WO2016035830A1 - Fluorine-containing highly-branched polymer, and biomolecule adsorption-suppressing surface - Google Patents

Fluorine-containing highly-branched polymer, and biomolecule adsorption-suppressing surface Download PDF

Info

Publication number
WO2016035830A1
WO2016035830A1 PCT/JP2015/074993 JP2015074993W WO2016035830A1 WO 2016035830 A1 WO2016035830 A1 WO 2016035830A1 JP 2015074993 W JP2015074993 W JP 2015074993W WO 2016035830 A1 WO2016035830 A1 WO 2016035830A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
branched polymer
highly branched
containing highly
monomer
Prior art date
Application number
PCT/JP2015/074993
Other languages
French (fr)
Japanese (ja)
Inventor
田中 敬二
寿生 松野
ゆか里 織田
諒 粟根
将幸 原口
元信 松山
Original Assignee
国立大学法人九州大学
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 日産化学工業株式会社 filed Critical 国立大学法人九州大学
Priority to JP2016546680A priority Critical patent/JP6645971B2/en
Publication of WO2016035830A1 publication Critical patent/WO2016035830A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds

Definitions

  • the present invention relates to a novel fluorine-containing highly branched polymer and a biomolecule adsorption-suppressing surface (membrane) formed using the fluorine-containing highly branched polymer.
  • polymer (polymer) materials have been increasingly used in many fields. Accordingly, the characteristics of the surface and interface of the polymer material as well as the polymer properties as a matrix are important in the polymer material according to each field.
  • medical materials using various polymer materials have been studied, such as blood filters, artificial kidney membranes, plasma separation membranes, catheters, artificial lung membranes, artificial blood vessels, adhesion prevention membranes, artificial membranes. Expected to be used on skin. In this case, since a synthetic material that is a foreign substance for a living body is used in contact with in vivo tissue or blood, the medical material is required to have biocompatibility.
  • a hydrophilic polymer has bioaffinity with respect to a biomolecule and has an effect of suppressing nonspecific adsorption of the biomolecule.
  • Biocompatible polymers that suppress nonspecific adsorption of cells and protein components include polyethylene glycol (PEG) or polyethylene oxide (PEO), polyvinyl pyrrolidone (PVP), poly (2-hydroxyethyl methacrylate) (PHEMA), poly Nonionic polymers such as (2-methoxyethyl acrylate) (PMEA) and amphoteric polymers having both positively and negatively charged functional groups in one molecule such as phosphobetaine, sulfobetaine, carboxybetaine, etc. .
  • Patent Document 1 discloses a technique in which a solution obtained by diluting PEO having a thiol group at one end is coated on a gold-deposited glass substrate and used as a polymer material on the surface for nonspecific adsorption of DNA on a biochip. It is disclosed.
  • Non-Patent Document 1 a PMMA blend film in which PMEA is segregated to the surface by spin coating a polymer blend solution of PMEA and polymethylmethacrylate (PMMA) on a substrate, and performing solvent drying and heat treatment. Techniques for making are disclosed.
  • Patent Document 1 When PEO having a thiol group at one end described in Patent Document 1 is coated on a gold-deposited glass substrate, it is necessary to immerse the substrate in the solution for a long time. An efficient manufacturing method has been a problem.
  • Non-Patent Document 1 since a polymer blend solution of PMEA and PMMA is spin-coated on a substrate and heat treatment takes several hours to one day, it is inefficient production as in Patent Document 1. The method was a challenge.
  • a fluorine-containing highly branched polymer having a fluoroalkyl group and an oxyalkylene moiety at the molecular end, and a resin blend containing a thermoplastic resin are spin-coating and the like. It has been found that a surface capable of easily suppressing the adsorption of biomolecules such as proteins can be easily formed on various substrates such as plastics by a coating method capable of producing a thin film in a short time. Completed.
  • the present invention provides, as a first aspect, a monomer A having two or more radical polymerizable double bonds in the molecule, and a monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule.
  • a fluorine-containing highly branched polymer obtained by polymerizing a polymerizable compound containing at least 5 to 200 mol% of the polymerization initiator in the presence of a polymerization initiator C with respect to the number of moles of the monomer A.
  • the present invention relates to the fluorine-containing highly branched polymer according to the first aspect, wherein n is an integer of 1 to 30.
  • the present invention relates to the fluorine-containing highly branched polymer according to the first aspect or the second aspect, in which the oxyalkylene moiety is bonded to the molecular end via a fragment of the polymerization initiator C.
  • the said monomer A is a compound which has any one or both of a vinyl group or a (meth) acryl group,
  • the said monomer A is related with the fluorine-containing highly branched polymer as described in a 4th viewpoint which is a divinyl compound or a di (meth) acrylate compound.
  • the present invention relates to the fluorine-containing highly branched polymer according to the fifth aspect, in which the monomer A is divinylbenzene.
  • the monomer B is a compound having at least one of a vinyl group and a (meth) acryl group, and the fluorine-containing high content according to any one of the first aspect to the sixth aspect. Relates to branched polymers.
  • the present invention relates to the fluorine-containing highly branched polymer according to the seventh aspect, in which the monomer B is a compound represented by the formula [2].
  • the present invention relates to the fluorine-containing highly branched polymer according to any one of the first aspect to the eighth aspect, in which the polymerization initiator C is an azo polymerization initiator.
  • the present invention relates to a varnish containing the fluorine-containing highly branched polymer according to any one of the first to ninth aspects.
  • the present invention relates to a resin blend containing (a) the fluorine-containing highly branched polymer according to any one of the first to ninth aspects, and (b) a thermoplastic resin.
  • a resin blend containing (a) the fluorine-containing highly branched polymer according to any one of the first to ninth aspects, and (b) a thermoplastic resin.
  • a 13th viewpoint it is related with the biomolecule adsorption
  • polymerization comprising at least a monomer A having two or more radical polymerizable double bonds in the molecule and a monomer B having at least one radical polymerizable double bond in the molecule
  • a carboxy group-containing fluorine-containing highly branched polymer obtained by polymerizing a functional compound in the presence of a polymerization initiator having a carboxy group in the molecule of 5 to 200 mol% relative to the number of moles of the monomer A, or
  • the method for producing a fluorine-containing hyperbranched polymer according to any one of the first aspect to the ninth aspect, characterized by reacting a carboxy group activator with a compound represented by the formula [3].
  • the present invention relates to the manufacturing method according to the fourteenth aspect, wherein n is an integer of 1 to 30.
  • a method for producing a thin film having a biomolecule adsorption inhibiting ability produced from the fluorine-containing highly branched polymer according to any one of the first aspect to the ninth aspect, Inhibition of biomolecule adsorption, including a step of applying a liquid containing the fluorine-containing hyperbranched polymer in a solvent on a substrate by spin coating to form a coating film, and a step of drying the coating film and removing the solvent
  • the present invention relates to a method for manufacturing a thin film having a function.
  • a method for producing a biomolecule adsorption-suppressing membrane produced from the resin blend described in the twelfth aspect Production of a biomolecule adsorption inhibiting film comprising a step of applying a liquid containing the resin blend in a solvent on a substrate by a spin coating method to form a coating film, and a step of drying the coating film and removing the solvent. Regarding the method.
  • the fluorine-containing hyperbranched polymer having an oxyalkylene moiety having an effect of suppressing the adsorption of biomolecules at the molecular end of the present invention is obtained by using a varnish containing the polymer, a resin blend containing the polymer, etc.
  • a film can be easily formed by coating, and a surface capable of suppressing the adsorption of biomolecules such as proteins can be produced on a substrate in a short time.
  • the fluorine-containing highly branched polymer having an oxyalkylene moiety at the molecular end of the present invention has a branched structure, so that it has less entanglement between molecules compared to a linear polymer and exhibits fine particle behavior. .
  • the fluorine-containing highly branched polymer whose surface energy has been reduced by the fluoroalkyl group is easy to move to the surface side, which is a free interface such as air, in the thermoplastic resin used as the matrix, and gives activity to the resin surface. It's easy to do. Accordingly, when a molded body such as a film is produced from a resin blend containing a fluorine-containing highly branched polymer having an oxyalkylene moiety at the molecular end of the present invention and the above thermoplastic resin, the finely divided fluorine-containing highly branched polymer is used as an interface.
  • a molded body (film) in which the abundance of the fluorine-containing highly branched polymer is increased on the surface can be formed. That is, from the resin blend in which a thermoplastic resin or the like is blended with a fluorine-containing highly branched polymer having an oxyalkylene moiety at the molecular end of the present invention, a molded product whose surface is a surface capable of suppressing adsorption of biomolecules such as proteins ( Film) and the like.
  • FIG. 1 is a diagram showing a 1 H NMR spectrum of a fluorine-containing highly branched polymer 1 having a carboxy group at the terminal.
  • FIG. 2 is a diagram showing a 13 C NMR spectrum of fluorine-containing hyperbranched polymer 1 having a carboxy group at the terminal.
  • FIG. 3 is a diagram showing IR spectra of the fluorine-containing highly branched polymer 1 having a carboxy group at the terminal and the fluorine-containing highly branched polymer 2 having a tri (ethylene oxide) moiety at the terminal.
  • FIG. 4 is a diagram showing a 1 H NMR spectrum of fluorine-containing highly branched polymer 2 having a tri (ethylene oxide) moiety at the terminal.
  • FIG. 1 is a diagram showing a 1 H NMR spectrum of a fluorine-containing highly branched polymer 1 having a carboxy group at the terminal.
  • FIG. 2 is a diagram showing a 13 C NMR spectrum of fluorine-containing
  • FIG. 5 shows the results of surface composition analysis of fluorine-containing highly branched polymer 2 / PMMA blend film having a tri (ethylene oxide) moiety at the terminal by angle-resolved X-ray photoelectron spectroscopy (XPS) measurement (fluorine atom and carbon atom relative to photoelectron emission angle ⁇ ).
  • Is a diagram showing the photoelectron intensity ratio I F1s / I C1s ) (heat treatment temperature; (a) room temperature, (b) 150 ° C.).
  • FIG. 6 is a graph showing changes in water contact angle with time in a fluorine-containing highly branched polymer 2 / PMMA blend film having a tri (ethylene oxide) portion at the terminal and a fluorine-containing highly branched polymer 1 / PMMA blend film having a carboxyl group at the terminal. It is.
  • FIG. 6 is a graph showing changes in water contact angle with time in a fluorine-containing highly branched polymer 2 / PMMA blend film having a tri (ethylene oxide) portion at the terminal and a fluorine-containing highly branched polymer 1 / PMMA blend film having a carboxyl group at the terminal. It is.
  • FIG. 7 is a diagram showing the observation results of a fluorescein isocyanate-labeled bovine serum albumin (BSA) adsorbed on a fluorine-containing hyperbranched polymer 2 / PMMA blend membrane having a tri (ethylene oxide) moiety at the terminal and a PMMA membrane with a fluorescence microscope ( BSA / phosphate buffered saline (PBS) solution concentrations: 10 ⁇ g / mL, 50 ⁇ g / mL, 100 ⁇ g / mL.)
  • FIG. 8 is a plot of the values obtained by quantifying the brightness of the photographs in the fluorescence micrographs (FIG. 7) obtained in Example 4 and Comparative Example 2 against the BSA concentration. .
  • FIG. 7 is a diagram showing the observation results of a fluorescein isocyanate-labeled bovine serum albumin (BSA) adsorbed on a fluorine-containing hyperbranched polymer 2 / PMMA blend membrane having a tri
  • FIG. 9 is a diagram showing IR spectra of fluorine-containing highly branched polymers 3 and 4 each having an oligo (ethylene oxide) portion at the terminal, and fluorine-containing highly branched polymer 5 having a poly (ethylene oxide) portion at the terminal.
  • FIG. 10 is a diagram showing a 1 H NMR spectrum of fluorine-containing highly branched polymer 3 having an oligo (ethylene oxide) moiety at the terminal.
  • FIG. 11 is a diagram showing a 1 H NMR spectrum of fluorine-containing highly branched polymer 4 having an oligo (ethylene oxide) moiety at the terminal.
  • FIG. 10 is a diagram showing a 1 H NMR spectrum of fluorine-containing highly branched polymer 3 having an oligo (ethylene oxide) moiety at the terminal.
  • FIG. 11 is a diagram showing a 1 H NMR spectrum of fluorine-containing highly branched polymer 4 having an oligo (ethylene oxide) moiety at the terminal.
  • FIG. 12 is a diagram showing a 1 H NMR spectrum of fluorine-containing hyperbranched polymer 5 having a poly (ethylene oxide) moiety at the terminal.
  • FIG. 13 shows the results of surface composition analysis (photoelectron emission) of the fluorine-containing highly branched polymer 3 / PMMA blend film, the fluorine-containing highly branched polymer 4 / PMMA blend film, and the fluorine-containing highly branched polymer 5 / PMMA blend film by angle-resolved XPS measurement. It is a figure which shows the photoelectron intensity ratio IF1s / IC1s ) of the fluorine atom and the carbon atom with respect to angle (theta).
  • FIG. 14 is a graph showing changes in the water contact angle with time in a fluorine-containing highly branched polymer 3 / PMMA blend film, a fluorine-containing highly branched polymer 4 / PMMA blend film, and a fluorine-containing highly branched polymer 5 / PMMA blend film.
  • FIG. 15 shows a fluorescence microscope for fluorescein isocyanate-labeled BSA adsorption on fluorine-containing highly branched polymer 3 / PMMA blend membrane, fluorine-containing highly branched polymer 4 / PMMA blend membrane, fluorine-containing highly branched polymer 5 / PMMA blend membrane, and PMMA membrane.
  • FIG. 16 plots the values obtained by quantifying the luminance of the photographs in the fluorescence micrographs obtained in Examples 14 to 16 and Comparative Example 3 (FIG. 15) against the BSA concentration.
  • FIG. 17 shows a fluorine-containing highly branched polymer 3 / PMMA blend film, a fluorine-containing highly branched polymer 4 / PMMA blend film, a fluorine-containing highly branched polymer 5 / PMMA blend film, a fluorine-containing highly branched polymer 1 / PMMA blend film, and a PMMA film.
  • 2 is a scanning electron microscope (SEM) image of platelets adhered on a PET film.
  • FIG. 18 is a graph plotting the number of platelets adhered to each membrane and the classification of the degree of activation in Examples 17 to 19 and Comparative Examples 4 to 6.
  • the fluorine-containing highly branched polymer of the present invention comprises a monomer A having two or more radical polymerizable double bonds in the molecule, and a monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule.
  • a fluorine-containing highly branched polymer obtained by polymerizing a polymerizable compound containing at least 5 to 200 mol% of the polymerization initiator in the presence of a polymerization initiator C with respect to the number of moles of the monomer A.
  • the fluorine-containing hyperbranched polymer is a so-called initiator fragment incorporation (IFIRP) type hyperbranched polymer, and has a fragment of the polymerization initiator C used for polymerization at the terminal.
  • the oxyalkylene moiety represented by the formula [1] is bonded to the molecular end via a fragment of the polymerization initiator C.
  • the fluorine-containing hyperbranched polymer may be copolymerized with a polyfunctional monomer and / or a monofunctional monomer, which do not belong to the monomer A and the monomer B described below, as necessary, as long as the effects of the present invention are not impaired. .
  • the monomer A having two or more radically polymerizable double bonds in the molecule preferably has at least one of either a vinyl group or a (meth) acryl group, and particularly a divinyl compound or di ( A meth) acrylate compound is preferred.
  • the (meth) acrylate compound refers to both an acrylate compound and a methacrylate compound.
  • (meth) acrylic acid refers to acrylic acid and methacrylic acid.
  • Examples of the monomer A having two or more radical polymerizable double bonds in the molecule include the compounds shown in the following (A1) to (A5).
  • (A1) Vinyl hydrocarbons (A1-1) Aliphatic vinyl hydrocarbons; isoprene, butadiene, 3-methyl-1,2-butadiene, 2,3-dimethyl-1,3-butadiene, 1,2-polybutadiene, pentadiene, hexadiene, octadiene etc. (A1-2) Alicyclic vinyl hydrocarbons; cyclopentadiene, cyclohexadiene, cyclooctadiene, norbornadiene and the like.
  • (A1-3) Aromatic vinyl hydrocarbons; divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene, divinylbiphenyl, divinylnaphthalene, divinylfluorene, divinylcarbazole, divinylpyridine and the like.
  • (A2) Vinyl ester, allyl ester, vinyl ether, allyl ether and vinyl ketone:
  • (A2-3) Vinyl ether; divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether and the like.
  • (A3) (Meth) acrylic acid ester Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, trimethylene glycol di (meth) acrylate , Propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexane Diol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10 Decanediol di (meth) acryl
  • (A4) Vinyl compound having a polyalkylene glycol chain Polyethylene glycol (molecular weight: 200, 300, 400, 600, 1000, etc.) di (meth) acrylate, polypropylene glycol (molecular weight: 400, 500, 700, etc.) di (meth) acrylate, polytetramethylene glycol (molecular weight: 650, etc.) Di (meth) acrylate, ethylene oxide-added polypropylene glycol (molecular weight: 700, etc.), di (meth) acrylate, etc.
  • Nitrogen-containing vinyl compound Diallylamine, diallyl isocyanurate, diallyl cyanurate, methylenebis (meth) acrylamide, bismaleimide and the like.
  • These monomers A may be used alone or in combination of two or more.
  • aromatic vinyl hydrocarbons of the group (A1-3) vinyl esters, allyl esters, vinyl ethers, allyl ethers and vinyl ketones of the group (A2), (meth) acrylic of the group (A3).
  • divinylbenzene and ethylene glycol di (meth) acrylate are particularly preferable from the viewpoint of dispersibility in the thermoplastic resin described later.
  • the monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule preferably has at least one of either a vinyl group or a (meth) acryl group.
  • the monomer B includes a compound represented by the above formula [2], and a more preferred specific example includes a compound represented by the following formula [4]. (Wherein R 2 represents the same meaning as defined in Formula [2], X represents a hydrogen atom or a fluorine atom, m represents 1 or 2, and p represents an integer of 0 to 5).
  • Examples of such a monomer B include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, and 2- (perfluorobutyl) ethyl.
  • the amount of monomer B used is more preferably 5 to 300 mol%, particularly 10 to 150 mol%, based on the number of moles of monomer A used, from the viewpoint of reactivity and surface modification effect. Is preferably used in an amount of 20 to 100 mol%.
  • polymerization initiator C an azo polymerization initiator is preferably used.
  • the azo polymerization initiator include compounds shown in the following (1) to (5).
  • Azonitrile compound 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 1,1′-azobis ( 1-cyclohexanecarbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2- (carbamoylazo) isobutyronitrile and the like;
  • Azoamide compound 2,2′-azobis ⁇ 2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide ⁇ , 2,2′-azobis ⁇ 2-methyl-N- [2- ( 1-hydroxybutyl)] propionamide ⁇ , 2,2′-azobis [2-methyl-N- (2-hydroxy
  • the azo polymerization initiators may be used alone or in combination of two or more.
  • 4,4′-azobis (4- (4) -azobis (4- (4-azobenzene)) is used from the viewpoint of easy introduction of the oxyalkylene moiety represented by the formula [1] in the fluorine-containing highly branched polymer of the present invention described later.
  • Cyanovaleric acid), 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, and the like are preferable.
  • the polymerization initiator C is used in an amount of 5 to 200 mol%, preferably 20 to 200 mol%, more preferably 20 to 100 mol%, based on the number of moles of the monomer A. used.
  • the polymerizable compound used in the present invention may contain other monomers that do not belong to the monomer A and the monomer B as long as the effects of the present invention are not impaired.
  • the other monomer is not particularly limited as long as it is a monomer having one radical polymerizable double bond in the molecule, but is preferably a vinyl compound or a (meth) acrylate compound.
  • alkyl group having 1 to 6 carbon atoms represented by R 1 in the formula [1] examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a sec-butyl group.
  • an alkyl group having 1 to 4 carbon atoms is preferable, a methyl group, an ethyl group, an n-propyl group, and an n-butyl group are particularly preferable, and a methyl group and an ethyl group are more preferable.
  • the alkylene group having 2 to 6 carbon atoms represented by L 1 include, for example, an ethylene group, trimethylene group, methylethylene group, tetramethylene group, 1-methyltrimethylene group, pentamethylene group, 2,2-dimethyl group. A trimethylene group, a hexamethylene group, etc. are mentioned. Among these, an ethylene group is preferable from the viewpoint of the biomolecule adsorption inhibiting effect.
  • Polymerization method of polymerizable compound As a polymerization method for polymerizing the polymerizable compound containing at least the monomer A and the monomer B in the presence of a predetermined amount of the polymerization initiator C with respect to the monomer A, known methods such as solution polymerization and dispersion polymerization are used. , Precipitation polymerization, bulk polymerization and the like, among which solution polymerization or precipitation polymerization is preferable. In particular, it is preferable to carry out the reaction by solution polymerization in an organic solvent from the viewpoint of molecular weight control.
  • organic solvent used at this time examples include aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and tetralin; aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, mineral spirit, and cyclohexane; Halides such as methyl chloride, methyl bromide, methyl iodide, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, orthodichlorobenzene; ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve Esters or ester ethers such as acetate and propylene glycol monomethyl ether acetate; diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl cell
  • aromatic hydrocarbons halides, esters, ester ethers, ethers, ketones, alcohols, amides and the like are preferable, and benzene, toluene, xylene, ortho are particularly preferable.
  • Dichlorobenzene ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, tetrahydrofuran, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, tert-butyl alcohol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like.
  • the mass of the organic solvent relative to 1 part by mass of the monomer A is usually 5 to 120 parts by mass, preferably 10 to 110 parts by mass.
  • the polymerization reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
  • the polymerization temperature is arbitrary as long as it is not higher than the boiling point of the reaction mixture, but is preferably 50 to 200 ° C., more preferably 80 to 150 ° C., more preferably 80 to 130 ° C. from the viewpoint of polymerization efficiency and molecular weight control. More preferred.
  • the reaction time varies depending on the reaction temperature, the types and ratios of the monomer A, the monomer B and the polymerization initiator C, the type of polymerization solvent, etc., but cannot be defined unconditionally, but is preferably 30 to 720 minutes, more preferably Is 40 to 540 minutes.
  • the obtained fluorine-containing hyperbranched polymer is collected by an arbitrary method, and post-treatment such as washing is performed as necessary. Examples of a method for recovering the polymer from the reaction solution include a method such as reprecipitation.
  • the weight average molecular weight (Mw) of the fluorine-containing highly branched polymer of the present invention measured by gel permeation chromatography in terms of polystyrene is 1,000 to 400,000, preferably 2,000 to 200,000, more preferably. It is 2,000 to 100,000, more preferably 2,000 to 50,000.
  • the fluorine-containing highly branched polymer of the present invention has an oxyalkylene moiety represented by the above formula [1] at the molecular end.
  • the introduction of the oxyalkylene moiety involves introduction of a carboxy group-containing fluorine-containing highly branched polymer, which can be said to be a precursor of the fluorine-containing highly branched polymer, or an activated product thereof, and a compound represented by the above formula [3] It is obtained by reacting with an alkyl ether).
  • This production method is also an object of the present invention.
  • the carboxy group-containing fluorine-containing highly branched polymer includes a monomer A having two or more radical polymerizable double bonds in the molecule, and a monomer having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule.
  • the carboxy group activated product is a polymer obtained by reacting the carboxy group-containing fluorine-containing hyperbranched polymer with a known active esterifying agent to partially or fully convert the carboxy group into an active ester. It is. Examples of the known active esterifying agent include nitrophenol, pentafluorophenol, N-hydroxysuccinimide and the like.
  • the carboxy group-containing fluorine-containing highly branched polymer can be produced using the method described in the above-mentioned [Polymerization method of polymerizable compound], and the monomer A and monomer B include the above [monomer A] [monomer B] and the polymerization initiator having a carboxy group such as 4,4′-azobis (4-cyanovaleric acid) among the above-mentioned [polymerization initiator C].
  • An initiator can be suitably used.
  • the above-mentioned [other monomers] may be used in combination as a polymerizable compound.
  • the carboxy group-activated fluorine-containing highly branched polymer When the carboxy group-activated fluorine-containing highly branched polymer is used, the carboxy group-containing fluorine-containing highly branched polymer and the known active esterifying agent are reacted in a solvent capable of dissolving these compounds. Then, an active esterifying agent is bonded to part or all of the carboxy groups of the fluorine-containing hyperbranched polymer to obtain a carboxy group activated product.
  • the solvent used for the above-mentioned [polymerization method of a polymeric compound] can be mentioned, for example.
  • the amount of the active esterifying agent used is, for example, 0.1 to 10 mol times the amount of carboxy groups of the carboxy group-containing fluorine-containing highly branched polymer.
  • the ratio of the activated carboxy group to the total carboxy group can be adjusted.
  • the above reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
  • the reaction temperature is desirably ⁇ 80 to 200 ° C., preferably 0 to 100 ° C., more preferably 10 to 50 ° C.
  • the reaction time is 0.1 to 48 hours, preferably 0.2 to 40 ° C. It is desirable to do it in time.
  • the obtained carboxy group active form is recovered by an arbitrary method, and after-treatment such as washing is performed as necessary, and used in the subsequent steps. Examples of the method for recovering from the reaction solution include methods such as reprecipitation.
  • the reaction of the carboxy group-containing fluorine-containing highly branched polymer or the activated carboxy group thereof with the compound represented by the above formula [3] is carried out in a solvent capable of dissolving these compounds in the presence of a known condensing agent. Will be implemented.
  • a solvent for example, the solvent used in the above-mentioned [Polymerization method of polymerizable compound] can be used.
  • examples of R 1 and L 1 in the formula include the groups shown in the above-mentioned [oxyalkylene moiety]. Although it does not specifically limit as a compound represented by the said Formula [3], In particular, it is preferable that it is a compound in which n represents an integer greater than or equal to 3. In addition, from the viewpoint of the characteristics of the resulting fluorine-containing highly branched polymer, a compound in which n represents an integer of 45 or less is preferable.
  • n represents an integer of 5 to 45
  • n represents an integer of 10 to 45
  • n represents an integer of 5 to 30
  • n represents an integer of 10 to 30
  • Examples of the compound represented by the formula [3] include ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monomethyl ether, heptaethylene glycol monomethyl.
  • Ether hexaethylene glycol monomethyl ether, nonaethylene glycol monomethyl ether, dodecaethylene glycol monoethyl ether, tridecaethylene glycol monomethyl ether, tetradecaethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol Methyl ether, hepta propylene glycol monomethyl ether, tri (tetramethylene glycol) monomethyl ether, nona (tetramethylene glycol) monomethyl ether, poly (tetramethylene glycol) monomethyl ether, and the like.
  • triethylene glycol monomethyl ether triethylene glycol monoethyl ether, hexaethylene glycol monomethyl ether, dodecaethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, and the like can be suitably used.
  • Examples of the known condensing agent include N, N′-dicyclohexylcarbodiimide (DCC), N, N′-diisopropylcarbodiimide (DIC), and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) hydrochloride.
  • Carbodiimides such as N, N′-carbonyldiimidazole, dimesityl ammonium pentafluorobenzenesulfonate and the like.
  • DMAP 4-dimethylaminopyridine
  • the above reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
  • the reaction temperature is desirably ⁇ 80 to 200 ° C., preferably 0 to 100 ° C., more preferably 10 to 50 ° C., and the reaction time is 0.1 to 48 hours, preferably 0.2 to 40 ° C. It is desirable to do it in time.
  • the obtained hyperbranched polymer (fluorine-containing hyperbranched polymer having an oxyalkylene moiety represented by the formula [1] at the molecular end) is recovered by any method, and washed as necessary. Perform post-processing. Examples of a method for recovering the polymer from the reaction solution include a method such as reprecipitation.
  • a fluorine-containing highly branched polymer is dissolved or dispersed in a solvent, Form (film forming material), and the varnish is cast-coated on a substrate, spin coating method, blade coating method, dip coating method, roll coating method, bar coating method, die coating method, spray coating method, ink jet method, printing
  • the film is applied by a method (eg, letterpress, intaglio, planographic, screen printing, etc.), and then dried by a hot plate or oven to form a film.
  • the spin coating method is preferable. In the case of using the spin coating method, since it can be applied in a single time, even a highly volatile solution can be used, and there is an advantage that highly
  • the solvent used in the form of the varnish is not particularly limited as long as it dissolves the fluorine-containing highly branched polymer.
  • PGME propylene glycol monomethyl ether
  • PGMEA propylene glycol monomethyl ether acetate
  • propylene glycol monoethyl ether ethyl lactate
  • diethylene glycol monoethyl ether butyl cellosolve, ⁇ -butyrolactone, and the like.
  • solvents may be used alone, or two or more kinds of solvents may be mixed.
  • the concentration in which the solvent is dissolved or dispersed is arbitrary, but the concentration of the fluorine-containing highly branched polymer is 0.01 to 90% by mass with respect to the total mass (total mass) of the fluorine-containing highly branched polymer and the solvent.
  • the amount is preferably 0.05 to 50% by mass, more preferably 0.1 to 20% by mass.
  • the thickness of the thin film made of the fluorine-containing highly branched polymer is not particularly limited, but is usually 0.005 to 50 ⁇ m, preferably 0.01 to 20 ⁇ m.
  • the present invention also relates to a resin blend comprising the aforementioned (a) fluorine-containing highly branched polymer, and (b) a thermoplastic resin.
  • thermoplastic resin contained in the resin blend of the present invention is not particularly limited.
  • PE polyethylene
  • PP polypropylene
  • EVA ethylene-vinyl acetate copolymer
  • EEA ethylene-ethyl acrylate copolymer
  • Polyolefin resins such as PS (polystyrene), HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene copolymer), MS (methyl methacrylate-styrene copolymer) Polycarbonate resin; Polyvinyl resin; Polyamide resin; (Meth) acrylic resin such as PMMA (polymethyl methacrylate); PET (polyethylene terephthalate), polybutylene terephthalate, polyester Polyester resins such as lennaphthalate, polybutylene naphthalate, PLA (polylactic acid), poly-3-hydroxy
  • the blending amount of the fluorine-containing highly branched polymer with respect to the thermoplastic resin is preferably 0.01 to 50% by mass, and particularly preferably 0.1 to 40% by mass.
  • the resin blend of the present invention is obtained by dissolving or dispersing the resin blend in a solvent to form a varnish (film-forming material), and applying (coating) the varnish on a base material.
  • the coating method on the substrate includes a cast coating method, a spin coating method, a blade coating method, a dip coating method, a roll coating method, a bar coating method, a die coating method, a spray coating method, an ink jet method, a printing method (a relief plate, an intaglio plate).
  • Lithographic printing, screen printing, etc. can be selected as appropriate, and since it can be applied in a short time, it can be used even in a highly volatile solution, and it has the advantage of being able to perform highly uniform coating. It is desirable to use a coating method. It is preferable that the resin blend is filtered in advance using a filter having a pore diameter of about 0.2 ⁇ m in advance and then applied to the coating.
  • the solvent used in the form of the varnish is not particularly limited as long as it dissolves the resin blend. Specific examples of these solvents include those described in ⁇ Method for producing varnish and thin film containing fluorine-containing hyperbranched polymer>. Examples of the solvent are the same.
  • the solid content in the varnish is, for example, 0.01 to 50% by mass, 0.05 to 30% by mass, or 0.1 to 20% by mass. Here, the solid content is obtained by removing the solvent component from all components of the varnish.
  • the base material examples include silicon / silicon dioxide coated substrates, silicon wafers, silicon nitride substrates, glass substrates, ITO substrates, plastic substrates (polyimide, polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy, melamine, Acetyl cellulose, ABS, AS, norbornene resin, etc.), metal, wood, paper, glass, slate and the like.
  • the shape of these base materials may be a plate shape, a film shape, or a three-dimensional molded body.
  • drying temperature and drying time at this time can be appropriately selected from room temperature (approximately 25 ° C.) to 400 ° C., 10 seconds to 48 hours, depending on the solvent used.
  • the coating film from which the solvent has been removed may be subsequently subjected to annealing of the obtained coating film in a polar medium atmosphere, so-called “solvent annealing”.
  • solvent annealing refers to solvent vapor treatment and refers to exposure to air containing solvent vapor in a sealed container at room temperature or higher.
  • Solvent annealing generally can change the surface state of the film, and in the present invention, the abundance of the fluorine-containing highly branched polymer on the film surface can be further increased.
  • examples of the polar medium include alcohols such as methanol and ethanol, with methanol being preferred.
  • the temperature during annealing and the annealing time are not particularly limited, but can be appropriately selected from, for example, room temperature (approximately 25 ° C.) to the boiling point of the solvent used, 10 seconds to 48 hours.
  • the film thickness by coating is usually 0.005 to 50 ⁇ m, preferably 0.01 to 20 ⁇ m after drying and, if necessary, subsequent solvent annealing.
  • DVB Divinylbenzene [DVB-960, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.]
  • C6FA 2- (perfluorohexyl) ethyl acrylate [FAAC-6 manufactured by Unimatec Co., Ltd.]
  • ACVA 4,4′-azobis (4-cyanovaleric acid) [Wako Pure Chemical Industries, Ltd.
  • TEGME Triethylene glycol monoethyl ether [manufactured by Tokyo Chemical Industry Co., Ltd.] HEGMME: Hexaethylene glycol monomethyl ether [manufactured by Tokyo Chemical Industry Co., Ltd.] 12EGME: Polyethylene glycol monomethyl ether [manufactured by Aldrich, product number: 202487, number average molecular weight: 550] 45EGME: Polyethylene glycol monomethyl ether [manufactured by Aldrich, product number: 202509 number average molecular weight: ⁇ 2,000]
  • DCC N, N′-dicyclohexylcarbodiimide [manufactured by Tokyo Chemical Industry Co., Ltd.] DIC: N, N′-diisopropylcarbodiimide [manufactured by Tokyo Chemical Industry Co., Ltd.]
  • DMAP 4- (dimethylamino) pyridine [manufactured by Kanto Chemical Co., Inc.]
  • PMMA Polymethyl meth
  • the weight average molecular weight Mw measured by polystyrene conversion by GPC of this polymer was 9,500, and dispersion degree: Mw (weight average molecular weight) / Mn (number average molecular weight) was 2.4.
  • a black dot represents a coupling end.
  • Example 1 Production of fluorine-containing hyperbranched polymer 2 having a tri (ethylene oxide) moiety at its end 38 mg (5) of fluorine-containing highly branched polymer 1 having a carboxyl group at its end obtained in Production Example 1 in a 25 mL three-necked flask 0.1 ⁇ mol), TEGMEE 16 mg (97 ⁇ mol), DMAP 7 mg (57 ⁇ mol) as a catalyst, DCC 21 mg (100 ⁇ mol) as a condensing agent, and 2.7 mg of THF dehydrated in advance with CaH 2 . This solution was stirred and reacted at room temperature (approximately 20 ° C.) for 24 hours under a nitrogen atmosphere.
  • FIG. 3 shows the IR spectrum of the fluorine-containing highly branched polymer 2 having a tri (ethylene oxide) moiety at the terminal
  • FIG. 4 shows the 1 H NMR spectrum.
  • FIG. 3 also shows the IR spectrum of the fluorine-containing highly branched polymer 1 having a carboxy group at the terminal.
  • no broad peak derived from the OH stretching vibration of carboxylic acid was observed in the vicinity of 2800 to 2500 cm ⁇ 1 , so that tri (ethylene oxide) sites were present on almost all terminal carboxy groups of the fluorine-containing highly branched polymer 1. It was confirmed that was introduced.
  • This solution was stirred and reacted at room temperature (approximately 20 ° C.) for 120 hours under a nitrogen atmosphere.
  • Precipitated diisopropyl urea (DIU) was removed by filtration.
  • THF was distilled off under reduced pressure, and the resulting residue was dissolved in chloroform.
  • this solution was washed three times with an aqueous hydrochloric acid solution having a pH of 5 to remove DMAP. Furthermore, after washing twice with distilled water, it was dried over anhydrous sodium sulfate, and chloroform was distilled off under reduced pressure.
  • FIG. 10 shows the 1 H NMR spectrum.
  • Example 2 Preparation of a fluorine-containing highly branched polymer 2 / PMMA blend film having a tri (ethylene oxide) moiety at the terminal and a fluorine-containing highly branched polymer 2 having a tri (ethylene oxide) moiety at the terminal and PMMA obtained in Example 1
  • This mixture was dissolved in THF so as to have a concentration of 2% by mass and filtered to prepare a varnish.
  • This varnish was spin-coated (3,000 rpm, 60 seconds) on a silicon wafer to form a blend film. After film formation, heat treatment was performed under vacuum at room temperature (approximately 20 ° C.) or 150 ° C. for 24 hours.
  • the film thickness estimated from ellipsometry measurement was 100 nm. Angle-resolved XPS measurement was performed on each of the obtained films to evaluate the surface composition of the films.
  • the photoelectron intensity ratio (I F1s / I C1s ) of fluorine and carbon with respect to the sine (sin ⁇ ) of the photoelectron emission angle in each blend film is shown in FIG. 5 (heat treatment temperature; FIG. 5 (a) room temperature, (b) 150 ° C. ).
  • I F1s / I C1s increased as sin ⁇ decreased. The smaller the value of sin ⁇ , the shallower the analysis depth, that is, near the surface.
  • the fluorine-containing highly branched polymer 2 has a hydrophilic tri (ethylene oxide) moiety at the end, it has fluorine with low surface free energy, and therefore can be concentrated near the surface of the blend film with PMMA. confirmed.
  • FIG. 13 shows the photoelectron intensity ratio (I F1s / I C1s ) of fluorine and carbon with respect to the sine of the photoelectron emission angle (sin ⁇ ).
  • Example 3 Surface structure rearrangement of fluorine-containing highly branched polymer 2 / PMMA blend film having tri (ethylene oxide) moiety at the terminal
  • Example 2 Fluorine-containing highly branched polymer 2 having a tri (ethylene oxide) moiety at the terminal prepared in Example 2 / PMMA blend membrane was heat treated at 150 ° C. under vacuum for 24 hours.
  • measurement of the change in contact angle with time using a 1 ⁇ L ultrapure water (millQ water) probe at room temperature (approximately 20 ° C.) in the atmosphere 60 Seconds). The results are shown in FIG.
  • Example 8 For the blend film obtained in Example 8, Example 3 and The same heat treatment was performed and evaluated. The results are shown in FIG.
  • n 12
  • PMMA blend film having an oligo (ethylene oxide) moiety For the blend film obtained in Example 9, Example 3 and The same heat treatment was performed and evaluated. The results are also shown in FIG.
  • Example 10 For the blend film obtained in Example 10, Example 3 and The same heat treatment was performed and evaluated. The results are also shown in FIG.
  • the contact angle with water significantly decreased with the passage of time after the water droplet was dropped.
  • the terminal oligo (ethylene oxide) part or poly (ethylene oxide) part of the fluorine-containing hyperbranched polymer concentrated on the surface in the blend film appears at the water interface upon contact with water, and the extent is It was confirmed that it was different depending on the chain length (number of repeating units n).
  • Example 4 Protein adsorption behavior of fluorine-containing highly branched polymer 2 / PMMA blend film A fluorine-containing highly branched polymer 2 / PMMA blend film was prepared in the same manner as in Example 2 except that the silicon wafer was changed to a cover glass. did. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum. The membrane was washed with ultrapure water and placed at the bottom of a 24-well plate. Next, the membrane was immersed in ultrapure water for 24 hours, and then washed with phosphate buffered saline (PBS).
  • PBS phosphate buffered saline
  • This membrane was immersed in fluorescein isocyanate-labeled bovine serum albumin (BSA) [manufactured by ELASTIN PRODUCTS COMPANY] / PBS prepared at 10 ⁇ g / mL, 50 ⁇ g / mL, and 100 ⁇ g / mL at 37 ° C. for 1 hour. Thereafter, each membrane was washed with PBS and observed under a fluorescence microscope in PBS to evaluate the adsorption behavior of bovine serum albumin on the membrane.
  • FIG. 7 shows the obtained fluorescence micrograph
  • FIG. 8 shows a graph plotting the luminance of this image with the hybrid cell count function [Software by Keyence Corporation] and plotting it against the concentration of bovine serum albumin.
  • the membrane was immersed in ultrapure water for 24 hours, and then washed with phosphate buffered saline (PBS).
  • PBS phosphate buffered saline
  • This membrane was immersed in fluorescein isocyanate-labeled bovine serum albumin (BSA) [ELASTIN PRODUCTS COMPANY] / PBS prepared at 5 ⁇ g / mL, 20 ⁇ g / mL, and 50 ⁇ g / mL at 37 ° C. for 1 hour.
  • BSA fluorescein isocyanate-labeled bovine serum albumin
  • FIG. 15 shows the obtained fluorescence micrograph
  • FIG. 16 shows a graph in which the brightness of this image is digitized using the hybrid cell count function [Keyence Co., Ltd. software] and plotted against the bovine serum albumin concentration.
  • the fluorescence intensity resulting from the adsorption of albumin in the blend film of the present invention is weaker than that in the PMMA film, and the adsorption of albumin is suppressed on the surface of the blend film of the present invention.
  • albumin was adsorbed on the membrane surface. This is presumably because a part of the fluorine-containing highly branched polymer 5 was dissolved by immersion in water for a long time.
  • PBS phosphate buffered saline
  • Comparative Example 4 Platelet Adhesion Behavior of Fluorine-containing Highly Branched Polymer 1 / PMMA Blend Film Having Carboxy Groups at Terminals Fluorine-containing Highly Carboxy Groups Having Terminal Carboxy Groups Obtained in Production Example 1 Instead of Fluorine-containing Hyperbranched Polymer 2
  • a blend film was prepared in the same manner as in Example 2 except that the branched polymer 1 was used. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum. The operation was performed in the same manner as in Example 17 except that this membrane was used. The results are also shown in FIGS.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Emergency Medicine (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To provide a material with which it is possible to easily form a surface capable of suppressing the adsorption of biomolecules such as proteins on various substrates such as plastics by a coating method such as spin coating with which it is possible to produce a thin film in a short time. [Solution] A fluorine-containing highly-branched polymer obtained by polymerizing a polymerizable compound that contains at least a monomer A having two or more radical polymerizable double bonds in the molecule and a monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule, polymerization taking place in the presence of 5-200 mol% of a polymerization initiator C relative to the number of moles of the monomer A, wherein the fluorine-containing highly-branched polymer has an oxyalkylene site at the end of the molecule.

Description

含フッ素高分岐ポリマー及び生体分子吸着抑制表面Fluorine-containing hyperbranched polymer and biomolecule adsorption inhibiting surface
 本発明は新規な含フッ素高分岐ポリマー並びに該含フッ素高分岐ポリマーを用いて形成される生体分子吸着抑制表面(膜)に関する。 The present invention relates to a novel fluorine-containing highly branched polymer and a biomolecule adsorption-suppressing surface (membrane) formed using the fluorine-containing highly branched polymer.
 ポリマー(高分子)材料は、近年、多分野にわたってますます利用が進んでいる。それに伴い、それぞれの分野に応じて、マトリクスとしてのポリマー性状とともに、その表面や界面の特性がポリマー材料において重要となっている。特に、近年、各種の高分子材料を利用した医療材料の検討が進められており、血液フィルタ、人工腎臓用膜、血漿分離用膜、カテーテル、人工肺用膜、人工血管、癒着防止膜、人工皮膚等への利用が期待されている。この場合、生体にとって異物である合成材料を生体内組織や血液と接触させて使用することとなるため、医療材料が生体適合性を有していることが要求される。 In recent years, polymer (polymer) materials have been increasingly used in many fields. Accordingly, the characteristics of the surface and interface of the polymer material as well as the polymer properties as a matrix are important in the polymer material according to each field. In particular, in recent years, medical materials using various polymer materials have been studied, such as blood filters, artificial kidney membranes, plasma separation membranes, catheters, artificial lung membranes, artificial blood vessels, adhesion prevention membranes, artificial membranes. Expected to be used on skin. In this case, since a synthetic material that is a foreign substance for a living body is used in contact with in vivo tissue or blood, the medical material is required to have biocompatibility.
 一方、タンパク質や細胞をはじめとする生体成分が、使用する器具、材料等の基材表面に吸着することが問題となっている。例えば、主に医療分野において、プロテオーム解析など微量のタンパク質を測定・分析する場合に吸着成分が多いと、タンパク質の分析を正確に行うことが出来ないだけでなく、タンパク質が実質的に消失してしまう虞がある。また、人工腎臓などの体外循環の際の有用タンパク質の減少や、血小板の粘着・凝集による血栓の形成、フィブリノーゲンなどの凝固関連タンパク質の吸着による血液の凝固、といった問題が発生する。食品分野においても、製品容器への生体成分の吸着による品質低下といった問題や、生産工程中のパイプラインなどへの生体成分の吸着によるパイプラインの閉塞や劣化といった問題が発生する。 On the other hand, there is a problem that biological components such as proteins and cells are adsorbed on the surface of a substrate such as an instrument or material to be used. For example, mainly in the medical field, if a small amount of protein is measured and analyzed, such as proteome analysis, if there are many adsorbed components, protein analysis cannot be performed accurately, but the protein may be substantially lost. There is a risk of it. In addition, problems such as reduction of useful proteins during extracorporeal circulation such as an artificial kidney, formation of a thrombus due to adhesion / aggregation of platelets, and coagulation of blood due to adsorption of coagulation-related proteins such as fibrinogen occur. Also in the food field, problems such as quality degradation due to the adsorption of biological components to the product container and problems such as blockage and deterioration of the pipeline due to the adsorption of biological components to the pipeline during the production process occur.
 一般的に、親水性を有する高分子は、生体分子に対する生体親和性を有し、生体分子の非特異吸着を抑制する効果があることが知られている。細胞やタンパク質成分の非特異吸着を抑制する生体親和性高分子としては、ポリエチレングリコール(PEG)又はポリエチレンオキシド(PEO)、ポリビニルピロリドン(PVP)、ポリ(2-ヒドロキシエチルメタクリレート)(PHEMA)、ポリ(2-メトキシエチルアクリレート)(PMEA)などのノニオン性高分子、及びホスホベタイン、スルホベタイン、カルボキシベタインなどの1分子中にプラス荷電とマイナス荷電の双方の官能基を有する両性高分子が挙げられる。 Generally, it is known that a hydrophilic polymer has bioaffinity with respect to a biomolecule and has an effect of suppressing nonspecific adsorption of the biomolecule. Biocompatible polymers that suppress nonspecific adsorption of cells and protein components include polyethylene glycol (PEG) or polyethylene oxide (PEO), polyvinyl pyrrolidone (PVP), poly (2-hydroxyethyl methacrylate) (PHEMA), poly Nonionic polymers such as (2-methoxyethyl acrylate) (PMEA) and amphoteric polymers having both positively and negatively charged functional groups in one molecule such as phosphobetaine, sulfobetaine, carboxybetaine, etc. .
 例えば、特許文献1では、片方の末端にチオール基を有するPEOを希釈した溶液を金蒸着ガラス基材上にコーティングし、バイオチップにおけるDNAの非特異吸着をする表面の高分子材料として用いる技術が開示されている。 For example, Patent Document 1 discloses a technique in which a solution obtained by diluting PEO having a thiol group at one end is coated on a gold-deposited glass substrate and used as a polymer material on the surface for nonspecific adsorption of DNA on a biochip. It is disclosed.
 また、非特許文献1では、PMEA及びポリメチルメタクリレート(PMMA)の高分子ブレンド溶液を基材上へスピンコーティングし、溶媒乾燥及び熱処理を施すことにより、PMEAが表面へ偏析されたPMMAブレンド膜を作製する技術が開示されている。 Further, in Non-Patent Document 1, a PMMA blend film in which PMEA is segregated to the surface by spin coating a polymer blend solution of PMEA and polymethylmethacrylate (PMMA) on a substrate, and performing solvent drying and heat treatment. Techniques for making are disclosed.
特開2004-279204号公報JP 2004-279204 A
 特許文献1に記載の片方の末端にチオール基を有するPEOは、金蒸着ガラス基材にコーティングする際、基材をその溶液に長時間浸漬する必要があり、吸着抑制表面を作製するのに非効率的な製造方法が課題であった。 When PEO having a thiol group at one end described in Patent Document 1 is coated on a gold-deposited glass substrate, it is necessary to immerse the substrate in the solution for a long time. An efficient manufacturing method has been a problem.
 また、非特許文献1に記載の方法では、PMEA及びPMMAの高分子ブレンド溶液を基材上へスピンコーティング後、熱処理に数時間から一日を要するため、特許文献1同様に非効率的な製造方法が課題であった。 In addition, in the method described in Non-Patent Document 1, since a polymer blend solution of PMEA and PMMA is spin-coated on a substrate and heat treatment takes several hours to one day, it is inefficient production as in Patent Document 1. The method was a challenge.
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、フルオロアルキル基及び分子末端にオキシアルキレン部位を有する含フッ素高分岐ポリマー、並びに熱可塑性樹脂を含む樹脂ブレンドが、スピンコーティングなどの短時間で薄膜を作製可能な塗布方法により、プラスチックをはじめとする各種基材上に、簡便にタンパク質などの生体分子の吸着を抑制可能な表面を形成可能となることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors have found that a fluorine-containing highly branched polymer having a fluoroalkyl group and an oxyalkylene moiety at the molecular end, and a resin blend containing a thermoplastic resin are spin-coating and the like. It has been found that a surface capable of easily suppressing the adsorption of biomolecules such as proteins can be easily formed on various substrates such as plastics by a coating method capable of producing a thin film in a short time. Completed.
 すなわち本発明は、第1観点として、分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBとを少なくとも含む重合性化合物を、該モノマーAのモル数に対して5~200モル%の重合開始剤Cの存在下で重合させることにより得られる含フッ素高分岐ポリマーであって、その分子末端に式[1]で表されるオキシアルキレン部位を有する、含フッ素高分岐ポリマーに関する。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは炭素原子数1乃至6のアルキル基を表し、Lは炭素原子数2乃至6のアルキレン基を表し、nは1乃至60の整数を表す。)
 第2観点として、前記nが1乃至30の整数である、第1観点に記載の含フッ素高分岐ポリマーに関する。
 第3観点として、前記オキシアルキレン部位が、重合開始剤Cの断片を介してその分子末端に結合している、第1観点又は第2観点に記載の含フッ素高分岐ポリマーに関する。
 第4観点として、前記モノマーAが、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有する化合物である、第1観点乃至第3観点のうち何れか一項に記載の含フッ素高分岐ポリマーに関する。
 第5観点として、前記モノマーAが、ジビニル化合物又はジ(メタ)アクリレート化合物である、第4観点に記載の含フッ素高分岐ポリマーに関する。
 第6観点として、前記モノマーAがジビニルベンゼンである、第5観点に記載の含フッ素高分岐ポリマーに関する。
 第7観点として、前記モノマーBが、ビニル基又は(メタ)アクリル基の何れか一方を少なくとも1つ有する化合物である、第1観点乃至第6観点のうち何れか一項に記載の含フッ素高分岐ポリマーに関する。
 第8観点として、前記モノマーBが式[2]で表される化合物である、第7観点に記載の含フッ素高分岐ポリマーに関する。
Figure JPOXMLDOC01-appb-C000005
(式中、Rは水素原子又はメチル基を表し、Rはヒドロキシ基で置換されていてもよい炭素原子数2乃至12のフルオロアルキル基を表す。)
 第9観点として、前記重合開始剤Cがアゾ系重合開始剤である、第1観点乃至第8観点のうち何れか一項に記載の含フッ素高分岐ポリマーに関する。
 第10観点として、第1観点乃至第9観点のうち何れか一項に記載の含フッ素高分岐ポリマーを含有するワニスに関する。
 第11観点として、第1観点乃至第9観点のうち何れか一項に記載の含フッ素高分岐ポリマーより作製される生体分子吸着抑制能を有する薄膜に関する。
 第12観点として、(a)第1観点乃至第9観点のうち何れか一項に記載の含フッ素高分岐ポリマー、及び(b)熱可塑性樹脂を含む樹脂ブレンドに関する。
 第13観点として、第12観点に記載の樹脂ブレンドより作製される生体分子吸着抑制膜に関する。
 第14観点として、分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBとを少なくとも含む重合性化合物を、該モノマーAのモル数に対して5~200モル%の分子内にカルボキシ基を有する重合開始剤の存在下で重合させることにより得られるカルボキシ基含有含フッ素高分岐ポリマー、又はそのカルボキシ基活性化体と、式[3]で表される化合物とを反応させることを特徴とする、第1観点乃至第9観点のうち何れか一項に記載の含フッ素高分岐ポリマーの製造方法に関する。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは炭素原子数1乃至6のアルキル基を表し、Lは炭素原子数2乃至6のアルキレン基を表し、nは1乃至60の整数を表す。)
 第15観点として、前記nが1乃至30の整数である、第14観点に記載の製造方法に関する。
 第16観点として、第1観点乃至第9観点のうち何れか一項に記載の含フッ素高分岐ポリマーより作製される生体分子吸着抑制能を有する薄膜の製造方法であって、
該含フッ素高分岐ポリマーを溶媒中に含む液をスピンコート法により基材上に塗布し、塗膜を形成する工程、及び
該塗膜を乾燥し溶媒を除去する工程
を含む、生体分子吸着抑制能を有する薄膜の製造方法に関する。
 第17観点として、第12観点に記載の樹脂ブレンドより作製される生体分子吸着抑制膜の製造方法であって、
該樹脂ブレンドを溶媒中に含む液をスピンコート法により基材上に塗布し、塗膜を形成する工程、及び
該塗膜を乾燥し溶媒を除去する工程
を含む、生体分子吸着抑制膜の製造方法に関する。
That is, the present invention provides, as a first aspect, a monomer A having two or more radical polymerizable double bonds in the molecule, and a monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule. Is a fluorine-containing highly branched polymer obtained by polymerizing a polymerizable compound containing at least 5 to 200 mol% of the polymerization initiator in the presence of a polymerization initiator C with respect to the number of moles of the monomer A. Relates to a fluorine-containing highly branched polymer having an oxyalkylene moiety represented by the formula [1].
Figure JPOXMLDOC01-appb-C000004
(Wherein R 1 represents an alkyl group having 1 to 6 carbon atoms, L 1 represents an alkylene group having 2 to 6 carbon atoms, and n represents an integer of 1 to 60).
As a second aspect, the present invention relates to the fluorine-containing highly branched polymer according to the first aspect, wherein n is an integer of 1 to 30.
As a third aspect, the present invention relates to the fluorine-containing highly branched polymer according to the first aspect or the second aspect, in which the oxyalkylene moiety is bonded to the molecular end via a fragment of the polymerization initiator C.
As a 4th viewpoint, the said monomer A is a compound which has any one or both of a vinyl group or a (meth) acryl group, The fluorine-containing highly branched as described in any one of a 1st viewpoint thru | or a 3rd viewpoint Relates to polymers.
As a 5th viewpoint, the said monomer A is related with the fluorine-containing highly branched polymer as described in a 4th viewpoint which is a divinyl compound or a di (meth) acrylate compound.
As a sixth aspect, the present invention relates to the fluorine-containing highly branched polymer according to the fifth aspect, in which the monomer A is divinylbenzene.
As a seventh aspect, the monomer B is a compound having at least one of a vinyl group and a (meth) acryl group, and the fluorine-containing high content according to any one of the first aspect to the sixth aspect. Relates to branched polymers.
As an eighth aspect, the present invention relates to the fluorine-containing highly branched polymer according to the seventh aspect, in which the monomer B is a compound represented by the formula [2].
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 2 represents a hydrogen atom or a methyl group, and R 3 represents a C 2-12 fluoroalkyl group which may be substituted with a hydroxy group.)
As a ninth aspect, the present invention relates to the fluorine-containing highly branched polymer according to any one of the first aspect to the eighth aspect, in which the polymerization initiator C is an azo polymerization initiator.
As a tenth aspect, the present invention relates to a varnish containing the fluorine-containing highly branched polymer according to any one of the first to ninth aspects.
As an 11th viewpoint, it is related with the thin film which has the biomolecule adsorption | suction suppression ability produced from the fluorine-containing hyperbranched polymer as described in any one of a 1st viewpoint thru | or a 9th viewpoint.
As a twelfth aspect, the present invention relates to a resin blend containing (a) the fluorine-containing highly branched polymer according to any one of the first to ninth aspects, and (b) a thermoplastic resin.
As a 13th viewpoint, it is related with the biomolecule adsorption | suction suppression film | membrane produced from the resin blend as described in a 12th viewpoint.
As a fourteenth aspect, polymerization comprising at least a monomer A having two or more radical polymerizable double bonds in the molecule and a monomer B having at least one radical polymerizable double bond in the molecule A carboxy group-containing fluorine-containing highly branched polymer obtained by polymerizing a functional compound in the presence of a polymerization initiator having a carboxy group in the molecule of 5 to 200 mol% relative to the number of moles of the monomer A, or The method for producing a fluorine-containing hyperbranched polymer according to any one of the first aspect to the ninth aspect, characterized by reacting a carboxy group activator with a compound represented by the formula [3]. About.
Figure JPOXMLDOC01-appb-C000006
(Wherein R 1 represents an alkyl group having 1 to 6 carbon atoms, L 1 represents an alkylene group having 2 to 6 carbon atoms, and n represents an integer of 1 to 60).
As a fifteenth aspect, the present invention relates to the manufacturing method according to the fourteenth aspect, wherein n is an integer of 1 to 30.
As a sixteenth aspect, there is provided a method for producing a thin film having a biomolecule adsorption inhibiting ability produced from the fluorine-containing highly branched polymer according to any one of the first aspect to the ninth aspect,
Inhibition of biomolecule adsorption, including a step of applying a liquid containing the fluorine-containing hyperbranched polymer in a solvent on a substrate by spin coating to form a coating film, and a step of drying the coating film and removing the solvent The present invention relates to a method for manufacturing a thin film having a function.
As a seventeenth aspect, a method for producing a biomolecule adsorption-suppressing membrane produced from the resin blend described in the twelfth aspect,
Production of a biomolecule adsorption inhibiting film comprising a step of applying a liquid containing the resin blend in a solvent on a substrate by a spin coating method to form a coating film, and a step of drying the coating film and removing the solvent. Regarding the method.
 本発明の、分子末端に、生体分子の吸着を抑制する効果を有するオキシアルキレン部位を有する含フッ素高分岐ポリマーは、該ポリマーを含有するワニスや該ポリマーを含有する樹脂ブレンド等を用いて、スピンコーティングにより容易に膜を形成でき、短時間で基材上にタンパク質などの生体分子の吸着を抑制可能な表面を作製することが可能となる。
 また本発明の分子末端にオキシアルキレン部位を有する含フッ素高分岐ポリマーは、積極的に枝分かれ構造を導入しているため、線状高分子と比較して分子間の絡み合いが少なく微粒子的挙動を示す。さらにフルオロアルキル基により低表面エネルギー化された含フッ素高分岐ポリマーは、マトリクスとなる熱可塑性樹脂中においては、空気などの自由界面である表面側への移動が容易となり、樹脂表面に活性を付与しやすい。従って、本発明の分子末端にオキシアルキレン部位を有する含フッ素高分岐ポリマーと上記熱可塑性樹脂等を含む樹脂ブレンドから膜などの成形体を作製する際、微粒子状の該含フッ素高分岐ポリマーは界面(膜表面)に容易に移動することができ、その表面において該含フッ素高分岐ポリマーの存在量が高められた成形体(膜)を形成可能である。すなわち、本発明の分子末端にオキシアルキレン部位を有する含フッ素高分岐ポリマーに熱可塑性樹脂等を配合した樹脂ブレンドから、その表面がタンパク質などの生体分子の吸着を抑制可能な表面である成形体(膜)等を形成できる。
The fluorine-containing hyperbranched polymer having an oxyalkylene moiety having an effect of suppressing the adsorption of biomolecules at the molecular end of the present invention is obtained by using a varnish containing the polymer, a resin blend containing the polymer, etc. A film can be easily formed by coating, and a surface capable of suppressing the adsorption of biomolecules such as proteins can be produced on a substrate in a short time.
In addition, the fluorine-containing highly branched polymer having an oxyalkylene moiety at the molecular end of the present invention has a branched structure, so that it has less entanglement between molecules compared to a linear polymer and exhibits fine particle behavior. . In addition, the fluorine-containing highly branched polymer whose surface energy has been reduced by the fluoroalkyl group is easy to move to the surface side, which is a free interface such as air, in the thermoplastic resin used as the matrix, and gives activity to the resin surface. It's easy to do. Accordingly, when a molded body such as a film is produced from a resin blend containing a fluorine-containing highly branched polymer having an oxyalkylene moiety at the molecular end of the present invention and the above thermoplastic resin, the finely divided fluorine-containing highly branched polymer is used as an interface. It can easily move to (film surface), and a molded body (film) in which the abundance of the fluorine-containing highly branched polymer is increased on the surface can be formed. That is, from the resin blend in which a thermoplastic resin or the like is blended with a fluorine-containing highly branched polymer having an oxyalkylene moiety at the molecular end of the present invention, a molded product whose surface is a surface capable of suppressing adsorption of biomolecules such as proteins ( Film) and the like.
図1は、末端にカルボキシ基を有する含フッ素高分岐ポリマー1のH NMRスペクトルを示す図である。FIG. 1 is a diagram showing a 1 H NMR spectrum of a fluorine-containing highly branched polymer 1 having a carboxy group at the terminal. 図2は、末端にカルボキシ基を有する含フッ素高分岐ポリマー1の13C NMRスペクトルを示す図である。FIG. 2 is a diagram showing a 13 C NMR spectrum of fluorine-containing hyperbranched polymer 1 having a carboxy group at the terminal. 図3は、末端にカルボキシ基を有する含フッ素高分岐ポリマー1、並びに、末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2のIRスペクトルを示す図である。FIG. 3 is a diagram showing IR spectra of the fluorine-containing highly branched polymer 1 having a carboxy group at the terminal and the fluorine-containing highly branched polymer 2 having a tri (ethylene oxide) moiety at the terminal. 図4は、末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2のH NMRスペクトルを示す図である。FIG. 4 is a diagram showing a 1 H NMR spectrum of fluorine-containing highly branched polymer 2 having a tri (ethylene oxide) moiety at the terminal. 図5は、末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2/PMMAブレンド膜の角度分解X線光電子分光(XPS)測定による表面組成分析結果(光電子放出角θに対するフッ素原子と炭素原子の光電子強度比IF1s/IC1s)を示す図である(熱処理温度;(a)室温、(b)150℃)。FIG. 5 shows the results of surface composition analysis of fluorine-containing highly branched polymer 2 / PMMA blend film having a tri (ethylene oxide) moiety at the terminal by angle-resolved X-ray photoelectron spectroscopy (XPS) measurement (fluorine atom and carbon atom relative to photoelectron emission angle θ). Is a diagram showing the photoelectron intensity ratio I F1s / I C1s ) (heat treatment temperature; (a) room temperature, (b) 150 ° C.). 図6は、末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2/PMMAブレンド膜及び末端にカルボキシ基を有する含フッ素高分岐ポリマー1/PMMAブレンド膜における水接触角の経時変化を示す図である。FIG. 6 is a graph showing changes in water contact angle with time in a fluorine-containing highly branched polymer 2 / PMMA blend film having a tri (ethylene oxide) portion at the terminal and a fluorine-containing highly branched polymer 1 / PMMA blend film having a carboxyl group at the terminal. It is. 図7は、末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2/PMMAブレンド膜及びPMMA膜へのフルオレセインイソシアネート標識ウシ血清アルブミン(BSA)吸着の蛍光顕微鏡による観察結果を示す図である(BSA/リン酸緩衝生理食塩水(PBS)溶液濃度:10μg/mL、50μg/mL、100μg/mL。)FIG. 7 is a diagram showing the observation results of a fluorescein isocyanate-labeled bovine serum albumin (BSA) adsorbed on a fluorine-containing hyperbranched polymer 2 / PMMA blend membrane having a tri (ethylene oxide) moiety at the terminal and a PMMA membrane with a fluorescence microscope ( BSA / phosphate buffered saline (PBS) solution concentrations: 10 μg / mL, 50 μg / mL, 100 μg / mL.) 図8は、実施例4及び比較例2において得られた蛍光顕微鏡写真(図7)において、該写真の輝度を数値化処理して得られた値を、BSA濃度に対してプロットした図である。FIG. 8 is a plot of the values obtained by quantifying the brightness of the photographs in the fluorescence micrographs (FIG. 7) obtained in Example 4 and Comparative Example 2 against the BSA concentration. . 図9は、末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3、4、及び末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5のIRスペクトルを示す図である。FIG. 9 is a diagram showing IR spectra of fluorine-containing highly branched polymers 3 and 4 each having an oligo (ethylene oxide) portion at the terminal, and fluorine-containing highly branched polymer 5 having a poly (ethylene oxide) portion at the terminal. 図10は、末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3のH NMRスペクトルを示す図である。FIG. 10 is a diagram showing a 1 H NMR spectrum of fluorine-containing highly branched polymer 3 having an oligo (ethylene oxide) moiety at the terminal. 図11は、末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4のH NMRスペクトルを示す図である。FIG. 11 is a diagram showing a 1 H NMR spectrum of fluorine-containing highly branched polymer 4 having an oligo (ethylene oxide) moiety at the terminal. 図12は、末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5のH NMRスペクトルを示す図である。FIG. 12 is a diagram showing a 1 H NMR spectrum of fluorine-containing hyperbranched polymer 5 having a poly (ethylene oxide) moiety at the terminal. 図13は、含フッ素高分岐ポリマー3/PMMAブレンド膜、含フッ素高分岐ポリマー4/PMMAブレンド膜、及び含フッ素高分岐ポリマー5/PMMAブレンド膜の角度分解XPS測定による表面組成分析結果(光電子放出角θに対するフッ素原子と炭素原子の光電子強度比IF1s/IC1s)を示す図である。FIG. 13 shows the results of surface composition analysis (photoelectron emission) of the fluorine-containing highly branched polymer 3 / PMMA blend film, the fluorine-containing highly branched polymer 4 / PMMA blend film, and the fluorine-containing highly branched polymer 5 / PMMA blend film by angle-resolved XPS measurement. It is a figure which shows the photoelectron intensity ratio IF1s / IC1s ) of the fluorine atom and the carbon atom with respect to angle (theta). 図14は、含フッ素高分岐ポリマー3/PMMAブレンド膜、含フッ素高分岐ポリマー4/PMMAブレンド膜、及び含フッ素高分岐ポリマー5/PMMAブレンド膜における水接触角の経時変化を示す図である。FIG. 14 is a graph showing changes in the water contact angle with time in a fluorine-containing highly branched polymer 3 / PMMA blend film, a fluorine-containing highly branched polymer 4 / PMMA blend film, and a fluorine-containing highly branched polymer 5 / PMMA blend film. 図15は、含フッ素高分岐ポリマー3/PMMAブレンド膜、含フッ素高分岐ポリマー4/PMMAブレンド膜、含フッ素高分岐ポリマー5/PMMAブレンド膜、及びPMMA膜へのフルオレセインイソシアネート標識BSA吸着の蛍光顕微鏡による観察結果を示す図である(BSA/PBS溶液濃度:5μg/mL、20μg/mL、50μg/mL。)FIG. 15 shows a fluorescence microscope for fluorescein isocyanate-labeled BSA adsorption on fluorine-containing highly branched polymer 3 / PMMA blend membrane, fluorine-containing highly branched polymer 4 / PMMA blend membrane, fluorine-containing highly branched polymer 5 / PMMA blend membrane, and PMMA membrane. (BSA / PBS solution concentration: 5 μg / mL, 20 μg / mL, 50 μg / mL). 図16は、実施例14乃至16、及び比較例3において得られた蛍光顕微鏡写真(図15)において、該写真の輝度を数値化処理して得られた値を、BSA濃度に対してプロットした図である。FIG. 16 plots the values obtained by quantifying the luminance of the photographs in the fluorescence micrographs obtained in Examples 14 to 16 and Comparative Example 3 (FIG. 15) against the BSA concentration. FIG. 図17は、含フッ素高分岐ポリマー3/PMMAブレンド膜、含フッ素高分岐ポリマー4/PMMAブレンド膜、含フッ素高分岐ポリマー5/PMMAブレンド膜、含フッ素高分岐ポリマー1/PMMAブレンド膜、PMMA膜及びPET膜上に粘着した血小板の走査電子顕微鏡(SEM)像である。FIG. 17 shows a fluorine-containing highly branched polymer 3 / PMMA blend film, a fluorine-containing highly branched polymer 4 / PMMA blend film, a fluorine-containing highly branched polymer 5 / PMMA blend film, a fluorine-containing highly branched polymer 1 / PMMA blend film, and a PMMA film. 2 is a scanning electron microscope (SEM) image of platelets adhered on a PET film. 図18は、実施例17乃至19、及び比較例4乃至6における、各膜に粘着した血小板数とその活性化度の分類をプロットした図である。FIG. 18 is a graph plotting the number of platelets adhered to each membrane and the classification of the degree of activation in Examples 17 to 19 and Comparative Examples 4 to 6.
<含フッ素高分岐ポリマー>
 本発明の含フッ素高分岐ポリマーは、分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBとを少なくとも含む重合性化合物を、該モノマーAのモル数に対して5~200モル%の重合開始剤Cの存在下で重合させることにより得られる含フッ素高分岐ポリマーであって、その分子末端に前記式[1]で表されるオキシアルキレン部位を有するポリマーである。
 なお、前記含フッ素高分岐ポリマーは、いわゆる開始剤断片組込み(IFIRP)型高分岐ポリマーであり、その末端に重合に使用した重合開始剤Cの断片を有している。そして好ましくは、前記式[1]で表されるオキシアルキレン部位は、前記重合開始剤Cの断片を介してその分子末端に結合している。
 さらに、上記含フッ素高分岐ポリマーは、本発明の効果を損なわない限り、後述のモノマーA及びモノマーBに属さない多官能モノマー及び/又は単官能モノマーを、必要に応じて共重合させてもよい。
<Fluorine-containing highly branched polymer>
The fluorine-containing highly branched polymer of the present invention comprises a monomer A having two or more radical polymerizable double bonds in the molecule, and a monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule. Is a fluorine-containing highly branched polymer obtained by polymerizing a polymerizable compound containing at least 5 to 200 mol% of the polymerization initiator in the presence of a polymerization initiator C with respect to the number of moles of the monomer A. Is a polymer having an oxyalkylene moiety represented by the formula [1].
The fluorine-containing hyperbranched polymer is a so-called initiator fragment incorporation (IFIRP) type hyperbranched polymer, and has a fragment of the polymerization initiator C used for polymerization at the terminal. Preferably, the oxyalkylene moiety represented by the formula [1] is bonded to the molecular end via a fragment of the polymerization initiator C.
Further, the fluorine-containing hyperbranched polymer may be copolymerized with a polyfunctional monomer and / or a monofunctional monomer, which do not belong to the monomer A and the monomer B described below, as necessary, as long as the effects of the present invention are not impaired. .
[モノマーA]
 本発明において、分子内に2個以上のラジカル重合性二重結合を有するモノマーAは、ビニル基又は(メタ)アクリル基の何れか一方を少なくとも1つ有することが好ましく、特にジビニル化合物又はジ(メタ)アクリレート化合物であることが好ましい。
 なお、本発明では(メタ)アクリレート化合物とは、アクリレート化合物とメタクリレート化合物の両方をいう。例えば(メタ)アクリル酸は、アクリル酸とメタクリル酸をいう。
[Monomer A]
In the present invention, the monomer A having two or more radically polymerizable double bonds in the molecule preferably has at least one of either a vinyl group or a (meth) acryl group, and particularly a divinyl compound or di ( A meth) acrylate compound is preferred.
In the present invention, the (meth) acrylate compound refers to both an acrylate compound and a methacrylate compound. For example, (meth) acrylic acid refers to acrylic acid and methacrylic acid.
 前記分子内に2個以上のラジカル重合性二重結合を有するモノマーAとしては、例えば、以下の(A1)乃至(A5)に示した化合物が挙げられる。 Examples of the monomer A having two or more radical polymerizable double bonds in the molecule include the compounds shown in the following (A1) to (A5).
(A1)ビニル系炭化水素類:
(A1-1)脂肪族ビニル系炭化水素類;イソプレン、ブタジエン、3-メチル-1,2-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,2-ポリブタジエン、ペンタジエン、ヘキサジエン、オクタジエン等。
(A1-2)脂環式ビニル系炭化水素類;シクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、ノルボルナジエン等。
(A1-3)芳香族ビニル系炭化水素類;ジビニルベンゼン、ジビニルトルエン、ジビニルキシレン、トリビニルベンゼン、ジビニルビフェニル、ジビニルナフタレン、ジビニルフルオレン、ジビニルカルバゾール、ジビニルピリジン等。
(A1) Vinyl hydrocarbons:
(A1-1) Aliphatic vinyl hydrocarbons; isoprene, butadiene, 3-methyl-1,2-butadiene, 2,3-dimethyl-1,3-butadiene, 1,2-polybutadiene, pentadiene, hexadiene, octadiene etc.
(A1-2) Alicyclic vinyl hydrocarbons; cyclopentadiene, cyclohexadiene, cyclooctadiene, norbornadiene and the like.
(A1-3) Aromatic vinyl hydrocarbons; divinylbenzene, divinyltoluene, divinylxylene, trivinylbenzene, divinylbiphenyl, divinylnaphthalene, divinylfluorene, divinylcarbazole, divinylpyridine and the like.
(A2)ビニルエステル、アリルエステル、ビニルエーテル、アリルエーテル及びビニルケトン:
(A2-1)ビニルエステル;アジピン酸ジビニル、マレイン酸ジビニル、フタル酸ジビニル、イソフタル酸ジビニル、イタコン酸ジビニル、ビニル(メタ)アクリレート等。
(A2-2)アリルエステル;マレイン酸ジアリル、フタル酸ジアリル、イソフタル酸ジアリル、アジピン酸ジアリル、アリル(メタ)アクリレート等。
(A2-3)ビニルエーテル;ジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル等。
(A2-4)アリルエーテル;ジアリルエーテル、ジアリルオキシエタン、トリアリルオキシエタン、テトラアリルオキシエタン、テトラアリルオキシプロパン、テトラアリルオキシブタン、テトラメタリルオキシエタン等。
(A2-5)ビニルケトン;ジビニルケトン、ジアリルケトン等。
(A2) Vinyl ester, allyl ester, vinyl ether, allyl ether and vinyl ketone:
(A2-1) Vinyl ester; divinyl adipate, divinyl maleate, divinyl phthalate, divinyl isophthalate, divinyl itaconate, vinyl (meth) acrylate and the like.
(A2-2) Allyl ester: diallyl maleate, diallyl phthalate, diallyl isophthalate, diallyl adipate, allyl (meth) acrylate, etc.
(A2-3) Vinyl ether; divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether and the like.
(A2-4) Allyl ether; diallyl ether, diallyloxyethane, triallyloxyethane, tetraallyloxyethane, tetraallyloxypropane, tetraallyloxybutane, tetramethallyloxyethane and the like.
(A2-5) Vinyl ketone; divinyl ketone, diallyl ketone and the like.
(A3)(メタ)アクリル酸エステル:
エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ノナエチレングリコールジ(メタ)アクリレート、トリメチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、2-ヒドロキシ-1-アクリロイルオキシ-3-メタクリロイルオキシプロパン、2-ヒドロキシ-1,3-ジ(メタ)アクリロイルオキシプロパン、グリセリン=トリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジオキサングリコールジ(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカンジメタノールジ(メタ)アクリレート、1,3-アダマンタンジオールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、9,9-ビス[4-(2-(メタ)アクリロイルオキシエトキシ)フェニル]フルオレン、ビス[2-(メタ)アクリロイルチオエチル]スルフィド、ビス[4-(メタ)アクリロイルチオフェニル]スルフィド、アルコキシチタントリ(メタ)アクリレート、イソホロンウレタンジ(メタ)アクリレート、脂肪族ウレタンジ(メタ)アクリレート、芳香族ウレタンジ(メタ)アクリレート等。
(A3) (Meth) acrylic acid ester:
Ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, nonaethylene glycol di (meth) acrylate, trimethylene glycol di (meth) acrylate , Propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, tetramethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexane Diol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10 Decanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, 2-hydroxy-1-acryloyloxy-3-methacryloyloxypropane, 2-hydroxy-1,3-di (Meth) acryloyloxypropane, glycerin = tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dioxane glycol di (meth) acrylate, tricyclo [5.2.1.0 2,6 ] decandimethanol di (meta ) Acrylate, 1,3-adamantanediol di (meth) acrylate, 1,3-adamantane dimethanol di (meth) acrylate, 9,9-bis [4- (2- (meth) acryloyloxyethoxy) phenyl] fluoro Len, bis [2- (meth) acryloylthioethyl] sulfide, bis [4- (meth) acryloylthiophenyl] sulfide, alkoxy titanium tri (meth) acrylate, isophorone urethane di (meth) acrylate, aliphatic urethane di (meth) Acrylate, aromatic urethane di (meth) acrylate, etc.
(A4)ポリアルキレングリコール鎖を有するビニル系化合物:
ポリエチレングリコール(分子量:200,300,400,600,1000など)ジ(メタ)アクリレート、ポリプロピレングリコール(分子量:400,500,700など)ジ(メタ)アクリレート、ポリテトラメチレングリコール(分子量:650など)ジ(メタ)アクリレート、エチレンオキシド付加ポリプロピレングリコール(分子量:700など)ジ(メタ)アクリレート等。
(A4) Vinyl compound having a polyalkylene glycol chain:
Polyethylene glycol (molecular weight: 200, 300, 400, 600, 1000, etc.) di (meth) acrylate, polypropylene glycol (molecular weight: 400, 500, 700, etc.) di (meth) acrylate, polytetramethylene glycol (molecular weight: 650, etc.) Di (meth) acrylate, ethylene oxide-added polypropylene glycol (molecular weight: 700, etc.), di (meth) acrylate, etc.
(A5)含窒素ビニル系化合物:
ジアリルアミン、ジアリルイソシアヌレート、ジアリルシアヌレート、メチレンビス(メタ)アクリルアミド、ビスマレイミド等。
(A5) Nitrogen-containing vinyl compound:
Diallylamine, diallyl isocyanurate, diallyl cyanurate, methylenebis (meth) acrylamide, bismaleimide and the like.
 これらモノマーAは単独で使用してもよいし、2種類以上を併用しても構わない。 These monomers A may be used alone or in combination of two or more.
 これらのうち好ましいものは、上記(A1-3)群の芳香族ビニル系炭化水素類、(A2)群のビニルエステル、アリルエステル、ビニルエーテル、アリルエーテル及びビニルケトン、(A3)群の(メタ)アクリル酸エステル、(A4)群のポリアルキレングリコール鎖を有するビニル系化合物、並びに(A5)群の含窒素ビニル系化合物であり、より好ましくは上記(A1-3)群の芳香族ビニル系炭化水素類、(A3)群の(メタ)アクリル酸エステルである。これらの中でも後述する熱可塑性樹脂への分散性の観点から、特にジビニルベンゼン、エチレングリコールジ(メタ)アクリレートが好ましい。 Among these, preferred are the above-mentioned aromatic vinyl hydrocarbons of the group (A1-3), vinyl esters, allyl esters, vinyl ethers, allyl ethers and vinyl ketones of the group (A2), (meth) acrylic of the group (A3). Acid esters, vinyl compounds having a polyalkylene glycol chain of group (A4), and nitrogen-containing vinyl compounds of group (A5), more preferably aromatic vinyl hydrocarbons of group (A1-3) above , (A3) group (meth) acrylic acid ester. Among these, divinylbenzene and ethylene glycol di (meth) acrylate are particularly preferable from the viewpoint of dispersibility in the thermoplastic resin described later.
[モノマーB]
 本発明において、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBは、好ましくはビニル基又は(メタ)アクリル基の何れか一方を少なくとも1つ有することが望ましい。
 例えばモノマーBとしては、上記式[2]で表される化合物が挙げられ、より好ましい具体例として下記式[4]で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000007
(式中、Rは前記式[2]における定義と同じ意味を表し、Xは水素原子又はフッ素原子を表し、mは1又は2を表し、pは0乃至5の整数を表す。)
[Monomer B]
In the present invention, the monomer B having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule preferably has at least one of either a vinyl group or a (meth) acryl group.
For example, the monomer B includes a compound represented by the above formula [2], and a more preferred specific example includes a compound represented by the following formula [4].
Figure JPOXMLDOC01-appb-C000007
(Wherein R 2 represents the same meaning as defined in Formula [2], X represents a hydrogen atom or a fluorine atom, m represents 1 or 2, and p represents an integer of 0 to 5).
 このようなモノマーBとしては、例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレート、2-(パーフルオロデシル)エチル(メタ)アクリレート、2-(パーフルオロ-3-メチルブチル)エチル(メタ)アクリレート、2-(パーフルオロ-5-メチルヘキシル)エチル(メタ)アクリレート、2-(パーフルオロ-7-メチルオクチル)エチル(メタ)アクリレート、1H,1H,3H-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、1H,1H,7H-ドデカフルオロヘプチル(メタ)アクリレート、1H,1H,9H-ヘキサデカフルオロノニル(メタ)アクリレート、1H-1-(トリフルオロメチル)トリフルオロエチル(メタ)アクリレート、1H,1H,3H-ヘキサフルオロブチル(メタ)アクリレート、3-パーフルオロブチル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピル(メタ)アクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-3-メチルブチル)-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-5-メチルヘキシル)-2-ヒドロキシプロピル(メタ)アクリレート、3-(パーフルオロ-7-メチルオクチル)-2-ヒドロキシプロピル(メタ)アクリレート等が挙げられる。 Examples of such a monomer B include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, and 2- (perfluorobutyl) ethyl. (Meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, 2- (perfluorodecyl) ethyl (meth) acrylate, 2- (perfluoro- 3-methylbutyl) ethyl (meth) acrylate, 2- (perfluoro-5-methylhexyl) ethyl (meth) acrylate, 2- (perfluoro-7-methyloctyl) ethyl (meth) acrylate, 1H, 1H, 3H- Tetrafluoropropyl (meth) acrylate, 1H, 1H, 5H-Octaf Olopentyl (meth) acrylate, 1H, 1H, 7H-dodecafluoroheptyl (meth) acrylate, 1H, 1H, 9H-hexadecafluorononyl (meth) acrylate, 1H-1- (trifluoromethyl) trifluoroethyl (meth) Acrylate, 1H, 1H, 3H-hexafluorobutyl (meth) acrylate, 3-perfluorobutyl-2-hydroxypropyl (meth) acrylate, 3-perfluorohexyl-2-hydroxypropyl (meth) acrylate, 3-perfluoro Octyl-2-hydroxypropyl (meth) acrylate, 3- (perfluoro-3-methylbutyl) -2-hydroxypropyl (meth) acrylate, 3- (perfluoro-5-methylhexyl) -2-hydroxypropyl (meth) Acryle DOO, 3- (perfluoro-7-methyl-octyl) -2-hydroxypropyl (meth) acrylate.
 本発明において、モノマーBの使用量は、反応性や表面改質効果の観点から、前記モノマーAの使用モル数に対して5~300モル%、特に10~150モル%の量で、より好ましくは20~100モル%の量で使用することが好ましい。 In the present invention, the amount of monomer B used is more preferably 5 to 300 mol%, particularly 10 to 150 mol%, based on the number of moles of monomer A used, from the viewpoint of reactivity and surface modification effect. Is preferably used in an amount of 20 to 100 mol%.
[重合開始剤C]
 上記重合開始剤Cとしては、好ましくはアゾ系重合開始剤が用いられる。アゾ系重合開始剤としては、例えば以下の(1)~(5)に示す化合物を挙げることができる。
(1)アゾニトリル化合物:
2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2-(カルバモイルアゾ)イソブチロニトリル等;
(2)アゾアミド化合物:
2,2’-アゾビス{2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド}、2,2’-アゾビス{2-メチル-N-[2-(1-ヒドロキシブチル)]プロピオンアミド}、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス[N-(2-プロペニル)-2-メチルプロピオンアミド]、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)等;
(3)環状アゾアミジン化合物:
2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジスルフェートジヒドレート、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス(1-イミノ-1-ピロリジノ-2-メチルプロパン)ジヒドロクロリド等;
(4)アゾアミジン化合物:
2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]テトラヒドレート等;
(5)その他:
2,2’-アゾビスイソ酪酸ジメチル、4,4’-アゾビス(4-シアノバレリン酸)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、ジメチル1,1’-アゾビス(1-シクロヘキサンカルボキシレート)等。
[Polymerization initiator C]
As the polymerization initiator C, an azo polymerization initiator is preferably used. Examples of the azo polymerization initiator include compounds shown in the following (1) to (5).
(1) Azonitrile compound:
2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 1,1′-azobis ( 1-cyclohexanecarbonitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 2- (carbamoylazo) isobutyronitrile and the like;
(2) Azoamide compound:
2,2′-azobis {2-methyl-N- [1,1-bis (hydroxymethyl) -2-hydroxyethyl] propionamide}, 2,2′-azobis {2-methyl-N- [2- ( 1-hydroxybutyl)] propionamide}, 2,2′-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2′-azobis [N- (2-propenyl) -2- Methylpropionamide], 2,2′-azobis (N-butyl-2-methylpropionamide), 2,2′-azobis (N-cyclohexyl-2-methylpropionamide) and the like;
(3) Cyclic azoamidine compound:
2,2′-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] disulfate dihydrate, 2,2′-azobis [2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane] dihydrochloride, 2,2′-azobis [2- (2-imidazolin-2-yl) Propane], 2,2′-azobis (1-imino-1-pyrrolidino-2-methylpropane) dihydrochloride, etc .;
(4) Azoamidine compound:
2,2′-azobis (2-methylpropionamidine) dihydrochloride, 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, etc .;
(5) Other:
Dimethyl 2,2′-azobisisobutyrate, 4,4′-azobis (4-cyanovaleric acid), 2,2′-azobis (2,4,4-trimethylpentane), 1,1′-azobis (1-acetoxy- 1-phenylethane), dimethyl 1,1′-azobis (1-cyclohexanecarboxylate) and the like.
 上記アゾ系重合開始剤は一種を単独で、或いは二種以上を組み合わせて使用してもよい。
 これらアゾ系重合開始剤の中でも、後述する本発明の含フッ素高分岐ポリマーにおける前記式[1]で表されるオキシアルキレン部位の導入のしやすさの観点から4,4’-アゾビス(4-シアノバレリン酸)、2,2’-アゾビス[N-(2-カルボキシエチル)-2-メチルプロピオンアミジン]テトラヒドレート等が好ましい。
The azo polymerization initiators may be used alone or in combination of two or more.
Among these azo-based polymerization initiators, 4,4′-azobis (4- (4) -azobis (4- (4-azobenzene)) is used from the viewpoint of easy introduction of the oxyalkylene moiety represented by the formula [1] in the fluorine-containing highly branched polymer of the present invention described later. Cyanovaleric acid), 2,2′-azobis [N- (2-carboxyethyl) -2-methylpropionamidine] tetrahydrate, and the like are preferable.
 前記重合開始剤Cは、前記モノマーAのモル数に対して、5~200モル%の量で使用され、好ましくは20~200モル%の量で、より好ましくは20~100モル%の量で使用される。 The polymerization initiator C is used in an amount of 5 to 200 mol%, preferably 20 to 200 mol%, more preferably 20 to 100 mol%, based on the number of moles of the monomer A. used.
[その他のモノマー]
 本発明で用いる重合性化合物は、本発明の効果を損なわない限り、前記モノマーA、モノマーBに属さない、その他のモノマーを含んでもいてもよい。
 その他のモノマーとしては、分子内に1個のラジカル重合性二重結合を有するモノマーであれば特に制限はないが、ビニル化合物又は(メタ)アクリレート化合物であることが好ましい。
[Other monomers]
The polymerizable compound used in the present invention may contain other monomers that do not belong to the monomer A and the monomer B as long as the effects of the present invention are not impaired.
The other monomer is not particularly limited as long as it is a monomer having one radical polymerizable double bond in the molecule, but is preferably a vinyl compound or a (meth) acrylate compound.
[オキシアルキレン部位]
 前記式[1]におけるRが表す炭素原子数1乃至6のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソアミル基、ネオペンチル基、tert-アミル基、sec-イソアミル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基等が挙げられる。これらの中でも、炭素原子数1乃至4のアルキル基が好ましく、特にメチル基、エチル基、n-プロピル基、n-ブチル基が好ましく、メチル基、エチル基がより好ましい。
 また、Lが表す炭素原子数2乃至6のアルキレン基としては、例えば、エチレン基、トリメチレン基、メチルエチレン基、テトラメチレン基、1-メチルトリメチレン基、ペンタメチレン基、2,2-ジメチルトリメチレン基、ヘキサメチレン基等が挙げられる。これらの中でも、生体分子吸着抑制効果の観点から、エチレン基が好ましい。
[Oxyalkylene moiety]
Examples of the alkyl group having 1 to 6 carbon atoms represented by R 1 in the formula [1] include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a sec-butyl group. Tert-butyl group, n-pentyl group, isoamyl group, neopentyl group, tert-amyl group, sec-isoamyl group, cyclopentyl group, n-hexyl group, cyclohexyl group and the like. Among these, an alkyl group having 1 to 4 carbon atoms is preferable, a methyl group, an ethyl group, an n-propyl group, and an n-butyl group are particularly preferable, and a methyl group and an ethyl group are more preferable.
Examples of the alkylene group having 2 to 6 carbon atoms represented by L 1 include, for example, an ethylene group, trimethylene group, methylethylene group, tetramethylene group, 1-methyltrimethylene group, pentamethylene group, 2,2-dimethyl group. A trimethylene group, a hexamethylene group, etc. are mentioned. Among these, an ethylene group is preferable from the viewpoint of the biomolecule adsorption inhibiting effect.
[重合性化合物の重合方法]
 前述のモノマーAと、モノマーBとを少なくとも含む重合性化合物を、該モノマーAに対して所定量の重合開始剤Cの存在下で重合させる重合方法としては公知の方法、例えば溶液重合、分散重合、沈殿重合、及び塊状重合等が挙げられ、中でも溶液重合又は沈殿重合が好ましい。特に分子量制御の点から、有機溶媒中での溶液重合によって反応を実施することが好ましい。
[Polymerization method of polymerizable compound]
As a polymerization method for polymerizing the polymerizable compound containing at least the monomer A and the monomer B in the presence of a predetermined amount of the polymerization initiator C with respect to the monomer A, known methods such as solution polymerization and dispersion polymerization are used. , Precipitation polymerization, bulk polymerization and the like, among which solution polymerization or precipitation polymerization is preferable. In particular, it is preferable to carry out the reaction by solution polymerization in an organic solvent from the viewpoint of molecular weight control.
 このとき用いられる有機溶媒としては、ベンゼン、トルエン、キシレン、エチルベンゼン、テトラリン等の芳香族炭化水素類;n-ヘキサン、n-ヘプタン、ミネラルスピリット、シクロヘキサン等の脂肪族又は脂環式炭化水素類;塩化メチル、臭化メチル、ヨウ化メチル、ジクロロメタン、クロロホルム、四塩化炭素、トリクロロエチレン、パークロロエチレン、オルトジクロロベンゼン等のハロゲン化物類;酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート等のエステル類又はエステルエーテル類;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジ-n-ブチルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、tert-ブチルアルコール、2-エチルヘキシルアルコール、ベンジルアルコール、エチレングリコール等のアルコール類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等のアミド類;ジメチルスルホキシド等のスルホキシド類、並びにこれらの2種以上の混合溶媒が挙げられる。 Examples of the organic solvent used at this time include aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and tetralin; aliphatic or alicyclic hydrocarbons such as n-hexane, n-heptane, mineral spirit, and cyclohexane; Halides such as methyl chloride, methyl bromide, methyl iodide, dichloromethane, chloroform, carbon tetrachloride, trichloroethylene, perchloroethylene, orthodichlorobenzene; ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve Esters or ester ethers such as acetate and propylene glycol monomethyl ether acetate; diethyl ether, tetrahydrofuran, 1,4-dioxane, methyl cellosolve, ethyl cellosolve, butyl cell Ethers such as sorb and propylene glycol monomethyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, di-n-butyl ketone and cyclohexanone; methanol, ethanol, n-propanol, 2-propanol, n-butanol and 2-butanol , Tert-butyl alcohol, 2-ethylhexyl alcohol, benzyl alcohol, ethylene glycol and other alcohols; N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and other amides; dimethyl sulfoxide, etc. Sulfoxides, and a mixed solvent of two or more of these.
 これらのうち好ましいのは、芳香族炭化水素類、ハロゲン化物類、エステル類、エステルエーテル類、エーテル類、ケトン類、アルコール類、アミド類等であり、特に好ましいものはベンゼン、トルエン、キシレン、オルトジクロロベンゼン、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、テトラヒドロフラン、1,4-ジオキサン、メチルエチルケトン、メチルイソブチルケトン、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、tert-ブチルアルコール、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン等である。 Of these, aromatic hydrocarbons, halides, esters, ester ethers, ethers, ketones, alcohols, amides and the like are preferable, and benzene, toluene, xylene, ortho are particularly preferable. Dichlorobenzene, ethyl acetate, butyl acetate, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, tetrahydrofuran, 1,4-dioxane, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, tert-butyl alcohol, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like.
 上記重合反応を有機溶媒の存在下で行う場合、前記モノマーAの1質量部に対する前記有機溶媒の質量は、通常5~120質量部であり、好ましくは10~110質量部である。
 重合反応は常圧、加圧密閉下、又は減圧下で行われ、装置及び操作の簡便さから常圧下で行うのが好ましい。また、N等の不活性ガス雰囲気下で行うのが好ましい。
 重合温度は、反応混合物の沸点以下であれば任意であるが、重合効率と分子量調節の点から、好ましくは50~200℃であり、さらに好ましくは80~150℃であり、80~130℃がより好ましい。
 反応時間は、反応温度や、モノマーA、モノマーB及び重合開始剤Cの種類及び割合、重合溶媒種等によって変動するものであるため一概には規定できないが、好ましくは30~720分、より好ましくは40~540分である。
 重合反応の終了後、得られた含フッ素高分岐ポリマーを任意の方法で回収し、必要に応じて洗浄等の後処理を行う。反応溶液から高分子を回収する方法としては、再沈殿等の方法が挙げられる。
When the polymerization reaction is performed in the presence of an organic solvent, the mass of the organic solvent relative to 1 part by mass of the monomer A is usually 5 to 120 parts by mass, preferably 10 to 110 parts by mass.
The polymerization reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
The polymerization temperature is arbitrary as long as it is not higher than the boiling point of the reaction mixture, but is preferably 50 to 200 ° C., more preferably 80 to 150 ° C., more preferably 80 to 130 ° C. from the viewpoint of polymerization efficiency and molecular weight control. More preferred.
The reaction time varies depending on the reaction temperature, the types and ratios of the monomer A, the monomer B and the polymerization initiator C, the type of polymerization solvent, etc., but cannot be defined unconditionally, but is preferably 30 to 720 minutes, more preferably Is 40 to 540 minutes.
After completion of the polymerization reaction, the obtained fluorine-containing hyperbranched polymer is collected by an arbitrary method, and post-treatment such as washing is performed as necessary. Examples of a method for recovering the polymer from the reaction solution include a method such as reprecipitation.
 なお本発明の含フッ素高分岐ポリマーのゲル浸透クロマトグラフィーによるポリスチレン換算で測定される重量平均分子量(Mw)は、1,000~400,000、好ましくは2,000~200,000、より好ましくは2,000~100,000、ことさら好ましくは2,000~50,000である。 The weight average molecular weight (Mw) of the fluorine-containing highly branched polymer of the present invention measured by gel permeation chromatography in terms of polystyrene is 1,000 to 400,000, preferably 2,000 to 200,000, more preferably. It is 2,000 to 100,000, more preferably 2,000 to 50,000.
<含フッ素高分岐ポリマーの製造方法>
 本発明の含フッ素高分岐ポリマーは、その分子末端に前記式[1]で表されるオキシアルキレン部位を有する。
 オキシアルキレン部位の導入は、上記含フッ素高分岐ポリマーの前駆体といえるカルボキシ基含有含フッ素高分岐ポリマー又はそのカルボキシ基活性化体と、上記式[3]で表される化合物(ポリアルキレングリコールモノアルキルエーテル)とを反応させることにより得られる。
 なお本製造方法もまた本発明の対象である。
<Method for producing fluorine-containing highly branched polymer>
The fluorine-containing highly branched polymer of the present invention has an oxyalkylene moiety represented by the above formula [1] at the molecular end.
The introduction of the oxyalkylene moiety involves introduction of a carboxy group-containing fluorine-containing highly branched polymer, which can be said to be a precursor of the fluorine-containing highly branched polymer, or an activated product thereof, and a compound represented by the above formula [3] It is obtained by reacting with an alkyl ether).
This production method is also an object of the present invention.
 前記カルボキシ基含有含フッ素高分岐ポリマーは、分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBとを少なくとも含む重合性化合物を、該モノマーAのモル数に対して5~200モル%の分子内にカルボキシ基を有する重合開始剤の存在下で重合させることにより得られるポリマーである。
 また、そのカルボキシ基活性化体とは、前記カルボキシ基含有含フッ素高分岐ポリマーを、公知の活性エステル化剤と反応させることにより、該カルボキシ基の一部又は全部を活性エステル化させてなるポリマーである。前記公知の活性エステル化剤としては、ニトロフェノール、ペンタフルオロフェノール、N-ヒドロキシコハク酸イミド等が挙げられる。
The carboxy group-containing fluorine-containing highly branched polymer includes a monomer A having two or more radical polymerizable double bonds in the molecule, and a monomer having a fluoroalkyl group and at least one radical polymerizable double bond in the molecule. A polymer obtained by polymerizing a polymerizable compound containing at least B in the presence of a polymerization initiator having a carboxy group in a molecule of 5 to 200 mol% based on the number of moles of the monomer A.
The carboxy group activated product is a polymer obtained by reacting the carboxy group-containing fluorine-containing hyperbranched polymer with a known active esterifying agent to partially or fully convert the carboxy group into an active ester. It is. Examples of the known active esterifying agent include nitrophenol, pentafluorophenol, N-hydroxysuccinimide and the like.
 上記カルボキシ基含有含フッ素高分岐ポリマーは、前述の[重合性化合物の重合方法]に記載の方法を用いて製造可能であり、上記モノマーA及びモノマーBとしては、前述の[モノマーA][モノマーB]に記載のモノマーA、モノマーBを、また上記重合開始剤としては、前述の[重合開始剤C]のうち、4,4’-アゾビス(4-シアノバレリン酸)等のカルボキシ基を有する重合開始剤を好適に使用可能である。また、モノマーA及びモノマーBの他に、前述の[その他モノマー]を重合性化合物として併用してもよい。 The carboxy group-containing fluorine-containing highly branched polymer can be produced using the method described in the above-mentioned [Polymerization method of polymerizable compound], and the monomer A and monomer B include the above [monomer A] [monomer B] and the polymerization initiator having a carboxy group such as 4,4′-azobis (4-cyanovaleric acid) among the above-mentioned [polymerization initiator C]. An initiator can be suitably used. In addition to monomer A and monomer B, the above-mentioned [other monomers] may be used in combination as a polymerizable compound.
 上記カルボキシ基含有含フッ素高分岐ポリマーのカルボキシ基活性化体を用いる場合、前記カルボキシ基含有含フッ素高分岐ポリマーと、前記公知の活性エステル化剤とを、これら化合物を溶解可能な溶媒中で反応させて、該含フッ素高分岐ポリマーのカルボキシ基の一部又は全部に活性エステル化剤を結合させ、カルボキシ基活性化体を得る。前記溶媒としては、例えば前述の[重合性化合物の重合方法]に用いる溶媒を挙げることができる。
 上記反応において、活性エステル化剤の使用量は、該カルボキシ基含有含フッ素高分岐ポリマーのカルボキシ基量に対して、例えば、0.1~10モル倍量である。活性エステル化剤の使用量を変更することで、全カルボキシ基に対する活性化カルボキシ基の割合を調節することができる。
 上記反応は常圧、加圧密閉下、又は減圧下で行われ、装置及び操作の簡便さから常圧下で行うのが好ましい。また、N等の不活性ガス雰囲気下で行うのが好ましい。
 このとき、反応温度は-80~200℃、好ましくは0~100℃、より好ましくは10~50℃にて行うことが望ましく、反応時間は0.1~48時間、好ましくは0.2~40時間にて行うことが望ましい。
 反応終了後、得られたカルボキシ基活性体を任意の方法で回収し、必要に応じて洗浄等の後処理を行い、続く工程に使用する。反応溶液から回収する方法としては、再沈殿等の方法が挙げられる。
When the carboxy group-activated fluorine-containing highly branched polymer is used, the carboxy group-containing fluorine-containing highly branched polymer and the known active esterifying agent are reacted in a solvent capable of dissolving these compounds. Then, an active esterifying agent is bonded to part or all of the carboxy groups of the fluorine-containing hyperbranched polymer to obtain a carboxy group activated product. As said solvent, the solvent used for the above-mentioned [polymerization method of a polymeric compound] can be mentioned, for example.
In the above reaction, the amount of the active esterifying agent used is, for example, 0.1 to 10 mol times the amount of carboxy groups of the carboxy group-containing fluorine-containing highly branched polymer. By changing the amount of the active esterifying agent used, the ratio of the activated carboxy group to the total carboxy group can be adjusted.
The above reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
At this time, the reaction temperature is desirably −80 to 200 ° C., preferably 0 to 100 ° C., more preferably 10 to 50 ° C., and the reaction time is 0.1 to 48 hours, preferably 0.2 to 40 ° C. It is desirable to do it in time.
After completion of the reaction, the obtained carboxy group active form is recovered by an arbitrary method, and after-treatment such as washing is performed as necessary, and used in the subsequent steps. Examples of the method for recovering from the reaction solution include methods such as reprecipitation.
 上記カルボキシ基含有含フッ素高分岐ポリマー又はそのカルボキシ基活性化体と、上記式[3]で表される化合物との反応は、公知の縮合剤の存在下で、これら化合物を溶解可能な溶媒中で実施される。前記溶媒としては、例えば前述の[重合性化合物の重合方法]に用いる溶媒を用いることができる。 The reaction of the carboxy group-containing fluorine-containing highly branched polymer or the activated carboxy group thereof with the compound represented by the above formula [3] is carried out in a solvent capable of dissolving these compounds in the presence of a known condensing agent. Will be implemented. As the solvent, for example, the solvent used in the above-mentioned [Polymerization method of polymerizable compound] can be used.
 上記式[3]で表される化合物において、式中のR及びLとしては、前述の[オキシアルキレン部位]に示す基を挙げることができる。
 上記式[3]で表される化合物としては特に限定されないが、中でも式中、nが3以上の整数を表す化合物であることが好ましい。また、得られる含フッ素高分岐ポリマーの特性の観点から、nが45以下の整数を表す化合物であることが好ましい。さらに、nが5以上45以下の整数を表す化合物、nが10以上45以下の整数を表す化合物、nが5以上30以下の整数を表す化合物、又はnが10以上30以下の整数を表す化合物であることが好ましい。
 式[3]で表される化合物としては、例えば、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノメチルエーテル、ヘプタエチレングリコールモノメチルエーテル、ヘキサエチレングリコールモノメチルエーテル、ノナエチレングリコールモノメチルエーテル、ドデカエチレングリコールモノエチルエーテル、トリデカエチレングリコールモノメチルエーテル、テトラデカエチレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、ヘプタプロピレングリコールモノメチルエーテル、トリ(テトラメチレングリコール)モノメチルエーテル、ノナ(テトラメチレングリコール)モノメチルエーテル、ポリ(テトラメチレングリコール)モノメチルエーテル等が挙げられる。中でも、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、ヘキサエチレングリコールモノメチルエーテル、ドデカエチレングリコールモノメチルエーテル、ポリエチレングリコールモノメチルエーテル等を好適に使用可能である。
In the compound represented by the above formula [3], examples of R 1 and L 1 in the formula include the groups shown in the above-mentioned [oxyalkylene moiety].
Although it does not specifically limit as a compound represented by the said Formula [3], In particular, it is preferable that it is a compound in which n represents an integer greater than or equal to 3. In addition, from the viewpoint of the characteristics of the resulting fluorine-containing highly branched polymer, a compound in which n represents an integer of 45 or less is preferable. Further, a compound in which n represents an integer of 5 to 45, a compound in which n represents an integer of 10 to 45, a compound in which n represents an integer of 5 to 30 or a compound in which n represents an integer of 10 to 30 It is preferable that
Examples of the compound represented by the formula [3] include ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, tetraethylene glycol monomethyl ether, heptaethylene glycol monomethyl. Ether, hexaethylene glycol monomethyl ether, nonaethylene glycol monomethyl ether, dodecaethylene glycol monoethyl ether, tridecaethylene glycol monomethyl ether, tetradecaethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, dipropylene glycol monomethyl ether, tripropylene glycol Methyl ether, hepta propylene glycol monomethyl ether, tri (tetramethylene glycol) monomethyl ether, nona (tetramethylene glycol) monomethyl ether, poly (tetramethylene glycol) monomethyl ether, and the like. Among these, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, hexaethylene glycol monomethyl ether, dodecaethylene glycol monomethyl ether, polyethylene glycol monomethyl ether, and the like can be suitably used.
 上記の公知の縮合剤としては、N,N’-ジシクロヘキシルカルボジイミド(DCC)、N,N’-ジイソプロピルカルボジイミド(DIC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)塩酸塩等のカルボジイミド類、N,N’-カルボニルジイミダゾール、ジメシチルアンモニウムペンタフルオロベンゼンスルホナート等が挙げられる。なお、DCC等のカルボジイミド類を用いる場合、触媒量の4-ジメチルアミノピリジン(DMAP)を併用することが好ましい。
 上記反応は常圧、加圧密閉下、又は減圧下で行われ、装置及び操作の簡便さから常圧下で行うのが好ましい。また、N等の不活性ガス雰囲気下で行うのが好ましい。
 このとき、反応温度は-80~200℃、好ましくは0~100℃、より好ましくは10~50℃にて行うことが望ましく、反応時間は0.1~48時間、好ましくは0.2~40時間にて行うことが望ましい。
 上記反応の終了後、得られた高分岐ポリマー(分子末端に前記式[1]で表されるオキシアルキレン部位を有する含フッ素高分岐ポリマー)を任意の方法で回収し、必要に応じて洗浄等の後処理を行う。反応溶液から高分子を回収する方法としては、再沈殿等の方法が挙げられる。
Examples of the known condensing agent include N, N′-dicyclohexylcarbodiimide (DCC), N, N′-diisopropylcarbodiimide (DIC), and 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (EDC) hydrochloride. Carbodiimides such as N, N′-carbonyldiimidazole, dimesityl ammonium pentafluorobenzenesulfonate and the like. When carbodiimides such as DCC are used, a catalytic amount of 4-dimethylaminopyridine (DMAP) is preferably used in combination.
The above reaction is carried out under normal pressure, under pressure and under pressure, or under reduced pressure, and is preferably carried out under normal pressure in view of simplicity of the apparatus and operation. Further, preferably carried out in an atmosphere of inert gas such as N 2.
At this time, the reaction temperature is desirably −80 to 200 ° C., preferably 0 to 100 ° C., more preferably 10 to 50 ° C., and the reaction time is 0.1 to 48 hours, preferably 0.2 to 40 ° C. It is desirable to do it in time.
After completion of the above reaction, the obtained hyperbranched polymer (fluorine-containing hyperbranched polymer having an oxyalkylene moiety represented by the formula [1] at the molecular end) is recovered by any method, and washed as necessary. Perform post-processing. Examples of a method for recovering the polymer from the reaction solution include a method such as reprecipitation.
<含フッ素高分岐ポリマーを含有するワニス及び薄膜の製造方法>
 本発明の含フッ素高分岐ポリマーより作製される薄膜(生体分子吸着抑制作用を有する薄膜)を形成する具体的な方法としては、まず、含フッ素高分岐ポリマーを溶媒に溶解又は分散してワニスの形態(膜形成材料)とし、該ワニスを基材上にキャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、スプレーコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等によって塗布し、その後、ホットプレート又はオーブン等で乾燥して製膜する。
 これらの塗布方法の中でもスピンコート法が好ましい。スピンコート法を用いる場合には、単時間で塗布することができるために、揮発性の高い溶液であっても利用でき、また、均一性の高い塗布を行うことができるという利点がある。
<Method for producing varnish and thin film containing fluorine-containing highly branched polymer>
As a specific method for forming a thin film (thin film having a biomolecule adsorption-inhibiting action) produced from the fluorine-containing highly branched polymer of the present invention, first, a fluorine-containing highly branched polymer is dissolved or dispersed in a solvent, Form (film forming material), and the varnish is cast-coated on a substrate, spin coating method, blade coating method, dip coating method, roll coating method, bar coating method, die coating method, spray coating method, ink jet method, printing The film is applied by a method (eg, letterpress, intaglio, planographic, screen printing, etc.), and then dried by a hot plate or oven to form a film.
Among these coating methods, the spin coating method is preferable. In the case of using the spin coating method, since it can be applied in a single time, even a highly volatile solution can be used, and there is an advantage that highly uniform application can be performed.
 上記ワニスの形態において使用する溶媒としては、上記含フッ素高分岐ポリマーを溶解するものであればよく、例えば、メタノール、アセトン、テトラヒドロフラン(THF)、トルエン、N,N-ジメチルホルムアミド(DMF)、シクロヘキサノン、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテル、乳酸エチル、ジエチレングリコールモノエチルエーテル、ブチルセロソルブ、γ-ブチロラクトン等が挙げられる。これら溶媒は単独で使用してもよく、2種類以上の溶媒を混合してもよい。
 また上記溶媒に溶解又は分散させる濃度は任意であるが、含フッ素高分岐ポリマーと溶媒の総質量(合計質量)に対して、含フッ素高分岐ポリマーの濃度は0.01~90質量%であり、好ましくは0.05~50質量%であり、より好ましくは0.1~20質量%である。
The solvent used in the form of the varnish is not particularly limited as long as it dissolves the fluorine-containing highly branched polymer. For example, methanol, acetone, tetrahydrofuran (THF), toluene, N, N-dimethylformamide (DMF), cyclohexanone. Propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether, ethyl lactate, diethylene glycol monoethyl ether, butyl cellosolve, γ-butyrolactone, and the like. These solvents may be used alone, or two or more kinds of solvents may be mixed.
The concentration in which the solvent is dissolved or dispersed is arbitrary, but the concentration of the fluorine-containing highly branched polymer is 0.01 to 90% by mass with respect to the total mass (total mass) of the fluorine-containing highly branched polymer and the solvent. The amount is preferably 0.05 to 50% by mass, more preferably 0.1 to 20% by mass.
 形成された含フッ素高分岐ポリマーからなる薄膜の厚さは特に限定されないが、通常0.005~50μm、好ましくは0.01~20μmである。 The thickness of the thin film made of the fluorine-containing highly branched polymer is not particularly limited, but is usually 0.005 to 50 μm, preferably 0.01 to 20 μm.
<含フッ素高分岐ポリマーを含有する樹脂ブレンド>
 本発明はまた、前述の(a)含フッ素高分岐ポリマー、及び(b)熱可塑性樹脂を含む樹脂ブレンドに関する。
<Resin blend containing fluorine-containing highly branched polymer>
The present invention also relates to a resin blend comprising the aforementioned (a) fluorine-containing highly branched polymer, and (b) a thermoplastic resin.
[熱可塑性樹脂]
 本発明の樹脂ブレンドに含まれる熱可塑性樹脂は特に限定されないが、例えばPE(ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン-酢酸ビニル共重合体)、EEA(エチレン-アクリル酸エチル共重合体)などのポリオレフィン系樹脂;PS(ポリスチレン)、HIPS(ハイインパクトポリスチレン)、AS(アクリロニトリル-スチレン共重合体)、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)、MS(メタクリル酸メチル-スチレン共重合体)などのポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリイミド樹脂;PMMA(ポリメタクリル酸メチル)などの(メタ)アクリル樹脂;PET(ポリエチレンテレフタレート)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ-3-ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペートなどのポリエステル樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンスルフィド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、三酢酸セルロース;キチン、キトサン;リグニン等が挙げられる。
 中でも、ポリスチレン系樹脂又は(メタ)アクリル樹脂であることが好ましく、特にポリスチレン樹脂又はポリメタクリル酸メチル樹脂であることが好ましい。
[Thermoplastic resin]
The thermoplastic resin contained in the resin blend of the present invention is not particularly limited. For example, PE (polyethylene), PP (polypropylene), EVA (ethylene-vinyl acetate copolymer), EEA (ethylene-ethyl acrylate copolymer) Polyolefin resins such as PS (polystyrene), HIPS (high impact polystyrene), AS (acrylonitrile-styrene copolymer), ABS (acrylonitrile-butadiene-styrene copolymer), MS (methyl methacrylate-styrene copolymer) Polycarbonate resin; Polyvinyl resin; Polyamide resin; (Meth) acrylic resin such as PMMA (polymethyl methacrylate); PET (polyethylene terephthalate), polybutylene terephthalate, polyester Polyester resins such as lennaphthalate, polybutylene naphthalate, PLA (polylactic acid), poly-3-hydroxybutyric acid, polycaprolactone, polybutylene succinate, polyethylene succinate / adipate; polyphenylene ether resin; modified polyphenylene ether resin; polyacetal resin Polysulfone resin, polyphenylene sulfide resin, polyvinyl alcohol resin, polyglycolic acid, modified starch, cellulose acetate, cellulose triacetate, chitin, chitosan, lignin and the like.
Among them, a polystyrene resin or a (meth) acrylic resin is preferable, and a polystyrene resin or a polymethyl methacrylate resin is particularly preferable.
 上記樹脂ブレンドにおいて、熱可塑性樹脂に対する含フッ素高分岐ポリマーの配合量は、好ましくは0.01~50質量%であり、特に0.1~40質量%であることが好ましい。 In the above resin blend, the blending amount of the fluorine-containing highly branched polymer with respect to the thermoplastic resin is preferably 0.01 to 50% by mass, and particularly preferably 0.1 to 40% by mass.
<樹脂ブレンドより作製される生体分子吸着抑制膜及びその形成法>
 本発明の樹脂ブレンドは、該樹脂ブレンドを溶媒に溶解又は分散してワニスの形態(膜形成材料)とし、該ワニスを基材上に塗布(コーティング)することにより、生体分子吸着抑制膜、さらには成形体を形成できる。
 前記基材上への塗布方法は、キャストコート法、スピンコート法、ブレードコート法、ディップコート法、ロールコート法、バーコート法、ダイコート法、スプレーコート法、インクジェット法、印刷法(凸版、凹版、平版、スクリーン印刷等)等を適宜選択し得、中でも短時間で塗布できることから揮発性の高い溶液であっても利用でき、また、均一性の高い塗布を行うことができるという利点より、スピンコート法を用いることが望ましい。なお事前に孔径が0.2μm程度のフィルタなどを用いて樹脂ブレンドを濾過した後、塗布に供することが好ましい。
<Biomolecule adsorption suppression film prepared from resin blend and formation method thereof>
The resin blend of the present invention is obtained by dissolving or dispersing the resin blend in a solvent to form a varnish (film-forming material), and applying (coating) the varnish on a base material. Can form a molded body.
The coating method on the substrate includes a cast coating method, a spin coating method, a blade coating method, a dip coating method, a roll coating method, a bar coating method, a die coating method, a spray coating method, an ink jet method, a printing method (a relief plate, an intaglio plate). Lithographic printing, screen printing, etc.) can be selected as appropriate, and since it can be applied in a short time, it can be used even in a highly volatile solution, and it has the advantage of being able to perform highly uniform coating. It is desirable to use a coating method. It is preferable that the resin blend is filtered in advance using a filter having a pore diameter of about 0.2 μm in advance and then applied to the coating.
 上記ワニスの形態において使用する溶媒としては、上記樹脂ブレンドを溶解するものであればよく、これら溶媒の具体例としては、前記<含フッ素高分岐ポリマーを含有するワニス及び薄膜の製造方法>に挙げた溶媒と同じものが挙げられる。
 上記ワニスにおける固形分は、例えば0.01~50質量%、0.05~30質量%、又は0.1~20質量%である。ここで固形分とはワニスの全成分から溶媒成分を除いたものである。
The solvent used in the form of the varnish is not particularly limited as long as it dissolves the resin blend. Specific examples of these solvents include those described in <Method for producing varnish and thin film containing fluorine-containing hyperbranched polymer>. Examples of the solvent are the same.
The solid content in the varnish is, for example, 0.01 to 50% by mass, 0.05 to 30% by mass, or 0.1 to 20% by mass. Here, the solid content is obtained by removing the solvent component from all components of the varnish.
 前記基材としては、例えば、シリコン/二酸化シリコン被覆基板、シリコンウエハ、シリコンナイトライド基板、ガラス基板、ITO基板、プラスチック基板(ポリイミド、ポリカーボネート、ポリメタクリレート、ポリスチレン、ポリエステル、ポリオレフィン、エポキシ、メラミン、トリアセチルセルロース、ABS、AS、ノルボルネン系樹脂等)、金属、木材、紙、ガラス、スレート等を挙げることができる。これら基材の形状は板状、フィルム状又は3次元成形体でもよい。 Examples of the base material include silicon / silicon dioxide coated substrates, silicon wafers, silicon nitride substrates, glass substrates, ITO substrates, plastic substrates (polyimide, polycarbonate, polymethacrylate, polystyrene, polyester, polyolefin, epoxy, melamine, Acetyl cellulose, ABS, AS, norbornene resin, etc.), metal, wood, paper, glass, slate and the like. The shape of these base materials may be a plate shape, a film shape, or a three-dimensional molded body.
 塗布後、必要であれば続いてホットプレート又はオーブン等で乾燥し、溶媒を除去する。この時の乾燥温度及び乾燥時間は、使用する溶媒にもよるが、室温(およそ25℃)~400℃、10秒間~48時間の間で適宜選択可能である。 After application, if necessary, it is then dried with a hot plate or oven to remove the solvent. The drying temperature and drying time at this time can be appropriately selected from room temperature (approximately 25 ° C.) to 400 ° C., 10 seconds to 48 hours, depending on the solvent used.
 溶媒を除去した塗膜は、続いて極性媒体の雰囲気下で、得られた塗膜のアニーリングを行うこと、所謂“溶媒アニーリング”を行ってもよい。
 ここで用語「溶媒アニーリング(solvent annealing)」は、溶媒蒸気処理を指し、密閉容器中、室温又はさらに高い温度において、溶媒蒸気を含む空気に曝すことを指す。溶媒アニーリングは、一般に膜の表面状態を変化せしめることができ、本発明においては、膜表面の含フッ素高分岐ポリマーの存在量をより一層高めることができる。
 本発明において、上記極性媒体(溶媒アニーリングに使用する溶媒)としては、メタノール、エタノールなどのアルコール類等が挙げられ、中でもメタノールが好ましい。
 また、アニーリング時の温度及びアニーリング時間(溶媒蒸気に曝す時間)は特に限定されないが、例えば室温(およそ25℃)乃至使用溶媒の沸点、10秒間~48時間の間で適宜選択可能である。
The coating film from which the solvent has been removed may be subsequently subjected to annealing of the obtained coating film in a polar medium atmosphere, so-called “solvent annealing”.
As used herein, the term “solvent annealing” refers to solvent vapor treatment and refers to exposure to air containing solvent vapor in a sealed container at room temperature or higher. Solvent annealing generally can change the surface state of the film, and in the present invention, the abundance of the fluorine-containing highly branched polymer on the film surface can be further increased.
In the present invention, examples of the polar medium (solvent used for solvent annealing) include alcohols such as methanol and ethanol, with methanol being preferred.
Further, the temperature during annealing and the annealing time (time for exposure to solvent vapor) are not particularly limited, but can be appropriately selected from, for example, room temperature (approximately 25 ° C.) to the boiling point of the solvent used, 10 seconds to 48 hours.
 なお、塗布による膜の厚さは、乾燥後、必要に応じてその後の溶媒アニーリング後において、通常0.005~50μm、好ましくは0.01~20μmである。 The film thickness by coating is usually 0.005 to 50 μm, preferably 0.01 to 20 μm after drying and, if necessary, subsequent solvent annealing.
 以下、実施例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例において、試料の調製及び物性の分析に用いた装置及び条件は、以下の通りである。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limited to the following Example.
In the examples, the apparatus and conditions used for sample preparation and physical property analysis are as follows.
(1)H NMRスペクトル
 装置:日本電子(株)製 JNM-ECA700(製造例1)
    日本電子(株)製 JNM-ECP400(実施例1、5~7)
 溶媒:CDCl(製造例1、実施例1)
    (CDC(=O)(実施例5~7)
 基準:CHCl(7.26ppm)(製造例1)
    テトラメチルシラン(0.00ppm)(実施例1)
    (CHC(=O)(2.10ppm)(実施例5~7)
(2)13C NMRスペクトル
 装置:BRUKER社製 AVANCE(登録商標)III 600
 溶媒:CDCl
 基準ピーク:CDCl(77.0ppm)
(3)ゲル浸透クロマトグラフィー(GPC)
 装置:東ソー(株)製 HLC-8220GPC
 カラム:昭和電工(株)製 Shodex(登録商標)GPC KF-804L、同KF-805L
 カラム温度:40℃
 溶媒:テトラヒドロフラン
 検出器:RI
(4)IRスペクトル
 装置:日本分光(株)製 FT/IR-620
 測定条件:KBr錠法、室温、大気下
 分解能:4cm-1
(5)スピンコーター
 装置:ミカサ(株)製 1H-D7
(6)乾燥器
 装置:(株)いすゞ製作所製 ISUZU-SVK-10S
(7)X線光電子分光測定(XPS)
 装置:アルバック・ファイ(株)製 ESCA 5800
 測定条件:14.0kV、14mA
 中和条件:bias(V)6.00
      Extractor(V)30
      X=24.5
      Y;角度により変更
(8)接触角
 装置:協和界面科学(株)製 DropMaster 500
(9)蛍光顕微鏡
 装置:株式会社キーエンス製 標準タイプBiozero蛍光顕微鏡BZ-8100シリーズ
 フィルタ:BZフィルタTRITC
 露光時間:2.5秒
 励起波長:494nm
 吸収波長:520nm
(10)走査電子顕微鏡(SEM)観察
 装置:(株)島津製作所製 SS-550
 加速電圧:15kV
 倍率:×1500
(1) 1 H NMR spectrum apparatus: JNM-ECA700 (manufacturing example 1) manufactured by JEOL Ltd.
JNM-ECP400 (Example 1, 5-7) manufactured by JEOL Ltd.
Solvent: CDCl 3 (Production Example 1, Example 1)
(CD 3 ) 2 C (═O) (Examples 5 to 7)
Criteria: CHCl 3 (7.26 ppm) (Production Example 1)
Tetramethylsilane (0.00 ppm) (Example 1)
(CH 3 ) 2 C (═O) (2.10 ppm) (Examples 5 to 7)
(2) 13 C NMR spectrum apparatus: AVANCE (registered trademark) III 600 manufactured by BRUKER
Solvent: CDCl 3
Reference peak: CDCl 3 (77.0 ppm)
(3) Gel permeation chromatography (GPC)
Equipment: HLC-8220GPC manufactured by Tosoh Corporation
Column: Shodex (registered trademark) GPC KF-804L, KF-805L manufactured by Showa Denko K.K.
Column temperature: 40 ° C
Solvent: Tetrahydrofuran Detector: RI
(4) IR spectrum device: FT / IR-620 manufactured by JASCO Corporation
Measurement conditions: KBr tablet method, room temperature, under air Resolution: 4 cm -1
(5) Spin coater equipment: 1H-D7 manufactured by Mikasa Co., Ltd.
(6) Dryer Equipment: ISUZU-SVK-10S manufactured by Isuzu Manufacturing Co., Ltd.
(7) X-ray photoelectron spectroscopy (XPS)
Equipment: ESCA 5800 manufactured by ULVAC-PHI Co., Ltd.
Measurement conditions: 14.0 kV, 14 mA
Neutralization conditions: bias (V) 6.00
Extractor (V) 30
X = 24.5
Y: Change according to angle (8) Contact angle Device: DropMaster 500 manufactured by Kyowa Interface Science Co., Ltd.
(9) Fluorescence microscope Device: Keyence Co., Ltd. Standard type Biozero fluorescence microscope BZ-8100 series Filter: BZ filter TRITC
Exposure time: 2.5 seconds Excitation wavelength: 494 nm
Absorption wavelength: 520 nm
(10) Scanning electron microscope (SEM) observation apparatus: SS-550 manufactured by Shimadzu Corporation
Acceleration voltage: 15 kV
Magnification: × 1500
 また、略記号は以下の意味を表す。
DVB:ジビニルベンゼン[新日鉄住金化学(株)製 DVB-960]
C6FA:2-(パーフルオロヘキシル)エチルアクリレート[ユニマテック(株)製 FAAC-6]
ACVA:4,4’-アゾビス(4-シアノバレリン酸)[和光純薬工業(株) V-501]
TEGMEE:トリエチレングリコールモノエチルエーテル[東京化成工業(株)製]
HEGMME:ヘキサエチレングリコールモノメチルエーテル[東京化成工業(株)製]
12EGME:ポリエチレングリコールモノメチルエーテル[Aldrich社製 製品番号:202487 数平均分子量:550]
45EGME:ポリエチレングリコールモノメチルエーテル[Aldrich社製 製品番号:202509 数平均分子量:~2,000]
DCC:N,N’-ジシクロヘキシルカルボジイミド[東京化成工業(株)製]
DIC:N,N’-ジイソプロピルカルボジイミド[東京化成工業(株)製]
DMAP:4-(ジメチルアミノ)ピリジン[関東化学(株)製]
PMMA:ポリメタクリル酸メチル[Polymer Source社製 重量平均分子量:315,000]
EGME:エチレングリコールモノメチルエーテル
IPE:ジイソプロピルエーテル
THF:テトラヒドロフラン
Abbreviations represent the following meanings.
DVB: Divinylbenzene [DVB-960, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.]
C6FA: 2- (perfluorohexyl) ethyl acrylate [FAAC-6 manufactured by Unimatec Co., Ltd.]
ACVA: 4,4′-azobis (4-cyanovaleric acid) [Wako Pure Chemical Industries, Ltd. V-501]
TEGME: Triethylene glycol monoethyl ether [manufactured by Tokyo Chemical Industry Co., Ltd.]
HEGMME: Hexaethylene glycol monomethyl ether [manufactured by Tokyo Chemical Industry Co., Ltd.]
12EGME: Polyethylene glycol monomethyl ether [manufactured by Aldrich, product number: 202487, number average molecular weight: 550]
45EGME: Polyethylene glycol monomethyl ether [manufactured by Aldrich, product number: 202509 number average molecular weight: ˜2,000]
DCC: N, N′-dicyclohexylcarbodiimide [manufactured by Tokyo Chemical Industry Co., Ltd.]
DIC: N, N′-diisopropylcarbodiimide [manufactured by Tokyo Chemical Industry Co., Ltd.]
DMAP: 4- (dimethylamino) pyridine [manufactured by Kanto Chemical Co., Inc.]
PMMA: Polymethyl methacrylate [manufactured by Polymer Source, weight average molecular weight: 315,000]
EGME: ethylene glycol monomethyl ether IPE: diisopropyl ether THF: tetrahydrofuran
[製造例1]末端にカルボキシ基を有する含フッ素高分岐ポリマー1の製造
 1Lの反応フラスコに、EGME325gを仕込み、撹拌しながら5分間窒素を流し込み、内液が還流するまで(およそ125℃)加熱した。
 別の500mLの反応フラスコに、モノマーAとしてDVB6.5g(50mmol)、モノマーBとしてC6FA10.5g(25mmol)、開始剤としてACVA14.0g(50mmol)、及びEGME325gを仕込み、撹拌しながら5間窒素を流し込み窒素置換を行った。
 前述の1Lの反応フラスコ中の還流してあるEGME中に、DVB、C6FA及びACVAが仕込まれた前述の500mLの反応フラスコから、滴下ポンプを用いて、内容物を1時間かけて滴下した。滴下終了後、さらに1時間撹拌した。
 次に、この反応液からロータリーエバポレーターを用いてEGME553gを留去後、その残渣をIPE650gに添加してポリマーをスラリー状態で沈殿させた。このスラリーを減圧ろ過し、白色粉末の粗物を得た。この粗物をTHF50gに再溶解させ、再度IPE650gに添加してポリマーを再沈殿した。さらに上記一連の操作(減圧ろ過-THFに再溶解-IPEで再沈殿)をもう一度繰返し精製した。最後に得られた沈殿物を減圧ろ過、真空乾燥して、白色粉末の目的物(末端にカルボキシ基を有する含フッ素高分岐ポリマー1)13.8gを得た。
 得られた末端にカルボキシ基を有する含フッ素高分岐ポリマー1のH NMRスペクトルを図1に、13C NMRスペクトルを図2にそれぞれ示す。13C NMRスペクトルから算出した、下記構造式に示す末端にカルボキシ基を有する含フッ素高分岐ポリマー1の単位構造組成(モル比)は、DVBユニット[A]:C6FAユニット[B]:ACVAユニット[C]=1.0:0.7:0.5であった。また、該ポリマーのGPCによるポリスチレン換算で測定される重量平均分子量Mwは9,500、分散度:Mw(重量平均分子量)/Mn(数平均分子量)は2.4であった。
[Production Example 1] Production of fluorine-containing hyperbranched polymer 1 having a carboxy group at the terminal Charge 325 g of EGME into a 1 L reaction flask, pour nitrogen for 5 minutes with stirring, and heat until the internal liquid is refluxed (approximately 125 ° C). did.
In a separate 500 mL reaction flask was charged 6.5 g (50 mmol) of DVB as monomer A, 10.5 g (25 mmol) of C6FA as monomer B, 14.0 g (50 mmol) of ACVA as initiator, and 325 g of EGME, and nitrogen was added while stirring. Pour nitrogen replacement.
The contents were dropped into the EGME refluxed in the 1 L reaction flask from the above 500 mL reaction flask charged with DVB, C6FA and ACVA using a dropping pump over 1 hour. After completion of dropping, the mixture was further stirred for 1 hour.
Next, after 553 g of EGME was distilled off from the reaction solution using a rotary evaporator, the residue was added to 650 g of IPE to precipitate the polymer in a slurry state. The slurry was filtered under reduced pressure to obtain a white powdery crude product. This crude product was redissolved in 50 g of THF and added again to 650 g of IPE to reprecipitate the polymer. Further, the above series of operations (vacuum filtration-redissolved in THF-reprecipitation with IPE) was repeated and purified once more. Finally, the obtained precipitate was filtered under reduced pressure and dried under vacuum to obtain 13.8 g of the desired product (fluorinated highly branched polymer 1 having a carboxy group at the terminal) as a white powder.
The 1 H NMR spectrum of the obtained fluorine-containing highly branched polymer 1 having a carboxy group at the terminal is shown in FIG. 1, and the 13 C NMR spectrum is shown in FIG. The unit structure composition (molar ratio) of the fluorine-containing highly branched polymer 1 having a carboxy group at the terminal shown in the following structural formula, calculated from 13 C NMR spectrum, is DVB unit [A]: C6FA unit [B]: ACVA unit [ C] = 1.0: 0.7: 0.5. Moreover, the weight average molecular weight Mw measured by polystyrene conversion by GPC of this polymer was 9,500, and dispersion degree: Mw (weight average molecular weight) / Mn (number average molecular weight) was 2.4.
Figure JPOXMLDOC01-appb-C000008
式中、黒点は結合端を表す。
Figure JPOXMLDOC01-appb-C000008
In the formula, a black dot represents a coupling end.
[実施例1]末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2の製造
 25mLの三口フラスコ、に製造例1で得られた末端にカルボキシ基を有する含フッ素高分岐ポリマー1 38mg(5.1μmol)、TEGMEE16mg(97μmol)、触媒としてDMAP7mg(57μmol)、縮合剤としてDCC21mg(100μmol)、及び予めCaHで脱水したTHF2.7mgを仕込んだ。この溶液を窒素雰囲気下、室温(およそ20℃)で24時間撹拌し反応させた。析出したジシクロへキシルウレア(DCU)をろ過により除去した。THFを減圧留去し、得られた残渣をクロロホルムに溶解した。次に、この溶液をpH5の塩酸水溶液で3回洗浄しDMAPを除去した。さらに蒸留水で2回洗浄した後、無水硫酸ナトリウムで乾燥し、クロロホルムを減圧留去した。残渣をジエチルエーテルで3回洗浄することで白色粘稠体の目的物(末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2)9mgを得た。
 得られた末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2のIRスペクトルを図3に、H NMRスペクトルを図4にそれぞれ示す。また図3には、末端にカルボキシ基を有する含フッ素高分岐ポリマー1のIRスペクトルも合わせて示す。IRスペクトルにおいて、2800~2500cm-1付近にカルボン酸のOH伸縮振動由来のブロードなピークが観測されなかったことから、含フッ素高分岐ポリマー1のほぼ全ての末端カルボキシ基に、トリ(エチレンオキシド)部位が導入されていることが確認された。
[Example 1] Production of fluorine-containing hyperbranched polymer 2 having a tri (ethylene oxide) moiety at its end 38 mg (5) of fluorine-containing highly branched polymer 1 having a carboxyl group at its end obtained in Production Example 1 in a 25 mL three-necked flask 0.1 μmol), TEGMEE 16 mg (97 μmol), DMAP 7 mg (57 μmol) as a catalyst, DCC 21 mg (100 μmol) as a condensing agent, and 2.7 mg of THF dehydrated in advance with CaH 2 . This solution was stirred and reacted at room temperature (approximately 20 ° C.) for 24 hours under a nitrogen atmosphere. The precipitated dicyclohexylurea (DCU) was removed by filtration. THF was distilled off under reduced pressure, and the resulting residue was dissolved in chloroform. Next, this solution was washed three times with an aqueous hydrochloric acid solution having a pH of 5 to remove DMAP. Furthermore, after washing twice with distilled water, it was dried over anhydrous sodium sulfate, and chloroform was distilled off under reduced pressure. The residue was washed 3 times with diethyl ether to obtain 9 mg of a white viscous target product (fluorinated highly branched polymer 2 having a tri (ethylene oxide) moiety at the end).
FIG. 3 shows the IR spectrum of the fluorine-containing highly branched polymer 2 having a tri (ethylene oxide) moiety at the terminal, and FIG. 4 shows the 1 H NMR spectrum. FIG. 3 also shows the IR spectrum of the fluorine-containing highly branched polymer 1 having a carboxy group at the terminal. In the IR spectrum, no broad peak derived from the OH stretching vibration of carboxylic acid was observed in the vicinity of 2800 to 2500 cm −1 , so that tri (ethylene oxide) sites were present on almost all terminal carboxy groups of the fluorine-containing highly branched polymer 1. It was confirmed that was introduced.
[実施例5]末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3(エチレンオキシドの繰返し単位数n=6)の製造
 25mLの三口フラスコに、製造例1で得られた末端にカルボキシ基を有する含フッ素高分岐ポリマー1 200mg(21μmol)、HEGMME120mg(0.40mmol)、触媒としてDMAP27mg(0.22mmol)、縮合剤としてDIC60mg(0.48mmol)、及び予めCaHで脱水したTHF1.3gを仕込んだ。この溶液を窒素雰囲気下、室温(およそ20℃)で120時間撹拌し反応させた。析出したジイソプロピルウレア(DIU)をろ過により除去した。THFを減圧留去し、得られた残渣をクロロホルムに溶解した。次に、この溶液をpH5の塩酸水溶液で3回洗浄しDMAPを除去した。さらに蒸留水で2回洗浄した後、無水硫酸ナトリウムで乾燥し、クロロホルムを減圧留去した。残渣をエタノールに溶解し、エタノールに対して透析を行うことで残った未反応のHEGMMEを除去し、白色粘稠体の目的物(末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3(n=6))99mgを得た。
 得られた末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3(n=6)のIRスペクトルを図9に、H NMRスペクトルを図10に示す。IRスペクトルにおいて、2800~2500cm-1付近にカルボン酸のOH伸縮振動由来のブロードなピークがほぼ観測されなかったことから、含フッ素高分岐ポリマー1の末端カルボキシ基に、オリゴ(エチレンオキシド)部位が導入されていることが確認された。
[Example 5] Production of fluorine-containing highly branched polymer 3 having an oligo (ethylene oxide) moiety at the end (number of repeating units of ethylene oxide n = 6) A carboxy group was added to the end obtained in Production Example 1 in a 25 mL three-necked flask. Fluorine-containing highly branched polymer 1 200 mg (21 μmol), HEGMME 120 mg (0.40 mmol), DMAP 27 mg (0.22 mmol) as a catalyst, DIC 60 mg (0.48 mmol) as a condensing agent, and THF 1.3 g previously dehydrated with CaH 2 were charged. It is. This solution was stirred and reacted at room temperature (approximately 20 ° C.) for 120 hours under a nitrogen atmosphere. Precipitated diisopropyl urea (DIU) was removed by filtration. THF was distilled off under reduced pressure, and the resulting residue was dissolved in chloroform. Next, this solution was washed three times with an aqueous hydrochloric acid solution having a pH of 5 to remove DMAP. Furthermore, after washing twice with distilled water, it was dried over anhydrous sodium sulfate, and chloroform was distilled off under reduced pressure. The residue was dissolved in ethanol, and the remaining unreacted HEGMME was removed by dialysis against ethanol, and the white viscous target product (fluorine-containing highly branched polymer 3 having an oligo (ethylene oxide) moiety at the terminal ( n = 6)) 99 mg was obtained.
FIG. 9 shows the IR spectrum of the fluorine-containing highly branched polymer 3 (n = 6) having an oligo (ethylene oxide) moiety at the terminal, and FIG. 10 shows the 1 H NMR spectrum. In the IR spectrum, almost no broad peak derived from the OH stretching vibration of carboxylic acid was observed in the vicinity of 2800-2500 cm −1 , so an oligo (ethylene oxide) moiety was introduced into the terminal carboxy group of fluorine-containing hyperbranched polymer 1. It has been confirmed.
[実施例6]末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4(エチレンオキシドの繰返し単位数n=12)の製造
 25mLの三口フラスコに、製造例1で得られた末端にカルボキシ基を有する含フッ素高分岐ポリマー1 500mg(53μmol)、12EGME870mg(1.6mmol)、触媒としてDMAP91mg(0.75mmol)、縮合剤としてDIC200mg(1.6mmol)、及び予めNa/ベンゾフェノン存在下で蒸留したTHF6.2gを仕込んだ。この溶液を窒素雰囲気下、室温(およそ20℃)で24時間撹拌し反応させた。析出したジイソプロピルウレア(DIU)をろ過により除去し、THFを減圧留去した。得られた残渣をエタノールに溶解し、エタノールに対して透析を行うことでDMAP及び残った未反応の12EGMEを除去し、白色粘稠体の目的物(末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4(n=12))570mgを得た。
 得られた末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4(n=12)のIRスペクトルを図9に、H NMRスペクトルを図11に示す。IRスペクトルにおいて、2800~2500cm-1付近にカルボン酸のOH伸縮振動由来のブロードなピークがほぼ観測されなかったことから、含フッ素高分岐ポリマー1の末端カルボキシ基に、オリゴ(エチレンオキシド)部位が導入されていることが確認された。
[Example 6] Production of fluorine-containing hyperbranched polymer 4 having an oligo (ethylene oxide) moiety at the end (the number of repeating units of ethylene oxide n = 12) A carboxy group was added to the end obtained in Production Example 1 in a 25 mL three-necked flask. Fluorine-containing highly branched polymer 1 having 500 mg (53 μmol), 12EGME870 mg (1.6 mmol), DMAP 91 mg (0.75 mmol), DIC 200 mg (1.6 mmol) as a condensing agent, and THF 6 previously distilled in the presence of Na / benzophenone. 2 g was charged. This solution was stirred and reacted at room temperature (approximately 20 ° C.) for 24 hours under a nitrogen atmosphere. The precipitated diisopropyl urea (DIU) was removed by filtration, and THF was distilled off under reduced pressure. The obtained residue is dissolved in ethanol, and DMAP and the remaining unreacted 12EGME are removed by dialysis against ethanol to obtain a white viscous target product (fluorine-containing product having an oligo (ethylene oxide) part at the end) 570 mg of hyperbranched polymer 4 (n = 12) was obtained.
FIG. 9 shows the IR spectrum of the fluorine-containing highly branched polymer 4 (n = 12) having an oligo (ethylene oxide) moiety at the terminal, and FIG. 11 shows the 1 H NMR spectrum. In the IR spectrum, almost no broad peak derived from the OH stretching vibration of carboxylic acid was observed in the vicinity of 2800-2500 cm −1 , so an oligo (ethylene oxide) moiety was introduced into the terminal carboxy group of fluorine-containing hyperbranched polymer 1. It has been confirmed.
[実施例7]末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5(エチレンオキシドの繰返し単位数n=45)の製造
 25mLの三口フラスコに、製造例1で得られた末端にカルボキシ基を有する含フッ素高分岐ポリマー1 350mg(37μmol)、45EGME2.2g(1.1mmol)、触媒としてDMAP70mg(0.57mmol)、縮合剤としてDIC150mg(1.2mmol)、及び予めNa/ベンゾフェノン存在下で蒸留したTHF9.5gを仕込んだ。この溶液を窒素雰囲気下、室温(およそ20℃)で120時間撹拌し反応させた。析出したジイソプロピルウレア(DIU)をろ過により除去し、THFを減圧留去した。得られた残渣をエタノールに溶解し、エタノールに対して透析を行うことでDMAP及び残った未反応の45EGMEを除去し、白色粉末体の目的物(末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5(n=45))740mgを得た。
 得られた末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5(n=45)のIRスペクトルを図9に、H NMRスペクトルを図12に示す。IRスペクトルにおいて、2800~2500cm-1付近にカルボン酸のOH伸縮振動由来のブロードなピークがほぼ観測されなかったことから、含フッ素高分岐ポリマー1の末端カルボキシ基に、ポリ(エチレンオキシド)部位が導入されていることが確認された。
[Example 7] Production of fluorine-containing hyperbranched polymer 5 having a poly (ethylene oxide) moiety at the end (number of repeating units of ethylene oxide n = 45) A carboxy group at the end obtained in Production Example 1 was added to a 25 mL three-necked flask. Fluorine-containing highly branched polymer 1 350 mg (37 μmol), 45 EGME 2.2 g (1.1 mmol), DMAP 70 mg (0.57 mmol), DIC 150 mg (1.2 mmol) as a condensing agent, and previously distilled in the presence of Na / benzophenone 9.5 g of THF was charged. This solution was stirred and reacted at room temperature (approximately 20 ° C.) for 120 hours under a nitrogen atmosphere. The precipitated diisopropyl urea (DIU) was removed by filtration, and THF was distilled off under reduced pressure. The obtained residue was dissolved in ethanol, and DMAP and the remaining unreacted 45EGME were removed by dialysis against ethanol, and the target product of white powder (fluorine-containing high content having a poly (ethylene oxide) part at the end) was obtained. 740 mg of branched polymer 5 (n = 45)) was obtained.
FIG. 9 shows the IR spectrum of the fluorine-containing highly branched polymer 5 (n = 45) having a poly (ethylene oxide) moiety at the terminal, and FIG. 12 shows the 1 H NMR spectrum. In the IR spectrum, a broad peak derived from the OH stretching vibration of carboxylic acid was hardly observed in the vicinity of 2800-2500 cm −1 , so a poly (ethylene oxide) site was introduced into the terminal carboxy group of fluorine-containing hyperbranched polymer 1. It has been confirmed.
[実施例2]末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2/PMMAブレンド膜の作製
 実施例1で得られた末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2及びPMMAを質量比5:95で混合した。この混合物を、濃度が2質量%となるようにTHFに溶解させ、フィルタろ過し、ワニスを調製した。このワニスを、シリコンウエハ上にスピンコーティング(3,000rpm、60秒間)し、ブレンド膜を製膜した。
 製膜後、真空下、室温(およそ20℃)又は150℃で24時間熱処理を施した。偏光解析測定より見積もった膜厚は100nmであった。
 得られたそれぞれの膜に対して角度分解XPS測定を実施し、膜の表面組成を評価した。各ブレンド膜における、光電子放出角の正弦(sinθ)に対する、フッ素と炭素の光電子強度比(IF1s/IC1s)を図5に示す(熱処理温度;図5(a)室温、(b)150℃)。何れの膜においても、IF1s/IC1sはsinθが小さくなるとともに増加した。sinθの値が小さくなるほど、分析深さが浅い、つまり表面近傍であることを示している。すなわち、含フッ素高分岐ポリマー2は、末端に親水性のトリ(エチレンオキシド)部を有していても、表面自由エネルギーの低いフッ素を有するため、PMMAとのブレンド膜の表面近傍に濃縮することが確認された。
[Example 2] Preparation of a fluorine-containing highly branched polymer 2 / PMMA blend film having a tri (ethylene oxide) moiety at the terminal and a fluorine-containing highly branched polymer 2 having a tri (ethylene oxide) moiety at the terminal and PMMA obtained in Example 1 Were mixed at a mass ratio of 5:95. This mixture was dissolved in THF so as to have a concentration of 2% by mass and filtered to prepare a varnish. This varnish was spin-coated (3,000 rpm, 60 seconds) on a silicon wafer to form a blend film.
After film formation, heat treatment was performed under vacuum at room temperature (approximately 20 ° C.) or 150 ° C. for 24 hours. The film thickness estimated from ellipsometry measurement was 100 nm.
Angle-resolved XPS measurement was performed on each of the obtained films to evaluate the surface composition of the films. The photoelectron intensity ratio (I F1s / I C1s ) of fluorine and carbon with respect to the sine (sin θ) of the photoelectron emission angle in each blend film is shown in FIG. 5 (heat treatment temperature; FIG. 5 (a) room temperature, (b) 150 ° C. ). In any film, I F1s / I C1s increased as sin θ decreased. The smaller the value of sin θ, the shallower the analysis depth, that is, near the surface. That is, even if the fluorine-containing highly branched polymer 2 has a hydrophilic tri (ethylene oxide) moiety at the end, it has fluorine with low surface free energy, and therefore can be concentrated near the surface of the blend film with PMMA. confirmed.
[実施例8]末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3(n=6)/PMMAブレンド膜の作製
 含フッ素高分岐ポリマー2に替えて実施例5で得られた末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3(n=6)を使用した以外は、実施例2と同様にブレンド膜を作製した。製膜後、真空下、150℃で24時間熱処理を施し、同様に評価した。
 得られたブレンド膜の偏光解析測定より見積もった膜厚は200nmであった。また、光電子放出角の正弦(sinθ)に対する、フッ素と炭素の光電子強度比(IF1s/IC1s)を図13に示す。
[Example 8] Preparation of fluorine-containing highly branched polymer 3 (n = 6) / PMMA blend film having an oligo (ethylene oxide) moiety at the end Oligo at the end obtained in Example 5 in place of fluorine-containing highly branched polymer 2 A blend film was prepared in the same manner as in Example 2 except that the fluorine-containing highly branched polymer 3 (n = 6) having an (ethylene oxide) part was used. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum, and the same evaluation was performed.
The film thickness estimated from the ellipsometric measurement of the obtained blend film was 200 nm. FIG. 13 shows the photoelectron intensity ratio (I F1s / I C1s ) of fluorine and carbon with respect to the sine of the photoelectron emission angle (sin θ).
[実施例9]末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4(n=12)/PMMAブレンド膜の作製
 含フッ素高分岐ポリマー2に替えて実施例6で得られた末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4(n=12)を使用した以外は、実施例2と同様にブレンド膜を作製した。製膜後、真空下、150℃で24時間熱処理を施し、同様に評価した。
 得られたブレンド膜の偏光解析測定より見積もった膜厚は200nmであった。また、光電子放出角の正弦(sinθ)に対する、フッ素と炭素の光電子強度比(IF1s/IC1s)を図13に併せて示す。
[Example 9] Preparation of fluorine-containing hyperbranched polymer 4 (n = 12) / PMMA blend film having an oligo (ethylene oxide) moiety at the end Oligo at the end obtained in Example 6 in place of fluorine-containing highly branched polymer 2 A blend film was prepared in the same manner as in Example 2 except that the fluorine-containing highly branched polymer 4 (n = 12) having an (ethylene oxide) part was used. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum, and the same evaluation was performed.
The film thickness estimated from the ellipsometric measurement of the obtained blend film was 200 nm. Further, the photoelectron intensity ratio (I F1s / I C1s ) of fluorine and carbon with respect to the sine of the photoelectron emission angle (sin θ) is also shown in FIG.
[実施例10]末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5(n=45)/PMMAブレンド膜の作製
 含フッ素高分岐ポリマー2に替えて実施例7で得られた末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5(n=45)を使用した以外は、実施例2と同様にブレンド膜を作製した。製膜後、真空下、150℃で24時間熱処理を施し、同様に評価した。
 得られたブレンド膜の偏光解析測定より見積もった膜厚は200nmであった。また、光電子放出角の正弦(sinθ)に対する、フッ素と炭素の光電子強度比(IF1s/IC1s)を図13に併せて示す。
[Example 10] Preparation of fluorine-containing highly branched polymer 5 (n = 45) / PMMA blend film having a poly (ethylene oxide) moiety at the terminal A blend film was prepared in the same manner as in Example 2 except that the fluorine-containing highly branched polymer 5 (n = 45) having an (ethylene oxide) part was used. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum, and the same evaluation was performed.
The film thickness estimated from the ellipsometric measurement of the obtained blend film was 200 nm. Further, the photoelectron intensity ratio (I F1s / I C1s ) of fluorine and carbon with respect to the sine of the photoelectron emission angle (sin θ) is also shown in FIG.
 図13に示すように、何れの膜においても、IF1s/IC1sはsinθが小さくなるとともに増加した。すなわち、含フッ素高分岐ポリマー3、4、5の末端親水性部位(オリゴ(エチレンオキシド)部又はポリ(エチレンオキシド)部)の鎖長(n=6、12、45)によらず、表面近傍のフッ素分率はほぼ同程度であることが確認された。これより、表面自由エネルギーの低いフッ素を有する高分岐ポリマー3、4、5は、末端に親水性部位を有していても、PMMAとのブレンド膜の表面近傍に濃縮することが確認された。 As shown in FIG. 13, in any film, I F1s / I C1s increased as sin θ decreased. That is, fluorine in the vicinity of the surface regardless of the chain length (n = 6, 12, 45) of the terminal hydrophilic portion (oligo (ethylene oxide) portion or poly (ethylene oxide) portion) of the fluorine-containing highly branched polymers 3, 4, 5 It was confirmed that the fraction was almost the same. From this, it was confirmed that the hyperbranched polymers 3, 4, and 5 having fluorine having a low surface free energy are concentrated near the surface of the blend film with PMMA even though they have a hydrophilic portion at the terminal.
[実施例3]末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2/PMMAブレンド膜の表面構造再編成
 実施例2で作製した末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2/PMMAブレンド膜に対し、真空下、150℃で24時間熱処理を施した。
 この膜が水と接触した際の表面構造変化を評価するため、大気下、室温(およそ20℃)で1μLの超純水(millQ水)をプローブとした対水接触角の経時変化測定(60秒間)を行った。結果を図6に示す。
[Example 3] Surface structure rearrangement of fluorine-containing highly branched polymer 2 / PMMA blend film having tri (ethylene oxide) moiety at the terminal Example 2 Fluorine-containing highly branched polymer 2 having a tri (ethylene oxide) moiety at the terminal prepared in Example 2 / PMMA blend membrane was heat treated at 150 ° C. under vacuum for 24 hours.
In order to evaluate the change in the surface structure of the membrane when it comes into contact with water, measurement of the change in contact angle with time using a 1 μL ultrapure water (millQ water) probe at room temperature (approximately 20 ° C.) in the atmosphere (60 Seconds). The results are shown in FIG.
[比較例1]末端にカルボキシ基を有する含フッ素高分岐ポリマー1/PMMAブレンド膜の表面構造再編成
 製造例1で得られた末端にカルボキシ基を有する含フッ素高分岐ポリマー1を用いた以外は実施例2と同様に操作し、含フッ素高分岐ポリマー1/PMMAブレンド膜を作製した。この膜を実施例3と同様に熱処理し、評価した。結果を図6に併せて示す。
[Comparative Example 1] Surface structure reorganization of fluorine-containing highly branched polymer 1 / PMMA blend film having carboxy group at the terminal, except that fluorine-containing highly branched polymer 1 having a carboxyl group at the terminal obtained in Production Example 1 was used In the same manner as in Example 2, a fluorine-containing highly branched polymer 1 / PMMA blend film was produced. This film was heat-treated in the same manner as in Example 3 and evaluated. The results are also shown in FIG.
 図6に示すように、末端にカルボキシ基を有する含フッ素高分岐ポリマー1/PMMAブレンド膜においては、水滴の蒸発に由来する対水接触角の単調な減少のみが観測された。一方、末端にトリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー2とPMMAのブレンド膜上では、水滴滴下後数秒で接触角の指数関数的な減少が観測された。これは水の接触に伴う表面構造再編成に起因することが知られている。この結果より、ブレンド膜において表面に濃縮している含フッ素高分岐ポリマー2の末端トリ(エチレンオキシド)部が、水との接触に伴い水界面に現れたことが確認された。 As shown in FIG. 6, in the fluorine-containing highly branched polymer 1 / PMMA blend film having a carboxy group at the terminal, only a monotonous decrease in contact angle with water due to evaporation of water droplets was observed. On the other hand, on the blend film of fluorine-containing highly branched polymer 2 having a tri (ethylene oxide) portion at the end and PMMA, an exponential decrease in contact angle was observed within a few seconds after the water droplet was dropped. This is known to be caused by surface structure reorganization accompanying water contact. From this result, it was confirmed that the terminal tri (ethylene oxide) part of the fluorine-containing hyperbranched polymer 2 concentrated on the surface in the blend film appeared at the water interface with contact with water.
[実施例11]末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3(n=6)/PMMAブレンド膜の表面構造再編成
 実施例8で得られたブレンド膜に対し、実施例3と同様に熱処理し、評価した。結果を図14に示す。
[Example 11] Surface structure rearrangement of fluorine-containing hyperbranched polymer 3 (n = 6) / PMMA blend film having an oligo (ethylene oxide) moiety at the end. For the blend film obtained in Example 8, Example 3 and The same heat treatment was performed and evaluated. The results are shown in FIG.
[実施例12]末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4(n=12)/PMMAブレンド膜の表面構造再編成
 実施例9で得られたブレンド膜に対し、実施例3と同様に熱処理し、評価した。結果を図14に併せて示す。
[Example 12] Surface structure rearrangement of fluorine-containing hyperbranched polymer 4 (n = 12) / PMMA blend film having an oligo (ethylene oxide) moiety at the end. For the blend film obtained in Example 9, Example 3 and The same heat treatment was performed and evaluated. The results are also shown in FIG.
[実施例13]末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5(n=45)/PMMAブレンド膜の表面構造再編成
 実施例10で得られたブレンド膜に対し、実施例3と同様に熱処理し、評価した。結果を図14に併せて示す。
[Example 13] Surface structure rearrangement of fluorine-containing hyperbranched polymer 5 (n = 45) / PMMA blend film having a poly (ethylene oxide) portion at the end. For the blend film obtained in Example 10, Example 3 and The same heat treatment was performed and evaluated. The results are also shown in FIG.
 図14に示すように、末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4(n=12)/PMMAブレンド膜においては、水滴滴下後数秒で膜の表面構造再編成に由来する接触角の指数関数的な減少が僅かではあるが観測され、その後水滴の蒸発に由来する対水接触角の単調な減少が観測された。一方、末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3(n=6)/PMMAブレンド膜においては、前者はあまり明確には観測されず、ほぼ水滴の蒸発に由来する対水接触角の単調減少のみが観測された。さらに、末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5(n=45)/PMMAブレンド膜においては、水滴滴下後の時間経過とともに、対水接触角は著しく減少した。この結果より、ブレンド膜において表面に濃縮している含フッ素高分岐ポリマーの末端オリゴ(エチレンオキシド)部又はポリ(エチレンオキシド)部が、水との接触に伴い水界面に現れること、その程度はエチレンオキシドの鎖長(繰返し単位数n)に依存して異なることが確認された。 As shown in FIG. 14, in the fluorine-containing highly branched polymer 4 (n = 12) / PMMA blend film having an oligo (ethylene oxide) part at the terminal, the contact angle derived from the reorganization of the film surface within a few seconds after dropping the water droplet. A slight exponential decrease in water contact angle was observed, followed by a monotonic decrease in water contact angle due to water droplet evaporation. On the other hand, in the fluorine-containing hyperbranched polymer 3 (n = 6) / PMMA blend film having an oligo (ethylene oxide) portion at the terminal, the former is not clearly observed, and the contact angle with water due to the evaporation of water droplets. Only a monotonic decrease was observed. Furthermore, in the fluorine-containing hyperbranched polymer 5 (n = 45) / PMMA blend film having a poly (ethylene oxide) part at the terminal, the contact angle with water significantly decreased with the passage of time after the water droplet was dropped. From this result, the terminal oligo (ethylene oxide) part or poly (ethylene oxide) part of the fluorine-containing hyperbranched polymer concentrated on the surface in the blend film appears at the water interface upon contact with water, and the extent is It was confirmed that it was different depending on the chain length (number of repeating units n).
[実施例4]含フッ素高分岐ポリマー2/PMMAブレンド膜のタンパク質吸着挙動
 シリコンウエハをカバーガラスに変更した以外は実施例2と同様に操作し、含フッ素高分岐ポリマー2/PMMAブレンド膜を作製した。製膜後、真空下、150℃で24時間熱処理を施した。
 この膜を、超純水で洗浄し、24ウェルプレートの底に配置した。次に、該膜を超純水に24時間浸漬させた後、リン酸緩衝生理食塩水(PBS)で洗浄した。この膜を、10μg/mL、50μg/mL、100μg/mLに調製したフルオレセインイソシアネート標識ウシ血清アルブミン(BSA)[ELASTIN PRODUCTS COMPANY社製]/PBS溶液に37℃で1時間浸漬した。その後、各膜をPBSで洗浄し、PBS中で蛍光顕微鏡観察することで、当該膜へのウシ血清アルブミンの吸着挙動を評価した。得られた蛍光顕微鏡写真を図7に、この画像の輝度をハイブリッドセルカウント機能[株式会社キーエンス製ソフトウェア]を用いて数値化し、ウシ血清アルブミンの濃度に対してプロットしたグラフを図8に示す。
[Example 4] Protein adsorption behavior of fluorine-containing highly branched polymer 2 / PMMA blend film A fluorine-containing highly branched polymer 2 / PMMA blend film was prepared in the same manner as in Example 2 except that the silicon wafer was changed to a cover glass. did. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum.
The membrane was washed with ultrapure water and placed at the bottom of a 24-well plate. Next, the membrane was immersed in ultrapure water for 24 hours, and then washed with phosphate buffered saline (PBS). This membrane was immersed in fluorescein isocyanate-labeled bovine serum albumin (BSA) [manufactured by ELASTIN PRODUCTS COMPANY] / PBS prepared at 10 μg / mL, 50 μg / mL, and 100 μg / mL at 37 ° C. for 1 hour. Thereafter, each membrane was washed with PBS and observed under a fluorescence microscope in PBS to evaluate the adsorption behavior of bovine serum albumin on the membrane. FIG. 7 shows the obtained fluorescence micrograph, and FIG. 8 shows a graph plotting the luminance of this image with the hybrid cell count function [Software by Keyence Corporation] and plotting it against the concentration of bovine serum albumin.
[比較例2]PMMA膜のタンパク質吸着挙動
 含フッ素高分岐ポリマー2を添加せず、シリコンウエハをカバーガラスに変更した以外は実施例2と同様に操作し、PMMA膜を作製した。製膜後、真空下、150℃で24時間熱処理を施した。
 この膜を使用した以外は実施例4と同様に操作し、評価した。結果を図7及び図8に併せて示す。
Comparative Example 2 Protein Adsorption Behavior of PMMA Film A PMMA film was produced in the same manner as in Example 2 except that the fluorine-containing highly branched polymer 2 was not added and the silicon wafer was changed to a cover glass. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum.
The operation was performed in the same manner as in Example 4 except that this membrane was used. The results are also shown in FIGS.
 図7及び図8に示すように、本発明のブレンド膜におけるアルブミンの吸着に起因する蛍光強度は、PMMA膜におけるそれと比較して弱いことが明らかとなった。これより、本発明のブレンド膜表面においてアルブミンの吸着が抑制されることが確認された。 As shown in FIGS. 7 and 8, it was revealed that the fluorescence intensity resulting from the adsorption of albumin in the blend film of the present invention was weaker than that in the PMMA film. From this, it was confirmed that the adsorption of albumin was suppressed on the surface of the blend film of the present invention.
[実施例14]末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3(n=6)/PMMAブレンド膜のタンパク質吸着挙動
 含フッ素高分岐ポリマー2に替えて実施例5で得られた末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3(n=6)を使用し、シリコンウエハをカバーガラスに変更した以外は、実施例2と同様にブレンド膜を作製した。製膜後、真空下、150℃で24時間熱処理を施した。
 この膜を、超純水で洗浄し、24ウェルプレートの底に配置した。次に、該膜を超純水に24時間浸漬させた後、リン酸緩衝生理食塩水(PBS)で洗浄した。この膜を、5μg/mL、20μg/mL、50μg/mLに調製したフルオレセインイソシアネート標識ウシ血清アルブミン(BSA)[ELASTIN PRODUCTS COMPANY社製]/PBS溶液に37℃で1時間浸漬した。その後、各膜をPBSで洗浄し、PBS中で蛍光顕微鏡観察することで、当該膜へのウシ血清アルブミンの吸着挙動を評価した。得られた蛍光顕微鏡写真を図15に、この画像の輝度をハイブリッドセルカウント機能[株式会社キーエンス製ソフトウェア]を用いて数値化し、ウシ血清アルブミンの濃度に対してプロットしたグラフを図16に示す。
[Example 14] Protein adsorption behavior of fluorine-containing hyperbranched polymer 3 (n = 6) / PMMA blend film having an oligo (ethylene oxide) moiety at the terminal end obtained in Example 5 instead of fluorine-containing hyperbranched polymer 2 A blend film was prepared in the same manner as in Example 2 except that the fluorine-containing highly branched polymer 3 (n = 6) having an oligo (ethylene oxide) portion was used and the silicon wafer was changed to a cover glass. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum.
The membrane was washed with ultrapure water and placed at the bottom of a 24-well plate. Next, the membrane was immersed in ultrapure water for 24 hours, and then washed with phosphate buffered saline (PBS). This membrane was immersed in fluorescein isocyanate-labeled bovine serum albumin (BSA) [ELASTIN PRODUCTS COMPANY] / PBS prepared at 5 μg / mL, 20 μg / mL, and 50 μg / mL at 37 ° C. for 1 hour. Thereafter, each membrane was washed with PBS and observed under a fluorescence microscope in PBS to evaluate the adsorption behavior of bovine serum albumin on the membrane. FIG. 15 shows the obtained fluorescence micrograph, and FIG. 16 shows a graph in which the brightness of this image is digitized using the hybrid cell count function [Keyence Co., Ltd. software] and plotted against the bovine serum albumin concentration.
[実施例15]末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4(n=12)/PMMAブレンド膜のタンパク質吸着挙動
 含フッ素高分岐ポリマー2に替えて実施例6で得られた末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4(n=12)を使用し、シリコンウエハをカバーガラスに変更した以外は、実施例2と同様にブレンド膜を作製した。製膜後、真空下、150℃で24時間熱処理を施した。
 この膜を使用した以外は実施例14と同様に操作し、評価した。結果を図15及び図16に併せて示す。
[Example 15] Protein adsorption behavior of fluorine-containing hyperbranched polymer 4 (n = 12) / PMMA blend film having an oligo (ethylene oxide) moiety at the terminal end obtained in Example 6 instead of fluorine-containing hyperbranched polymer 2 A blend film was prepared in the same manner as in Example 2 except that fluorine-containing highly branched polymer 4 (n = 12) having an oligo (ethylene oxide) portion was used and the silicon wafer was changed to a cover glass. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum.
The operation was performed in the same manner as in Example 14 except that this membrane was used. The results are shown in FIGS. 15 and 16 together.
[実施例16]末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5(n=45)/PMMAブレンド膜のタンパク質吸着挙動
 含フッ素高分岐ポリマー2に替えて実施例7で得られた末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5(n=45)を使用し、シリコンウエハをカバーガラスに変更した以外は、実施例2と同様にブレンド膜を作製した。製膜後、真空下、150℃で24時間熱処理を施した。
 この膜を使用した以外は実施例14と同様に操作し、評価した。結果を図15及び図16に併せて示す。
[Example 16] Protein adsorption behavior of fluorine-containing hyperbranched polymer 5 (n = 45) / PMMA blend film having a poly (ethylene oxide) moiety at the terminal end obtained in Example 7 in place of fluorine-containing hyperbranched polymer 2 A blend film was prepared in the same manner as in Example 2 except that the fluorine-containing highly branched polymer 5 (n = 45) having a poly (ethylene oxide) portion was used and the silicon wafer was changed to a cover glass. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum.
The operation was performed in the same manner as in Example 14 except that this membrane was used. The results are shown in FIGS. 15 and 16 together.
[比較例3]PMMA膜のタンパク質吸着挙動
 含フッ素高分岐ポリマー2を添加せず、シリコンウエハをカバーガラスに変更した以外は実施例2と同様に操作し、PMMA膜を作製した。製膜後、真空下、150℃で24時間熱処理を施した。
 この膜を使用した以外は実施例14と同様に操作し、評価した。結果を図15及び図16に併せて示す。
Comparative Example 3 Protein Adsorption Behavior of PMMA Film A PMMA film was produced in the same manner as in Example 2 except that the fluorine-containing highly branched polymer 2 was not added and the silicon wafer was changed to a cover glass. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum.
The operation was performed in the same manner as in Example 14 except that this membrane was used. The results are shown in FIGS. 15 and 16 together.
 図15及び図16に示すように、本発明のブレンド膜におけるアルブミンの吸着に起因する蛍光強度は、PMMA膜におけるそれと比較して弱く、本発明のブレンド膜表面においてアルブミンの吸着が抑制されることが確認された。特に、含フッ素高分岐ポリマー4(n=12)/PMMAブレンド膜において最も顕著であることが明らかとなった。含フッ素高分岐ポリマー3(n=6)/PMMAブレンド膜と含フッ素高分岐ポリマー4(n=12)/PMMAブレンド膜との結果を比較すると、オリゴ(エチレンオキシド)の鎖長が長くなるにつれ膜表面におけるアルブミンの吸着が抑制され、さらにその鎖長が長くなり、n=45となると、膜表面においてアルブミンが吸着した。これは、長時間の水への浸漬により、一部の含フッ素高分岐ポリマー5が溶け出したためであると推察される。 As shown in FIGS. 15 and 16, the fluorescence intensity resulting from the adsorption of albumin in the blend film of the present invention is weaker than that in the PMMA film, and the adsorption of albumin is suppressed on the surface of the blend film of the present invention. Was confirmed. In particular, it became clear that it was most remarkable in the fluorine-containing highly branched polymer 4 (n = 12) / PMMA blend film. Comparing the results of the fluorine-containing highly branched polymer 3 (n = 6) / PMMA blend film and the fluorine-containing highly branched polymer 4 (n = 12) / PMMA blend film, the film increases as the chain length of oligo (ethylene oxide) increases. When the adsorption of albumin on the surface was suppressed and the chain length became longer and n = 45, albumin was adsorbed on the membrane surface. This is presumably because a part of the fluorine-containing highly branched polymer 5 was dissolved by immersion in water for a long time.
[実施例17]末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3(n=6)/PMMAブレンド膜の血小板粘着挙動
 含フッ素高分岐ポリマー2に替えて実施例5で得られた末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー3(n=6)を使用した以外は、実施例2と同様にブレンド膜を作製した。製膜後、真空下、150℃で24時間熱処理を施した。
 この膜を、リン酸緩衝生理食塩水(PBS)に室温(およそ20℃)で12時間浸漬させた。この膜上に、正常ヒト全血より調製した多血小板血漿を貧血小板血漿で希釈した多血小板血漿をマウントし、37℃で1時間静置した。この膜をPBSで洗浄した後、1質量%グルタルアルデヒド/PBS溶液に37℃で2時間浸漬させることで、粘着した血小板を膜上に固定化した。この膜をPBS及び滅菌水で洗浄し、乾燥後、SEM観察により当該膜への血小板粘着挙動を評価した。得られたSEM像を図17に、粘着した血小板数とその活性化度を分類した結果を図18に、それぞれ示す。なお、活性化度は以下の基準に従った。
[活性化度分類基準]
 分類I:円形の血小板
 分類II:偽足形成や扁平化が一部進行した血小板
 分類III:偽足形成や扁平化が進行した(完全に活性化した)血小板
[Example 17] Platelet adhesion behavior of fluorine-containing hyperbranched polymer 3 (n = 6) / PMMA blend film having an oligo (ethylene oxide) moiety at the terminal end obtained in Example 5 instead of fluorine-containing hyperbranched polymer 2 A blend film was prepared in the same manner as in Example 2 except that fluorine-containing highly branched polymer 3 (n = 6) having an oligo (ethylene oxide) part was used. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum.
This membrane was immersed in phosphate buffered saline (PBS) at room temperature (approximately 20 ° C.) for 12 hours. On this membrane, platelet-rich plasma prepared by diluting platelet-rich plasma prepared from normal human whole blood with poor platelet plasma was mounted and allowed to stand at 37 ° C. for 1 hour. The membrane was washed with PBS and then immersed in a 1% by mass glutaraldehyde / PBS solution at 37 ° C. for 2 hours to immobilize the adherent platelets on the membrane. The membrane was washed with PBS and sterilized water, dried, and then evaluated for platelet adhesion to the membrane by SEM observation. The obtained SEM image is shown in FIG. 17, and the result of classifying the number of adhered platelets and the degree of activation thereof is shown in FIG. The activation degree was in accordance with the following criteria.
[Activity classification criteria]
Category I: Round platelets Category II: Platelets with partially developed pseudopod formation and flattening Category III: Platelets with pseudopod formation and flattening (fully activated)
[実施例18]末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4(n=12)/PMMAブレンド膜の血小板粘着挙動
 含フッ素高分岐ポリマー2に替えて実施例6で得られた末端にオリゴ(エチレンオキシド)部を有する含フッ素高分岐ポリマー4(n=12)を使用した以外は、実施例2と同様にブレンド膜を作製した。製膜後、真空下、150℃で24時間熱処理を施した。
 この膜を使用した以外は実施例17と同様に操作し、評価した。結果を図17及び図18に併せて示す。
[Example 18] Platelet adhesion behavior of fluorine-containing highly branched polymer 4 (n = 12) / PMMA blend film having an oligo (ethylene oxide) moiety at the terminal end obtained in Example 6 instead of fluorine-containing highly branched polymer 2 A blend film was prepared in the same manner as in Example 2 except that fluorine-containing highly branched polymer 4 (n = 12) having an oligo (ethylene oxide) part was used. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum.
The operation was performed in the same manner as in Example 17 except that this membrane was used. The results are also shown in FIGS.
[実施例19]末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5(n=45)/PMMAブレンド膜の血小板粘着挙動
 含フッ素高分岐ポリマー2に替えて実施例7で得られた末端にポリ(エチレンオキシド)部を有する含フッ素高分岐ポリマー5(n=45)を使用した以外は、実施例2と同様にブレンド膜を作製した。製膜後、真空下、150℃で24時間熱処理を施した。
 この膜を使用した以外は実施例17と同様に操作し、評価した。結果を図17及び図18に併せて示す。
[Example 19] Platelet adhesion behavior of fluorine-containing hyperbranched polymer 5 (n = 45) / PMMA blend film having a poly (ethylene oxide) moiety at the terminal end obtained in Example 7 in place of fluorine-containing hyperbranched polymer 2 A blend film was prepared in the same manner as in Example 2 except that fluorine-containing highly branched polymer 5 (n = 45) having a poly (ethylene oxide) portion was used. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum.
The operation was performed in the same manner as in Example 17 except that this membrane was used. The results are also shown in FIGS.
[比較例4]末端にカルボキシ基を有する含フッ素高分岐ポリマー1/PMMAブレンド膜の血小板粘着挙動
 含フッ素高分岐ポリマー2に替えて製造例1で得られた末端にカルボキシ基を有する含フッ素高分岐ポリマー1を使用した以外は、実施例2と同様にブレンド膜を作製した。製膜後、真空下、150℃で24時間熱処理を施した。
 この膜を使用した以外は実施例17と同様に操作し、評価した。結果を図17及び図18に併せて示す。
Comparative Example 4 Platelet Adhesion Behavior of Fluorine-containing Highly Branched Polymer 1 / PMMA Blend Film Having Carboxy Groups at Terminals Fluorine-containing Highly Carboxy Groups Having Terminal Carboxy Groups Obtained in Production Example 1 Instead of Fluorine-containing Hyperbranched Polymer 2 A blend film was prepared in the same manner as in Example 2 except that the branched polymer 1 was used. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum.
The operation was performed in the same manner as in Example 17 except that this membrane was used. The results are also shown in FIGS.
[比較例5]PMMA膜の血小板粘着挙動
 含フッ素高分岐ポリマー2を添加しなかった以外は実施例2と同様に操作し、PMMA膜を作製した。製膜後、真空下、150℃で24時間熱処理を施した。
 この膜を使用した以外は実施例17と同様に操作し、評価した。結果を図17及び図18に併せて示す。
[Comparative Example 5] Platelet adhesion behavior of PMMA film A PMMA film was prepared in the same manner as in Example 2 except that the fluorine-containing highly branched polymer 2 was not added. After film formation, heat treatment was performed at 150 ° C. for 24 hours under vacuum.
The operation was performed in the same manner as in Example 17 except that this membrane was used. The results are also shown in FIGS.
[比較例6]PET膜の血小板粘着挙動
 PETフィルム[帝人デュポンフィルム(株)製]を使用した以外は実施例17と同様に操作し、評価した。結果を図17及び図18に併せて示す。
[Comparative Example 6] Platelet adhesion behavior of PET film The same operation as in Example 17 was carried out except that a PET film [manufactured by Teijin DuPont Films Ltd.] was used. The results are also shown in FIGS.
 図17及び図18に示すように、含フッ素高分岐ポリマー1/PMMAブレンド膜においては、PET膜と同等、あるいは、それ以上に血小板が粘着し活性化していた一方で、本発明のブレンド膜における血小板粘着数が著しく少なくいことが確認された。これより、オリゴ(エチレンオキシド)部を導入した効果により血小板粘着が抑制されたことが明らかである。特に、含フッ素高分岐ポリマー4(n=12)/PMMAブレンド膜、及び含フッ素高分岐ポリマー5(n=45)においては、血小板粘着数が著しく少ないだけでなく、その偽足形成や扁平化があまり進行しなかった。 As shown in FIGS. 17 and 18, in the fluorine-containing highly branched polymer 1 / PMMA blend film, platelets adhered and activated as much as or more than the PET film, whereas in the blend film of the present invention, It was confirmed that the platelet adhesion number was extremely small. From this, it is clear that platelet adhesion was suppressed by the effect of introducing the oligo (ethylene oxide) part. In particular, in the fluorine-containing highly branched polymer 4 (n = 12) / PMMA blend film and the fluorine-containing highly branched polymer 5 (n = 45), not only the platelet adhesion number is remarkably reduced, but also the formation and flattening of false feet. Did not progress much.

Claims (17)

  1. 分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBとを少なくとも含む重合性化合物を、該モノマーAのモル数に対して5~200モル%の重合開始剤Cの存在下で重合させることにより得られる含フッ素高分岐ポリマーであって、その分子末端に式[1]で表されるオキシアルキレン部位を有する、含フッ素高分岐ポリマー。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素原子数1乃至6のアルキル基を表し、Lは炭素原子数2乃至6のアルキレン基を表し、nは1乃至60の整数を表す。)
    A polymerizable compound comprising at least a monomer A having two or more radical polymerizable double bonds in the molecule and a monomer B having at least one radical polymerizable double bond in the molecule; A fluorine-containing highly branched polymer obtained by polymerizing in the presence of 5 to 200 mol% of a polymerization initiator C based on the number of moles of monomer A, and having an oxy group represented by the formula [1] at its molecular end A fluorine-containing highly branched polymer having an alkylene moiety.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein R 1 represents an alkyl group having 1 to 6 carbon atoms, L 1 represents an alkylene group having 2 to 6 carbon atoms, and n represents an integer of 1 to 60).
  2. 前記nが1乃至30の整数である、請求項1に記載の含フッ素高分岐ポリマー。 The fluorine-containing highly branched polymer according to claim 1, wherein n is an integer of 1 to 30.
  3. 前記オキシアルキレン部位が、重合開始剤Cの断片を介してその分子末端に結合している、請求項1又は請求項2に記載の含フッ素高分岐ポリマー。 The fluorine-containing hyperbranched polymer according to claim 1 or 2, wherein the oxyalkylene moiety is bonded to the molecular end via a fragment of the polymerization initiator C.
  4. 前記モノマーAが、ビニル基又は(メタ)アクリル基の何れか一方又は双方を有する化合物である、請求項1乃至請求項3のうち何れか一項に記載の含フッ素高分岐ポリマー。 The fluorine-containing highly branched polymer according to any one of claims 1 to 3, wherein the monomer A is a compound having one or both of a vinyl group and a (meth) acryl group.
  5. 前記モノマーAが、ジビニル化合物又はジ(メタ)アクリレート化合物である、請求項4に記載の含フッ素高分岐ポリマー。 The fluorine-containing highly branched polymer according to claim 4, wherein the monomer A is a divinyl compound or a di (meth) acrylate compound.
  6. 前記モノマーAがジビニルベンゼンである、請求項5に記載の含フッ素高分岐ポリマー。 The fluorine-containing highly branched polymer according to claim 5, wherein the monomer A is divinylbenzene.
  7. 前記モノマーBが、ビニル基又は(メタ)アクリル基の何れか一方を少なくとも1つ有する化合物である、請求項1乃至請求項6のうち何れか一項に記載の含フッ素高分岐ポリマー。 The fluorine-containing highly branched polymer according to any one of claims 1 to 6, wherein the monomer B is a compound having at least one of either a vinyl group or a (meth) acryl group.
  8. 前記モノマーBが式[2]で表される化合物である、請求項7に記載の含フッ素高分岐ポリマー。
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは水素原子又はメチル基を表し、Rはヒドロキシ基で置換されていてもよい炭素原子数2乃至12のフルオロアルキル基を表す。)
    The fluorine-containing highly branched polymer according to claim 7, wherein the monomer B is a compound represented by the formula [2].
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 2 represents a hydrogen atom or a methyl group, and R 3 represents a C 2-12 fluoroalkyl group which may be substituted with a hydroxy group.)
  9. 前記重合開始剤Cがアゾ系重合開始剤である、請求項1乃至請求項8のうち何れか一項に記載の含フッ素高分岐ポリマー。 The fluorine-containing highly branched polymer according to any one of claims 1 to 8, wherein the polymerization initiator C is an azo polymerization initiator.
  10. 請求項1乃至請求項9のうち何れか一項に記載の含フッ素高分岐ポリマーを含有するワニス。 A varnish containing the fluorine-containing highly branched polymer according to any one of claims 1 to 9.
  11. 請求項1乃至請求項9のうち何れか一項に記載の含フッ素高分岐ポリマーより作製される生体分子吸着抑制能を有する薄膜。 The thin film which has the biomolecule adsorption | suction suppression ability produced from the fluorine-containing hyperbranched polymer as described in any one of Claims 1 thru | or 9.
  12. (a)請求項1乃至請求項9のうち何れか一項に記載の含フッ素高分岐ポリマー、及び
    (b)熱可塑性樹脂
    を含む樹脂ブレンド。
    (A) A resin blend comprising the fluorine-containing highly branched polymer according to any one of claims 1 to 9 and (b) a thermoplastic resin.
  13. 請求項12に記載の樹脂ブレンドより作製される生体分子吸着抑制膜。 A biomolecule adsorption inhibiting film produced from the resin blend according to claim 12.
  14. 分子内に2個以上のラジカル重合性二重結合を有するモノマーAと、分子内にフルオロアルキル基及び少なくとも1個のラジカル重合性二重結合を有するモノマーBとを少なくとも含む重合性化合物を、該モノマーAのモル数に対して5~200モル%の分子内にカルボキシ基を有する重合開始剤の存在下で重合させることにより得られるカルボキシ基含有含フッ素高分岐ポリマー、又はそのカルボキシ基活性化体と、式[3]で表される化合物とを反応させることを特徴とする、請求項1乃至請求項9のうち何れか一項に記載の含フッ素高分岐ポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、Rは炭素原子数1乃至6のアルキル基を表し、Lは炭素原子数2乃至6のアルキレン基を表し、nは1乃至60の整数を表す。)
    A polymerizable compound comprising at least a monomer A having two or more radical polymerizable double bonds in the molecule and a monomer B having at least one radical polymerizable double bond in the molecule; Carboxy group-containing fluorine-containing highly branched polymer obtained by polymerizing in the presence of a polymerization initiator having a carboxy group in the molecule of 5 to 200 mol% relative to the number of moles of monomer A, or an activated product of the carboxy group And the compound represented by the formula [3] is reacted. The method for producing a fluorine-containing highly branched polymer according to any one of claims 1 to 9.
    Figure JPOXMLDOC01-appb-C000003
    (Wherein R 1 represents an alkyl group having 1 to 6 carbon atoms, L 1 represents an alkylene group having 2 to 6 carbon atoms, and n represents an integer of 1 to 60).
  15. 前記nが1乃至30の整数である、請求項14に記載の製造方法。 The manufacturing method according to claim 14, wherein n is an integer of 1 to 30.
  16. 請求項1乃至請求項9のうち何れか一項に記載の含フッ素高分岐ポリマーより作製される生体分子吸着抑制能を有する薄膜の製造方法であって、
    該含フッ素高分岐ポリマーを溶媒中に含む液をスピンコート法により基材上に塗布し、塗膜を形成する工程、及び
    該塗膜を乾燥し溶媒を除去する工程
    を含む、生体分子吸着抑制能を有する薄膜の製造方法。
    A method for producing a thin film having a biomolecule adsorption inhibiting ability produced from the fluorine-containing highly branched polymer according to any one of claims 1 to 9,
    Inhibition of biomolecule adsorption, including a step of applying a liquid containing the fluorine-containing hyperbranched polymer in a solvent on a substrate by spin coating to form a coating film, and a step of drying the coating film and removing the solvent For producing a thin film having a function.
  17. 請求項12に記載の樹脂ブレンドより作製される生体分子吸着抑制膜の製造方法であって、
    該樹脂ブレンドを溶媒中に含む液をスピンコート法により基材上に塗布し、塗膜を形成する工程、及び
    該塗膜を乾燥し溶媒を除去する工程
    を含む、生体分子吸着抑制膜の製造方法。
    A method for producing a biomolecule adsorption-suppressing membrane produced from the resin blend according to claim 12,
    Production of a biomolecule adsorption inhibiting film comprising a step of applying a liquid containing the resin blend in a solvent on a substrate by a spin coating method to form a coating film, and a step of drying the coating film and removing the solvent. Method.
PCT/JP2015/074993 2014-09-02 2015-09-02 Fluorine-containing highly-branched polymer, and biomolecule adsorption-suppressing surface WO2016035830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016546680A JP6645971B2 (en) 2014-09-02 2015-09-02 Fluorine-containing hyperbranched polymer and biomolecule adsorption suppressing surface

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-178461 2014-09-02
JP2014178461 2014-09-02
JP2014249296 2014-12-09
JP2014-249296 2014-12-09

Publications (1)

Publication Number Publication Date
WO2016035830A1 true WO2016035830A1 (en) 2016-03-10

Family

ID=55439889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074993 WO2016035830A1 (en) 2014-09-02 2015-09-02 Fluorine-containing highly-branched polymer, and biomolecule adsorption-suppressing surface

Country Status (2)

Country Link
JP (1) JP6645971B2 (en)
WO (1) WO2016035830A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524029A (en) * 2015-04-24 2018-08-30 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド Surface-modified polymer composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283345A (en) * 1995-02-15 1996-10-29 Menicon Co Ltd Water-containing soft contact lens
JPH10139828A (en) * 1996-11-05 1998-05-26 Jsr Corp Acrylic rubber
JP2010275491A (en) * 2009-05-29 2010-12-09 Kyushu Univ Control of interface adhesion property using fluorine-containing hyperbranched polymer
WO2011102383A1 (en) * 2010-02-16 2011-08-25 国立大学法人 福井大学 Fine fibers with modified surface
WO2012074055A1 (en) * 2010-12-01 2012-06-07 日産化学工業株式会社 Surface-modified extrusion-molded film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071489B2 (en) * 2007-07-10 2011-12-06 E. I. Du Pont De Nemours And Company Amphoteric fluorochemicals for paper
TWI510507B (en) * 2009-05-29 2015-12-01 Nissan Chemical Ind Ltd Fluorine-containing highly branched polymer and resin composition containing the ploymer
JPWO2014080990A1 (en) * 2012-11-21 2017-01-05 国立大学法人山形大学 Thermoplastic resin foam containing fluorine-containing hyperbranched polymer
JP6432052B2 (en) * 2013-08-28 2018-12-05 国立大学法人九州大学 Biomolecular affinity fluorine-containing highly branched polymer and biomolecule recognition surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283345A (en) * 1995-02-15 1996-10-29 Menicon Co Ltd Water-containing soft contact lens
JPH10139828A (en) * 1996-11-05 1998-05-26 Jsr Corp Acrylic rubber
JP2010275491A (en) * 2009-05-29 2010-12-09 Kyushu Univ Control of interface adhesion property using fluorine-containing hyperbranched polymer
WO2011102383A1 (en) * 2010-02-16 2011-08-25 国立大学法人 福井大学 Fine fibers with modified surface
WO2012074055A1 (en) * 2010-12-01 2012-06-07 日産化学工業株式会社 Surface-modified extrusion-molded film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018524029A (en) * 2015-04-24 2018-08-30 ルブリゾル アドバンスド マテリアルズ, インコーポレイテッド Surface-modified polymer composition

Also Published As

Publication number Publication date
JP6645971B2 (en) 2020-02-14
JPWO2016035830A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
Zobrist et al. Functionalization of titanium surfaces with polymer brushes prepared from a biomimetic RAFT agent
Xu et al. Spin-casting polymer brush films for stimuli-responsive and anti-fouling surfaces
US10633533B2 (en) Block copolymer
Ataman et al. Degrafting of Poly (poly (ethylene glycol) methacrylate) Brushes from Planar and Spherical Silicon Substrates
Munoz-Bonilla et al. Self-organized hierarchical structures in polymer surfaces: self-assembled nanostructures within breath figures
López et al. Highly hydrophobic coatings from waterborne latexes
Ameringer et al. Surface grafting of electrospun fibers using ATRP and RAFT for the control of biointerfacial interactions
JP5749246B6 (en) Surface-modified fine fiber
JPWO2011102383A6 (en) Surface-modified fine fiber
Yang et al. Surface fluorination modification and anti-biofouling study of a pHEMA hydrogel
Shen et al. Macromolecular Engineering and Additive Manufacturing of Poly (styrene-b-isobutylene-b-styrene)
JP5930971B2 (en) Surface modified extrusion film
Nguyen et al. Facile and efficient Cu (0)-mediated radical polymerisation of pentafluorophenyl methacrylate grafting from poly (ethylene terephthalate) film
González-Henríquez et al. Formation of responsive hierarchical wrinkled patterns on hydrogel films via multi-step methodology
WO2016035830A1 (en) Fluorine-containing highly-branched polymer, and biomolecule adsorption-suppressing surface
Gouget-Laemmel et al. Direct quantitative characterization of polymer brushes obtained by surface-initiated ATRP on silicon
Caykara Polymer brushes by surface-mediated RAFT polymerization for biological functions
JP2019034990A (en) Surface treatment polymer of porous body
Robert-Nicoud et al. Surface modification of silicone via colloidal deposition of amphiphilic block copolymers
Hsueh et al. Evaluation of 2-bromoisobutyryl catechol derivatives for atom transfer radical polymerization-functionalized polydopamine coatings
JP7048946B2 (en) Surface-treated membranes, their manufacturing methods, and articles
JP6432052B2 (en) Biomolecular affinity fluorine-containing highly branched polymer and biomolecule recognition surface
Laure et al. Reversible tethering of polymers onto catechol-based titanium platforms
JP6334397B2 (en) Biomolecular affinity hyperbranched polymer and biomolecule recognition surface
Thissen Plasma-based surface modification for the control of biointerfacial interactions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546680

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837610

Country of ref document: EP

Kind code of ref document: A1