intensity of the transmission image acquired for each rotation angle is corrected based on the intensity of the X-ray background image acquired in steps S44 and S50. For example, the intensity is corrected by linear interpolation.
・ステップS51
 制御部160は、事前に設定された全ての照射条件について、背景像と透過像の測定(撮像)が終了したか否かを判定する。測定(撮像)に使用されていない照射条件が残る場合、制御部160は、ステップS43に戻る。この動作を、全ての照射条件について繰り返す。以上の処理により、被写体2の各座標について、異なる角度及び異なるエネルギーによる透過像が取得されることになる。
Step S51
The controller 160 determines whether or not the measurement (imaging) of the background image and the transmission image has been completed for all irradiation conditions set in advance. If irradiation conditions that are not used for measurement (imaging) remain, the control unit 160 returns to step S43. This operation is repeated for all irradiation conditions. Through the above processing, transmission images with different angles and different energy are acquired for each coordinate of the subject 2.
 以上のように、予め設定した全ての投影像(背景像及び透過像)が得られると(各エネルギーについて得られた複数の透過像の組(CTデータの組)が得られると)、推定含有率計算部170は、通常の再構成処理(フィルタードバックプロジェクション法など)により、各エネルギーについての被写体2の断面像を計算により求める。この後、推定含有率計算部170は、各断面像の各画素について、前述した手法と同様の処理を実行し、各画素に含まれる各元素の含有率を計算する。なお、本実施例の場合、被写体の厚さに関する項が含まれないため、元素数がn個の場合は、n枚の断面像があれば、一意に含有率を求めることができる。 As described above, when all the preset projection images (background image and transmission image) are obtained (when a set of a plurality of transmission images obtained for each energy (a set of CT data) is obtained), the estimated inclusion The rate calculation unit 170 calculates a cross-sectional image of the subject 2 for each energy by a normal reconstruction process (filtered back projection method or the like). Thereafter, the estimated content rate calculation unit 170 performs the same process as described above for each pixel of each cross-sectional image, and calculates the content rate of each element included in each pixel. In the case of the present embodiment, since the term relating to the thickness of the subject is not included, if the number of elements is n, the content rate can be uniquely determined if there are n cross-sectional images.
 以上の通り、本実施例によれば、エネルギーの異なるX線で取得した複数枚の断面像から繰り返し計算により、被写体に含まれる各元素の含有率の3次元的な分布を表す像を精度良く求めることができる。 As described above, according to the present embodiment, an image representing the three-dimensional distribution of the content of each element contained in the subject is accurately obtained by repeated calculation from a plurality of cross-sectional images acquired with X-rays having different energies. Can be sought.
(他の実施例)
 本発明は、上述した実施例の構成に限定されるものでなく、様々な変形例を含んでいる。例えば上述した実施例は、本発明を分かりやすく説明するために、一部の実施例について詳細に説明したものであり、本発明は、説明した全ての構成を必ずしも備える必要は無い。また、ある実施例の一部を他の実施例の構成に置き換えることが可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成に他の構成を追加し、又は、各実施例の一部構成を他の構成で置換し、又は各実施例の一部構成を削除することも可能である。
(Other examples)
The present invention is not limited to the configuration of the embodiment described above, and includes various modifications. For example, in the above-described embodiments, some of the embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention does not necessarily have all the configurations described. Further, a part of a certain embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of a certain embodiment. It is also possible to add other configurations to the configuration of each embodiment, replace a partial configuration of each embodiment with another configuration, or delete a partial configuration of each embodiment.
 また、上述した各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路その他のハードウェアとして実現しても良い。また、上記の各構成、機能等は、それぞれの機能を実現するプログラムをプロセッサが解釈して実行することにより実現しても良い。すなわち、各構成等をソフトウェアにより実現しても良い。この場合、各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリやハードディスク、SSD(Solid State Drive)等の記憶装置、ICカード、SDカード、DVD等の記憶媒体に格納することができる。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be partly or entirely realized as, for example, an integrated circuit or other hardware. Each of the above-described configurations, functions, and the like may be realized by a processor interpreting and executing a program that realizes each function. That is, each configuration may be realized by software. In this case, information such as programs, tables, and files for realizing each function can be stored in a storage device such as a memory, a hard disk, an SSD (Solid State Drive), or a storage medium such as an IC card, an SD card, or a DVD. .
 また、制御線や情報線は、説明上必要と考えられるものを示すものであり、製品上必要な全ての制御線や情報線を表すものでない。実際にはほとんど全ての構成が相互に接続されていると考えて良い。 Also, the control lines and information lines indicate what is considered necessary for explanation, and do not represent all control lines and information lines necessary for the product. In practice, it can be considered that almost all components are connected to each other.
1 X線源
2 被写体
3 被写体ホルダー
4 被写体位置決め機構
5 X線画像検出器
6 制御部
7 推定含有率計算部
8 表示装置
9 被写体回転機構
71 回転ステージ
72 単結晶板
73 単結晶板
81 円板
82 金属膜
160 制御部
170 推定含有率計算部
Reference Signs List 1 X-ray source 2 Subject 3 Subject holder 4 Subject positioning mechanism 5 X-ray image detector 6 Control unit 7 Estimated content rate calculation unit 8 Display device 9 Subject rotation mechanism 71 Rotation stage 72 Single crystal plate 73 Single crystal plate 81 Disc 82 Metal film 160 Control unit 170 Estimated content rate calculation unit

Claims (15)

  1.  平均エネルギーが異なる3種類以上のX線毎に、被写体の背景領域における平均強度I0(En、X、Y)を取得する第1の処理と、
     平均エネルギーの異なる前記X線を被写体の同一領域に照射し、前記X線毎の透過像における各画素の強度I(En、X、Y)を取得する第2の処理と、
     前記第2の処理で取得された各強度I(En、X、Y)を、同じ平均エネルギーのX線について取得された平均強度I0(En、X、Y)で除算し、さらに自然対数の-(マイナス)(-ln(x))を計算することで、各平均エネルギーを有するX線に対する被写体の測定吸収係数μを求める第3の処理と、
     3種類以上の前記X線のうちの1つの平均エネルギーを基準エネルギーE0に設定し、当該基準エネルギーE0について求められた測定吸収係数μによって、他の平均エネルギーを有するX線について個別に求められた測定吸収係数μを除算して相対的な測定吸収係数μ’を計算する第4の処理と、
     被写体に含まれると予想される元素の各理論吸収係数μIと各含有率σiとから理論的に合成される理論合成吸収係数μIcを、各平均エネルギーについて計算する第5の処理と、
     平均エネルギー毎に計算された理論合成吸収係数μIcと相対的な測定吸収係数μ’とを比較し、その差分の二乗和が最も小さくなるように、被写体に含まれる各元素の含有率σiを繰り返し計算により求める第6の処理と
     を計算機に実行させることを特徴とするX線撮像方法。
    A first process for obtaining an average intensity I 0 (En, X, Y) in the background area of the subject for each of three or more types of X-rays having different average energies;
    A second process of irradiating the same region of the subject with the X-rays having different average energies and obtaining the intensity I (En, X, Y) of each pixel in the transmission image for each X-ray;
    Each intensity I (En, X, Y) acquired in the second process is divided by the average intensity I 0 (En, X, Y) acquired for the X-rays having the same average energy, and further the natural logarithm. A third process of calculating a measured absorption coefficient μ of an object for X-rays having each average energy by calculating − (minus) (−ln (x));
    One average energy of the three or more kinds of the X-ray was set to the reference energy E 0, by measuring the absorption coefficient obtained μ for the reference energy E 0, determined separately for X-rays having other average energy A fourth process of calculating the relative measured absorption coefficient μ ′ by dividing the measured measured absorption coefficient μ;
    A fifth process for calculating a theoretical synthetic absorption coefficient μ Ic theoretically synthesized from each theoretical absorption coefficient μ I and each content rate σ i of an element expected to be included in the subject for each average energy;
    The theoretical synthetic absorption coefficient μ Ic calculated for each average energy is compared with the relative measured absorption coefficient μ ′, and the content ratio σ i of each element contained in the subject is minimized so that the sum of squares of the difference is minimized. An X-ray imaging method, characterized by causing a computer to execute a sixth process for repeatedly calculating.
  2.  請求項1に記載のX線撮像方法において、
     前記第5の処理は、
     平均エネルギーが異なる前記3種類以上のX線のうち2つのX線について取得された透過像について計算された測定吸収係数μの変化を求める処理と、
     前記2つのX線に対応する理論吸収係数μIの変化を計算する処理と、
     前記測定吸収係数μの変化と前記理論吸収係数μIの変化を比較して、同じ変化を示す元素を求める処理と、
     前記処理で求められた元素を主成分とする含有率σiを初期値として与える処理と
     を更に有することを特徴とするX線撮像方法。
    The X-ray imaging method according to claim 1,
    The fifth process includes
    A process for obtaining a change in the measured absorption coefficient μ calculated for a transmission image acquired for two X-rays among the three or more types of X-rays having different average energies;
    A process of calculating a change in the theoretical absorption coefficient μ I corresponding to the two X-rays;
    Comparing the change in the measured absorption coefficient μ and the change in the theoretical absorption coefficient μ I to obtain an element showing the same change;
    An X-ray imaging method, further comprising: a process of providing, as an initial value, a content rate σ i containing the element obtained by the process as a main component.
  3.  請求項1に記載のX線撮像方法において、
     前記第5の処理は、
     前記第3の処理で各平均エネルギーについて求められた複数の前記測定吸収係数μが急激に変化する平均エネルギーを求める処理と、
     前記測定吸収係数μが急激に変化する平均エネルギーを吸収端に有する元素を求める処理と、
     前記処理で求められた元素を主成分とする含有率σiを初期値として与える処理と
     を更に有することを特徴とするX線撮像方法。
    The X-ray imaging method according to claim 1,
    The fifth process includes
    A process for determining an average energy at which the plurality of measured absorption coefficients μ determined for each average energy in the third process change abruptly;
    A process for obtaining an element having an average energy at which the measured absorption coefficient μ changes abruptly at the absorption edge;
    An X-ray imaging method, further comprising: a process of providing, as an initial value, a content rate σ i containing the element obtained by the process as a main component.
  4.  請求項1に記載のX線撮像方法において、
     平均エネルギーが異なる前記3種類以上のX線の全てについての前記第1の処理の実行後、平均エネルギーが異なる前記3種類以上のX線の全てについて前記第2の処理が実行される
     ことを特徴とするX線撮像方法。
    The X-ray imaging method according to claim 1,
    After the execution of the first process for all of the three or more types of X-rays having different average energies, the second process is performed for all of the three or more types of X-rays having different average energies. X-ray imaging method.
  5.  請求項1に記載のX線撮像方法において、
     平均エネルギーが異なる前記3種類以上のX線のうちの1つのX線について前記第1の処理と前記第2の処理が実行された後、別のX線についての前記第1の処理と前記第2の処理が繰り返し実行される
     ことを特徴とするX線撮像方法。
    The X-ray imaging method according to claim 1,
    After the first process and the second process are performed on one X-ray among the three or more types of X-rays having different average energies, the first process and the first process on another X-ray are performed. 2. An X-ray imaging method, wherein the process 2 is repeatedly executed.
  6.  平均エネルギーが異なる3種類以上のX線毎に、被写体の背景領域における平均強度I0(En、X、Y)を取得する第1の処理と、
     平均エネルギーの異なる前記X線を被写体の同一領域に対して複数の方向から照射して前記X線毎の断面像を取得し、更に、前記X線毎の断面像における各画素の強度I(En、X、Y)を取得する第2の処理と、
     前記第2の処理で取得された各強度I(En、X、Y)を、同じ平均エネルギーのX線を用いて取得された平均強度I0(En、X、Y)で除算し、さらに自然対数の-(マイナス)(-ln(x))を計算することで、各平均エネルギーを有するX線に対する被写体の測定吸収係数μを求める第3の処理と、
     被写体に含まれると予想される元素の各理論吸収係数μIと各含有率σiとから理論的に合成される理論合成吸収係数μIcを、各平均エネルギーについて計算する第4の処理と、
     平均エネルギー毎に計算された理論合成吸収係数μIcと測定吸収係数μ’とを比較し、その差分の二乗和が最も小さくなるように、被写体に含まれる各元素の含有率σiを繰り返し計算により求める第5の処理と
     を計算機に実行させることを特徴とするX線撮像方法。
    A first process for obtaining an average intensity I 0 (En, X, Y) in the background area of the subject for each of three or more types of X-rays having different average energies;
    The X-rays having different average energies are irradiated to the same region of the subject from a plurality of directions to obtain cross-sectional images for each X-ray, and the intensity I (En of each pixel in the cross-sectional image for each X-ray. , X, Y)
    Each intensity I (En, X, Y) acquired in the second process is divided by an average intensity I 0 (En, X, Y) acquired using X-rays having the same average energy, and further natural A third process for calculating the measured absorption coefficient μ of the subject with respect to X-rays having respective average energies by calculating the logarithm-(minus) (-ln (x));
    A fourth process of calculating a theoretical synthetic absorption coefficient μ Ic theoretically synthesized from each theoretical absorption coefficient μ I and each content rate σ i of an element expected to be included in the subject, for each average energy;
    Compare the theoretically synthesized absorption coefficient μ Ic calculated for each average energy and the measured absorption coefficient μ ′, and repeatedly calculate the content σ i of each element in the subject so that the sum of squares of the difference is minimized. An X-ray imaging method characterized by causing a computer to execute a fifth process obtained by the following.
  7.  請求項6に記載のX線撮像方法において、
     前記第4の処理は、
     平均エネルギーが異なる前記3種類以上のX線のうち2つのX線について取得された透過像について計算された測定吸収係数μの変化を求める処理と、
     前記2つのX線に対応する理論吸収係数μIの変化を計算する処理と、
     前記測定吸収係数μの変化と前記理論吸収係数μIの変化を比較して、同じ変化を示す元素を求める処理と、
     前記処理で求められた元素を主成分とする含有率σiを初期値として与える処理と
     を更に有することを特徴とするX線撮像方法。
    The X-ray imaging method according to claim 6,
    The fourth process includes
    A process for obtaining a change in the measured absorption coefficient μ calculated for a transmission image acquired for two X-rays among the three or more types of X-rays having different average energies;
    A process of calculating a change in the theoretical absorption coefficient μ I corresponding to the two X-rays;
    Comparing the change in the measured absorption coefficient μ and the change in the theoretical absorption coefficient μ I to obtain an element showing the same change;
    An X-ray imaging method, further comprising: a process of providing, as an initial value, a content rate σ i containing the element obtained by the process as a main component.
  8.  請求項6に記載のX線撮像方法において、
     前記第4の処理は、
     前記第3の処理で各平均エネルギーについて求められた複数の前記測定吸収係数μが急激に変化する平均エネルギーを求める処理と、
     前記測定吸収係数μが急激に変化する平均エネルギーを吸収端に有する元素を求める処理と、
     前記処理で求められた元素を主成分とする含有率σiを初期値として与える処理と
     を更に有することを特徴とするX線撮像方法。
    The X-ray imaging method according to claim 6,
    The fourth process includes
    A process for determining an average energy at which the plurality of measured absorption coefficients μ determined for each average energy in the third process change abruptly;
    A process for obtaining an element having an average energy at which the measured absorption coefficient μ changes abruptly at the absorption edge;
    An X-ray imaging method, further comprising: a process of providing, as an initial value, a content rate σ i containing the element obtained by the process as a main component.
  9.  請求項6に記載のX線撮像方法において、
     前記X線のそれぞれについて、前記第1の処理は、被写体に対するX線の照射前と前記複数の全ての方向からの照射の終了後に実行される
     ことを特徴とするX線撮像方法。
    The X-ray imaging method according to claim 6,
    For each of the X-rays, the first process is executed before the X-ray irradiation to the subject and after the irradiation from all of the plurality of directions is completed.
  10.  被写体を載置する被写体ホルダーと
     前記被写体ホルダーの位置を調整し、X線に対して前記被写体を位置決めする被写体位置決め機構と、
     X線の強度を検出するX線画像検出器と、
     前記被写体ホルダー及び前記被写体位置決め機構を制御する制御部と、
     平均エネルギーが異なる3種類以上のX線毎に、被写体の背景領域における平均強度I0(En、X、Y)を取得する第1の処理と、平均エネルギーの異なる前記X線を被写体の同一領域に照射し、前記X線毎の透過像における各画素の強度I(En、X、Y)を取得する第2の処理と、前記第2の処理で取得された各強度I(En、X、Y)を、同じ平均エネルギーのX線を用いて取得された平均強度I0(En、X、Y)で除算し、各平均エネルギーを有するX線に対する被写体の測定吸収係数μを求める第3の処理と、3種類以上の前記X線のうちの1つの平均エネルギーを基準エネルギーE0に設定し、当該基準エネルギーE0について求められた測定吸収係数μによって、他の平均エネルギーを有するX線について個別に求められた測定吸収係数μを除算して相対的な測定吸収係数μ’を計算する第4の処理と、被写体に含まれると予想される元素の各理論吸収係数μIと各含有率σiとから理論的に合成される理論合成吸収係数μIcを、各平均エネルギーについて計算する第5の処理と、平均エネルギー毎に計算された理論合成吸収係数μIcと相対的な測定吸収係数μ’とを比較し、その差分の二乗和が最も小さくなるように、被写体に含まれる各元素の含有率σiを繰り返し計算により求める第6の処理とを実行する推定含有率計算部と
     有するX線撮像装置。
    A subject holder for placing a subject, a subject positioning mechanism for adjusting the position of the subject holder and positioning the subject with respect to X-rays;
    An X-ray image detector for detecting the intensity of the X-ray;
    A control unit for controlling the subject holder and the subject positioning mechanism;
    First processing for obtaining the average intensity I 0 (En, X, Y) in the background area of the subject for each of three or more types of X-rays having different average energies, and the X-rays having different average energies in the same area of the subject , And a second process for obtaining the intensity I (En, X, Y) of each pixel in the transmission image for each X-ray, and the respective intensity I (En, X, Y, acquired in the second process) Y) is divided by the average intensity I 0 (En, X, Y) acquired using X-rays having the same average energy, and a third measurement absorption coefficient μ of the subject for the X-rays having each average energy is obtained. For the X-rays having other average energies by setting the average energy of one of the three or more types of X-rays to the reference energy E 0 and measuring the absorption coefficient μ determined for the reference energy E 0 Relative measurement absorption coefficient by dividing the measured absorption coefficient μ obtained individually A fourth process for calculating several μ ′, and a theoretical synthetic absorption coefficient μ Ic theoretically synthesized from each theoretical absorption coefficient μ I and each content rate σ i of the element expected to be included in the subject, The fifth process to calculate for each average energy is compared with the theoretically synthesized absorption coefficient μ Ic calculated for each average energy and the relative measured absorption coefficient μ ′, and the sum of squares of the differences is minimized. An X-ray imaging apparatus comprising: an estimated content rate calculation unit that executes a sixth process of repeatedly calculating the content rate σ i of each element contained in the subject.
  11.  請求項10に記載のX線撮像装置において、
     前記推定含有率計算部は、前記第5の処理において、
     平均エネルギーが異なる前記3種類以上のX線のうち2つのX線について取得された透過像について計算された測定吸収係数μの変化を求める処理と、
     前記2つのX線に対応する理論吸収係数μIの変化を計算する処理と、
     前記測定吸収係数μの変化と前記理論吸収係数μIの変化を比較して、同じ変化を示す元素を求める処理と、
     前記処理で求められた元素を主成分とする含有率σiを初期値として与える処理と
     を更に実行することを特徴とするX線撮像装置。
    The X-ray imaging apparatus according to claim 10,
    In the fifth process, the estimated content rate calculation unit,
    A process for obtaining a change in the measured absorption coefficient μ calculated for a transmission image acquired for two X-rays among the three or more types of X-rays having different average energies;
    A process of calculating a change in the theoretical absorption coefficient μ I corresponding to the two X-rays;
    Comparing the change in the measured absorption coefficient μ and the change in the theoretical absorption coefficient μ I to obtain an element showing the same change;
    An X-ray imaging apparatus further comprising: a process of giving, as an initial value, a content rate σ i containing the element obtained by the process as a main component.
  12.  請求項10に記載のX線撮像装置において、
     前記推定含有率計算部は、前記第5の処理において、
     前記第3の処理で各平均エネルギーについて求められた複数の前記測定吸収係数μが急激に変化する平均エネルギーを求める処理と、
     前記測定吸収係数μが急激に変化する平均エネルギーを吸収端に有する元素を求める処理と、
     前記処理で求められた元素を主成分とする含有率σiを初期値として与える処理と
     を更に実行することを特徴とするX線撮像装置。
    The X-ray imaging apparatus according to claim 10,
    In the fifth process, the estimated content rate calculation unit,
    A process for determining an average energy at which the plurality of measured absorption coefficients μ determined for each average energy in the third process change abruptly;
    A process for obtaining an element having an average energy at which the measured absorption coefficient μ changes abruptly at the absorption edge;
    An X-ray imaging apparatus further comprising: a process of giving, as an initial value, a content rate σ i containing the element obtained by the process as a main component.
  13.  請求項10に記載のX線撮像装置において、
     平均エネルギーが異なる3種類以上の前記X線を出力するX線管を更に有する
     ことを特徴とするX線撮像装置。
    The X-ray imaging apparatus according to claim 10,
    An X-ray imaging apparatus further comprising an X-ray tube that outputs three or more types of X-rays having different average energies.
  14.  請求項10に記載のX線撮像装置において、
     白色X線から単色X線を選択的に抽出することにより、平均エネルギーが異なる3種類以上の前記X線を出力する結晶分光器を更に有する
     ことを特徴とするX線撮像装置。
    The X-ray imaging apparatus according to claim 10,
    An X-ray imaging apparatus, further comprising: a crystal spectrometer that outputs three or more types of X-rays having different average energies by selectively extracting monochromatic X-rays from white X-rays.
  15.  請求項10に記載のX線撮像装置において、
     白色X線から単色X線を選択的に抽出することにより、平均エネルギーが異なる3種類以上の前記X線を出力する回転リボルバー式のエネルギー変換機構を更に有する
     ことを特徴とするX線撮像装置。
    The X-ray imaging apparatus according to claim 10,
    An X-ray imaging apparatus further comprising a rotary revolver type energy conversion mechanism that outputs three or more types of X-rays having different average energies by selectively extracting monochromatic X-rays from white X-rays.
PCT/JP2014/073737 2014-09-09 2014-09-09 X-ray imaging method and device WO2016038667A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073737 WO2016038667A1 (en) 2014-09-09 2014-09-09 X-ray imaging method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/073737 WO2016038667A1 (en) 2014-09-09 2014-09-09 X-ray imaging method and device

Publications (1)

Publication Number Publication Date
WO2016038667A1 true WO2016038667A1 (en) 2016-03-17

Family

ID=55458460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073737 WO2016038667A1 (en) 2014-09-09 2014-09-09 X-ray imaging method and device

Country Status (1)

Country Link
WO (1) WO2016038667A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175319A1 (en) * 2019-02-28 2020-09-03 富士フイルム株式会社 Radiation image processing device and program

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341933A (en) * 1989-03-03 1991-02-22 Matsushita Electric Ind Co Ltd Radiograph processing method and photographing device
US5854820A (en) * 1996-05-02 1998-12-29 Slijkerman; Walter Fredericus Johannes Method and meter for measuring the composition of a multiphase fluid
US20040190679A1 (en) * 2002-11-22 2004-09-30 Waggener Robert G. Three component x-ray bone densitometry
JP2007218845A (en) * 2006-02-20 2007-08-30 Shimadzu Corp Transmission x-ray measuring method
US20100238445A1 (en) * 2007-10-30 2010-09-23 Gilles Roux Method and apparatus for determining volume fractions in a multiphase flow
JP2011024773A (en) * 2009-07-24 2011-02-10 National Institute Of Advanced Industrial Science & Technology X-ray component measuring apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0341933A (en) * 1989-03-03 1991-02-22 Matsushita Electric Ind Co Ltd Radiograph processing method and photographing device
US5854820A (en) * 1996-05-02 1998-12-29 Slijkerman; Walter Fredericus Johannes Method and meter for measuring the composition of a multiphase fluid
US20040190679A1 (en) * 2002-11-22 2004-09-30 Waggener Robert G. Three component x-ray bone densitometry
JP2007218845A (en) * 2006-02-20 2007-08-30 Shimadzu Corp Transmission x-ray measuring method
US20100238445A1 (en) * 2007-10-30 2010-09-23 Gilles Roux Method and apparatus for determining volume fractions in a multiphase flow
JP2011024773A (en) * 2009-07-24 2011-02-10 National Institute Of Advanced Industrial Science & Technology X-ray component measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020175319A1 (en) * 2019-02-28 2020-09-03 富士フイルム株式会社 Radiation image processing device and program
JPWO2020175319A1 (en) * 2019-02-28 2021-12-02 富士フイルム株式会社 Radiation image processing equipment and programs
JP7098813B2 (en) 2019-02-28 2022-07-11 富士フイルム株式会社 Radiation image processing equipment and programs

Similar Documents

Publication Publication Date Title
Ashiotis et al. The fast azimuthal integration Python library: pyFAI
McDonald et al. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy
Faragó et al. Tofu: A fast, versatile and user-friendly image processing toolkit for computed tomography
JP2017044603A (en) Radiation image generation device
KR20150079560A (en) Geometric characterization and calibration of a cone-beam computer tomography apparatus
Siliqi et al. SUNBIM: A package for X-ray imaging of nano-and biomaterials using SAXS, WAXS, GISAXS and GIWAXS techniques
Pelt et al. Ring artifact reduction in synchrotron x-ray tomography through helical acquisition
US20160310092A1 (en) Trabecular bone analyzer
Menasche et al. Afrl additive manufacturing modeling series: challenge 4, in situ mechanical test of an in625 sample with concurrent high-energy diffraction microscopy characterization
EP2775296B1 (en) An X-ray diffraction method of mapping grain structures in a crystalline material sample, and an X-ray diffraction apparatus
WO2016038667A1 (en) X-ray imaging method and device
JP2023166550A (en) Scatter correction for computed tomography imaging
JP7135795B2 (en) Fluorescent X-ray Analysis System and Fluorescent X-ray Analysis Method
JP2014239873A (en) Arithmetic unit, program, and imaging system
EP3019857B1 (en) X-ray diffraction-based defective pixel correction method using an active pixel array sensor
Poulsen et al. Multigrain crystallography and three-dimensional grain mapping
EP4161389B1 (en) Spectral dark-field imaging
JP5883689B2 (en) X-ray imaging apparatus and X-ray imaging method
US11796484B2 (en) Apparatus for processing data acquired by a dark-field and/or phase contrast X-ray imaging system
Krönke et al. CNN-based pose estimation for assessing quality of ankle-joint X-ray images
WO2017188559A1 (en) Method of image reconstruction in computed tomography
US20240046629A1 (en) Enhancing contrast sensitivity and resolution in a grating interferometer by machine learning
JP2016150173A (en) X-ray talbot photographing apparatus and x-ray talbot photographing system
Fu et al. Analysis and calibration of stage axial vibration for synchrotron radiation nanoscale computed tomography
Turner Erosion and dilation of edges in dimensional X-ray computed tomography images

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901481

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP