WO2016037846A1 - Compact burner for an entrained-flow gasifier, having no liquid cooling - Google Patents

Compact burner for an entrained-flow gasifier, having no liquid cooling Download PDF

Info

Publication number
WO2016037846A1
WO2016037846A1 PCT/EP2015/069412 EP2015069412W WO2016037846A1 WO 2016037846 A1 WO2016037846 A1 WO 2016037846A1 EP 2015069412 W EP2015069412 W EP 2015069412W WO 2016037846 A1 WO2016037846 A1 WO 2016037846A1
Authority
WO
WIPO (PCT)
Prior art keywords
burner
media
compact
burner tip
nozzle
Prior art date
Application number
PCT/EP2015/069412
Other languages
German (de)
French (fr)
Inventor
Dietmar Degenkolb
Wei Fu
Tino Just
Christoph Kiener
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE112015004157.5T priority Critical patent/DE112015004157A5/en
Priority to US15/508,604 priority patent/US20170254534A1/en
Priority to CN201580048918.6A priority patent/CN107076410A/en
Publication of WO2016037846A1 publication Critical patent/WO2016037846A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • F23D14/24Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other at least one of the fluids being submitted to a swirling motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/34Burners specially adapted for use with means for pressurising the gaseous fuel or the combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • F23D14/52Nozzles for torches; for blow-pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/78Cooling burner parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2211/00Thermal dilatation prevention or compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2213/00Burner manufacture specifications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2214/00Cooling

Definitions

  • the invention relates to a compact burner for the pressure gasification of fuel dusts for the production of synthesis gas.
  • CN2688677Y discloses a gasification nozzle in which a sliding seal is arranged at the connection point between the inner injection pipe and the outer injection pipe to compensate for changes in length.
  • the invention is based on the problem of providing a burner for the pressure gasification of fuel dusts for the production of synthesis gas whose burner tip without supplying a Coolant life reaches as conventional
  • Liquid-cooled burner tips Liquid-cooled burner tips.
  • the effort required for the previous water cooling the burner tip can be saved on the system side.
  • the burner nozzle parts are built up in layers by generative processes and are largely finished.
  • the generative manufacturing process is the SLM (Selective Laser Melting) process.
  • the ge ⁇ nozzle contour buckled the following channel for a temperature sensor.
  • the adaptation of the twist of the oxidizing agent is advantageous, which is achieved by introducing a dividing wall into the oxidant channel .
  • the medium can be axially untwisted in one channel and the burner tip are supplied in the other by baffles or vanes.
  • Men ⁇ gene control of the two partial flows of the desired resulting swirl can be adjusted at the burner nozzle.
  • the use of sliding guides with a seal at the nozzles between the media frees the components from tensions caused by impaired thermal expansion and eliminates the expense of additional measures such as expansion compensators in the media channel walls.
  • FIG. 3 shows a main burner with a dividing wall (12) in the oxidizing agent channel (14), FIG.
  • Figure 4 is a tapered burner tip with cylindrically shaped end pieces (16) of the nozzle parts and
  • FIG. 5 shows a burner tip enclosing, water-cooled outer burner assembly (13).
  • the nozzle parts (2, 3, 4, 5) are designed so that they are sufficiently cooled by means of a defined amount of purge gas, such as nitrogen, or by an operating medium, such as fuel gas or oxidant. They are no longer parts of a pressure vessel and adapted in their shape to the cost-effective production by means of generative processes such as the SLM process (Selective Laser Melting). The previous material and time ⁇ consuming, machining production of forgings is largely reduced.
  • the media-related differential thermal expansion of the individual burner ducts separating pipes (6) is unimpeded on the sliding guides (7) of the burner nozzles tension-free possible and no strain compensation ⁇ compensation for compensation more. About seals (8) is too early mixing of the media on the sliding guides
  • the compact nozzles (2) and (4) ensure that the reaction-side, which is particularly important for the supply of the oxidizing agent Outlet contours are independent of changes due to thermal expansion of the tubes (6) of the media channels.
  • the generation is very narrow, in particular also kinked
  • a sensor (10) may be arranged for monitoring temperature, which allows both to draw conclusions about the thermal load and the Ver ⁇ schl formatschreib of the burner as well as on the current Be ⁇ operating state of the gasification reactor ( Figure 2).
  • the introduction of a partition wall (12) in the oxidant channel of the main ⁇ burner is shown in FIG.
  • the media is fed volume-controlled to both channels via a feed connection in the rear burner area.
  • the outer of the two channels receives in the nozzle area an adapted swirl device (11), which imparts a rotating movement to this stream.
  • the resulting angle of the total exiting medium flow to the burner axis can thus be set ⁇ by means of the control of the two partial volume flows ⁇ .
  • a twisting device can, for example, a fixed on the partition wall, spirally shaped
  • FIG. 4 shows nozzle parts produced in an analogous manner with cylindrically shaped end pieces (16).
  • Figure 5 shows an embodiment of an entire compact ⁇ burner produced by SLM-method, function ⁇ determining media nozzle parts, which are cooled from the operating media and an enclosing water-cooled harshest operating burner assembly 13 for use in the Druckverga ⁇ solution of atomised registered coals 15 and other fuels for producing synthesis gas.

Abstract

The invention relates to a compact burner for the pressurized gasification of pulverized fuel dust for producing synthesis gas, wherein a plurality of concentric media channels transition into a conical burner tip. Said burner tip provides a reduced contact surface on the reaction chamber side. The nozzle components of the burner tip are produced by means of selective laser melting, which permits a design for cooling by means of supplied media, such as fuel gas, flushing gas, or oxidation means. A sliding guide having an intermediate seal is arranged between the nozzle components of two media channels to equalize temperature-driven linear extensions. The compact burner according to the invention makes the expense for liquid cooling unnecessary.

Description

Beschreibung description
Kompaktbrenner für einen Flugstromvergaser, bar einer Compact burner for an air flow gasifier, bar one
Flüssigkeitskühlung liquid cooling
Die Erfindung betrifft einen Kompaktbrenner für die Druckvergasung von Brennstäuben zur Erzeugung von Synthesegas. The invention relates to a compact burner for the pressure gasification of fuel dusts for the production of synthesis gas.
In Reaktoren zur Flugstromvergasung von Brennstäuben unter erhöhtem Druck zu Synthesegas kommen Pilot- und Hauptbrenner für die Zuführung sämtlicher Medien zum Einsatz, die reakti- onsraumseitig mehrfach wassergekühlt sind. Die Wasserkühlun¬ gen sind durch Druckräume gegeben, die zum Reaktionsraum hin eine vergrößerte Angriffsfläche für die Brennerflamme und die heißen Gase aus dem Reaktor darstellen. Überwiegend durch An- und Abfahrvorgänge verursacht hat die reaktionsraumseitige Brennerspitze eine begrenzte Lebensdauer. Dabei erfordern be¬ sonders die mit Kühlwasser betriebenen und als geschlossene Druckräume ausgebildeten Brennerkühlteile einen hohen In reactors for the flow-stream gasification of combustion dusts under increased pressure to syngas, pilot and main burners are used for the supply of all media, which are water-cooled several times on the reaction side. The Wasserkühlun ¬ gen given by pressure chambers, which represent an enlarged contact surface for the burner flame and the hot gases from the reactor to the reaction compartment. Predominantly caused by startup and shutdown, the reaction chamber side burner tip has a limited life. Here be ¬ Sonders the operated with cooling water and designed as a closed pressure chambers burner cooling parts require a high
Instandhaltungsaufwand bei den wiederkehrenden Brennerrepara¬ turen. Die verschiedenen zuzuführenden Medien, wie zum Beispiel Brenngas, Brennstaub und Oxidationsmittel , haben unter¬ schiedliche Temperaturen und erfordern baulich aufwendige Maßnahmen (z. B. Wellrohrkompensatoren) zur Aufnahme der un- terschiedlichen Dehnungen der Brennerkanalwände. Maintenance costs for the recurring Brennerrepara ¬ tures. The various media to be supplied, such as fuel gas, pulverized fuel and oxidant have schiedliche under ¬ temperatures and require structurally complicated measures (z. B. Wellrohrkompensatoren) for receiving the un- terschiedlichen expansions of the burner channel walls.
Aus der DE 102007040890 ist ein Kohlenstaubkombinationsbrenner mit integriertem Pilotbrenner bekannt. Aus der CN2688677Y ist eine Vergasungsdüse bekannt, bei der an der Verbindungsstelle zwischen Innenspritzrohr und Außen- spritzrohr eine Gleitdichtung zum Ausgleich von Längenänderungen angeordnet ist. Der Erfindung liegt das Problem zugrunde, einen Brenner für die Druckvergasung von Brennstäuben zur Erzeugung von Synthesegas zu schaffen, dessen Brennerspitze ohne Zuführung einer Kühlflüssigkeit Standzeiten erreicht, wie herkömmliche From DE 102007040890 a coal dust combination burner with integrated pilot burner is known. CN2688677Y discloses a gasification nozzle in which a sliding seal is arranged at the connection point between the inner injection pipe and the outer injection pipe to compensate for changes in length. The invention is based on the problem of providing a burner for the pressure gasification of fuel dusts for the production of synthesis gas whose burner tip without supplying a Coolant life reaches as conventional
Flüssigkeits-gekühlte Brennerspitzen . Liquid-cooled burner tips.
Das Problem wird durch einen Brenner mit den Merkmalen des Anspruchs 1 gelöst. The problem is solved by a burner having the features of claim 1.
Die Kühlung der Brennerdüsen durch aufwändige, wassergekühlte, geschlossene Druckteile wird ersetzt durch Betriebsmedien gekühlte Düsen, die konstruktiv entsprechend ausgestaltet sind. The cooling of the burner nozzles by complex, water-cooled, closed pressure parts is replaced by operating media cooled nozzles, which are structurally designed accordingly.
Der für die bisherigen Wasserkühlungen der Brennerspitze erforderliche Aufwand kann anlagenseitig eingespart werden. Die Brennerdüsenteile werden durch generative Verfahren schichtweise aufgebaut und dabei weitgehend endgefertigt. The effort required for the previous water cooling the burner tip can be saved on the system side. The burner nozzle parts are built up in layers by generative processes and are largely finished.
Das für den schichtweisen Aufbau eingesetzte Verfahren verwendet ein metallisches Pulver, das partiell mittels Laser- strahl verschmolzen wird, das überschüssige Pulver abschlie¬ ßend entfernt wird und die gewünschte Bauteilkontur abschlie¬ ßend entnommen werden kann. The method used for the layered structure using a metallic powder which is partially melted by means of laser ray, which is lockable excess powder ¬ ßend removed and can be removed, the desired component contour lockable ¬ ßend.
Bei dem generativen Herstellungsverfahren handelt es sich um das SLM-Verfahren (Selektive Laser Melting) . The generative manufacturing process is the SLM (Selective Laser Melting) process.
Gegenüber dem bisherigen spanenden Herstellungsverfahren aus Schmiedeteilen wird der Fertigungsaufwand für die Brennerdü¬ sen um mehr als 80 % gesenkt. Compared to the previous cutting production method of the forged parts of the manufacturing expense for the Brennerdü ¬ sen is reduced by more than 80%.
Durch den Einsatz des Laser Melting Prozesses als Fertigungsverfahren für die Düsenteile können durch konventionelle Me¬ thoden nicht oder nur sehr schwer herstellbare Konturen in zufriedenstellender Qualität erzeugt werden, wie beispiels- weise enge Medienkanäle oder der ca. 0,7 mm große, der ge¬ knickten Düsenkontur folgende Kanal für einen Temperatursensor . Mittels Einbringung von Temperatursensoren an den Brennerdüsenteilen in einer im Normalbetrieb relativ geschützten Position können Rückschlüsse auf die Prozessbedingungen an der Brennerspitze und den Verschleißzustand gewonnen werden. By using the laser melting process as a manufacturing method for the nozzle parts ¬ methods can not by conventional Me or very difficult to prepare contours are generated in satisfactory quality as beispiels- as close media channels or approximately 0.7 mm, the ge ¬ nozzle contour buckled the following channel for a temperature sensor. By introducing temperature sensors to the burner nozzle parts in a relatively protected in normal operation position conclusions on the process conditions at the burner tip and the state of wear can be obtained.
Durch die Ausführung dünnwandiger Düsenteile wird neben deren guter Kühlung durch die Betriebsmedien eine Optimierung der Vermischung der reagierenden Medien und damit des Umsatzes von Brennstoff und Oxydationsmittel erreicht. By carrying out thin-walled nozzle parts, in addition to their good cooling by the operating media, an optimization of the mixing of the reacting media and thus of the conversion of fuel and oxidant is achieved.
Zur Einstellung auf wechselnde Brennstoffe ist die Anpassung des Dralls des Oxydationsmittels von Vorteil, was hier durch Einbringung einer Trennwand in den Oxydationsmittelkanal er¬ reicht wird. Dabei kann in einem Kanal das Medium axial unverdrallt und im anderen durch Leitbleche- oder schaufeln verdrallt der Brennerspitze zugeführt werden. Durch die Men¬ genregelung der beiden Teilströme kann an der Brennerdüse der gewünschte resultierende Drall eingestellt werden. Der Einsatz von Gleitführungen mit Abdichtung an den Düsen zwischen den Medien befreit die Bauteile von Spannungen aus behinderter Wärmedehnung und beseitigt den Aufwand für Zu- satzmaßnahmen wie Dehnungskompensatoren in den Medienkanal- wänden . To adjust to changing fuels, the adaptation of the twist of the oxidizing agent is advantageous, which is achieved by introducing a dividing wall into the oxidant channel . In this case, the medium can be axially untwisted in one channel and the burner tip are supplied in the other by baffles or vanes. By the Men ¬ gene control of the two partial flows of the desired resulting swirl can be adjusted at the burner nozzle. The use of sliding guides with a seal at the nozzles between the media frees the components from tensions caused by impaired thermal expansion and eliminates the expense of additional measures such as expansion compensators in the media channel walls.
Durch übliches Anschweißen ohne weitere Druckprüfungen wird im Instandhaltungsfall der Düsenwechsel weitgehend verein¬ facht . Die Einhaltung der technischen Regularien des Druckbehälterbaues kann entfallen und somit entsteht eine Kostensenkung für Neubau und Reparaturfall des Brenners. By usual welding without further pressure tests the nozzle change is largely verein ¬ facht in the maintenance case. Compliance with the technical regulations of the pressure vessel construction can be omitted and thus creates a cost reduction for new construction and repair of the burner.
Vorteilhafte Weiterbildungen der Erfindung sind in den Unter- ansprüchen angegeben. Die Erfindung wird im Folgenden als Ausführungsbeispiel in einem zum Verständnis erforderlichen Umfang anhand von Figuren näher erläutert. Dabei zeigen: Fig 1 den prinzipiellen Aufbau einer erfindungsgemäßen mediengekühlten Brennerspitze, Advantageous developments of the invention are specified in the dependent claims. The invention is explained in more detail below as an exemplary embodiment in a scope necessary for understanding with reference to figures. 1 shows the basic structure of a media-cooled burner tip according to the invention,
Fig 2 die Anordnung eines Sensors (10) nahe der Brennerspit¬ ze, 2 shows the arrangement of a sensor (10) near the burner tip ,
Fig 3 einen Hauptbrenner mit Trennwand (12) in dem Oxydati- onsmittelkanal (14),  3 shows a main burner with a dividing wall (12) in the oxidizing agent channel (14), FIG.
Fig 4 eine konisch zulaufende Brennerspitze mit zylindrisch geformten Endstücken (16) der Düsenteile und  Figure 4 is a tapered burner tip with cylindrically shaped end pieces (16) of the nozzle parts and
Fig 5 eine die Brennerspitze umschließende, Wasser-gekühlte äußere Brennerbaugruppe (13). 5 shows a burner tip enclosing, water-cooled outer burner assembly (13).
In den Figuren bezeichnen gleiche Bezeichnungen gleiche Elemente . In the figures, like names denote like elements.
In Fig 1 ist der prinzipielle Aufbau einer mediengekühlten Brennerspitze gezeigt, deren Angriffsfläche (1) reaktions- raumseitig reduziert ist. Die Düsenteile (2, 3, 4, 5) sind so gestaltet, dass sie mittels einer definierten Spülgasmenge, wie zum Beispiel Stickstoff, oder durch ein Betriebsmedium, wie zum Beispiel Brenngas oder Oxidationsmittel , ausreichend gekühlt werden. Sie sind keine Teile eines Druckbehälters mehr und in ihrer Form an die kostengünstige Fertigung mittels generativer Verfahren wie dem SLM-Verfahren (Selektive Laser Melting) angepasst. Die bisherige material- und zeit¬ aufwendige, zerspanende Herstellung aus Schmiedeteilen wird weitgehend reduziert. Die medienbedingte unterschiedliche Wärmedehnung der die einzelnen Brennerkanäle abtrennenden Rohre (6) ist unbehindert an den Gleitführungen (7) der Brennerdüsen spannungsfrei möglich und benötigt keine Dehnungs¬ ausgleicher zur Kompensation mehr. Über Dichtungen (8) wird eine zu frühe Vermischung der Medien an den Gleitführungen1 shows the basic structure of a media-cooled burner tip whose attack surface (1) is reduced reaction chamber side. The nozzle parts (2, 3, 4, 5) are designed so that they are sufficiently cooled by means of a defined amount of purge gas, such as nitrogen, or by an operating medium, such as fuel gas or oxidant. They are no longer parts of a pressure vessel and adapted in their shape to the cost-effective production by means of generative processes such as the SLM process (Selective Laser Melting). The previous material and time ¬ consuming, machining production of forgings is largely reduced. The media-related differential thermal expansion of the individual burner ducts separating pipes (6) is unimpeded on the sliding guides (7) of the burner nozzles tension-free possible and no strain compensation ¬ compensation for compensation more. About seals (8) is too early mixing of the media on the sliding guides
(7) im Brenner verhindert. Konstruktiv wird durch die kompakten Düsen (2) und (4) gesichert, dass die für die Zuführung des Oxydationsmittels besonders wichtigen reaktionsseitigen Austrittskonturen unabhängig von Änderungen durch thermische Dehnungen der Rohre (6) der Medienkanäle sind. (7) prevented in the burner. Structurally, the compact nozzles (2) and (4) ensure that the reaction-side, which is particularly important for the supply of the oxidizing agent Outlet contours are independent of changes due to thermal expansion of the tubes (6) of the media channels.
Durch den Einsatz des SLM-Herstellungsverfahrens der Düsen ist die Erzeugung sehr enger, insbesondere auch geknickterBy using the SLM manufacturing process of the nozzles, the generation is very narrow, in particular also kinked
Kanäle, wie an der Pilotbrennerdüse (2), in ausreichender Ge¬ nauigkeit und Oberflächenqualität möglich, wie sie konventio¬ nell nicht oder nur sehr aufwendig herstellbar sind. Die An¬ ordnung eines integrierten Drallkörpers (9) bringt zum Einen eine Verbesserung der Funktion des Brenners und zum Anderen eine Verlängerung der Standzeit der Düse durch eine gute me- dienseitige Kühlung. Channels, such as at the Pilotbrennerdüse (2), it is possible in sufficient Ge ¬ accuracy and surface quality, as they are conven tionally ¬ impossible or very expensive to manufacture. The An ¬ order of an integrated swirler (9) brings on the one hand an improvement in the function of the burner and on the other hand, an extension of the service life of the nozzle by a good media-side cooling.
Des Weiteren kann in der Düse in Nähe zur Brennerspitze ein Sensor (10) zur Temperaturüberwachung angeordnet sein, der sowohl Rückschlüsse auf die thermische Belastung und den Ver¬ schleißzustand des Brenners als auch auf den aktuellen Be¬ triebszustand des Vergasungsreaktors zulässt (Fig 2). Als weiteres Ausführungsbeispiel ist in Fig 3 die Einführung einer Trennwand (12) in den Oxydationsmittelkanal des Haupt¬ brenners gezeigt. Über je einen Zuführungsstutzen im hinteren Brennerbereich wird beiden Kanälen das Medium mengengeregelt zugeführt. Der äußere der beiden Kanäle erhält im Düsenbe- reich eine angepasste Drallvorrichtung (11), die diesem Strom eine drehende Bewegung aufprägt. Der resultieren Winkel des gesamten austretenden Medienstromes zur Brennerachse kann so¬ mit über die Regelung der beiden Teilvolumenströme einge¬ stellt werden. Als Drallvorrichtung kann dabei beispielsweise ein auf der Trennwand befestigtes, spiralförmig geformtesIn the nozzle in proximity to the burner tip Furthermore, a sensor (10) may be arranged for monitoring temperature, which allows both to draw conclusions about the thermal load and the Ver ¬ schleißzustand of the burner as well as on the current Be ¬ operating state of the gasification reactor (Figure 2). As a further embodiment, the introduction of a partition wall (12) in the oxidant channel of the main ¬ burner is shown in FIG. The media is fed volume-controlled to both channels via a feed connection in the rear burner area. The outer of the two channels receives in the nozzle area an adapted swirl device (11), which imparts a rotating movement to this stream. The resulting angle of the total exiting medium flow to the burner axis can thus be set ¬ by means of the control of the two partial volume flows ¬ . As a twisting device can, for example, a fixed on the partition wall, spirally shaped
Leitblech oder in einem Winkel angestellte Leitschaufeln zum Einsatz kommen. Baffle or employed in an angle guide vanes are used.
Als Ausführungsvarianten zur Beeinflussung der Flammenausbil- dung und der Gesamtfunktion des Brenners zeigt Fig 4 in analoger Weise gefertigte Düsenteile mit zylindrisch geformten Endstücken (16). Fig 5 zeigt ein Ausführungsbeispiel eines gesamten Kompakt¬ brenners mit mittels SLM-Verfahren hergestellten, funktions¬ bestimmenden Mediendüsenteilen, die von den Betriebsmedien gekühlt werden und einer umschließenden wassergekühlten äuße- ren Brennerbaugruppe 13 für den Einsatz bei der Druckverga¬ sung von staubförmig eingetragenen Kohlen 15 und anderen Brennstoffen zur Erzeugung von Synthesegas. As an alternative embodiment for influencing the flame formation and the overall function of the burner, FIG. 4 shows nozzle parts produced in an analogous manner with cylindrically shaped end pieces (16). Figure 5 shows an embodiment of an entire compact ¬ burner produced by SLM-method, function ¬ determining media nozzle parts, which are cooled from the operating media and an enclosing water-cooled harshest operating burner assembly 13 for use in the Druckverga ¬ solution of atomised registered coals 15 and other fuels for producing synthesis gas.
Bezugs zeichenliste Reference sign list
1 Brennerfläche reaktionsraumseitig 1 burner surface on the reaction chamber side
2 Pilotbrennerdüse  2 pilot burner nozzle
3, 4, 5 Hauptbrenner-Düsenteile, Konus-förmig 3, 4, 5 main burner nozzle parts, cone-shaped
6 Rohre zur Bildung der ringförmigen Medienkanäle 6 tubes for forming the annular media channels
7 Gleitführungen der Düsen 7 sliding guides of the nozzles
8 Dichtung  8 seal
9 Drallkörper zur Aufprägung einer Drehbewegung auf gesamten Medienstrom  9 swirl body for impressing a rotary motion on the entire media flow
10 Sensor zur Temperaturmessung  10 sensor for temperature measurement
11 Drallkörper für Medien-Teilstrom  11 swirl body for media partial flow
12 Trennwand  12 partition wall
13 Äußere, wassergekühlte Brennerbaugruppe  13 Outer, water-cooled burner assembly
14 Oxidationsmittel 14 oxidizing agents
15 Zuführung Brennstaub  15 feeding fuel dust
16 Düsenteile mit zylindrischem Medienaustritt  16 nozzle parts with cylindrical media outlet

Claims

Patentansprüche claims
1. Kompaktbrenner für die Druckvergasung von Brennstäuben zur Erzeugung von Synthesegas bei dem 1. Compact burner for the pressure gasification of fuel dusts for the production of synthesis gas in the
- mehrere Rohre (6) konzentrische Kanäle zur Zuführung von- Several tubes (6) concentric channels for the supply of
Medien, wie zum Beispiel Brenngas, Spülgas und Oxidations- mittel, begrenzen, Limit media, such as fuel gas, purge gas and oxidant,
die Brennerspitze konisch zuläuft,  the burner tip tapers,
die Düsenteile (2, 3, 4) der Brennerspitze mittels Selek- tive Laser Melting hergestellt sind,  the nozzle parts (2, 3, 4) of the burner tip are produced by means of selective laser melting,
an der Gleitführung (7) zwischen zwei Kanälen eine Abdichtung (8) angeordnet ist.  on the sliding guide (7) between two channels, a seal (8) is arranged.
2. Kompaktbrenner nach Anspruch 1 2. Compact burner according to claim 1
dadurch gekennzeichnet, dass characterized in that
in dem Kanal für das Oxidationsmittel (14) ein Drallkörper (9, 11) angeordnet ist. in the channel for the oxidizing agent (14) a swirl body (9, 11) is arranged.
3. Vorrichtung nach einem der vorstehenden Ansprüche 3. Device according to one of the preceding claims
dadurch gekennzeichnet, dass characterized in that
ein Düsenteil (4) an seinem konisch zulaufenden Ende in ein zylindrisch geformtes Endstück (16) übergeht. a nozzle part (4) merges at its tapered end into a cylindrically shaped end piece (16).
PCT/EP2015/069412 2014-09-11 2015-08-25 Compact burner for an entrained-flow gasifier, having no liquid cooling WO2016037846A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112015004157.5T DE112015004157A5 (en) 2014-09-11 2015-08-25 Compact burner for an air flow gasifier, bar liquid cooling
US15/508,604 US20170254534A1 (en) 2014-09-11 2015-08-25 Compact burner for an entrained-flow gasifier having no liquid cooling
CN201580048918.6A CN107076410A (en) 2014-09-11 2015-08-25 The compact burner of the airflow bed gasification furnace cooled down for no liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014218219.0 2014-09-11
DE102014218219.0A DE102014218219A1 (en) 2014-09-11 2014-09-11 Compact burner for an air flow gasifier, bar liquid cooling

Publications (1)

Publication Number Publication Date
WO2016037846A1 true WO2016037846A1 (en) 2016-03-17

Family

ID=54072794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/069412 WO2016037846A1 (en) 2014-09-11 2015-08-25 Compact burner for an entrained-flow gasifier, having no liquid cooling

Country Status (4)

Country Link
US (1) US20170254534A1 (en)
CN (1) CN107076410A (en)
DE (2) DE102014218219A1 (en)
WO (1) WO2016037846A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999700A (en) * 2021-09-13 2022-02-01 郑州大学 Five-channel process burner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL230047B1 (en) * 2016-07-06 2018-09-28 Metal Expert Spolka Z Ograniczona Odpowiedzialnoscia Spolka Jawna High-temperature gas burner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751346A1 (en) * 1995-06-28 1997-01-02 GCE-RHÖNA AUTOGENGERÄTE GmbH Gas mixing cutting tip
US6357222B1 (en) * 2000-04-07 2002-03-19 General Electric Company Method and apparatus for reducing thermal stresses within turbine engines
DE202014101214U1 (en) * 2014-03-17 2014-03-31 Choren Industrietechnik GmbH Burner for an air flow gasifier
EP2743582A1 (en) * 2012-12-14 2014-06-18 Siemens Aktiengesellschaft Burner tip and burner

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5423178A (en) * 1992-09-28 1995-06-13 Parker-Hannifin Corporation Multiple passage cooling circuit method and device for gas turbine engine fuel nozzle
CN1207511C (en) * 2003-02-28 2005-06-22 哈尔滨工业大学 Central coal feed cyclone coal burner
CN2688677Y (en) 2004-01-07 2005-03-30 中国石油化工集团公司 Sliding sealer of gasified nozzle
DE202007018718U1 (en) 2007-08-29 2009-05-14 Siemens Aktiengesellschaft Coal dust combination burner with integrated pilot burner
AU2011373507B2 (en) * 2011-07-15 2015-10-08 Keda (Anhui) Clean Energy Co., Ltd. Burner nozzle and coal gasifier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751346A1 (en) * 1995-06-28 1997-01-02 GCE-RHÖNA AUTOGENGERÄTE GmbH Gas mixing cutting tip
US6357222B1 (en) * 2000-04-07 2002-03-19 General Electric Company Method and apparatus for reducing thermal stresses within turbine engines
EP2743582A1 (en) * 2012-12-14 2014-06-18 Siemens Aktiengesellschaft Burner tip and burner
DE202014101214U1 (en) * 2014-03-17 2014-03-31 Choren Industrietechnik GmbH Burner for an air flow gasifier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999700A (en) * 2021-09-13 2022-02-01 郑州大学 Five-channel process burner

Also Published As

Publication number Publication date
CN107076410A (en) 2017-08-18
DE112015004157A5 (en) 2017-05-24
US20170254534A1 (en) 2017-09-07
DE102014218219A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
CN102712468B (en) Produce method and the burner of synthetic gas
EP0095103B1 (en) Process and apparatus for producing synthesis gas by partial oxidation of coal-water suspensions
EP0180249B1 (en) Method of operating a burner
DE202017107808U1 (en) Burner for an air flow gasifier
DE102014104232B4 (en) Combustible dust burner and air flow gasifier for the production of synthesis gas
WO2017121556A1 (en) Dust burner for gasification plants
DE202018101400U1 (en) Burner for synthesis gas production
EP3212566B1 (en) Method and plant for the production of synthesis gas
WO2016037846A1 (en) Compact burner for an entrained-flow gasifier, having no liquid cooling
CN100535517C (en) Multi-channel liquid stage fuel partial oxidation generating synthesis gas burner and uses thereof
DE202014101214U1 (en) Burner for an air flow gasifier
DE3441359A1 (en) METHOD FOR GENERATING A HOT GAS FROM A CARBONATING INITIAL
DE102016214242B4 (en) Plant and process for converting carbonaceous fuels into synthesis gas
DE3220546C2 (en)
DE1152783B (en) Burner for the thermal conversion of gaseous and / or vaporous or liquid hydrocarbons and / or other fuel gases with oxygen-containing gases and processes for operating the burner
EP1881286B1 (en) Method and device for feeding a medium into a thermal treatment chamber
DE202017107794U1 (en) Burner tip and pilot burner
DE3441355A1 (en) METHOD AND DEVICE FOR REDUCING OXIDIC MATERIAL
DE102011101077A1 (en) Process and reactor for the autothermal reforming of fuels
DE971077C (en) Process and device for generating fuel gas from dust-like or fine-grain fuels
DE1645865C2 (en) Process for the production of a product gas mixture containing carbon monoxide and hydrogen as essential constituents
DE102007021925A1 (en) Compact pulverized coal burner
DE102012216557A1 (en) Combination burner for use in gasification reactor for reduction or oxidization of dust-like solid or liquid fuel, has cooling parts including outlets such that parts are coolable by coolant, which reaches into chamber through outlets
DE202014101363U1 (en) Combustible dust burner and air flow gasifier for the production of synthesis gas
DE3441356A1 (en) METHOD AND DEVICE FOR REDUCING OXIDIC MATERIAL WITH SIMULTANEOUS GENERATION OF A GAS SUITABLE FOR RECOVERY OF HEATING ENERGY

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15508604

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015004157

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112015004157

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15762500

Country of ref document: EP

Kind code of ref document: A1