WO2016036176A1 - 공기 조화기 및 그 제어방법 - Google Patents

공기 조화기 및 그 제어방법 Download PDF

Info

Publication number
WO2016036176A1
WO2016036176A1 PCT/KR2015/009327 KR2015009327W WO2016036176A1 WO 2016036176 A1 WO2016036176 A1 WO 2016036176A1 KR 2015009327 W KR2015009327 W KR 2015009327W WO 2016036176 A1 WO2016036176 A1 WO 2016036176A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air conditioner
amount
temperature
unit
Prior art date
Application number
PCT/KR2015/009327
Other languages
English (en)
French (fr)
Inventor
타케이치히사시
에구치히로아키
오가사와라테츠야
야마다켄이치
아오노마사히로
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015167170A external-priority patent/JP6621616B2/ja
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP15838951.0A priority Critical patent/EP3190355A4/en
Priority to US15/508,754 priority patent/US10551101B2/en
Priority claimed from KR1020150125162A external-priority patent/KR20160028400A/ko
Publication of WO2016036176A1 publication Critical patent/WO2016036176A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an air conditioner for detecting the amount of refrigerant.
  • the air conditioner since the air conditioner differs in the volume of the outdoor heat exchanger and the indoor heat exchanger, the amount of refrigerant required for the main refrigerant circuit varies depending on the type of air conditioner operation. Therefore, in order to improve system efficiency, the air conditioner is preferably performed with the optimal amount of refrigerant according to each type of operation.
  • the air conditioner has a refrigerant storage unit for storing excess refrigerant.
  • the air conditioner having the refrigerant storage unit stores the excess refrigerant in the refrigerant storage unit when the operation of the refrigerant amount necessary for the main refrigerant circuit is performed.
  • the air conditioner supplies the refrigerant stored in the refrigerant storage unit to the main refrigerant circuit when performing an operation requiring a large amount of refrigerant required for the main refrigerant circuit.
  • Patent Document 1 discloses a refrigeration system apparatus including a compressor, a condenser, and an evaporator, and a receiver tank is provided between the condenser and the evaporator. Patent Document 1 describes collecting excess refrigerant in a receiver tank and discharging the refrigerant from the receiver tank during the refrigeration cycle according to the operating condition of the refrigeration system apparatus.
  • Patent document 1 is Unexamined-Japanese-Patent No. 10-89780.
  • One aspect of the present invention relates to an air conditioner and a control method for suppressing a rapid flow of a refrigerant stored in a refrigerant storage unit into a main refrigerant circuit when the type of operation is switched.
  • an air conditioner includes a refrigerant circuit including a compressor, a condenser, an expansion valve, and an evaporator;
  • the refrigerant state at the outlet of the condenser determines the supercooled state or the gas-liquid two-phase state, and based on at least one of the temperature and pressure detected in the refrigerant circuit and a predetermined value according to the refrigerant state, the amount of refrigerant in the refrigerant circuit
  • a refrigerant amount detecting device for calculating a ratio
  • a control unit which controls the refrigerant circuit in accordance with the refrigerant amount ratio calculated by the refrigerant amount detection device.
  • the refrigerant amount detection device may calculate an average value of the refrigerant amount ratio based on the calculated refrigerant amount ratio.
  • the refrigerant circuit may include: a first temperature sensor detecting a first refrigerant temperature at an outlet of the condenser; And a second temperature sensor that detects a second refrigerant temperature at a downstream side of the fluid resistance installed at an outlet side of the condenser, wherein the refrigerant amount detecting device is based on the first refrigerant temperature and the second refrigerant temperature. , The supercooled state or the gas-liquid two-phase state can be determined.
  • the refrigerant circuit may further include a sub cooler positioned between the condenser and the expansion valve and cooling the liquid refrigerant generated in the condenser.
  • the controller may control at least one of the compressor, the condenser, the expansion valve, the evaporator, and the sub cooler under a control of the refrigerant amount detecting device.
  • the refrigerant circuit includes a refrigerant storage container for storing a charged refrigerant; And a refrigerant injection valve for controlling the refrigerant supplied from the refrigerant storage container, wherein the controller is configured to control the refrigerant injection valve when the average value of the refrigerant amount ratio reaches 100% when the refrigerant is charged. Can be.
  • the refrigerant circuit may include a receiver for storing surplus refrigerant in the refrigerant circuit in a supercooled liquid state; And a flow rate controller for reducing the refrigerant flowing out of the receiver and adjusting the flow rate of the refrigerant.
  • the refrigerant may include an azeotropic mixed refrigerant including R32 and HFO1234yf or HFO1234ze.
  • the azeotropic mixed refrigerant may be characterized in that the content of HFC is less than 70% by weight, the content of HFO1234yf or HFO1234ze is less than 30% by weight, and the rest is a natural refrigerant.
  • the volume of the receiver may be equal to the volume obtained by converting the amount of the refrigerant minus the amount of the refrigerant during the cooling operation from the amount of the refrigerant during the heating operation to the supercooled liquid state.
  • the refrigerant circuit may further include a sub-cooler configured to heat-exchange the main refrigerant condensed in the evaporator or the condenser and the fractionated refrigerant classified in the main refrigerant and depressurized by a subcooling pressure reducing valve.
  • the receiver may further include at least one refrigerant amount detection mechanism that detects the amount of refrigerant in the receiver.
  • an auxiliary unit connecting the outdoor unit including the compressor and the condenser and the indoor unit including the evaporator, detachable from a pipe of the refrigerant circuit, and including the refrigerant amount detection device.
  • the auxiliary unit may further include a refrigerant injection valve that controls the refrigerant pipe of the auxiliary unit when the refrigerant amount ratio reaches 100% when the refrigerant is charged in the refrigerant circuit.
  • the auxiliary unit includes a refrigerant storage container for storing a charged refrigerant; And a refrigerant injection valve for controlling the refrigerant supplied from the refrigerant storage container, wherein the controller is configured to control the refrigerant injection valve when the average value of the refrigerant amount ratio reaches 100% when the refrigerant is charged.
  • a refrigerant storage container for storing a charged refrigerant
  • a refrigerant injection valve for controlling the refrigerant supplied from the refrigerant storage container, wherein the controller is configured to control the refrigerant injection valve when the average value of the refrigerant amount ratio reaches 100% when the refrigerant is charged.
  • the auxiliary unit may further include an auxiliary heat exchanger that performs heat exchange with an external heat source device except the air conditioner.
  • the auxiliary unit may include: a receiver configured to store surplus refrigerant in a supercooled liquid state existing in a pipe of the auxiliary unit; And a flow rate adjusting unit for reducing the refrigerant flowing out from the receiver and adjusting the flow rate of the refrigerant.
  • a control method of an air conditioner including a refrigerant circuit including a compressor, a condenser, an expansion valve, and an evaporator it is determined whether a refrigerant state is a supercooled state or a gas-liquid two state at an outlet of the condenser. and; Calculating a refrigerant amount ratio in the refrigerant circuit based on at least one of a temperature and a pressure detected in the refrigerant circuit and a predetermined set value according to the refrigerant state; And controlling the refrigerant circuit according to the calculated refrigerant amount ratio.
  • the control method of the air conditioner may further include calculating an average value of the refrigerant amount ratios based on the calculated refrigerant amount ratios.
  • the refrigerant stored in the refrigerant storage unit can be prevented from rapidly flowing into the main refrigerant circuit.
  • FIG. 2 is a schematic block diagram showing the configuration of a refrigerant amount detection device in the first embodiment.
  • FIG. 3 is a schematic block diagram showing a configuration of an air conditioner according to a second embodiment.
  • FIG. 4 is a schematic block diagram showing a configuration of a refrigerant amount detecting device according to a second embodiment.
  • FIG. 5 is a flowchart showing an example of the operation of the refrigerant amount detecting device according to the second embodiment.
  • FIG. 6 is a schematic block diagram showing a configuration of an air conditioner according to a third embodiment.
  • FIG. 7 is a schematic block diagram showing the configuration of a refrigerant amount detecting device according to a third embodiment.
  • FIG. 8 is a flowchart showing an example of the operation of the refrigerant amount detecting device according to the third embodiment.
  • FIG. 9 is a schematic block diagram showing a configuration of an air conditioner according to a fourth embodiment.
  • FIG. 10 is a schematic block diagram showing the configuration of a conventional air conditioner.
  • FIG. 11 is a pressure-specific enthalpy diagram of an air conditioner in a cooling operation.
  • 16 is a pressure-specific enthalpy diagram of the air conditioner of the fifth embodiment.
  • 17A and 17B illustrate a relationship between a refrigerant temperature flowing through a first pipe and a refrigerant temperature flowing through a second pipe in a supercooler.
  • Fig. 19 is a diagram showing the relationship between the opening degree of the supercooled pressure reducing valve, the suction amount of refrigerant into the compressor, and the system efficiency of the air conditioner.
  • FIG. 20 is a schematic block diagram showing a configuration of an air conditioner according to a sixth embodiment.
  • 24 is a schematic block diagram showing the configuration of a refrigerant amount detection device in a seventh embodiment.
  • Fig. 25 is a schematic block diagram showing the configuration of an air conditioner and an auxiliary unit in an eighth embodiment.
  • FIG. 27 is a schematic block diagram showing the configuration of an air conditioner and an auxiliary unit according to a ninth embodiment.
  • FIG. 30 is a schematic diagram showing the type of heater and the configuration of an auxiliary heat exchanger for heating a refrigerant.
  • FIG. 32 is a schematic diagram illustrating a modification of the auxiliary unit.
  • 34 is a diagram showing the flow of a refrigerant during normal cooling operation of the eleventh embodiment.
  • FIG. 35 is a view showing the flow of the refrigerant at the low outside air temperature of the eleventh embodiment.
  • 36 is a diagram illustrating a flow of a refrigerant during the heating operation of the eleventh embodiment.
  • the air conditioner 100 of 1st Embodiment is the outdoor unit 10 installed in the outdoors of a building, as shown in FIG.
  • An indoor unit 11 installed in the building;
  • a refrigerant circuit 20 configured to connect the outdoor unit 10 and the indoor unit 11 by a refrigerant pipe;
  • An air conditioner control unit 30 which controls the outdoor unit 10 and the indoor unit 11 and performs air conditioning operation;
  • a refrigerant amount detecting device 40 for detecting the amount of refrigerant in the refrigerant circuit.
  • the air conditioner 100 which performs cooling operation is demonstrated.
  • the refrigerant circuit 20 is configured by connecting a compressor 201, a four-way switching valve 202, a condenser (outdoor heat exchanger) 203, a first expansion valve 204, and an evaporator (indoor heat exchanger) 205.
  • the compressor 201, the four-way switching valve 202, the condenser 203, and the first expansion valve 204 are provided inside the outdoor unit 10, and the evaporator 205 is the indoor unit 11.
  • the configuration is installed inside.
  • the outdoor unit 10 compresses and cools the refrigerant vaporized by the evaporator 205 in the indoor unit 11.
  • the indoor unit 11 performs heat exchange between the indoor air and the refrigerant, cools the indoor air, and vaporizes the refrigerant.
  • the compressor 201 compresses the vaporized refrigerant gas introduced at the low pressure side inlet to generate a high temperature and high pressure compressed gas.
  • the compressor 201 is driven by a motor capable of controlling the rotational speed, and the compression capacity changes according to the rotational speed of the motor. That is, when the rotation speed of the motor is high, the compression capacity is high, and when the rotation speed of the motor is slow, the compression capacity is low.
  • the compressor 201 controls the rotation speed of a motor by the compressor control part 301 mentioned later.
  • the compressor 201 then sends the generated high temperature and high pressure compressed gas to the condenser 203 through the four-way switching valve 202.
  • the condenser 203 condenses the compressed gas generated by the compressor 201 through the heat exchanger.
  • the condenser 203 performs heat exchange between the hot compressed gas and the cold outdoor air and generates a liquid refrigerant.
  • the condenser 203 then delivers the liquid refrigerant generated by the heat exchange to the first expansion valve 204.
  • the 1st expansion valve 204 is a valve which adjusts the flow volume which flows there through opening and closing.
  • the first expansion valve 204 is opened and closed by the first expansion valve control unit 302.
  • the first expansion valve 204 When the first expansion valve 204 is opened, the liquid refrigerant expands and vaporizes into a refrigerant gas. This refrigerant gas is lower than the liquid refrigerant before flowing into the first expansion valve 204.
  • the 1st expansion valve 204 controls the opening degree (opening degree) which shows the opening degree in accordance with the signal output from the 1st expansion valve control part 302 mentioned later.
  • the first expansion valve 204 then sends the refrigerant gas to the evaporator 205.
  • the evaporator 205 performs heat exchange between the refrigerant gas generated by the first expansion valve 204 and the high temperature indoor air.
  • the evaporator 205 vaporizes a portion of the refrigerant while cooling the indoor air.
  • the gas-liquid two-phase refrigerant generated by the evaporator 205 is sent to the compressor 201 through the four-way switching valve 202.
  • the gas-liquid two-phase refrigerant means that two states of gas and liquid are mixed.
  • the outdoor unit 10 is provided with an outdoor unit fan 10F
  • the indoor unit 11 is provided with an indoor unit fan 11F.
  • the outdoor unit fan 10F is blown to the condenser 203 to cool the refrigerant.
  • the outdoor unit fan 10F receives the rotation speed from the outdoor unit fan control unit 303 described later.
  • the indoor unit fan 11F cools the indoor air in the evaporator 205 and blows the cooled air into the room.
  • the indoor unit fan 11F is controlled by the indoor unit fan control unit 304 to be described later.
  • the refrigerant circuit 20 includes a discharge temperature sensor 206, a suction temperature sensor 207, an outlet temperature sensor 208, a liquid pipe temperature sensor 209, a high pressure sensor 210, and a low pressure sensor 211. It is installed.
  • the discharge temperature sensor 206 detects the refrigerant temperature (discharge temperature Td) at the high pressure side of the compressor 201, and outputs a signal indicating the detected discharge temperature to the A / D conversion unit 50.
  • the suction temperature sensor 207 detects the refrigerant temperature (suction temperature Tsuc) at the low pressure side of the compressor 201, and outputs a signal indicating the detected suction temperature to the A / D converter 50.
  • the outlet temperature sensor 208 detects the refrigerant temperature (outlet temperature Tcond (first refrigerant temperature)) at the outlet of the condenser 203 and outputs a signal indicating the detected outlet temperature to the A / D converter 50. do.
  • the outlet temperature sensor 208 is provided in the heat transfer pipe on the outlet side of the condenser 203.
  • the liquid tube temperature sensor 209 detects the refrigerant temperature (liquid tube temperature Tsub (second refrigerant temperature)) at the downstream side of the first expansion valve 204 provided on the outlet side of the condenser 203, and detects the detected liquid tube temperature.
  • the A / D converter 50 outputs a signal indicating.
  • the liquid pipe temperature sensor 209 is provided in the liquid pipe 212.
  • the liquid pipe 212 is a pipe connecting the outlet of the condenser 203 and the inlet of the evaporator 205.
  • the high pressure sensor 210 detects the pressure on the high pressure side (high pressure side pressure Pd) of the compressor 201 and outputs a signal indicating the detected high pressure side pressure to the A / D converter 50.
  • the low pressure sensor 211 detects the low pressure side (low pressure side pressure Ps) of the compressor 201, and outputs a signal indicating the detected low pressure side pressure to the A / D converter 50.
  • the air conditioner control unit 30 controls each component of the air conditioner 100.
  • the air conditioner control part 30 and each component of the indoor unit 11 and the outdoor unit 10 are connected, the description about the connection is abbreviate
  • the detail of the air conditioner control part 30 is mentioned later, referring FIG.
  • the coolant amount detecting device 40 detects the amount of the coolant in the coolant circuit in the air conditioner 100.
  • coolant amount detection apparatus 40 and each component of the indoor unit 11 and the outdoor unit 10 are connected, the description about the connection is abbreviate
  • coolant amount detection apparatus 40 is mentioned later, referring FIG.
  • the 2 is a schematic block diagram showing the configuration of the refrigerant amount detecting device 40 according to the present embodiment.
  • the A / D conversion unit 50 performs analog-to-digital conversion on the signals input from the sensors 206 to 211, and outputs the converted signals to the refrigerant amount detection unit 41.
  • the input unit 60 outputs, to the control unit 411, detection start information indicating that the detection of the amount of refrigerant is started based on the user's operation.
  • the display unit 70 is an indicator for displaying information such as a digital display panel by an LED, for example, and displays information on the refrigerant amount ratio received from the refrigerant amount average calculation unit 414 described later.
  • the refrigerant amount detecting device 40 determines the refrigerant state, the refrigerant amount detecting unit 41 for calculating the refrigerant amount ratio, and the storage unit 42 for storing parameters used when calculating the refrigerant amount ratio, and the refrigerant amount ratio previously calculated. It is provided.
  • the coolant amount detection unit 41 calculates the coolant amount ratio based on the temperature and pressure information input from the A / D conversion unit 50, and outputs the calculated coolant amount ratio information to the display unit 70.
  • the refrigerant amount ratio is actually a value obtained by dividing the amount of the refrigerant in the air conditioner 100 by the amount of the refrigerant defined as a specification in the air conditioner 100 (“actual refrigerant amount” / “prescribed refrigerant amount”).
  • the coolant amount detecting unit 41 includes a control unit 411, a coolant state obtaining unit 412, a coolant amount calculating unit 413, and a coolant amount average calculating unit 414.
  • the control part 411 receives from the input part 60 the detection start information which shows the detection of the refrigerant amount ratio of the air conditioner 100 to start. In addition, the controller 411 outputs a command to the air conditioner controller 30 to perform the operation in the predetermined operation mode, which is the cooling operation. The control unit 411 outputs an operation end command for terminating the operation to the air conditioner control unit 30.
  • the air conditioner control unit 30, the compressor control unit 301 for controlling the rotational speed of the motor of the compressor 201 based on the command received from the control unit 411;
  • a first expansion valve control unit 302 for controlling the opening degree of the first expansion valve 204;
  • An outdoor unit fan control unit 303 for controlling the rotation speed of the outdoor unit fan 10F;
  • an indoor unit fan control unit 304 for controlling the rotational speed of the indoor unit fan 11F.
  • the air conditioner control unit 30 controls the superheat degree SH of the evaporator 205 provided in the indoor unit 11 to be constant (for example, 3K).
  • the superheat degree is obtained by subtracting the saturation temperature at the evaporation temperature from the refrigerant temperature at the outlet of the evaporator 205, that is, the saturation temperature at the low pressure side of the compressor 201 from the refrigerant temperature at the low pressure side of the compressor 201.
  • the first expansion valve control unit 302 controls the superheat degree of the evaporator 205 to be constant by adjusting the opening degree of the first expansion valve 204.
  • control unit 411 outputs a command to the compressor control unit 301 to drive the rotational speed of the motor of the compressor 201 at a predetermined rotational speed (for example, 65 Hz).
  • the compressor controller 301 receives a command from the controller 411 to drive the rotational speed of the motor of the compressor 201 at a predetermined rotational speed (for example, 65 Hz), and sets the rotational speed of the motor to 65. Let drive at Hz.
  • the control unit 411 outputs a command to the outdoor unit fan control unit 303 to operate the outdoor unit fan 10F at a constant speed.
  • the outdoor unit fan control unit 303 causes the outdoor unit fan 10F to operate at a constant speed.
  • the control unit 411 outputs a command to the indoor unit fan control unit 304 to control the indoor unit fan 11F at constant speed.
  • the indoor unit fan control unit 304 causes the indoor unit fan 11F to operate at a constant speed.
  • the control unit 411 also outputs a command to the refrigerant state obtaining unit 412 and the refrigerant amount calculating unit 413 to calculate the refrigerant amount ratio.
  • the control unit 411 receives from the coolant amount average calculation unit 414 an average value calculation end signal indicating that the calculation of the average value of the coolant amount ratio is completed.
  • the control unit 411 outputs the operation end signal to the air conditioner control unit 30 when the average amount calculation end signal is input from the coolant amount average calculation unit 414.
  • the refrigerant state acquisition unit 412 determines whether the refrigerant state at the outlet of the condenser 203 is in a supercooled state or Acquire whether the liquid is in the two-phase state.
  • the refrigerant state acquisition unit 412 determines either the subcooled state or the gas-liquid two-phase state by using the outlet temperature Tcond indicated by the outlet temperature signal and the liquid tube temperature Tsub indicated by the liquid tube temperature signal as parameters. The determination signal is then output to the refrigerant amount calculating unit 413.
  • the refrigerant amount calculating unit 413 calculates the refrigerant amount ratio in the air conditioner 100 by using different calculation equations according to the refrigerant state acquired by the refrigerant state obtaining unit 412.
  • the refrigerant amount calculation unit 413 calculates the refrigerant amount ratio RA using the subcooled calculation formula in the supercooled state, and calculates the refrigerant amount ratio RA using the gas-liquid two-phase state calculation formula in the case of the gas-liquid two-phase state. do.
  • RA a1 + b1 ⁇ Pd + c1 ⁇ Ps + d1 ⁇ Tsub + e1 ⁇ Td
  • the constants a1, b1, c1, d1, e1 are values obtained in advance by multiple regression calculations using actual data showing the relationship between Pd, Ps, Tsub, Td and RA in the supercooled state.
  • the constants a1, b1, c1, d1, e1 are recorded in the calculation parameter storage unit 421 set in the storage unit 42.
  • RA a2 + b2 ⁇ Pd + c2 ⁇ Ps + d2 ⁇ Tsub + e2 ⁇ Td
  • the constants a2, b2, c2, d2, and e2 are values obtained in advance by multiple regression calculations using actual data showing the relationship between Pd, Ps, Tsub, Td and RA in the gas-liquid two-phase state.
  • constants a2, b2, c2, d2, and e2 are recorded in the calculation parameter storage unit 421.
  • the refrigerant amount calculating unit 413 reads the constants a1, b1, c1, d1, e1 or the constants a2, b2, c2, d2, e2 in accordance with the refrigerant state acquired by the refrigerant state obtaining unit 412.
  • the refrigerant amount calculation unit 413 also uses the discharge pressure Pd indicated by the discharge pressure signal, the suction pressure Ps indicated by the suction pressure signal, the liquid tube temperature Tsub indicated by the liquid tube temperature signal, and the discharge temperature Td indicated by the discharge temperature signal.
  • Refrigerant amount ratio RA is calculated by the calculation formula according to the state.
  • the coolant amount calculation unit 413 records the coolant amount ratio data indicating the calculated coolant amount ratio RA in the coolant amount storage unit 422 set in the storage unit 42.
  • the refrigerant amount average calculation unit 414 reads the refrigerant amount ratio RA calculated within a predetermined time (for example, the past 5 minutes) from the refrigerant amount calculating unit 413.
  • the coolant amount average calculation unit 414 calculates the average value of the read coolant amount ratio RA, and outputs the average value of the calculated coolant amount ratio RA to the display unit 70.
  • the coolant amount average calculation unit 414 outputs a calculation end signal to the control unit 411 indicating that the calculation of the average value of the coolant amount ratio RA is finished.
  • the air conditioner 100 of this embodiment comprised in this way, when the refrigerant state is a supercooled state, the formula for a supercooled state is used, and when the refrigerant state is a gas-liquid two-phase state, By using the above, it is possible to detect the refrigerant amount with high accuracy regardless of the refrigerant state at the outlet of the condenser 203. Therefore, according to the present invention, even when a long pipe is used or when the installation situation has a large height difference between the outdoor unit 10 and the indoor unit 11, the refrigerant amount ratio with high accuracy can be detected.
  • control part 411 fixes the opening degree of the 2nd expansion valve 215 to a predetermined value. Thereby, the degree of cooling of the liquid refrigerant in the liquid pipe 212 can be made constant, and a highly accurate refrigerant amount ratio can be detected.
  • control part 411 fixes the compression capacity of the compressor 201 to a predetermined value. Accordingly, in the present embodiment, the state of the refrigerant at the inlet and the outlet of the compressor 201 can be made constant, and the refrigerant amount ratio with high accuracy can be detected.
  • control part 411 fixes the opening degree of the 1st expansion valve 204 to a predetermined value. Therefore, in this embodiment, the degree of cooling in the 1st expansion valve 204 can be made constant, and a highly accurate refrigerant amount ratio can be detected.
  • control part 411 fixes the rotational speed of the outdoor unit fan 10F and the rotational speed of the indoor unit fan 11F to a predetermined value.
  • the degree of heat exchange in the condenser 203 can be made constant, the degree of heat exchange in the evaporator 205 can be made constant, and a highly accurate refrigerant amount ratio can be detected.
  • the structure of the air conditioner 100 of 2nd Embodiment is the same as that of the air conditioner 100 of 1st Embodiment except that the sub cooler 213 is newly added as shown in FIG. .
  • the 1st expansion valve 204 is provided in the indoor unit 11.
  • the air conditioner 100 includes a sub cooler 213 installed between the condenser 203 and the first expansion valve 204; A bypass passage 214 branched from the downstream side of the sub cooler 213 in the refrigerant circuit 20 and connected to the low pressure side of the compressor 201 via the sub cooler 213; And a second expansion valve 215 installed in the bypass passage 214 to adjust the amount of refrigerant flowing into the sub cooler 213.
  • the sub cooler 213 cools the liquid refrigerant generated in the condenser 203 using the sub cooler cooling refrigerant sent from the second expansion valve 215.
  • the sub cooler 213 performs heat exchange between the high temperature liquid refrigerant and the low temperature sub cooler cooling refrigerant.
  • the sub cooler 213 sends the cooled liquid refrigerant to the first expansion valve 204.
  • the sub cooler 213 sends the sub cooler cooling refrigerant after heat exchange to the low pressure side inlet of the compressor 201.
  • the 2nd expansion valve 215 is a valve which adjusts the flow volume which flows there through opening and closing.
  • the 2nd expansion valve 215 is controlled by the 2nd expansion valve control part 305 the opening degree which shows the opening degree (refer FIG. 4).
  • the second expansion valve 215 When the second expansion valve 215 is opened, the liquid refrigerant generated in the evaporator 205 and introduced into the second expansion valve 215 through the sub cooler 213 expands and vaporizes, and has a lower temperature than the liquid refrigerant. It becomes a sub cooler cooling refrigerant which is a refrigerant.
  • the second expansion valve 215 delivers the sub cooler cooling refrigerant to the sub cooler 213.
  • the liquid tube temperature sensor 209 of this embodiment detects the refrigerant temperature (liquid tube temperature Tsub) near the exit of the sub cooler 213, and A / D converts the signal which shows the detected liquid tube temperature. Output to the unit 50.
  • the liquid pipe 212 is a pipe for flowing the liquid refrigerant provided in the section from the outlet of the condenser 203 to the first expansion valve 204 via the sub cooler 213.
  • FIG. 5 is a flowchart showing an example of the operation of the refrigerant amount detecting device 40 according to the present embodiment.
  • Step S201 The input part 60 receives the input of the information which shows that the detection of a refrigerant amount is started from a user.
  • the input unit 60 then outputs the detection start information for detecting the amount of refrigerant to the control unit 411. Thereafter, the flow advances to step S102.
  • Step S102 The control part 411 outputs the command which starts operation of the air conditioner 100 to the air conditioner control part 30 based on the detection start information input in step S201 (from a system stop state). implementation).
  • the air conditioner 100 performs the cooling operation.
  • the air conditioner 100 includes a plurality of indoor units 11 (only one is shown in FIG. 1), all the indoor units 11 are similarly operated.
  • the controller 411 outputs a command to perform the initial mode operation to the air conditioner controller 30.
  • the air conditioner control unit 30 starts initial mode operation.
  • the initial mode operation specifically means performing the following operation.
  • the air conditioner control unit 30 blows the rotational speed of the indoor unit fan 11F at a rotational speed of a "quick speed" mode with a higher air volume than the normal setting.
  • the first expansion valve control unit 302 controls the superheat degree of the evaporator 205 to be 3K by adjusting the opening degree of the first expansion valve 204.
  • the air conditioner control unit 30 continues initial mode operation, for example, for 5 to 10 minutes, and then proceeds to step S103.
  • Step S103 The control unit 411 outputs a command for performing normal mode operation to the air conditioner control unit 30.
  • the air conditioner control unit 30 starts normal mode operation.
  • Normal mode operation means performing the following operation specifically ,.
  • the control unit 411 outputs a command to the compressor control unit 301 to operate the rotational speed of the motor of the compressor 201 at a predetermined rotational speed (for example, 65 Hz) (compressor 65 Hz fixed).
  • the compressor controller 301 receives a command from the controller 411 to drive the rotational speed of the motor of the compressor 201 at a predetermined rotational speed (for example, 65 Hz), and sets the rotational speed of the motor to 65. Let drive at Hz.
  • the control unit 411 outputs a command to the first expansion valve control unit 302 to control the opening degree to a predetermined value (for example, 120 pls).
  • a predetermined value for example, 120 pls.
  • pls used as the unit of the opening degree of the expansion valve is defined to be “0" pls when fully closed and "2000" pls when fully opened.
  • the first expansion valve control unit 302 receives a command to control the opening degree to 120 pls from the control unit 411, and operates the opening degree of the first expansion valve 204 to 120 pls (EEV: 120 pls Fixed).
  • the control unit 411 outputs a command to the second expansion valve control unit 305 to control the opening degree to a predetermined value (for example, 120 pls).
  • the second expansion valve control unit 305 receives a command to control the opening degree to 120 pls from the control unit 411, and operates the opening degree of the second expansion valve 215 to 120 pls (EVI: 120 pls Fixed).
  • the control unit 30 continues the normal mode operation, for example, for 5 minutes, and then proceeds to step S104.
  • Step S104 The control unit 411 outputs a command to perform the measurement mode operation to the air conditioner control unit 30.
  • the air conditioner control unit 30 starts the measurement mode operation.
  • measurement mode operation means performing the following operation.
  • the control unit 411 outputs to the outdoor unit fan control unit 303 a command for measuring the outdoor unit fan 10F at constant speed.
  • the indoor unit fan control unit 304 causes the outdoor unit fan 10F to operate at a constant speed (outdoor Fan: Step Fixed). After the measurement mode operation is continued for example for 25 minutes, the flow proceeds to step S105.
  • Step S105 The control unit 411 outputs a command to calculate the refrigerant amount ratio to the refrigerant state obtaining unit 412 and the refrigerant amount calculating unit 413.
  • the refrigerant state acquisition unit 412 receives an outlet temperature signal and a liquid tube temperature signal.
  • the refrigerant amount calculating unit 413 receives a discharge temperature signal, a liquid pipe temperature signal, a high pressure side pressure signal, and a low pressure side pressure signal. Thereafter, the flow advances to step S106.
  • Step S106 The refrigerant state acquisition unit 412 determines whether it is a supercooled state or a gas-liquid two-phase state based on the outlet temperature Tcond indicated by the outlet temperature signal input in step S105 and the liquid tube temperature Tsub indicated by the liquid tube temperature signal. do.
  • the coolant amount calculation unit 413 reads from the calculation parameter storage unit 421 an arithmetic expression (calculated parameter) corresponding to the coolant state obtained by the coolant state acquisition unit 412.
  • the refrigerant amount calculating unit 413 discharges the high pressure side pressure Pd indicated by the high pressure side pressure signal input in step S105, the low pressure side pressure Ps indicated by the low pressure side pressure signal, the liquid tube temperature Tsub indicated by the liquid tube temperature signal, and the discharge temperature signal indicated.
  • the refrigerant amount ratio RA is calculated by a calculation formula adapted to the refrigerant state (coolant amount detection step).
  • the coolant amount calculation unit 413 records the calculated RA in the coolant amount storage unit 422. Thereafter, the flow advances to step S107.
  • Step S107 The control unit 411 determines whether 5 minutes have elapsed since starting the command to calculate the refrigerant amount ratio. If it is determined that 5 minutes have passed (Yes), the processing proceeds to step S108. If it is not determined that 5 minutes have passed (No), the flow returns to step S105.
  • Step S108 The refrigerant amount average calculation unit 414 reads the refrigerant amount ratio recorded in the refrigerant amount storage unit 422 in step S106, and calculates an average value of the refrigerant amount ratio.
  • the coolant amount average calculation unit 414 outputs the information on the average value of the calculated coolant amount ratios to the display unit 70.
  • the coolant amount average calculation unit 414 outputs average value calculation end information to the control unit 411 indicating that the average value of the coolant amount ratios has ended. Thereafter, the flow advances to step S109.
  • Step S109 The display part 70 receives and displays the information which shows the average value of the refrigerant amount ratio computed by the refrigerant amount average calculation part 414 in step S108.
  • the control unit 411 outputs the operation stop command of the air conditioner 100 to the air conditioner control unit 30 based on the average value calculation end information received from the coolant amount average calculation unit 414 in step S108.
  • the air conditioner control unit 30 stops the operation of the air conditioner 100 based on the operation stop signal received from the control unit 411. Thereafter, the processing proceeds to the end process.
  • the equation for the supercooled state when the refrigerant state is a supercooled state, the equation for the supercooled state is used, and when the refrigerant state is the gas-liquid two-phase state, the equation for the gas-liquid two-phase state is used.
  • the amount of refrigerant can be detected with high accuracy regardless of the state of the refrigerant at the outlet. Even when a long pipe using the sub cooler 213 is used to prevent vaporization in the liquid pipe or when there is a large height difference between the outdoor unit 10 and the indoor unit 11, the refrigerant amount ratio can be detected with high accuracy.
  • the amount of the refrigerant in the air conditioner 100 can be accurately measured, but in the present embodiment, when the refrigerant is replenished, at the start of charging of the refrigerant, the refrigerant amount ratio is calculated, and When the refrigerant amount ratio reaches 100%, a display is prompted to prompt the operation of the refrigerant injection valve 216 to the person performing the operation.
  • FIG. 6 is a schematic block diagram showing the configuration of an air conditioner 100 according to a third embodiment.
  • the structure of the air conditioner 100 of this embodiment is the air conditioner 100 in 2nd Embodiment except that the refrigerant
  • the configuration is the same as that of FIG. 3. Therefore, descriptions other than the refrigerant injection valve 216 and the refrigerant storage container 217 are omitted.
  • the coolant injection valve 216 is a valve that is opened and closed by a person who performs an operation to replenish the coolant in accordance with an instruction shown on the display unit 70.
  • the refrigerant storage container 217 is a container for storing refrigerant to be replenished.
  • FIG. 7 is a schematic block diagram showing the configuration of the refrigerant amount detecting device 40 according to the present embodiment.
  • the configuration of the coolant amount detecting device 40 according to the present embodiment is the second except that the coolant amount determining unit 415 is newly added, and that a new function is added to the coolant amount average calculating unit 414 and the control unit 411. It is the same as the structure (FIG. 4) of the refrigerant
  • the refrigerant amount average calculation unit 414 reads the refrigerant amount ratio calculated within a predetermined time (for example, past 5 minutes) from the refrigerant amount storage unit 422.
  • the coolant amount average calculating unit 414 calculates the moving average value of the read coolant amount ratio and outputs the calculated moving average value to the coolant amount determining unit 415.
  • the coolant amount determining unit 415 determines whether or not the moving average value of the coolant amount ratio exceeds 100% based on the moving average value of the coolant amount ratio input from the coolant amount average calculating unit 414.
  • the coolant amount determination unit 415 outputs a charge end signal to the control unit 411 when it is determined that the moving average value of the coolant amount ratio exceeds 100%.
  • the control unit 411 “opens” the refrigerant injection valve 216 to the display unit 70 based on the input of the detection start information from the input unit 60 and the input of the charge end signal from the refrigerant amount determination unit 415. Or “close” outputs a command to perform an indication instructing the person performing the operation.
  • FIG. 8 is a flowchart showing an example of the operation of the refrigerant amount detecting device 40 according to the present embodiment.
  • Step S201 The input part 60 receives the input from a user to start automatic charge of a refrigerant
  • Step S202 The control part 411 outputs to the display part 70 the command which performs the display which instruct
  • Each process of step 203-205 is the same as each process of step S102-step S104 in 2nd Embodiment (FIG. 5).
  • Step S206 The control part 411 outputs to the display part 70 the command which performs the display which instruct
  • Each process of step S207, 208 is the same as each process of step S105, 106 in 2nd Embodiment (FIG. 5).
  • Step S209 The refrigerant amount average calculation unit 414 reads the refrigerant amount ratio recorded in the refrigerant amount storage unit 422, and calculates, for example, a moving average value of the refrigerant amount ratio for 5 minutes.
  • the coolant amount average calculation unit 414 outputs the information on the calculated moving average value of the coolant amount ratio to the coolant amount determination unit 415. Thereafter, the flow advances to step S210.
  • Step S210 The coolant amount determining unit 415 determines whether or not the moving average value of the coolant amount ratio is 100% or more, based on the information about the moving average value of the coolant amount ratio received from the coolant amount average calculating unit 414. If it is determined that the moving average value is 100% or more (Yes), the refrigerant amount determining unit 415 outputs a charge end signal indicating that the charge of the refrigerant is completed to the control unit 411, and then proceeds to step S211. If it is determined that the moving average value is less than 100% (No), the flow proceeds to step S207.
  • Step S211 The control part 411 outputs to the display part 70 the command which performs the display which instruct
  • the control part 411 outputs the operation stop command of the air conditioner 100 to the air conditioner control part 30 based on the charge end signal input from the refrigerant
  • the air conditioner control unit 30 stops the operation of the air conditioner 100 based on the operation stop signal received from the control unit 411.
  • An operation stop command of the air conditioner 100 is output to the air conditioner control unit 30.
  • the air conditioner control unit 30 stops the operation of the air conditioner 100 based on the operation stop signal received from the control unit 411. Thereafter, the processing proceeds to the end process.
  • the air conditioner 100 includes a coolant injection valve 216 for filling the air conditioner 100 with the refrigerant, and the refrigerant is injected in accordance with the determination of the refrigerant amount determining unit 415. Instructions for closing the valve 216 are displayed on the display unit 70. Accordingly, in the present embodiment, when the detection of the refrigerant amount ratio is started to the person performing the operation, the refrigerant injection valve 216 is opened, and when the refrigerant amount ratio becomes 100% or more, the refrigerant injection valve 216 is opened. Since it is urged to close, a refrigerant can be replenished reliably.
  • the refrigerant injection valve 216 is opened and closed by a person who performs the operation, but the control unit 411 controls the refrigerant injection valve 216 through the air conditioner control unit 30. It may be opened or closed automatically.
  • reliability protection of the compressor 201 continues, and when entering the protection zone (each measured value of the discharge temperature, the overcurrent, the high pressure, and the low pressure causes a minimum physical quantity that causes a predetermined reaction to occur. If so, the operation of the air conditioner 100 may be stopped, and the display unit 70 may display “detection failure”.
  • RA a3 + b3 ⁇ Tc + c3 ⁇ Te + d3 ⁇ Tsub + e3 ⁇ Td
  • the constants a3, b3, c3, d3, and e3 are values obtained in advance by multiple regression calculations using actual data showing the relationship between Tc, Te, Tsub, Td and RA in the supercooled state.
  • the constants a4, b4, c4, d4, and e4 are values obtained in advance by multiple regression calculations using actual data showing the relationship between Tc, Te, Tsub, Td and RA in the supercooled state.
  • the refrigerant amount calculation unit 413 uses the saturation temperature Tc and the saturation temperature from the discharge pressure Pd indicated by the discharge pressure signal and the suction pressure Ps indicated by the suction pressure signal, and the saturated steam curve data recorded in the calculation parameter storage unit 421. Calculate Te.
  • the refrigerant amount calculating unit 413 calculates the refrigerant amount ratio RA using these and the liquid tube temperature Tsub indicated by the liquid tube temperature signal and the discharge temperature Td indicated by the discharge temperature signal.
  • the formula for the supercooled state and the formula for the gas-liquid two-phase state differ depending on the type of refrigerant.
  • the refrigerant amount detection device records a constant of an expression corresponding to the type of refrigerant.
  • the coolant amount calculating unit 412 may read the parameter (constant) corresponding to the coolant from the calculation parameter storage unit 421 to calculate the coolant amount. It's okay.
  • the air conditioner 100 of this embodiment is provided with the refrigerant
  • the air conditioner 100 includes a receiver 218 as an example of a refrigerant storage unit for storing excess refrigerant; And a receiver pressure reducing valve 219 as an example of a flow rate adjusting section that reduces the pressure of the refrigerant flowing out of the receiver 218 and adjusts the flow rate of the refrigerant.
  • the opening degree is controlled by the control by the air conditioner control unit 30, and the amount and pressure of the refrigerant passing through the receiver pressure reducing valve 219 are adjusted.
  • the outdoor unit 10 of the air conditioner 100 is switched to an open state or a closed state by control by the air conditioner control unit 30, and adjusts the flow rate of the refrigerant passing through the connection path 20b to be described later.
  • the connection opening / closing valve 220 as an example of a supply amount adjustment part is provided.
  • the air conditioner 100 is provided with the branch path 20a which branches off from the refrigerant circuit 20, and the connection path 20b which connects the refrigerant circuit 20 and the branch path 20a.
  • the branch path 20a is provided by branching from the pipe between the condenser (outdoor heat exchanger) 102 and the first expansion valve 103 in the refrigerant circuit 20.
  • the receiver 218 described above is connected to the end of the branch path 20a.
  • the receiver pressure reducing valve 219 mentioned above is provided in the branch path 20a.
  • connection path 20b branches off from the pipe between the receiver pressure reducing valve 219 and the receiver 218 in the branch path 20a and is connected to the low pressure pipe 20s of the refrigerant circuit 20.
  • connection opening / closing valve 220 mentioned above is provided in the connection path 20b.
  • connection opening / closing valve 220 is normally in the closed state. And the connection open / close valve 220 can switch to an open state when the discharge temperature Td of the refrigerant discharged from the compressor 201 rises to a predetermined temperature. As a result, the refrigerant stored in the receiver 218 is supplied to the compressor 201 through the connection path 20b, and the increase in the discharge temperature Td of the refrigerant discharged from the compressor 201 is suppressed.
  • the receiver 218 of this embodiment is formed of the material which has thermal conductivity, such as iron.
  • the receiver 218 has a cylindrical shape, for example, and is installed vertically in the outdoor unit 10.
  • the receiver 218 is provided with the connection part in which the terminal of the branch path 20a is connected in the bottom face located in a perpendicular lower part.
  • coolant flows in and out from the connection part provided in a perpendicular lower part.
  • the receiver 218 stores the excess refrigerant during the cooling operation and during the defrosting operation. In addition, the receiver 218 supplies the refrigerant stored in the cooling operation or the defrosting operation to the refrigerant circuit 20 in the heating operation. In other words, in the air conditioner 100 of this embodiment, the amount of refrigerant circulating through the refrigerant circuit 20 is adjusted by the receiver 218.
  • the volume of the receiver 218 be set to be equal to the volume converted into the supercooled liquid state by subtracting the optimum refrigerant amount in the heating operation from the optimum refrigerant amount in the cooling operation.
  • the optimum amount of refrigerant means the amount of refrigerant having the highest system efficiency of heating operation and cooling operation in the air conditioner 100.
  • the volume of the receiver 218 is set as described above, the excess refrigerant is accommodated in the receiver 218 during the cooling operation, so that the cooling operation is performed at the optimum amount of refrigerant. In addition, the enlargement of the receiver 218 is suppressed.
  • coolant which contains R32 refrigerant
  • R32 has a lower warming coefficient than, for example, R410A which is conventionally used as a refrigerant of an air conditioner. Therefore, in the present embodiment, by using the R32 refrigerant or a mixed refrigerant containing at least 70 wt% or more of R32, for example, compared to the case of using the R410A refrigerant containing 50 wt% of R32 and R125, The impact is reduced.
  • the refrigerant may contain various additives such as lubricating oil which enhances the lubricity of the refrigerant in the compressor 201.
  • the refrigerant circuit 20 is switched to the flow path indicated by the broken line in FIG. 9 by the four-way switching valve 107, and the refrigerant flows as indicated by the broken arrow in FIG. 9. That is, in the heating operation, the refrigerant is supplied with the compressor 201, the four-way switching valve 107, the indoor heat exchanger 104, the first expansion valve 103, the outdoor heat exchanger 102, and the four-way switching valve 107.
  • a refrigeration cycle is constructed which flows in sequence and returns to the compressor 201.
  • the high-temperature, high-pressure gaseous refrigerant compressed by the compressor 201 and discharged from the discharge portion flows into the indoor heat exchanger 104 after passing through the four-way switching valve 107.
  • the indoor heat exchanger 104 functions as a condenser. Therefore, the refrigerant is condensed and condensed by the heat exchange with the indoor air in the indoor heat exchanger 104, and is discharged from the indoor heat exchanger (104).
  • the high pressure liquid refrigerant discharged from the indoor heat exchanger 104 is reduced in pressure by the first expansion valve 103 to become a gas-liquid two-phase state, and then flows into the outdoor heat exchanger 102.
  • the outdoor heat exchanger 102 functions as an evaporator. Therefore, the refrigerant is evaporated by heat exchange with the outside air in the outdoor heat exchanger 102 and discharged from the outdoor heat exchanger 102. The low pressure gaseous refrigerant discharged from the outdoor heat exchanger 102 is sucked into the compressor 201 from the suction unit and compressed again.
  • the refrigerant stored in the receiver 218 is reduced in pressure by the receiver pressure reducing valve 219 after passing through the branch path 20a and then supplied to the refrigerant circuit 20.
  • the receiver pressure reducing valve 219 is adjusted based on the control by the air conditioner control unit 30.
  • the air conditioner 100 of this embodiment by adjusting the opening degree of the receiver pressure reduction valve 219, it is suppressed that a large amount of refrigerant flows rapidly from the receiver 218 to the refrigerant circuit 20.
  • FIG. The control of the opening degree of the receiver pressure reducing valve 219 will be described in detail later.
  • the refrigerant circuit 20 is switched to the flow path indicated by the solid line in FIG. 9 by the four-way switching valve 107, and the refrigerant flows as indicated by the solid arrow in FIG. 9. That is, during the cooling operation and the defrosting operation, the refrigerant is supplied to the compressor 201, the four-way switching valve 107, the outdoor heat exchanger 102, the first expansion valve 103, the indoor heat exchanger 104, and the four-way switching valve.
  • a refrigeration cycle is constructed in which 107 flows sequentially and returns to the compressor 201.
  • the high temperature and high pressure gaseous refrigerant compressed by the compressor 201 and discharged from the discharge portion is sucked into the outdoor heat exchanger 102 after passing through the four-way switching valve 107.
  • the outdoor heat exchanger 102 functions as a condenser. Therefore, the refrigerant is condensed and condensed by exchanging heat with the outside air in the outdoor heat exchanger 102, and discharged from the outdoor heat exchanger 102 as a supercooled liquid phase.
  • the high pressure liquid refrigerant discharged from the outdoor heat exchanger 102 branches to the refrigerant circuit 20 side and the branch path 20a side.
  • the refrigerant on the refrigerant circuit 20 side is depressurized by the first expansion valve 103 to become a gas-liquid two-phase state, and then sucked into the indoor heat exchanger 104.
  • the indoor heat exchanger 104 functions as an evaporator. Therefore, the refrigerant is evaporated and evaporated by the heat exchange with the indoor air in the indoor heat exchanger (104) and discharged from the indoor heat exchanger (104).
  • the low pressure gaseous refrigerant discharged from the indoor heat exchanger (104) is sucked into the compressor (201) from the suction portion and compressed again.
  • the refrigerant branched toward the branch path 20a is sucked into the receiver 218 from the connection portion and stored after passing through the receiver pressure reducing valve 219.
  • the receiver pressure reducing valve 219 is set to the fully opened state by the air conditioner control unit 30. As a result, the refrigerant branched toward the branching path 20a is sucked into the receiver 218 without being depressurized by the receiver pressure reducing valve 219.
  • the volume of the outdoor heat exchanger 102 may be smaller than the volume of the indoor heat exchanger 104 depending on the type of the outdoor heat exchanger 102 or the like.
  • the refrigerant circuit is compared with the heating operation in which the outdoor heat exchanger 102 functions as an evaporator. The amount of refrigerant required for 20 becomes small.
  • the refrigerant circulating in the refrigerant circuit 20 The excess amount of refrigerant is more than the optimum amount of refrigerant during cooling operation or defrosting operation. In other words, excess refrigerant is generated in the refrigerant circuit 20 during the cooling operation and the defrosting operation.
  • the air conditioner 100 of the present embodiment a portion of the refrigerant is stored in the receiver 218 during the cooling operation and the defrosting operation, thereby suppressing the generation of the excess refrigerant in the refrigerant circuit 20. For this reason, the air conditioner 100 performs the cooling operation and the defrosting operation with the optimum amount of refrigerant. This suppresses the increase in the discharge pressure from the compressor 201 during the cooling operation and the defrosting operation. In the cooling operation and the defrosting operation of the air conditioner 100, a decrease in system efficiency is suppressed.
  • 10 is a view showing a conventional air conditioner (100). 10, the same code
  • FIG. 11 is a pressure-specific enthalpy diagram (p-h diagram) of the air conditioner 100 during the cooling operation.
  • the dashed-dotted line shows the ph diagram of the air conditioner 1 of this embodiment at the time of closing the connection opening / closing valve 220 of the connection path 20b, and the broken line shows the conventional figure shown in FIG.
  • the ph diagram of the air conditioner 1 is shown.
  • AB corresponds to the compression stroke by the compressor 201
  • BC corresponds to the condensation stroke by the outdoor heat exchanger 102.
  • between CDs corresponds to the depressurization stroke by the 1st expansion valve 103
  • DA corresponds to the evaporation stroke by the indoor heat exchanger 104.
  • the receiver 218p is connected to a pipe located between the outdoor heat exchanger 102 and the first expansion valve 103 in the refrigerant circuit 20. do.
  • the conventional air conditioner 100 shown in FIG. 10 does not have the branch path 20a unlike the air conditioner 100 of this embodiment.
  • the excess refrigerant generated in the cooling operation or the defrosting operation is stored in the receiver 218p in the gas-liquid two-phase state.
  • the liquid refrigerant of the gas-liquid two-phase refrigerant stored in the receiver 218p is discharged from the receiver 218p to the refrigerant circuit 20, and the first expansion valve ( Inhaled 103).
  • the refrigerant before it is discharged from the receiver 218p and sucked into the 1st expansion valve 103 is saturated liquid state or saturated liquid as shown by the point X in FIG. It is in a state close to.
  • the refrigerant before being sucked into the first expansion valve 103 is hard to be supercooled.
  • the excess refrigerant is stored in the supercooled state in the receiver 218. Accordingly, unlike the conventional air conditioner 100 shown in FIG. 10, the refrigerant before being sucked into the first expansion valve 103 is overcooled.
  • the refrigerant temperature condensed in the outdoor heat exchanger 102 and discharged from the outdoor heat exchanger 102 is usually about 50 ° C to 60 ° C.
  • the ambient temperature of the receiver 218 is about 20 degreeC-40 degreeC normally. Therefore, the refrigerant temperature discharged from the outdoor heat exchanger 102 and sucked into the receiver 218 is lower than the temperature around the receiver 218.
  • the receiver 218 of the present embodiment is made of a thermally conductive material.
  • the refrigerant discharged from the outdoor heat exchanger 102 and sucked into the receiver 218 exchanges heat with ambient air through the wall surface of the receiver 218.
  • the refrigerant is subcooled in the receiver 218 and the excess refrigerant is stored in the subcooled liquid state in the receiver 218.
  • the branch path 20a in which the receiver 218 is provided is connected to the pipe between the outdoor heat exchanger 102 and the first expansion valve 103 in the refrigerant circuit 20. Therefore, as the refrigerant stored in the receiver 218 is in the supercooled state, as shown in FIG. 11, the supercooling degree SC is given to the refrigerant before being sucked into the first expansion valve 103.
  • the refrigeration effect (W1 in FIG. 11) at the time of cooling operation and defrost operation is the refrigeration effect of the conventional air conditioner 100 shown in FIG. It becomes large compared with W2) in 11.
  • the air conditioner 100 of this embodiment improves system efficiency compared with the air conditioner 100 shown in FIG.
  • R32 used as the refrigerant in the air conditioner 100 of the present embodiment has a larger enthalpy difference (calorie difference) in the subcooling region than, for example, R410A. For this reason, in the air conditioner 100 which uses the R32 refrigerant
  • the receiver 218 stores the refrigerant in a supercooled state. Accordingly, even in the case where the air conditioner 100 uses R32 refrigerant or a mixed refrigerant containing 70% by weight or more of R32, the refrigerant before being sucked into the first expansion valve 103 after the condensation is brought into a supercooled state. can do.
  • the receiver 218 is provided so that the refrigerant before being sucked into the first expansion valve 103 is in the supercooled state, for example, in order to supercool the refrigerant, for example, an outdoor heat exchanger ( 102 need not be enlarged.
  • the excess refrigerant is stored in the supercooled liquid state during the cooling operation and the defrosting operation, so that the receiver 218 is compared with the case where the excess refrigerant is stored in the gas-liquid two-phase state. ) Can be miniaturized.
  • the excess refrigerant is stored in the supercooled state during the cooling operation and the defrosting operation, and thus the receiver 218 is compared with the case where the excess refrigerant is stored in the gas-liquid two-phase state. Can store a lot of excess refrigerant. For this reason, for example, a lot of excess refrigerant is stored in the receiver 218 during the defrosting operation in which excess refrigerant is likely to occur, and the reliability of the compressor 201 can be improved.
  • coolant circuit 20 is provided, and the receiver 218 is provided in the terminal of the branch path 20a.
  • the receiver 218 is provided at a position that does not interfere with the refrigeration cycle by the refrigerant circuit 20. Accordingly, for example, the air conditioner by storing the excess refrigerant in the receiver 218 as compared with the conventional air conditioner 100 (see FIG. 10) in which the receiver 218 is installed in the refrigerant circuit 20. Fluctuations in ability are suppressed.
  • the heat exchanger 102 absorbs heat and evaporates heat in the outdoor heat exchanger 102 during the heating operation. For this reason, frost may adhere to the outdoor heat exchanger 102 at the time of heating operation, for example, when the humidity of the outside air is high or when the outside air temperature is low.
  • frost may adhere to the outdoor heat exchanger 102 at the time of heating operation, for example, when the humidity of the outside air is high or when the outside air temperature is low.
  • frost is attached to the outdoor heat exchanger 102
  • heat exchange in the outdoor heat exchanger 102 may be inhibited to prevent evaporation of the refrigerant in the outdoor heat exchanger 102.
  • the amount of refrigerant circulating in the refrigerant circuit 20 decreases, and the heating capability of the air conditioner 100 decreases.
  • coolant in the outdoor heat exchanger 102 falls, and it will be in the state which frost is more easy to attach.
  • the defrost operation movement which removes frost from the outdoor heat exchanger 102 is carried out. Do this.
  • the refrigerant circulates in the refrigerant circuit 20 in the defrosting operation as in the cooling operation. As a result, the high temperature and high pressure refrigerant discharged from the compressor 201 is sucked into the outdoor heat exchanger 102, and frost attached to the outdoor heat exchanger 102 is melted. As a result, frost is removed from the outdoor heat exchanger 102.
  • the excess refrigerant is stored in the receiver 218 during the defrosting operation.
  • the outside air temperature is lower and the temperature around the receiver 218 is lower than in the cooling operation.
  • coolant stored in the receiver 218 and the surrounding air of the receiver 218 is easy compared with the cooling operation.
  • many refrigerants are easily stored in the receiver 218 during the defrosting operation.
  • the air conditioner 100 can switch to the heating operation.
  • the air conditioner 100 when the defrosting operation is switched to the heating operation, the refrigerant stored in the receiver 218 is supplied to the refrigerant circuit 20 through the branch path 20a.
  • the first expansion valve is connected to the pipe between the first expansion valve 103 to which the branch path 20a is connected and the outdoor heat exchanger 102 in the refrigerant circuit 20.
  • the refrigerant in the gas-liquid two-phase state depressurized in 103 flows in.
  • the refrigerant temperature after passing through the 1st expansion valve 103 at the time of heating operation becomes about -15 degreeC--5 degreeC.
  • the refrigerant temperature in the receiver 218 connected to the pipe between the first expansion valve 103 and the outdoor heat exchanger 102 through the branch path 20a It becomes about 15 degreeC--5 degreeC.
  • the temperature around the receiver 218 is about 0 ° C to 10 ° C. That is, when the defrosting operation is switched to the heating operation, the refrigerant temperature in the receiver 218 is lower than the temperature around the receiver 218. As a result, a part of the refrigerant stored in the receiver 218 exchanges heat with the surrounding air through the wall surface of the receiver 218 to evaporate it.
  • the refrigerant in the receiver 218 is separated into a gaseous portion and a liquid portion.
  • the gaseous refrigerant is located in the vertical upper portion of the receiver 218, and the liquid refrigerant is located in the vertical lower side.
  • the liquid refrigerant is pressed by the gaseous refrigerant. As a result, the liquid refrigerant is discharged to the branch path 20a from the connection portion provided at the vertical bottom of the receiver 218.
  • the refrigerant discharged from the receiver 218 to the branch path 20a passes through the receiver pressure reducing valve 219 and is then supplied to the refrigerant circuit 20.
  • the amount of the refrigerant circulating in the refrigerant circuit 20 increases, and the heating operation is performed at the optimum amount of refrigerant.
  • the temperature around the receiver 218 is higher as compared with the pressure equivalent saturation temperature in the receiver 218 as described above. For this reason, during the heating operation, the refrigerant in the receiver 218 maintains the superheated gas state. As a result, the intrusion of the liquid refrigerant into the receiver 218 is suppressed. That is, during the heating operation, the refrigerant enters the receiver 218 from the refrigerant circuit 20 through the branch path 20a.
  • coolant enters in and out is provided in the perpendicular lower part of the receiver 218. As shown in FIG.
  • the air conditioner 1 is switched from the defrosting operation to the heating operation, and the refrigerant stored in the receiver 218 is discharged from the receiver 218, lubricating oil or the like contained in the refrigerant is received from the receiver 218. It is suppressed that it remains in the inside.
  • R32 used for the air conditioner 100 of this embodiment has low solubility, such as lubricating oil, at low temperature compared with R410A, for example. For this reason, compared with R410A, a refrigerant
  • the connection part is provided in the vertical lower part of the receiver 218, the lubricating oil isolate
  • the opening and closing control of the receiver pressure reducing valve 219 when the air conditioner 100 is switched from the defrosting operation to the heating operation will be described.
  • the air conditioner control part 30 switches the opening degree of the receiver pressure reduction valve 219 into small compared with the defrosting operation. .
  • the receiver pressure reducing valve 219 is set to the fully opened state by the air conditioner control unit 30.
  • the surplus refrigerant penetrating into the branch path 20a passes through the receiver pressure reducing valve 219 at the time of the cooling operation and the defrosting operation.
  • the refrigerant passing through the receiver pressure reducing valve 219 is stored in the receiver 218 in a supercooled state as described above.
  • the opening degree of the receiver pressure reducing valve 219 is changed small by the air conditioner control unit 30 in accordance with the timing of switching to the heating operation.
  • the flow rate of the refrigerant passing through the receiver pressure reducing valve 219 per unit time is reduced as compared with the case where the receiver pressure reducing valve 219 is fully opened.
  • the compressor 201 may be broken.
  • the opening degree of the receiver pressure reduction valve 219 is made small and it flows into the refrigerant circuit 20 from the branch path 20a by adjusting the quantity of the refrigerant
  • the amount of refrigerant decreases.
  • an excessive amount of refrigerant sucked into the compressor 201 is suppressed, and a failure of the compressor 201 is suppressed.
  • FIG. 12 is a diagram showing a relationship between opening and closing of the connecting opening and closing valve 220 and the refrigerant temperature discharged from the compressor 201.
  • 13 is a flowchart which shows the procedure of opening / closing control of the connection opening / closing valve 220 performed by the air conditioner control part 30 of this embodiment.
  • opening / closing of the connection switching valve 220 is controlled based on the temperature detection result by the discharge temperature sensor 206. As a result, an increase in the refrigerant temperature (discharge temperature) discharged from the compressor 201 is suppressed.
  • the opening / closing control of the connection opening / closing valve 220 is demonstrated in detail.
  • connection opening / closing valve 220 is in the closed state.
  • the air conditioner control part 30 acquires the refrigerant temperature (discharge temperature Td) discharged from the compressor 201 detected by the discharge temperature sensor 206 (step 301).
  • the air conditioner control part 30 compares the discharge temperature Td acquired by step 301 with the 1st reference temperature T1 which is an example of a predetermined reference temperature (step 302). When it determines with discharge temperature T being less than 1st reference temperature T1 (NO in step 302), the air conditioner control part 30 returns to step 301, and continues a process.
  • the air conditioner control part 30 switches the connection open / close valve 220 from the closed state to the open state (step) 303).
  • the refrigerant in the subcooled state stored in the receiver 218 is supplied to the low pressure pipe 20s of the refrigerant circuit 20 via the connection path 20b.
  • connection path 20b is connected to the piping between the receiver 218 and the receiver pressure reducing valve 219 in the branch path 20a. For this reason, when the connection opening-closing valve 220 is set to the open state, the refrigerant
  • the refrigerant temperature sucked into the compressor 201 from the low pressure pipe 20s decreases, and the compressor 201 is cooled. Then, the discharge temperature T of the refrigerant discharged from the compressor 201 decreases.
  • the air conditioner control unit 30 acquires again the discharge temperature Td detected by the discharge temperature sensor 206 (step 304).
  • the air conditioner control part 30 compares the discharge temperature Td acquired by step 304 with the 2nd reference temperature T2 which is an example of another predetermined reference temperature (step 305). When it is determined that the discharge temperature Td is higher than the second reference temperature T2 (NO in step 305), the air conditioner control unit 30 returns to step 304 to continue the process.
  • the air conditioner control part 30 switches the connection open / close valve 220 from an open state to a closed state (step 306).
  • the refrigerant temperature discharged from the compressor 201 is within a predetermined range (first reference temperature). Between T1 and the second reference temperature T2).
  • the air conditioner 100 As a result, in the air conditioner 100, it becomes possible to perform stable air conditioning operation, and it is suppressed that the system efficiency falls. In addition, the occurrence of a problem of the compressor 201 accompanying the increase in the discharge temperature is suppressed.
  • coolant which contains R32 refrigerant
  • coolant is used.
  • R32 has a property that the discharge temperature of the refrigerant discharged from the compressor 201 tends to be higher than that of R410A.
  • the compression ratio of the refrigerant in the compressor 201 is large, for example, during heating operation in a state where the outside air temperature is low, the discharge temperature Td of the refrigerant tends to increase.
  • the compressor 201 can be directly cooled by the supercooled refrigerant stored in the receiver 218. For this reason, even if it uses the refrigerant
  • the first reference temperature T1 is set to a temperature lower than the discharge temperature limit Ta of the compressor 201.
  • the discharge temperature limit Ta is a temperature at which a problem of the compressor 201, such as a seal material of the compressor 201, deterioration of lubricating oil, and the like can occur.
  • the discharge temperature limit Ta of the compressor 201 is 120 ° C
  • the first reference temperature T1 is set to 110 ° C.
  • the second reference temperature T2 is not particularly limited, but is set to a temperature lower than the first reference temperature T1. In this example, the second reference temperature T2 is set to 90 ° C.
  • connection switching valve 220 was changed into either the open state or the closed state according to the discharge temperature Td
  • the opening degree of the connection opening / closing valve 220 is changed in multiple stages according to the discharge temperature Td. It is good also as a structure. Specifically, the air conditioner control unit 30 controls the opening degree of the connection opening / closing valve 220 as the discharge temperature Td is higher and decreases the opening degree of the connection opening and closing valve 220 as the discharge temperature Td is low. You may do it.
  • the amount of refrigerant circulating in the refrigerant circuit 20 can be adjusted by setting the connection open / close valve 220 to the open state. That is, when the connection open / close valve 220 is opened, the refrigerant stored in the receiver 218 is supplied to the low pressure piping 20s of the refrigerant circuit 20. Accordingly, the amount of refrigerant stored in the receiver 218 is decreased, and the amount of refrigerant circulating in the refrigerant circuit 20 is increased.
  • connection opening / closing valve 220 is opened when the cooling operation is performed at a low outside air temperature, and the amount of refrigerant circulating through the refrigerant circuit 20 is increased.
  • the air conditioning operation can be performed with the optimal amount of refrigerant.
  • the first expansion valve 103 is used as an on / off valve, and the air conditioner control unit 30 controls the first expansion valve 103, the receiver pressure reducing valve 219, and the connection opening / closing valve. It may be controlled by interlocking the opening and closing of the 220. Thus, for example, when the cooling operation is stopped and then the cooling operation is performed again, the temperature of the refrigerant sucked into the compressor 201 can be reduced.
  • the air conditioner control unit 30 maintains the receiver pressure reducing valve 219 in the open state, and maintains the connection opening / closing valve 220 in the closed state. 1
  • the expansion valve 103 is switched to the closed state. Accordingly, when the cooling operation is stopped, the amount of refrigerant flowing from the refrigerant circuit 20 to the branch path 20a is increased and the refrigerant is stored in the receiver 218. And after that, when resuming cooling operation, the air conditioner control part 30 switches the 1st expansion valve 103 and the connection opening / closing valve 220 to an open state.
  • the coolant in the subcooled state stored in the receiver 218 is supplied to the low pressure pipe 20s and the coolant temperature sucked into the compressor 201 decreases.
  • the fall of the system efficiency of a cooling operation is suppressed also at the time of the start of the cooling operation which the temperature of the compressor 201 tends to become high.
  • the air conditioner 1 which has the receiver pressure reduction valve 219 was demonstrated as an example of a flow volume adjusting means.
  • the flow rate adjusting means is not limited to the pressure reducing valve.
  • an on-off valve, a flow control valve, or the like may be used as the flow rate adjusting means.
  • the flow rate of the refrigerant discharged from the receiver 218 to the refrigerant circuit 20 through the branch path 20a and the speed of the refrigerant can be adjusted.
  • the present embodiment also applies to the air conditioner 100 using other refrigerants. can do.
  • the present embodiment is preferably applied by the air conditioner 100 using the R32 refrigerant or a mixed refrigerant containing 70% by weight or more of R32.
  • the air conditioner 100 of this embodiment is a subcooling which supercools the refrigerant
  • the subcooler 80 is installed in the outdoor unit 10 of the air conditioner 1.
  • the subcooler 80 has the 1st piping 81 and the 2nd piping 82 parallel to each other.
  • the first pipe 81 has a first inlet portion 81a through which the coolant flows in and a first outlet portion 81b through which the coolant flows out.
  • the second pipe 82 has a second inlet portion 82a through which the refrigerant is introduced and a second outlet portion 82b through which the refrigerant is discharged.
  • the 1st inlet part 81a of the 1st piping 81 and the 2nd inlet part 82a of the 2nd piping 82 are located in the supercooler 80 in the position which opposes to the conveyance direction of a refrigerant
  • the 1st outlet part 81b of the 1st piping 81 and the 2nd outlet part 82b of the 2nd piping 82 are installed in the position which opposes the conveyance direction of a refrigerant
  • the flow direction of the refrigerant flowing through the first pipe 81 and the flow direction of the refrigerant flowing through the second pipe 82 become opposite directions.
  • the refrigerant flowing through the first pipe 81 and the refrigerant flowing through the second pipe 82 are in counter flow.
  • the air conditioner 1 has the 1st expansion valve 204a, 204b which expands and vaporizes the refrigerant supercooled by the subcooler 80, and makes it low temperature and low pressure.
  • one first expansion valve 204a is provided in the indoor unit 10
  • the other first expansion valve 204b is provided in the outdoor unit 10.
  • the refrigerant is expanded by one of the first expansion valves 204a.
  • coolant is expanded by the other 1st expansion valve 204b.
  • the air conditioner 100 is equipped with the connection opening / closing valve 221 which adjusts the quantity of the refrigerant which passes through the connection path 25 mentioned later.
  • the air conditioner 100 includes a subcooling pressure reducing valve (second expansion valve) 215 for reducing the refrigerant flowing through the subcooling branch passage 22 described later and adjusting the flow rate of the refrigerant.
  • a subcooling pressure reducing valve (second expansion valve) 215 for reducing the refrigerant flowing through the subcooling branch passage 22 described later and adjusting the flow rate of the refrigerant.
  • the compressor 201 of this embodiment has the intermediate pressure suction part 201c which the refrigerant
  • the air conditioner 1 of this embodiment is provided with the subcooling furnace 21 in which the subcooler 80 mentioned above is provided.
  • the subcooling path 21 is connected to the piping between one of the first expansion valves 204a and the other of the first expansion valves 204b in the refrigerant circuit 20 through a bridge circuit 23 described later.
  • the subcooling furnace 21 is an upstream subcooling furnace for connecting the second connection point 23b described later of the bridge circuit 23 and the first inlet portion 81a of the first pipe 81 in the subcooler 80. (21a). Moreover, the subcooling furnace 21 connects the 1st outlet part 81b of the 1st piping 81 in the subcooler 80, and the downstream side which connects the 4th connection point 23d mentioned later of the bridge circuit 23. As shown in FIG. It has a subcooling furnace 21b.
  • the air conditioner 100 of this embodiment branches in the upstream subcooling furnace 21a, and is connected to the subcooling branch 82a of the 2nd piping 82 in the subcooler 80.
  • the furnace 22 is provided.
  • the air conditioner 100 is a bridge circuit for making the circulation direction of the refrigerant in the subcooling passage 21 and the subcooling branch passage 22 in one direction during the cooling operation (defrosting operation) and the heating operation ( 23).
  • the bridge circuit 23 is configured by connecting four pipes. Specifically, as shown in FIG. 15, the bridge circuit 23 includes four in which a first check valve 231, a second check valve 232, a third check valve 233, and a fourth check valve 234 are formed. Has two pipes. And these are connected in a closed loop shape through the 1st connection point 23a, the 2nd connection point 23b, the 3rd connection point 23c, and the 4th connection point 23d.
  • a pipe extending from the first expansion valve 204b on the other side of the refrigerant circuit 20 is connected to the first connection point 23a.
  • a pipe extending from one of the first expansion valves 204a of the refrigerant circuit 20 is connected to the third connection point 23c.
  • an upstream subcooling furnace 21a is connected to the second connection point 23b.
  • the downstream subcooling furnace 21b is connected to the fourth connection point 23d.
  • the air conditioner 1 includes an injection path 24 for sucking the refrigerant passing through the second pipe 82 of the subcooler 80 into the intermediate pressure suction part 201c of the compressor 201. do. As shown in FIG. 15, the injection passage 24 is connected to the second outlet portion 82b of the second pipe 82 in the supercooler 80.
  • the air conditioner 1 is provided with the connection path 25 which connects the injection path 24 and the low pressure piping 20s in the refrigerant circuit 20. As shown in FIG.
  • the air conditioner 100 of this embodiment is installed in the subcooling branch path 22, and the inlet temperature sensor 222 which detects the refrigerant temperature before suctioning into the 2nd piping 82 of the subcooler 80 is carried out. It is provided.
  • the air conditioner 100 is provided in the injection passage 24 and includes an outlet temperature sensor 223 that detects the refrigerant temperature discharged from the second outlet portion 82b of the second pipe 82.
  • the air conditioner 100 is provided in the downstream subcooling furnace 21b and includes a subcooling temperature sensor 224 that detects a refrigerant temperature discharged from the first outlet portion 81b of the first pipe 81. do.
  • the opening degree of the subcooled pressure reducing valve 215 is determined by the air conditioner control unit 30 based on the detection result by the inlet temperature sensor 222, the outlet temperature sensor 223, and the supercooling temperature sensor 224. Is controlled. On the other hand, the opening degree control of the subcooling pressure reduction valve 215 by the air conditioner control part 30 is demonstrated later.
  • an azeotropic mixed refrigerant of two or three kinds, including R32 (HFC32) and HFO1234yf or HFO1234ze, is used as the refrigerant.
  • this non-azeotropic mixed refrigerant may contain the natural refrigerant.
  • the non-azeotropic mixed refrigerant including R32 and HFO1234yf or HFO1234ze has a lower warming coefficient compared to, for example, the R32 refrigerant. Therefore, in the air conditioner 100 of this embodiment, by using the azeotropic mixed refrigerant
  • coolant the influence on an environment is reduced.
  • the content of R32 is preferably less than 70% by weight
  • the content of HFO1234yf or HFO1234ze is less than 30% by weight
  • the rest is preferably a natural refrigerant.
  • the behavior of the refrigerant in the air conditioner 100 of the present embodiment will be described with reference to FIGS. 14 and 15.
  • the behavior of the refrigerant in the refrigerant circuit 20 is the same as in the fourth embodiment. Therefore, the behavior of the refrigerant in the bridge circuit 23, the subcooling passage 21, and the subcooling branch passage 22 will be described.
  • the bridge circuit 23 includes the first check valve 231 to the fourth check valve 234. As shown by an arrow in FIG. 15, the refrigerant flows in one direction in the first check valve 231 to the fourth check valve 234.
  • the refrigerant condensed in the outdoor heat exchanger 102 and passed through the other first expansion valve 204b is the first connection point 23a. Flows into the bridge circuit 23. The refrigerant flowing into the bridge circuit 23 passes through the first check valve 231 and is discharged from the second connection point 23b to the upstream subcooling passage 21a.
  • the refrigerant discharged to the upstream side subcooling passage 21a passes to the subcooling passage 21 side facing the first pipe 31 of the subcooler 80 and the subcooling branch passage 22 facing the second piping 82. Branch to the side.
  • the refrigerant on the subcooling path 21 flows into the first pipe 81 from the first inlet portion 81a.
  • the refrigerant introduced into the first pipe 81 is heat-exchanged with the refrigerant flowing through the second pipe 82, and then discharged from the first outlet portion 81b to the downstream subcooling path 21b.
  • the refrigerant discharged to the downstream subcooling path 21b flows into the bridge circuit 23 after the fourth connection point 23d.
  • the refrigerant flowing into the bridge circuit 23 passes through the third check valve 233 and is discharged from the third connection point 23c to the refrigerant circuit 20.
  • the refrigerant circuit 20 is circulated in the same manner as in the fourth embodiment.
  • the refrigerant on the subcooling branch passage 22 flows into the second pipe 82 from the second inlet portion 82a.
  • the refrigerant introduced into the second pipe 82 is exchanged with the refrigerant flowing through the first pipe 81, and then discharged from the second outlet 82b to the injection path 24.
  • the refrigerant discharged to the injection passage 24 is sucked into the compressor 201 from the intermediate pressure suction unit 201c.
  • the refrigerant condensed in the indoor heat exchanger 104 and passed through one of the first expansion valves 204a passes from the third connection point 23c to the bridge circuit ( 23).
  • the refrigerant flowing into the bridge circuit 23 passes through the second check valve 232 and is discharged from the second connection point 23b to the upstream subcooling passage 21a.
  • the refrigerant discharged to the upstream side subcooling passage 21a passes to the subcooling passage 21 side facing the first pipe 81 of the subcooler 80 and the subcooling branch passage 22 facing the second pipe 82. Branch to) side.
  • the coolant on the side of the subcooling path 21 flows into the first pipe 81 from the first inlet portion 81a as in the cooling operation.
  • the refrigerant introduced into the first pipe 81 is heat-exchanged with the refrigerant flowing through the second pipe 82, and then discharged from the first outlet portion 81b to the downstream subcooling path 21b.
  • the refrigerant discharged to the downstream subcooling path 21b flows into the bridge circuit 23 after the fourth connection point 23d.
  • the refrigerant flowing into the bridge circuit 23 passes through the fourth check valve 234 and is discharged from the first connection point 23a to the refrigerant circuit 20.
  • the refrigerant circuit 20 is circulated in the same manner as in the fourth embodiment.
  • the coolant on the side of the subcooling branch passage 22 flows into the second pipe 82 from the second inlet 82a as in the cooling operation.
  • the refrigerant introduced into the second pipe 82 is exchanged with the refrigerant flowing through the first pipe 81, and then discharged from the second outlet 82b to the injection path 24.
  • the refrigerant discharged to the injection passage 24 is sucked into the compressor 201 from the intermediate pressure suction unit 201c.
  • the flow directions of the refrigerant in the subcooling furnace 21 and the subcooling branching passage 22 are the same in the cooling operation (defrosting operation) and the heating operation.
  • the refrigerant flowing through the first pipe 81 and the second pipe 82 of the subcooler 80 is opposed to each other in the cooling operation and the heating operation.
  • FIG. 16 is a pressure-specific enthalpy diagram (p-h diagram) of the air conditioner 100 to which the present embodiment is applied. Although the p-h diagram in the air conditioner 100 at the time of cooling operation is shown here, the same tendency is shown also at the time of heating operation.
  • p-h diagram pressure-specific enthalpy diagram
  • AB corresponds to the compression stroke by the compressor 201
  • BC corresponds to the condensation stroke by the outdoor heat exchanger 102.
  • CE respond corresponds to the pressure reduction stroke by the supercooling pressure reduction valve 215.
  • the point G corresponds to the intermediate pressure suction part 201c in the compressor 201.
  • CC 'and EF corresponds to the heat exchange stroke by the subcooler 80.
  • the EF corresponds to the refrigerant state from the second inlet portion 82a to the second outlet portion 82b in the second pipe 82 of the subcooler 80.
  • C′D corresponds to the depressurization stroke by the first expansion valve 204a
  • DA corresponds to the evaporation stroke by the indoor heat exchanger 104.
  • Y1 and Y2 represent isotherms.
  • Y1 corresponds to the refrigerant temperature at point C (first inlet portion 81a).
  • Y2 corresponds to the refrigerant temperature at the point C '(first outlet portion 81b).
  • the subcooler 80 performs heat exchange between the refrigerant flowing through the first pipe 81 and the refrigerant flowing through the second pipe 82. As a result, the refrigerant flowing through the first pipe 81 is supercooled.
  • the refrigerant after condensation by the outdoor heat exchanger 102 or the indoor heat exchanger 104 flows through the first pipe 81. That is, the refrigerant
  • the refrigerant after depressurizing the subcooling pressure reducing valve 215 provided in the subcooling branch passage 22 flows through the second pipe 82. That is, as shown between EF of FIG. 16, the refrigerant
  • the subcooler 80 heat is taken out of the high-pressure liquid refrigerant flowing through the first pipe 81 by the cold / low pressure refrigerant flowing through the second pipe 82. Accordingly, in the subcooler 80, the refrigerant flowing through the first pipe 81 is supercooled.
  • 17A and 17B show a relationship between a refrigerant temperature flowing through the first pipe 81 and a refrigerant temperature flowing through the second pipe 82 in the subcooler 80.
  • 17A shows the relationship of the present embodiment in which the refrigerant flowing through the first pipe 81 and the refrigerant flowing through the second pipe 82 are in the opposite flow.
  • FIG. 17 (b) shows a relationship when the refrigerant flowing through the first pipe 81 and the refrigerant flowing through the second pipe 82 are in parallel flow.
  • an azeotropic mixed refrigerant including R32 and HFO1234yf or HFO1234ze is used as the refrigerant.
  • a temperature gradient occurs in the refrigerant in the second pipe 82 through which the refrigerant in the gas-liquid two-phase state (saturation region) flows.
  • the temperature difference ⁇ S1 is generated in the refrigerant at the second inlet portion 82a (point E) and the second outlet portion 82b (point F).
  • the refrigerant flowing through the first pipe 81 and the second pipe 82 is the counter flow. Accordingly, as shown in FIG. 17A and FIG. 16, the refrigerant flowing through the first pipe 81 passes from the first inlet portion 81a (point C) to the first outlet portion 81b (point C ′). The temperature difference with the refrigerant flowing through the second pipe 82 is secured over the whole area up to. In other words, compared with the case of FIG. 17 (b) in which the coolant flowing through the first pipe 81 and the second pipe 82 is parallel flow, the average of the coolant in the first pipe 81 and the second pipe 82 is different. The temperature difference increases.
  • one first expansion valve 204a (the other first expansion at the time of heating operation).
  • the large subcooling degree SC is given by the refrigerant before being sucked into the valve 204b).
  • the refrigerating effect improves in both a cooling operation and a heating operation.
  • a non-azeotropic mixed refrigerant including R32 and HFO1234yf or HFO1234ze is used as the refrigerant.
  • Non-azeotropic mixed refrigerants including R32 and HFO1234yf or HFO1234ze, have a lower refrigeration effect than, for example, R32 refrigerant. For this reason, in order to obtain the efficiency equivalent to R32 refrigerant
  • the subcooler 80 of this embodiment heat exchange by counterflow is carried out in both a cooling operation and a heating operation. As a result, the lowering of the heat exchange efficiency in the subcooler 80 is suppressed as compared with the case of performing heat exchange in parallel flow in the subcooler 80. As a result, in the subcooler 80, it is possible to sufficiently subcool the refrigerant. In addition, even when a non-azeotropic mixed refrigerant including R32 and HFO1234yf or HFO1234ze having a low freezing effect as compared with the R32 refrigerant is used, the deterioration of the freezing effect in the air conditioner 100 is suppressed.
  • the subcooling branch passage 22 branching from the subcooling passage 21 on the upstream side of the subcooler 80 is provided.
  • the refrigerant flowing through the first pipe 81 is subcooled by the refrigerant flowing into the subcooling branch passage 22 and introduced into the second pipe 82.
  • emitted from the 2nd outlet part 82b of the 2nd piping 82 in the subcooler 80 is taken as the intermediate pressure suction part of the compressor 201 ( 201c).
  • the medium pressure suction part 201c of the compressor 201 sucks in the medium pressure refrigerant
  • refrigerant temperature falls in the intermediate
  • the refrigerant temperature (discharge temperature) discharged from the discharge portion (point B) of the compressor 201 is compared with the case where the refrigerant discharged from the second pipe 32 is not sucked into the intermediate pressure suction portion 201c.
  • the rise of is suppressed.
  • production of a problem such as the fall of the lifetime of the compressor 201 accompanying a rise of discharge temperature, for example, is suppressed.
  • the air conditioner 100 of this embodiment has the connection path 25 which connects the injection path 24 and the low pressure piping 20s in the refrigerant circuit 20. As shown in FIG.
  • the connection opening 25 is provided with a connection opening and closing valve 221 whose opening degree is controlled by the air conditioner control unit 30.
  • the pressure of the refrigerant which flows through the 2nd piping 82 of the injection path 24 and the subcooler 80 is adjustable.
  • connection opening / closing valve 221 when the connection opening / closing valve 221 is opened, the low pressure pipe 20s of the refrigerant circuit 20 and the injection passage 24 are connected through the connection passage 25. As a result, the pressure of the refrigerant flowing through the injection pipe 24 and the second pipe 82 of the supercooler 80 decreases as compared with the case where the connection opening / closing valve 221 is in the closed state.
  • FIG. 18 is a flowchart showing a procedure of opening degree control of the supercooling pressure reducing valve 215 executed by the air conditioner control unit 30 of the present embodiment.
  • the reliability ensuring operation, the efficiency priority operation and the capability priority operation are performed based on the detection result by the inlet temperature sensor 222, the outlet temperature sensor 223, the subcooling temperature sensor 224, and the like. Either of which is performed.
  • the opening degree of the subcooled pressure reducing valve 215 is adjusted by different control.
  • the reliability securing operation is an operation for securing the reliability of the compressor 201 and preventing a failure of the compressor 201.
  • efficiency priority operation is operation which gave priority to the system efficiency of the air conditioner 100.
  • movement is operation which gave priority to the air conditioning capability (heating ability, cooling ability) by the air conditioner 100. As shown in FIG.
  • the air conditioner control unit 30 acquires the refrigerant temperature detected by the inlet temperature sensor 222 and the outlet temperature sensor 223 (step 401). ).
  • the temperature detected by the inlet temperature sensor 222 is called inlet temperature Sa
  • the temperature detected by the outlet temperature sensor 223 is called outlet temperature Sb
  • the temperature detected by the subcooling temperature sensor 224 is called subcooling temperature Sc.
  • the temperature difference ⁇ S1 corresponds to the temperature difference (superheat diagram) between the second outlet portion 82b and the second inlet portion 82a of the refrigerant flowing through the second pipe 82 of the subcooler 80 (see FIG. 17).
  • 3rd reference temperature T3 is an optimal value of the superheat degree of the subcooler 80, for example, is set in the range of -1 degreeC-3 degreeC.
  • the reliability securing operation is an operation for securing the reliability of the compressor 201 as described above.
  • the subcooling pressure reducing valve 215 is switched to the closed state based on the control by the air conditioner control unit 30.
  • the reliability secured operation is performed to suppress the inhalation of the liquid refrigerant into the intermediate pressure suction unit 201c of the compressor 201.
  • discharge of the liquid refrigerant from the 2nd outlet part 82b of the 2nd piping 82 is suppressed by switching the subcooling pressure reduction valve 215 to a closed state as reliability ensuring operation.
  • the suction of the liquid refrigerant to the intermediate pressure suction unit 201c of the compressor 201 is suppressed.
  • failure of the compressor 201 is suppressed and reliability is ensured.
  • the air conditioner control unit 30 determines whether to execute the efficiency priority operation or the capability priority operation. Specifically, the air conditioner control unit 30 determines whether the air conditioner 100 corresponds to a predetermined driving condition (step 404).
  • Predetermined operating situations include, for example, an operation situation in which the power consumption in the compressor 201 tends to be high, for example, when a heating operation is performed at a low outside temperature, or when a start operation of the air conditioner 100 is performed. Can be mentioned.
  • the capability-first operation is performed based on the control by the air conditioner control unit 30 (step 405).
  • the opening degree of the valve 215 is controlled.
  • the fourth reference temperature T4 is a constant of the optimum temperature difference between the refrigerant flowing through the first pipe 81 and the refrigerant flowing through the second pipe 82 in the subcooler 30.
  • 4th reference temperature T4 is set in the range of 10 to 20 degreeC, for example.
  • the air conditioner control unit 30 acquires the inlet temperature Sa and the supercooling temperature Sc. And the temperature difference (DELTA) S2 which subtracted inlet temperature Sa from the supercooling temperature Sc is compared with 4th reference temperature T4.
  • the air conditioner control unit 30 controls to increase the opening degree of the supercooled pressure reducing valve 215 when the temperature difference ⁇ S2 becomes equal to or greater than the fourth reference temperature T4 ( ⁇ S2 ⁇ ⁇ T4).
  • T4 fourth reference temperature
  • the amount of the refrigerant passing through the subcooled pressure reducing valve 215 increases, and the pressure after passing through the subcooled pressure reducing valve 215 increases relatively.
  • temperature difference (DELTA) S2 becomes small and the state of temperature difference (DELTA) S2 is less than 4th reference temperature T4 ((DELTA) S2 ⁇ T4) is maintained.
  • 19 is a view showing the relationship between the opening degree of the subcooled pressure reducing valve 215, the suction amount of the refrigerant to the compressor 201, and the system efficiency of the air conditioner 100.
  • the opening degree of the subcooling decompression valve 215 is controlled so that the temperature difference ⁇ S2 is less than the fourth reference temperature T4 ( ⁇ S2 ⁇ T4). Therefore, in the capability-first operation, as shown in FIG. 19, the amount of refrigerant discharged to the injection passage 24 through the subcooling pressure reducing valve 215 and the second pipe 82 is compared with the efficiency-first operation. Increases. Then, the amount of refrigerant sucked into the intermediate pressure suction part 201c of the compressor 201 through the injection passage 24 increases.
  • the amount of the refrigerant sucked into the intermediate pressure suction unit 201c of the compressor 201 increases, whereby the refrigerant flowing through the indoor heat exchanger 104 (the outdoor heat exchanger 102 during heating operation) that functions as an evaporator. The amount is reduced.
  • the amount of the refrigerant sucked into the intermediate pressure suction unit 201c of the compressor 201 increases, whereby the refrigerant flowing through the indoor heat exchanger 104 (the outdoor heat exchanger 102 during heating operation) that functions as an evaporator. The amount is reduced. Accordingly, when performing the capability first operation, the pressure loss in the indoor heat exchanger 104 or the outdoor heat exchanger 102 is reduced.
  • the amount of refrigerant sucked into the intermediate pressure suction unit 201c of the compressor 201 increases, so that the refrigerant compressed on the low pressure side (between the suction unit and the intermediate pressure suction unit 201c) of the compressor 201 is increased.
  • the work on the low pressure side of the compressor 201 is reduced.
  • the air conditioner capability is improved by performing the capability-first operation in the air conditioner 100.
  • air conditioning can be performed more quickly to the environment desired by the user.
  • the efficiency priority operation is performed based on the control by the air conditioner control unit 30 (step 406).
  • the air conditioner control unit 30 acquires the inlet temperature Sa and the supercooling temperature Sc. And the temperature difference (DELTA) S2 which subtracted inlet temperature Sa from the supercooling temperature Sc is compared with 4th reference temperature T4.
  • the air conditioner controller 30 performs control to reduce the opening degree of the subcooled pressure reducing valve 215.
  • the refrigerant passing through the subcooled pressure reducing valve 215 is further reduced in pressure.
  • the temperature difference ⁇ S2 becomes large, and the temperature difference ⁇ S2 is maintained at the fourth reference temperature or more ( ⁇ S2 ⁇ T4).
  • the temperature difference ⁇ S2 is maintained at the fourth reference temperature or more ( ⁇ S2 ⁇ T4) so that the refrigerant flowing through the first pipe 81 and the second pipe 82 are compared with the capability-first operation.
  • the average temperature difference of the refrigerant flowing through the filter increases.
  • the heat exchange efficiency in the supercooler 80 is improved as compared with the capability priority operation, and the refrigerant flowing through the first pipe 81 can be further cooled.
  • the system efficiency in the air conditioner 1 is improved as compared with the capability priority operation.
  • the air conditioner 100 of this embodiment has the receiver 218 which stores excess refrigerant
  • the remaining refrigerant after the excess refrigerant is stored in the receiver 218 is sucked into the supercooler 80 during the cooling operation. That is, in the air conditioner 100 of the present embodiment, the flow rate of the refrigerant sucked into the first pipe 81 of the supercooler 80 during the cooling operation decreases as compared with the case where the receiver 218 is not provided. .
  • this embodiment is applicable also to the air conditioner 100 which does not have the receiver 218.
  • the air conditioner 100 preferably includes a receiver 218 from the viewpoint of performing the cooling operation and the heating operation with the optimum amount of refrigerant.
  • the 1st piping in the supercooler 80
  • the 1st piping in the supercooler 80
  • the means for making the refrigerant flowing through the first pipe 81 and the second pipe 82 into the counterflow in the subcooler 80 is not limited to this.
  • the refrigerant flowing through the first pipe 81 and the second pipe 82 may be the counter flow by switching the flow direction of the coolant using an electromagnetic switching valve or the like.
  • the air conditioner 100 of this embodiment has the refrigerant amount detection mechanism which detects the amount of refrigerant in the receiver 218 which is a refrigerant
  • the refrigerant amount detecting mechanism Z includes: a plurality of draw paths Z1 connected to a plurality of different height positions of the receiver 218; Fluid resistances Z2 such as a plurality of capillaries provided in each of the plurality of draw passages Z1; A plurality of temperature sensors (Z3) provided on a downstream side of the fluid resistance (Z2) in a plurality of draw paths (Z1); And a coolant amount detection unit Z4 that detects the coolant amount in the receiver 218 by using the coolant temperatures obtained by the plurality of temperature sensors Z3.
  • the collection pipe part Z1x (corresponding to the connection path 20b) formed in the plurality of draw paths Z1 is connected to the low pressure piping 20s of the refrigerant circuit 20.
  • coolant amount detection part Z4 is comprised by the refrigerant
  • the refrigerant amount detection unit 41 acquires the detected temperatures of the plurality of temperature sensors Z3 and detects the amount of refrigerant in the receiver 218 using the magnitude relationship of the detected temperatures of the respective temperature sensors.
  • the detection temperature of the temperature sensor Z3 of the derivation path Z1 connected to the liquid phase part among the plurality of derivation paths Z1 and the detection temperature of the temperature sensor Z3 of the derivation path Z1 connected to the gas phase part Since it is different from each other, it is possible to determine the derivation path Z1 through which the liquid refrigerant passes and the derivation path Z1 that are not. As a result, the amount of refrigerant in the receiver 218 can be detected.
  • a plurality of draw paths Z1 connected to a plurality of different height positions of the receiver 218; Fluid resistances Z2 such as a plurality of capillaries provided in each of the plurality of draw passages Z1; A plurality of solenoid valves Z5 provided on a downstream side of the fluid resistance Z2 in a plurality of draw paths Z1; A temperature sensor Z6 provided in the collecting pipe portions Z1x of the plurality of draw passages Z1; And a coolant amount detection unit Z4 that detects the coolant amount in the receiver 218 by using the coolant temperature obtained by the temperature sensor Z6.
  • the collection pipe part Z1x (corresponding to the connection path 20b) formed in the plurality of draw paths Z1 is connected to the low pressure piping 20s of the refrigerant circuit 20.
  • coolant amount detection part Z4 is comprised by the refrigerant
  • the refrigerant amount detection unit 41 controls the opening and closing of the plurality of solenoid valves Z5 to communicate the respective derivation paths, and acquires the detected temperature of the temperature sensor Z6 obtained at this time.
  • the detected temperature of the temperature sensor Z3 of the derivation furnace Z1 connected to the liquid phase part and the detected temperature of the temperature sensor Z3 of the derivation furnace Z1 connected to the gas phase part among the derivation furnaces Z1 communicated. Since it is different from each other, it is possible to determine the derivation path Z1 through which the liquid refrigerant passes and the derivation path Z1 that are not. As a result, the amount of refrigerant in the receiver 218 can be detected.
  • the air conditioner 100 of 7th Embodiment is the outdoor unit 10 installed in the outdoors of a building, as shown in FIG.
  • An indoor unit 11 installed in the building;
  • a refrigerant circuit 20 configured to connect the outdoor unit 100 and the indoor unit 11 by a refrigerant pipe 12;
  • an air conditioner controller 30 which controls the outdoor unit 100 and the indoor unit 11 and performs air conditioning.
  • the refrigerant circuit 20 connects the compressor 201, the four-way switching valve 202, the condenser (outdoor heat exchanger) 203, the first expansion valve 204, and the evaporator (indoor heat exchanger) 205. Will be configured.
  • the compressor 201, the four-way switching valve 202, the condenser 203, and the first expansion valve 204 are provided inside the outdoor unit 10, and the evaporator 205 is the indoor unit 11.
  • the configuration is installed inside.
  • the outdoor unit 10 compresses and cools the refrigerant vaporized by the evaporator 205 in the indoor unit 11.
  • the indoor unit 11 performs heat exchange between the indoor air and the refrigerant, cools the indoor air, and vaporizes the refrigerant.
  • the compressor 201 compresses the vaporized refrigerant gas introduced at the low pressure side inlet to generate a high temperature and high pressure compressed gas.
  • the compressor 201 is driven by a motor capable of controlling the rotational speed, and the compression capacity changes according to the rotational speed of the motor. That is, when the rotation speed of the motor is high, the compression capacity is high, and when the rotation speed of the motor is slow, the compression capacity is low.
  • the compressor 201 controls the rotation speed of a motor by the compressor control part 301 mentioned later.
  • the compressor 201 then sends the generated high temperature and high pressure compressed gas to the condenser 203 through the four-way switching valve 202.
  • the condenser 203 condenses the compressed gas generated by the compressor 201 through the heat exchanger.
  • the condenser 203 performs heat exchange between the hot compressed gas and the cold outdoor air and generates a liquid refrigerant.
  • the condenser 203 then delivers the liquid refrigerant generated by the heat exchange to the first expansion valve 204.
  • the 1st expansion valve 204 is a valve which adjusts the flow volume which flows there through opening and closing.
  • the first expansion valve 204 is opened and closed by the first expansion valve control unit 302.
  • the liquid refrigerant expands and vaporizes into a refrigerant gas.
  • This refrigerant gas is lower than the liquid refrigerant before flowing into the first expansion valve 204.
  • the 1st expansion valve 204 controls the opening degree (opening degree) which shows the opening degree according to the signal output from the 1st expansion valve control part 302 mentioned later.
  • the first expansion valve 204 then sends the refrigerant gas to the evaporator 205.
  • the evaporator 205 performs heat exchange between the refrigerant gas generated in the first expansion valve 204 and the high temperature indoor air.
  • the evaporator 205 vaporizes a portion of the refrigerant while cooling the indoor air.
  • the gas-liquid two-phase refrigerant generated in the evaporator 205 is sent to the compressor 201 through the four-way switching valve 202.
  • the refrigerant pipe 12 has a first refrigerant pipe 121 that is a gas side refrigerant pipe and a second refrigerant pipe 122 that is a liquid side refrigerant pipe.
  • the first refrigerant pipe 121 connects the evaporator 205 of the indoor unit 11 and the four-way valve 202 of the outdoor unit 10.
  • the second refrigerant pipe 122 connects the condenser 203 (first expansion valve 204) of the outdoor unit 10 and the evaporator 205 of the indoor unit.
  • the outdoor unit 10 is provided with an outdoor unit fan 10F
  • the indoor unit 11 is provided with an indoor unit fan 11F.
  • the outdoor unit fan 10F is blown to the condenser 203 to cool the refrigerant.
  • the outdoor unit fan 10F receives the rotation speed from the outdoor unit fan control unit 303 described later.
  • the indoor unit fan 11F cools the indoor air in the evaporator 205 and blows the cooled air into the room.
  • the indoor unit fan 11F is controlled by the rotation speed from the indoor unit fan control part 304 mentioned later.
  • the refrigerant circuit 20 is provided with a discharge temperature sensor 206, a suction temperature sensor 207, an outlet temperature sensor 208, a liquid pipe temperature sensor 209, a high pressure sensor 210, and a low pressure sensor 211. It is.
  • the discharge temperature sensor 206 detects the refrigerant temperature (discharge temperature Td) at the high pressure side of the compressor 201, and outputs a signal indicating the detected discharge temperature to the A / D conversion unit 50.
  • the A / D conversion part 50 may be provided in the air conditioner control part 30, and may be provided in the refrigerant
  • the suction temperature sensor 207 detects the refrigerant temperature (suction temperature Tsuc) at the low pressure side of the compressor 201, and outputs a signal indicating the detected suction temperature to the A / D converter 50.
  • the outlet temperature sensor 208 detects the refrigerant temperature (outlet temperature Tcond (first refrigerant temperature)) at the outlet of the condenser 203 and outputs a signal indicating the detected outlet temperature to the A / D converter 50. do.
  • the outlet temperature sensor 208 is provided in the heat transfer pipe on the outlet side of the condenser 203.
  • the liquid tube temperature sensor 209 detects the refrigerant temperature (liquid tube temperature Tsub (second refrigerant temperature)) at the downstream side of the first expansion valve 204 provided on the outlet side of the condenser 203, and detects the detected liquid tube temperature.
  • the A / D converter 50 outputs a signal indicating.
  • the liquid pipe temperature sensor 209 is provided in the liquid pipe 212.
  • the liquid pipe 212 is a pipe connecting the outlet of the condenser 203 and the inlet of the evaporator 205.
  • the high pressure sensor 210 detects the pressure on the high pressure side (high pressure side pressure Pd) of the compressor 201 and outputs a signal indicating the detected high pressure side pressure to the A / D converter 50.
  • the low pressure sensor 211 detects the low pressure side (low pressure side pressure Ps) of the compressor 201, and outputs a signal indicating the detected low pressure side pressure to the A / D converter 50.
  • the air conditioner control unit 30 controls each component of the air conditioner 100.
  • the components of the air conditioner control part 30, the indoor unit 11, and the outdoor unit 10 are connected, the description about the connection is abbreviate
  • the detail of the air conditioner control part 30 is mentioned later, referring FIG.
  • an auxiliary unit (apart from the air conditioner 100). 13) is installed in the refrigerant pipe 12 (the first refrigerant pipe 121 and the second refrigerant pipe 122) of the air conditioner 100 of the present embodiment.
  • This auxiliary unit 13 is attached to the refrigerant pipe 12 in a detachable manner.
  • the pipe diameter of the inner pipe (the first inner pipe 131 and the second inner pipe 132) of the auxiliary unit 13 connected to the refrigerant pipe 12 is larger than the pipe diameter of the refrigerant pipe 12.
  • This auxiliary unit 13 includes: a first trapping device 13a and a second trapping device 13b for trapping impurities in the coolant flowing through the coolant pipe 12; And a coolant amount detecting device 40 that detects the coolant amount in the coolant circuit 20.
  • the first capture device 13a is provided on the first internal pipe 131 detachably attached to the first refrigerant pipe 121, and the first branch pipe that branches the first internal pipe 131 into two pieces. 13a1 and 2nd branch piping 13a2, the connection piping 13a3 which connects the 1st branch piping 13a1, and the 2nd branch piping 13a2, and the connection piping 13a3, are provided in the connection piping 13a3. Trapping member (13a4) for trapping a predetermined substance of the refrigerant flowing through). On the other hand, the 1st branch piping 13a1 and the 2nd branch piping 13a2 are joined on the downstream side.
  • acquisition apparatus 13b is provided on the 2nd internal piping 132 detachably attached to the 2nd refrigerant pipe 122, and the 1st branch piping which branches into 2 from the 2nd internal piping 132 is carried out.
  • 13b1 and the 2nd branch piping 13b2, the connection piping 13b3 which connects the 1st branch piping 13b1, and the 2nd branch piping 13b2, and the connection piping 13b3, are provided in the connection piping 13b3.
  • the 1st branch piping 13b1 and the 2nd branch piping 13b2 have joined on the downstream side.
  • a refrigerator oil, sludge, or the like used for a compressor of an existing outdoor unit is captured.
  • a filter is used.
  • the coolant amount detecting device 40 detects the amount of the coolant in the coolant circuit in the air conditioner 100.
  • coolant amount detection apparatus 40 and each component of the indoor unit 11 and the outdoor unit 10 are connected, the description about the connection is abbreviate
  • coolant amount detection apparatus 40 is mentioned later, referring FIG.
  • the 24 is a schematic block diagram showing the configuration of the refrigerant amount detecting device 40 according to the present embodiment.
  • the A / D conversion unit 50 performs analog-to-digital conversion on the signals input from the sensors 206 to 211, and outputs the converted signals to the refrigerant amount detection unit 41.
  • the input unit 60 outputs, to the control unit 411, detection start information or the like indicating that the detection of the amount of refrigerant is started based on the user's operation.
  • the display unit 70 is an indicator for displaying information such as a digital display panel by an LED, for example, and displays information on the refrigerant amount ratio input from the refrigerant amount average calculation unit 414 described later.
  • the refrigerant amount detecting device 40 determines the refrigerant state, the refrigerant amount detecting unit 41 for calculating the refrigerant amount ratio, the storage unit 42 for storing parameters used when calculating the refrigerant amount ratio, and the refrigerant amount ratio previously calculated. It is provided.
  • the coolant amount detection unit 41 calculates the coolant amount ratio based on the temperature and pressure information input from the A / D conversion unit 50, and outputs the calculated coolant amount ratio information to the display unit 70.
  • the refrigerant amount ratio is actually a value obtained by dividing the amount of the refrigerant in the air conditioner 100 by the amount of the refrigerant defined as a specification in the air conditioner 100 (“actual refrigerant amount” / “regulated refrigerant amount”).
  • the coolant amount detecting unit 41 includes a control unit 411, a coolant state obtaining unit 412, a coolant amount calculating unit 413, and a coolant amount average calculating unit 414.
  • the control part 411 inputs from the input part 60 the detection start information which shows the detection of the refrigerant
  • the air conditioner control unit 30, the compressor control unit 301 for controlling the rotational speed of the motor of the compressor 201 based on the command received from the control unit 411;
  • a first expansion valve control unit 302 for controlling the opening degree of the first expansion valve 204;
  • the outdoor unit fan control part 303 which controls the rotation speed of the outdoor unit fan 10F, and the indoor unit fan control part 304 which controls the rotation speed of the indoor unit fan 11F are provided.
  • the air conditioner control unit 30 controls the superheat degree SH of the evaporator 205 provided in the indoor unit 11 to be constant (for example, 3 K).
  • the superheat degree is obtained by subtracting the saturation temperature at the evaporation temperature from the refrigerant temperature at the outlet of the evaporator 205, that is, the saturation temperature at the low pressure side of the compressor 201 from the refrigerant temperature at the low pressure side of the compressor 201.
  • the first expansion valve control unit 302 controls the superheat degree of the evaporator 205 to be constant by adjusting the opening degree of the first expansion valve 204.
  • control unit 411 outputs a command to the compressor control unit 301 to drive the rotational speed of the motor of the compressor 201 at a predetermined rotational speed (for example, 65 Hz).
  • the compressor controller 301 receives a command from the controller 411 to drive the rotational speed of the motor of the compressor 201 at a predetermined rotational speed (for example, 65 Hz), and sets the rotational speed of the motor to 65. Let drive at Hz.
  • the control unit 411 outputs a command to the outdoor unit fan control unit 303 to operate the outdoor unit fan 10F at a constant speed.
  • the outdoor unit fan control unit 303 causes the outdoor unit fan 10F to operate at a constant speed.
  • the control unit 411 outputs a command to the indoor unit fan control unit 304 to control the indoor unit fan 11F at constant speed.
  • the indoor unit fan control unit 304 causes the indoor unit fan 11F to operate at a constant speed.
  • the control unit 411 also outputs a command to the refrigerant state obtaining unit 412 and the refrigerant amount calculating unit 413 to calculate the refrigerant amount ratio.
  • the control unit 411 inputs an average value calculation end signal indicating that the calculation of the average value of the coolant amount ratios is completed from the coolant amount average calculation unit 414.
  • the control unit 411 outputs the operation end signal to the air conditioner control unit 30 when the average value calculation end signal is input from the coolant amount average calculation unit 414.
  • the refrigerant state acquisition unit 412 determines whether the refrigerant state at the outlet of the condenser 203 is in a supercooled state or Acquire whether the liquid is in the two-phase state.
  • the refrigerant state acquisition unit 412 determines either the subcooled state or the gas-liquid two-phase state by using the outlet temperature Tcond indicated by the outlet temperature signal and the liquid tube temperature Tsub indicated by the liquid tube temperature signal as parameters. The determination signal is then output to the refrigerant amount calculating unit 413.
  • the refrigerant amount calculating unit 413 calculates the refrigerant amount ratio in the air conditioner 100 using different calculation equations according to the refrigerant state acquired by the refrigerant state obtaining unit 412.
  • the refrigerant amount calculation unit 413 calculates the refrigerant amount ratio RA using the subcooled calculation formula in the supercooled state, and calculates the refrigerant amount ratio RA using the gas-liquid two-phase state calculation formula in the case of the gas-liquid two-phase state. do.
  • RA a1 + b1 ⁇ Pd + c1 ⁇ Ps + d1 ⁇ Tsub + e1 ⁇ Td
  • the constants a1, b1, c1, d1, e1 are values obtained in advance by multiple regression calculations using actual data showing the relationship between Pd, Ps, Tsub, Td and RA in the supercooled state.
  • the constants a1, b1, c1, d1, e1 are recorded in the calculation parameter storage unit 421 set in the storage unit 42.
  • RA a2 + b2 ⁇ Pd + c2 ⁇ Ps + d2 ⁇ Tsub + e2 ⁇ Td
  • the constants a2, b2, c2, d2, and e2 are values obtained in advance by multiple regression calculations using actual data showing the relationship between Pd, Ps, Tsub, Td and RA in the gas-liquid two-phase state.
  • constants a2, b2, c2, d2, and e2 are recorded in the calculation parameter storage unit 421.
  • the refrigerant amount calculating unit 413 reads the constants a1, b1, c1, d1, e1 or the constants a2, b2, c2, d2, e2 in accordance with the refrigerant state acquired by the refrigerant state obtaining unit 412.
  • the refrigerant amount calculation unit 413 also uses the discharge pressure Pd indicated by the discharge pressure signal, the suction pressure Ps indicated by the suction pressure signal, the liquid tube temperature Tsub indicated by the liquid tube temperature signal, and the discharge temperature Td indicated by the discharge temperature signal.
  • Refrigerant amount ratio RA is calculated by the calculation formula according to the state.
  • the coolant amount calculation unit 413 records the coolant amount ratio data indicating the calculated coolant amount ratio RA in the coolant amount storage unit 422 set in the storage unit 42.
  • the refrigerant amount average calculation unit 414 reads the refrigerant amount ratio RA calculated within a predetermined time (for example, the past 5 minutes) from the refrigerant amount calculating unit 413.
  • the coolant amount average calculation unit 414 calculates the average value of the read coolant amount ratio RA, and outputs the average value of the calculated coolant amount ratio RA to the display unit 70.
  • the coolant amount average calculation unit 414 outputs to the control unit 411 a calculation end signal indicating that the calculation of the average value of the coolant amount ratio RA is finished.
  • the refrigerant amount detection of the said air conditioner 100 can be detected.
  • the equation for the supercooled state is used, and when the refrigerant state is the gas-liquid two-phase state, the equation for the gas-liquid two-phase state is used to relate to the refrigerant state at the outlet of the condenser 203.
  • the amount of refrigerant can be detected with high accuracy. Therefore, the refrigerant amount ratio can be detected with high accuracy without being influenced by the installation situation such as when a long pipe is used or when there is a large height difference between the outdoor unit 10 and the indoor unit 11.
  • control part 411 fixes the opening degree of the 2nd expansion valve 215 to a predetermined value.
  • the degree of cooling of the liquid refrigerant in the liquid pipe 212 can be made constant, and the refrigerant amount ratio can be detected with high accuracy.
  • control part 411 fixes the compression capacity of the compressor 201 to a predetermined value. Accordingly, in the present embodiment, the state of the refrigerant at the inlet and the outlet of the compressor 201 can be made constant, and the refrigerant amount ratio can be detected with high accuracy.
  • control part 411 fixes the opening degree of the 1st expansion valve 204 to a predetermined value. Accordingly, in this embodiment, the degree of cooling at the first expansion valve 204 can be made constant, and the refrigerant amount ratio can be detected with high accuracy.
  • control part 411 fixes the rotational speed of the outdoor unit fan 10F and the rotational speed of the indoor unit fan 11F to a predetermined value. Accordingly, in the present embodiment, the degree of heat exchange in the condenser 203 can be made constant, the degree of heat exchange in the evaporator 205 can be made constant, and the refrigerant amount ratio can be detected with high accuracy.
  • the auxiliary unit 13 is provided separately from the air conditioner 100 and is detachably attached to the first refrigerant pipe 121 and the second refrigerant pipe 122. Since the unit 13 is versatile and the auxiliary unit 13 has a first capture device 13a and a second capture device 13b for capturing the refrigerant oil, sludge, oxidation scale, etc. in the refrigerant, The one auxiliary unit 13 can eliminate the inconvenience caused during the refrigerant exchange of the plurality of outdoor units 10, and it is not necessary to manufacture the outdoor unit dedicated to the refrigerant exchange, and the deterioration of the productivity can be prevented. In this case, when the capturing members 13a4 and 13b4 are replaced, the auxiliary unit 13 can be detached from the refrigerant pipe 12 and easily maintained.
  • the first branch in the second branch pipes 13a2 and 13b2 Even in the case where the pipes are directed to the pipes 13a1 and 13b1, the direction in which the connection pipes 13a3 and 13b3 flow can be made the same. Since the capturing members 13a4 and 13b4 are provided in the connection pipes 13a3 and 13b3, the flow direction of the refrigerant flowing through the capturing members 13a4 and 13b4 is made constant so that the capturing members 13a4 and 13b4 are captured. The flow out of the refrigerant pipe 12 can be prevented again.
  • the amount of the refrigerant in the air conditioner 100 can be accurately measured, but in the present embodiment, when the refrigerant is replenished, the refrigerant amount ratio is calculated at the start of charging the refrigerant and the refrigerant amount ratio is 100. When the percentage is reached, the display prompting the operation of the refrigerant injection valve 216 is performed for the person performing the operation.
  • 25 is a schematic block diagram showing the configuration of the air conditioner 100 and the auxiliary unit 13 according to the eighth embodiment.
  • the auxiliary unit 13 of the present embodiment further includes a refrigerant supply device including a refrigerant injection valve (charge valve) 216 and a refrigerant storage container 217.
  • This refrigerant supply device is connected to the second internal pipe 132 to supply the refrigerant to the second internal pipe 132.
  • the coolant injection valve 216 is a valve that is opened and closed by a person who performs an operation to replenish the coolant in accordance with an instruction shown on the display unit 70.
  • the refrigerant storage container 217 is a container for storing refrigerant to be replenished.
  • 26 is a schematic block diagram showing the configuration of the refrigerant amount detecting device 40 according to the present embodiment.
  • the configuration of the refrigerant amount detecting device 40 according to the present embodiment is the seventh except that the refrigerant amount determining unit 415 is newly added, and that the new functions are added to the refrigerant amount average calculating unit 414 and the control unit 411. It is the same as the structure (FIG. 24) of the refrigerant
  • the coolant amount average calculation unit 414 reads the coolant amount ratio calculated from the coolant amount storage unit 422 within a predetermined time (for example, past 5 minutes). The coolant amount average calculating unit 414 calculates the moving average value of the read coolant amount ratio and outputs the calculated moving average value to the coolant amount determining unit 415.
  • the coolant amount determining unit 415 determines whether or not the moving average value of the coolant amount ratio exceeds 100% based on the moving average value of the coolant amount ratio input from the coolant amount average calculating unit 414.
  • the coolant amount determination unit 415 outputs a charge end signal to the control unit 411 when it is determined that the moving average value of the coolant amount ratio exceeds 100%.
  • the control unit 411 “opens” the refrigerant injection valve 216 to the display unit 70 based on the input of the detection start information from the input unit 60 and the input of the charge end signal from the refrigerant amount determination unit 415. Or “close” outputs a command to perform an indication instructing the person performing the operation.
  • coolant amount detection apparatus 40 of this embodiment is the same as the operation
  • the air conditioner 100 includes a coolant injection valve 216 for filling the air conditioner 100 with the refrigerant, and the refrigerant is injected in accordance with the determination of the refrigerant amount determining unit 415. Instructions for closing the valve 216 are displayed on the display unit 70. Accordingly, in the present embodiment, when the detection of the refrigerant amount ratio is started to the person performing the operation, the refrigerant injection valve 216 is opened, and when the refrigerant amount ratio becomes 100% or more, the refrigerant injection valve 216 is opened. Since it is urged to close, a refrigerant
  • the refrigerant injection valve 216 is opened and closed by a person performing an operation, but the control unit 411 controls the refrigerant injection valve 216 through the air conditioner control unit 30. It may be opened or closed automatically.
  • the reliability protection of the compressor 201 continues, and when it enters the protection zone (the minimum physical quantity at which each measured value of discharge temperature, overcurrent, high pressure and low pressure causes a predetermined reaction). (If exceeded), the operation of the air conditioner 100 may be stopped and “detection failure” may be displayed on the display unit 70.
  • the auxiliary unit 13 of the present embodiment includes a refrigerant storage unit that stores excess refrigerant of the refrigerant circuit 20.
  • the auxiliary unit 13 includes a receiver 218 as an example of a refrigerant storage unit for storing excess refrigerant; And a receiver pressure reducing valve 219 as an example of a flow rate adjusting unit that reduces the refrigerant flowing out from the receiver 218 and adjusts the flow rate of the refrigerant.
  • the opening degree is controlled by the control by the air conditioner control unit 30, and the amount and pressure of the refrigerant passing through the receiver pressure reducing valve 219 are adjusted.
  • the branch path 20a branches off from the pipe (second internal pipe 132) between the condenser (outdoor heat exchanger) 102 and the first expansion valve 103 in the refrigerant circuit 20.
  • the receiver 218 described above is connected to the end of the branch path 20a.
  • the receiver pressure reducing valve 219 mentioned above is provided in the branch path 20a.
  • the receiver 218 of this embodiment is formed of the material which has thermal conductivity, such as iron.
  • the receiver 218 has a cylindrical shape, for example, and is installed vertically in the outdoor unit 10.
  • the receiver 218 is provided with the connection part in which the terminal of the branch path 20a is connected in the bottom face located in a perpendicular lower part.
  • coolant flows in and out from the connection part provided in a perpendicular lower part.
  • the receiver 218 stores the excess refrigerant during the cooling operation and the defrosting operation. In addition, the receiver 218 supplies the refrigerant stored in the cooling operation or the defrosting operation to the refrigerant circuit 20 in the heating operation. In other words, in the air conditioner 100 of this embodiment, the amount of refrigerant circulating through the refrigerant circuit 20 is adjusted by the receiver 218.
  • the volume of the receiver 218 be set to be equal to the volume converted into the supercooled liquid state by subtracting the optimum refrigerant amount in the heating operation from the optimum refrigerant amount in the cooling operation.
  • the optimum amount of refrigerant means the amount of refrigerant having the highest system efficiency of heating operation and cooling operation in the air conditioner 100.
  • the volume of the receiver 218 is set as described above, the excess refrigerant is accommodated in the receiver 218 during the cooling operation, so that the cooling operation is performed at the optimum amount of refrigerant. In addition, the enlargement of the receiver 218 is suppressed.
  • the auxiliary unit 13 of this embodiment is provided with the refrigerant
  • the refrigerant amount detecting mechanism Z includes: a plurality of draw paths Z1 connected to a plurality of different height positions of the receiver 218; Fluid resistances Z2 such as a plurality of capillaries provided in each of the plurality of draw passages Z1; A plurality of temperature sensors (Z3) provided on a downstream side of the fluid resistance (Z2) in a plurality of draw paths (Z1); And a coolant amount detection unit Z4 that detects the coolant amount in the receiver 218 by using the coolant temperatures obtained by the plurality of temperature sensors Z3.
  • connection opening / closing valve 220 is provided, and the opening / closing state is replaced by the connection opening / closing valve 220.
  • coolant amount detection part Z4 is comprised by the refrigerant
  • the refrigerant amount detection unit 41 acquires the detected temperatures of the plurality of temperature sensors Z3 and detects the amount of refrigerant in the receiver 218 using the magnitude relationship of the detected temperatures of the respective temperature sensors.
  • the detection temperature of the temperature sensor Z3 of the derivation path Z1 connected to the liquid phase part among the plurality of derivation paths Z1 and the detection temperature of the temperature sensor Z3 of the derivation path Z1 connected to the gas phase part Since it is different from each other, it is possible to determine the derivation path Z1 through which the liquid refrigerant passes and the derivation path Z1 that are not. As a result, the amount of refrigerant in the receiver 218 can be detected.
  • the amount of refrigerant of the air conditioner 100 can be detected by separately attaching to the existing air conditioner 100.
  • the coolant amount detection mechanism Z for detecting the coolant amount in the coolant storage unit 218 is provided, the coolant amount in the coolant storage unit 218, regardless of the coolant state at the outlet of the outdoor heat exchanger 203,
  • the amount of refrigerant in the air conditioner 100 (the refrigerant circuit 20) can be detected with high accuracy.
  • the air conditioner 1 which has the receiver pressure reduction valve 219 was demonstrated as an example of a flow volume adjusting means.
  • the flow rate adjusting means is not limited to the pressure reducing valve.
  • an on-off valve, a flow control valve, or the like may be used as the flow rate adjusting means.
  • the flow rate of the refrigerant discharged from the receiver 218 to the refrigerant circuit 20 through the branch path 20a and the speed of the refrigerant can be adjusted.
  • the refrigerant amount detection mechanism Z may be configured as shown in FIG. 22 of the sixth embodiment.
  • the auxiliary unit 13 has a coolant amount detecting device 40, detects the coolant amount in the coolant circuit 20 by a calculation formula, and uses the coolant amount detecting mechanism Z in the coolant storage unit.
  • the auxiliary unit may be a structure which has only the coolant amount detection mechanism Z, without detecting the amount of coolant in the coolant circuit 20 using a calculation formula.
  • the auxiliary unit 13 of the present embodiment includes a gas side refrigerant pipe (gas side internal pipe 131 which is detachably connected to the first refrigerant pipe 121; liquid side refrigerant pipe (second).
  • the gas side internal pipe 131 is connected between the first refrigerant pipe 121 to connect the evaporator 205 of the indoor unit 11 and the four-way valve 202 of the outdoor unit 10.
  • the liquid side internal pipe 132 is connected between the second refrigerant pipes 122 to connect the condenser 203 (first expansion valve 204) of the outdoor unit 10 and the evaporator 205 of the indoor unit. .
  • the auxiliary heat exchanger 134 of this embodiment exchanges heat between the heater 13H which is another heat source, and the refrigerant which flows through the bypass pipe 133. As shown in FIG. On the other hand, the heater 13H is provided in the auxiliary unit 13.
  • coolant are shown in FIG.
  • a heater capable of autonomous temperature control for example, a PTC heater
  • the temperature can be autonomously maintained at a temperature at which the refrigerant does not deteriorate, for example, 150 deg. Therefore, it is possible to construct a simple heat exchanger such as winding the heater 13H directly on the bypass pipe 133 (refrigerant pipe).
  • a heater capable of autonomous temperature control for example, a PTC heater
  • the heater which cannot autonomously control temperature as a heater 13H for example, a heat transfer heater
  • it is between the said heat transfer heater 13H and the bypass pipe 133 (refrigerant piping).
  • the heat pipe 134p is provided in the structure to heat transfer, so that heating above a predetermined temperature is not possible.
  • the bypass pipe 133 is provided with a flow rate adjustment valve (additional expansion valve) 135 for adjusting the amount of refrigerant flowing through the bypass pipe 133 from the liquid pipe side to the gas pipe side.
  • a flow rate adjustment valve additional expansion valve
  • the opening degree (opening degree) of this flow regulating valve 135 is controlled by the auxiliary unit control part 13C.
  • an inlet temperature sensor 136 is provided on the inlet side of the auxiliary heat exchanger 134 to detect the refrigerant temperature flowing into the auxiliary heat exchanger 134.
  • the inlet temperature sensor 136 outputs a signal indicating the detected inlet temperature to the auxiliary unit controller 13C.
  • the outlet temperature sensor 137 which detects the refrigerant temperature which flowed out from the auxiliary heat exchanger 133 is provided in the exit side of the auxiliary heat exchanger 134 in the bypass pipe 133. On the other hand, the outlet temperature sensor 137 outputs a signal indicating the detected outlet temperature to the auxiliary unit controller 13C.
  • the auxiliary unit control unit 13C In normal cooling operation, the auxiliary unit control unit 13C outputs a closing signal to the flow regulating valve 135, and makes the flow regulating valve 135 closed. In addition, the auxiliary unit control unit 13C turns off the heater 13H.
  • the auxiliary unit control unit 13C turns the heater 13H ON and outputs an open signal to the flow regulating valve 135, and the flow regulating valve 135 is opened. do.
  • the auxiliary unit control unit 13C acquires the inlet temperature from the inlet temperature sensor 136, obtains the outlet temperature from the outlet temperature sensor 137, and controls the flow rate adjusting valve by the temperature difference SH between the inlet temperature and the outlet temperature. The opening degree of 135 is controlled.
  • auxiliary unit 13 of this embodiment comprised in this way, between the heater 13H which is another heat source in the bypass pipe 133 connected to the gas side internal piping 131 and the liquid side internal piping 132, Since the auxiliary heat exchanger 134 which performs heat exchange is provided, a part of the liquid refrigerant flowing through the liquid side inner pipe 132 can be heated by the auxiliary heat exchanger 134 and supplied to the gas side inner pipe 131. . Accordingly, the amount of refrigerant supplied to the indoor heat exchanger 205 and the outdoor heat exchanger 203 can be adjusted to adjust the heat exchange amount of the outdoor heat exchanger 203 and the heat exchange amount of the indoor heat exchanger 205. have.
  • the heat exchange amount of the outdoor heat exchanger 203 and the heat exchange amount of the indoor heat exchanger 205 in the cooling operation at the low outside temperature can be adjusted, and the cooling operation at the low outside temperature can be performed without a problem.
  • the function can be given to the existing air conditioner 100 only by attaching the auxiliary unit 13 to the existing air conditioner 100.
  • the heat pump 14 is used, or as shown in FIG. 32, externally generated.
  • the heat transfer system 15 which conveys the completed heat may be used.
  • the high temperature refrigerant is supplied to the auxiliary heat exchanger 135 by the heat pump 14 during the cooling operation at low outside temperature. Accordingly, in the auxiliary heat exchanger 135, heat exchange is performed between the high temperature refrigerant of the heat pump 14 and the refrigerant flowing through the bypass pipe 133.
  • the auxiliary unit control unit 13C acquires the inlet temperature from the inlet temperature sensor 136, obtains the outlet temperature from the outlet temperature sensor 137, and controls the flow rate regulating valve (B) by the temperature difference SH between the inlet temperature and the outlet temperature. 135) to control the opening degree.
  • the high temperature refrigerant is supplied to the auxiliary heat exchanger 135 by the heat transfer system 15 during the cooling operation at low outside temperature.
  • the heat transfer system 15 conveys renewable energy, such as geothermal heat and solar heat, for example, and has the distribution pump 151 for distributing a heat medium.
  • the auxiliary unit control part 13C turns ON the distribution pump 151, and the high temperature refrigerant
  • auxiliary unit control unit 13C acquires the inlet temperature from the inlet temperature sensor 136, obtains the outlet temperature from the outlet temperature sensor 137, and controls the flow rate adjustment valve (B) by the temperature difference SH between the inlet temperature and the outlet temperature. 135) to control the opening degree.
  • the auxiliary unit 13 of the present embodiment includes a gas side refrigerant pipe (gas side internal pipe 131 which is detachably connected to the first refrigerant pipe 121; liquid side refrigerant pipe (second).
  • a first connecting pipe 13h1 for allowing refrigerant to flow between the liquid-side inner pipe 132, and a second connecting pipe 13h2 branched from the first connecting pipe 13h1 and connected to the gas-side inner pipe 131.
  • the gas side internal pipe 131 is connected between the first refrigerant pipe 121 to connect the evaporator 205 of the indoor unit 11 and the four-way valve 202 of the outdoor unit 10.
  • the liquid side internal pipe 132 is connected between the second refrigerant pipes 122 to connect the condenser 203 (first expansion valve 204) of the outdoor unit 10 and the evaporator 205 of the indoor unit. .
  • the receiver 138 is formed of a material having thermal conductivity such as iron. And the receiver 138 is heated by the heating part 13H.
  • This heating part 13H is a heater provided in the outer surface of the receiver 138, for example.
  • the receiver 138 is provided with a detection unit for detecting the presence or absence of the liquid refrigerant therein.
  • This detection part has the upper temperature sensor 13T1 provided in the upper part of the receiver 138, and the lower sensor 13T2 provided in the lower part of the receiver 138. As shown in FIG.
  • the auxiliary unit control unit 13C which has acquired the detection signals from the upper temperature sensor 13T1 and the lower temperature sensor 13T2, determines that there is no liquid refrigerant inside the receiver 138 when such a temperature difference is lower than a predetermined temperature. do.
  • the 1st connection pipe 13h1 is connected to the bottom face located in the perpendicular lower part of the receiver 138. As shown in FIG. That is, in the receiver 13h1 of this embodiment, refrigerant flows in and out from the 1st connection pipe 13h1 provided in a perpendicular lower part. As a result, the refrigerant in the receiver 138 flows out into the liquid unless it is almost gasified. Moreover, the liquid side open / close valve 139a which is a solenoid valve is provided in the 1st connection pipe 13h1. Opening and closing of this liquid side opening / closing valve 139a is controlled by the auxiliary unit control unit 13C.
  • the second connection pipe 13h2 is provided with a flow rate adjustment valve (additional expansion valve) 13V for adjusting the amount of refrigerant flowing through the second connection pipe 13h2 from the liquid pipe side to the gas pipe side.
  • the opening degree (opening degree) of this flow regulating valve 13V is controlled by the auxiliary unit control part 13C.
  • the gas side opening / closing valve 139b which is a solenoid valve is provided in the downstream of the flow regulating valve 13V of 2nd connection pipe 13h2. The opening / closing of this gas side opening / closing valve 139b is controlled by the auxiliary unit control unit 13C.
  • the switching mechanism 139 is comprised by the liquid side on / off valve 139a provided in the said 1st connection pipe 13h1, and the gas side on / off valve 139b provided in the said 2nd connection pipe 13h2.
  • the auxiliary unit control unit 13C outputs an open signal to the liquid side open / close valve 139a, and makes the liquid side open / close valve 139a open.
  • the auxiliary unit control unit 13C outputs a closing signal to the flow regulating valve 13V and the gas side opening / closing valve 139b to bring the flow regulating valve 13V and the gas side opening and closing valve 139b into a closed state.
  • the auxiliary unit control unit 13C turns off the heater 13H.
  • the air conditioner 100 performs the cooling operation so that a part of the liquid refrigerant flowing through the liquid side inner pipe 132 from the outdoor unit 10 side to the indoor unit 11 side is the first connection pipe 13h1. Gathered in the receiver 138 after passing through, it is possible to maintain an appropriate amount of refrigerant.
  • the auxiliary unit control part 13C outputs a close signal to the liquid side open / close valve 139a, and makes the liquid side open / close valve 139a closed.
  • the auxiliary unit control unit 13C turns on the heater 13H.
  • the auxiliary unit control unit 13C outputs an open signal to the flow rate control valve 13V and the gas side open / close valve 139b to bring the flow rate control valve 13V and the gas side open / close valve 139b into the open state.
  • the liquid refrigerant in the receiver 138 is supplied from the second connection pipe 13h2 in a cycle. Accordingly, the refrigerant stored in the receiver 138 can be collected in the outdoor side heat exchanger 203 to lower the condensation capacity of the outdoor side heat exchanger 203.
  • the auxiliary unit control unit 13C controls the opening degree of the flow rate control valve 13V based on the suction superheat degree of the outdoor unit 10 (compressor 201). In addition, the auxiliary unit control unit 13C acquires the detection temperatures of the upper temperature sensor 13T1 and the lower temperature sensor 13T2 of the receiver 138, and the receiver 138 when these temperature differences become less than or equal to a predetermined temperature. It is determined that the refrigerant inside has been gasified and the liquid refrigerant has been supplied almost in a cycle. Then, the auxiliary unit control unit 13C turns off the heater 13H, and outputs a closing signal to the flow regulating valve 13V and the gas side opening / closing valve 139b, and the flow regulating valve 13V. And the gas side opening / closing valve 139b are closed.
  • an opening signal is output to the liquid side on / off valve 139a, and the liquid side on / off valve 139a is opened.
  • the auxiliary unit control part 13C outputs a close signal to the flow regulating valve 13V and the gas side opening / closing valve 139b, and makes the flow regulating valve 13V and the gas side opening / closing valve 139b close.
  • the auxiliary unit control unit 13C turns off the heater 13H.
  • the air conditioner 100 performs the cooling operation so that a part of the liquid refrigerant flowing through the liquid side inner pipe 132 from the indoor unit 11 side to the outdoor unit 10 side is the first connection pipe 13h1. Gathered in the receiver 138 after passing through, it is possible to maintain an appropriate amount of refrigerant.
  • coolant stored in the receiver 138 at the time of a cooling and heating operation is heated with the heater 13H at the time of cooling operation at the low outside temperature, and the 2nd connection pipe ( Since it is supplied to the gas side inner pipe 131 via 13h2), during the cooling operation at low outside temperature, liquid refrigerant can be collected in the outdoor heat exchanger 203 and the condensation of the outdoor heat exchanger 203 can be achieved. It can lower performance. Accordingly, the heat exchange amount of the outdoor heat exchanger 203 and the heat exchange amount of the indoor heat exchanger 205 in the cooling operation at the low outside temperature can be adjusted, and the cooling operation at the low outside temperature can be performed without problems. Can be done. In addition, the function can be given to the existing air conditioner 100 only by attaching the auxiliary unit 13 to the existing air conditioner 100.
  • the air conditioner having one outdoor unit and one indoor unit has been described as an example.
  • two or more indoor units may be connected in parallel, for example, and two or more outdoor units may be used. May be connected in parallel, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

본 발명의 일 측면은 운전의 종류를 절환한 경우에, 냉매 저장부에 저장된 냉매가 메인 냉매 회로에 급격히 흘러 들어가는 것을 억제하는 공기 조화기 및 그 제어방법에 관한 것이다. 본 발명의 일 실시예에 따른 공기 조화기는 압축기, 응축기, 팽창 밸브 및 증발기를 포함하는 냉매 회로; 상기 응축기의 출구에서 냉매 상태가 과냉각 상태 또는 기액 2상 상태를 판단하고, 상기 냉매 회로 내에서 검출된 온도 및 압력 중 적어도 하나와 상기 냉매 상태에 따라 미리 정해진 설정값을 기초로 상기 냉매 회로 내의 냉매량비를 산출하는 냉매량 검지 장치; 및 상기 냉매량 검지 장치에서 산출된 냉매량비에 따라 상기 냉매 회로를 제어하는 제어부;를 포함한다.

Description

공기 조화기 및 그 제어방법
본 발명은 냉매량을 검출하는 공기 조화기에 관한 것이다.
압축기, 사방 전환 밸브, 실외 열교환기, 메인 감압 밸브 및 실내 열교환기가 순서대로 접속된 메인 냉매 회로 또는 냉매가 순환하는 냉동 사이클을 갖는 공기 조화 장치가 존재한다. 종래의 공기 조화기는 사방 전환 밸브에 의해 냉매의 순환 방향을 전환함으로써, 냉방 운전, 난방 운전 등의 공기 조화 운전을 수행한다.
그런데, 공기 조화기는 실외 열 교환기와 실내 열 교환기의 용적이 다르기 때문에, 공기 조화 운전의 종류에 따라서 메인 냉매 회로에 필요한 냉매량이 다르다. 따라서 시스템 효율을 향상시키기 위해서 공기 조화기는 각각의 운전 종류에 따라 최적의 냉매량으로 수행하는 것이 바람직하다.
이를 위해서 공기 조화기는 잉여 냉매를 저장하는 냉매 저장부를 가진다. 여기서 냉매 저장부를 갖는 공기 조화기는 메인 냉매 회로에 필요한 냉매량이 적은 운전을 수행하는 경우 잉여 냉매를 냉매 저장부에 저장한다. 또한, 공기 조화기는 메인 냉매 회로에 필요한 냉매량이 많이 필요한 운전을 수행하는 경우에 냉매 저장부에 저장된 냉매를 메인 냉매 회로에 공급한다.
특허 문헌 1에는 압축기, 응축기, 증발기를 구비함과 아울러, 응축기와 증발기 사이에 리시버 탱크(receiver tank)를 설치한 냉동 시스템 장치가 개시되어 있다. 그리고, 특허 문헌 1에는 리시버 탱크에 잉여 냉매를 모아서, 냉동 시스템 장치의 운전 상황에 따라 리시버 탱크로부터 냉동 사이클 중에 냉매를 방출하는 것이 기재되어 있다.
특허 문헌 1은 일본 특허공개 평10-89780호 공보이다.
본 발명의 일 측면은, 운전의 종류를 절환한 경우에, 냉매 저장부에 저장된 냉매가 메인 냉매 회로에 급격히 흘러 들어가는 것을 억제하는 공기 조화기 및 그 제어방법에 관한 것이다.
본 발명의 일 실시예에 따른 공기 조화기는 압축기, 응축기, 팽창 밸브 및 증발기를 포함하는 냉매 회로; 상기 응축기의 출구에서 냉매 상태가 과냉각 상태 또는 기액 2상 상태를 판단하고, 상기 냉매 회로 내에서 검출된 온도 및 압력 중 적어도 하나와 상기 냉매 상태에 따라 미리 정해진 설정값을 기초로 상기 냉매 회로 내의 냉매량비를 산출하는 냉매량 검지 장치; 및 상기 냉매량 검지 장치에서 산출된 냉매량비에 따라 상기 냉매 회로를 제어하는 제어부;를 포함한다.
상기 냉매량 검지 장치는, 상기 산출된 냉매량비에 기초하여 냉매량비의 평균값을 계산할 수 있다.
상기 냉매 회로는, 상기 응축기의 출구에서 제1 냉매 온도를 검지하는 제1 온도 센서; 및 상기 응축기의 출구 측에 설치된 유체 저항의 하류 측에서 제2 냉매 온도를 검지하는 제2 온도 센서;를 더 포함하고, 상기 냉매량 검지 장치 는 상기 제1 냉매 온도 및 상기 제2 냉매 온도를 기초로, 과냉각 상태 또는 기액 2상 상태를 판단할 수 있다.
상기 냉매 회로는, 상기 응축기와 상기 팽창 밸브 사이에 위치하고, 상기 응축기에서 생성된 액체 냉매를 냉각시키는 서브 쿨러;를 더 포함할 수 있다.
상기 제어부는, 상기 냉매량 검지 장치의 제어에 따라 상기 압축기, 응축기, 팽창 밸브, 증발기 및 서브 쿨러 중 적어도 하나를 일정하게 동작하도록 제어할 수 있다.
상기 냉매 회로는, 충전 냉매를 보관하는 냉매 저장 용기; 및 상기 냉매 저장 용기에서 공급하는 상기 냉매를 제어하는 냉매 주입 밸브;를 더 포함하고, 상기 제어부는, 상기 냉매를 충전하는 경우, 상기 냉매량비의 평균값이 100%에 이르면 상기 냉매 주입 밸브를 제어할 수 있다.
상기 냉매 회로는, 상기 냉매 회로 내에 존재하는 잉여 냉매를 과냉각 액체 상태로 저장하는 리시버; 및 상기 리시버로부터 유출되는 냉매를 감압함과 아울러 냉매의 유량을 조정하는 유량 조정부;를 더 포함할 수 있다.
상기 냉매는, R32 및 HFO1234yf 또는 HFO1234ze를 포함하는 비공비 혼합 냉매를 포함할 수 있다.
상기 비공비 혼합 냉매는, HFC의 함유량이 70 중량% 미만, HFO1234yf 또는 HFO1234ze의 함유량이 30 중량% 미만이고, 나머지가 자연 냉매인 것을 특징으로 할 수 있다.
상기 리시버의 용적은, 상기 냉매 회로가 난방 운전하는 동안의 냉매량에서 냉방 운전하는 동안의 냉매량을 뺀 냉매량을 상기 과냉각 액체 상태로 환산한 체적과 동일할 수 있다.
상기 냉매 회로는, 상기 증발기 또는 상기 응축기에서 응축된 메인 냉매와, 상기 메인 냉매에서 분류되고, 과냉각 감압 밸브에 의해 감압된 분류 냉매를 열교환시켜 상기 메인 냉매를 과냉각하는 과냉각기;를 더 포함할 수 있다.
상기 리시버는, 상기 리시버 내의 냉매량을 검지하는 적어도 하나의 냉매량 검지 기구;를 더 포함할 수 있다.
상기 압축기 및 상기 응축기를 포함하는 실외기와 상기 증발기를 포함하는 실내기를 연결하고, 상기 냉매 회로의 배관과 착탈이 가능하며, 상기 냉매량 검지 장치를 포함하는 보조 유닛;을 더 포함할 수 있다.
상기 보조 유닛은, 상기 냉매 회로 내에 냉매를 충전하는 경우, 상기 산출된 냉매량비가 100%에 이르렀을 때에 상기 보조 유닛의 냉매 배관을 조절하는 냉매 주입 밸브;를 더 포함할 수 있다.
상기 보조 유닛은, 충전 냉매를 보관하는 냉매 저장 용기; 및 상기 냉매 저장 용기에서 공급하는 상기 냉매를 제어하는 냉매 주입 밸브;를 더 포함하고, 상기 제어부는, 상기 냉매를 충전하는 경우, 상기 냉매량비의 평균값이 100%에 이르면 상기 냉매 주입 밸브를 제어할 수 있다.
상기 보조 유닛은, 상기 공기 조화기를 제외한 외부 열원 장치와 열교환을 수행하는 보조 열교환기를 더 포함할 수 있다.
상기 보조 유닛은, 상기 보조 유닛의 배관 내에 존재하는 잉여 냉매를 과냉각 액체 상태로 저장하는 리시버; 및 상기 리시버로부터 유출되는 냉매를 감압함과 아울러 상기 냉매의 유량을 조정하는 유량 조정부;를 포함할 수 있다.
본 발명의 일 실시예에 따른 압축기, 응축기, 팽창 밸브 및 증발기를 포함하는 냉매 회로를 포함하는 공기 조화기의 제어방법에 있어서, 상기 응축기의 출구에서 냉매 상태가 과냉각 상태 또는 기액 2상태인지를 판단하고; 상기 냉매 회로 내에서 검출된 온도 및 압력 중 적어도 하나와 상기 냉매 상태에 따라 미리 정해진 설정값을 기초로 상기 냉매 회로 내의 냉매량비를 산출하고; 상기 산출된 냉매량비에 따라 상기 냉매 회로를 제어하는 것;을 포함한다.
상기 공기 조화기의 제어방법은 상기 산출된 냉매량비에 기초하여 상기 냉매량비의 평균값을 계산하는 것;을 더 포함할 수 있다.
개시된 발명의 의한 공기 조화기 및 그 제어방법에 의하면 운전의 종류를 절환한 경우에, 냉매 저장부에 저장된 냉매가 메인 냉매 회로에 급격히 흘러 들어가는 것을 억제할 수 있다.
도 1은 제1 실시형태에서의 공기 조화기의 구성을 나타낸 모식도이다.
도 2는 제1 실시형태에서의 냉매량 검지 장치의 구성을 나타낸 개략 블록도이다.
도 3은 제2 실시형태에 따른 공기 조화기의 구성을 나타낸 개략 블록도이다.
도 4는 제2 실시형태에 따른 냉매량 검지 장치의 구성을 나타낸 개략 블록도이다.
도 5는 제2 실시형태에 따른 냉매량 검지 장치의 동작의 일례를 나타낸 순서도다.
도 6은 제3 실시형태에 따른 공기 조화기의 구성을 나타낸 개략 블록도이다.
도 7은 제3 실시형태에 따른 냉매량 검지 장치의 구성을 나타낸 개략 블록도이다.
도 8은 제3 실시형태에 따른 냉매량 검지 장치의 동작의 일례를 나타낸 순서도다.
도 9는 제4 실시형태에 따른 공기 조화기의 구성을 나타낸 개략 블록도이다.
도 10은 종래의 공기 조화기의 구성을 나타낸 개략 블록도이다.
도 11은 냉방 운전시의 공기 조화기의 압력-비엔탈피(specific enthalpy) 선도이다.
도 12는 제4 실시형태의 접속 개폐 밸브의 개폐와 압축기로부터 토출되는 냉매 온도의 관계를 나타낸 도면이다.
도 13은 제4 실시형태의 제어부에 의해 실행되는 접속 개폐 밸브의 개폐 제어 순서를 나타낸 순서도다.
도 14는 제5 실시형태에 따른 공기 조화기의 구성을 나타낸 개략 블록도이다.
도 15는 제5 실시형태의 과냉각기 근방의 구성을 나타낸 도면이다.
도 16은 제5 실시형태의 공기 조화기의 압력-비엔탈피(specific enthalpy) 선도이다.
도 17a 및 도 17b는 과냉각기에서의 제1 배관을 흐르는 냉매 온도와 제2 배관을 흐르는 냉매 온도 간의 관계를 나타낸 도면이다.
도 18은 제5 실시형태의 제어부에 의해 제어되는 과냉각 감압 밸브의 개도 제어의 순서를 나타낸 도면이다.
도 19는 과냉각 감압 밸브의 개도, 압축기로의 냉매의 흡입량 및 공기 조화기의 시스템 효율의 관계를 나타낸 도면이다.
도 20은 제6 실시형태에 따른 공기 조화기의 구성을 나타낸 개략 블록도이다.
도 21은 제6 실시형태의 냉매량 검지 기구를 나타낸 도면이다.
도 22는 냉매량 검지 기구의 변형예를 나타낸 도면이다.
도 23은 제7 실시형태에서의 공기 조화기 및 보조 유닛의 구성을 나타낸 모식도이다.
도 24는 제7 실시형태에서의 냉매량 검지 장치의 구성을 나타낸 개략 블록도이다.
도 25는 제8 실시형태에서의 공기 조화기 및 보조 유닛의 구성을 나타낸 개략 블록도이다.
도 26은 제8 실시형태에서의 냉매량 검지 장치의 구성을 나타낸 개략 블록도이다.
도 27은 제9 실시형태에 따른 공기 조화기 및 보조 유닛의 구성을 나타낸 개략 블록도이다.
도 28은 제9 실시형태의 냉매량 검지 기구를 나타낸 도면이다.
도 29는 제10 실시형태에서의 공기 조화기 및 보조 유닛의 구성을 나타낸 모식도이다.
도 30은 히터의 종류와 냉매 가열을 위한 보조 열교환기의 구성을 나타낸 모식도이다.
도 31은 보조 유닛의 변형예를 나타낸 모식도이다.
도 32는 보조 유닛의 변형예를 나타낸 모식도이다.
도 33은 제11 실시형태에서의 공기 조화기 및 보조 유닛의 구성을 나타낸 모식도이다.
도 34는 제11 실시형태의 통상의 냉방 운전시의 냉매의 흐름을 나타낸 도면이다.
도 35는 제11 실시형태의 낮은 외기 온도일 때의 냉매의 흐름을 나타낸 도면이다.
도 36은 제11 실시형태의 난방 운전시의 냉매의 흐름을 나타낸 도면이다.
<제1 실시형태>
본 발명의 제1 실시형태에 대하여 도면을 참조하여 설명한다.
제1 실시형태의 공기 조화기(100)는 도 1에 나타낸 바와 같이, 건물의 옥외에 설치되는 실외기(10); 건물 내에 설치되는 실내기(11); 실외기(10) 및 실내기(11)를 냉매 배관에 의해 접속하여 구성되는 냉매 회로(20); 상기 실외기(10) 및 상기 실내기(11) 등을 제어하여 공조 운전을 수행하는 공기 조화기 제어부(30); 및 상기 냉매 회로 내의 냉매량을 검지하는 냉매량 검지 장치(40)를 구비한다. 한편, 이하에서는 냉방 운전을 수행하고 있는 공기 조화기(100)에 대하여 설명한다.
냉매 회로(20)는 압축기(201), 사방 전환 밸브(202), 응축기(실외 열교환기)(203), 제1 팽창 밸브(204), 및 증발기(실내 열교환기)(205)를 접속하여 구성되는 것이다. 본 실시형태에서는, 압축기(201), 사방 전환 밸브(202), 응축기(203), 및 제1 팽창 밸브(204)가 실외기(10)의 내부에 설치되고, 증발기(205)가 실내기(11)의 내부에 설치된 구성이다. 한편, 실외기(10)는 실내기(11) 내의 증발기(205)에서 기화된 냉매를 압축하고, 냉각한다. 또한, 실내기(11)는 증발기(205)에 있어서, 실내 공기와 냉매 사이에서 열교환을 수행하고, 실내 공기를 냉각함과 아울러, 냉매를 기화한다.
압축기(201)는 그 저압측 입구에서 유입된, 기화한 냉매 가스를 압축하여 고온, 고압의 압축 가스를 생성한다. 압축기(201)는 회전 속도를 제어할 수 있는 모터에 의해 구동되고, 그 모터의 회전 속도에 따라서, 압축 능력이 변화한다. 즉, 모터의 회전 속도가 빠를 때는 압축 능력이 높고, 모터의 회전 속도가 느릴 때는 압축 능력이 낮다. 압축기(201)는 모터의 회전 속도를, 후술하는 압축기 제어부(301)에 의해 제어한다. 그리고, 압축기(201)는 생성된 고온, 고압의 압축 가스를, 사방 전환 밸브(202)를 통하여 응축기(203)에 송출한다.
응축기(203)는 압축기(201)에 의해 생성된 압축 가스를, 열교환기를 통하여 응축시킨다. 응축기(203)는 고온의 압축 가스와 저온의 실외 공기 사이에서, 열교환을 수행하고, 액체 냉매를 생성한다. 그리고, 응축기(203)는 열교환에 의해 생성된 액체 냉매를, 제1 팽창 밸브(204)에 송출한다.
제1 팽창 밸브(204)는 개폐에 의해, 그곳을 흐르는 유량을 조정하는 밸브이다. 여기서, 제1 팽창 밸브(204)는 제1 팽창 밸브 제어부(302)에 의해 개폐된다. 제1 팽창 밸브(204)가 열림으로써, 액체 냉매는 팽창하여 기화하고, 냉매 가스가 된다. 이 냉매 가스는 제1 팽창 밸브(204)에 유입되기 전의 액체 냉매보다 저온으로 되어 있다. 제1 팽창 밸브(204)는 그 열려 있는 정도를 나타낸 개도(개구도)를, 후술하는 제1 팽창 밸브 제어부(302)가 출력하는 신호에 따라 제어한다. 그리고, 제1 팽창 밸브(204)는 냉매 가스를 증발기(205)에 송출한다.
증발기(205)는 제1 팽창 밸브(204)에서 생성된 냉매 가스와, 고온의 실내 공기의 열교환을 수행한다. 증발기(205)는 실내 공기를 냉각함과 아울러 냉매의 일부를 기화한다. 증발기(205)에서 생성된 기액 2상 냉매는 사방 전환 밸브(202)를 통하여 압축기(201)에 송출된다. 상기 기액 2상 냉매는 기체와 액체 2 개의 상태가 혼재하는 것을 의미한다.
그 밖에, 실외기(10)에는 실외기 팬(10F)이 설치되고 실내기(11)에는 실내기 팬(11F)이 설치되어 있다.
실외기 팬(10F)은 응축기(203)에 송풍하여, 냉매를 냉각한다. 실외기 팬(10F)은 후술하는 실외기 팬 제어부(303)로부터 회전 속도를 제어 받는다.
실내기 팬(11F)은 실내 공기를 증발기(205)에서 냉각하고, 냉각된 공기를 실내에 송풍한다. 실내기 팬(11F)은 후술하는 실내기 팬 제어부(304)로부터 회전 속도를 제어 받는다.
또한, 냉매 회로(20)에는 토출 온도 센서(206), 흡입 온도 센서(207), 출구 온도 센서(208), 액체관 온도 센서(209), 고압 센서(210), 및 저압 센서(211)가 설치되어 있다.
토출 온도 센서(206)는 압축기(201)의 고압측에서의 냉매 온도(토출 온도 Td)를 검출하고, 검출된 토출 온도를 나타낸 신호를 A/D 변환부(50)에 출력한다.
흡입 온도 센서(207)는 압축기(201)의 저압측에서의 냉매 온도(흡입 온도 Tsuc)를 검출하고, 검출된 흡입 온도를 나타낸 신호를 A/D 변환부(50)에 출력한다.
출구 온도 센서(208)는 응축기(203)의 출구에서의 냉매 온도(출구 온도 Tcond(제1 냉매 온도))를 검지하고, 검출된 출구 온도를 나타낸 신호를 A/D 변환부(50)에 출력한다. 한편, 출구 온도 센서(208)는 응축기(203)의 출구측의 전열관에 설치되어 있다.
액체관 온도 센서(209)는 응축기(203)의 출구 측에 설치된 제1 팽창 밸브(204)의 하류측에서의 냉매 온도(액체관 온도 Tsub(제2 냉매 온도))를 검출하고, 검출된 액체관 온도를 나타낸 신호를 A/D 변환부(50)에 출력한다. 한편, 액체관 온도 센서(209)는 액체 배관(212)에 설치되어 있다. 이 액체 배관(212)은 응축기(203)의 출구와 증발기(205)의 입구를 접속하는 배관이다.
고압 센서(210)는 압축기(201)의 고압측의 압력(고압측 압력 Pd)을 검출하고, 검출된 고압측 압력을 나타낸 신호를 A/D 변환부(50)에 출력한다.
저압 센서(211)는 압축기(201)의 저압측의 압력(저압측 압력 Ps)을 검출하고, 검출된 저압측 압력을 나타낸 신호를 A/D 변환부(50)에 출력한다.
공기 조화기 제어부(30)는 공기 조화기(100)의 각 부품의 제어를 수행한다. 한편, 공기 조화기 제어부(30)와, 실내기(11) 및 실외기(10)의 각 부품 사이는 접속되어 있지만, 도 1에서는 그 접속에 대한 기재는 생략되어 있다. 공기 조화기 제어부(30)의 상세에 대해서는 도 2를 참조하면서 후술한다.
냉매량 검지 장치(40)는 공기 조화기(100)에서의 냉매 회로 내의 냉매의 양을 검지한다. 한편, 냉매량 검지 장치(40)와, 실내기(11) 및 실외기(10)의 각 부품 사이는 접속되어 있지만, 도 1에서는 그 접속에 대한 기재는 생략되어 있다. 냉매량 검지 장치(40)의 상세에 대해서는 도 2를 참조하면서 후술한다.
도 2는 본 실시형태에 따른 냉매량 검지 장치(40)의 구성을 나타낸 개략 블록도이다. 한편, A/D 변환부(50)는 각 센서(206)~(211)로부터 입력 받은 신호를 아날로그-디지털 변환하여, 변환 후의 각 신호를 냉매량 검지부(41)에 출력한다. 입력부(60)는 이용자의 조작에 의거하여, 냉매량의 검지를 개시하는 것을 나타낸 검지 개시 정보 등을 제어부(411)에 출력한다. 표시부(70)는 예를 들면 LED에 의한 디지털 표시판 등의 정보를 표시하는 표시기이며, 후술하는 냉매량 평균 계산부(414)로부터 입력 받은 냉매량비의 정보 등을 표시한다.
구체적으로 냉매량 검지 장치(40)은 냉매 상태를 판별하고, 냉매량비를 계산하는 냉매량 검지부(41), 및 냉매량비를 계산할 때에 이용하는 파라미터나, 이전에 계산된 냉매량비를 기억하는 기억부(42)를 구비한다.
냉매량 검지부(41)는 A/D 변환부(50)로부터 입력 받은 온도나 압력의 정보에 의거하여 냉매량비를 계산하고, 계산한 냉매량비의 정보를 표시부(70)에 출력한다. 여기서, 냉매량비란, 실제로 공기 조화기(100) 내에 있는 냉매의 양을, 공기 조화기(100)에 사양으로서 규정된 냉매의 양으로 나눈 값("실제 냉매량"/"규정된 냉매량")이다.
이 냉매량 검지부(41)는 제어부(411), 냉매 상태 취득부(412), 냉매량 연산부(413), 및 냉매량 평균 계산부(414)를 갖고 있다.
제어부(411)는 입력부(60)로부터, 공기 조화기(100)의 냉매량비의 검지를 개시하는 것을 나타낸 검지 개시 정보를 입력 받는다. 또한, 제어부(411)는 냉방 운전인 소정의 운전 모드로 운전을 수행하게 하는 명령을 공기 조화기 제어부(30)에 출력한다. 제어부(411)는 운전을 종료시키는 운전 종료 명령을 공기 조화기 제어부(30)에 출력한다.
한편, 공기 조화기 제어부(30)는 제어부(411)로부터 입력 받은 명령에 의거하여, 압축기(201)의 모터의 회전 속도를 제어하는 압축기 제어부(301); 제1 팽창 밸브(204)의 개도를 제어하는 제1 팽창 밸브 제어부(302); 실외기 팬(10F)의 회전 속도를 제어하는 실외기 팬 제어부(303); 및 실내기 팬(11F)의 회전 속도를 제어하는 실내기 팬 제어부(304)를 구비한다.
구체적으로는 공기 조화기 제어부(30)는 실내기(11)에 구비된 증발기(205)의 과열도 SH가 일정(예를 들면 3K)하게 되도록 제어한다. 과열도란, 증발기(205)의 출구에서의 냉매 온도에서 증발 온도에서의 포화 온도를 뺀 것, 즉 압축기(201)의 저압측에서의 냉매 온도에서 압축기(201)의 저압측의 압력에서의 포화 온도를 뺀 것이다. 제1 팽창 밸브 제어부(302)는 제1 팽창 밸브(204)의 개도를 조정함으로써, 증발기(205)의 과열도가 일정하게 되도록 제어한다.
또한, 제어부(411)는 압축기(201)의 모터의 회전 속도를, 미리 정한 회전 속도(예를 들면, 65 Hz)로 운전하게 하는 명령을 압축기 제어부(301)에 출력한다. 압축기 제어부(301)는 제어부(411)로부터, 압축기(201)의 모터의 회전 속도를, 미리 정한 회전 속도(예를 들면, 65 Hz)로 운전하게 하는 명령을 입력 받고, 모터의 회전 속도를 65 Hz로 운전하게 한다.
제어부(411)는 실외기 팬(10F)을 정속으로 운전하게 하는 명령을, 실외기 팬 제어부(303)에 출력한다. 실외기 팬 제어부(303)은 실외기 팬(10F)을 정속으로 운전하게 한다.
제어부(411)는 실내기 팬(11F)을 정속으로 제어하게 하는 명령을, 실내기 팬 제어부(304)에 출력한다. 실내기 팬 제어부(304)는 실내기 팬(11F)을 정속으로 운전하게 한다.
또한, 제어부(411)는 냉매 상태 취득부(412) 및 냉매량 연산부(413)에, 냉매량비를 계산하게 하는 명령을 출력한다. 제어부(411)는 냉매량 평균 계산부(414)로부터, 냉매량비의 평균값의 계산이 종료된 것을 나타낸 평균값 계산 종료 신호를 입력 받는다. 제어부(411)는 냉매량 평균 계산부(414)로부터, 평균값 계산 종료 신호를 입력 받았을 때에, 운전 종료 신호를 공기 조화기 제어부(30)에 출력한다.
냉매 상태 취득부(412)는 공기 조화기 제어부(30)에 의해 공기 조화기(100)가 소정의 운전 모드로 운전을 개시한 후에, 응축기(203)의 출구에서의 냉매 상태가 과냉각 상태인지 또는 기액 2상 상태인지를 취득한다. 이 냉매 상태 취득부(412)는 출구 온도 신호가 나타낸 출구 온도 Tcond와 액체관 온도 신호가 나타낸 액체관 온도 Tsub을 파라미터로 하여, 과냉각 상태 또는 기액 2상 상태 중의 어느 하나라고 판별한다. 그리고, 이 판별 신호를 냉매량 연산부(413)에 출력한다.
상세는 이하와 같다.
Tcond-Tsub≤X인 경우, 냉매 상태가 “과냉각 상태”이라고 판단한다.
Tcond-Tsub>X인 경우, 냉매 상태가 “기액 2상 상태”이라고 판단한다.
여기서, X는 상수이고, 실측 데이터를 이용하여 미리 얻어진 값(예를 들면, X=1. 5)이다.
냉매량 연산부(413)는 냉매 상태 취득부(412)에 의해 취득된 냉매 상태에 따라서, 서로 다른 연산식을 이용하여 공기 조화기(100) 내의 냉매량비를 산출한다.
구체적으로 냉매량 연산부(413)는 과냉각 상태인 경우에는 과냉각 상태용 연산식을 이용하여 냉매량비 RA를 산출하고, 기액 2상 상태인 경우에는 기액 2상 상태용 연산식을 이용하여 냉매량비 RA를 산출한다.
과냉각 상태용 연산식은 이하와 같다.
RA=a1+b1×Pd+c1×Ps+d1×Tsub+e1×Td
여기서, 상수 a1, b1, c1, d1, e1는 과냉각 상태에서의 Pd, Ps, Tsub, Td와 RA간의 관계를 나타낸 실측 데이터를 이용하여, 다중 회귀 계산에 의해 미리 얻어진 값이다. 한편, 상수 a1, b1, c1, d1, e1는 기억부(42)에 설정된 계산 파라미터 기억부(421)에 기록되어 있다.
또한, 기액 2상 상태용 연산식은 이하와 같다.
RA=a2+b2×Pd+c2×Ps+d2×Tsub+e2×Td
여기서, 상수 a2, b2, c2, d2, e2는 기액 2상 상태에서의 Pd, Ps, Tsub, Td와 RA 간의 관계를 나타낸 실측 데이터를 이용하여, 다중 회귀 계산에 의해 미리 얻어진 값이다. 한편, 상수 a2, b2, c2, d2, e2는 상기 계산 파라미터 기억부(421)에 기록되어 있다.
냉매량 연산부(413)는 냉매 상태 취득부(412)에 의해 취득된 냉매 상태에 맞추어, 상수 a1, b1, c1, d1, e1 또는 상수 a2, b2, c2, d2, e2를 판독한다. 또한, 냉매량 연산부(413)는 토출 압력 신호가 나타낸 토출 압력 Pd 및 흡입 압력 신호가 나타낸 흡입 압력 Ps, 액체관 온도 신호가 나타낸 액체관 온도 Tsub 및 토출 온도 신호가 나타낸 토출 온도 Td를 이용하여, 냉매 상태에 맞춘 연산식에 의해, 냉매량비 RA를 계산한다. 냉매량 연산부(413)는 계산한 냉매량비 RA를 나타낸 냉매량비 데이터를 기억부(42)에 설정된 냉매량 기억부(422)에 기록한다.
냉매량 평균 계산부(414)는 냉매량 연산부(413)로부터, 미리 정한 시간(예를 들면, 과거 5분) 이내에 계산된 냉매량비 RA를 판독한다. 냉매량 평균 계산부(414)는 판독한 냉매량비 RA의 평균값을 계산하고, 계산된 냉매량비 RA의 평균값을 표시부(70)에 출력한다. 냉매량 평균 계산부(414)는 냉매량비 RA의 평균값의 계산이 종료했을 때에, 냉매량비 RA의 평균값의 계산이 종료된 것을 나타낸 계산 종료 신호를 제어부(411)에 출력한다.
이와 같이 구성한 본 실시형태의 공기 조화기(100)에 의하면, 냉매 상태가 과냉각 상태인 경우에는 과냉각 상태용 연산식을 이용하고, 냉매 상태가 기액 2상 상태인 경우에는 기액 2상 상태용 연산식을 이용함으로써, 응축기(203) 출구의 냉매 상태에 관계없이 정밀도 높은 냉매량을 검지할 수 있다. 따라서, 본 발명은 긴 배관을 사용하는 경우나, 설치 상황이 실외기(10)와 실내기(11)의 사이에 큰 높낮이차가 있는 경우에도, 정밀도 높은 냉매량비를 검지할 수 있다.
또한, 본 실시형태에 의하면, 제어부(411)는 제2 팽창 밸브(215)의 개구도를 미리 정해진 값으로 고정한다. 이에 따라, 액체 배관(212) 내의 액체 냉매의 냉각 정도를 일정하게 할 수 있으며 정밀도 높은 냉매량비를 검지할 수 있다.
또한, 본 실시형태에 의하면, 제어부(411)는 압축기(201)의 압축 능력을 미리 정해진 값으로 고정한다. 이에 따라, 본 실시형태에서는, 압축기(201)의 입구, 및 출구에서의 냉매 상태를 일정하게 할 수 있으며 정밀도 높은 냉매량비를 검지할 수 있다.
또한, 본 실시형태에 의하면, 제어부(411)는 제1 팽창 밸브(204)의 개구도를 미리 정해진 값으로 고정한다. 이에 따라, 본 실시형태에서는, 제1 팽창 밸브(204)에서의 냉각 정도를 일정하게 할 수 있으며, 정밀도 높은 냉매량비를 검지할 수 있다.
또한, 본 실시형태에 의하면, 제어부(411)는 실외기 팬(10F)의 회전 속도 및 실내기 팬(11F)의 회전 속도를 미리 정해진 값으로 고정한다. 이에 따라, 본 실시형태에서는, 응축기(203)에서의 열교환 정도를 일정하게 하고, 증발기(205)에서의 열교환 정도를 일정하게 할 수 있으며, 정밀도 높은 냉매량비를 검지할 수 있다.
<제2 실시형태>
다음으로, 본 발명의 제2 실시형태에 대하여 도면을 참조하여 설명한다.
제2 실시형태의 공기 조화기(100)의 구성은 도 3에 나타낸 바와 같이, 서브 쿨러(213)가 새롭게 부가된 것을 제외하고, 제1 실시형태의 공기 조화기(100)의 구성과 동일하다. 한편, 이 실시형태에서는 제1 팽창 밸브(204)는 실내기(11)에 설치되어 있다.
구체적으로 이 공기 조화기(100)는 응축기 (203) 및 제1 팽창 밸브(204) 사이에 설치된 서브 쿨러(213); 냉매 회로(20)에 있어서 서브 쿨러(213)의 하류측으로부터 분기하여 서브 쿨러(213)을 경유하여 압축기(201)의 저압 측에 접속된 바이패스로(214); 및 바이패스로(214)에 설치되어 서브 쿨러(213)에 유입되는 냉매량을 조정하는 제2 팽창 밸브(215)를 구비한다.
서브 쿨러(213)는 응축기(203)에서 생성된 액체 냉매를, 제2 팽창 밸브(215)로부터 보내진 서브 쿨러 냉각 냉매를 이용하여 냉각한다. 서브 쿨러(213)는 고온의 액체 냉매와 저온의 서브 쿨러 냉각 냉매 사이에서, 열교환을 수행한다. 서브 쿨러(213)는 냉각된 액체 냉매를 제1 팽창 밸브(204)에 송출한다. 서브 쿨러(213)는 열교환 후의 서브 쿨러 냉각 냉매를, 압축기(201)의 저압측 입구에 송출한다.
제2 팽창 밸브(215)는 개폐에 의해, 그곳을 흐르는 유량을 조정하는 밸브이다. 여기서, 제2 팽창 밸브(215)는 그 열려 있는 정도를 나타낸 개도를, 제2 팽창 밸브 제어부(305)로부터 제어 받는다(도 4 참조). 제2 팽창 밸브(215)가 열림으로써, 증발기(205)에서 생성되고, 서브 쿨러(213)를 통하여 제2 팽창 밸브(215)에 유입된 액체 냉매는 팽창하여 기화하고, 액체 냉매보다 온도가 낮은 냉매인 서브 쿨러 냉각 냉매가 된다. 제2 팽창 밸브(215)는 서브 쿨러 냉각 냉매를 서브 쿨러(213)에 송출한다.
그 밖에, 본 실시형태의 액체관 온도 센서(209)는 서브 쿨러(213)의 출구 부근에서의 냉매 온도(액체관 온도 Tsub)를 검출하고, 검출된 액체관 온도를 나타낸 신호를 A/D 변환부(50)에 출력한다. 한편, 액체 배관(212)은 응축기(203)의 출구로부터 서브 쿨러(213)를 통하여 제1 팽창 밸브(204)까지의 구간에 설치된, 액체 냉매를 흘리기 위한 배관이다.
다음으로, 도 5를 참조하면서, 본 실시형태에 따른 냉매량 검지 장치(40)의 동작을 설명한다.
도 5는 본 실시형태에 따른 냉매량 검지 장치(40)의 동작의 일례를 나타낸 순서도다.
(스텝 S201) 입력부(60)는 이용자로부터 냉매량의 검지를 개시하는 것을 나타낸 정보의 입력을 받아들인다. 그리고, 입력부(60)는 냉매량의 검지를 개시하는 검지 개시 정보를 제어부(411)에 출력한다. 그 후, 스텝 S102로 진행한다.
(스텝 S102) 제어부(411)는 스텝 S201에서 입력된 검지 개시 정보에 의거하여, 공기 조화기 제어부(30)에, 공기 조화기(100)의 운전을 개시하는 명령을 출력한다(시스템 정지 상태로부터 이행).
한편, 후술하는 모든 운전 모드에 있어서, 공기 조화기(100)는 냉방 운전을 수행한다.
또한, 공기 조화기(100)가, 복수의 실내기(11)를 포함한 경우(도 1에는 1대만 도시되어 있다)는 모든 실내기(11)를 마찬가지로 운전한다.
또한, 제어부(411)는 공기 조화기 제어부(30)에, 초기 모드 운전을 수행하는 명령을 출력한다. 공기 조화기 제어부(30)는 초기 모드 운전을 개시한다. 초기 모드 운전이란, 구체적으로는 이하와 같은 운전을 수행하는 것을 말한다.
공기 조화기 제어부(30)는 실내기 팬(11F)의 회전 속도를, 미리 설정된, 통상보다 풍량이 많은 “급속” 모드의 회전 속도로 송풍한다. 공기 조화기 제어부(30)는 실내기(11)에 구비된 증발기(205)의 과열도가 3K가 되도록 제어한다(전체 실내기 SH 제어: SH=3K). 제1 팽창 밸브 제어부(302)는 제1 팽창 밸브(204)의 개도를 조정함으로써, 증발기(205)의 과열도가 3K가 되도록 제어한다. 공기 조화기 제어부(30)는 실내 온도의 설정 온도를 3℃로 설정하여 공기 조화기(100)를 운전한다(전체 실내기 설정 온도: Remote=3K). 공기 조화기 제어부(30)는 초기 모드 운전을, 예를 들면 5~10분간 계속한 후, 스텝 S103로 진행한다.
(스텝 S103) 제어부(411)는 공기 조화기 제어부(30)에, 통상 모드 운전을 수행하는 명령을 출력한다. 공기 조화기 제어부(30)는 통상 모드 운전을 개시한다. 통상 모드 운전이란, 구체적으로는 이하와 같은 운전을 수행하는 것을 말한다.
제어부(411)는 압축기(201)의 모터의 회전 속도를, 미리 정한 회전 속도(예를 들면, 65 Hz)로 운전하게 하는 명령을 압축기 제어부(301)에 출력한다(압축기 65 Hz Fixed). 압축기 제어부(301)는 제어부(411)로부터, 압축기(201)의 모터의 회전 속도를, 미리 정한 회전 속도(예를 들면, 65 Hz)로 운전하게 하는 명령을 입력 받고, 모터의 회전 속도를 65 Hz로 운전하게 한다.
제어부(411)는 개도를 미리 정한 값(예를 들면, 120 pls)으로 제어하게 하는 명령을 제1 팽창 밸브 제어부(302)에 출력한다. 여기서, 팽창 밸브의 개도의 단위로서 이용하는 pls는 완전히 닫혔을 때가 “0”pls이고, 완전히 열렸을 때가 “2000”pls가 되도록 정의되어 있다. 제1 팽창 밸브 제어부(302)는 제어부(411)로부터, 개도를 120pls로 제어하는 명령을 입력 받고, 제1 팽창 밸브(204)의 개도를 120pls로 동작시킨다(EEV:120pls Fixed)。
제어부(411)는 개도를 미리 정한 값(예를 들면, 120 pls)으로 제어하게 하는 명령을 제2 팽창 밸브 제어부(305)에 출력한다. 제2 팽창 밸브 제어부(305)는 제어부(411)로부터, 개도를 120pls로 제어하는 명령을 입력 받고, 제2 팽창 밸브(215)의 개도를 120pls로 동작시킨다(EVI:120pls Fixed)。 공기 조화기 제어부(30)는 통상 모드 운전을, 예를 들면 5분간 계속한 후, 스텝 S104로 진행한다.
(스텝 S104) 제어부(411)는 공기 조화기 제어부(30)에, 측정 모드 운전을 수행하는 명령을 출력한다. 공기 조화기 제어부(30)는 측정 모드 운전을 개시한다. 측정 모드 운전이란, 구체적으로는 이하와 같은 운전을 수행하는 것을 말한다.
제어부(411)는 실외기 팬(10F)을 정속으로 측정하는 명령을 실외기 팬 제어부(303)에, 출력한다. 실내기 팬 제어부(304)는 실외기 팬(10F)을 정속으로 운전하게 한다(실외 Fan:Step Fixed). 측정 모드 운전을, 예를 들면, 25분간 계속한 후, 스텝 S105로 진행한다.
(스텝 S105) 제어부(411)는 냉매량비를 계산하게 하는 명령을, 냉매 상태 취득부(412) 및 냉매량 연산부(413)에 출력한다. 냉매 상태 취득부(412)는 출구 온도 신호 및 액체관 온도 신호를 입력 받는다. 또한, 냉매량 연산부(413)는 토출 온도 신호, 액체관 온도 신호, 고압측 압력 신호 및 저압측 압력 신호를 입력 받는다. 그 후, 스텝 S106로 진행한다.
(스텝 S106) 냉매 상태 취득부(412)는 스텝 S105에서 입력된 출구 온도 신호가 나타낸 출구 온도 Tcond 및 액체관 온도 신호가 나타낸 액체관 온도 Tsub에 의거하여, 과냉각 상태인지 기액 2상 상태인지를 판별한다.
냉매량 연산부(413)는 냉매 상태 취득부(412)에 의해 얻어진 냉매 상태에 따른 연산식(연산식 파라미터)을, 계산 파라미터 기억부(421)로부터 판독한다. 냉매량 연산부(413)는 스텝 S105에서 입력된 고압측 압력 신호가 나타낸 고압측 압력 Pd, 저압측 압력 신호가 나타낸 저압측 압력 Ps, 액체관 온도 신호가 나타낸 액체관 온도 Tsub 및 토출 온도 신호가 나타낸 토출 온도 Td에 의거하여, 냉매 상태에 맞춘 연산식에 의해, 냉매량비 RA를 계산한다(냉매량 검지 스텝). 냉매량 연산부(413)는 계산된 RA를 냉매량 기억부(422)에 기록한다. 그 후, 스텝 S107로 진행한다.
(스텝 S107) 제어부(411)는 냉매량비를 계산하게 하는 명령을 개시하고 나서 5분이 경과했는지의 여부를 판정한다. 5분이 경과했다고 판단된 경우(Yes)는 스텝 S108로 진행한다. 5분이 경과했다고 판단되지 않은 경우(No)는 스텝 S105로 돌아간다.
(스텝 S108) 냉매량 평균 계산부(414)는 스텝 S106에서 냉매량 기억부(422)에 기록된 냉매량비를 판독하고, 냉매량비의 평균값을 산출한다. 냉매량 평균 계산부(414)는 계산된 냉매량비의 평균값에 관한 정보를 표시부(70)에 출력한다. 냉매량 평균 계산부(414)는 냉매량비의 평균값이 종료된 것을 나타낸 평균값 계산 종료 정보를 제어부(411)에 출력한다. 그 후, 스텝 S109로 진행한다.
(스텝 S109) 표시부(70)는 스텝 S108에 있어서 냉매량 평균 계산부(414)에서 계산된, 냉매량비의 평균값을 나타낸 정보를 입력 받고, 표시한다. 제어부(411)는 스텝 S108에서 냉매량 평균 계산부(414)로부터 입력 받은 평균값 계산 종료 정보에 의거하여, 공기 조화기(100)의 운전 정지 명령을 공기 조화기 제어부(30)에 출력한다. 공기 조화기 제어부(30)는 제어부(411)로부터 입력 받은 운전 정지 신호에 의거하여, 공기 조화기(100)의 운전을 정지한다. 그 후, 종료 처리로 진행한다.
이와 같이 본 실시형태에 의하면, 냉매 상태가 과냉각 상태인 경우에는 과냉각 상태용 연산식을 이용하고, 냉매 상태가 기액 2상 상태인 경우에는 기액 2상 상태용 연산식을 이용함으로써, 응축기(203) 출구의 냉매 상태에 관계없이 냉매량을 정밀도 좋게 검지할 수 있다. 액체관 내의 기화를 막기 위하여 서브 쿨러(213)을 이용하는 긴 배관을 사용하는 경우나, 실외기(10)와 실내기(11) 사이에 큰 높낮이차가 있는 경우이더라도, 냉매량비를 정밀도 좋게 검지할 수 있다.
<제3 실시형태>
이하, 본 발명의 제3 실시형태에 대하여 도면을 참조하여 설명한다.
제1, 제2 실시형태에서는 공기 조화기(100) 내의 냉매의 양을 정확하게 측정할 수 있었지만, 본 실시형태에서는, 냉매를 보충할 경우에, 냉매량비를 계산하면서, 냉매의 충전 개시시, 및 냉매량비가 100%에 이르렀을 때에, 조작을 수행하는 사람에 대하여 냉매 주입 밸브(216)의 조작을 재촉하는 표시를 수행한다.
도 6은 제3 실시형태에 따른 공기 조화기(100)의 구성을 나타낸 개략 블록도이다.
본 실시형태의 공기 조화기(100)의 구성은 냉매 주입 밸브(충전 밸브) (216)및 냉매 저장 용기(217)가 새롭게 부가된 것을 제외하고, 제2 실시형태에서의 공기 조화기(100)의 구성(도 3)과 동일하다. 따라서, 냉매 주입 밸브(216) 및 냉매 저장 용기 (217) 이외의 설명은 생략한다.
냉매 주입 밸브(216)는 조작을 수행하는 사람이, 표시부(70)에 나타나는 지시에 따라서, 냉매를 보충하기 위하여 개폐하는 밸브이다.
냉매 저장 용기(217)는 보충되는 냉매를 저장하는 용기이다.
도 7은 본 실시형태에 따른 냉매량 검지 장치(40)의 구성을 나타낸 개략 블록도이다.
본 실시형태의 냉매량 검지 장치(40)의 구성은 냉매량 판정부(415)가 새롭게 부가된 것, 및 냉매량 평균 계산부(414), 제어부(411)에 새로운 기능이 부가된 것을 제외하고, 제2 실시형태에서의 냉매량 검지 장치(40)의 구성(도 4)과 동일하다. 따라서, 냉매량 평균 계산부(414), 냉매량 판정부(415), 및 제어부(411) 이외의 설명은 생략 한다.
냉매량 평균 계산부(414)는 냉매량 기억부(422)로부터, 미리 정한 시간(예를 들면, 과거 5분 ) 이내에 계산된 냉매량비를 판독한다. 냉매량 평균 계산부(414)는 판독한 냉매량비의 이동 평균값을 계산하고, 계산한 이동 평균값을 냉매량 판정부(415)에 출력한다.
냉매량 판정부(415)는 냉매량 평균 계산부(414)로부터 입력 받은 냉매량비의 이동 평균값에 의거하여, 냉매량비의 이동 평균값이 100%를 넘는지의 여부를 판정한다. 냉매량 판정부(415)는 냉매량비의 이동 평균값이 100%를 넘었다고 판정한 경우는 충전 종료 신호를 제어부(411)에 출력한다.
제어부(411)는 입력부(60)로부터의 검지 개시 정보의 입력, 및 냉매량 판정부(415)로부터의 충전 종료 신호의 입력에 의거하여, 표시부(70)에, 냉매 주입 밸브(216)을 “여는”, 또는 “닫는” 것을, 조작을 수행하는 사람에게 지시하는 표시를 수행하는 명령을 출력한다.
다음으로, 도 8을 참조하면서, 본 실시형태에 따른 냉매량 검지 장치(40)의 동작을 설명한다. 도 8은 본 실시형태에 따른 냉매량 검지 장치(40)의 동작의 일례를 나타낸 순서도다.
(스텝 S201) 입력부(60)는 이용자로부터 냉매량의 자동 충전을 시작한다는 입력을 받고, 냉매량의 검지를 시작하는 검지 개시 정보를 제어부(411)에 출력한다. 그 후, 스텝 S202로 진행한다.
(스텝 S202) 제어부(411)는 냉매 주입 밸브(216)을 닫도록 조작을 수행하는 사람에게 지시하는 표시를 수행하는 명령을, 표시부(70)에 출력한다. 그 후, 스텝 S203로 진행한다. 스텝(203)~(205)의 각 처리는 제2 실시형태(도 5)에서의 스텝 S102~스텝 S104의 각 처리와 동일하다.
(스텝 S206) 제어부(411)는 냉매 주입 밸브(216)를 열도록 조작을 수행하는 사람에게 지시하는 표시를 수행하는 명령을, 표시부(70)에 출력한다. 그 후, 스텝 S207로 진행한다. 스텝 S207, 208의 각 처리는 제2 실시형태(도 5)에서의 스텝 S105, 106의 각 처리와 동일하다.
(스텝 S209) 냉매량 평균 계산부(414)는 냉매량 기억부(422)에 기록된 냉매량비를 판독하고, 냉매량비의, 예를 들면 5분간의 이동 평균값을 산출한다. 냉매량 평균 계산부(414)는 계산된 냉매량비의 이동 평균값에 관한 정보를 냉매량 판정부(415)에 출력한다. 그 후, 스텝 S210로 진행한다.
(스텝 S210) 냉매량 판정부(415)는 냉매량 평균 계산부(414)로부터 입력 받은 냉매량비의 이동 평균값에 관한 정보에 의거하여, 냉매량비의 이동 평균값이 100% 이상인지의 여부를 판정한다. 이동 평균값이 100% 이상이라고 판정된 경우(Yes)는 냉매량 판정부(415)는 냉매의 충전이 종료된 것을 나타낸 충전 종료 신호를 제어부(411)에 출력한 후, 스텝 S211로 진행한다. 이동 평균값이 100% 미만이라고 판정된 경우(No)는 스텝 S207로 진행한다.
(스텝 S211) 제어부(411)는 냉매 주입 밸브(216)를 닫도록 조작을 수행하는 사람에게 지시하는 표시를 수행하는 명령을, 표시부(70)에 출력한다. 제어부(411)는 스텝 S210에서 냉매량 판정부(415)로부터 입력 받은 충전 종료 신호에 의거하여, 공기 조화기(100)의 운전 정지 명령을 공기 조화기 제어부(30)에 출력한다. 공기 조화기 제어부(30)는 제어부(411)로부터 입력 받은 운전 정지 신호에 의거하여, 공기 조화기(100)의 운전을 정지한다. 공기 조화기(100)의 운전 정지 명령을 공기 조화기 제어부(30)에 출력한다. 공기 조화기 제어부(30)는 제어부(411)로부터 입력 받은 운전 정지 신호에 의거하여, 공기 조화기(100)의 운전을 정지한다. 그 후 종료 처리로 진행한다.
이와 같이 본 실시형태에 의하면, 공기 조화기(100)는 냉매를 공기 조화기(100)에 충전하기 위한 냉매 주입 밸브(216)를 구비하고, 냉매량 판정부(415)의 판정에 따라서, 냉매 주입 밸브(216)를 닫게 하는 지시를 표시부(70)에 표시한다. 이에 따라, 본 실시형태에서는, 조작을 수행하는 사람에게, 냉매량비의 검출을 시작하는 경우에, 냉매 주입 밸브(216)를 열고, 냉매량비가 100% 이상이 되었을 때에, 냉매 주입 밸브(216)를 닫도록 재촉하기 때문에, 확실히 냉매를 보충할 수 있다.
한편, 본 실시형태에 있어서, 냉매 주입 밸브(216)는 조작을 수행하는 사람에 의해 개폐되었지만, 제어부(411)가, 공기 조화기 제어부(30)를 통하여, 냉매 주입 밸브(216)를 제어하여, 자동적으로 개폐하도록 해도 무방하다.
한편, 상술한 각 실시형태에 있어서, 압축기(201)의 신뢰성 보호는 계속하고, 보호역에 돌입한 경우(토출 온도, 과전류, 고압, 저압의 각 측정값이, 미리 정해진 반응을 일으키는 최소 물리량을 넘은 경우)에는 공기 조화기(100)의 운전을 정지하고, “검지 실패”를 표시부(70)에 표시하도록 해도 무방하다.
또한, 상기 각 실시형태에서의 냉매량비를 산출하는 연산식으로서 이하의 것을 이용해도 무빙하다.
RA=f(Tc,Te,Tsub,Td)
즉, 과냉각 상태용 연산식은 이하와 같다.
RA=a3+b3×Tc+c3×Te+d3×Tsub+e3×Td
여기서, 상수 a3, b3, c3, d3, e3는 과냉각 상태에서의 Tc, Te, Tsub, Td와 RA의 관계를 나타낸 실측 데이터를 이용하여, 다중 회귀 계산에 의해 미리 얻어진 값이다.
또한, 기액 2상 상태용 연산식은 이하와 같다.
RA=a4+b4×Tc+c4×Te+d4×Tsub+e4×Td
여기서, 상수 a4, b4, c4, d4, e4는 과냉각 상태에서의 Tc, Te, Tsub, Td와 RA의 관계를 나타낸 실측 데이터를 이용하여, 다중 회귀 계산에 의해 미리 얻어진 값이다.
이 때, 냉매량 연산부(413)는 토출 압력 신호가 나타낸 토출 압력 Pd 및 흡입 압력 신호가 나타낸 흡입 압력 Ps와, 계산 파라미터 기억부(421)에 기록된 포화 증기 곡선 데이터로부터, 포화 온도 Tc 및 포화 온도 Te를 계산한다. 그리고, 냉매량 연산부(413)는 이것들과 액체관 온도 신호가 나타낸 액체관 온도 Tsub 및 토출 온도 신호가 나타낸 토출 온도 Td를 이용하여, 냉매량비 RA를 계산한다.
또한, 과냉각 상태용 연산식 및 기액 2상 상태용 연산식은 냉매의 종류에 따라 다르다. 여기서, 여러 가지의 공기 조화기의 냉매량을 검지하기 위하여 냉매량 검지 장치는 냉매의 종류에 따른 연산식의 상수를 기록하고 있는 것이 바람직하다. 그리고, 예를 들면 입력부(60)로부터 입력 받은 냉매의 종류에 따라서, 냉매량 연산부(412)가, 계산 파라미터 기억부(421)로부터 냉매에 대응한 파라미터(상수)를 판독하여, 냉매량을 계산하도록 해도 무방하다.
<제4 실시형태>
이하, 본 발명의 제4 실시형태에 대하여 도면을 참조하여 설명한다.
본 실시형태의 공기 조화기(100)는 상기 제1 실시형태의 구성에 더하여, 냉매 회로(20)의 잉여 냉매를 저장하는 냉매 저장부를 구비한다.
구체적으로 공기 조화기(100)는 도 9에 나타낸 바와 같이, 잉여 냉매를 저장하는 냉매 저장부의 일례로서의 리시버(218); 및 리시버(218)로부터 유출되는 냉매를 감압함과 아울러 냉매의 유량을 조정하는 유량 조정부의 일례로서의 리시버 감압 밸브(219)를 구비한다.
본 실시형태의 리시버 감압 밸브(219)는 공기 조화기 제어부(30)에 의한 제어에 의해 개도가 제어되고, 리시버 감압 밸브(219)를 통과하는 냉매의 양이나 압력이 조정되도록 되어 있다.
또한, 공기 조화기(100)의 실외기(10)는 공기 조화기 제어부(30)에 의한 제어에 의해 열림 상태 또는 닫힘 상태로 전환되고, 후술하는 접속로(20b)를 통과하는 냉매의 유량을 조정하는 공급량 조정부의 일례로서의 접속 개폐 밸브(220)를 구비한다.
또한, 공기 조화기(100)는 냉매 회로(20)로부터 분기하는 분기로(20a), 및 냉매 회로(20)와 분기로(20a)를 접속하는 접속로(20b)를 구비한다.
분기로(20a)는 냉매 회로(20) 중 응축기(실외 열교환기)(102)와 제1 팽창 밸브(103) 사이의 배관에서 분기하여 설치된다. 그리고, 분기로(20a)의 종단에는 상술한 리시버(218)가 접속된다. 또한, 분기로(20a)에는 상술한 리시버 감압 밸브(219)가 설치된다.
접속로(20b)는 분기로(20a)에서의 리시버 감압 밸브(219)와 리시버(218) 사이의 배관에서 분기하여, 냉매 회로(20)의 저압 배관(20s)에 접속된다. 또한, 접속로(20b)에는 상술한 접속 개폐 밸브(220)가 설치된다.
상세에 대해서는 후술하지만, 본 실시형태의 공기 조화기(100)에서는 접속 개폐 밸브(220)는 통상, 닫힘 상태로 되어 있다. 그리고, 접속 개폐 밸브(220)는 압축기(201)로부터 토출되는 냉매의 토출 온도 Td가 미리 정한 온도까지 상승했을 때에 열림 상태로 전환할 수 있다. 이에 따라, 리시버(218)에 저장된 냉매가 접속로(20b)를 통하여 압축기(201)에 공급되고, 압축기(201)로부터 토출되는 냉매의 토출 온도 Td의 상승이 억제된다.
본 실시형태의 리시버(218)는 철 등의 열전도성을 갖는 재료로 형성된다. 또한, 리시버(218)는 예를 들면 원통형의 형상으로 되어 있으며 실외기(10)에 있어서 세로형으로 설치된다. 그리고, 리시버(218)는 연직 하부에 위치하는 저면에, 분기로(20a)의 종단이 접속되는 접속부가 형성되어 있다. 바꾸어 말하면, 본 실시형태의 리시버(218)는 연직 하부에 설치되는 접속부로부터 냉매가 출입한다.
리시버(218)는 냉방 운전시 및 제상(除霜) 운전시에, 잉여 냉매를 저장한다. 또한, 리시버(218)는 냉방 운전시 또는 제상 운전시에 저장한 냉매를, 난방 운전시에 냉매 회로(20)에 공급한다. 바꾸어 말하면, 본 실시형태의 공기 조화기(100)에서는 리시버(218)에 의해, 냉매 회로(20)를 순환하는 냉매의 양을 조정하고 있다.
한편, 리시버(218)의 용적은 난방 운전시에서의 최적의 냉매량에서 냉방 운전시에서의 최적의 냉매량을 뺀 냉매량을, 과냉각 액체 상태로 환산한 체적과 동일하게 되도록 설정하는 것이 바람직하다. 여기서, 최적의 냉매량이란, 공기 조화기(100)에 있어서, 난방 운전 및 냉방 운전의 시스템 효율이 가장 높아지는 냉매량을 의미한다. 상세에 대해서는 후술하지만, 본 실시형태의 공기 조화기(100)에는 난방 운전시에서의 최적의 냉매량의 냉매가 냉매 회로(20)에 봉입되어 있다. 따라서, 리시버(218)의 용적이 상기와 같이 설정된 경우, 냉방 운전시에 리시버(218)에 잉여 냉매가 수용됨으로써 냉방 운전이 최적의 냉매량으로 행해진다. 또한, 리시버(218)의 대형화가 억제된다.
본 실시형태의 공기 조화기(100)에서는, 냉매로서 R32 냉매, 또는 R32를 적어도 70 중량% 이상 함유하는 혼합 냉매를 이용하고 있다. R32는 예를 들면 공기 조화기의 냉매로서 종래에 사용되고 있는 R410A와 비교하여, 온난화 계수가 낮다. 따라서, 본 실시형태에서는, R32 냉매, 또는 R32를 적어도 70 중량% 이상 함유하는 혼합 냉매를 이용함으로써, 예를 들면 R32와 R125를 50 중량%씩 포함한 R410A 냉매를 이용하는 경우와 비교하여, 환경에 대한 영향이 감소한다.
한편, 냉매에는 압축기(201)에서의 냉매의 윤활성을 높이는 윤활유 등의 각종 첨가제가 포함되어 있어도 무방하다.
계속하여, 본 실시형태의 공기 조화기(100)에서의 냉매의 거동에 대하여 설명한다. 먼저, 난방 운전시의 공기 조화기(100)에서의 냉매의 거동에 대하여 설명한다.
난방 운전시에는 냉매 회로(20)는 사방 전환 밸브(107)에 의해, 도 9에서 파선으로 나타낸 유로로 전환되고, 냉매는 도 9에서 파선 화살표로 나타낸 바와 같이 흐른다. 즉, 난방 운전시에는 냉매가, 압축기(201), 사방 전환 밸브(107), 실내 열교환기(104), 제1 팽창 밸브(103), 실외 열교환기(102), 사방 전환 밸브(107)를 순서대로 흘러서 압축기(201)로 돌아가는 냉동 사이클이 구성된다.
구체적으로 설명하면, 압축기(201)에서 압축되고 토출부로부터 토출된 고온 고압의 기체형상의 냉매는 사방 전환 밸브(107)를 지나서, 실내 열교환기(104)에 유입된다. 상술한 바와 같이, 난방 운전시에는 실내 열교환기(104)는 응축기로서 기능한다. 따라서, 냉매는 실내 열교환기(104)에서 실내 공기와 열교환되어 응축 액화되고, 실내 열교환기(104)로부터 토출된다. 실내 열교환기(104)로부터 토출된 고압 액상의 냉매는 제1 팽창 밸브(103)에서 감압되어 기액 2상 상태가 된 후, 실외 열교환기(102)에 유입된다. 난방 운전시에는 실외 열교환기(102)는 증발기로서 기능한다. 따라서, 냉매는 실외 열교환기(102)에서 외기와 열교환되어 증발 기화되고, 실외 열교환기(102)로부터 토출된다. 실외 열교환기(102)로부터 토출된 저압 기체형상의 냉매는 흡입부로부터 압축기(201)에 흡입되고 다시 압축된다.
또한, 난방 운전시에는 리시버(218)에 저장된 냉매가, 분기로(20a)를 지나서, 리시버 감압 밸브(219)에 의해 감압된 후, 냉매 회로(20)에 공급된다.
여기서, 리시버 감압 밸브(219)는 공기 조화기 제어부(30)에 의한 제어에 의거하여 개도가 조정된다. 본 실시형태의 공기 조화기(100)에서는 리시버 감압 밸브(219)의 개도를 조정함으로써, 리시버(218)로부터 다량의 냉매가 냉매 회로(20)에 급격하게 흘러드는 것을 억제하고 있다. 한편, 리시버 감압 밸브(219)의 개도의 제어에 대해서는 후단에서 상세하게 설명한다
계속하여, 냉방 운전시 또는 제상 운전시의 공기 조화기(100)에서의 냉매의 거동에 대하여 설명한다.
냉방 운전시 또는 제상 운전시에는 냉매 회로(20)는 사방 전환 밸브(107)에 의해, 도 9에서 실선으로 나타낸 유로로 전환되고, 냉매는 도 9에서 실선 화살표로 나타낸 바와 같이 흐른다. 즉, 냉방 운전시 및 제상 운전시에는 냉매가, 압축기(201), 사방 전환 밸브(107), 실외 열교환기(102), 제1 팽창 밸브(103), 실내 열교환기(104), 사방 전환 밸브(107)를 순서대로 흘러서 압축기(201)로 돌아가는 냉동 사이클이 구성된다.
구체적으로 설명하면, 압축기(201)에서 압축되고 토출부로부터 토출된 고온 고압의 기체형상의 냉매는 사방 전환 밸브(107)를 지나서, 실외 열교환기(102)에 흡입된다. 상술한 바와 같이, 냉방 운전시 또는 제상 운전시에는 실외 열교환기(102)는 응축기로서 기능한다. 따라서, 냉매는 실외 열교환기(102)에서 외기와 열교환되어 응축 액화되고, 과냉각 액상이 되어 실외 열교환기(102)로부터 토출된다. 실외 열교환기(102)로부터 토출된 고압 액상의 냉매는 냉매 회로(20) 측과 분기로(20a) 측으로 분기한다. 냉매 회로(20) 측의 냉매는 제1 팽창 밸브(103)에서 감압되어 기액 2상 상태가 된 후, 실내 열교환기(104)에 흡입된다. 냉방 운전시 또는 제상 운전시에는 실내 열교환기(104)는 증발기로서 기능한다. 따라서, 냉매는 실내 열교환기(104)에서 실내 공기와 열교환되어 증발 기화되고, 실내 열교환기(104)로부터 토출된다. 실내 열교환기(104)로부터 토출된 저압 기체형상의 냉매는 흡입부로부터 압축기(201)에 흡입되고, 다시 압축된다.
또한, 분기로(20a) 측으로 분기한 냉매는 리시버 감압 밸브(219)를 지난 후, 접속부로부터 리시버(218)에 흡입되고 저장된다. 한편, 냉방 운전시 및 난방 운전시에는 리시버 감압 밸브(219)는 공기 조화기 제어부(30)에 의해 전부 열림 상태로 설정된다. 이에 따라, 분기로(20a) 측으로 분기한 냉매는 리시버 감압 밸브(219)에 의해 감압되지 않고, 리시버(218)에 흡입된다.
여기서, 공기 조화기(100)에서는, 실외 열교환기(102)의 종류 등에 따라서는 실외 열교환기(102)의 용적이 실내 열교환기(104)의 용적과 비교하여 작은 경우가 있다. 이 경우, 실외 열교환기(102)가 응축기로서 기능하는 공기 조화기(100)의 냉방 운전시 및 제상 운전시에서는, 실외 열교환기(102)가 증발기로서 기능하는 난방 운전시와 비교하여, 냉매 회로(20)에 필요한 냉매량이 적어진다.
즉, 냉매 회로(20)에 대하여 난방 운전시의 최적의 양의 냉매가 봉입되는 공기 조화기(1)에서는, 냉방 운전 또는 제상 운전을 수행한 경우에, 냉매 회로(20)를 순환하는 냉매가, 냉방 운전시 또는 제상 운전시의 최적의 냉매량보다 과잉이 된다. 바꾸어 말하면, 냉방 운전시 및 제상 운전시에서는 냉매 회로(20)에 있어서 잉여 냉매가 발생한다.
그리고, 냉매 회로(20)를 순환하는 냉매량이 과잉 상태로 냉방 운전 또는 제상 운전을 수행한 경우, 압축기(201)로부터의 토출 압력이 상승하여, 공기 조화기(100)의 시스템 효율이 저하하는 경우가 있다.
이에 비하여, 본 실시형태의 공기 조화기(100)에서는, 냉방 운전시 및 제상 운전시에 있어 냉매의 일부가 리시버(218)에 저장됨으로써, 냉매 회로(20)에 잉여 냉매가 생기는 것이 억제된다. 이 때문에, 공기 조화기(100)에서는 최적의 냉매량으로 냉방 운전 및 제상 운전이 수행된다. 이에 따라, 냉방 운전시 및 제상 운전시에 있어서 압축기(201)로부터의 토출 압력이 상승하는 것이 억제된다. 그리고, 공기 조화기(100)의 냉방 운전시 및 제상 운전시에 있어서, 시스템 효율의 저하가 억제된다.
그런데, 종래의 공기 조화기(100)에서는 이하에 설명하는 바와 같이, 제1 팽창 밸브(103)에 흡입되기 전의 냉매에 과냉각도를 충분히 부여할 수 없다는 문제가 있다. 도 10은 종래의 공기 조화기(100)를 나타낸 도면이다. 한편, 도 10에서, 도 9에 나타낸 본 실시형태의 공기 조화기(100)와 동일한 구성에 대해서는 동일한 부호를 붙이고, 여기에서는 상세한 설명은 생략한다.
또한, 도 11은 냉방 운전시의 공기 조화기(100)의 압력-비엔탈피(specific enthalpy) 선도(p-h 선도)이다. 도 11에서, 일점 쇄선은 접속로(20b)의 접속 개폐 밸브(220)를 닫힘 상태로 한 경우의 본 실시형태의 공기 조화기(1)의 p-h 선도를 나타내고 있으며 파선은 도 10에 나타낸 종래의 공기 조화기(1)의 p-h 선도를 나타내고 있다. 여기서, 도 11에서, AB 사이가 압축기(201)에 의한 압축 행정에 대응하고, BC 사이가 실외 열교환기(102)에 의한 응축 행정에 대응한다. 또한, CD 사이가 제1 팽창 밸브(103)에 의한 감압 행정에 대응하고, DA 사이가, 실내 열교환기(104)에 의한 증발 행정에 대응한다.
도 10에 나타낸 바와 같이, 종래의 공기 조화기(100)에 있어서, 리시버(218p)는 냉매 회로(20) 중에서 실외 열교환기(102)와 제1 팽창 밸브(103) 사이에 위치하는 배관에 접속된다. 또한, 도 10에 나타낸 종래의 공기 조화기(100)는 본 실시형태의 공기 조화기(100)와는 달리, 분기로(20a)를 갖지 않는다.
도 10에 나타낸 종래의 공기 조화기(100)에서는 냉방 운전시 또는 제상 운전시에 생긴 잉여 냉매를, 리시버(218p)에 기액 2상 상태로 저장한다. 그리고, 도 10에 나타낸 공기 조화기(100)에서는 리시버(218p)에 저장되는 기액 2상의 냉매 중 액체형상의 냉매가, 리시버(218p)로부터 냉매 회로(20)에 배출되고, 제1 팽창 밸브(103)에 흡입된다.
이 때문에, 도 10에 나타낸 공기 조화기(100)에서는 리시버(218p)로부터 배출되어 제1 팽창 밸브(103)에 흡입되기 전의 냉매는 도 11에 있어서 점 X로 나타낸 바와 같이 포화 액체 상태 또는 포화액에 가까운 상태로 되어 있다. 바꾸어 말하면, 도 10에 나타낸 공기 조화기(100)에서는 제1 팽창 밸브(103)에 흡입되기 전의 냉매가 과냉각되기 어렵다.
또한, 도 10에 나타낸 공기 조화기(100)과 같이, 잉여 냉매가 리시버(218p)에 있어서 기액 2상 상태로 저장되는 경우, 저장되는 냉매의 체적이 커지기 쉽다. 이 때문에, 리시버(218p)가 대형화되는 경향이 있다.
이에 비하여, 본 실시형태의 공기 조화기(100)에서는 이하에 설명하는 바와 같이, 리시버(218)에서 잉여 냉매가 과냉각 상태로 저장된다. 이에 따라, 도 10에 나타낸 종래의 공기 조화기(100)와는 달리, 제1 팽창 밸브(103)에 흡입되기 전의 냉매가 과냉각되게 된다.
즉, 냉방 운전시 또는 제상 운전시에서는 실외 열교환기(102)에서 응축 액화되어 실외 열교환기(102)로부터 토출된 냉매 온도는 통상적으로 50℃~60℃ 정도이다. 한편, 리시버(218)의 주위 온도는 통상적으로 20℃~40℃ 정도이다. 따라서, 실외 열교환기(102)로부터 토출되어 리시버(218)에 흡입되는 냉매 온도는 리시버(218) 주위의 온도와 비교하여 낮게 되어 있다. 또한, 상술한 바와 같이, 본 실시형태의 리시버(218)는 열전도성의 재료에 의해 구성되어 있다.
이에 따라, 실외 열교환기(102)로부터 토출되어 리시버(218)에 흡입된 냉매는 리시버(218)의 벽면을 통하여 주위 공기와의 사이에서 열교환한다. 이 결과, 리시버(218) 내에서는 냉매가 과냉각되고 리시버(218) 내에는 잉여 냉매가 과냉각 액체 상태로 저장된다.
또한, 상술한 바와 같이, 리시버(218)가 설치되는 분기로(20a)는 냉매 회로(20) 중에서 실외 열교환기(102)와 제1 팽창 밸브(103) 사이의 배관에 접속되어 있다. 따라서, 리시버(218)에 저장되는 냉매가 과냉각 상태로 됨으로써, 도 11에 나타낸 바와 같이, 제1 팽창 밸브(103)에 흡입되기 전의 냉매에 과냉각도(SC)가 부여된다.
그 결과, 본 실시형태의 공기 조화기(100)에서는 냉방 운전시 및 제상 운전시의 냉동 효과(도 11에서의 W1)가, 도 10에 나타낸 종래의 공기 조화기(100)의 냉동 효과(도 11에서의 W2)와 비교하여 커진다. 그리고, 본 실시형태의 공기 조화기(100)에서는 도 10에 나타낸 공기 조화기(100)과 비교하여, 시스템 효율이 향상한다.
여기서, 본 실시형태의 공기 조화기(100)에 있어서 냉매로서 이용하는 R32는 예를 들면 R410A와 비교하여, 과냉각역에서의 엔탈피 차이(열량차이)가 크다. 이 때문에, R32 냉매, 또는 R32를 70 중량%이상 함유 하는 혼합 냉매를 이용하는 공기 조화기(100)에서는 응축 후, 제1 팽창 밸브(103)에 흡입되기 전의 냉매가 과냉각 상태가 되기 어려운 경향이 있다.
이에 비하여, 본 실시형태의 공기 조화기(100)에서는 상술한 바와 같이, 리시버(218)에서, 냉매를 과냉각 상태로 저장하고 있다. 이에 따라, 공기 조화기(100)에 있어서, R32 냉매, 또는 R32를 70 중량% 이상 함유하는 혼합 냉매를 이용한 경우이더라도, 응축 후, 제1 팽창 밸브(103)에 흡입되기 전의 냉매를 과냉각 상태로 할 수 있다.
또한, 본 실시형태의 공기 조화기(100)에서는 리시버(218)를 설치함으로써 제1 팽창 밸브(103)에 흡입되기 전의 냉매를 과냉각 상태로 함으로써, 예를 들면 냉매를 과냉각하기 위하여 실외 열교환기(102)를 대형화할 필요가 없어진다.
또한, 본 실시형태의 공기 조화기(100)에서는 냉방 운전시 및 제상 운전시에 있어서 잉여 냉매가 과냉각 액체 상태로 저장됨으로써, 잉여 냉매가 기액 2상 상태로 저장되는 경우와 비교하여, 리시버(218)를 소형화하는 것이 가능하게 된다.
이에 따라, 실외 열교환기(102) 및 리시버(218)가 설치되는 실외기(10)의 대형화가 억제된다.
또한, 본 실시형태의 공기 조화기(100)에서는 냉방 운전시 및 제상 운전시에 있어서 잉여 냉매가 과냉각 상태로 저장됨으로써, 잉여 냉매가 기액 2상 상태로 저장되는 경우와 비교하여, 리시버(218)에 잉여 냉매를 많이 저장할 수 있다. 이 때문에, 예를 들면 잉여 냉매가 생기기 쉬운 제상 운전시에 잉여 냉매가 리시버(218)에 많이 저장되고 압축기(201)의 신뢰성을 높일 수 있다.
또한, 본 실시형태의 공기 조화기(100)에서는 냉매 회로(20)에서 분기하는 분기로(20a)를 설치하고, 분기로(20a)의 종단에 리시버(218)를 설치하고 있다. 바꾸어 말하면, 리시버(218)는 냉매 회로(20)에 의한 냉동 사이클에 간섭하지 않는 위치에 설치되어 있다. 이에 따라, 예를 들면 리시버(218)가 냉매 회로(20)에 설치되는 종래의 공기 조화기(100)(도 10 참조)와 비교하여, 리시버(218)에 잉여 냉매를 저장하는 것에 따른 공기 조화 능력의 변동이 억제된다.
그런데, 공기 조화기(100)에서는 난방 운전시에는 실외 열교환기(102)에 있어서 냉매에 열을 흡수시켜 증발시킨다. 이 때문에, 외기의 습도가 높은 경우나 외기 온도가 낮은 경우 등에, 난방 운전시에 실외 열교환기(102)에 서리가 부착되는 경우가 있다. 그리고, 실외 열교환기(102)에 서리가 부착된 경우, 실외 열교환기(102)에서의 열교환이 저해되어 실외 열교환기(102)에서의 냉매의 증발을 방해할 수 있다. 이 결과, 냉매 회로(20)를 순환하는 냉매의 양이 감소하고, 공기 조화기(100)에 의한 난방 능력이 저하한다. 또한, 실외 열교환기(102)에 서리가 부착한 채로 방치한 경우, 실외 열교환기(102)에서의 냉매의 증발 온도가 저하하여, 보다 서리가 부착하기 쉬운 상태가 된다.
이러한 사태를 억제하기 위해, 본 실시형태의 공기 조화기(100)에서는 실외 열교환기(102)에 부착된 서리의 양이 미리 정한 양을 넘은 경우에는 실외 열교환기(102)로부터 서리를 없애는 제상 운전을 수행한다. 상술한 바와 같이, 공기 조화기(100)에 있어서 제상 운전시에는 냉방 운전시와 마찬가지로 냉매가 냉매 회로(20)를 순환한다. 이에 따라, 압축기(201)로부터 토출된 고온 고압의 냉매가 실외 열교환기(102)에 흡입되고, 실외 열교환기(102)에 부착한 서리가 융해된다. 이 결과, 실외 열교환기(102)로부터 서리가 제거된다.
또한, 본 실시형태의 공기 조화기(100)에서는 상술한 바와 같이, 제상 운전시에는 잉여 냉매가 리시버(218)에 저장된다. 통상, 제상 운전시는 냉방 운전시와 비교하여 외기 온도가 낮고 리시버(218) 주위의 온도가 낮다. 이 때문에, 냉방 운전시와 비교하여, 리시버(218) 내에 저장되는 냉매와 리시버(218)의 주위 공기 사이에 열교환을 하기 쉽다. 이 결과, 제상 운전시에는 리시버(218) 내에 많은 냉매가 저장되기 쉽다.
계속하여, 공기 조화기(100)에서는 제상 운전에 의해 실외 열교환기(102)로부터 서리가 제거된 후, 난방 운전으로 전환할 수 있다. 공기 조화기(100)에서는 제상 운전에서 난방 운전으로 전환된 경우, 리시버(218)에 저장된 냉매가 분기로(20a)를 지나서 냉매 회로(20)에 공급된다.
구체적으로 설명하면, 제상 운전에서 난방 운전으로 전환되면, 냉매 회로(20) 중에서 분기로(20a)가 접속되는 제1 팽창 밸브(103)와 실외 열교환기(102) 사이의 배관에는 제1 팽창 밸브(103)에서 감압된 기액 2상 상태의 냉매가 유입된다. 여기서, 난방 운전시에 있어서 제1 팽창 밸브(103)를 통과한 후의 냉매 온도는 -15℃~-5℃ 정도로 되어 있다. 이 때문에, 제상 운전에서 난방 운전으로 전환된 경우, 분기로(20a)를 통하여 제1 팽창 밸브(103)와 실외 열교환기(102) 사이의 배관에 접속되는 리시버(218) 내의 냉매 온도도, -15℃~-5℃ 정도가 된다.
이에 비하여, 리시버(218) 주위의 온도는 0℃~10℃ 정도이다. 즉, 제상 운전에서 난방 운전으로 전환된 경우에는 리시버(218) 내의 냉매 온도는 리시버(218) 주위의 온도와 비교하여 낮아진다. 이에 따라, 리시버(218) 내에 저장된 냉매의 일부가, 리시버(218)의 벽면을 통하여 주위의 공기와의 사이에서 열교환하여 증발 기화한다.
그리고, 리시버(218) 내에 있어서 냉매의 일부가 증발한 경우, 리시버(218) 내의 냉매는 기체형상의 부분과 액체형상의 부분으로 분리된다. 그리고, 리시버(218)의 연직 상측부에 기체형상의 냉매가 위치하고, 연직 하측부에 액체형상의 냉매가 위치하게 된다. 리시버(218) 내에 있어서 냉매의 증발이 더 진행되어 기체형상의 냉매가 증가하면, 기체형상의 냉매에 의해 액체형상의 냉매가 압압된다. 그 결과, 리시버(218)의 연직 하부에 설치된 접속부로부터, 분기로(20a)에 액체형상의 냉매가 배출된다.
리시버(218)로부터 분기로(20a)에 배출된 냉매는 리시버 감압 밸브(219)를 통과한 후, 냉매 회로(20)에 공급된다. 이에 따라, 냉매 회로(20)를 순환하는 냉매의 양이 증가하고, 난방 운전이 최적의 냉매량으로 행해진다.
또한, 제상 운전에서 난방 운전으로 전환된 경우, 상술한 바와 같이 리시버(218) 내의 압력 상당 포화 온도와 비교하여 리시버(218) 주위의 온도 쪽이 높다. 이 때문에, 난방 운전시에는 리시버(218) 내의 냉매는 과열 가스 상태가 유지된다. 이에 따라, 리시버(218) 내로의 액체 냉매의 침입가 억제된다. 즉, 난방 운전시에, 냉매가, 냉매 회로(20)로부터 분기로(20a)를 지나서 리시버(218) 내에 침입하는 것이 억제된다.
또한, 본 실시형태의 리시버(218)에서는 냉매가 출입하는 접속부가 리시버(218)의 연직 하부에 설치된다. 이에 따라, 예를 들면 공기 조화기(1)가 제상 운전에서 난방 운전으로 전환되고, 리시버(218)에 저장된 냉매가 리시버(218)로부터 배출될 때에, 냉매에 포함되는 윤활유 등이 리시버(218) 내에 잔존하는 것이 억제된다.
구체적으로는 본 실시형태의 공기 조화기(100)에 이용되는 R32는 예를 들면 R410A와 비교하여, 저온시에서의 윤활유 등의 용해도가 낮다. 이 때문에, R32 냉매, 또는 R32를 70 중량% 이상 함유하는 혼합 냉매에서는 R410A와 비교하여, 냉매와 윤활유가 분리되기 쉽다. 그러나, 본 실시형태에서는 접속부가 리시버(218)의 연직 하부에 설치됨으로써, 리시버(218) 내에 냉매로부터 분리된 윤활유가 중력에 의해 리시버(218)으로부터 배출된다. 이에 따라, 윤활유가 리시버(218)내에 잔존하는 것이 억제되고, 압축기(201)에서의 냉매의 윤활성의 저하가 억제된다.
계속하여, 공기 조화기(100)에 있어서 제상 운전에서 난방 운전으로 전환될 때의, 리시버 감압 밸브(219)의 개폐 제어에 대하여 설명한다. 본 실시형태의 공기 조화기(100)에서는 제상 운전에서 난방 운전으로 전환된 때에, 공기 조화기 제어부(30)에 의해, 리시버 감압 밸브(219)의 개도를 제상 운전시와 비교하여 작게 전환하고 있다.
먼저, 냉방 운전시 및 제상 운전시에는 잉여 냉매를 리시버(218)에 저장하기 위해, 공기 조화기 제어부(30)에 의해 리시버 감압 밸브(219)는 전부 열림 상태로 설정된다. 이에 따라, 냉방 운전시 및 제상 운전시에는 분기로(20a)에 침입한 잉여 냉매가 감압되지 않고 리시버 감압 밸브(219)를 통과한다. 그리고, 리시버 감압 밸브(219)를 통과한 냉매는 상술한 바와 같이 과냉각 상태로 리시버(218)에 저장되게 된다.
한편, 제상 운전에서 난방 운전으로 전환될 때에는, 난방 운전으로 전환하는 타이밍에 맞추어, 공기 조화기 제어부(30)에 의해 리시버 감압 밸브(219)의 개도가 작게 전환된다. 이에 따라, 리시버 감압 밸브(219)가 전부 열림 상태인 경우와 비교하여, 단위 시간당 리시버 감압 밸브(219)를 통과하는 냉매의 유량이 적게 된다.
이와 같이 리시버 감압 밸브(219)의 개도를 제어함으로써, 제상 운전에서 난방 운전으로 전환된 경우에, 리시버(218)로부터 배출된 냉매가 냉매 회로(20)에 급격하게 흘러드는 것이 억제된다.
즉, 제상 운전에서 난방 운전으로 전환된 경우, 상술한 바와 같이 리시버(218) 내에서 냉매의 증발이 일어나, 리시버(218)로부터 대량의 냉매가 배출되게 된다. 따라서, 리시버 감압 밸브(219)가 전부 열림 상태인 경우, 리시버(218)로부터 배출된 대량의 냉매가, 분기로(20a)를 통하여 냉매 회로(20)에 급격하게 흘러든다. 그리고, 리시버(218)로부터 배출된 냉매가 냉매 회로(20)에 급격하게 흘러들었을 경우, 압축기(201)에 흡입되는 냉매가 과잉량이 된다. 이 경우, 압축기(201)가 고장날 우려가 있다.
이에 비하여, 본 실시형태에서는,리시버 감압 밸브(219)의 개도를 작게 하고, 리시버 감압 밸브(219)를 통과하는 냉매의 양을 조정함으로써, 분기로(20a)로부터 냉매 회로(20)에 흘러드는 냉매량이 감소한다. 이에 따라, 압축기(201)에 흡입되는 냉매의 양이 과잉이 되는 것이 억제되고 압축기(201)의 고장이 억제된다.
계속하여, 접속로(20b) 및 접속 개폐 밸브(220)에 의한 동작에 대하여 설명한다. 도 12는 본 실시형태에서의 접속 개폐 밸브(220)의 개폐와 압축기(201)로부터 토출되는 냉매 온도 간의 관계를 나타낸 도면이다. 또한, 도 13은 본 실시형태의 공기 조화기 제어부(30)에 의해 실행되는 접속 개폐 밸브(220)의 개폐 제어의 순서를 나타낸 순서도다. 본 실시형태의 공기 조화기(100)에서는 토출 온도 센서(206)에 의한 온도 검지 결과에 의거하여, 접속 개폐 밸브(220)의 개폐를 제어하고 있다. 이에 따라, 압축기(201)로부터 토출되는 냉매 온도(토출 온도)의 상승을 억제하고 있다. 이하에서는, 접속 개폐 밸브(220)의 개폐 제어에 대하여, 상세하게 설명한다.
본 실시형태의 공기 조화기(100)에서는 통상적으로 접속 개폐 밸브(220)는 닫힘 상태로 되어 있다.
먼저, 공기 조화기 제어부(30)는 토출 온도 센서(206)에 의해 검지되는 압축기(201)로부터 토출되는 냉매 온도(토출 온도 Td)를 취득한다(스텝 301). 그 다음에, 공기 조화기 제어부(30)는 스텝 301에서 취득한 토출 온도 Td를, 미리 정한 기준 온도의 일례인 제1 기준 온도 T1와 비교한다(스텝(302)). 토출 온도 T가 제1 기준 온도 T1 미만이라고 판정한 경우(스텝(302)에서 NO), 공기 조화기 제어부(30)는 스텝 301으로 돌아가서, 처리를 계속한다.
한편, 토출 온도 T가 제1 기준 온도 T1 이상이라고 판정한 경우(스텝(302)에서 YES), 공기 조화기 제어부(30)는 접속 개폐 밸브(220)를 닫힘 상태에서 열림 상태로 전환한다(스텝 303). 이에 따라, 리시버(218)에 저장된 과냉각 상태의 냉매가, 접속로(20b)를 지나서 냉매 회로(20)의 저압 배관(20s)에 공급된다.
여기서, 접속로(20b)는 분기로(20a) 중에서 리시버(218)와 리시버 감압 밸브(219) 사이의 배관에 접속된다. 이 때문에, 접속 개폐 밸브(220)를 열림 상태로 한 경우, 리시버(218)에 저장된 냉매가, 리시버 감압 밸브(219)에 의해 감압되지 않고, 과냉각 상태인 채로 저압 배관(20s)에 공급된다.
그 결과, 저압 배관(20s)으로부터 압축기(201)에 흡입되는 냉매 온도가 저하하고, 압축기(201)가 냉각되게 된다. 그리고, 압축기(201)로부터 토출되는 냉매의 토출 온도 T가 저하한다.
계속하여, 공기 조화기 제어부(30)는 토출 온도 센서(206)에 의해 검지되는 토출 온도 Td를 다시 취득한다(스텝 304).
그 다음에, 공기 조화기 제어부(30)는 스텝 304에서 취득한 토출 온도 Td를, 미리 정한 다른 기준 온도의 일례인 제2 기준 온도 T2와 비교한다(스텝 305). 토출 온도 Td가 제2 기준 온도 T2보다 높다고 판정한 경우(스텝 305에서 NO), 공기 조화기 제어부(30)는 스텝 304로 돌아가서, 처리를 계속한다.
한편, 토출 온도 Td가 제2 기준 온도 T2 이하라고 판정한 경우(스텝 305에서 YES), 공기 조화기 제어부(30)는 접속 개폐 밸브(220)를 열림 상태에서 닫힘 상태로 전환한다(스텝 306).
이에 따라, 접속로(20b)를 통한 저압 배관(20s)에의 냉매의 공급이 정지한다. 이 결과, 압축기(201)로부터 토출되는 냉매의 토출 온도 T의 저하가 종료한다.
이상 설명한 바와 같이, 본 실시형태의 공기 조화기(100)에서는 접속 개폐 밸브(220)의 개폐 제어를 반복하여 수행함으로써, 압축기(201)로부터 토출되는 냉매 온도가 미리 정한 범위 내(제1 기준 온도 T1와 제2 기준 온도 T2 사이)에 들어가게 된다.
이 결과, 공기 조화기(100)에 있어서, 안정된 공기 조화 운전을 수행하는 것이 가능하게 되고, 시스템 효율이 저하하는 것이 억제된다. 또한, 토출 온도가 상승하는 것에 수반하는 압축기(201)의 문제의 발생이 억제된다.
본 실시형태의 공기 조화기(100)에서는 냉매로서 R32 냉매, 또는 R32를 70 중량% 이상 함유하는 혼합 냉매를 이용하고 있다. R32는 R410A와 비교하여 압축기(201)로부터 토출되는 냉매의 토출 온도가 높아지기 쉬운 성질을 갖는다.
또한, 예를 들면 외기 온도가 낮은 상태에서의 난방 운전시 등의 압축기(201)에서의 냉매의 압축비가 큰 경우에는 냉매의 토출 온도 Td가 상승하기 쉽다.
이에 비하여, 본 실시형태에서는, 압축기(201)를 리시버(218)에 저장된 과냉각 상태의 냉매에 의해 직접 냉각할 수 있다. 이 때문에, 토출 온도 Td가 상승하기 쉬운 냉매를 이용하는 경우나, 토출 온도 Td가 상승하기 쉬운 조건 하에서 공기 조화 운전을 수행하는 경우이더라도, 토출 온도 Td의 상승이 억제된다.
여기서, 제1 기준 온도 T1는 압축기(201)의 토출 온도 한계 Ta보다 낮은 온도로 설정된다. 한편, 토출 온도 한계 Ta는 압축기(201)의 씰재나 윤활유의 열화 등의 압축기(201)의 문제가 일어날 수 있는 온도이다. 제1 기준 온도 T1를 토출 온도 한계 Ta보다 낮은 온도로 설정함으로써, 토출 온도 T가 토출 온도 한계 Ta에 도달하는 것이 억제되고 압축기(201)의 열화가 억제된다. 이 예에서는 압축기(201)의 토출 온도 한계 Ta는 120℃이며, 제1 기준 온도 T1는 110℃로 설정되어 있다.
또한, 제2 기준 온도 T2는 특히 한정되는 것은 아니지만, 제1 기준 온도 T1보다 낮은 온도로 설정된다. 이 예에서는 제2 기준 온도 T2는 90℃로 설정되어 있다.
한편, 본 실시형태에서는, 토출 온도 Td에 따라 접속 개폐 밸브(220)를 열림 상태 또는 닫힘 상태 중의 어느 하나로 전환하는 구성으로 했지만, 토출 온도 Td에 따라 접속 개폐 밸브(220)의 개도를 다단계로 바꾸는 구성으로 해도 무방하다. 구체적으로는 공기 조화기 제어부(30)에 의해, 토출 온도 Td가 높을 수록 접속 개폐 밸브(220)의 개도를 크게 하고, 토출 온도 Td가 낮을 수록 접속 개폐 밸브(220)의 개도를 작게 하는 제어를 수행해도 무방하다.
또한, 본 실시형태의 공기 조화기(100)에서는 접속 개폐 밸브(220)를 열림 상태로 함으로써, 냉매 회로(20)을 순환하는 냉매량을 조정할 수도 있다. 즉, 접속 개폐 밸브(220)를 열림 상태로 하면, 리시버(218)에 저장된 냉매가 냉매 회로(20)의 저압 배관(20s)에 공급된다. 이에 따라, 리시버(218)에 저장되는 냉매량이 감소하고, 냉매 회로(20)를 순환하는 냉매량이 증가한다.
따라서, 외기 온도나 실온 등의 조건에 따라서, 예를 들면 외기 온도가 낮은 상태에서의 냉방 운전시 등에 접속 개폐 밸브(220)를 열림 상태로 하고, 냉매 회로(20)를 순환하는 냉매량을 증가시킴으로써, 최적의 냉매량으로 공기 조화 운전을 수행할 수 있다.
또한, 이하에 설명하는 바와 같이, 제1 팽창 밸브(103)를 개폐 밸브로 하고, 공기 조화기 제어부(30)에 의해, 제1 팽창 밸브(103), 리시버 감압 밸브(219) 및 접속 개폐 밸브(220)의 개폐를 연동하여 제어해도 무방하다. 이에 따라, 예를 들면 냉방 운전을 정지 후, 다시 냉방 운전을 수행할 때에, 압축기(201)에 흡입되는 냉매 온도를 저하시킬 수 있다.
구체적으로는 냉방 운전을 정지할 때에, 공기 조화기 제어부(30)에 의해, 리시버 감압 밸브(219)를 열림 상태인 채로 유지하고, 접속 개폐 밸브(220)를 닫힘 상태인 채로 유지함과 아울러, 제1 팽창 밸브(103)를 닫힘 상태로 전환한다. 이에 따라, 냉방 운전을 정지할 때에, 냉매 회로(20)로부터 분기로(20a)에 흐르는 냉매량이 증가하고 리시버(218) 내에 냉매가 저장된다. 그리고 그 후, 냉방 운전을 재개할 때, 공기 조화기 제어부(30)에 의해, 제1 팽창 밸브(103) 및 접속 개폐 밸브(220)를 열림 상태로 전환한다. 이에 따라, 리시버(218) 내에 저장된 과냉각 상태의 냉매가 저압 배관(20s)에 공급되고 압축기(201)에 흡입되는 냉매 온도가 저하한다. 이 결과, 압축기(201)의 온도가 높아지기 쉬운 냉방 운전의 기동시에 있어서도, 냉방 운전의 시스템 효율의 저하가 억제된다.
한편, 상술한 예에서는, 유량 조정 수단의 일례로서 리시버 감압 밸브(219)를 갖는 공기 조화기(1)에 대하여 설명했다. 그러나, 유량 조정 수단은 감압 밸브에 한정되지 않는다. 예를 들면, 유량 조정 수단으로서 개폐 밸브나 유량 제어 밸브 등을 이용해도 무방하다. 이 경우, 리시버(218)로부터 분기로(20a)를 통하여 냉매 회로(20)에 배출되는 냉매의 유량 및 냉매의 속도를 조정할 수 있다.
한편, 상기 설명에서는 공기 조화기(100)에 이용하는 냉매로서 R32 냉매, 또는 R32를 70 중량% 이상 함유하는 혼합 냉매를 예로 들었지만, 본 실시형태에서는 다른 냉매를 이용하는 공기 조화기(100)에 대해서도 적용할 수 있다. 다만, 상술한 바와 같이 R32의 특성을 고려하면, 본 실시형태는 R32 냉매, 또는 R32를 70 중량% 이상 함유하는 혼합 냉매를 이용하는 공기 조화기(100)에 의해 바람직하게 적용된다.
<제5 실시형태>
이하, 본 발명의 제5 실시형태에 대하여 도면을 참조하여 설명한다.
본 실시형태의 공기 조화기(100)는 상기 제 4 실시형태의 구성에 더하여, 도 14에 나타낸 바와 같이, 실외 열교환기(102) 또는 실내 열교환기(104)에서 응축된 후의 냉매를 과냉각하는 과냉각기(서브 쿨러)(80)를 갖는다. 이 예에서는 과냉각기(80)는 공기 조화기(1)의 실외기(10)에 설치되어 있다.
도 15에 나타낸 바와 같이, 과냉각기(80)는 서로 평행하게 늘어선 제1 배관(81) 및 제2 배관(82)을 갖는다. 제1 배관(81)은 냉매가 유입되는 제1 입구부(81a), 및 냉매가 배출되는 제1 출구부(81b)를 갖는다. 마찬가지로 제2 배관(82)은 냉매가 유입되는 제2 입구부(82a), 및 냉매가 배출되는 제2 출구부(82b)를 갖는다.
본 실시형태에서는 제1 배관(81)의 제1 입구부(81a) 및 제2 배관(82)의 제2 입구부(82a)는 과냉각기(80)에 있어서 냉매의 반송 방향으로 대향하는 위치에 설치된다. 마찬가지로, 제1 배관(81)의 제1 출구부(81b) 및 제2 배관(82)의 제2 출구부(82b)는, 과냉각기(80)에 있어서 냉매의 반송 방향으로 대향하는 위치에 설치된다.
이에 따라, 과냉각기(80)에서는 제1 배관(81)을 흐르는 냉매의 유통 방향과 제2 배관(82)을 흐르는 냉매의 유통 방향이 반대 방향이 된다. 바꾸어 말하면, 과냉각기(80)에서는 제1 배관(81)을 흐르는 냉매와 제2 배관(82)을 흐르는 냉매가, 대향류로 되어 있다.
또한, 도 14에 나타낸 바와 같이, 공기 조화기(1)는 과냉각기(80)에서 과냉각된 냉매를 팽창 기화시켜서 저온·저압으로 하는 제1 팽창 밸브(204a, 204b)를 갖는다. 이 예에서는 한쪽의 제1 팽창 밸브(204a)는 실내기(10)에 설치되고, 다른쪽의 제1 팽창 밸브(204b)는 실외기(10)에 설치되어 있다. 본 실시형태에서는 공기 조화기(100)에 있어서 냉방 운전 또는 제상 운전을 수행할 때, 한쪽의 제1 팽창 밸브(204a)에서 냉매를 팽창 기화시킨다. 또한, 난방 운전을 수행할 때에는, 다른쪽의 제1 팽창 밸브(204b)에서 냉매를 팽창 기화시킨다.
또한, 공기 조화기(100)는 후술하는 접속로(25)를 통과하는 냉매의 양을 조정하는 접속 개폐 밸브(221)를 구비한다.
또한, 공기 조화기(100)는 후술하는 과냉각 분기로(22)를 흐르는 냉매를 감압함과 아울러, 냉매의 유량을 조정하는 과냉각 감압 밸브(제2 팽창 밸브)(215)를 구비한다.
또한, 본 실시형태의 압축기(201)는 후술하는 인젝션로(24)를 통하여 중간압의 냉매가 흡입되는 중간압 흡입부(201c)를 갖는다.
본 실시형태의 공기 조화기(1)는 상술한 과냉각기(80)가 설치되는 과냉각로(21)를 구비한다. 과냉각로(21)는 냉매 회로(20) 중에서 한쪽의 제1 팽창 밸브(204a)와 다른쪽의 제1 팽창 밸브(204b) 사이의 배관에, 후술하는 브릿지 회로(23)를 통하여 접속된다.
과냉각로(21)는 브릿지 회로(23)의 후술하는 제2 접속점(23b)과, 과냉각기(80)에서의 제1 배관(81)의 제1 입구부(81a)를 접속하는 상류측 과냉각로(21a)를 갖는다. 또한, 과냉각로(21)는 과냉각기(80)에서의 제1 배관(81)의 제1 출구부(81b)와, 브릿지 회로(23)의 후술하는 제4 접속점(23d)을 접속하는 하류측 과냉각로(21b)를 갖는다.
또한, 본 실시형태의 공기 조화기(100)는 상류측 과냉각로(21a)에서 분기하여, 과냉각기(80)에서의 제2 배관(82)의 제2 입구부(82a)에 접속되는 과냉각 분기로(22)를 구비한다.
또한, 공기 조화기(100)는 냉방 운전시(제상 운전시) 및 난방 운전시에서, 과냉각로(21) 및 과냉각 분기로(22)에서의 냉매의 유통 방향을 한 방향으로 하기 위한 브릿지 회로(23)를 구비한다.
브릿지 회로(23)는 4개의 배관이 접속되어 구성된다. 구체적은 브릿지 회로(23)는 도 15에 나타낸 바와 같이, 제1 역지 밸브(231), 제2 역지 밸브(232), 제3 역지 밸브(233) 및 제4 역지 밸브(234)가 각각 형성된 4개의 배관을 갖는다. 그리고, 이것들이, 제1 접속점(23a), 제2 접속점(23b), 제3 접속점(23c) 및 제4 접속점(23d)을 통하여 폐루프 형상으로 접속된다.
브릿지 회로(23)에 있어서, 제1 접속점(23a)에는 냉매 회로(20) 중에서 다른쪽의 제1 팽창 밸브(204b)에서 연장되는 배관이 접속된다. 또한, 제3 접속점(23c)에는 냉매 회로(20) 중에서 한쪽의 제1 팽창 밸브(204a)에서 연장되는 배관이 접속된다. 또한, 제2 접속점(23b)에는 상류측 과냉각로(21a)가 접속된다. 또한, 제4 접속점(23d)에는 하류측 과냉각로(21b)가 접속된다.
또한, 공기 조화기(1)는 과냉각기(80)의 제2 배관(82)을 통과한 냉매를, 압축기(201)의 중간압 흡입부(201c)에 흡입하기 위한 인젝션로(24)를 구비한다. 도 15에 나타낸 바와 같이, 인젝션로(24)는 과냉각기(80)에서의 제2 배관(82)의 제2 출구부(82b)에 접속된다.
또한, 공기 조화기(1)는 인젝션로(24)와 냉매 회로(20)에서의 저압 배관(20s)를 접속하는 접속로(25)를 구비한다.
또한, 본 실시형태의 공기 조화기(100)는 과냉각 분기로(22)에 설치되고, 과냉각기(80)의 제2 배관(82)에 흡입되기 전의 냉매 온도를 검지하는 입구 온도 센서(222)를 구비한다. 또한, 공기 조화기(100)는 인젝션로(24)에 설치되고, 제2 배관(82)의 제2 출구부(82b)로부터 배출된 냉매 온도를 검지하는 출구 온도 센서(223)를 구비한다. 또한, 공기 조화기(100)는 하류측 과냉각로(21b)에 설치되고, 제1 배관(81)의 제1 출구부(81b)로부터 배출된 냉매 온도를 검지하는 과냉각 온도 센서(224)를 구비한다.
본 실시형태에서는, 입구 온도 센서(222), 출구 온도 센서(223) 및 과냉각 온도 센서(224)에 의한 검지 결과에 의거하여, 공기 조화기 제어부(30)에 의해 과냉각 감압 밸브(215)의 개도가 제어된다. 한편, 공기 조화기 제어부(30)에 의한 과냉각 감압 밸브(215)의 개도 제어에 대해서는 후단에서 설명한다.
본 실시형태의 공기 조화기(100)에서는 냉매로서 R32(HFC32), 및 HFO1234yf 또는 HFO1234ze를 포함한, 2종 또는 3종 혼합의 비공비 혼합 냉매를 이용하고 있다. 또한, 이 비공비 혼합 냉매는 자연 냉매를 포함하고 있어도 무방하다.
여기서, R32, 및 HFO1234yf 또는 HFO1234ze를 포함한 비공비 혼합 냉매는 예를 들면 R32 냉매 등과 비교하여, 온난화 계수가 낮다. 따라서, 본 실시형태의 공기 조화기(100)에서는 냉매로서 R32, 및 HFO1234yf 또는 HFO1234ze를 포함한 비공비 혼합 냉매를 이용함으로써, 환경에 대한 영향이 감소한다.
본 실시형태의 공기 조화기(100)에서는 상기 비공비 혼합 냉매에 있어서, R32의 함유량을 70 중량% 미만, HFO1234yf 또는 HFO1234ze의 함유량을 30 중량% 미만으로 하고, 나머지를 자연 냉매로 하는 것이 바람직하다. 비공비 혼합 냉매의 혼합비를 이와 같이 설정함으로써, 비공비 혼합 냉매의 포화역에서의 온도 구배가 2도 이상이 된다. 이 경우, 후술하는 바와 같이, 과냉각기(30)에서의 열교환 효율이 향상하고, 공기 조화기(100)의 냉동 효과가 향상한다.
계속하여, 본 실시형태의 공기 조화기(100)에서의 냉매의 거동에 대하여, 도 14 및 도 15를 참조하여 설명한다. 한편, 본 실시형태의 공기 조화기(100)에서는 냉매 회로(20)에서의 냉매의 거동은 상기 제 4 실시형태와 동일하다. 따라서, 여기에서는 브릿지 회로(23), 과냉각로(21) 및 과냉각 분기로(22)에서의 냉매의 거동에 대하여 설명한다.
상술한 바와 같이, 브릿지 회로(23)는 제1 역지 밸브(231)~ 제4 역지 밸브(234)를 구비한다. 그리고, 도 15에서 화살표로 나타낸 바와 같이, 제1 역지 밸브(231)~ 제4 역지 밸브(234)에서는 냉매가 한 방향으로 흐른다.
먼저, 공기 조화기(100)에 있어서 냉방 운전 또는 제상 운전을 할 때, 실외 열교환기(102)에서 응축되고 다른쪽의 제1 팽창 밸브(204b)를 통과한 냉매가, 제1 접속점(23a)로부터 브릿지 회로(23)에 유입된다. 브릿지 회로(23)에 유입된 냉매는 제1 역지 밸브(231)를 통과한 후, 제2 접속점(23b)으로부터 상류측 과냉각로(21a)에 배출된다.
계속하여, 상류측 과냉각로(21a)에 배출된 냉매는 과냉각기(80)의 제1 배관(31)을 향하는 과냉각로(21)측과, 제2 배관(82)을 향하는 과냉각 분기로(22) 측으로 분기한다.
과냉각로(21) 측의 냉매는 제1 입구부(81a)로부터 제1 배관(81)에 유입된다. 그리고, 제1 배관(81)에 유입된 냉매는 제2 배관(82)을 흐르는 냉매와의 사이에서 열교환된 후, 제1 출구부(81b)로부터 하류측 과냉각로(21b)에 배출된다. 하류측 과냉각로(21b)에 배출된 냉매는 제4 접속점(23d)를 지나서 브릿지 회로(23)에 유입된다. 브릿지 회로(23)에 유입된 냉매는 제3 역지 밸브(233)을 통과한 후, 제3 접속점(23c)으로부터 냉매 회로(20)에 배출된다. 냉매 회로(20)에 배출된 냉매는 한쪽의 제1 팽창 밸브(204a)에서 감압된 후, 상기 제 4 실시형태와 마찬가지로 냉매 회로(20)를 순환한다.
또한, 과냉각 분기로(22) 측의 냉매는 제2 입구부(82a)로부터 제2 배관(82)에 유입된다.
그리고, 제2 배관(82)에 유입된 냉매는 제1 배관(81)을 흐르는 냉매와의 사이에서 열교환된 후, 제2 출구부(82b)로부터 인젝션로(24)에 배출된다.
그리고, 인젝션로(24)에 배출된 냉매는 중간압 흡입부(201c)로부터 압축기(201)에 흡입된다.
한편, 과냉각기(80)에서의 냉매의 열교환에 대해서는 후단에서 상세하게 설명한다.
한편, 공기 조화기(100)에 있어서 난방 운전을 할 때, 실내 열교환기(104)에서 응축되고 한쪽의 제1 팽창 밸브(204a)를 통과한 냉매가, 제3 접속점(23c)으로부터 브릿지 회로(23)에 유입된다. 브릿지 회로(23)에 유입된 냉매는 제2 역지 밸브(232)를 통과한 후, 제2 접속점(23b)로부터 상류측 과냉각로(21a)에 배출된다.
계속하여, 상류측 과냉각로(21a)에 배출된 냉매는 과냉각기(80)의 제1 배관(81)을 향하는 과냉각로(21)측과, 제2 배관(82)을 향하는 과냉각 분기로(22)측으로 분기한다.
과냉각로(21)측의 냉매는 냉방 운전시와 마찬가지로, 제1 입구부(81a)로부터 제1 배관(81)에 유입된다. 그리고, 제1 배관(81)에 유입된 냉매는 제2 배관(82)을 흐르는 냉매와의 사이에서 열교환된 후, 제1 출구부(81b)로부터 하류측 과냉각로(21b)에 배출된다. 하류측 과냉각로(21b)에 배출된 냉매는 제4 접속점(23d)를 지나서 브릿지 회로(23)에 유입된다. 브릿지 회로(23)에 유입된 냉매는 제4 역지 밸브(234)를 통과한 후, 제1 접속점(23a)로부터 냉매 회로(20)에 배출된다. 냉매 회로(20)에 배출된 냉매는 한쪽의 제1 팽창 밸브(204b)에서 감압된 후, 상기 제 4 실시형태와 마찬가지로 냉매 회로(20)를 순환한다.
또한, 과냉각 분기로(22)측의 냉매는 냉방 운전시와 마찬가지로, 제2 입구부(82a)로부터 제2 배관(82)에 유입된다. 그리고, 제2 배관(82)에 유입된 냉매는 제1 배관(81)을 흐르는 냉매와의 사이에서 열교환된 후, 제2 출구부(82b)로부터 인젝션로(24)에 배출된다.
그리고, 인젝션로(24)에 배출된 냉매는 중간압 흡입부(201c)로부터 압축기(201)에 흡입된다.
이상 설명한 바와 같이, 본 실시형태에서는 과냉각로(21) 및 과냉각 분기로(22)에서의 냉매의 유통 방향이, 냉방 운전시(제상 운전시) 및 난방 운전시에서 동일하게 되어 있다. 이에 따라, 과냉각기(80)의 제1 배관(81) 및 제2 배관(82)을 흐르는 냉매가, 냉방 운전시와 난방 운전시 양쪽에서, 대향류로 되어 있다.
계속하여, 본 실시형태의 과냉각기(80)에서의 냉매의 열교환에 대하여 설명한다.
도 16은 본 실시형태가 적용되는 공기 조화기(100)의 압력-비엔탈피(specific enthalpy) 선도(p-h 선도)이다. 여기에서는 냉방 운전시의 공기 조화기(100)에서의 p-h 선도를 나타내고 있지만, 난방 운전시도 동일한 경향을 나타낸다.
도 16에 있어서, AB 사이가 압축기(201)에 의한 압축 행정에 대응하고, BC 사이가 실외 열교환기(102)에 의한 응축 행정에 대응한다. 또한, CE 사이가 과냉각 감압 밸브(215)에 의한 감압 행정에 대응한다. 또한, 점 G는 압축기(201)에서의 중간압 흡입부(201c)에 대응한다.
또한, CC′사이와 EF 사이가 과냉각기(80)에 의한 열교환 행정에 대응한다. 구체적으로는 CC′사이는 과냉각기(80)의 제1 배관(81)에서의 제1 입구부(81a)로부터 제1 출구부(81b)까지의 냉매 상태에 대응한다. 또한, EF 사이는 과냉각기(80)의 제2 배관(82)에서의 제2 입구부(82a)로부터 제2 출구부(82b)까지의 냉매 상태에 대응한다.
또한, C′D 사이가 제1 팽창 밸브(204a)에 의한 감압 행정에 대응하고, DA 사이가 실내 열교환기(104)에 의한 증발 행정에 대응한다.
한편, 도 16에서 일점 쇄선 Y1, Y2는 등온선을 나타내고 있다. 여기서, Y1는 점 C(제1 입구부(81a))에서의 냉매 온도에 대응한다. 또한, Y2는 점 C′(제1 출구부(81b))에서의 냉매 온도에 대응한다.
과냉각기(80)에서는 상술한 바와 같이, 제1 배관(81)을 흐르는 냉매와 제2 배관(82)을 흐르는 냉매 사이에서 열교환을 수행한다. 이에 따라, 제1 배관(81)을 흐르는 냉매를 과냉각한다.
구체적으로 설명하면, 제1 배관(81)에는 실외 열교환기(102) 또는 실내 열교환기(104)에 의해 응축된 후의 냉매가 흐른다. 즉, 제1 배관(81)에는 도 16에서 CC′ 사이에 나타낸 바와 같이, 응축 후의 고압 액체 상태의 냉매가 흐른다.
이에 비하여, 제2 배관(82)에는 과냉각 분기로(22)에 설치된 과냉각 감압 밸브(215)에서 감압된 후의 냉매가 흐른다. 즉, 제2 배관(32)에는 도 16에서 EF 사이에 나타낸 바와 같이, 제1 배관(81)을 흐르는 냉매와 비교하여 저온·저압의 기액 2상 상태(포화역)의 냉매가 흐른다.
그리고, 과냉각기(80)에서는 제2 배관(82)을 흐르는 냉온·저압의 냉매에 의해, 제1 배관(81)을 흐르는 고압 액체 상태의 냉매로부터 열이 빼앗긴다. 이에 따라, 과냉각기(80)에서는 제1 배관(81)을 흐르는 냉매가 과냉각된다.
도 17a 및 도 17b는 과냉각기(80)에서의 제1 배관(81)을 흐르는 냉매 온도와 제2 배관(82)을 흐르는 냉매 온도 간의 관계를 나타낸 도면이다. 여기서, 도 17a는 제1 배관(81)을 흐르는 냉매와 제2 배관(82)을 흐르는 냉매가 대향류로 되어 있는 본 실시형태의 관계를 나타내고 있다. 한편, 도 17(b)은 제1 배관(81)을 흐르는 냉매와 제2 배관(82)을 흐르는 냉매가 평행류로 되어 있는 경우의 관계를 나타내고 있다.
상술한 바와 같이, 본 실시형태에서는 냉매로서 R32, 및 HFO1234yf 또는 HFO1234ze를 포함한 비공비 혼합 냉매를 이용한다. 그리고, 비공비 혼합 냉매를 이용함으로써, 기액 2상 상태(포화역)의 냉매가 흐르는 제2 배관(82)에서는, 냉매에 온도 구배가 생긴다. 바꾸어 말하면, 도 17a에 나타낸 바와 같이, 제2 입구부(82a)(점 E)와 제2 출구부(82b)(점 F)에서 냉매에 온도차(ΔS1)가 생긴다.
그리고, 상술한 바와 같이, 본 실시형태에서는 과냉각기(80)에 있어서, 제1 배관(81)과 제2 배관(82)을 흐르는 냉매가 대향류로 되어 있다. 이에 따라, 도 17(a)이나 도 16에 나타낸 바와 같이, 제1 배관(81)을 흐르는 냉매는 제1 입구부(81a)(점 C)로부터 제1 출구부(81b)(점 C′)까지의 전역에 걸쳐서 제2 배관(82)을 흐르는 냉매와의 온도차가 확보된다. 바꾸어 말하면, 제1 배관(81)과 제2 배관(82)을 흐르는 냉매가 평행류인 도 17(b)의 경우와 비교하여, 제1 배관(81)과 제2 배관(82)의 냉매의 평균 온도차가 커진다.
이에 따라, 예를 들면 제1 배관(81)과 제2 배관(82)을 흐르는 냉매가 평행류인 경우와 비교하여, 한쪽의 제1 팽창 밸브(204a)(난방 운전시에는 다른쪽의 제1 팽창 밸브(204b))에 흡입되기 전의 냉매에 의해 큰 과냉각도(SC)가 부여된다.
그리고, 본 실시형태의 공기 조화기(100)에서는 본 구성을 채용하지 않는 경우와 비교하여, 냉방 운전시 및 난방 운전시 양쪽에서 냉동 효과가 향상한다.
그런데, 상술한 바와 같이, 본 실시형태에서는 냉매로서 R32, 및 HFO1234yf 또는 HFO1234ze를 포함한 비공비 혼합 냉매를 이용한다.
R32와 HFO1234yf 또는 HFO1234ze를 포함한 비공비 혼합 냉매는 예를 들면 R32 냉매와 비교하여 냉동 효과가 낮다. 이 때문에, R32 냉매와 동등한 효율을 얻기 위해서는 공기 조화기(100)에서 순환하는 냉매량을 많이 할 필요가 있다. 그러나, 공기 조화기(100)에서 순환하는 냉매량을 많게 한 경우, 과냉각기(80)에 있어서 생기는 압력 손실이 커지기 쉽다. 이 경우, 과냉각기(80)에서의 열교환 효율이 저하하여, 과냉각기(80)에 있어서 냉매를 충분히 과냉각하는 것이 곤란하게 된다.
이에 비하여, 본 실시형태의 과냉각기(80)에서는 냉방 운전시 및 난방 운전시 양쪽에 있어서 대향류로 열교환하고 있다. 이에 따라, 과냉각기(80)에 있어서 평행류로 열교환을 수행하는 경우와 비교하여, 과냉각기(80)에서의 열교환 효율의 저하가 억제된다. 그 결과, 과냉각기(80)에 있어서 냉매를 충분히 과냉각하는 것이 가능하게 된다. 그리고, R32 냉매와 비교하여 냉동 효과가 낮은 R32와 HFO1234yf 또는 HFO1234ze를 포함한 비공비 혼합 냉매를 이용하는 경우이더라도, 공기 조화기(100)에서의 냉동 효과의 저하가 억제된다.
또한, 본 실시형태에서는 과냉각기(80)의 상류 측에 있어서 과냉각로(21)에서 분기하는 과냉각 분기로(22)를 설치하고 있다. 그리고, 과냉각기(80)에서는 과냉각 분기로(22)로 분류(分流)하여 제2 배관(82)에 유입된 냉매에 의해, 제1 배관(81)을 흐르는 냉매를 과냉각한다.
이에 따라, 본 실시형태의 과냉각기(80)에서는 과냉각 분기로(22)를 설치하지 않는 경우와 비교하여, 과냉각로(21)로부터 과냉각기(80)의 제1 배관(81)에 유입되는 냉매량이 감소한다. 이 결과, 과냉각기(80)의 제1 배관(81)에서 생기는 압력 손실이 감소하여, 과냉각기(80)에서의 열교환 효율의 저하가 보다 억제된다.
또한, 본 실시형태의 공기 조화기(100)에서는 과냉각기(80)에서의 제2 배관(82)의 제2 출구부(82b)로부터 배출된 냉매를, 압축기(201)의 중간압 흡입부(201c)에 흡입하고 있다. 바꾸어 말하면, 압축기(201)의 중간압 흡입부(201c)에는 과냉각기(80)에서의 열교환에 의해 온도가 저하한 중간압의 냉매가 흡입된다.
그 결과, 본 실시형태의 공기 조화기(1)에서는 도 16에 나타낸 바와 같이, 압축기(201)의 중간압 흡입부(201c)(점 G)에 있어서 냉매 온도가 저하한다. 이에 따라, 제2 배관(32)으로부터 배출된 냉매를 중간압 흡입부(201c)에 흡입하지 않는 경우와 비교하여, 압축기(201)의 토출부(점 B)로부터 토출되는 냉매 온도(토출 온도)의 상승이 억제된다. 그리고, 예를 들면 토출 온도가 상승하는 것에 수반되는 압축기(201)의 수명 저하 등과 같은 문제점의 발생이 억제된다.
또한, 본 실시형태의 공기 조화기(100)는 인젝션로(24)와 냉매 회로(20)에서의 저압 배관(20s)을 접속하는 접속로(25)를 갖는다. 그리고, 접속로(25)에는 공기 조화기 제어부(30)에 의해 개도가 제어되는 접속 개폐 밸브(221)가 설치된다.
본 실시형태에서는 접속 개폐 밸브(221)의 개도를 제어함으로써, 인젝션로(24) 및 과냉각기(80)의 제2 배관(82)을 흐르는 냉매의 압력이 조정 가능하게 되어 있다.
구체적으로 설명하면, 접속 개폐 밸브(221)를 열림 상태로 했을 경우, 접속로(25)를 통하여, 냉매 회로(20)의 저압 배관(20s)과 인젝션로(24)가 접속된 상태가 된다. 이에 따라, 접속 개폐 밸브(221)를 닫힘 상태로 하는 경우와 비교하여, 인젝션로(24) 및 과냉각기(80)의 제2 배관(82)을 흐르는 냉매의 압력이 저하한다.
여기서, 제2 배관(82)을 흐르는 냉매의 압력이 저하하는 경우, 제2 배관(82)을 흐르는 냉매 상태가, 도 16에서 EF로부터 E′F′로 나타낸 바와 같이 변화한다. 이에 따라, 제2 배관(82)을 흐르는 냉매와 제1 배관(81)을 흐르는 냉매의 평균 온도차가 보다 커진다. 그 결과, 과냉각기(80)에서의 열교환 효율이 향상되고, 제1 배관(81)을 흐르는 냉매가 보다 과냉각된다. 그리고, 공기 조화기(100)에서의 냉동 효과가 보다 향상된다.
계속하여, 공기 조화기 제어부(30)에 의해 행해지는 과냉각 감압 밸브(215)의 개도 제어에 대하여 설명한다.
도 18은 본 실시형태의 공기 조화기 제어부(30)에 의해 실행되는 과냉각 감압 밸브(215)의 개도 제어의 순서를 나타낸 순서도다. 본 실시형태의 공기 조화기(100)에서는 입구 온도 센서(222), 출구 온도 센서(223) 및 과냉각 온도 센서(224)에 의한 검지 결과 등에 의거하여, 신뢰성 확보 운전, 효율 우선 운전 및 능력 우선 운전 중의 어느 하나가 수행된다. 그리고, 각각의 운전에 있어서, 상이한 제어에 의해 과냉각 감압 밸브(215)의 개도가 조정된다.
여기서, 신뢰성 확보 운전이란, 압축기(201)의 신뢰성을 확보하여 압축기(201)의 고장을 예방하기 위한 운전이다. 또한, 효율 우선 운전이란, 공기 조화기(100)의 시스템 효율을 우선한 운전이다. 또한, 능력 우선 운전이란, 공기 조화기(100)에 의한 공기 조화 능력(난방 능력, 냉방 능력)을 우선한 운전이다.
공기 조화기(100)에 있어서 공기 조화 운전이 수행되는 경우에, 공기 조화기 제어부(30)는 입구 온도 센서(222), 출구 온도 센서(223)에 의해 검지되는 냉매 온도를 취득한다(스텝 401). 이하의 설명에서는, 입구 온도 센서(222)에 의해 검지되는 온도를 입구 온도 Sa라고 부르고, 출구 온도 센서(223)에 의해 검지되는 온도를 출구 온도 Sb라고 부른다. 또한, 과냉각 온도 센서(224)에 의해 검지되는 온도를 과냉각 온도 Sc라고 부른다.
이어서, 공기 조화기 제어부(30)는 스텝 401에서 취득한 입구 온도 Sa 및 출구 온도 Sb가 미리 정한 요건을 만족하는지의 여부의 판정을 수행한다. 구체적으로는 공기 조화기 제어부(30)는 출구 온도 Sb에서 입구 온도 Sa를 뺀 온도차 ΔS1(=Sb-Sa)를, 미리 정한 제3 기준 온도 T3와 비교한다(스텝 402). 여기서, 온도차 ΔS1는 과냉각기(80)의 제2 배관(82)을 흐르는 냉매의 제2 출구부(82b)와 제2 입구부(82a)의 온도차(과열도)에 대응한다(도 17 참조). 또한, 제3 기준 온도 T3는 과냉각기(80)의 과열도의 최적값이며, 예를 들면 -1℃~3℃의 범위에서 설정된다.
그리고, 온도차 ΔS1가 제3 기준 온도 T3 미만인 경우(ΔS1<T3; 스텝 402에서 NO), 공기 조화기 제어부(30)에 의한 제어에 의거하여, 신뢰성 확보 운전이 수행된다(스텝403).
신뢰성 확보 운전은 상술한 바와 같이, 압축기(201)의 신뢰성을 확보하기 위한 운전이다. 신뢰성 확보 운전에서는, 공기 조화기 제어부(30)에 의한 제어에 의거하여, 과냉각 감압 밸브(215)를 닫힘 상태로 전환한다. 본 실시형태에서는 온도차 ΔS1가 제3 기준 온도 T3 미만인 경우에 신뢰성 확보 운전을 수행함으로써, 압축기(201)의 중간압 흡입부(201c)에 액체 냉매가 흡입되는 것이 억제된다.
즉, 온도차 ΔS1가 제3 기준 온도 T3 미만인 경우, 과냉각기(80)의 제2 배관(82)을 흐르는 냉매의 증발이 불충분해지기 쉽다. 이 경우, 제2 배관(82)의 제2 출구부(82b)로부터 인젝션로(24)에 액상의 냉매가 배출된다. 그리고, 인젝션로(24)를 통하여 압축기(201)의 중간압 흡입부(201c)에, 액상의 냉매가 흡입될 우려가 있다. 압축기(201)의 중간압 흡입부(201c)에 액상의 냉매가 흡입된 경우에는 압축기(201)에서 액체 압축이 발생하여, 압축기(201)가 고장날 우려가 있다.
이에 비하여, 본 실시형태에서는 신뢰성 확보 운전으로서 과냉각 감압 밸브(215)를 닫힘 상태로 전환함으로써, 제2 배관(82)의 제2 출구부(82b)로부터의 액체 냉매의 배출이 억제된다. 이에 따라, 압축기(201)의 중간압 흡입부(201c)에 액상의 냉매가 흡입되는 것이 억제된다. 이 결과, 압축기(201)의 고장이 억제되어 신뢰성이 확보된다.
한편, 온도차 ΔS1가 제3 기준 온도 T3 이상인 경우(ΔS1≥≥T3; 스텝 402에서 YES), 공기 조화기 제어부(30)는 효율 우선 운전 및 능력 우선 운전 중의 어느 것을 실행할 것인지의 판정을 수행한다. 구체적으로는 공기 조화기 제어부(30)는 공기 조화기(100)가, 미리 정한 운전 상황에 해당하는지의 여부의 판정을 수행한다(스텝 404).
미리 정한 운전 상황으로서는, 예를 들면, 낮은 외기 온도일 때에 난방 운전을 수행하는 경우, 공기 조화기(100)의 기동 운전을 수행하는 경우 등, 압축기(201)에서의 소비 전력이 높아지기 쉬운 운전 상황을 들 수 있다.
공기 조화기(100)가 미리 정한 운전 상황에 해당하는 경우(스텝 404에서 YES), 공기 조화기 제어부(30)에 의한 제어에 의거하여, 능력 우선 운전이 수행된다(스텝 405).
능력 우선 운전에서는, 공기 조화기 제어부(30)는 과냉각 온도 Sc에서 입구 온도 Sa를 뺀 온도차 ΔS2(=Sc-Sa)가, 미리 정한 제4 기준 온도 T4 미만(ΔS2<T4)이 되도록, 과냉각 감압 밸브(215)의 개도를 제어한다. 여기서, 제4 기준 온도 T4는 과냉각기(30)에 있어서 제1 배관(81)을 흐르는 냉매와 제2 배관(82)을 흐르는 냉매의 최적 온도차의 상수이다. 제4 기준 온도 T4는 예를 들면 10℃~20℃의 범위에서 설정된다.
구체적으로 설명하면, 능력 우선 운전을 수행하는 경우, 공기 조화기 제어부(30)는 입구 온도 Sa 및 과냉각 온도 Sc를 취득한다. 그리고, 과냉각 온도 Sc에서 입구 온도 Sa를 뺀 온도차 ΔS2를, 제4 기준 온도 T4와 비교한다.
능력 우선 운전에서는, 공기 조화기 제어부(30)는 온도차 ΔS2가 제4 기준 온도 T4 이상(ΔS2≥≥T4)이 된 경우, 과냉각 감압 밸브(215)의 개도를 크게 하는 제어를 수행한다. 이에 따라, 과냉각 감압 밸브(215)를 통과하는 냉매의 양이 많아짐과 아울러, 과냉각 감압 밸브(215)를 통과 후의 압력이 상대적으로 상승한다. 이에 따라, 온도차 ΔS2가 작아지고, 온도차 ΔS2가 제4 기준 온도 T4 미만(ΔS2<T4) 상태가 유지된다.
도 19는 과냉각 감압 밸브(215)의 개도, 압축기(201)로의 냉매의 흡입량 및 공기 조화기(100)의 시스템 효율의 관계를 나타낸 도면이다.
능력 우선 운전에서는, 온도차 ΔS2가 제4 기준 온도 T4 미만(ΔS2<T4)이 되도록 과냉각 감압 밸브(215)의 개도가 제어된다. 이 때문에, 능력 우선 운전에서는, 도 19에 나타낸 바와 같이, 효율 우선 운전과 비교하여, 과냉각 감압 밸브(215) 및 제2 배관(82)을 통과하여 인젝션로(24)에 배출되는 냉매의 양이 증가한다. 그리고, 인젝션로(24)를 통하여 압축기(201)의 중간압 흡입부(201c)에 흡입되는 냉매의 양이 증가한다. 또한, 압축기(201)의 중간압 흡입부(201c)에 흡입되는 냉매의 양이 증가함으로써, 증발기로서 기능하는 실내 열교환기(104)(난방 운전시는 실외 열교환기(102))를 흐르는 냉매의 양이 감소한다.
또한, 압축기(201)의 중간압 흡입부(201c)에 흡입되는 냉매의 양이 증가함으로써, 증발기로서 기능하는 실내 열교환기(104)(난방 운전시는 실외 열교환기(102))를 흐르는 냉매의 양이 감소한다. 이에 따라, 능력 우선 운전을 수행하는 경우, 실내 열교환기(104) 또는 실외 열교환기(102)에서의 압력 손실이 감소한다.
또한, 압축기(201)의 중간압 흡입부(201c)에 흡입되는 냉매의 양이 증가함으로써, 압축기(201)의 저압측(흡입부에서 중간압 흡입부(201c)까지의 사이)에서 압축되는 냉매의 양이 감소한다. 이에 따라, 압축기(201)의 저압측에서의 일량이 감소한다.
이상으로부터, 공기 조화기(100)에 있어서 능력 우선 운전을 수행함으로써, 공기 조화 능력이 향상한다. 이 결과, 예를 들면 압축기(201)에서의 소비 전력이 높아지기 쉬운 운전 상황에 있어서도, 보다 신속하게 사용자가 원하는 환경으로 공기 조화를 수행할 수 있다.
한편, 공기 조화기(100)의 운전 상황이 미리 정한 운전 상황에 해당하지 않는 경우(스텝 404에서 NO), 공기 조화기 제어부(30)에 의한 제어에 의거하여, 효율 우선 운전이 수행된다(스텝 406).
효율 우선 운전에서는, 공기 조화기 제어부(30)는 과냉각 온도 Sc에서 입구 온도 Sa를 뺀 온도차 ΔS2(=Sc-Sa)가 제4 기준 온도 T4 이상(ΔS2≥≥T4)이 되도록, 과냉각 감압 밸브(215)의 개도를 제어한다.
구체적으로 설명하면, 효율 우선 운전을 수행하는 경우, 능력 우선 운전과 마찬가지로, 공기 조화기 제어부(30)는 입구 온도 Sa 및 과냉각 온도 Sc를 취득한다. 그리고, 과냉각 온도 Sc에서 입구 온도 Sa를 뺀 온도차 ΔS2를, 제4 기준 온도 T4와 비교한다. 효율 우선 운전에서는 공기 조화기 제어부(30)는 온도차 ΔS2가 제4 기준 온도 미만(ΔS2<T4)이 된 경우, 과냉각 감압 밸브(215)의 개도를 작게 하는 제어를 수행한다. 이에 따라, 과냉각 감압 밸브(215)를 통과하는 냉매가 보다 감압되게 된다. 그 결과, 입구 온도 Sa가 저하함으로써, 온도차 ΔS2가 커지고, 온도차 ΔS2가 제4 기준 온도 이상(ΔS2≥≥T4) 상태가 유지된다.
이와 같이, 효율 우선 운전에서는, 온도차 ΔS2가 제4 기준 온도 이상(ΔS2≥≥T4) 상태가 유지됨으로써, 능력 우선 운전과 비교하여, 제1 배관(81)을 흐르는 냉매와 제2 배관(82)을 흐르는 냉매의 평균 온도차가 커진다. 이 때문에, 효율 우선 운전에서는, 능력 우선 운전과 비교하여 과냉각기(80)에서의 열교환 효율이 향상되고, 제1 배관(81)을 흐르는 냉매를 보다 과냉각시키는 것이 가능하게 된다. 이 결과, 효율 우선 운전에서는, 도 19에 나타낸 바와 같이, 능력 우선 운전과 비교하여 공기 조화기(1)에서의 시스템 효율이 향상한다.
여기서, 본 실시형태의 공기 조화기(100)는 제1 실시형태와 마찬가지로, 잉여 냉매를 과냉각 상태로 저장하는 리시버(218)를 갖는다.
이에 따라, 본 실시형태의 공기 조화기(100)에서는 예를 들면 냉방 운전시에는 리시버(218)에서 잉여 냉매가 저장된 후의 나머지 냉매가 과냉각기(80)에 흡입된다. 즉, 본 실시형태의 공기 조화기(100)에서는 리시버(218)를 갖지 않는 경우와 비교하여, 냉방 운전시에 과냉각기(80)의 제1 배관(81)에 흡입되는 냉매의 유량이 적어진다.
이 때문에, 공기 조화기(100)가 리시버(218)를 갖지 않는 경우와 비교하여, 과냉각기(80)에 대해 생기는 압력 손실이 감소한다. 이에 따라, 과냉각기(80)에서의 열교환 효율의 저하가 보다 억제된다.
한편, 본 실시형태는 리시버(218)를 갖지 않는 공기 조화기(100)에 대해서도 적용할 수 있다. 즉, 상술한 바와 같이, 본 실시형태에서는 과냉각기(80)에 있어서 냉매를 과냉각하는 것이 가능하다. 이에 따라, 본 실시형태에서는 리시버(218)를 갖지 않는 경우이더라도, 한쪽의 제1 팽창 밸브(204a) 또는 다른쪽의 제1 팽창 밸브(204b)에 흡입되기 전의 냉매를 과냉각 상태로 할 수 있다.
다만, 공기 조화기(100)에 있어서 최적 냉매량으로 냉방 운전 및 난방 운전을 수행하는 관점에서 보면 공기 조화기(100)는 리시버(218)를 갖는 것이 바람직하다.
또한, 본 실시형태의 공기 조화기(100)에서는 제1 역지 밸브(231) 내지 제4 역지 밸브(234)를 갖는 브릿지 회로(23)를 설치함으로써, 과냉각기(80)에 있어서 제1 배관(81)과 제2 배관(82)을 흐르는 냉매를 대향류로 하고 있다. 그러나, 과냉각기(80)에 있어서 제1 배관(81)과 제2 배관(82)을 흐르는 냉매를 대향류로 하는 수단으로서는 이것에 한정되지 않는다. 예를 들면, 전자 전환 밸브 등을 이용하여 냉매의 유통 방향을 절환함으로써, 제1 배관(81)과 제2 배관(82)을 흐르는 냉매를 대향류로 해도 무방하다.
<제6 실시형태>
이하, 본 발명의 제6 실시형태에 대하여 도면을 참조하여 설명한다.
본 실시형태의 공기 조화기(100)는 도 20에 나타낸 바와 같이, 상기 제 4 실시형태 또는 상기 제 5 실시형태의 구성에 더하여, 냉매 저장부인 리시버(218) 내의 냉매량을 검지하는 냉매량 검지 기구(Z)를 구비한다.
구체적으로, 냉매량 검지 기구(Z)는 도 21에 나타낸 바와 같이, 리시버(218)의 복수의 상이한 높이 위치에 접속된 복수의 도출로(Z1); 복수의 도출로(Z1) 각각에 설치된 복수의 캐필러리 등의 유체 저항(Z2); 복수의 도출로(Z1)에 있어서 상기 유체 저항(Z2)의 하류 측에 설치된 복수의 온도 센서(Z3); 및 복수의 온도 센서(Z3)에 의해 얻어진 냉매 온도를 이용하여 리시버(218) 내의 냉매량을 검지하는 냉매량 검지부(Z4)를 구비한다.
복수의 도출로(Z1)에 형성된 집합관부(Z1x)(상기 접속로(20b)에 대응)는 냉매 회로(20)의 저압 배관(20s)에 접속되어 있다.
또한, 냉매량 검지부(Z4)는 상기 실시형태의 냉매량 검지부(41)에 의해 구성되어 있다.
구체적으로 냉매량 검지부(41)는 복수의 온도 센서(Z3)의 검출 온도를 취득하여, 각 온도 센서의 검출 온도의 대소 관계를 이용하여 리시버(218) 내의 냉매량을 검지한다. 여기서, 복수의 도출로(Z1) 중에서, 액상 부분에 접속된 도출로(Z1)의 온도 센서(Z3)의 검출 온도와 기상 부분에 접속된 도출로(Z1)의 온도 센서(Z3)의 검출 온도가 다르므로, 액체형상의 냉매가 통과하는 도출로(Z1) 및 그렇지 않은 도출로(Z1)를 판별할 수 있다. 이에 따라, 리시버(218) 내의 냉매량을 검지할 수 있다.
그 밖에, 냉매량 검지 기구(Z)로서는 도 22에 나타낸 바와 같이, 리시버(218)의 복수의 상이한 높이 위치에 접속된 복수의 도출로(Z1); 복수의 도출로(Z1) 각각에 설치된 복수의 캐필러리 등의 유체 저항(Z2); 복수의 도출로(Z1)에 있어서 상기 유체 저항(Z2)의 하류 측에 설치된 복수의 전자 밸브(Z5); 복수의 도출로(Z1)의 집합관부(Z1x)에 설치된 온도 센서(Z6); 및 온도 센서(Z6)에 의해 얻어진 냉매 온도를 이용하여 리시버(218) 내의 냉매량을 검지하는 냉매량 검지부(Z4)를 구비한다.
복수의 도출로(Z1)에 형성된 집합관부(Z1x)(상기 접속로(20b)에 대응)는 냉매 회로(20)의 저압 배관(20s)에 접속되어 있다.
또한, 냉매량 검지부(Z4)는 상기 실시형태의 냉매량 검지부(41)에 의해 구성되어 있다.
구체적으로 냉매량 검지부(41)는 상기 복수의 전자 밸브(Z5)의 개폐를 제어하여, 각 도출로를 연통시켜 가고, 이 때에 얻어진 온도 센서(Z6)의 검출 온도를 취득한다. 여기서, 연통된 도출로(Z1) 중에서, 액상 부분에 접속된 도출로(Z1)의 온도 센서(Z3)의 검출 온도와 기상 부분에 접속된 도출로(Z1)의 온도 센서(Z3)의 검출 온도가 다르므로, 액체형상의 냉매가 통과하는 도출로(Z1) 및 그렇지 않은 도출로(Z1)를 판별할 수 있다. 이에 따라, 리시버(218) 내의 냉매량을 검지할 수 있다.
<제7 실시형태>
이하, 본 발명의 제7 실시형태에 대하여 도면을 참조하여 설명한다.
제7 실시형태의 공기 조화기(100)는 도 23에 나타낸 바와 같이, 건물의 옥외에 설치되는 실외기(10); 건물 내에 설치되는 실내기(11); 실외기(100) 및 실내기(11)를 냉매 배관(12)에 의해 접속하여 구성되는 냉매 회로(20); 및 상기 실외기(100) 및 상기 실내기(11) 등을 제어하여 공조 운전을 수행하는 공기 조화기 제어부(30)를 구비한다.
냉매 회로(20)는 압축기(201), 사방 전환 밸브(202), 응축기(실외측 열교환기)(203), 제1 팽창 밸브(204), 및 증발기(실내측 열교환기)(205)를 접속하여 구성되는 것이다. 본 실시형태에서는, 압축기(201), 사방 전환 밸브(202), 응축기(203), 및 제1 팽창 밸브(204)가 실외기(10)의 내부에 설치되고, 증발기(205)가 실내기(11)의 내부에 설치된 구성이다. 한편, 실외기(10)는 실내기(11) 내의 증발기(205)로 기화된 냉매를 압축하고, 냉각한다. 또한, 실내기(11)는 증발기(205)에 있어서, 실내 공기와 냉매 사이에서 열교환을 수행하고, 실내 공기를 냉각함과 아울러, 냉매를 기화한다.
압축기(201)는 그 저압측 입구에서 유입된, 기화한 냉매 가스를 압축하여 고온, 고압의 압축 가스를 생성한다. 압축기(201)는 회전 속도를 제어할 수 있는 모터에 의해 구동되고, 그 모터의 회전 속도에 따라서, 압축 능력이 변화한다. 즉, 모터의 회전 속도가 빠를 때는 압축 능력이 높고, 모터의 회전 속도가 느릴 때는 압축 능력이 낮다. 압축기(201)는 모터의 회전 속도를, 후술하는 압축기 제어부(301)에 의해 제어한다. 그리고, 압축기(201)는 생성된 고온, 고압의 압축 가스를, 사방 전환 밸브(202)를 통하여 응축기(203)에 송출한다.
응축기(203)는 압축기(201)에 의해 생성된 압축 가스를, 열교환기를 통하여 응축시킨다. 응축기(203)는 고온의 압축 가스와 저온의 실외 공기 사이에서, 열교환을 수행하고, 액체 냉매를 생성한다. 그리고, 응축기(203)는 열교환에 의해 생성된 액체 냉매를, 제1 팽창 밸브(204)에 송출한다.
제1 팽창 밸브(204)는 개폐에 의해, 그곳을 흐르는 유량을 조정하는 밸브이다. 여기서, 제1 팽창 밸브(204)는 제1 팽창 밸브 제어부(302)에 의해 개폐된다. 제1 팽창 밸브(204)가 열림으로써, 액체 냉매는 팽창해 기화하여, 냉매 가스가 된다. 이 냉매 가스는 제1 팽창 밸브(204)에 유입되기 전의 액체 냉매보다 저온으로 되어 있다. 제1 팽창 밸브(204)는 그 열려 있는 정도를 나타낸 개도(개구도)를, 후술하는 제1 팽창 밸브 제어부(302)가 출력하는 신호에 따라서 제어한다. 그리고, 제1 팽창 밸브(204)는 냉매 가스를 증발기(205)에 송출한다.
증발기(205)는 제1 팽창 밸브(204)에서 생성된 냉매 가스와 고온의 실내 공기 간의 열교환을 수행한다. 증발기(205)는 실내 공기를 냉각함과 아울러 냉매의 일부를 기화한다. 증발기(205)에 있어서 생성된 기액 2상 냉매는 사방 전환 밸브(202)를 통하여 압축기(201)에 송출된다.
냉매 배관(12)는 가스측 냉매 배관인 제1 냉매 배관(121)과, 액체측 냉매 배관인 제2 냉매 배관(122)를 갖고 있다. 제1 냉매 배관(121)은 실내기(11)의 증발기(205)와 실외기(10)의 사방 밸브(202)를 접속하는 것이다. 제2 냉매 배관(122)은 실외기(10)의 응축기(203)(제1 팽창 밸브(204))와 실내기의 증발기(205)를 접속하는 것이다.
그 밖에, 실외기(10)에는 실외기 팬(10F)이 설치되고, 실내기(11)에는 실내기 팬(11F)가 설치되어 있다.
실외기 팬(10F)은 응축기(203)에 송풍하여, 냉매를 냉각한다. 실외기 팬(10F)은 후술하는 실외기 팬 제어부(303)로부터 회전 속도를 제어 받는다.
실내기 팬(11F)은 실내 공기를 증발기(205)에서 냉각하고, 냉각된 공기를 실내에 송풍한다. 실내기 팬(11F)은 후술하는 실내기 팬 제어부(304)로부터 회전 속도가 제어된다.
또한, 냉매 회로(20)에는 토출 온도 센서(206), 흡입 온도 센서(207), 출구 온도 센서(208), 액체관 온도 센서(209), 고압 센서(210), 저압 센서(211)가 설치되어 있다.
토출 온도 센서(206)는 압축기(201)의 고압측에서의 냉매 온도(토출 온도 Td)를 검출하고, 검출된 토출 온도를 나타낸 신호를 A/D 변환부(50)에 출력한다. 한편, A/D 변환부(50)는 공기 조화기 제어부(30)에 설치된 것이어도 무방하고, 후술하는 냉매량 검지 장치(40)에 설치된 것이어도 무방하다.
흡입 온도 센서(207)는 압축기(201)의 저압측에서의 냉매 온도(흡입 온도 Tsuc)를 검출하고, 검출된 흡입 온도를 나타낸 신호를 A/D 변환부(50)에 출력한다.
출구 온도 센서(208)는 응축기(203)의 출구에서의 냉매 온도(출구 온도 Tcond(제1 냉매 온도))를 검지하고, 검출된 출구 온도를 나타낸 신호를 A/D 변환부(50)에 출력한다. 한편, 출구 온도 센서(208)는 응축기(203)의 출구측의 전열관에 설치되어 있다.
액체관 온도 센서(209)는 응축기(203)의 출구 측에 설치된 제1 팽창 밸브(204)의 하류측에서의 냉매 온도(액체관 온도 Tsub(제2 냉매 온도))를 검출하고, 검출된 액체관 온도를 나타낸 신호를 A/D 변환부(50)에 출력한다. 한편, 액체관 온도 센서(209)는 액체 배관(212)에 설치되어 있다. 이 액체 배관(212)은 응축기(203)의 출구와 증발기(205)의 입구를 접속하는 배관이다.
고압 센서(210)는 압축기(201)의 고압측의 압력(고압측 압력 Pd)을 검출하고, 검출된 고압측 압력을 나타낸 신호를 A/D 변환부(50)에 출력한다.
저압 센서(211)는 압축기(201)의 저압측의 압력(저압측 압력 Ps)을 검출하고, 검출된 저압측 압력을 나타낸 신호를 A/D 변환부(50)에 출력한다.
공기 조화기 제어부(30)는 공기 조화기(100)의 각 부품의 제어를 수행한다. 한편, 공기 조화기 제어부(30)와 실내기(11) 및 실외기(10)의 각 부품 사이는 접속되어 있지만, 도 1에서는 그 접속에 대한 기재는 생략되어 있다. 공기 조화기 제어부(30)의 상세에 대해서는 도 2를 참조하면서 후술한다.
그러나, 본 실시형태의 공기 조화기(100)의 냉매 배관(12)(제1 냉매 배관(121) 및 제2 냉매 배관(122))에는 상기 공기 조화기(100)와는 별개로, 보조 유닛(13)이 설치되어 있다. 이 보조 유닛(13)은 상기 냉매 배관(12)에 대하여 착탈 가능하게 접속하여 설치되어 있다. 여기서, 냉매 배관(12)에 접속되는 보조 유닛(13)의 내부 배관(제1 내부 배관(131) 및 제2 내부 배관(132))의 배관 직경은 냉매 배관(12)의 배관 직경보다 큰 구성으로서 있다.
이 보조 유닛(13)은 냉매 배관(12)을 흐르는 냉매 중의 불순물을 포착하는 제1 포착 장치(13a) 및 제2 포착 장치(13b); 및 냉매 회로(20) 내의 냉매량을 검지하는 냉매량 검지 장치(40)를 구비한다.
제1 포착 장치(13a)는 제1 냉매 배관(121)에 착탈 가능하게 부착되는 제1 내부 배관(131) 상에 설치되어 있으며, 제1 내부 배관(131)을 2개로 분기하는 제1 분기 배관(13a1) 및 제2 분기 배관(13a2)과, 제1 분기 배관(13a1)과 제2 분기 배관(13a2)을 접속하는 접속 배관(13a3)과, 접속 배관(13a3)에 설치되고 접속 배관(13a3)을 흐르는 냉매의 소정 물질을 포착하는 포착 부재(13a4)를 구비한다. 한편, 제1 분기 배관(13a1) 및 제2 분기 배관(13a2)은 하류측에서 합류하고 있다.
제2 포착 장치(13b)는 제2 냉매 배관(122)에 착탈 가능하게 부착되는 제2 내부 배관(132) 상에 설치되어 있으며, 제2 내부 배관(132)에서 2개로 분기하는 제1 분기 배관(13b1) 및 제2 분기 배관(13b2)과, 제1 분기 배관(13b1)과 제2 분기 배관(13b2)을 접속하는 접속 배관(13b3)과, 접속 배관(13b3)에 설치되고 접속 배관(13b3)을 흐르는 냉매의 소정 물질을 포착하는 포착 부재(13a4)를 구비한다. 한편, 제1 분기 배관(13b1) 및 제2 분기 배관(13b2)은 하류측에서 합류하고 있다.
포착 부재(13a4, 13a4)는 냉매 중을 흐르는 배관 용접시의 산화 스케일이나 압축기(201)로부터의 마모분, 기존 실내기 및 실외기로부터 신설된 제1 실내기(11) 및 실외기(11)로 교환한 경우에는, 기존 실외기의 압축기에 이용되는 냉동기 오일이나 슬러지 등을 포착하는 것이고, 본 실시형태에서는 필터가 이용된다.
냉매량 검지 장치(40)는 공기 조화기(100)에서의 냉매 회로 내의 냉매의 양을 검지한다. 한편, 냉매량 검지 장치(40)와, 실내기(11) 및 실외기(10)의 각 부품 사이는 접속되어 있지만, 도 1에서는 그 접속에 대한 기재는 생략되어 있다. 냉매량 검지 장치(40)의 상세에 대해서는 도 2를 참조하면서 후술한다.
도 24는 본 실시형태에 따른 냉매량 검지 장치(40)의 구성을 나타낸 개략 블록도이다. 한편, A/D 변환부(50)는 각 센서(206)~(211)로부터 입력 받은 신호를 아날로그-디지털 변환하고, 변환 후의 각 신호를 냉매량 검지부(41)에 출력한다. 입력부(60)는 이용자의 조작에 의거하여, 냉매량의 검지를 시작하는 것을 나타낸 검지 개시 정보 등을 제어부(411)에 출력한다. 표시부(70)는 예를 들면 LED에 의한 디지털 표시판 등의 정보를 표시하는 표시기이며, 후술하는 냉매량 평균 계산부(414)에서 입력된 냉매량비의 정보 등을 표시한다.
구체적으로 냉매량 검지 장치(40)는 냉매 상태를 판별하고, 냉매량비를 계산하는 냉매량 검지부(41)와, 냉매량비를 계산할 때에 이용하는 파라미터나, 이전에 계산된 냉매량비를 기억하는 기억부(42)를 구비한다.
냉매량 검지부(41)는 A/D 변환부(50)로부터 입력 받은 온도나 압력 정보에 의거하여 냉매량비를 계산하고, 계산한 냉매량비의 정보를 표시부(70)에 출력한다. 여기서, 냉매량비란, 실제로 공기 조화기(100) 내에 있는 냉매의 양을, 공기 조화기(100)에 사양으로서 규정된 냉매의 양으로 나눈 값( “실제 냉매량”/“규정 냉매량”)이다.
이 냉매량 검지부(41)는 제어부(411), 냉매 상태 취득부(412), 냉매량 연산부(413) 및 냉매량 평균 계산부(414)를 갖고 있다.
제어부(411)는 입력부(60)로부터, 공기 조화기(100)의 냉매량비의 검지를 시작하는 것을 나타낸 검지 개시 정보가 입력된다. 또한, 제어부(411)는 냉방 운전인 소정의 운전 모드로 운전을 수행하게 하는 명령을 공기 조화기 제어부(30)에 출력한다. 제어부(411)는 운전을 종료시키는 운전 종료 명령을 공기 조화기 제어부(30)에 출력한다.
한편, 공기 조화기 제어부(30)는 제어부(411)로부터 입력 받은 명령에 의거하여, 압축기(201)의 모터의 회전 속도를 제어하는 압축기 제어부(301); 제1 팽창 밸브(204)의 개도를 제어하는 제1 팽창 밸브 제어부(302); 실외기 팬(10F)의 회전 속도를 제어하는 실외기 팬 제어부(303) 및 실내기 팬(11F)의 회전 속도를 제어하는 실내기 팬 제어부(304)를 구비한다.
구체적으로는 공기 조화기 제어부(30)는 실내기(11)에 구비된 증발기(205)의 과열도 SH가 일정(예를 들면 3 K)하게 되도록 제어한다. 과열도란, 증발기(205)의 출구에서의 냉매 온도에서 증발 온도에서의 포화 온도를 뺀 것, 즉 압축기(201)의 저압측에서의 냉매 온도에서 압축기(201)의 저압측의 압력에서의 포화 온도를 뺀 것이다. 제1 팽창 밸브 제어부(302)는 제1 팽창 밸브(204)의 개도를 조정함으로써, 증발기(205)의 과열도가 일정하게 되도록 제어한다. 또한, 제어부(411)는 압축기(201)의 모터의 회전 속도를, 미리 정한 회전 속도(예를 들면, 65 Hz)로 운전하게 하는 명령을 압축기 제어부(301)에 출력한다. 압축기 제어부(301)는 제어부(411)로부터, 압축기(201)의 모터의 회전 속도를, 미리 정한 회전 속도(예를 들면, 65 Hz)로 운전하게 하는 명령을 입력 받고, 모터의 회전 속도를 65 Hz로 운전하게 한다.
제어부(411)는 실외기 팬(10F)을 정속으로 운전하게 하는 명령을, 실외기 팬 제어부(303)에 출력한다. 실외기 팬 제어부(303)는 실외기 팬(10F)을 정속으로 운전하게 한다.
제어부(411)는 실내기 팬(11F)을 정속으로 제어하게 하는 명령을, 실내기 팬 제어부(304)에 출력한다. 실내기 팬 제어부(304)는 실내기 팬(11F)을 정속으로 운전하게 한다.
또한, 제어부(411)는 냉매 상태 취득부(412) 및 냉매량 연산부(413)에, 냉매량비를 계산하게 하는 명령을 출력한다. 제어부(411)는 냉매량 평균 계산부(414)로부터, 냉매량비의 평균값의 계산이 종료된 것을 나타낸 평균값 계산 종료 신호가 입력된다. 제어부(411)는 냉매량 평균 계산부(414)로부터, 평균값 계산 종료 신호가 입력되었을 때에, 운전 종료 신호를 공기 조화기 제어부(30)에 출력한다.
냉매 상태 취득부(412)는 공기 조화기 제어부(30)에 의해 공기 조화기(100)가 소정의 운전 모드로 운전을 개시한 후에, 응축기(203)의 출구에서의 냉매 상태가 과냉각 상태인지 또는 기액 2상 상태인지를 취득한다. 이 냉매 상태 취득부(412)는 출구 온도 신호가 나타낸 출구 온도 Tcond와, 액체관 온도 신호가 나타낸 액체관 온도 Tsub을 파라미터로 하여, 과냉각 상태 또는 기액 2상 상태 중의 어느 하나라고 판별한다. 그리고, 이 판별 신호를 냉매량 연산부(413)에 출력한다.
상세는 이하와 같다.
Tcond-Tsub≤X인 경우, 냉매 상태가 “과냉각 상태”이라고 판단한다.
Tcond-Tsub>X인 경우, 냉매 상태가 “기액 2상 상태”이라고 판단한다.
여기서, X는 상수이고, 실측 데이터를 이용하여 미리 얻어진 값(예를 들면, X=1. 5)이다.
냉매량 연산부(413)는 냉매 상태 취득부(412)에 의해 취득된 냉매 상태에 따라서, 서로 다른 연산식을 이용하여 공기 조화기(100)내의 냉매량비를 산출한다.
구체적으로 냉매량 연산부(413)는 과냉각 상태인 경우에는 과냉각 상태용 연산식을 이용하여 냉매량비 RA를 산출하고, 기액 2상 상태인 경우에는 기액 2상 상태용 연산식을 이용하여 냉매량비 RA를 산출한다.
과냉각 상태용 연산식은 이하와 같다.
RA=a1+b1×Pd+c1×Ps+d1×Tsub+e1×Td
여기서, 상수 a1, b1, c1, d1, e1는 과냉각 상태에서의 Pd, Ps, Tsub, Td와 RA의 관계를 나타낸 실측 데이터를 이용하여 다중 회귀 계산에 의해 미리 얻어진 값이다. 한편, 상수 a1, b1, c1, d1, e1는 기억부(42)에 설정된 계산 파라미터 기억부(421)에 기록되어 있다.
또한, 기액 2상 상태용 연산식은 이하와 같다.
RA=a2+b2×Pd+c2×Ps+d2×Tsub+e2×Td
여기서, 상수 a2, b2, c2, d2, e2는 기액 2상 상태에서의 Pd, Ps, Tsub, Td와 RA 간의 관계를 나타낸 실측 데이터를 이용하여 다중 회귀 계산에 의해 미리 얻어진 값이다. 한편, 상수 a2, b2, c2, d2, e2는 상기 계산 파라미터 기억부(421)에 기록되어 있다.
냉매량 연산부(413)는 냉매 상태 취득부(412)에 의해 취득된 냉매 상태에 맞추어, 상수 a1, b1, c1, d1, e1 또는 상수 a2, b2, c2, d2, e2를 판독한다.
또한, 냉매량 연산부(413)는 토출 압력 신호가 나타낸 토출 압력 Pd 및 흡입 압력 신호가 나타낸 흡입 압력 Ps, 액체관 온도 신호가 나타낸 액체관 온도 Tsub 및 토출 온도 신호가 나타낸 토출 온도 Td를 이용하여, 냉매 상태에 맞춘 연산식에 의해, 냉매량비 RA를 계산한다. 냉매량 연산부(413)는 계산한 냉매량비 RA를 나타낸 냉매량비 데이터를 기억부(42)에 설정된 냉매량 기억부(422)에 기록한다.
냉매량 평균 계산부(414)는 냉매량 연산부(413)로부터, 미리 정한 시간(예를 들면, 과거 5분) 이내에 계산된 냉매량비 RA를 판독한다. 냉매량 평균 계산부(414)는 판독한 냉매량비 RA의 평균값을 계산하고, 계산된 냉매량비 RA의 평균값을 표시부(70)에 출력한다. 냉매량 평균 계산부(414)는 냉매량비 RA의 평균값의 계산이 종료되었을 때에, 냉매량비 RA의 평균값의 계산이 종료된 것을 나타낸 계산 종료 신호를 제어부(411)에 출력한다.
이와 같이 구성한 본 실시형태의 보조 유닛(13)에 의하면, 기존의 공기 조화기(100)에 별도 부착함으로써 상기 공기 조화기(100)의 냉매량 검지를 검지할 수 있다. 여기서, 냉매 상태가 과냉각 상태인 경우에는 과냉각 상태용 연산식을 이용하고, 냉매 상태가 기액 2상 상태인 경우에는 기액 2상 상태용 연산식을 이용함으로써, 응축기(203) 출구의 냉매 상태에 관계없이 냉매량을 정밀도 좋게 검지할 수 있다. 따라서, 긴 배관을 사용하는 경우나, 실외기(10)와 실내기(11) 사이에 큰 높낮이차가 있는 경우와 같은 설치 상황에 영향을 받지 않고 , 냉매량비를 정밀도 좋게 검지할 수 있다.
또한, 본 실시형태에 의하면, 제어부(411)는 제2 팽창 밸브(215)의 개구도를 미리 정해진 값으로 고정한다. 이에 따라, 액체 배관(212) 내의 액체 냉매의 냉각의 정도를 일정하게 할 수 있으며, 냉매량비를 정밀도 좋게 검지할 수 있다.
또한, 본 실시형태에 의하면, 제어부(411)는 압축기(201)의 압축 능력을 미리 정해진 값으로 고정한다. 이에 따라, 본 실시형태에서는, 압축기(201)의 입구, 및 출구에서의 냉매 상태를 일정하게 할 수 있으며, 냉매량비를 정밀도 좋게 검지할 수 있다.
또한, 본 실시형태에 의하면, 제어부(411)는 제1 팽창 밸브(204)의 개구도를 미리 정해진 값으로 고정한다. 이에 따라, 본 실시형태에서는, 제1 팽창 밸브(204)에서의 냉각 정도를 일정하게 할 수 있으며, 냉매량비를 정밀도 좋게 검지할 수 있다.
또한, 본 실시형태에 의하면, 제어부(411)는 실외기 팬(10F)의 회전 속도 및 실내기 팬(11F)의 회전 속도를 미리 정해진 값으로 고정한다. 이에 따라, 본 실시형태에서는, 응축기(203)에서의 열교환 정도를 일정하게 하고, 증발기(205)에서의 열교환 정도를 일정하게 할 수 있으며, 냉매량비를 정밀도 좋게 검지할 수 있다.
또한, 본 실시형태에 의하면, 보조 유닛(13)이, 공기 조화기(100)와는 별개로 설치되고, 제1 냉매 배관(121) 및 제2 냉매 배관(122)에 착탈 가능하게 부착되므로, 보조 유닛(13)이 범용성을 가지며, 또한, 보조 유닛(13)이, 냉매 중의 냉동기 오일이나 슬러지, 산화 스케일 등을 포착하는 제1 포착 장치(13a) 및 제2 포착 장치(13b)를 가지므로, 1개의 보조 유닛(13)으로 복수의 실외기(10)의 냉매 교환시에 생기는 불편을 해소할 수 있으며 냉매 교환 전용의 실외기를 제조할 필요가 없고, 생산성의 악화를 방지할 수 있다. 여기서, 포착 부재(13a4, 13b4)를 교환하는 경우, 보조 유닛(13)을 냉매 배관(12)에서 분리하여 용이하게 메인터넌스할 수 있다.
또한, 냉방 운전과 난방 운전으로 전환하여, 냉매가 제1 분기 배관(13a1, 13b1)에서 제2 분기 배관(13a2, 13b2)으로 향하는 경우이더라도, 제2 분기 배관(13a2, 13b2)에서 제1 분기 배관(13a1, 13b1)으로 향하는 경우이더라도, 접속 배관(13a3, 13b3)을 흐르는 방향을 동일하게 할 수 있다. 이 접속 배관(13a3, 13b3)에 포착 부재(13a4, 13b4)를 설치하고 있으므로, 포착 부재(13a4, 13b4)를 흐르는 냉매의 흐름 방향을 일정하게 하여, 포착 부재(13a4, 13b4)에 포착된 것이 냉매 배관(12)에 재차 흘러나오는 것을 막을 수 있다.
<제8 실시형태>
다음으로, 제8 실시형태의 보조 유닛(13)에 대하여 도면을 참조하여 설명한다.
제7 실시형태에서는 공기 조화기(100) 내의 냉매의 양을 정확하게 측정할 수 있었지만, 본 실시형태에서는, 냉매를 보충하는 경우에, 냉매량비를 계산하면서, 냉매의 충전 개시시, 및 냉매량비가 100%에 이르렀을 때에, 조작을 수행하는 사람에 대하여 냉매 주입 밸브(216)의 조작을 재촉하는 표시를 수행한다.
도 25는 제8 실시형태에 따른 공기 조화기(100) 및 보조 유닛(13)의 구성을 나타낸 개략 블록도이다.
본 실시형태의 보조 유닛(13)은 냉매 주입 밸브(충전 밸브)(216) 및 냉매 저장 용기(217)로 이루어지는 냉매 공급 장치를 더 구비한다. 이 냉매 공급 장치는 제2 내부 배관(132)에 접속되어, 상기 제2 내부 배관(132)에 냉매를 공급한다.
냉매 주입 밸브(216)는 조작을 수행하는 사람이, 표시부(70)에 나타난 지시에 따라서, 냉매를 보충하기 위하여 개폐하는 밸브이다.
냉매 저장 용기(217)는 보충되는 냉매를 저장하는 용기이다.
도 26은 본 실시형태에 따른 냉매량 검지 장치(40)의 구성을 나타낸 개략 블록도이다.
본 실시형태의 냉매량 검지 장치(40)의 구성은 냉매량 판정부(415)가 새롭게 부가된 것, 및 냉매량 평균 계산부(414), 제어부(411)에 새로운 기능이 부가된 것을 제외하고, 제7 실시형태에서의 냉매량 검지 장치(40)의 구성(도 24)과 동일하다. 따라서, 냉매량 평균 계산부(414), 냉매량 판정부(415), 및 제어부(411) 이외의 설명은 생략한다.
냉매량 평균 계산부(414)는 냉매량 기억부(422)로부터, 미리 정한 시간(예를 들면, 과거 5분) 이내에 계산된 냉매량비를 판독한다. 냉매량 평균 계산부(414)는 판독한 냉매량비의 이동 평균값을 계산하고, 계산한 이동 평균값을 냉매량 판정부(415)에 출력한다.
냉매량 판정부(415)는 냉매량 평균 계산부(414)로부터 입력 받은 냉매량비의 이동 평균값에 의거하여, 냉매량비의 이동 평균값이 100%를 넘는지의 여부를 판정한다. 냉매량 판정부(415)는 냉매량비의 이동 평균값이 100%를 넘었다고 판정한 경우는 충전 종료 신호를 제어부(411)에 출력한다.
제어부(411)는 입력부(60)로부터의 검지 개시 정보의 입력, 및 냉매량 판정부(415)로부터의 충전 종료 신호의 입력에 의거하여, 표시부(70)에, 냉매 주입 밸브(216)를 “여는”, 또는 “닫는” 것을, 조작을 수행하는 사람에게 지시하는 표시를 수행하는 명령을 출력한다.
한편, 본 실시형태의 냉매량 검지 장치(40)의 동작은 상기 제 3 실시형태의 냉매량 검지 장치의 동작과 동일하다(도 8 참조).
이와 같이 본 실시형태에 의하면, 공기 조화기(100)는 냉매를 공기 조화기(100)에 충전하기 위한 냉매 주입 밸브(216)를 구비하고, 냉매량 판정부(415)의 판정에 따라서, 냉매 주입 밸브(216)를 닫게 하는 지시를 표시부(70)에 표시한다. 이에 따라, 본 실시형태에서는, 조작을 수행하는 사람에게, 냉매량비의 검출을 개시하는 경우에, 냉매 주입 밸브(216)을 열고, 냉매량비가 100% 이상이 되었을 때에, 냉매 주입 밸브(216)을 닫도록 재촉하기 때문에, 확실하게 냉매를 보충할 수 있다.
한편, 본 실시형태에 있어서, 냉매 주입 밸브(216)는 조작을 수행하는 사람에 의해 개폐되었지만, 제어부(411)가, 공기 조화기 제어부(30)를 통하여, 냉매 주입 밸브(216)를 제어하고, 자동적으로 개폐하도록 해도 무방하다.
한편, 상술한 각 실시형태에 있어서, 압축기(201)의 신뢰성 보호는 계속하고, 보호역에 돌입한 경우(토출 온도, 과전류, 고압, 저압의 각 측정값이, 미리 정해진 반응을 일으키는 최소의 물리량을 넘은 경우)에는 공기 조화기(100)의 운전을 정지하고, “검지 실패”를 표시부(70)에 표시하도록 해도 무방하다.
<제9 실시형태>
이하, 본 발명의 제9 실시형태에 대하여 도면을 참조하여 설명한다.
본 실시형태의 보조 유닛(13)은 상기 제 8 실시형태의 구성에 더하여, 냉매 회로(20)의 잉여 냉매를 저장하는 냉매 저장부를 구비한다.
구체적으로 보조 유닛(13)은 도 27에 나타낸 바와 같이, 잉여 냉매를 저장하는 냉매 저장부의 일례로서의 리시버(218); 및 리시버(218)로부터 유출하는 냉매를 감압함과 아울러 냉매의 유량을 조정하는 유량 조정부의 일례로서의 리시버 감압 밸브(219)를 구비한다.
본 실시형태의 리시버 감압 밸브(219)는 공기 조화기 제어부(30)에 의한 제어에 의해 개도가 제어되고, 리시버 감압 밸브(219)를 통과하는 냉매의 양이나 압력이 조정되도록 되어 있다.
분기로(20a)는 냉매 회로(20) 중에서 응축기(실외측 열교환기)(102)와 제1 팽창 밸브(103) 사이의 배관(제2 내부 배관(132))에서 분기하여 설치된다. 그리고, 분기로(20a)의 종단에는 상술한 리시버(218)이 접속된다. 또한, 분기로(20a)에는 상술한 리시버 감압 밸브(219)가 설치된다.
본 실시형태의 리시버(218)는 철 등의 열전도성을 갖는 재료로 형성된다. 또한, 리시버(218)는 예를 들면 원통형의 형상으로 되어 있으며 실외기(10)에 있어서 세로형으로 설치된다. 그리고, 리시버(218)는 연직 하부에 위치하는 저면에, 분기로(20a)의 종단이 접속되는 접속부가 형성되어 있다. 바꾸어 말하면, 본 실시형태의 리시버(218)는 연직 하부에 설치되는 접속부로부터 냉매가 출입한다.
리시버(218)는 냉방 운전시 및 제상 운전시에, 잉여 냉매를 저장한다. 또한, 리시버(218)는 냉방 운전시 또는 제상 운전시에 저장한 냉매를, 난방 운전시에, 냉매 회로(20)에 공급한다. 바꾸어 말하면, 본 실시형태의 공기 조화기(100)에서는 리시버(218)에 의해, 냉매 회로(20)를 순환하는 냉매의 양을 조정하고 있다.
한편, 리시버(218)의 용적은 난방 운전시에서의 최적의 냉매량에서 냉방 운전시에서의 최적의 냉매량을 뺀 냉매량을, 과냉각 액체 상태로 환산한 체적과 동일하게 되도록 설정하는 것이 바람직하다. 여기서, 최적의 냉매량이란, 공기 조화기(100)에 있어서, 난방 운전 및 냉방 운전의 시스템 효율이 가장 높아지는 냉매량을 의미한다. 상세에 대해서는 후술하지만, 본 실시형태의 공기 조화기(100)에는 난방 운전시에서의 최적의 냉매량의 냉매가 냉매 회로(20)에 봉입되어 있다. 따라서, 리시버(218)의 용적이 상기와 같이 설정된 경우, 냉방 운전시에 리시버(218)에 잉여 냉매가 수용됨으로써 냉방 운전이 최적의 냉매량으로 행해진다. 또한, 리시버(218)의 대형화가 억제된다.
그러나, 본 실시형태의 보조 유닛(13)은 냉매 저장부인 리시버(218) 내의 냉매량을 검지하는 냉매량 검지 기구(Z)를 구비한다.
구체적으로 냉매량 검지 기구(Z)는 도 28에 나타낸 바와 같이, 리시버(218)의 복수의 상이한 높이 위치에 접속된 복수의 도출로(Z1); 복수의 도출로(Z1) 각각에 설치된 복수의 캐필러리 등의 유체 저항(Z2); 복수의 도출로(Z1)에 있어서 상기 유체 저항(Z2)의 하류 측에 설치된 복수의 온도 센서(Z3); 및 복수의 온도 센서(Z3)에 의해 얻어진 냉매 온도를 이용하여 리시버(218) 내의 냉매량을 검지하는 냉매량 검지부(Z4)를 구비한다.
복수의 도출로(Z1)에 형성된 집합관부(Z1x)는 제1 내부 배관(131)에 접속되어 있다. 한편, 집광관체 부문(Z1x)에는 접속 개폐 밸브(220)가 설치되어 있으며 상기 접속 개폐 밸브(220)에 의해 개폐 상태가 교체된다.
또한, 냉매량 검지부(Z4)는 상기 실시형태의 냉매량 검지부(41)에 의해 구성되어 있다.
구체적으로 냉매량 검지부(41)는 복수의 온도 센서(Z3)의 검출 온도를 취득하여, 각 온도 센서의 검출 온도의 대소 관계를 이용하여 리시버(218) 내의 냉매량을 검지한다. 여기서, 복수의 도출로(Z1) 중에서, 액상 부분에 접속된 도출로(Z1)의 온도 센서(Z3)의 검출 온도와 기상 부분에 접속된 도출로(Z1)의 온도 센서(Z3)의 검출 온도가 다르므로, 액체형상의 냉매가 통과하는 도출로(Z1) 및 그렇지 않은 도출로(Z1)를 판별할 수 있다. 이에 따라, 리시버(218) 내의 냉매량을 검지할 수 있다.
이와 같이 본 실시형태에 의하면, 기존의 공기 조화기(100)에 별도 부착함으로써 상기 공기 조화기(100)의 냉매량을 검지할 수 있다. 여기서, 냉매 저장부(218) 내의 냉매량을 검지하는 냉매량 검지 기구(Z)를 구비하고 있으므로, 실외측 열교환기(203)의 출구에서의 냉매 상태에 관계없이, 냉매 저장부(218) 내의 냉매량, 게다가 공기 조화기(100)(냉매 회로(20)) 내의 냉매량을 정밀도 좋게 검지할 수 있다.
한편, 상술한 예에서는, 유량 조정 수단의 일례로서 리시버 감압 밸브(219)를 갖는 공기 조화기(1)에 대하여 설명했다. 그러나, 유량 조정 수단은 감압 밸브에 한정되지 않는다. 예를 들면, 유량 조정 수단으로서 개폐 밸브나 유량 제어 밸브 등을 이용해도 무방하다. 이 경우, 리시버(218)로부터 분기로(20a)를 통하여 냉매 회로(20)에 배출되는 냉매의 유량 및 냉매의 속도를 조정할 수 있다.
또한, 냉매량 검지 기구(Z)로서는 상기 제6 실시형태의 도 22에 나타낸 구성으로 해도 무방하다.
상기 제 9 실시형태에서는 보조 유닛(13)이 냉매량 검지 장치(40)를 가지고, 연산식에 의해 냉매 회로(20) 내의 냉매량을 검지함과 아울러, 냉매량 검지 기구(Z)에 의해 냉매 저장부 내의 냉매량을 검지하는 구성이었지만, 보조 유닛이, 연산식을 이용하여 냉매 회로(20) 내의 냉매량을 검지하지 않고, 냉매량 검지 기구(Z) 만을 갖는 구성이어도 무방하다.
<제10 실시형태>
이하, 본 발명의 제10 실시형태에 대하여 도면을 참조하여 설명한다.
본 실시형태의 보조 유닛(13)은 도 29에 나타낸 바와 같이, 가스측 냉매 배관(제1 냉매 배관(121)에 착탈 가능하게 접속되는 가스측 내부 배관(131); 액체측 냉매 배관(제2 냉매 배관(122))에 착탈 가능하게 접속되는 액체측 내부 배관(132); 가스측 내부 배관(131) 및 액체측 내부 배관(132)에 접속된 바이패스관(133); 및 바이패스관(133)에 설치되고 다른 열원과의 사이에서 열교환을 수행하는 보조 열교환기(134)를 구비한다.
가스측 내부 배관(131)은 제1 냉매 배관(121)의 사이에 접속되어, 실내기(11)의 증발기(205)와 실외기(10)의 사방 밸브(202)를 접속하는 것이다. 액체측 내부 배관(132)은 제2 냉매 배관(122)의 사이에 접속되어, 실외기(10)의 응축기(203)(제1 팽창 밸브(204))와 실내기의 증발기(205)를 접속하는 것이다.
본 실시형태의 보조 열교환기(134)는 다른 열원인 히터(13H)와 바이패스관(133)을 흐르는 냉매 사이에서 열교환하는 것이다. 한편, 히터(13H)는 보조 유닛(13) 내에 설치되어 있다.
여기서, 도 30에, 히터(13H)의 종류와 냉매 가열을 위한 보조 열교환기(134)의 구성을 나타낸다. 도 30a에 나타낸 바와 같이, 히터(13H)로서 자율적으로 온도 제어할 수 있는 히터, 예를 들면 PTC 히터를 이용한 경우에는 냉매가 열화하지 않는 온도, 예를 들면 150℃ 이하로 자율적으로 온도를 유지할 수 있으므로, 바이패스관(133)(냉매 배관)에 직접 히터(13H)를 감는 등의 심플한 열교환기를 구성하는 것이 가능하다. 한편, 도 30b에 나타낸 바와 같이, 히터(13H)로서 자율적으로 온도 제어할 수 없는 히터, 예를 들면 전열 히터를 이용한 경우에는 상기 전열 히터(13H)와 바이패스관(133)(냉매 배관) 사이에 히트 파이프(134p)를 설치하여 열전달시키는 구성으로 하여, 일정 온도 이상의 가열을 할 수 없는 구성으로 한다.
바이패스관(133)에는 바이패스관(133)을 액체관 측에서 가스관 측으로 흐르는 냉매량을 조정하기 위한 유량 조정 밸브(추가 팽창 밸브)(135)가 설치되어 있다. 한편, 이 유량 조정 밸브(135)는 보조 유닛 제어부(13C)에 의해 그 개도(개구도)가 제어된다.
또한, 바이패스관(133)에 있어서 보조 열교환기(134)의 입구 측에는 보조 열교환기(134)에 유입되는 냉매 온도를 검출하는 입구 온도 센서(136)가 설치되어 있다. 한편, 입구 온도 센서(136)는 검출된 입구 온도를 나타낸 신호를 보조 유닛 제어부(13C)에 출력한다.
또한, 바이패스관(133)에서의 보조 열교환기(134)의 출구 측에는 보조 열교환기(133)로부터 유출된 냉매 온도를 검출하는 출구 온도 센서(137)가 설치되어 있다. 한편, 출구 온도 센서(137)는 검출된 출구 온도를 나타낸 신호를 보조 유닛 제어부(13C)에 출력한다.
다음으로, 보조 유닛(13)을 접속한 공기 조화기(100)의 냉방 운전에 대하여 보조 유닛 제어부(13C)의 기능과 함께 간단히 설명한다.
(1) 통상의 냉방 운전시
통상 냉방 운전시에서는, 보조 유닛 제어부(13C)는 유량 조정 밸브(135)에 닫힘 신호를 출력하고, 유량 조정 밸브(135)를 닫힘 상태로 한다. 또한, 보조 유닛 제어부(13C)는 히터(13H)를 오프(OFF)로 한다.
(2) 낮은 외기 온도의 냉방 운전시
낮은 외기 온도의 냉방 운전시에서는, 보조 유닛 제어부(13C)는 히터(13H)를 온(ON)으로 하여 유량 조정 밸브(135)에 열림 신호를 출력하고, 유량 조정 밸브(135)를 열림 상태로 한다. 이 때, 보조 유닛 제어부(13C)는 입구 온도 센서(136)로부터 입구 온도를 취득하고, 출구 온도 센서(137)로부터 출구 온도를 취득하고, 입구 온도 및 출구 온도의 온도차 SH에 의해, 유량 조정 밸브(135)의 개도를 제어한다.
이와 같이 구성한 본 실시형태의 보조 유닛(13)에 의하면, 가스측 내부 배관(131) 및 액체측 내부 배관(132)에 접속된 바이패스관(133)에 다른 열원인 히터(13H)와의 사이에서 열교환을 수행하는 보조 열교환기(134)를 설치하고 있으므로, 액체측 내부 배관(132)을 흐르는 액체 냉매의 일부를 보조 열교환기(134)에 의해 가열하여 가스측 내부 배관(131)에 공급할 수 있다. 이에 따라, 실내측 열교환기(205) 및 실외측 열교환기(203)로의 냉매의 공급량을 조정하여, 실외측 열교환기(203)의 열교환량 및 실내측 열교환기(205)의 열교환량을 조정할 수 있다. 따라서, 낮은 외기 온도일 때의 냉방 운전에서의 실외측 열교환기(203)의 열교환량 및 실내측 열교환기(205)의 열교환량을 조정할 수 있으며 낮은 외기 온도일 때의 냉방 운전을 문제 없이 수행할 수 있다. 또한, 보조 유닛(13)을 기존의 공기 조화기(100)에 외부 부착하는 것만으로, 상기 기능을 기존의 공기 조화기(100)에 부여할 수 있다.
한편, 상기 제10 실시형태의 다른 열원에 관해서 말하면, 상기 실시형태의 히터(13H) 외에, 도 31에 나타낸 바와 같이, 히트 펌프(14)를 이용한 것이나, 도 32에 나타낸 바와 같이, 외부에서 생성된 열을 반송하는 열반송 시스템(15)를 이용한 것이어도 무방하다.
도 31에 나타낸 히트 펌프(14)를 이용한 경우에는 낮은 외기 온도의 냉방 운전시에 있어서, 히트 펌프(14)에 의해 고온 냉매가 보조 열교환기(135)에 공급된다. 이에 따라, 보조 열교환기(135)에 있어서, 히트 펌프(14)의 고온 냉매와 바이패스관(133)을 흐르는 냉매 사이에서 열교환을 수행한다. 한편, 보조 유닛 제어부(13C)는 입구 온도 센서(136)로부터 입구 온도를 취득하고, 출구 온도 센서(137)로부터 출구 온도를 취득하여, 입구 온도 및 출구 온도의 온도차 SH에 의해, 유량 조정 밸브(135)의 개도를 제어한다.
도 32에 나타낸 열반송 시스템(15)을 이용한 경우에는 낮은 외기 온도의 냉방 운전시에 있어서, 열반송 시스템(15)에 의해 고온 냉매가 보조 열교환기(135)에 공급된다. 한편, 열반송 시스템(15)은 예를 들면 지열이나 태양열 등의 재생 가능 에너지를 반송하는 것이고, 열매체를 유통시키기 위한 유통 펌프(151)를 갖는다. 그리고, 보조 유닛 제어부(13C)는 유통 펌프(151)를 온(ON)으로 함으로써, 열반송 시스템(15)에 의해 고온 냉매가 보조 열교환기(135)에 공급된다. 또한, 보조 유닛 제어부(13C)는 입구 온도 센서(136)로부터 입구 온도를 취득하고, 출구 온도 센서(137)로부터 출구 온도를 취득하여, 입구 온도 및 출구 온도의 온도차 SH에 의해, 유량 조정 밸브(135)의 개도를 제어한다.
<제11 실시형태>
이하, 본 발명의 제11 실시형태에 대하여 도면을 참조하여 설명한다.
본 실시형태의 보조 유닛(13)은 도 33에 나타낸 바와 같이, 가스측 냉매 배관(제1 냉매 배관(121)에 착탈 가능하게 접속되는 가스측 내부 배관(131); 액체측 냉매 배관(제2 냉매 배관(122))에 착탈 가능하게 접속되는 액체측 내부 배관(132); 냉매를 저장하는 리시버(138); 이 리시버(138) 내의 냉매를 가열하는 가열부(13H); 리시버(138)와 액체측 내부 배관(132) 사이에서 냉매를 왕래하게 하는 제1 접속관(13h1); 및 이 제1 접속관(13h1)로부터 분기하여 가스측 내부 배관(131)에 접속되는 제2 접속관(13h2)을 구비한다.
가스측 내부 배관(131)은 제1 냉매 배관(121)의 사이에 접속되어, 실내기(11)의 증발기(205)와 실외기(10)의 사방 밸브(202)를 접속하는 것이다. 액체측 내부 배관(132)은 제2 냉매 배관(122)의 사이에 접속되어, 실외기(10)의 응축기(203)(제1 팽창 밸브(204))와 실내기의 증발기(205)를 접속하는 것이다.
리시버(138)는 철 등의 열전도성을 갖는 재료로 형성되어 있다. 그리고, 리시버(138)는 가열부(13H)에 의해 가열된다. 이 가열부(13H)는 예를 들면 리시버(138)의 외면에 설치된 히터이다. 또한, 리시버(138)에는 내부의 액체 냉매의 유무를 검지하는 검지부가 설치되어 있다. 이 검지부는 리시버(138)의 상부에 설치된 상부 온도 센서(13T1), 및 리시버(138)의 하부에 설치된 하부 센서(13T2)를 갖는다. 이 상부 온도 센서(13T1) 및 하부 온도 센서(13T2)로부터의 검지 신호를 취득한 보조 유닛 제어부(13C)는 그러한 온도차가 소정 온도 이하로 된 경우에, 리시버(138)의 내부에 액체 냉매가 없다고 판단한다.
제1 접속관(13h1)은 리시버(138)의 연직 하부에 위치하는 저면에 접속되어 있다. 즉, 본 실시형태의 리시버(13h1)는 연직 하부에 설치되는 제1 접속관(13h1)으로부터 냉매가 출입한다. 이에 따라, 리시버(138) 내의 냉매는 거의 가스화하지 않는 한, 액체로 유출된다. 또한, 제1 접속관(13h1)에는 전자 밸브인 액체측 개폐 밸브(139a)가 설치되어 있다. 이 액체측 개폐 밸브(139a)는 보조 유닛 제어부(13C)에 의해 그 개폐가 제어된다.
제2 접속관(13h2)에는 제2 접속관(13h2)을 액체관 측에서 가스관 측으로 흐르는 냉매량을 조정하기 위한 유량 조정 밸브(추가 팽창 밸브)(13V)가 설치되어 있다. 이 유량 조정 밸브(13V)는 보조 유닛 제어부(13C)에 의해 그 개도(개구도)가 제어된다. 또한, 제2 접속관(13h2)의 유량 조정 밸브(13V)의 하류 측에는 전자 밸브인 가스측 개폐 밸브(139b)가 설치되어 있다. 이 가스측 개폐 밸브(139b)는 보조 유닛 제어부(13C)에 의해 그 개폐가 제어된다. 한편, 상기 제1 접속관(13h1)에 설치된 액체측 개폐 밸브(139a) 및 상기 제2 접속관(13h2)에 설치된 가스측 개폐 밸브(139b)에 의해 전환 기구(139)가 구성된다. 한편, 전환 기구(139)는 제1 접속관(13h1) 및 제2 접속관(13h2)의 접속부에 설치된 3방 밸브에 의해 구성해도 무방하다.
다음으로, 보조 유닛(13)을 접속한 공기 조화기(100)의 냉방 운전에 대하여 보조 유닛 제어부(13C)의 기능과 함께 간단하게 설명한다.
(1) 통상의 냉방 운전시
도 34에 나타낸 바와 같이, 통상 냉방 운전시에서는 보조 유닛 제어부(13C)는 액체측 개폐 밸브(139a)에 열림 신호를 출력하여, 액체측 개폐 밸브(139a)를 열림 상태로 한다. 또한, 보조 유닛 제어부(13C)는 유량 조정 밸브(13V) 및 가스측 개폐 밸브(139b)에 닫힘 신호를 출력하여, 유량 조정 밸브(13V) 및 가스측 개폐 밸브(139b)를 닫힘 상태로 한다. 또한, 보조 유닛 제어부(13C)는 히터(13H)를 오프(OFF)로 한다. 이 상태에서, 공기 조화기(100)가 냉방 운전을 수행함으로써, 액체측 내부 배관(132)를 실외기(10) 측에서 실내기(11) 측으로 흐르는 액체 냉매의 일부가, 제1 접속관(13h1)을 지나서 리시버(138)에 모여서, 적정한 냉매량을 유지할 수 있다.
(2) 낮은 외기 온도의 냉방 운전시
도 35에 나타낸 바와 같이, 낮은 외기 온도의 냉방 운전시에서는, 보조 유닛 제어부(13C)는 액체측 개폐 밸브(139a)에 닫힘 신호를 출력하여, 액체측 개폐 밸브(139a)를 닫힘 상태로 한다. 또한, 보조 유닛 제어부(13C)는 히터(13H)를 온(ON)으로 한다. 또한, 보조 유닛 제어부(13C)는 유량 조정 밸브(13V) 및 가스측 개폐 밸브(139b)에 열림 신호를 출력하여, 유량 조정 밸브(13V) 및 가스측 개폐 밸브(139b)를 열림 상태로 한다. 이에 따라, 리시버(138) 내의 액체 냉매가 제2 접속관(13h2)으로부터 사이클 내에 공급된다. 이에 따라, 리시버(138) 내에 저장된 냉매를, 실외측 열교환기(203)에 모아서, 실외측 열교환기(203)의 응축 능력을 낮출 수 있다.
여기서, 보조 유닛 제어부(13C)는 실외기(10)(압축기(201))의 흡입 과열도에 의거하여, 유량 조정 밸브(13V)의 개도를 제어한다. 또한, 보조 유닛 제어부(13C)는 리시버(138)의 상부 온도 센서(13T1) 및 하부 온도 센서(13T2)의 검지 온도를 취득하여, 이들의 온도차가 소정 온도 이하가 된 경우에, 리시버(138) 내부의 냉매가 가스화하여 액체 냉매가 거의 사이클 내에 공급되었다고 판단한다. 그리고, 보조 유닛 제어부(13C)는 히터(13H)를 오프(OFF)로 함과 아울러, 유량 조정 밸브(13V) 및 가스측 개폐 밸브(139b)에 닫힘 신호를 출력하여, 유량 조정 밸브(13V) 및 가스측 개폐 밸브(139b)를 닫힘 상태로 한다.
(3) 난방 운전시
도 36에 나타낸 바와 같이, 난방 운전시에서는 액체측 개폐 밸브(139a)에 열림 신호를 출력하여, 액체측 개폐 밸브(139a)를 열림 상태로 한다. 또한, 보조 유닛 제어부(13C)는 유량 조정 밸브(13V) 및 가스측 개폐 밸브(139b)에 닫힘 신호를 출력하고, 유량 조정 밸브(13V) 및 가스측 개폐 밸브(139b)를 닫힘 상태로 한다. 또한, 보조 유닛 제어부(13C)는 히터(13H)를 오프(OFF)로 한다. 이 상태에서, 공기 조화기(100)가 냉방 운전을 수행함으로써, 액체측 내부 배관(132)을 실내기(11) 측에서 실외기(10) 측으로 흐르는 액체 냉매의 일부가, 제1 접속관(13h1)을 지나서 리시버(138)에 모여서, 적정한 냉매량을 유지할 수 있다.
이와 같이 구성한 본 실시형태의 보조 유닛(13)에 의하면, 냉난방 운전시에 리시버(138)에 저장된 냉매를, 낮은 외기 온도일 때의 냉방 운전시에 히터(13H)로 가열하여 제2 접속관(13h2)을 통하여 가스측 내부 배관(131)에 공급하므로, 낮은 외기 온도일 때의 냉방 운전시에 있어서, 실외측 열교환기(203)에 액체 냉매를 모을 수 있으며 실외측 열교환기(203)의 응축 성능을 낮출 수 있다. 이에 따라, 낮은 외기 온도일 때의 냉방 운전시에서의 실외측 열교환기(203)의 열교환량 및 실내측 열교환기(205)의 열교환량을 조정할 수 있으며 낮은 외기 온도일 때의 냉방 운전을 문제 없이 수행할 수 있다. 또한, 보조 유닛(13)을 기존의 공기 조화기(100)에 외부 부착하는 것만으로, 상기 기능을 기존의 공기 조화기(100)에 부여할 수 있다.
한편, 상기 제10 실시형태 및 제11 실시형태에서는 1대의 실외기 및 1대의 실내기를 갖는 공기 조화기를 예로 들어 설명했지만, 2대 이상의 실내기를 예를 들면 병렬 접속한 것이어도 무방하고, 2대 이상의 실외기를 예를 들면 병렬 접속한 것이어도 무방하다.
이상에서는, 도면을 참조하여 본 발명의 일실시형태에 대하여 자세히 설명했지만, 구체적인 구성은 상술한 것에 한정되지 않고, 본 발명의 요지를 벗어나지 않는 범위 내에서 여러 가지 설계 변경 등을 하는 것이 가능하다. 또한, 상술한 각 실시형태의 구성 요건을 조합해도 무방하다.

Claims (19)

  1. 압축기, 응축기, 팽창 밸브 및 증발기를 포함하는 냉매 회로;
    상기 응축기의 출구에서 냉매 상태가 과냉각 상태 또는 기액 2상 상태를 판단하고, 상기 냉매 회로 내에서 검출된 온도 및 압력 중 적어도 하나와 상기 냉매 상태에 따라 미리 정해진 설정값을 기초로 상기 냉매 회로 내의 냉매량비를 산출하는 냉매량 검지 장치; 및
    상기 냉매량 검지 장치에서 산출된 냉매량비에 따라 상기 냉매 회로를 제어하는 제어부;를 포함하는 공기조화기.
  2. 제 1항에 있어서,
    상기 냉매량 검지 장치는,
    상기 산출된 냉매량비에 기초하여 냉매량비의 평균값을 계산하는 공기 조화기.
  3. 제 1항 및 제 2항 중 어느 하나에 있어서,
    상기 냉매 회로는,
    상기 응축기의 출구에서 제1 냉매 온도를 검지하는 제1 온도 센서; 및
    상기 응축기의 출구 측에 설치된 유체 저항의 하류 측에서 제2 냉매 온도를 검지하는 제2 온도 센서;를 더 포함하고,
    상기 냉매량 검지 장치 는 상기 제1 냉매 온도 및 상기 제2 냉매 온도를 기초로, 과냉각 상태 또는 기액 2상 상태를 판단하는 공기 조화기.
  4. 제 1항 및 제 2항 중 어느 하나에 있어서,
    상기 냉매 회로는,
    상기 응축기와 상기 팽창 밸브 사이에 위치하고, 상기 응축기에서 생성된 액체 냉매를 냉각시키는 서브 쿨러;를 더 포함하는 공기조화기.
  5. 제 4항에 있어서,
    상기 제어부는,
    상기 냉매량 검지 장치의 제어에 따라 상기 압축기, 응축기, 팽창 밸브, 증발기 및 서브 쿨러 중 적어도 하나를 일정하게 동작하도록 제어하는 공기 조화기.
  6. 제 5항에 있어서,
    상기 냉매 회로는,
    충전 냉매를 보관하는 냉매 저장 용기; 및 상기 냉매 저장 용기에서 공급하는 상기 냉매를 제어하는 냉매 주입 밸브;를 더 포함하고,
    상기 제어부는, 상기 냉매를 충전하는 경우, 상기 냉매량비의 평균값이 100%에 이르면 상기 냉매 주입 밸브를 제어하는 공기 조화기.
  7. 제 1항에 있어서,
    상기 냉매 회로는,
    상기 냉매 회로 내에 존재하는 잉여 냉매를 과냉각 액체 상태로 저장하는 리시버; 및
    상기 리시버로부터 유출되는 냉매를 감압함과 아울러 냉매의 유량을 조정하는 유량 조정부;를 포함하는 공기 조화기.
  8. 제 6항에 있어서,
    상기 냉매는, R32 및 HFO1234yf 또는 HFO1234ze를 포함하는 비공비 혼합 냉매를 포함하는 공기 조화기.
  9. 제 8항에 있어서,
    상기 비공비 혼합 냉매는, HFC의 함유량이 70 중량% 미만, HFO1234yf 또는 HFO1234ze의 함유량이 30 중량% 미만이고, 나머지가 자연 냉매인 것을 특징으로 하는 공기 조화기.
  10. 제 7항에서 제 9항까지 중 어느 하나에 있어서,
    상기 리시버의 용적은,
    상기 냉매 회로가 난방 운전하는 동안의 냉매량에서 냉방 운전하는 동안의 냉매량을 뺀 냉매량을 상기 과냉각 액체 상태로 환산한 체적과 동일한 공기 조화기.
  11. 제 7항에서 제 9항까지 중 어느 하나에 있어서,
    상기 냉매 회로는,
    상기 증발기 또는 상기 응축기에서 응축된 메인 냉매와, 상기 메인 냉매에서 분류되고, 과냉각 감압 밸브에 의해 감압된 분류 냉매를 열교환시켜 상기 메인 냉매를 과냉각하는 과냉각기;를 더 포함하는 공기 조화기.
  12. 제 11항에 있어서,
    상기 리시버는, 상기 리시버 내의 냉매량을 검지하는 적어도 하나의 냉매량 검지 기구;를 더 포함하는 공기 조화기.
  13. 제 1항에 있어서,
    상기 압축기 및 상기 응축기를 포함하는 실외기와 상기 증발기를 포함하는 실내기를 연결하고, 상기 냉매 회로의 배관과 착탈이 가능하며, 상기 냉매량 검지 장치를 포함하는 보조 유닛;을 더 포함하는 공기 조화기.
  14. 제 13항에 있어서,
    상기 보조 유닛은,
    상기 냉매 회로 내에 냉매를 충전하는 경우, 상기 산출된 냉매량비가 100%에 이르렀을 때에 상기 보조 유닛의 냉매 배관을 조절하는 냉매 주입 밸브;를 더 포함하는 공기 조화기.
  15. 제 13및 14항 중 어느 하나에 있어서,
    상기 보조 유닛은,
    충전 냉매를 보관하는 냉매 저장 용기; 및 상기 냉매 저장 용기에서 공급하는 상기 냉매를 제어하는 냉매 주입 밸브;를 더 포함하고,
    상기 제어부는, 상기 냉매를 충전하는 경우, 상기 냉매량비의 평균값이 100%에 이르면 상기 냉매 주입 밸브를 제어하는 공기 조화기.
  16. 제 15항에 있어서,
    상기 보조 유닛은,
    상기 공기 조화기를 제외한 외부 열원 장치와 열교환을 수행하는 보조 열교환기를 더 포함하는 공기 조화기.
  17. 제 16항에 있어서,
    상기 보조 유닛은,
    상기 보조 유닛의 배관 내에 존재하는 잉여 냉매를 과냉각 액체 상태로 저장하는 리시버; 및
    상기 리시버로부터 유출되는 냉매를 감압함과 아울러 상기 냉매의 유량을 조정하는 유량 조정부;를 포함하는 공기 조화기.
  18. 압축기, 응축기, 팽창 밸브 및 증발기를 포함하는 냉매 회로를 포함하는 공기 조화기의 제어방법에 있어서,
    상기 응축기의 출구에서 냉매 상태가 과냉각 상태 또는 기액 2상태인지를 판단하고;
    상기 냉매 회로 내에서 검출된 온도 및 압력 중 적어도 하나와 상기 냉매 상태에 따라 미리 정해진 설정값을 기초로 상기 냉매 회로 내의 냉매량비를 산출하고;
    상기 산출된 냉매량비에 따라 상기 냉매 회로를 제어하는 것;을 포함하는 공기 조화기의 제어방법.
  19. 제 18항에 있어서,
    상기 산출된 냉매량비에 기초하여 상기 냉매량비의 평균값을 계산하는 것;을 더 포함하는 공기 조화기의 제어방법.
PCT/KR2015/009327 2014-09-03 2015-09-03 공기 조화기 및 그 제어방법 WO2016036176A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15838951.0A EP3190355A4 (en) 2014-09-03 2015-09-03 Air conditioner and method for controlling same
US15/508,754 US10551101B2 (en) 2014-09-03 2015-09-03 Air conditioner and control method thereof for determining an amount of refrigerant

Applications Claiming Priority (18)

Application Number Priority Date Filing Date Title
JP2014-179372 2014-09-03
JP2014179372 2014-09-03
JP2014223569 2014-10-31
JP2014-223569 2014-10-31
JP2014-256083 2014-12-18
JP2014256083 2014-12-18
JP2015-126229 2015-06-24
JP2015126229 2015-06-24
JP2015134148 2015-07-03
JP2015-134148 2015-07-03
JP2015161149 2015-08-18
JP2015-161149 2015-08-18
JP2015-161148 2015-08-18
JP2015161148 2015-08-18
JP2015-167170 2015-08-26
JP2015167170A JP6621616B2 (ja) 2014-09-03 2015-08-26 冷媒量検知装置
KR1020150125162A KR20160028400A (ko) 2014-09-03 2015-09-03 공기 조화기 및 그 제어방법
KR10-2015-0125162 2015-09-03

Publications (1)

Publication Number Publication Date
WO2016036176A1 true WO2016036176A1 (ko) 2016-03-10

Family

ID=55440127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009327 WO2016036176A1 (ko) 2014-09-03 2015-09-03 공기 조화기 및 그 제어방법

Country Status (1)

Country Link
WO (1) WO2016036176A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107504706A (zh) * 2017-08-03 2017-12-22 青岛海尔空调电子有限公司 空调器及其快速制冷方法
WO2018080150A1 (en) * 2016-10-25 2018-05-03 Samsung Electronics Co., Ltd. Air conditioner
EP4407239A1 (en) * 2023-01-28 2024-07-31 Re Energy Engineering Eood Modular geothermal energy center

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080081942A (ko) * 2005-12-16 2008-09-10 다이킨 고교 가부시키가이샤 공기 조화 장치
JP2008232579A (ja) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp 冷媒充填方法
JP2010007993A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置の冷媒量判定方法および空気調和装置
JP2010127586A (ja) * 2008-11-28 2010-06-10 Samsung Electronics Co Ltd 冷凍サイクル装置
JP2012132601A (ja) * 2010-12-20 2012-07-12 Samsung Yokohama Research Institute Co Ltd 冷媒量検知装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080081942A (ko) * 2005-12-16 2008-09-10 다이킨 고교 가부시키가이샤 공기 조화 장치
JP2008232579A (ja) * 2007-03-23 2008-10-02 Mitsubishi Electric Corp 冷媒充填方法
JP2010007993A (ja) * 2008-06-27 2010-01-14 Daikin Ind Ltd 空気調和装置の冷媒量判定方法および空気調和装置
JP2010127586A (ja) * 2008-11-28 2010-06-10 Samsung Electronics Co Ltd 冷凍サイクル装置
JP2012132601A (ja) * 2010-12-20 2012-07-12 Samsung Yokohama Research Institute Co Ltd 冷媒量検知装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018080150A1 (en) * 2016-10-25 2018-05-03 Samsung Electronics Co., Ltd. Air conditioner
US11060771B2 (en) 2016-10-25 2021-07-13 Samsung Electronics Co., Ltd. Air conditioner with a refrigerant ratio adjustor
CN107504706A (zh) * 2017-08-03 2017-12-22 青岛海尔空调电子有限公司 空调器及其快速制冷方法
CN107504706B (zh) * 2017-08-03 2021-04-20 青岛海尔空调电子有限公司 空调器及其快速制冷方法
EP4407239A1 (en) * 2023-01-28 2024-07-31 Re Energy Engineering Eood Modular geothermal energy center

Similar Documents

Publication Publication Date Title
WO2017014559A1 (en) Air conditioner and control method thereof
WO2017057817A1 (en) Air conditioner and method of controlling the same
WO2021137408A1 (en) Air conditioning apparatus
WO2016036176A1 (ko) 공기 조화기 및 그 제어방법
WO2015093787A1 (en) Oil detection device, compressor having the same and method of controlling the compressor
WO2020060036A1 (en) Air conditioner and control method thereof
WO2022014841A1 (ko) 공기 조화기 및 그 제어 방법
WO2020235786A1 (en) Air conditioning apparatus and control method thereof
WO2019143195A1 (ko) 멀티형 공기조화기
WO2018169183A1 (ko) 공기 조화기
WO2016010220A1 (ko) 냉각 장치 및 그 제어 방법
WO2021112522A1 (ko) 차량용 히트펌프 시스템
WO2021157815A1 (en) Air conditioning apparatus
WO2018169190A1 (ko) 공기 조화기
WO2020060038A1 (ko) 공조 장치 및 공조 장치의 제어 방법
WO2018169191A1 (ko) 공기 조화기
WO2018169192A1 (ko) 공기 조화기
WO2019143198A1 (ko) 멀티형 공기조화기
WO2022039429A1 (ko) 냉장고
WO2022030811A1 (ko) 냉장고
WO2021149896A1 (en) Air conditioning apparatus
WO2022030808A1 (ko) 냉장고
WO2021085899A1 (en) Refrigerator and method of controlling the same
WO2018169188A1 (ko) 공기 조화기
WO2018169189A1 (ko) 공기 조화기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15508754

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015838951

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015838951

Country of ref document: EP