WO2016038421A1 - Fruit harvesting device - Google Patents
Fruit harvesting device Download PDFInfo
- Publication number
- WO2016038421A1 WO2016038421A1 PCT/IB2014/064354 IB2014064354W WO2016038421A1 WO 2016038421 A1 WO2016038421 A1 WO 2016038421A1 IB 2014064354 W IB2014064354 W IB 2014064354W WO 2016038421 A1 WO2016038421 A1 WO 2016038421A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air
- rotating element
- rotor
- pulse
- rotating
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01D—HARVESTING; MOWING
- A01D46/00—Picking of fruits, vegetables, hops, or the like; Devices for shaking trees or shrubs
- A01D46/005—Picking of fruits, vegetables, hops, or the like; Devices for shaking trees or shrubs picking or shaking pneumatically
Definitions
- the present invention relates to an air pulse generating device specially developed to harvest fruits of different types of plants, replacing manual harvesting which, for intensive production modes is very inefficient, and even replacing other mechanical action machines that They cause damage to the plant.
- Patent ES428532 from Guibeaud, 1976 uses the concept of air pulse and resonance with the grape and peduncle, but it is not understood how the pulse is generated and how intense it is. It has a very low aerodynamic efficiency.
- Pool document US3455502 presents a long tube with a telescopic segment circular that changes the direction. It also has some deflector curtains that vary angularly and thus the pulse is generated. It has a very low aerodynamic efficiency.
- Billings US3943688 uses clappers to oscillate the air flow, generating a pulse. It is not aerodynamically efficient. It deflects, but it does it in an alternative way. It has a complex mechanical system.
- Scheffler US4175368 patent presents fans and a disc that rotates by means of a motor with ducts in different directions.
- the aerodynamic efficiency is poor since it has a long and restricted air path by the tubes or the fins attached to the rotating disc, it is of complex design, it has many moving parts and requires an engine to move the mobile disk.
- Patents that are relevant for the analysis of the state of the art of the present invention are WO 2007/021271 which uses hydrogen combustion to generate pulses for the collection of fruits, US6594982 and FR2862483 which uses rotating means to generate a pulse of air.
- Another indicator to consider is the spatial distribution of the intensity or range of the pulse (see figure 2).
- a given configuration of the device can have a high intensity near the mouth, but this can decay strongly when moving away from it (curve b in the figure). We say in this case that the pulse range is low.
- another configuration may have less intensity in the mouth, but not decline so strongly with distance (curve a).
- the pulse range is not as important, but it is for large plants such as the olive.
- the harvest is not carried out in a single pass, but up to 8 passes are made per season, therefore in each of them it is desirable that the device harvest only the fruit that is at the point optimum ripening, leaving the green fruit for the following passes.
- the selectivity is closely related to the exposure time, that is, the time at which the air pulse action is applied to the plant. The longer the exposure time, the greater the harvest efficiency but also the selectivity is reduced, and vice versa, the shorter the exposure time, the greater the selectivity but the lower the harvest efficiency. To have a shorter exposure time, maintaining efficiency can increase the intensity of the pulse, of course within the limits where the plant is not damaged.
- the device of the present invention provides a fruit harvester that solves the problem detected in the state of the art, since it achieves an operative equipment, which allows controlling all the variables involved and considerably reduces energy consumption, due to the aerodynamic design achieved.
- the present invention allows to increase the maximum intensity of the pulse that the device can generate, but at the same time allowing it to be easily adjustable by the operator, both in frequency and in direction.
- FIGURES Figure 1 Pulse intensity produced by the device at a point in space A defined as the difference between the maximum and minimum values of the total pressure at that point.
- Figure 2 Decay of the pulse intensity with the distance to the mouth of the generator.
- Curve b has a high pulse intensity near the mouth, but decays sharply.
- the curve a has less intensity in the mouth but this is maintained for a longer distance (greater pulse range).
- Figure 3 Left: cylindrical housing. Right: trunk-conical housing.
- Figure 4 Flow pattern in the generator input zone without (left) and with (right) input lip.
- the lip eliminates the effect of vein-contract by improving the entry of air into the device.
- Figure 5 Vectors speed and magnitude of speed. Left below: without the input lip. Right down: with entrance lip. Above detail of the result without lip in the separation zone. Note the large separation zone (compared to the result with lip) and the narrowing in the flow (contracted vein).
- Figure 6 Speed along a longitudinal line.
- Figure 9 Removable supplements. Fixing scheme for opening 30%.
- Figure 10 Removable supplements. Perspective views of the rotor with the three openings of 50%, 40%, and 30%.
- Figure 11 Removable supplements. Speeds obtained at the start with the openings of 50%, 40%, and 30%.
- Figure 12 Device for continuous regulation of angular opening.
- Figure 13 Removable supplements to regulate the radial opening of the rotor. Front view.
- Figure 14 Removable supplements to regulate the radial opening of the rotor. Perspective view.
- Figure 15 Frequency and pulse amplitude control system.
- Figure 16 Frequency sweep with triangular wave.
- Figure 17 Movement of displacement and orientation of the generator.
- Figure 18 Use of the wink to focus two devices on the same floor.
- Figure 19 System to control the advance, pitch, and wink of the device. BRIEF DESCRIPTION OF THE INVENTION
- the fruit harvesting device is one of those that generate air pulses and cause the detachment of said fruits by breaking their stems, and is made up of at least two rotating elements, preferably coaxial: a first rotating element (preferably driven by a motor) generator of an air current and a second rotating element generating said air pulses (preferably driven by the air current generated by said first rotating element and whose rotation speed is controlled by a brake or alternatively it is driven by another motor), contained in a housing, which is preferably integral to a central axis on which said rotating elements rotate, where said housing comprises an air intake sector, where said first rotating element is located, which is frustoconical with a conicity angle between 10 ° and 25 °; and a frequency control system of said air pulses.
- said second rotating element, orienting said air stream is a rotor that comprises at least 1 opening in its plane perpendicular to the axis of rotation, through which the air stream generated by the first rotating element passes.
- said rotor also comprises curved fins oriented towards the first rotating element, which generate the torque that rotates this rotor, thanks to the air driven by the first rotating element.
- said rotating elements rotate at different speeds generating a pulse of air in the space located at the exit of the housing, after the rotor.
- the amplitude of said pulse of air is regulated by the speed of said first rotating element and the frequency of said air pulse is regulated by the speed of said rotor, the size and number of said openings.
- these fruits are selected from the set comprised of olives, grapes, pears, apples, nuts, peaches, blueberries, fine fruits, and fruits that are supported by a peduncle.
- said rotor comprises between 2 and 6 openings of variable size in its plane perpendicular to the axis of rotation, through which the air current generated by the first rotating element passes.
- Alternatives of said variable size openings comprise an angular opening regulation device, and / or a continuous angular opening regulation device, and / or a radial opening regulation device.
- control system comprises a sensor that counts the turns of said rotor and therefore directly measures the frequency of said air pulse; a second sensor that measures the speed of the first rotating element and therefore, indirectly, the air flow and pulse width; a board that receives the values of said speeds in RPM for rotor and first rotating element and an LCD display showing said speed values in RPM; a controlling potentiometer sends a PWM (Pulse-Width Modulation) signal to control said rotor speed and another potentiometer that sends a PWM signal to a proportional hydraulic valve that controls the hydraulic motor that moves said first rotating element and thus regulates its speed.
- PWM Pulse-Width Modulation
- a preferred alternative of the present invention also comprises a suction lip that decreases the effect of vein-contracta.
- the present invention provides a support of said housing that rotates freely on a horizontal axis, generating a pitching movement, and a hydraulic cylinder that controls said movement. It also provides a support of said housing that rotates freely on a vertical axis generating a yaw movement, and a hydraulic cylinder that controls said movement. It also provides a support of said housing that is mounted on a carriage with wheels that move on guides, which allow forward and reverse movement, mounted on a platform that is integral to the vehicle that carries the device.
- a fruit harvesting device of those that generate air pulses and cause the detachment of said fruits by breaking their stems comprising a housing with at least two rotating elements: a first rotating element generating an air stream and a second rotating element generating said air pulses; and a frequency control system of said air pulses; a housing with a coaxial axis to said rotating elements, with a conical air intake sector with a conicity angle of between 10 ° and 25 °, which has a suction lip that decreases the effect of vein-contract; and which also includes pivoting means that give the device movement with respect to a vertical axis and with respect to a horizontal axis.
- Another object of the present invention is a process for harvesting fruits comprising the following steps:
- step d) said device is rotated with respect to a vertical axis, to achieve a yaw movement; said device is rotated with respect to a horizontal axis, to achieve a pitching movement; and it moves to the device along its axial axis, managing to bring the fruit harvesting device closer or further away from the plant to which it is being harvested.
- the pulse intensity can be increased simply by increasing the fan power, or by improving the aerodynamic efficiency of the device.
- This patent presents three aerodynamic improvements that allow improving efficiency. With these improvements, higher pulse intensities can be obtained for the same power, or reciprocally, the same pulse intensity can be obtained with a lower power, resulting in a lower consumption and weight of the machine.
- the improvements consist of:
- Variable size openings Removable supplements are defined, which act as opening regulating devices, which allow regulating the opening of the outlets, thus regulating the pulse range.
- This new technical characteristic, characteristic of the invention consists in introducing a certain conicity to the first section AB (see figure 3) of the generator, between 5 and 50 Sexagesimals, preferably between 10 and 25 ° sexagesimals, more preferably between 12 and 18 ° sexagesimal.
- the power consumed is reduced, maintaining the range of the pulse since this is mainly given by the section of the outlets and by their separation, that is to say by the output section, which as we said is maintained constant.
- the taper is very pronounced it could happen that the air flow produced by the fan does not reach correctly to the outlets, reducing the efficiency of the generator.
- the diameter of the output section is 900mm, while the diameter of the input section is 600mm in the conical version, against 900mm in the cylindrical housing.
- the pulse range is maintained by reducing the power consumed by the generator from 40HP to 17HP.
- Another additional benefit of this reduction in consumption is that the hydraulic circuit works at a much lower pressure, about 110 kg / cm2 for the conical housing, against 170 kg / cm2 for the cylindrical housing.
- Figure 5 shows the velocity field in two simulations with (right) and without (left) the input lip. It is observed that without the lip there is a large area of separation, making the effect of contracted vein evident. In the case with lip there is a separation zone, but much smaller. In the case without lip it is observed that this flow strangulation causes the velocities in the vein area to be higher, but the main flow passes through a region closer to the axis. Finally at the exit higher speeds are obtained with the lip, therefore higher dynamic pressures and higher pulse intensity
- FIG. 6 shows how the speed varies along a line parallel to the axis of the generator, at a distance from the axis such that it is in the middle of the outlet, that is, where the speeds are maximum in the radial direction . It is observed that the velocities increase near the mouth from 108 (point A) to 130 [km / h] (point B), ie an increase of 20%. But what is even more important is that the speeds at greater distances increase in an even greater proportion; at 2.5 m the speed goes from 30 (point O to 57 [km / h] (point D), ie an increase of 90%.
- the rotors of the present invention have openings or mouths in the form of circular crown sectors, as shown in Figure 7. These mouths are characterized by an angular opening ⁇ and a radial opening AR. It is desirable to be able to control these parameters in the most dynamic way possible.
- the angular and radial supplements of the present invention allow modifying the basic geometry of a rotor. In this way, in a series of pre-harvest experiences, the optimal geometry can be determined. Preferred examples of geometries are shown in the following sections, of course the use of this methodology can be applied to a wide range of angular and radial apertures.
- the figure shows the geometry of a 50% angular aperture rotor and the supplements to have 40% and 30% angular apertures. But the concept can be applied to rotors with an arbitrary initial angular opening (for example 90%) and obtain a reduction in angular opening with supplements of different sizes, for example 80%, 70%, 60%, 50%, 40% , 30%, 20%, and 10%.
- the gray triangle Dark ABC represents the blade in the maximum opening configuration.
- the blade is not symmetrical with respect to the vertical, in order to have a greater pressure on the intrados BC with respect to the extracted BA and in this way produce a torque on the rotor that drives it to the left (i.e. clockwise direction, if we refer to the front view shown in figure 7).
- the asymmetry between the angle in the extrados and the intrados is adjusted so as to obtain enough torque to drive the rotor, but not too important to require too much power to control.
- Figure 10 shows the views of the rotors with supplement for each of the indicated openings.
- Figure 10 shows perspective views of the rotor for the three openings considered.
- Figure 11 shows the speed curves on a straight line parallel to the axis of the device, passing through the center of the mouth, for the three openings considered. It is observed that the speed is increased from 129 [km / h] for a 50% opening up to 160 [km / h] for 30% opening, that is an increase of 24%. But far from the mouth (2.5 m) the speed falls from 57 [km / h] to 34 [km / h], that is, a reduction of 60%. Therefore, the supplement is useful for plants of less than 1 [m] of half-width (for example, blueberry) allowing to increase the intensity of the pulse throughout its entire length.
- half-width for example, blueberry
- FIG. 12 An alternative of the present invention is a device like the one shown in Figure 12, which allows the angular opening to be regulated continuously.
- Figure 12.a a frontal view of the rotor is observed in its maximum opening configuration, which in this example is 50%, that is, the angle ⁇ is 90 °.
- the blade is hollow, and is composed of articulated rigid panels that, when moving, change the geometry of the blade.
- ⁇ AOE ' 120 °.
- FIG.c On the right (figure 12.c) we see a projection of the blade on the outer cylinder. At its point of maximum opening the blade cut on the outer cylinder is an ACE triangle.
- both the DEKJH mobile panel and its counterpart can be mounted on the opposite blade rigidly on a piece that rotates on the O axis. In this way both panels move in solidarity and the operator must only regulate the rotation of this set by means of a screw or toothed crown.
- This device can easily adapt to a configuration with three or more mouths.
- the rotor and the panels that make up the blades are constructed in GRP (Fiberglass Reinforced Plastic).
- the two panels of the base AL and ME are made of aluminum. Both the ABFN panel and the first part of the AL base are fixed to the cone.
- the DEKJH mobile panel is fixed to the cone in the desired position with screws on the JK edge.
- the cone has circumferential grooves so that the rotor opening can be defined by fixing the screws in some position of these grooves.
- the lower panel ME is fixed to the DEKJH panel and is fixed to the cone with screws that move through a slot.
- the BCGF and CDHG panels are articulated with each other and with the other adjacent panels by hinges on the edges BF, CG, and DH. These hinges can be of continuous aluminum hinges type.
- the present invention provides a device for regulating said radial openings.
- the interest in having adjustable radial aperture is to be able to compensate for a variation in the angular aperture while maintaining the output area, to maintain the velocity in the jet.
- Figure 14 shows in perspective the radial supplement. On the left there is a cut of the cone and the supplement (ACB, external surface) while on the right the complete ACB supplement is observed, with a fixing edge to fix it with screws to the rotor blades.
- ACB external surface
- radial openings can be regulated with these supplements from very high openings such as 50% of the outer radius even very small, like 5% or less.
- the radial and angular supplements interfere with each other in the connection lines of the blade with the AB and AC cone (see figure 14). Due to this, the radial supplements must be specific for each angular supplement, that is, if an angular supplement of 40% aperture is used, and a radial supplement of 50 [mm] thick, then for a 30% angular supplement of opening the radial supplement 50 [mm] thick must be different.
- the mouth of the device be as close as possible to it, since the intensity of the pulse is greater there and decreases as the branches get in flag and they move away from the mouth. In this way, better harvest efficiencies are obtained for the same power or, reciprocally, the power for the same harvest efficiency can be reduced.
- the operator Normally the operator must locate the vehicle that transports the device so that the mouth of the device is as close as possible to the plant line. You should also be able to regulate the height at which the device is so that the area of action of the device coincides with the height of the plant where the highest fruit density is.
- the present invention provides a system that allows the position and orientation of the device to be regulated by hydraulic cylinders, in particular three of the six possible degrees of freedom thereof, which, following the nomenclature used for the movement of ships and airplanes, we will call (see figure 17):
- Wink corresponds to rotate the device on a vertical axis through the center of it. This movement allows the operator to focus the action of two devices located on the same side of the line on the same floor, in order to superimpose the area of action of both (see figure 18).
- the system shown in Figure 19 allows the operator to perform the three movements indicated using hydraulic cylinders.
- the housing containing the device (1) is mounted on a fork-type support (2) that allows the device to be rotated on the axis (O), that is to say the pitching movement. This movement is controlled by the hydraulic cylinder (3).
- This entire system is mounted on a frame (4) that provides rigidity to the assembly and is mounted on a rotating ring (frequently used for trailers) (5) that turns on a bollard (6).
- This ring which allows the yaw movement on the vertical axis (0 ') and is actuated by a second hydraulic cylinder (7).
- the bollard rests on a trolley with wheels (8) which allows the forward and reverse movement that is controlled with the hydraulic cylinder (9).
- the wheels of the carriage move on guides mounted on a platform (10) that is integral with the vehicle that carries the device.
- the optimal frequency of extraction varies by species, and other factors such as degree of vegetative development of the plantation and the degree of maturation. For example, it has been determined that 3 [Hz] is the optimum frequency for blueberries with an intermediate ripening level, while for olive trees with a low ripening degree, the optimum frequency is between 1 and 2 [Hz]. Therefore, although values indicative of the optimum harvest frequency can be determined a priori, it is necessary that the operator can adjust it in real time.
- the frequency of the pulse is given by the speed of rotation of the rotor and the most basic and important mechanism to control it is regulating the intensity applied to the electric brake.
- the first effect is greater, that is, a change in the speed of rotation of the fan has a sensitive effect on the pulse frequency, but a change in the intensity of the electric brake has a minor effect on the pulse intensity, so that the operator usually sets the desired fan rotation speed first and then the pulse frequency through the electrobrake control.
- a control system was implemented (see figure 15), which consists of a board ⁇ "Operator Side” in the figure) and a series of components that are added to the generator ⁇ "Turbine Side” in the figure) to sense and control these variables. It consists of a sensor that counts the turns of the electric brake, which is integral with the rotor and therefore directly measures the pulse frequency. Another sensor measures the fan speed and therefore (indirectly) the air flow and pulse width. The RPM values for rotor and turbine are transmitted to the dashboard and shown to the operator on an LCD display. On the other hand, the controller sends a PWM (Pulse-Width Modulation) signal to control the electric brake and another PWM signal to a proportional hydraulic valve that controls the hydraulic motor that drives the fan.
- PWM Pulse-Width Modulation
- both PWM signals are controlled from the panel with potentiometers.
- the operator can see in real time the frequency and intensity of the pulse and regulate them through the potentiometers mentioned in open loop mode. Normally, the operator first adjusts the turbine potentiometer until it reaches the desired pulse intensity (RPM of the fan), and then adjusts the electrobrake potentiometer until it reaches the desired frequency. If in this mode some disturbance to the system occurs, for example some obstruction to the rotor, the pulse frequency will go down and the electronic system will not take any action to return to the desired frequency.
- RPM pulse intensity
- the microcontroller performs a simple logic on the controlled variables (proportional valve and electrobrake PWM) to maintain the operating parameters that are sensed (fan speed and pulse frequency).
- the outer shell is constructed in fiberglass with a thickness of 10 mm. It is divided into 3 sections: the conical section where the fan is moored, the central cylindrical section, and the cylindrical outlet section, where the rotor is moored. This division into sections allows you to easily exchange different types of fans according to their power and rotor supports.
- the fan is composed of a Gatti S.A. propeller. of 8 polyamide blades, 40 degrees maximum angle, 700mm diameter. This propeller can reach speeds of 2500 RPM.
- the rotor which is the most important part of the device and whose construction depends on its aerodynamic efficiency, is constructed in GRP (Fiberglass Reinforced Plastic). For this, different designs are proposed in CAD (Computer Aided Design), which are tested in-silico using CFD tools (Computational Fluid Dynamics).
- CAD Computer Aided Design
- CFD Computer Fluid Dynamics
- the fan is driven by a hydraulic motor (MH) that converts the hydraulic pressure developed by the pump into torque on the fan shaft.
- MH hydraulic motor
- the hydraulic motor operates up to 160 kgf / cm2 of pressure, developing up to 2500 RPM on the fan. Under these conditions the hydraulic motor consumes 25HP of power.
- the hydraulic circuit consists of a pump (BH), which is driven by an electric motor (ME).
- a proportional hydraulic valve (VHP) allows to control from the command board the power delivered to the fan and therefore the speed of rotation of the same.
- the controlling device consists of a console and display (CD), which allows the PWM signal sent to the proportional valve mentioned for the control of the fan speed and the PWM for the electric brake and therefore the rotor speed to be controlled by potentiometers.
- the controller consists of two parts, one contained in the control console ⁇ "operator side" in Figure 15) used by the operator, and the other near the equipment ⁇ "turbine side” in the figure). Both potentiometers in the console generate an amplitude that is interpreted by the microcontroller (MC) that sends them to a CAN transceiver (CT) to be sent to the turbine side. On the turbine side, another CAN transceiver decodes it and sends it in the form of a PWM to the proportional valve (VHP) or to the electric brake.
- MC microcontroller
- CT CAN transceiver
- VHP proportional valve
- both the electric brake and the fan have lap counting sensors (SCV), which send back the number of turns (speed of rotation) to the control console. This data is reported on the LCD screen and is also used for the closed loop control strategy.
- SCV lap counting sensors
- VHP Sun Hydraulics proportional valve (USA).
- the model is FPCC-MCN, with 24 volt 770-224 coil and ECB inline body.
- CT CAN Transceiver ATMEL ATA6660-TAPY19 • CD: Console and LCD display WINSTAR WH1602L-YYB-ST
- both the fork (2) and the frame (4) are constructed in a 40mmx40mmx4mm structural spout.
- the rotating ring is 400mm in standard diameter.
- the hydraulic cylinders are 2 inches with 400m stroke, double acting. In this way, the device has a travel in advance of 400mm and an amplitude in pitch and wink of 30 ° in both directions.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Catching Or Destruction (AREA)
Abstract
A fruit harvesting device, of those that generate pulses of air and cause the detachment of said fruits by breaking their stems is provided, comprising at least two rotating elements: a first rotating element that generates a stream of air and a second rotating element that generates said pulses of air, contained in a housing, wherein said housing comprises an air entry sector, wherein said first rotating element is located, which is tapered at a taper angle of between 10° and 25°; and a control system of the frequency of said pulses of air. In preferred embodiments, said second rotating element has openings of varying size; said housing further comprises a suction lip which decreases the vena contracta effect; and pivoting means which give the device movement relative to a vertical axis and relative to a horizontal axis.
Description
TITULO: DISPOSITIVO COSECHADOR DE FRUTOS TITLE: FRUIT HARVESTING DEVICE
Campo de la invención Field of the Invention
La presente invención se refiere a un dispositivo generador de pulsos de aire especialmente desarrollado para cosechar frutos de distinto tipo de plantas, reemplazando la cosecha manual que, para los modos de producción intensiva es muy ineficiente, e incluso reemplazando a otras máquinas de acción mecánica que producen daños sobre la planta. The present invention relates to an air pulse generating device specially developed to harvest fruits of different types of plants, replacing manual harvesting which, for intensive production modes is very inefficient, and even replacing other mechanical action machines that They cause damage to the plant.
Estado de la Técnica State of the Art
Se han desarrollado innumerables diseños de máquinas y dispositivos para la recolección automática de frutos. En particular aquellos que utilizan corrientes de aire para la cosecha sin establecer contacto alguno con la planta, redundando en una mayor preservación de la especie para futuras cosechas, evitando daño sobre el material foliar de los árboles y sobre las brindillas que darán nacimiento al fruto futuro. Son conocidas además, máquinas y dispositivos que generan un pulso de aire que provoca la resonancia del fruto y su consecuente caída por debilitamiento de su pedúnculo. Countless designs of machines and devices for automatic fruit collection have been developed. In particular those that use air currents for the harvest without establishing any contact with the plant, resulting in a greater preservation of the species for future crops, avoiding damage to the foliar material of the trees and to the toasts that will give birth to the future fruit . Machines and devices that generate an air pulse that cause the resonance of the fruit and its consequent fall due to weakening of its peduncle are also known.
A continuación se referencian brevemente las patentes que describen tales máquinas y sus dispositivos de acción: The patents describing such machines and their action devices are briefly referenced below:
La patente ES428532, de Guibeaud, 1976 usa el concepto de pulso de aire y resonancia con la uva y el pedúnculo, pero no se entiende como genera el pulso y cuan intenso sea. Presenta una eficiencia aerodinámica muy baja. Patent ES428532, from Guibeaud, 1976 uses the concept of air pulse and resonance with the grape and peduncle, but it is not understood how the pulse is generated and how intense it is. It has a very low aerodynamic efficiency.
El documento US6609359 de Teixeira da Costa, tiene dos casquetes rotantes para producir un remolino. No se basa en pulso de aire, se basa en remolino que no tendría efecto de resonancia. Document US6609359 of Teixeira da Costa, has two rotating caps to produce a whirlpool. It is not based on air pulse, it is based on swirling that would not have a resonance effect.
El documento US3871040 de Marasco/Lendaro menciona al aire comprimido y lo manda con conductos a unas válvulas. Es pulsante, con aire comprimido, lo que implicaría un enorme costo de compresión por los caudales que se requieren. Document US3871040 of Marasco / Lendaro mentions compressed air and sends it with conduits to valves. It is pulsating, with compressed air, which would imply a huge cost of compression due to the required flow rates.
El documento US3455502 de Pool presenta un tubo largo con un segmento telescópico
circular que hace variar la dirección. También presenta unas cortinas deflectoras que van variando angularmente y así se genera el pulso. Presenta una muy baja eficiencia aerodinámica. Pool document US3455502 presents a long tube with a telescopic segment circular that changes the direction. It also has some deflector curtains that vary angularly and thus the pulse is generated. It has a very low aerodynamic efficiency.
El documento US3943688 de Billings usa clapetas para hacer oscilante el flujo de aire, generando un pulso. No es eficiente aerodinámicamente. Desvía, pero lo hace en forma alternativa. Tiene un sistema mecánico complejo. Billings US3943688 uses clappers to oscillate the air flow, generating a pulse. It is not aerodynamically efficient. It deflects, but it does it in an alternative way. It has a complex mechanical system.
Las patentes US3310231 de Winninger, US3553949 Rauth y la US3757504 también de Rauth usan una serie de discos montados sobre un eje vertical, de manera que al girar esta columna va produciendo un flujo variable. Desvía pero con poca eficiencia aerodinámica y también tiene demasiadas partes móviles. US Patents US3310231 of Winninger, US3553949 Rauth and US3757504 also of Rauth use a series of discs mounted on a vertical axis, so that turning this column produces a variable flow. It deflects but with low aerodynamic efficiency and also has too many moving parts.
La US5622036 de Hill presenta turbinas y el ducto a la salida oscila, generando un pulso de aire. Aerodinámicamente es bastante eficiente, pero las frecuencias necesarias para voltear frutos como las aceitunas que son de entre 5-20Hz son casi imposibles de lograr con este mecanismo. Además genera vibraciones y esfuerzos mecánicas importantes que requieren un mecanismo muy robusto y sofisticado para mover el ducto de salida. The US5622036 of Hill presents turbines and the pipeline at the exit oscillates, generating an air pulse. Aerodynamically it is quite efficient, but the frequencies necessary to turn fruits such as olives that are between 5-20Hz are almost impossible to achieve with this mechanism. It also generates vibrations and mechanical stresses that require a very robust and sophisticated mechanism to move the outlet duct.
La patente US4175368 de Scheffler presenta ventiladores y un disco que gira por medio de un motor con ductos en diferentes sentidos. La eficiencia aerodinámica es pobre ya que tiene un recorrido de aire largo y restringido por los tubos o las aletas adosadas al disco que gira, es de complejo diseño, tiene muchas piezas móviles y requiere indispensablemente de un motor para mover el disco móvil. Scheffler US4175368 patent presents fans and a disc that rotates by means of a motor with ducts in different directions. The aerodynamic efficiency is poor since it has a long and restricted air path by the tubes or the fins attached to the rotating disc, it is of complex design, it has many moving parts and requires an engine to move the mobile disk.
Patentes que resultan de relevancia para el análisis del estado del arte de la presente invención son la WO 2007/021271 que utiliza combustión de hidrógeno para generar pulsos para la recolección de frutos, la US6594982 y la FR2862483 que utiliza medios rotantes para generar un pulso de aire. Patents that are relevant for the analysis of the state of the art of the present invention are WO 2007/021271 which uses hydrogen combustion to generate pulses for the collection of fruits, US6594982 and FR2862483 which uses rotating means to generate a pulse of air.
En la patente AR066685B 1 de los mismos inventores, se presentó un dispositivo cosechador de fruto el cual se basa en el principio de agitar la planta con una corriente de aire pulsada. En las pruebas realizadas se ha encontrado que la eficiencia de cosecha se incrementa con la "intensidad del pulso" y la "frecuencia" del mismo (ver Figura 1). La frecuencia es simplemente la cantidad de pulsos que recibe un punto del espacio por unidad de tiempo, y la intensidad del pulso es la diferencia entre la máxima presión (dinámica) y la menor.
La intensidad de pulso producida por el dispositivo varía en el espacio, siendo máxima cerca de la boca del dispositivo y reduciéndose la intensidad a medida que el punto se aleja de la boca (ver figura 2). En general la eficiencia de cosecha (cantidad de fruta cosechada sobre fruta total en la planta) es mayor cuanto más alta sea la intensidad del pulso. Sin embargo debe tenerse en cuenta que una intensidad muy alta también puede causar daño en la fruta y en la planta, de manera que en principio el operador debe elegir la intensidad más baja compatible con la velocidad de cosecha que desee. Si elige una intensidad más alta cosechará rápidamente pero la fruta estará dañada, y si elige una intensidad menor resultará en un tiempo de cosecha mayor. Si bien, por lo recientemente expuesto, no es necesariamente mejor aplicar la mayor intensidad de pulso, es bueno que el dispositivo permita obtener una gran intensidad, quedando después a criterio del operador de la cosechadora elegir la intensidad más apropiada, de acuerdo a criterios económicos. In the patent AR066685B 1 of the same inventors, a fruit harvesting device was presented which is based on the principle of stirring the plant with a stream of pulsed air. In the tests carried out it has been found that the harvest efficiency increases with the "pulse intensity" and the "frequency" thereof (see Figure 1). Frequency is simply the amount of pulses a point in space receives per unit of time, and the intensity of the pulse is the difference between the maximum (dynamic) and the lowest pressure. The pulse intensity produced by the device varies in space, being maximum near the mouth of the device and reducing the intensity as the point moves away from the mouth (see figure 2). In general, the harvest efficiency (amount of fruit harvested on total fruit in the plant) is greater the higher the pulse intensity. However, it should be taken into account that a very high intensity can also cause damage to the fruit and the plant, so that in principle the operator must choose the lowest intensity compatible with the desired harvest speed. If you choose a higher intensity you will harvest quickly but the fruit will be damaged, and if you choose a lower intensity it will result in a longer harvest time. Although it is not necessarily better to apply the highest pulse intensity, it is good that the device allows a high intensity to be obtained, leaving it at the discretion of the combine operator to choose the most appropriate intensity, according to economic criteria .
Otro indicador a tener en cuenta es la distribución espacial de la intensidad o alcance del pulso (ver figura 2). Una dada configuración del dispositivo puede tener una alta intensidad cerca de la boca, pero esta puede decaer fuertemente al alejarse de la misma (curva b en la figura). Decimos en este caso que el alcance del pulso es bajo. Por otra parte otra configuración puede tener menor intensidad en la boca, pero no decaer tan fuertemente con la distancia (curva a). Para plantas pequeñas (por ejemplo arándanos) el alcance del pulso no es tan importante, pero sí lo es para plantas grandes como el olivo. Another indicator to consider is the spatial distribution of the intensity or range of the pulse (see figure 2). A given configuration of the device can have a high intensity near the mouth, but this can decay strongly when moving away from it (curve b in the figure). We say in this case that the pulse range is low. On the other hand, another configuration may have less intensity in the mouth, but not decline so strongly with distance (curve a). For small plants (for example, blueberries) the pulse range is not as important, but it is for large plants such as the olive.
Por otro lado la frecuencia del pulso es básicamente la misma en todos los puntos del espacio, y está dada en Hertz por f=frot n donde es la velocidad de giro del rotor (enOn the other hand, the pulse frequency is basically the same at all points in space, and is given in Hertz by f = f rot n where is the rotational speed of the rotor (in
RPM) y el número de bocas del mismo. La influencia de la frecuencia en la eficiencia de cosecha es muy importante pero no tan predecible como con la intensidad. Por el efecto de resonancia de los sistemas mecánicos, habrá una frecuencia propia del sistema planta-fruta para la cual una excitación con esa frecuencia producirá gran agitación de la planta, y por lo tanto óptima eficiencia de cosecha. Para frecuencias menores o mayores la eficiencia disminuirá. Esta frecuencia propia puede depender de muchos factores, como ser especie cultivada y variedad, peso de la fruta, cantidad de frutas por rama, y grado de maduración. Por ejemplo para arándanos con un grado de maduración importante se ha encontrado que la frecuencia óptima es de 3 Hz, habiendo barrido el espectro de frecuencias de 1 a 10 Hz.
Otro indicador a tener en cuenta es la selectividad de la cosecha. En algunos cultivos como el arándano, la cosecha no se realiza en una sola pasada, si no que por temporada se realizan hasta 8 pasadas, por lo tanto en cada una de ellas es deseable que el dispositivo coseche sólo la fruta que está en el punto óptimo de maduración, dejando la fruta verde para las siguientes pasadas. En las experiencias realizadas se ha determinado que la selectividad está muy relacionada con el tiempo de exposición, es decir el tiempo en el cuál la acción del pulso de aire es aplicado a la planta. Cuanto mayor es el tiempo de exposición mayor es la eficiencia de cosecha pero también se reduce la selectividad, y viceversa, a menor tiempo de exposición se obtiene una mayor selectividad pero menor eficiencia de cosecha. Para tener un menor tiempo de exposición, manteniendo la eficiencia se puede aumentar la intensidad del pulso, por supuesto dentro de los límites en que la planta no sufre daño. RPM) and the number of mouths thereof. The influence of frequency on harvest efficiency is very important but not as predictable as with intensity. Due to the resonance effect of the mechanical systems, there will be a frequency typical of the plant-fruit system for which an excitation with that frequency will produce great agitation of the plant, and therefore optimum harvest efficiency. For lower or higher frequencies the efficiency will decrease. This own frequency can depend on many factors, such as cultivated species and variety, fruit weight, quantity of fruits per branch, and degree of maturation. For example, for blueberries with a significant degree of ripening, the optimum frequency has been found to be 3 Hz, the frequency spectrum having been swept from 1 to 10 Hz. Another indicator to consider is the selectivity of the crop. In some crops such as cranberry, the harvest is not carried out in a single pass, but up to 8 passes are made per season, therefore in each of them it is desirable that the device harvest only the fruit that is at the point optimum ripening, leaving the green fruit for the following passes. In the experiences carried out, it has been determined that the selectivity is closely related to the exposure time, that is, the time at which the air pulse action is applied to the plant. The longer the exposure time, the greater the harvest efficiency but also the selectivity is reduced, and vice versa, the shorter the exposure time, the greater the selectivity but the lower the harvest efficiency. To have a shorter exposure time, maintaining efficiency can increase the intensity of the pulse, of course within the limits where the plant is not damaged.
Es un problema del estado de la técnica descrito lograr un equipo cosechador por pulsos de aire que sea operativo, tanto desde la perspectiva de control como de la rentabilidad. Los dispositivos descritos consumen mucha energía y adolecen del control necesario para ajustar adecuadamente las variables operativas, tanto la frecuencia, la intensidad de pulsos como de la direccionalidad de dichos pulsos. It is a problem of the state of the art described to achieve a harvesting device by air pulses that is operative, both from the perspective of control and profitability. The described devices consume a lot of energy and suffer from the necessary control to properly adjust the operational variables, both the frequency, the intensity of pulses and the directionality of said pulses.
Se observa una gran pérdida de energía generada en las máquinas descritas, ya sea por las grandes pérdidas de carga originadas en los dispositivos que obturan o desvían un flujo de aire, o por la necesidad de mover todo un mecanismo generador de aire, para obtener un flujo de aire pulsado. Otro aspecto que no ha sido abordado por el arte previo es la eficiencia aerodinámica de los diversos mecanismos descritos There is a great loss of energy generated in the machines described, either due to the large pressure losses caused by the devices that block or divert an air flow, or the need to move an entire air generating mechanism, to obtain a pulsed air flow. Another aspect that has not been addressed by the prior art is the aerodynamic efficiency of the various mechanisms described
El dispositivo de la presente invención provee un cosechador de frutos que resuelve el problema detectado en el estado del arte, ya que logra un equipo operativo, que permite controlar todas las variables involucradas y logra disminuir considerablemente el consumo energético, por el diseño aerodinámico logrado. La presente invención permite incrementar la máxima intensidad del pulso que el dispositivo puede generar, pero a su vez permitiendo que sea fácilmente regulable por el operador, tanto en frecuencia como en dirección. The device of the present invention provides a fruit harvester that solves the problem detected in the state of the art, since it achieves an operative equipment, which allows controlling all the variables involved and considerably reduces energy consumption, due to the aerodynamic design achieved. The present invention allows to increase the maximum intensity of the pulse that the device can generate, but at the same time allowing it to be easily adjustable by the operator, both in frequency and in direction.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1 : Intensidad de pulso producida por el dispositivo en un punto del espacio A definida como la diferencia entre los valores máximos y mínimos de la presión total en ese punto. BRIEF DESCRIPTION OF THE FIGURES Figure 1: Pulse intensity produced by the device at a point in space A defined as the difference between the maximum and minimum values of the total pressure at that point.
Figura 2: Decaimiento de la intensidad de pulso con la distancia a la boca del generador. La curva b tiene gran intensidad de pulso cerca de la boca, pero decae fuertemente. La curva a tiene menor intensidad en la boca pero esta se mantiene durante mayor distancia (mayor alcance del pulso). Figure 2: Decay of the pulse intensity with the distance to the mouth of the generator. Curve b has a high pulse intensity near the mouth, but decays sharply. The curve a has less intensity in the mouth but this is maintained for a longer distance (greater pulse range).
Figura 3: Izquierda: carcasa cilindrica. Derecha: carcasa tronco-cónica. Figure 3: Left: cylindrical housing. Right: trunk-conical housing.
Figura 4: Patrón de flujo en la zona de ingreso al generador sin (izquierda) y con (derecha) labio de entrada. El labio elimina el efecto de vena-contracta mejorando la entrada del aire al dispositivo. Figure 4: Flow pattern in the generator input zone without (left) and with (right) input lip. The lip eliminates the effect of vein-contract by improving the entry of air into the device.
Figura 5: Vectores velocidad y magnitud de velocidad. Izquierda abajo: sin el labio de entrada. Derecha abajo: con labio de entrada. Arriba detalle del resultado sin labio en la zona de separación. Notar la gran zona de separación (comparado con el resultado con labio) y el angostamiento en el flujo (vena contracta). Figure 5: Vectors speed and magnitude of speed. Left below: without the input lip. Right down: with entrance lip. Above detail of the result without lip in the separation zone. Note the large separation zone (compared to the result with lip) and the narrowing in the flow (contracted vein).
Figura 6: Velocidad a lo largo de una línea longitudinal. Figure 6: Speed along a longitudinal line.
Figura 7: Suplementos removibles pare regular la apertura angular del rotor. Vista frontal. Los suplementos cierran la apertura de tal manera que esta se regula desde 50% abierta (sin suplementos, apertura angular de cada boca de Θ=90°) a 40% (Θ=72°) y 30% (0=54°). Figure 7: Removable supplements to regulate the angular opening of the rotor. Front view. The supplements close the opening in such a way that it is regulated from 50% open (without supplements, angular opening of each mouth from Θ = 90 °) to 40% (Θ = 72 °) and 30% (0 = 54 °).
Figura 8: Suplementos removibles. Esquema de la sección del álabe en el cilindro exterior w,z, donde w=R ψ es una coordenada circunferencial sobre el cilindro exterior y z es la coordenada axial. Figure 8: Removable supplements. Diagram of the blade section in the outer cylinder w, z, where w = R ψ is a circumferential coordinate on the outer cylinder and z is the axial coordinate.
Figura 9: Suplementos removibles. Esquema de fijación para la apertura de 30%. Figure 9: Removable supplements. Fixing scheme for opening 30%.
Figura 10: Suplementos removibles. Vistas en perspectivas del rotor con las tres aperturas de 50%, 40%, y 30%. Figure 10: Removable supplements. Perspective views of the rotor with the three openings of 50%, 40%, and 30%.
Figura 11 : Suplementos removibles. Velocidades obtenidas a la salida con las aperturas de 50%, 40%, y 30%. Figure 11: Removable supplements. Speeds obtained at the start with the openings of 50%, 40%, and 30%.
Figura 12: Dispositivo para la regulación continua de la apertura angular.
Figura 13: Suplementos removibles pare regular la apertura radial del rotor. Vista frontal. Figure 12: Device for continuous regulation of angular opening. Figure 13: Removable supplements to regulate the radial opening of the rotor. Front view.
Figura 14: Suplementos removibles pare regular la apertura radial del rotor. Vista en perspectiva. Figure 14: Removable supplements to regulate the radial opening of the rotor. Perspective view.
Figura 15: Sistema de control de frecuencia y amplitud de pulso. Figure 15: Frequency and pulse amplitude control system.
Figura 16: Barrido en frecuencia con onda triangular. Figure 16: Frequency sweep with triangular wave.
Figura 17: Movimientos de desplazamiento y orientación del generador. Figure 17: Movement of displacement and orientation of the generator.
Figura 18: Utilización del guiñado para enfocar dos dispositivos sobre la misma planta. Figure 18: Use of the wink to focus two devices on the same floor.
Figura 19: Sistema para controlar el avance, cabeceo, y guiñado del dispositivo. BREVE DESCRIPCIÓN DE LA INVENCIÓN Figure 19: System to control the advance, pitch, and wink of the device. BRIEF DESCRIPTION OF THE INVENTION
El dispositivo cosechador de frutos, objeto de la presente invención, es de aquellos que generan pulsos de aire y provocan el desprendimiento de dichos frutos por rotura de sus tallos, y está conformado por al menos dos elementos rotantes, preferentemente coaxiales: un primer elemento rotante (preferentemente impulsado por un motor) generador de una corriente de aire y un segundo elemento rotante generador de dichos pulsos de aire (preferentemente impulsado por la corriente de aire generada por dicho primer elemento rotante y cuya velocidad de rotación es controlada por un freno o alternativamente está impulsado por otro motor), contenidos en una carcasa, que preferentemente es solidaria a un eje central sobre el que giran dichos elementos rotantes, donde dicha carcasa comprende un sector de ingreso del aire, donde se ubica dicho primer elemento rotante, que es troncocónico con un ángulo de conicidad de entre 10° y 25°; y un sistema de control de la frecuencia de dichos pulsos de aire. Además dicho segundo elemento rotante, orientador de dicha corriente de aire es un rotor que comprende al menos 1 abertura en su plano perpendicular al eje de giro, por la que pasa la corriente de aire generada por el primer elemento rotante. Donde dicho rotor, además, comprende aletas curvas orientadas hacia el primer elemento rotante, que generan el torque que hace girar a este rotor, gracias al aire impulsado por el primer elemento rotante. Donde dichos elementos rotantes giran a diferente velocidad generando un pulso de aire en el espacio ubicado a la salida de la carcasa, después del rotor. Y además la amplitud de dicho pulso de
aire es regulado por la velocidad de dicho primer elemento rotante y la frecuencia de dicho pulso de aire es regulado por la velocidad de dicho rotor, el tamaño y el número de dichas aberturas. Donde dichas frutas son seleccionadas del conjunto comprendido por aceitunas, uvas, peras, manzanas, nueces, duraznos, arándanos, frutas finas, y frutas que estén sostenidas por un pedúnculo. The fruit harvesting device, object of the present invention, is one of those that generate air pulses and cause the detachment of said fruits by breaking their stems, and is made up of at least two rotating elements, preferably coaxial: a first rotating element (preferably driven by a motor) generator of an air current and a second rotating element generating said air pulses (preferably driven by the air current generated by said first rotating element and whose rotation speed is controlled by a brake or alternatively it is driven by another motor), contained in a housing, which is preferably integral to a central axis on which said rotating elements rotate, where said housing comprises an air intake sector, where said first rotating element is located, which is frustoconical with a conicity angle between 10 ° and 25 °; and a frequency control system of said air pulses. Furthermore, said second rotating element, orienting said air stream is a rotor that comprises at least 1 opening in its plane perpendicular to the axis of rotation, through which the air stream generated by the first rotating element passes. Where said rotor also comprises curved fins oriented towards the first rotating element, which generate the torque that rotates this rotor, thanks to the air driven by the first rotating element. Where said rotating elements rotate at different speeds generating a pulse of air in the space located at the exit of the housing, after the rotor. And also the amplitude of said pulse of air is regulated by the speed of said first rotating element and the frequency of said air pulse is regulated by the speed of said rotor, the size and number of said openings. Where these fruits are selected from the set comprised of olives, grapes, pears, apples, nuts, peaches, blueberries, fine fruits, and fruits that are supported by a peduncle.
Además dicho rotor comprende entre 2 y 6 aberturas de tamaño variable en su plano perpendicular al eje de giro, por las que pasa la corriente de aire generada por el primer elemento rotante. Siendo alternativas de dichas aberturas de tamaño variable comprender un dispositivo de regulación de apertura angular, y/o un dispositivo de regulación continua de la apertura angular, y/o un dispositivo de regulación de la apertura radial. Furthermore, said rotor comprises between 2 and 6 openings of variable size in its plane perpendicular to the axis of rotation, through which the air current generated by the first rotating element passes. Alternatives of said variable size openings comprise an angular opening regulation device, and / or a continuous angular opening regulation device, and / or a radial opening regulation device.
Donde dicho sistema de control comprende un sensor que cuenta las vueltas de dicho rotor y por lo tanto mide directamente la frecuencia de dicho pulso de aire; un segundo sensor que mide la velocidad del primer elemento rotante y por lo tanto, indirectamente, el caudal de aire y la amplitud del pulso; un tablero que recibe los valores de dichas velocidades en RPM para rotor y primer elemento rotante y un display LCD que muestra dichos valores de velocidades en RPM; un potenciómetro controlador envía una señal PWM (Pulse-Width Modulation) para controlar dicha velocidad de dicho rotor y otro potenciómetro que envía una señal PWM a una válvula hidráulica proporcional que controla el motor hidráulico que mueve dicho primer elemento rotante y así regula su velocidad. Where said control system comprises a sensor that counts the turns of said rotor and therefore directly measures the frequency of said air pulse; a second sensor that measures the speed of the first rotating element and therefore, indirectly, the air flow and pulse width; a board that receives the values of said speeds in RPM for rotor and first rotating element and an LCD display showing said speed values in RPM; a controlling potentiometer sends a PWM (Pulse-Width Modulation) signal to control said rotor speed and another potentiometer that sends a PWM signal to a proportional hydraulic valve that controls the hydraulic motor that moves said first rotating element and thus regulates its speed.
Una alternativa preferida de la presente invención, además comprende un labio de succión que disminuye el efecto de vena-contracta. A preferred alternative of the present invention also comprises a suction lip that decreases the effect of vein-contracta.
El dispositivo de cualquiera de las reivindicaciones anteriores caracterizado porque The device of any of the preceding claims characterized in that
En una forma de realización preferida, la presente invención provee de un soporte de dicha carcasa que gira libremente sobre un eje horizontal, generando un movimiento de cabeceo, y un cilindro hidráulico que controla dicho movimiento. Además provee de un soporte de dicha carcasa que gira libremente sobre un eje vertical generando un movimiento de guiñado, y un cilindro hidráulico que controla dicho movimiento. Además provee de un soporte de dicha carcasa que está montado sobre un carro con ruedas que se desplazan sobre guías, que permiten el movimiento de avance y retroceso, montadas sobre una plataforma que es solidaria al vehículo que transporta el dispositivo.
En una versión preferida de la presente invención, se provee de un dispositivo cosechador de frutos, de aquellos que generan pulsos de aire y provocan el desprendimiento de dichos frutos por rotura de sus tallos que comprende una carcasa con al menos dos elementos rotantes: un primer elemento rotante generador de una corriente de aire y un segundo elemento rotante generador de dichos pulsos de aire; y un sistema de control de la frecuencia de dichos pulsos de aire; una carcasa con un eje coaxial a dichos elementos rotantes, con un sector de ingreso de aire cónico con una ángulo de conicidad de entre 10° y 25°, que presenta un labio de succión que disminuye el efecto de vena-contracta; y que además comprende medios pivotantes que otorgan al dispositivo movimiento con respecto a un eje vertical y con respecto a un eje horizontal. In a preferred embodiment, the present invention provides a support of said housing that rotates freely on a horizontal axis, generating a pitching movement, and a hydraulic cylinder that controls said movement. It also provides a support of said housing that rotates freely on a vertical axis generating a yaw movement, and a hydraulic cylinder that controls said movement. It also provides a support of said housing that is mounted on a carriage with wheels that move on guides, which allow forward and reverse movement, mounted on a platform that is integral to the vehicle that carries the device. In a preferred version of the present invention, a fruit harvesting device is provided, of those that generate air pulses and cause the detachment of said fruits by breaking their stems comprising a housing with at least two rotating elements: a first rotating element generating an air stream and a second rotating element generating said air pulses; and a frequency control system of said air pulses; a housing with a coaxial axis to said rotating elements, with a conical air intake sector with a conicity angle of between 10 ° and 25 °, which has a suction lip that decreases the effect of vein-contract; and which also includes pivoting means that give the device movement with respect to a vertical axis and with respect to a horizontal axis.
Otro objeto de la presente invención es un procedimiento para cosechar frutos que comprende los siguientes pasos: Another object of the present invention is a process for harvesting fruits comprising the following steps:
a) ubicar el dispositivo de cualquiera de las reivindicaciones anteriores frente a una planta con frutos a una distancia de al menos un metro, a) locating the device of any of the preceding claims against a plant with fruits at a distance of at least one meter,
b) accionar el primer elemento rotante, b) actuate the first rotating element,
c) regular la velocidad de giro del primer elemento rotante para fijar la intensidad de pulso de aire, c) regulate the speed of rotation of the first rotating element to set the intensity of air pulse,
d) regular la velocidad del rotor para fijar la frecuencia de pulso de aire, e) recolectar los frutos que se desprenden por acción de los pulsos de aire generados por dicho dispositivo. d) regulate the speed of the rotor to set the air pulse rate, e) collect the fruits that are released by the action of the air pulses generated by said device.
Donde luego del paso d) se rota dicho dispositivo con respecto a un eje vertical, para lograr un movimiento de guiñado; se rota dicho dispositivo con respecto a un eje horizontal, para lograr un movimiento de cabeceo; y se desplaza al dispositivo según su eje axial, logrando acercar o alejar dicho dispositivo cosechador de frutos de la planta a la que se está cosechando. Where after step d) said device is rotated with respect to a vertical axis, to achieve a yaw movement; said device is rotated with respect to a horizontal axis, to achieve a pitching movement; and it moves to the device along its axial axis, managing to bring the fruit harvesting device closer or further away from the plant to which it is being harvested.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
A continuación se describe la invención, mediante figuras y descripciones que constituyen en sí mismas ejemplos de realización de la misma. Se describen las mejores formas y alternativas de realización que los inventores conocen a la fecha de presentación de este documento.
La intensidad de pulso se puede incrementar simplemente aumentando la potencia del ventilador, o bien mejorando la eficiencia aerodinámica del dispositivo. En esta patente se presentan tres mejoras aerodinámicas que permiten mejorar la eficiencia. Con estas mejoras se pueden obtener mayores intensidades de pulso para una misma potencia, o recíprocamente, se puede obtener la misma intensidad de pulso con una potencia menor, redundando en un menor consumo y peso de la máquina. Las mejoras consisten en: The invention is described below, by means of figures and descriptions that constitute in themselves examples of realization thereof. The best embodiments and alternatives that the inventors know as of the date of presentation of this document are described. The pulse intensity can be increased simply by increasing the fan power, or by improving the aerodynamic efficiency of the device. This patent presents three aerodynamic improvements that allow improving efficiency. With these improvements, higher pulse intensities can be obtained for the same power, or reciprocally, the same pulse intensity can be obtained with a lower power, resulting in a lower consumption and weight of the machine. The improvements consist of:
•Una modificación de la carcasa (conicidad) que permite tener mayor alcance del pulso con un menor diámetro del ventilador, y por lo tanto menor consumo de potencia, • A modification of the housing (conicity) that allows for a greater pulse range with a smaller fan diameter, and therefore a lower power consumption,
•Un aditamento aerodinámico (que llamaremos labio de entrada) que reduce la curvatura de las líneas de corriente a la entrada de la carcasa, evitando la separación y por lo tanto la estrangulación del flujo (vena contracta) en la zona cercana a la entrada. • An aerodynamic attachment (which we will call the entrance lip) that reduces the curvature of the current lines at the entrance of the housing, preventing separation and therefore the flow strangulation (contracted vein) in the area near the entrance.
•Aberturas de tamaño variable Se definen unos suplementos removibles, que actúan como dispositivos de regulación de apertura, que permiten regular la apertura de las bocas de salida, de esta forma regulando el alcance del pulso. • Variable size openings Removable supplements are defined, which act as opening regulating devices, which allow regulating the opening of the outlets, thus regulating the pulse range.
Finalmente se presentan también Finally they also appear
• Un sistema de control que permite al operador regular fácilmente la intensidad del pulso y la frecuencia del mismo. • A control system that allows the operator to easily regulate the intensity of the pulse and its frequency.
•Un sistema para controlar el desplazamiento axial y la orientación del dispositivo. • A system to control axial displacement and device orientation.
Conicidad de la carcasa Shell taper
Esta nueva carcaterística técnica, propia de la invención, consiste en introducir una cierta conicidad a la primera sección AB (ver figura 3) del generador, de entre 5 y 50 Sexagesimales, preferentemente entre 10 y 25° sexagesimales, más preferentemente entre 12 y 18° sexagesimales. De esta forma se reduce la sección de entrada, manteniendo la misma sección de salida. Al reducir la sección de entrada se reduce la potencia consumida, manteniendo el alcance del pulso ya que éste está dado fundamentalmente por la sección de las bocas de salidas y por su separación, es decir por la sección de salida, la cual como dijimos se mantiene constante. Por supuesto hay un límite para este principio, si la conicidad es muy pronunciada podría ocurrir que el caudal de aire producido por el ventilador no llegue
correctamente a las bocas de salida, reduciendo la eficiencia del generador. En nuestras experiencias el diámetro de la sección de salida es de 900mm, mientras que el diámetro de la sección de entrada es de 600mm en la versión cónica, contra 900mm en la carcasa cilindrica. Las experiencias tanto in-silico con simulación computacional como en laboratorio han mostrado que con esta configuración se mantiene el alcance del pulso reduciéndose la potencia consumida por el generador de 40HP a 17HP. Otro beneficio adicional de esta reducción de consumo es que el circuito hidráulico trabaja a una presión mucho menor, cerca de 110 kg/cm2 para la carcasa cónica, contra 170 kg/cm2 para la carcasa cilindrica. This new technical characteristic, characteristic of the invention, consists in introducing a certain conicity to the first section AB (see figure 3) of the generator, between 5 and 50 Sexagesimals, preferably between 10 and 25 ° sexagesimals, more preferably between 12 and 18 ° sexagesimal. This reduces the input section, maintaining the same output section. By reducing the input section, the power consumed is reduced, maintaining the range of the pulse since this is mainly given by the section of the outlets and by their separation, that is to say by the output section, which as we said is maintained constant. Of course there is a limit to this principle, if the taper is very pronounced it could happen that the air flow produced by the fan does not reach correctly to the outlets, reducing the efficiency of the generator. In our experiences the diameter of the output section is 900mm, while the diameter of the input section is 600mm in the conical version, against 900mm in the cylindrical housing. Experiences both in-silico with computer simulation and in the laboratory have shown that with this configuration the pulse range is maintained by reducing the power consumed by the generator from 40HP to 17HP. Another additional benefit of this reduction in consumption is that the hydraulic circuit works at a much lower pressure, about 110 kg / cm2 for the conical housing, against 170 kg / cm2 for the cylindrical housing.
Labio de entrada Input lip
Cuando el aire entra al dispositivo (ver figura 4, izquierda) las líneas de corriente pegadas al cuerpo deben rotar prácticamente 180° en el punto A con un pequeño radio de curvatura, dado por el espesor de la pared de la carcasa. Esto no es físicamente posible y el flujo se separa de la pared formando una zona de recirculación B, es decir una zona donde el fluido queda atrapado, sin escurrir a través del dispositivo. Esta zona de recirculación actúa como un obstáculo para el resto del aire que sí escurre, reduciendo el área de paso efectivo; un efecto conocido como vena-contracta, siendo CD la sección de paso mínima, es decir la posición de la vena-contracta. When air enters the device (see figure 4, left), the current lines attached to the body must rotate practically 180 ° at point A with a small radius of curvature, given by the thickness of the housing wall. This is not physically possible and the flow separates from the wall forming a recirculation zone B, that is, an area where the fluid is trapped, without draining through the device. This recirculation zone acts as an obstacle to the rest of the air that does drain, reducing the effective passage area; an effect known as vein-contract, CD being the minimum passage section, that is, the position of the vein-contract.
Al reducirse el área de paso el caudal de fluido que escurre es menor para una dada potencia o, recíprocamente, para un caudal dado la potencia requerida es menor si se logra eliminar el efecto de vena-contracta. Un labio de succión colocado a la entrada del dispositivo obliga al fluido a realizar el cambio de dirección a 180° en un radio de curvatura mayor, y de esta forma se elimina (o reduce en gran medida) el efecto de vena-contracta. When the area of passage is reduced, the flow of fluid that drains is lower for a given power or, reciprocally, for a given flow the required power is lower if the effect of vein-contract is achieved. A suction lip placed at the entrance of the device forces the fluid to make the change of direction at 180 ° in a greater radius of curvature, and in this way the vein-contracted effect is eliminated (or greatly reduced).
Se han realizado experiencias de laboratorio y simulaciones computacionales utilizando un labio de 10 cm de diámetro. En la figura 5 se observa el campo de velocidades en dos simulaciones con (derecha) y sin (izquierda) el labio de entrada. Se observa que sin el labio se presenta una gran zona de separación haciéndose evidente el efecto de vena contracta. En el caso con labio existe una zona de separación, pero mucho menor. En el caso sin labio se observa que esta estrangulación del flujo causa que las velocidades en la zona de la vena sean más altas, pero el flujo principal pasa por una región más cercana al eje. Finalmente a la salida se obtienen velocidades más altas con el labio, por lo tanto presiones dinámicas más altas y
mayor intensidad de pulso. Laboratory experiences and computational simulations have been carried out using a 10 cm diameter lip. Figure 5 shows the velocity field in two simulations with (right) and without (left) the input lip. It is observed that without the lip there is a large area of separation, making the effect of contracted vein evident. In the case with lip there is a separation zone, but much smaller. In the case without lip it is observed that this flow strangulation causes the velocities in the vein area to be higher, but the main flow passes through a region closer to the axis. Finally at the exit higher speeds are obtained with the lip, therefore higher dynamic pressures and higher pulse intensity
Notar que en este dispositivo el efecto de vena contracta es particularmente desventajoso ya que la zona de la mínima sección se produce cerca de la posición donde está el ventilador, de manera que una buena parte del extremo de las palas del ventilador caen dentro de la zona de recirculación, por lo tanto no pueden impulsar al aire. Normalmente el extremo de las palas es donde se produce la mayor impulsión; esto se recupera cuando se introduce el labio. Note that in this device the effect of contracted vein is particularly disadvantageous since the area of the minimum section occurs near the position where the fan is, so that a good part of the end of the fan blades fall within the area of recirculation, therefore can not propel the air. Normally the end of the blades is where the greatest drive occurs; This recovers when the lip is inserted.
Las simulaciones computacionales indican que la incorporación del labio incrementa el caudal impulsado por el ventilador en un 22%. En la figura 6 se observa como varía la velocidad a lo largo de una línea paralela al eje del generador, a una distancia del eje tal que está en el medio de la boca de salida, es decir donde las velocidades son máximas en el sentido radial. Se observa que las velocidades se incrementan cerca de la boca de 108 (punto A) a 130 [km/h] (punto B), es decir un incremento del 20%. Pero lo que es más importante aún es que las velocidades a distancias mayores se incrementan en una proporción aún mayor; a 2.5 m la velocidad pasa de 30 (punto O a 57 [km/h] (punto D), es decir un incremento del 90%. Computational simulations indicate that the incorporation of the lip increases the flow driven by the fan by 22%. Figure 6 shows how the speed varies along a line parallel to the axis of the generator, at a distance from the axis such that it is in the middle of the outlet, that is, where the speeds are maximum in the radial direction . It is observed that the velocities increase near the mouth from 108 (point A) to 130 [km / h] (point B), ie an increase of 20%. But what is even more important is that the speeds at greater distances increase in an even greater proportion; at 2.5 m the speed goes from 30 (point O to 57 [km / h] (point D), ie an increase of 90%.
Aberturas de tamaño variable Openings of variable size
Suplementos removibles para regulación de apertura Removable supplements for opening regulation
Los rotores de la presente invención tienen aberturas o bocas de salida con forma de sectores de corona circular, como se muestra en la figura 7. Estas bocas se caracterizan por una apertura angular Θ y una apertura radial AR. Es deseable poder controlar estos parámetros en la forma lo más dinámica posible. Los suplementos angulares y radiales de la presente invención permiten modificar la geometría básica de un rotor. De esta forma, en una serie de experiencias previas a la cosecha se puede determinar la geometría óptima. En las secciones siguientes se muestran ejemplos preferidos de geometrías, por supuesto el uso de esta metodología puede aplicarse a una amplia gama de aperturas angulares y radiales. The rotors of the present invention have openings or mouths in the form of circular crown sectors, as shown in Figure 7. These mouths are characterized by an angular opening Θ and a radial opening AR. It is desirable to be able to control these parameters in the most dynamic way possible. The angular and radial supplements of the present invention allow modifying the basic geometry of a rotor. In this way, in a series of pre-harvest experiences, the optimal geometry can be determined. Preferred examples of geometries are shown in the following sections, of course the use of this methodology can be applied to a wide range of angular and radial apertures.
Regulación de la apertura angular Angular aperture regulation
En la figura 7 vemos el plano de salida de la máquina. Las zona blanca representa la boca de salida del rotor. El objetivo de los suplementos removibles es poder lograr que la apertura angular de estas bocas de salidas sea variable. En la figura se muestran (a modo de
ejemplo) 3 posibles aperturas para un rotor de dos bocas: aperturas de Θ=90° (50% de la circunferencia), Θ=72° (40% de la circunferencia), y Θ=54° (30% de la circunferencia). (Notar que los porcentajes de apertura se refieren a la apertura angular, no al área total de salida.) Tanto las simulaciones computacionales in-silico como los resultados experimentales demuestran que reducir la apertura angular, manteniendo el ancho de la corona circular permite incrementar la amplitud del pulso cerca de la boca de salida, a costa de disminuir el alcance del pulso; por lo tanto es más eficiente para plantas más pequeñas. In figure 7 we see the plane of exit of the machine. The white zone represents the mouth of the rotor. The goal of removable supplements is to be able to make the angular opening of these outlets variable. In the figure they are shown (by way of example) 3 possible openings for a two-mouth rotor: openings of Θ = 90 ° (50% of the circumference), Θ = 72 ° (40% of the circumference), and Θ = 54 ° (30% of the circumference) . (Note that the opening percentages refer to the angular aperture, not the total output area.) Both in-silico computational simulations and experimental results show that reducing the angular aperture, maintaining the width of the circular crown allows increasing the pulse width near the outlet, at the cost of decreasing the pulse range; therefore it is more efficient for smaller plants.
La figura muestra la geometría de un rotor de 50% de apertura angular y los suplementos para tener aperturas angulares de 40%, y 30%. Pero el concepto puede ser aplicado a rotores con una apertura angular inicial arbitraria (por ejemplo 90%) y obtener una reducción en la apertura angular con suplementos de diferente medida, por ejemplo 80%, 70%, 60%, 50%, 40%, 30%, 20%, y 10%. The figure shows the geometry of a 50% angular aperture rotor and the supplements to have 40% and 30% angular apertures. But the concept can be applied to rotors with an arbitrary initial angular opening (for example 90%) and obtain a reduction in angular opening with supplements of different sizes, for example 80%, 70%, 60%, 50%, 40% , 30%, 20%, and 10%.
En la figura 8 se muestra la sección del álabe en el cilindro exterior r=Rext, desarrollado sobre un plano (z,w), donde w=Rext(p y φ es la coordenada circunferencial alrededor del eje z de la máquina. El triángulo gris oscuro ABC representa el álabe en la configuración de máxima apertura. Figure 8 shows the section of the blade in the outer cylinder r = Rext, developed on a plane (z, w), where w = Rext (p and φ is the circumferential coordinate around the z axis of the machine. The gray triangle Dark ABC represents the blade in the maximum opening configuration.
Notar que el álabe no es simétrico con respecto a la vertical, a efectos de tener una mayor presión en el intradós BC con respecto al extrados BA y de esta forma producir un torque sobre el rotor que lo impulsa hacia la izquierda (es decir en el sentido de las agujas del reloj, si nos referimos a la vista frontal mostrada en la figura 7). La asimetría entre el ángulo en el extrados y el intradós está ajustado de forma de obtener un torque suficiente como para impulsar el rotor, pero tampoco demasiado importante como para que requiera de demasiada potencia para su control. Note that the blade is not symmetrical with respect to the vertical, in order to have a greater pressure on the intrados BC with respect to the extracted BA and in this way produce a torque on the rotor that drives it to the left (i.e. clockwise direction, if we refer to the front view shown in figure 7). The asymmetry between the angle in the extrados and the intrados is adjusted so as to obtain enough torque to drive the rotor, but not too important to require too much power to control.
La reducción del área se obtiene agregando suplementos aerodinámicos que consisten en chapas fijas al rotor mediante tornillos (ver figura 9). En la figura 10 se observan las vistas de los rotores con suplemento para cada una de las aperturas indicadas. En la figura 10 se observan vistas en perspectivas del rotor para las tres aperturas consideradas. The reduction of the area is obtained by adding aerodynamic supplements consisting of plates fixed to the rotor by means of screws (see figure 9). Figure 10 shows the views of the rotors with supplement for each of the indicated openings. Figure 10 shows perspective views of the rotor for the three openings considered.
En la figura 11 se observan las curvas de velocidad sobre una recta paralela al eje del dispositivo, pasando por el centro de la boca, para las tres aperturas consideradas. Se observa que la velocidad se incrementa de 129 [km/h] para una apertura de 50% hasta 160 [km/h] para
apertura de 30%, es decir un incremento del 24%. Pero lejos de la boca (a 2.5 m) la velocidad cae de 57 [km/h] a 34 [km/h], es decir una reducción del 60%. Por lo tanto el suplemento es útil para plantas de menos de 1 [m] de semiancho (por ejemplo arándano) permitiendo incrementar la intensidad del pulso en toda la extensión de la misma. Figure 11 shows the speed curves on a straight line parallel to the axis of the device, passing through the center of the mouth, for the three openings considered. It is observed that the speed is increased from 129 [km / h] for a 50% opening up to 160 [km / h] for 30% opening, that is an increase of 24%. But far from the mouth (2.5 m) the speed falls from 57 [km / h] to 34 [km / h], that is, a reduction of 60%. Therefore, the supplement is useful for plants of less than 1 [m] of half-width (for example, blueberry) allowing to increase the intensity of the pulse throughout its entire length.
Dispositivo de regulación continua de la apertura angular Continuous adjustment device for angular opening
Una alternativa de la presente invención es un dispositivo como el mostrado en la figura 12, permite regular la apertura angular en forma continua. A la izquierda (figura 12.a) se observa una vista frontal del rotor en su configuración de máxima apertura que en este ejemplo es de 50%, es decir el ángulo ΔΑΟΕ es de 90°. El álabe es hueco, y esta compuesto de paneles rígidos articulados que al desplazarse van cambiando la geometría del álabe. En el centro (figura 12.b) vemos el rotor en una configuración de apertura intermedia (33% abierto), es decir ¿AOE'=120°. A la derecha (figura 12.c) vemos una proyección del álabe sobre el cilindro exterior. En su punto de máxima apertura el corte del álabe sobre el cilindro exterior es un triángulo ACE. Las superficies del extrados AC y del intradós CE están articuladas en las aristas BF, CG, y DH. Para cerrar la apertura el panel DEKJH del intradós gira rígidamente con respecto al eje O. En el desarrollo circunferencial sobre el cilindro exterior (ver figura 12.c) vemos que en la configuración de mínima apertura la sección del álabe es un triángulo ACE. A medidad que el álabe se va abriendo y la sección angular se va cerrando la sección del álabe pasa a ser un polígono ABCD'E y finalmente en la configuración de mínima apertura angular se transforma en un trapecio ABD"E". An alternative of the present invention is a device like the one shown in Figure 12, which allows the angular opening to be regulated continuously. On the left (Figure 12.a) a frontal view of the rotor is observed in its maximum opening configuration, which in this example is 50%, that is, the angle ΔΑΟΕ is 90 °. The blade is hollow, and is composed of articulated rigid panels that, when moving, change the geometry of the blade. In the center (figure 12.b) we see the rotor in an intermediate opening configuration (33% open), that is ¿AOE '= 120 °. On the right (figure 12.c) we see a projection of the blade on the outer cylinder. At its point of maximum opening the blade cut on the outer cylinder is an ACE triangle. The surfaces of the AC extrados and the EC intrados are articulated in the edges BF, CG, and DH. To close the opening, the DEKJH panel of the intrados rotates rigidly with respect to the O axis. In the circumferential development on the outer cylinder (see figure 12.c) we see that in the minimum opening configuration the blade section is an ACE triangle. As the blade opens and the angular section closes, the section of the blade becomes an ABCD'E polygon and finally in the configuration of minimum angular opening it becomes an ABD "E" trapezoid.
Es de destacar que al ser curvas las superficies de los álabes, debe garantizarse que no haya un bloqueo cinemático o colisión entre las partes. Primero notemos que al rotar el panel del intradós DEKJH sobre el eje O, no hay interferencia con el cono central, ya que este es un cuerpo de revolución. Es decir la curva JK desliza perfectamente sobre el cono hasta la posición ffC. Tampoco hay interferencia con el cilindro exterior. Con respecto a los dos paneles BCGF y CDHG son secciones de corona cicular. Puede demostrarse que la compatibilidad cinemática se consigue si las aristas articuladas BF, CG, y D'H son rectas y convergen al mismo punto sobre el eje O. El cierre no es perfecto en los bordes exterior BCD e interior FGH. Al abrirse el álabe (es decir al pasar a una configuración de apertura angular menor) el punto C tiende a desplazarse hacia el exterior, es decir a alejarse del eje O. Lo
mismo ocurre con el punto G. Estos huelgos son menores y no afectan a la aerodinámica del rotor, y pueden eliminarse colocando fuelles de goma. It is noteworthy that as the surfaces of the blades are curved, it must be ensured that there is no kinematic blockage or collision between the parts. First, notice that by rotating the DEKJH intrados panel on the O axis, there is no interference with the central cone, since this is a body of revolution. In other words, the JK curve slides perfectly over the cone to the ffC position. There is also no interference with the outer cylinder. With respect to the two panels BCGF and CDHG are sections of the cyclone crown. It can be shown that kinematic compatibility is achieved if the articulated edges BF, CG, and D'H are straight and converge at the same point on the O axis. The closure is not perfect at the outer edges BCD and inner FGH. When the blade is opened (that is, when passing a smaller angular aperture configuration), point C tends to move outward, that is, away from the O axis. The same applies to point G. These strikes are minor and do not affect the aerodynamics of the rotor, and can be eliminated by placing rubber bellows.
En la base del rotor la estanqueidad no es necesaria ya que no es una superficie mojada por la corriente aerodinámica y por lo tanto esta superficie puede estar abierta. De todas formas se puede obtener estanqueidad con dos paneles AL y ME que deslizan uno sobre el otro. Además de esta forma se mejora la rigidez estructural del álabe. At the base of the rotor, tightness is not necessary since it is not a surface wetted by aerodynamic current and therefore this surface may be open. Anyway, you can get a seal with two AL and ME panels that slide over each other. In addition, the structural rigidity of the blade is improved.
Para implementar estos desplazamientos se pueden montar tanto el panel móvil DEKJH como su homólogo sobre el álabe opuesto rígidamente sobre una pieza que gira sobre el eje O. De esta forma ambos paneles se mueven en forma solidaria y el operario sólo debe regular la rotación de este conjunto mediante un tornillo o corona dentada. To implement these displacements, both the DEKJH mobile panel and its counterpart can be mounted on the opposite blade rigidly on a piece that rotates on the O axis. In this way both panels move in solidarity and the operator must only regulate the rotation of this set by means of a screw or toothed crown.
Este dispositivo puede adaptarse fácilmente a una configuración con tres o más bocas. This device can easily adapt to a configuration with three or more mouths.
En una forma de realización preferida de la presente invención el rotor y los paneles que conforman los álabes se construyen en PRFV (Plástico Reforzado con Fibra de Vidrio). Los dos paneles de la base AL y ME están hechos en aluminio. Tanto el panel ABFN como la primera parte de la base AL, están fijados al cono. El panel móvil DEKJH se fija al cono en la posición deseada con tornillos en el borde JK. El cono tiene ranuras circunferenciales de manera que la apertura del rotor se puede definir fijando los tornillos en alguna posición de estas ranuras. El panel inferior ME está fijado al panel DEKJH y está fijado al cono con tornillos que se desplazan por una ranura. Los paneles BCGF y CDHG se encuentran articulados entre sí y con los otros paneles adyacentes mediante bisagras en las aristas BF, CG, y DH. Estas bisagras pueden ser de tipo bisagras continua de aluminio. In a preferred embodiment of the present invention the rotor and the panels that make up the blades are constructed in GRP (Fiberglass Reinforced Plastic). The two panels of the base AL and ME are made of aluminum. Both the ABFN panel and the first part of the AL base are fixed to the cone. The DEKJH mobile panel is fixed to the cone in the desired position with screws on the JK edge. The cone has circumferential grooves so that the rotor opening can be defined by fixing the screws in some position of these grooves. The lower panel ME is fixed to the DEKJH panel and is fixed to the cone with screws that move through a slot. The BCGF and CDHG panels are articulated with each other and with the other adjacent panels by hinges on the edges BF, CG, and DH. These hinges can be of continuous aluminum hinges type.
Dispositivo de regulación de la apertura radial Radial opening regulation device
La presente invención provee de un dispositivo para lograr regular dichas aperturas radiales. En la figura 13 se muestra el plano de salida de un rotor de dos bocas, con diámetro 900 [mm], apertura angular Θ=50 , y apertura radial \R=AD=EC=150 [mm]. Los suplementos de apertura radial permiten reducir la apertura radial tapando una corona circular como la EED'D en la figura, reduciendo la misma a \R=AD=EC=100 [mm]. El interés en tener apertura radial ajustable es poder compensar una variación en la apertura angular manteniendo el área de salida, para mantener la velocidad en el chorro. En la figura 14 se observa en perspectiva el suplemento radial. A la izquierda se observa un corte del cono y del
suplemento (ACB, superficie externa) mientras que a la derecha se observa el suplemento ACB completo, con un borde de fijación para sujetarlo con tornillos a los álabes del rotor. The present invention provides a device for regulating said radial openings. Figure 13 shows the output plane of a two-mouth rotor, with diameter 900 [mm], angular opening Θ = 50, and radial opening \ R = AD = EC = 150 [mm]. The radial opening supplements allow reducing the radial opening by covering a circular crown like the EED'D in the figure, reducing it to \ R = AD = EC = 100 [mm]. The interest in having adjustable radial aperture is to be able to compensate for a variation in the angular aperture while maintaining the output area, to maintain the velocity in the jet. Figure 14 shows in perspective the radial supplement. On the left there is a cut of the cone and the supplement (ACB, external surface) while on the right the complete ACB supplement is observed, with a fixing edge to fix it with screws to the rotor blades.
Nuevamente, las dimensiones usadas aquí son título de ejemplo, las aperturas radiales pueden regularse con estos suplementos desde aperturas muy altas como ser el 50% del radio exterior
hasta muy pequeñas, como el 5% o menos. Again, the dimensions used here are an example, radial openings can be regulated with these supplements from very high openings such as 50% of the outer radius even very small, like 5% or less.
Los suplementos radiales y angulares interfieren entre sí en las líneas de unión del álabe con el cono AB y AC (ver figura 14). Debido a esto los suplementos radiales deben ser específicos para cada suplemento angular, es decir si se está usando un suplemento angular de 40% de apertura, y uno radial de 50 [mm] de espesor, entonces para un suplemento de angular de 30% de apertura el suplemento radial de 50 [mm] de espesor debe ser diferente. The radial and angular supplements interfere with each other in the connection lines of the blade with the AB and AC cone (see figure 14). Due to this, the radial supplements must be specific for each angular supplement, that is, if an angular supplement of 40% aperture is used, and a radial supplement of 50 [mm] thick, then for a 30% angular supplement of opening the radial supplement 50 [mm] thick must be different.
Control del desplazamiento axial y orientación Axial displacement control and orientation
Durante la operación del dispositivo cosechador de frutos, generador de pulsos sobre la planta, es importante que la boca del dispositivo se acerque lo más posible a la misma, ya que la intensidad del pulso es mayor allí y decrece a medida que las ramas se ponen en bandera y se alejan de la boca. De esta forma se obtienen mejores eficiencias de cosecha para una misma potencia o, recíprocamente se puede reducir la potencia para una misma eficiencia de cosecha. Normalmente el operador debe ubicar el vehículo que transporta el dispositivo de manera que la boca del mismo se acerque lo más posible a la línea de plantas. También debería poder regular la altura a la que se encuentra el dispositivo para que la zona de acción del mismo coincida con la altura de la planta donde se encuentra la mayor densidad de fruto. Estos ajustes pueden hacerse previos a la cosecha para un dado cultivo, y desarrollo de las plantas. Pero incluso dentro de una plantación puede haber irregularidades en el desarrollo de las mismas, de manera que es deseable tener la mayor versatilidad posible por parte del operador en cuanto a cómo desplazar el dispositivo con respecto a la línea de plantas. During the operation of the fruit harvesting device, pulse generator on the plant, it is important that the mouth of the device be as close as possible to it, since the intensity of the pulse is greater there and decreases as the branches get in flag and they move away from the mouth. In this way, better harvest efficiencies are obtained for the same power or, reciprocally, the power for the same harvest efficiency can be reduced. Normally the operator must locate the vehicle that transports the device so that the mouth of the device is as close as possible to the plant line. You should also be able to regulate the height at which the device is so that the area of action of the device coincides with the height of the plant where the highest fruit density is. These adjustments can be made prior to harvest for a given crop, and plant development. But even within a plantation there may be irregularities in their development, so that it is desirable to have the greatest possible versatility by the operator as to how to move the device with respect to the plant line.
La presente invención provee de un sistema que permite regular mediante cilindros hidráulicos la posición y orientación del dispositivo, en particular tres de los seis posibles grados de libertad del mismo que, siguiendo la nomenclatura usada para el movimiento de barcos y aviones, llamaremos (ver figura 17): The present invention provides a system that allows the position and orientation of the device to be regulated by hydraulic cylinders, in particular three of the six possible degrees of freedom thereof, which, following the nomenclature used for the movement of ships and airplanes, we will call (see figure 17):
•Avance y retroceso: corresponde a desplazar al dispositivo según su eje, permitiendo acercar o alejar la boca al centro de la línea de plantas.
•Cabeceo: corresponde a girar el dispositivo sobre un eje horizontal paralelo a la línea de plantas y pasando por el centro del dispositivo. Con este movimiento se puede enfocar la zona de acción del dispositivo a una dada altura de la planta. • Forward and backward: corresponds to move the device along its axis, allowing the mouth to zoom in or out to the center of the plant line. • Pitch: corresponds to rotate the device on a horizontal axis parallel to the plant line and through the center of the device. With this movement you can focus the area of action of the device at a given height of the plant.
•Guiñado: corresponde a girar el dispositivo sobre un eje vertical pasando por el centro del mismo. Este movimiento permite al operador enfocar la acción de dos dispositivos ubicados del mismo lado del linio sobre una misma planta, de manera de superponer la zona de acción de ambos (ver figura 18). • Wink: corresponds to rotate the device on a vertical axis through the center of it. This movement allows the operator to focus the action of two devices located on the same side of the line on the same floor, in order to superimpose the area of action of both (see figure 18).
El movimiento más general del dispositivo consiste de seis grados de libertad, pero el rolido es redundante ya que consistiría en rotar el dispositivo sobre su eje, lo cual no tiene efecto. Tanto la arfada (trasladar el dispositivo hacia arriba y hacia abajo) y la deriva (moverlo lateralmente) serían complejos de implementar mecánicamente, requiriendo de mayor espacio en el vehículo que traslada el dispositivo, y ambos pueden ser parcialmente compensados con los movimientos de rotación; es decir por ejemplo la arfada (subir el dispositivo para atacar una zona superior de la planta) puede ser parcialmente compensada rotando el dispositivo hacia arriba. Por lo tanto la práctica demuestra que estos tres movimientos (avance, cabeceo, y guiñado) son los más importantes y los restantes tres o bien son redundantes o bien la complejidad mecánica para realizarlos los hace imprácticos. The most general movement of the device consists of six degrees of freedom, but the role is redundant since it would consist of rotating the device on its axis, which has no effect. Both the arfada (moving the device up and down) and the drift (moving it laterally) would be complex to implement mechanically, requiring more space in the vehicle that moves the device, and both can be partially compensated with rotational movements; that is, for example, the arfada (raising the device to attack an upper area of the plant) can be partially compensated by rotating the device upwards. Therefore, the practice demonstrates that these three movements (advance, pitch, and wink) are the most important and the remaining three are either redundant or the mechanical complexity to perform them makes them impractical.
El sistema mostrado en la figura 19 permite al operador realizar los tres movimientos indicados utilizando cilindros hidráulicos. La carcasa conteniendo al dispositivo (1) está montada sobre un soporte tipo horquilla (2) que permite girar al dispositivo sobre el eje (O), es decir realizar el movimiento de cabeceo. Este movimiento está controlado por el cilindro hidráulico (3). Todo este sistema está montado sobre un cuadro (4) que le aporta rigidez al conjunto y está montado sobre un aro giratorio (usado frecuentemente para remolques) (5) que gira sobre un bolillero (6). Este aro el que permite el movimiento de guiñado sobre el eje vertical (0') y es actuado por un segundo cilindro hidráulico (7). El bolillero reposa sobre un carro con ruedas (8) el cual permite realizar el movimiento de avance y retroceso que es controlado con el cilindro hidráulico (9). Las ruedas del carro se desplazan sobre guías montadas sobre una plataforma (10) que es solidaria al vehículo que transporta el dispositivo. The system shown in Figure 19 allows the operator to perform the three movements indicated using hydraulic cylinders. The housing containing the device (1) is mounted on a fork-type support (2) that allows the device to be rotated on the axis (O), that is to say the pitching movement. This movement is controlled by the hydraulic cylinder (3). This entire system is mounted on a frame (4) that provides rigidity to the assembly and is mounted on a rotating ring (frequently used for trailers) (5) that turns on a bollard (6). This ring which allows the yaw movement on the vertical axis (0 ') and is actuated by a second hydraulic cylinder (7). The bollard rests on a trolley with wheels (8) which allows the forward and reverse movement that is controlled with the hydraulic cylinder (9). The wheels of the carriage move on guides mounted on a platform (10) that is integral with the vehicle that carries the device.
Sistema de control Control system
La frecuencia óptima de extracción varía según la especie, y otros factores como el
grado de desarrollo vegetativo de la plantación y el grado de maduración. Por ejemplo se ha determinado que 3 [Hz] es la frecuencia óptima para arándanos con un grado de maduración intermedio, mientras que para olivo con un grado de maduración bajo, la frecuencia óptima está entre 1 y 2 [Hz]. Por lo tanto si bien pueden determinarse a priori valores indicativos de la frecuencia óptima de cosecha, es necesario que el operador pueda ajustar la misma en tiempo real. La frecuencia del pulso está dada por la velocidad de giro del rotor y el mecanismo más básico e importante para controlarlo es regulando la intensidad aplicada al electrofreno. The optimal frequency of extraction varies by species, and other factors such as degree of vegetative development of the plantation and the degree of maturation. For example, it has been determined that 3 [Hz] is the optimum frequency for blueberries with an intermediate ripening level, while for olive trees with a low ripening degree, the optimum frequency is between 1 and 2 [Hz]. Therefore, although values indicative of the optimum harvest frequency can be determined a priori, it is necessary that the operator can adjust it in real time. The frequency of the pulse is given by the speed of rotation of the rotor and the most basic and important mechanism to control it is regulating the intensity applied to the electric brake.
Lo mismo ocurre con respecto a la intensidad del pulso. Si bien a mayor intensidad la eficiencia de cosecha es mayor, también se incrementa el daño ocasionado a la planta, así como se pierde la selectividad, es decir la capacidad de cosechar en mayor proporción la fruta en estado óptimo de madurez, con respecto a la fruta verde o muy madura. Por estas razones en arándanos es importante usar la intensidad más baja posible. Por el contrario, en olivo es necesario utilizar un pulso muy intenso. Si bien para el cultivo en estado apropiado de madurez la fuerza necesaria para extraer un fruto es de 2 [N], para fruta en estado de madurez muy bajo esta fuerza se puede incrementar hasta 5 [N], requiriendo de una intensidad de pulso muy alta para lograr eficiencias de cosecha importante. El mecanismo más básico e importante para lograr incrementar la intensidad del pulso es aumentando la velocidad del ventilador. The same goes for the pulse intensity. Although the harvest efficiency is greater at greater intensity, the damage caused to the plant is also increased, as well as the selectivity is lost, that is to say, the ability to harvest the fruit in a greater proportion at optimum maturity, with respect to the Green or very ripe fruit. For these reasons in blueberries it is important to use the lowest possible intensity. On the contrary, in olive trees it is necessary to use a very intense pulse. Although for the cultivation in an appropriate state of maturity the force necessary to extract a fruit is 2 [N], for fruit in a state of maturity very low this force can be increased up to 5 [N], requiring a very intense pulse intensity. high to achieve important harvest efficiencies. The most basic and important mechanism to increase the pulse intensity is to increase the fan speed.
Además, el control de la intensidad de pulso y frecuencia se ve dificultado por el hecho de que en la práctica ambos son dependientes entre sí. Es decir, si se incrementa la velocidad del ventilador entonces habrá un incremento directo en el caudal de aire y por lo tanto en la intensidad del pulso, pero a su vez este incremento en el caudal provocará un mayor torque aerodinámico sobre el rotor y por lo tanto un incremento en las RPM del mismo y de la frecuencia del pulso. Por otra parte si se controla la potencia del electrofreno esto influirá directamente en la velocidad del rotor y por lo tanto en la frecuencia del pulso, pero también una variación en la velocidad del rotor modifica su resistencia aerodinámica y por lo tanto en el caudal de aire y la intensidad de pulso. En la práctica se observa que es mayor el primer efecto, es decir un cambio en la velocidad de giro del ventilador tiene un efecto sensible en la frecuencia del pulso, pero un cambio en la intensidad del electrofreno tiene un
efecto menor sobre la intensidad del pulso, de manera que usualmente el operador fija primero la velocidad de giro del ventilador deseada y luego la frecuencia del pulso a través del control del electrofreno. In addition, the control of pulse intensity and frequency is hindered by the fact that in practice both are dependent on each other. That is, if the fan speed is increased then there will be a direct increase in the air flow rate and therefore in the pulse intensity, but in turn this increase in the flow rate will cause greater aerodynamic torque over the rotor and therefore both an increase in the RPM of the same and the pulse rate. On the other hand, if the power of the electric brake is controlled, this will directly influence the speed of the rotor and therefore the pulse rate, but also a variation in the speed of the rotor modifies its aerodynamic resistance and therefore the air flow and pulse intensity. In practice, it is observed that the first effect is greater, that is, a change in the speed of rotation of the fan has a sensitive effect on the pulse frequency, but a change in the intensity of the electric brake has a minor effect on the pulse intensity, so that the operator usually sets the desired fan rotation speed first and then the pulse frequency through the electrobrake control.
Para facilitar la operación de estas variables se implemento un sistema de control (ver figura 15), el cual consta de un tablero { "Lado Operador" en la figura) y una serie de componentes que se agregan al generador { "Lado Turbina" en la figura) para sensar y controlar estas variables. Consta de un sensor que cuenta las vueltas del electrofreno, el cual es solidario al rotor y por lo tanto mide directamente la frecuencia del pulso. Otro sensor mide la velocidad del ventilador y por lo tanto (indirectamente) el caudal de aire y la amplitud del pulso. Los valores de RPM para rotor y turbina son transmitidos al tablero y mostrados al operador en un display LCD. Por otro lado, el controlador envía una señal PWM (Pulse- Width Modulation) para controlar el electrofreno y otra señal PWM a una válvula hidráulica proporcional que controla el motor hidráulico que mueve el ventilador. To facilitate the operation of these variables, a control system was implemented (see figure 15), which consists of a board {"Operator Side" in the figure) and a series of components that are added to the generator {"Turbine Side" in the figure) to sense and control these variables. It consists of a sensor that counts the turns of the electric brake, which is integral with the rotor and therefore directly measures the pulse frequency. Another sensor measures the fan speed and therefore (indirectly) the air flow and pulse width. The RPM values for rotor and turbine are transmitted to the dashboard and shown to the operator on an LCD display. On the other hand, the controller sends a PWM (Pulse-Width Modulation) signal to control the electric brake and another PWM signal to a proportional hydraulic valve that controls the hydraulic motor that drives the fan.
Modo de control en lazo abierto Open loop control mode
En este modo ambas señales PWM son controladas desde el tablero con potenciómetros. Con este sistema de control el operador puede ver en tiempo real la frecuencia e intensidad del pulso y regularlos a través de los potenciómetros mencionados en modo de lazo abierto. Normalmente el operador ajusta primero el potenciómetro de turbina hasta llegar a la intensidad de pulso (RPM del ventilador) deseada, y luego ajusta el potenciómetro del electrofreno hasta llegar a la frecuencia deseada. Si en este modo ocurre alguna perturbación al sistema, por ejemplo alguna obstrucción al rotor, la frecuencia del pulso bajará y el sistema electrónico no efectuara ninguna acción para volver a la frecuencia deseada. In this mode both PWM signals are controlled from the panel with potentiometers. With this control system the operator can see in real time the frequency and intensity of the pulse and regulate them through the potentiometers mentioned in open loop mode. Normally, the operator first adjusts the turbine potentiometer until it reaches the desired pulse intensity (RPM of the fan), and then adjusts the electrobrake potentiometer until it reaches the desired frequency. If in this mode some disturbance to the system occurs, for example some obstruction to the rotor, the pulse frequency will go down and the electronic system will not take any action to return to the desired frequency.
Modo de control de lazo cerrado. Barridos en frecuencia Closed loop control mode. Frequency sweeps
En este modo el microcontrolador realiza una lógica simple sobre las variables controladas (PWM de la valvular proporcional y del electrofreno) para mantener los parámetros de operación que se sensan (velocidad del ventilador y frecuencia del pulso). In this mode the microcontroller performs a simple logic on the controlled variables (proportional valve and electrobrake PWM) to maintain the operating parameters that are sensed (fan speed and pulse frequency).
Además en algunos cultivos como olivo por ejemplo, es muy eficiente realizar barridos de frecuencia, por ejemplo variar la frecuencia entre 1 y 3 [Hz] con una onda triangular de 10 segundos de período. El sistema de control presentado permite realizar estos
barridos de frecuencia en forma simple, ingresando una serie de intervalos T., y las frecuencias f. al comienzo de cada período. La frecuencia se interpola linealmente dentro de cada período y se repite indefinidamente una vez terminados los T. es decir que el período total de la secuencia. Por ejemplo en la figura 16 vemos una onda triangular de período Γ=10 [s] en los cuales hay un período inicial 7^ de 5 [s] en el cual la frecuencia sube linealmente de ^=l [Hz] [Hz], seguida de un segundo período de la misma duración en el cual vuelve a bajar linealmente a 1 [Hz]. En este caso el operador sólo debe ingresar por el teclado los valores de T^ , f^ , Esta forma de ingresar los barridos en frecuencia es suficientemente versátil para cubrir la mayoría de las necesidades. Usualmente el operador determina la configuración de barrido en frecuencia óptima realizando una puesta a punto con experiencias antes de comenzar las tareas de cosecha. In addition, in some crops such as olive trees, for example, it is very efficient to perform frequency sweeps, for example, to vary the frequency between 1 and 3 [Hz] with a triangular wave of 10 seconds of period. The presented control system allows these frequency sweeps in a simple way, entering a series of intervals T., and the frequencies f. at the beginning of each period. The frequency is interpolated linearly within each period and is repeated indefinitely once the T. is finished, that is to say the total period of the sequence. For example in Figure 16 we see a triangular wave of period Γ = 10 [s] in which there is an initial period 7 ^ of 5 [s] in which the frequency rises linearly from ^ = l [Hz] [Hz], followed by a second period of the same duration in which it drops back linearly to 1 [Hz]. In this case, the operator must only enter the values of T ^, f ^, on the keyboard. This way of entering the frequency sweeps is versatile enough to cover most needs. Usually the operator determines the sweep setting at optimum frequency by performing a set-up with experiences before starting the harvesting tasks.
Se describe a continuación una forma de realización preferida del dispositivo de la presente invención: A preferred embodiment of the device of the present invention is described below:
La carcasa externa se construye en fibra de vidrio con un espesor de 10 mm. Se divide en 3 secciones: la sección cónica donde va amarrado el ventilador, la sección central cilindrica, y la sección de salida cilindrica, donde va amarrado el rotor. Esta división en secciones permite fácilmente intercambiar diferentes tipos de ventiladores según su potencia y soportes para rotores. The outer shell is constructed in fiberglass with a thickness of 10 mm. It is divided into 3 sections: the conical section where the fan is moored, the central cylindrical section, and the cylindrical outlet section, where the rotor is moored. This division into sections allows you to easily exchange different types of fans according to their power and rotor supports.
El ventilador está compuesto de una hélice Gatti S.A. de 8 palas de poliamida, 40 grados de ángulo máximo, 700mm de diámetro. Esta hélice permite llegar a velocidades de 2500 RPM. The fan is composed of a Gatti S.A. propeller. of 8 polyamide blades, 40 degrees maximum angle, 700mm diameter. This propeller can reach speeds of 2500 RPM.
El rotor, que es la parte más importante del dispositivo y de cuya construcción depende la eficiencia aerodinámica del mismo, se construye en PRFV (Plástico Reforzado con Fibra de Vidrio). Para ello se proponen diferentes diseños en CAD (Computer Aided Design), los cuales son testeados in-silico usando herramientas de CFD (Computational Fluid Dynamics). Una vez definida la forma óptima del rotor se utiliza una fresadora CNC LAGUN FBF 2600 para mecanizar un modelo en MDF (Medium-Density Fibreboard). Este modelo es pulido y pintado, para luego laminar un molde negativo en PRFV. Este molde es reforzado y luego permite construir rotores por laminación en PRFV. El rotor es reforzado con una chapa
de aluminio en el plano de salida. The rotor, which is the most important part of the device and whose construction depends on its aerodynamic efficiency, is constructed in GRP (Fiberglass Reinforced Plastic). For this, different designs are proposed in CAD (Computer Aided Design), which are tested in-silico using CFD tools (Computational Fluid Dynamics). Once the optimum shape of the rotor is defined, a LAGUN FBF 2600 CNC milling machine is used to machine a MDF (Medium-Density Fibreboard) model. This model is polished and painted, and then laminated a negative mold in GRP. This mold is reinforced and then allows to build rotors by rolling in GRP. The rotor is reinforced with a sheet of aluminum in the exit plane.
El ventilador es impulsado por un motor hidráulico (MH) que convierte la presión hidráulica desarrollada por la bomba en torque sobre el eje del ventilador. Típicamente el motor hidráulico opera hasta 160 kgf/cm2 de presión, desarrollando hasta 2500 RPM sobre el ventilador. En estas condiciones el motor hidráulico consume 25HP de potencia. The fan is driven by a hydraulic motor (MH) that converts the hydraulic pressure developed by the pump into torque on the fan shaft. Typically the hydraulic motor operates up to 160 kgf / cm2 of pressure, developing up to 2500 RPM on the fan. Under these conditions the hydraulic motor consumes 25HP of power.
El circuito hidráulico consta de una bomba (BH), la cual es accionada por un motor eléctrico (ME). Una válvula hidráulica proporcional (VHP) permite controlar desde el tablero de comando la potencia entregada al ventilador y por lo tanto la velocidad de giro del mismo. The hydraulic circuit consists of a pump (BH), which is driven by an electric motor (ME). A proportional hydraulic valve (VHP) allows to control from the command board the power delivered to the fan and therefore the speed of rotation of the same.
El dispositivo controlador consta de una consola y display (CD), que permite controlar mediante potenciómetros la señal PWM enviada a la válvula proporcional mencionada para el control de la velocidad del ventilador y la PWM para el electrofreno y por lo tanto la velocidad del rotor. El controlador consta de dos partes, una contenida en la consola de control { "lado operador" en la figura 15) utilizada por el operador, y la otra cerca del equipo { "lado turbina" en la figura). Ambos potenciómetros en la consola generan una amplitud que es interpretada por el microcontrolador (MC) que las envía a un CAN transceiver (CT) para ser enviadas al lado turbina. En el lado turbina otro CAN transceiver la decodifica y la envía en forma de PWM a la válvular proporcional (VHP) o al electrofreno. The controlling device consists of a console and display (CD), which allows the PWM signal sent to the proportional valve mentioned for the control of the fan speed and the PWM for the electric brake and therefore the rotor speed to be controlled by potentiometers. The controller consists of two parts, one contained in the control console {"operator side" in Figure 15) used by the operator, and the other near the equipment {"turbine side" in the figure). Both potentiometers in the console generate an amplitude that is interpreted by the microcontroller (MC) that sends them to a CAN transceiver (CT) to be sent to the turbine side. On the turbine side, another CAN transceiver decodes it and sends it in the form of a PWM to the proportional valve (VHP) or to the electric brake.
Como realimentación, tanto el electrofreno como el ventilador tienen sensores contadores de vueltas (SCV), los cuales envían de vuelta a la consola de control el número de vueltas (velocidad de giro). Estos datos son reportados en la pantalla LCD y son usados también para la estrategia de control de lazo cerrado. As a feedback, both the electric brake and the fan have lap counting sensors (SCV), which send back the number of turns (speed of rotation) to the control console. This data is reported on the LCD screen and is also used for the closed loop control strategy.
Datos de los componentes utilizados para la forma de realización preferida: Data of the components used for the preferred embodiment:
•VHP: Válvula proporcional Sun Hydraulics (USA). El modelo es FPCC-MCN, con bobina 24 volt 770-224 y cuerpo en linea ECB. • VHP: Sun Hydraulics proportional valve (USA). The model is FPCC-MCN, with 24 volt 770-224 coil and ECB inline body.
•MH: Motor hidráulico A2F28 de Rexroth • MH: Rexroth A2F28 hydraulic motor
•BH: Bomba hidráulica A10V45 de Rexroth • BH: Rexroth A10V45 hydraulic pump
•ME: Motor eléctrico WEG de 40 hp trifásico • ME: Three phase 40 hp WEG electric motor
•MC: Microcontrolador Motorola Colfire MCF51 JM 128 VQH • MC: Motorola Colfire MCF51 JM 128 VQH microcontroller
•SCV: Sensor control de velocidad ECFA HT-12NA • SCV: ECFA HT-12NA speed control sensor
•CT: CAN Transceiver ATMEL ATA6660-TAPY19
•CD: Consola y LCD display WINSTAR WH1602L-YYB-ST • CT: CAN Transceiver ATMEL ATA6660-TAPY19 • CD: Console and LCD display WINSTAR WH1602L-YYB-ST
En una forma preferida, la presente invención, tal como se ve en la figura 19, tanto la horquilla (2) como el cuadro (4) están construidos en caño estructural de 40mmx40mmx4mm. El aro giratorio tiene 400mm de diámetro estándar. Los cilindros hidráulicos son de 2 pulgadas con carrera de 400m, de doble efecto. De esta forma, el dispositivo tiene un recorrido en avance de 400mm y una amplitud en cabeceo y guiñado de 30° en ambos sentidos.
In a preferred form, the present invention, as seen in Figure 19, both the fork (2) and the frame (4) are constructed in a 40mmx40mmx4mm structural spout. The rotating ring is 400mm in standard diameter. The hydraulic cylinders are 2 inches with 400m stroke, double acting. In this way, the device has a travel in advance of 400mm and an amplitude in pitch and wink of 30 ° in both directions.
Claims
REIVINDICACIONES
Habiendo así especialmente descrito y determinado la naturaleza de la presente invención y la manera de llevarla a la práctica, se declara reivindicar como de propiedad y derecho exclusivo: Having thus specially described and determined the nature of the present invention and the way of putting it into practice, it is claimed to claim as exclusive property and right:
1 Un dispositivo cosechador de frutos, de aquellos que generan pulsos de aire y provocan el desprendimiento de dichos frutos por rotura de sus tallos, conformado por al menos dos elementos rotantes: un primer elemento rotante generador de una corriente de aire y un segundo elemento rotante generador de dichos pulsos de aire, contenidos en una carcasa, caracterizado porque dicha carcasa comprende un sector de ingreso del aire, donde se ubica dicho primer elemento rotante, que es troncocónico con un ángulo de conicidad de entre 10° y 25°; y un sistema de control de la frecuencia de dichos pulsos de aire. 1 A fruit harvesting device, of those that generate air pulses and cause the detachment of said fruits by breaking their stems, consisting of at least two rotating elements: a first rotating element generating an air current and a second rotating element generator of said air pulses, contained in a housing, characterized in that said housing comprises an air intake sector, where said first rotating element is located, which is frustoconical with a conicity angle of between 10 ° and 25 °; and a frequency control system of said air pulses.
2 El dispositivo de la reivindicación 1 caracterizado porque dicho segundo elemento rotante orientador de dicha corriente de aire es un rotor que comprende al menos 1 abertura en su plano perpendicular al eje de giro, por la que pasa la corriente de aire generada por el primer elemento rotante 2 The device of claim 1 characterized in that said second rotating element guiding said air stream is a rotor comprising at least 1 opening in its plane perpendicular to the axis of rotation, through which the air stream generated by the first element passes rotating
3 . El dispositivo de la reivindicación 3 caracterizado porque dicho rotor además comprende aletas curvas orientadas hacia el primer elemento rotante. 3 . The device of claim 3 characterized in that said rotor further comprises curved fins oriented towards the first rotating element.
4 El dispositivo de la reivindicación 3 o 4 caracterizado porque dicho rotor comprende entre 2 y 6 aberturas de tamaño variable en su plano perpendicular al eje de giro, por las que pasa la corriente de aire generada por el primer elemento rotante. The device of claim 3 or 4 characterized in that said rotor comprises between 2 and 6 openings of variable size in its plane perpendicular to the axis of rotation, through which the air current generated by the first rotating element passes.
5 El dispositivo de la reivindicación 4 caracterizado porque dichas aberturas de tamaño variable comprenden un dispositivo de regulación de apertura angular. The device of claim 4 characterized in that said variable size openings comprise an angular opening regulation device.
6 El dispositivo de la reivindicación 5 caracterizado porque dichas aberturas de tamaño variable comprenden un dispositivo de regulación continua de la apertura angular. The device of claim 5 characterized in that said variable size openings comprise a device for continuously regulating the angular opening.
7 El dispositivo de la reivindicación 4 caracterizado porque dichas aberturas de tamaño variable comprenden un dispositivo de regulación de la apertura radial. The device of claim 4 characterized in that said variable size openings comprise a device for regulating the radial opening.
8 El dispositivo de la reivindicación 1 caracterizado porque dicho sistema de control comprende un sensor que cuenta las vueltas de dicho rotor y por lo tanto mide
directamente la frecuencia de dicho pulso de aire; un segundo sensor que mide la velocidad del primer elemento rotante y por lo tanto, indirectamente, el caudal de aire y la amplitud del pulso; un tablero que recibe los valores de dichas velocidades en RPM para rotor y primer elemento rotante y un display LCD que muestra dichos valores de velocidades en RPM; un potenciómetro controlador envía una señal PWM (Pulse-Width Modulation) para controlar dicha velocidad de dicho rotor y otro potenciómetro que envía una señal PWM a una válvula hidráulica proporcional que controla el motor hidráulico que mueve dicho primer elemento rotante y así regula su velocidad. The device of claim 1 characterized in that said control system comprises a sensor that counts the turns of said rotor and therefore measures directly the frequency of said air pulse; a second sensor that measures the speed of the first rotating element and therefore, indirectly, the air flow and pulse width; a board that receives the values of said speeds in RPM for rotor and first rotating element and an LCD display showing said speed values in RPM; a controlling potentiometer sends a PWM (Pulse-Width Modulation) signal to control said rotor speed and another potentiometer that sends a PWM signal to a proportional hydraulic valve that controls the hydraulic motor that moves said first rotating element and thus regulates its speed.
9 El dispositivo de la reivindicación 1 caracterizado porque además comprende un labio de succión que disminuye el efecto de vena-contracta. The device of claim 1 characterized in that it further comprises a suction lip that decreases the effect of vein-contracta.
10 El dispositivo de cualquiera de las reivindicaciones anteriores caracterizado porque dichos elementos rotantes son coaxiales. The device of any of the preceding claims characterized in that said rotating elements are coaxial.
11 El dispositivo de la reivindicación 1 caracterizado porque dicha carcasa es solidaria a un eje central sobre el que giran dichos elementos rotantes. The device of claim 1 characterized in that said housing is integral with a central axis on which said rotating elements rotate.
12 El dispositivo de cualquiera de las reivindicaciones anteriores caracterizado porque dicho primer elemento rotante es impulsado por un motor. The device of any one of the preceding claims characterized in that said first rotating element is driven by a motor.
13 El dispositivo de cualquiera de las reivindicaciones anteriores caracterizado porque dicho rotor es impulsado por un motor. The device of any of the preceding claims characterized in that said rotor is driven by a motor.
14 El dispositivo de cualquiera de las reivindicaciones anteriores caracterizado porque dicho rotor es impulsado por la corriente de aire generada por dicho primer elemento rotante y gira a una velocidad de rotación controlada por un freno. The device of any of the preceding claims characterized in that said rotor is driven by the current of air generated by said first rotating element and rotates at a rotation speed controlled by a brake.
15 El dispositivo de cualquiera de las reivindicaciones anteriores caracterizado porque dichos elementos rotantes giran a diferente velocidad generando un pulso de aire en el espacio ubicado a la salida de la carcasa, después del rotor. The device of any of the preceding claims characterized in that said rotating elements rotate at different speeds generating a pulse of air in the space located at the exit of the housing, after the rotor.
16 El dispositivo de la reivindicación 15 caracterizado porque la amplitud de dicho pulso de aire es regulado por la velocidad de dicho primer elemento rotante y la frecuencia de dicho pulso de aire es regulado por la velocidad de dicho rotor, el tamaño y el número de dichas aberturas. The device of claim 15 characterized in that the amplitude of said air pulse is regulated by the speed of said first rotating element and the frequency of said air pulse is regulated by the speed of said rotor, the size and number of said openings
17 El dispositivo de cualquiera de las reivindicaciones anteriores caracterizado porque dichas frutas son seleccionadas del conjunto comprendido por aceitunas, uvas, peras,
manzanas, nueces, duraznos, arándanos, frutas finas, y frutas que estén sostenidas por un pedúnculo. The device of any of the preceding claims characterized in that said fruits are selected from the set comprised of olives, grapes, pears, apples, nuts, peaches, cranberries, fine fruits, and fruits that are supported by a peduncle.
18 El dispositivo de cualquiera de las reivindicaciones anteriores caracterizado porque comprende un soporte de dicha carcasa que gira libremente sobre un eje horizontal, generando un movimiento de cabeceo, y un cilindro hidráulico que controla dicho movimiento. The device of any of the preceding claims characterized in that it comprises a support of said housing that rotates freely on a horizontal axis, generating a pitching movement, and a hydraulic cylinder that controls said movement.
19 El dispositivo de cualquiera de las reivindicaciones anteriores caracterizado porque comprende un soporte de dicha carcasa que gira libremente sobre un eje vertical generando un movimiento de guiñado, y un cilindro hidráulico que controla dicho movimiento. The device of any of the preceding claims characterized in that it comprises a support of said housing that rotates freely on a vertical axis generating a yaw movement, and a hydraulic cylinder that controls said movement.
20 El dispositivo de cualquiera de las reivindicaciones anteriores caracterizado porque comprende un soporte de dicha carcasa que está montado sobre un carro con ruedas que se desplazan sobre guías, que permiten el movimiento de avance y retroceso, montadas sobre una plataforma que es solidaria al vehículo que transporta el dispositivo. The device of any of the preceding claims characterized in that it comprises a support of said housing that is mounted on a carriage with wheels that move on guides, which allow the movement of forward and reverse, mounted on a platform that is integral with the vehicle that transport the device
21 Un dispositivo cosechador de frutos, de aquellos que generan pulsos de aire y provocan el desprendimiento de dichos frutos por rotura de sus tallos caracterizado porque comprende una carcasa con al menos dos elementos rotantes: un primer elemento rotante generador de una corriente de aire y un segundo elemento rotante generador de dichos pulsos de aire; y un sistema de control de la frecuencia de dichos pulsos de aire; una carcasa con un eje coaxial a dichos elementos rotantes, con un sector de ingreso de aire cónico con una ángulo de conicidad de entre 10° y 25°, que presenta un labio de succión que disminuye el efecto de vena-contracta; y que además comprende medios pivotantes que otorgan al dispositivo movimiento con respecto a un eje vertical y con respecto a un eje horizontal. 21 A fruit harvesting device, of those that generate air pulses and cause the detachment of said fruits by breaking their stems characterized in that it comprises a housing with at least two rotating elements: a first rotating element generating an air current and a second rotating element generating said air pulses; and a frequency control system of said air pulses; a housing with a coaxial axis to said rotating elements, with a conical air intake sector with a conicity angle of between 10 ° and 25 °, which has a suction lip that decreases the effect of vein-contract; and which also includes pivoting means that give the device movement with respect to a vertical axis and with respect to a horizontal axis.
22 Un procedimiento para cosechar frutos que comprende los siguientes pasos: a) ubicar el dispositivo de cualquiera de las reivindicaciones anteriores frente a una planta con frutos a una distancia de al menos un metro, 22 A method for harvesting fruits comprising the following steps: a) locating the device of any of the preceding claims against a plant with fruits at a distance of at least one meter,
b) accionar el primer elemento rotante, b) actuate the first rotating element,
c) regular la velocidad de giro del primer elemento rotante para fijar la intensidad de pulso de aire, c) regulate the speed of rotation of the first rotating element to set the intensity of air pulse,
d) regular la velocidad del rotor para fijar la frecuencia de pulso de aire,
e) recolectar los frutos que se desprenden por acción de los pulsos de aire generados por dicho dispositivo. d) regulate the rotor speed to set the air pulse rate, e) collect the fruits that are released by the action of the air pulses generated by said device.
23 Un procedimiento como el de la reivindicación 22 caracterizado porque luego del paso d) comprende rotar dicho dispositivo con respecto a un eje vertical. 23 A method as in claim 22 characterized in that after step d) it comprises rotating said device with respect to a vertical axis.
24 Un procedimiento como el de la reivindicación 22 caracterizado porque luego del paso d) comprende rotar dicho dispositivo con respecto a un eje horizontal. A method as in claim 22 characterized in that after step d) it comprises rotating said device with respect to a horizontal axis.
25 Un procedimiento como el de la reivindicación 22 caracterizado porque luego del paso d) comprende desplazar al dispositivo según su eje axial, logrando acercar o alejar dicho dispositivo cosechador de frutos de la planta a la que se está cosechando.
A method as in claim 22, characterized in that after step d) it comprises moving the device along its axial axis, managing to bring said fruit harvesting device closer or further away from the plant to which it is being harvested.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2014/064354 WO2016038421A1 (en) | 2014-09-09 | 2014-09-09 | Fruit harvesting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2014/064354 WO2016038421A1 (en) | 2014-09-09 | 2014-09-09 | Fruit harvesting device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016038421A1 true WO2016038421A1 (en) | 2016-03-17 |
Family
ID=51844794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2014/064354 WO2016038421A1 (en) | 2014-09-09 | 2014-09-09 | Fruit harvesting device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016038421A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200120886A1 (en) * | 2017-05-04 | 2020-04-23 | Arugga A.I Farming Ltd | Plant treatment systems and methods |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3310231A (en) | 1964-04-08 | 1967-03-21 | Fmc Corp | Fruit harvesting machine |
US3455502A (en) | 1965-08-13 | 1969-07-15 | Int Harvester Co | Fruit picker |
US3553949A (en) | 1968-01-29 | 1971-01-12 | Fmc Corp | Apparatus for gathering crops from trees |
US3757504A (en) | 1969-03-03 | 1973-09-11 | G Rauth | Harvesting apparatus |
US3871040A (en) | 1973-05-16 | 1975-03-18 | Ernesto Lendaro | Apparatus for harvesting fruit from trees |
US3943688A (en) | 1974-10-04 | 1976-03-16 | Billings Thomas A | Harvesting machine |
ES428532A1 (en) | 1973-07-23 | 1976-12-01 | Guibeaud | Machine for automatically gathering fruits and in particular enabling vintaging |
US4175368A (en) | 1977-08-15 | 1979-11-27 | Ag Superior, Inc. | Harvesting apparatus and process |
DE2931564A1 (en) * | 1979-08-03 | 1981-02-19 | Karl Blank | Vine leaf trimming machine - generates draught to draw leaves out in line for cutting off |
US5622036A (en) | 1995-06-06 | 1997-04-22 | Orchard-Rite Ltd., Inc. | Oscillating blower for removing tree fruit and nuts |
US6594982B1 (en) | 1999-06-24 | 2003-07-22 | Etablissements Collard Sa, Societe Anonyme A Directoire Et Conseil De Surveillance | Mechanical leaf stripper operating on compressed gas |
US6609359B1 (en) | 1998-08-17 | 2003-08-26 | Teixeira Da Costa Miguel Pelagio | Wind machine for harvesting and gathering olives |
FR2862483A1 (en) | 2003-11-24 | 2005-05-27 | Henri Sabourain | Vine stock stripping-off device for use on e.g. tractor, has stripping-off head including fixing chassis that permits to connect head with frame, where head is positioned near plant row, and has two modules with respective rotating arms |
WO2007021271A1 (en) | 2005-08-12 | 2007-02-22 | Andina Food Llc | Fruit harvesting machine for trees, shrubs and the like |
US20070157590A1 (en) * | 2006-01-10 | 2007-07-12 | Joel Arthur | Touchless harvester |
WO2009013722A2 (en) * | 2007-07-26 | 2009-01-29 | Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) | Air pulse generating device for harvesting fruits |
-
2014
- 2014-09-09 WO PCT/IB2014/064354 patent/WO2016038421A1/en active Application Filing
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3310231A (en) | 1964-04-08 | 1967-03-21 | Fmc Corp | Fruit harvesting machine |
US3455502A (en) | 1965-08-13 | 1969-07-15 | Int Harvester Co | Fruit picker |
US3553949A (en) | 1968-01-29 | 1971-01-12 | Fmc Corp | Apparatus for gathering crops from trees |
US3757504A (en) | 1969-03-03 | 1973-09-11 | G Rauth | Harvesting apparatus |
US3871040A (en) | 1973-05-16 | 1975-03-18 | Ernesto Lendaro | Apparatus for harvesting fruit from trees |
ES428532A1 (en) | 1973-07-23 | 1976-12-01 | Guibeaud | Machine for automatically gathering fruits and in particular enabling vintaging |
US3943688A (en) | 1974-10-04 | 1976-03-16 | Billings Thomas A | Harvesting machine |
US4175368A (en) | 1977-08-15 | 1979-11-27 | Ag Superior, Inc. | Harvesting apparatus and process |
DE2931564A1 (en) * | 1979-08-03 | 1981-02-19 | Karl Blank | Vine leaf trimming machine - generates draught to draw leaves out in line for cutting off |
US5622036A (en) | 1995-06-06 | 1997-04-22 | Orchard-Rite Ltd., Inc. | Oscillating blower for removing tree fruit and nuts |
US6609359B1 (en) | 1998-08-17 | 2003-08-26 | Teixeira Da Costa Miguel Pelagio | Wind machine for harvesting and gathering olives |
US6594982B1 (en) | 1999-06-24 | 2003-07-22 | Etablissements Collard Sa, Societe Anonyme A Directoire Et Conseil De Surveillance | Mechanical leaf stripper operating on compressed gas |
FR2862483A1 (en) | 2003-11-24 | 2005-05-27 | Henri Sabourain | Vine stock stripping-off device for use on e.g. tractor, has stripping-off head including fixing chassis that permits to connect head with frame, where head is positioned near plant row, and has two modules with respective rotating arms |
WO2007021271A1 (en) | 2005-08-12 | 2007-02-22 | Andina Food Llc | Fruit harvesting machine for trees, shrubs and the like |
US20070157590A1 (en) * | 2006-01-10 | 2007-07-12 | Joel Arthur | Touchless harvester |
WO2009013722A2 (en) * | 2007-07-26 | 2009-01-29 | Consejo Nacional De Investigaciones Cientificas Y Tecnicas (Conicet) | Air pulse generating device for harvesting fruits |
AR066685A1 (en) | 2007-07-26 | 2009-09-09 | Univ Nac Del Litoral | A FRUIT HARVESTING DEVICE. |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200120886A1 (en) * | 2017-05-04 | 2020-04-23 | Arugga A.I Farming Ltd | Plant treatment systems and methods |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2851340T3 (en) | Rotation speed control by modifying the blade profile | |
ES2557167T3 (en) | Methods and apparatus for pressurizing and efficiently ventilating an air-supported structure | |
ES2769353T3 (en) | System and procedure to control floating marine wind turbine platforms | |
ES2642064T3 (en) | Device and procedure for acceleration of growth and regeneration of grass surfaces | |
ES2573095T3 (en) | Support and propulsion device and aerodyne equipped with said device | |
CA2588602C (en) | Wind turbine | |
US20070222224A1 (en) | Louvered horizontal wind turbine | |
KR102306646B1 (en) | Apparatus for extracting power from fluid flow | |
US8197178B1 (en) | Wind cone windmills and application to energy harvesting factory ships | |
SE1550022A1 (en) | Device for ships equipped with air cavities | |
US11104432B2 (en) | Bent tube ducted fan drone | |
WO2016038421A1 (en) | Fruit harvesting device | |
EP1731759A3 (en) | Device for producing useful electricity from jetstreams | |
US20160096603A1 (en) | Air introduction device | |
US4643355A (en) | Method and apparatus for modification of climatic conditions | |
ES2537321T3 (en) | Spray device | |
US20160061183A1 (en) | Watermill device and method of generating electrical energy by means of such a device | |
US7434524B2 (en) | Machine to get rid of hurricanes | |
US9909560B1 (en) | Turbine apparatus with airfoil-shaped enclosure | |
US20210095638A1 (en) | Wind turbine and method of generating power from the wind | |
CN107646385A (en) | Greening pruner robot | |
ES1210164U (en) | FERTILIZER (Machine-translation by Google Translate, not legally binding) | |
ES2784716A1 (en) | Boat propulsion system (Machine-translation by Google Translate, not legally binding) | |
US11060501B1 (en) | Turbovane wind turbine | |
KR101409290B1 (en) | Apparatus and method for opening and closing inlet of wind power generator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14792592 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.07.2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14792592 Country of ref document: EP Kind code of ref document: A1 |