WO2016035705A1 - Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst - Google Patents

Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst Download PDF

Info

Publication number
WO2016035705A1
WO2016035705A1 PCT/JP2015/074426 JP2015074426W WO2016035705A1 WO 2016035705 A1 WO2016035705 A1 WO 2016035705A1 JP 2015074426 W JP2015074426 W JP 2015074426W WO 2016035705 A1 WO2016035705 A1 WO 2016035705A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
carbon alloy
containing carbon
group
carbon
Prior art date
Application number
PCT/JP2015/074426
Other languages
French (fr)
Japanese (ja)
Inventor
順 田邉
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2016546611A priority Critical patent/JP6454350B2/en
Publication of WO2016035705A1 publication Critical patent/WO2016035705A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a nitrogen-containing carbon alloy, a nitrogen-containing carbon alloy, and a fuel cell catalyst. Specifically, the present invention relates to a method for producing a nitrogen-containing carbon alloy including a step of firing a precursor containing a nitrogen-containing organic compound, a porous skeleton material, and an inorganic metal salt or an organometallic complex. Furthermore, the present invention relates to a nitrogen-containing carbon alloy and a fuel cell catalyst using the nitrogen-containing carbon alloy.
  • a noble metal catalyst using platinum (Pt), palladium (Pd), etc. is used as a catalyst having a high oxygen reduction activity, for example, for a solid polymer electrolyte fuel cell used in automobiles, household electric heat supply systems, etc.
  • Pt platinum
  • Pd palladium
  • noble metal-based catalysts are expensive, it is difficult to further spread them. For this reason, technological development of a catalyst in which platinum is greatly reduced or a catalyst formed without using platinum is being promoted.
  • Patent Document 1 discloses a polymer electrolyte fuel cell catalyst comprising a composite of an s-triazine ring derivative and a metal.
  • Patent Document 2 discloses a nitrogen-containing carbon alloy catalyst produced by firing a nitrogen-containing heterocyclic compound having a molecular weight of 60 to 2000 and an inorganic metal or inorganic metal salt.
  • Patent Documents 3 and 4 disclose a nitrogen-containing carbon alloy catalyst produced by firing a mixture of a porous material such as a nitrogen-containing heterocyclic compound, a metal complex, and MOF (Metal-Organic frameworks).
  • a porous material such as a nitrogen-containing heterocyclic compound, a metal complex, and MOF (Metal-Organic frameworks).
  • TPTZ 2,4,6-tri (2-pyridyl) -1,3,5-triazine
  • Patent Document 3 phthalonitrile-based compounds and pyridine-based compounds are listed as nitrogen-containing organic compounds, but these compounds are only listed as non-limiting examples.
  • Patent Document 4 lists 6- (2-pyridyl) -1,3,5-triazine-2,4-diamine as a nitrogen-containing heterocyclic compound.
  • the nitrogen-containing carbon alloy catalyst containing a nitrogen-containing organic compound can exhibit catalytic activity without using platinum.
  • recent applications such as fuel cells are required to have higher oxygen reduction activity, and the oxygen reduction activity of conventional carbon catalysts may be insufficient. For this reason, it has been desired to produce a nitrogen-containing carbon alloy that can exhibit higher oxygen reduction activity.
  • the yield is poor, and further improvement in productivity has been demanded.
  • the present inventor has studied for the purpose of producing a nitrogen-containing carbon alloy having higher oxygen reduction activity and high production efficiency. Advanced.
  • the present inventor has a nitrogen-containing organic compound having a specific structure, at least one selected from a covalent organic skeleton material and a metal organic skeleton material, By calcining a precursor containing at least one selected from an inorganic metal salt or an organic metal complex to produce a nitrogen-containing carbon alloy, a nitrogen-containing carbon alloy having sufficiently enhanced oxygen reduction activity can be obtained. I found. Furthermore, the present inventor has found that the nitrogen-containing carbon alloy produced in this way has high production efficiency and a sufficient yield can be obtained, and has completed the present invention. Specifically, the present invention has the following configuration.
  • At least one selected from nitrogen-containing organic compounds represented by the following general formula (1), tautomers of nitrogen-containing organic compounds, salts of nitrogen-containing organic compounds, and hydrates of nitrogen-containing organic compounds And production of a nitrogen-containing carbon alloy comprising a step of firing a precursor comprising at least one selected from a covalently bonded organic skeleton material and a metal organic skeleton material and at least one selected from an inorganic metal salt and an organometallic complex Method;
  • Q represents an atomic group composed of at least one 5- to 7-membered aromatic ring or 5- to 7-membered heteroaromatic ring, and R represents a halogen atom, a substituted or
  • an unsubstituted alkyl group or a substituent represented by the following general formulas (2) to (5) is represented and Q does not include a nitrogen-containing heteroaromatic ring, at least one R is represented by the following general formula (2 ) To (5).
  • n an integer of 1 to 4.
  • * represents a bond to Q.
  • R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group.
  • R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may be bonded to each other to form a ring.
  • * Represents a bond to Q.
  • Q is a 5- to 7-membered nitrogen-containing heteroaromatic ring
  • R is a substituted or unsubstituted alkyl group, or a substituent represented by the general formula (2)
  • the method for producing a nitrogen-containing carbon alloy according to [4], wherein [6] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [5], wherein the metal organic framework material is a zeolite type imidazole framework material.
  • the inorganic metal salt is an inorganic metal chloride.
  • [15] The method for producing a nitrogen-containing carbon alloy according to [14], wherein the firing step includes a step of holding the precursor at 700 to 1050 ° C. for 1 second to 100 hours.
  • the method for producing a nitrogen-containing carbon alloy according to any one of [1] to [16] further comprising a step of pulverizing the fired nitrogen-containing carbon alloy and a step of re-firing after the firing step. .
  • a nitrogen-containing carbon alloy having a sufficiently high oxygen reduction activity can be obtained.
  • the nitrogen-containing carbon alloy obtained by the production method of the present invention can be used as a carbon catalyst, and such a carbon catalyst is preferably used for a fuel cell or an environmental catalyst.
  • the yield of a nitrogen-containing carbon alloy can be raised and productivity can be improved.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the substituent in the present invention may be any group that can be substituted.
  • a halogen atom fluorine atom, chloro atom, bromine atom or iodine atom
  • hydroxyl group cyano group
  • aliphatic group aralkyl group, cyclohexane Alkyl group, including active methine group, etc.
  • aryl group garding the position of substitution
  • heterocyclic group (regardless of the position of substitution)
  • acyl group aliphatic oxy group (alkoxy group or alkyleneoxy group, Ethyleneoxy group or a group containing a propyleneoxy group unit repeatedly), aryloxy group, heterocyclic oxy group, aliphatic carbonyl group, arylcarbonyl group, heterocyclic carbonyl group, aliphatic oxycarbonyl group, aryloxycarbonyl group, Heterocyclic oxycarbonyl group, carbamoyl group, sulfony
  • the present invention relates to at least one selected from nitrogen-containing organic compounds having a specific structure, tautomers of nitrogen-containing organic compounds, salts of nitrogen-containing organic compounds, and hydrates of nitrogen-containing organic compounds, and covalent bonding.
  • the present invention relates to a method for producing a nitrogen-containing carbon alloy including a step of firing a precursor containing at least one selected from an organic skeleton material and a metal organic skeleton material and at least one selected from an inorganic metal salt and an organometallic complex.
  • a nitrogen-containing organic compound having an after-mentioned structure and an inorganic metal salt or organometallic complex are mixed with a porous material (MOF (Metal-organic framework) or COF (Covalent organic framework). ) Etc.) in the reaction space field, a nitrogen-containing organic compound is coordinated to an inorganic metal salt or an organometallic complex using a pore shape as a template to form a nitrogen-containing carbon alloy having porosity.
  • MOF Metal-organic framework
  • COF Covalent organic framework
  • Q in the general formula (1) is composed of an atomic group composed of a 5- to 7-membered aromatic ring or a 5- to 7-membered heteroaromatic ring, whereby thermal decomposition of the atomic group is performed. It can be easily advanced. Thereby, formation of an oxygen reduction reaction (ORR) active site can be promoted, and a higher activity nitrogen-containing carbon alloy can be obtained.
  • ORR oxygen reduction reaction
  • the nitrogen-containing organic compound, the covalently bonded organic skeleton material, the metal organic skeleton material, the inorganic metal salt, and the organometallic complex will be described in detail.
  • the nitrogen-containing organic compound used in the method for producing a nitrogen-containing carbon alloy of the present invention is represented by the general formula (1).
  • a tautomer of the nitrogen-containing organic compound represented by the general formula (1), a salt of the nitrogen-containing organic compound or a hydrate of the nitrogen-containing organic compound is used. May be.
  • the nitrogen-containing organic compound represented by the general formula (1), the tautomer of the nitrogen-containing organic compound, the salt of the nitrogen-containing organic compound, and the hydrate of the nitrogen-containing organic compound may be used alone. Two or more kinds may be used.
  • Q represents an atomic group composed of at least one 5- to 7-membered aromatic ring or 5- to 7-membered heteroaromatic ring
  • R represents a halogen atom, a substituted or
  • an unsubstituted alkyl group or a substituent represented by the following general formulas (2) to (5) is represented and Q does not include a nitrogen-containing heteroaromatic ring
  • at least one R is represented by the following general formula (2 ) To (5).
  • n represents an integer of 1 to 4.
  • R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group.
  • R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may be bonded to each other to form a ring. * Represents a bond to Q.
  • the nitrogen-containing organic compound is an organic compound represented by the general formula (1), and is an organic compound having at least a carbon atom and a nitrogen atom in the molecule.
  • the nitrogen-containing carbon alloy obtained by firing such a nitrogen-containing organic compound and other materials is considered to generate active sites having high oxygen reduction activity consisting of carbon atoms, nitrogen atoms and metals.
  • Q represents an atomic group composed of at least one 5- to 7-membered aromatic ring or 5- to 7-membered heteroaromatic ring.
  • Q is preferably an atomic group composed of only a 5- to 7-membered aromatic ring or a 5- to 7-membered heteroaromatic ring, and a 5- to 7-membered aromatic ring or 5- to 7-membered ring.
  • a heteroaromatic ring is more preferable.
  • Q may be a condensed ring composed of a 5- to 7-membered aromatic ring or a 5- to 7-membered heteroaromatic ring, or a 5- to 7-membered aromatic ring or 5 to 7 It may be an atomic group in which membered heteroaromatic rings are directly connected. That is, the atomic group may be composed of at least one 5- to 7-membered aromatic ring or 5- to 7-membered heteroaromatic ring, and the atomic group includes a 5- to 7-membered aromatic ring.
  • a condensed ring composed of a 5- to 7-membered heteroaromatic ring, a 5- to 7-membered aromatic ring, or a 5- to 7-membered heteroaromatic ring, and a 5- to 7-membered aromatic ring
  • a linking ring in which a 5- to 7-membered heteroaromatic ring is directly connected is included.
  • Q is preferably a 5- to 7-membered aromatic ring or a 5- to 7-membered heteroaromatic ring, preferably a 5- or 6-membered aromatic ring or a 5- or 6-membered ring.
  • the heteroaromatic ring is more preferable.
  • Q is more preferably a benzene ring, a pyridine ring or an imidazole ring.
  • Q since Q has an unsaturated bond, it becomes easy to form a carbon alloy skeleton by various interactions described later.
  • the 5- or 6-membered aromatic ring or the 5- or 6-membered heteroaromatic ring represented by Q is represented by the following general formulas (A-1) to (A-20).
  • a structure is preferred.
  • R 51 ⁇ R 56 represents a linking portion between the R in the general formula (1), the R of the R 51 ⁇ R 56 Groups other than the linking part each independently represent a hydrogen atom or a substituent, and adjacent substituents may be bonded to each other to form a 5- or 6-membered ring.
  • the substituent represented by R 51 to R 56 is not limited as long as it is a substitutable group, but is preferably an aliphatic group, aryl group, heterocyclic group, hydroxyl group, acyl group, aliphatic oxycarbonyl group, substituted A carbamoyl group which may have a group, an ureido group which may have a substituent, an acylamino group, a sulfonamide group, an aliphatic oxy group, an aliphatic thio group, a cyano group or a sulfonyl group, and more Preferably, a halogen atom (fluorine atom, chloro atom, bromine atom or iodine atom), aliphatic group, aryl group, heterocyclic group, hydroxyl group, aliphatic oxycarbonyl group, carbamoyl group which may have a substituent, Examples thereof include a ureido group and an aliphatic
  • the substituents represented by R 51 to R 56 are alkyl groups (methyl group, ethyl group, t-butyl group, etc.), aryl groups (phenyl group, naphthyl group, etc.), halogen atoms (chlorine atom, bromine atom). , Fluorine atoms, etc.) and heteroaryl groups (pyridyl groups, etc.) are preferred.
  • R 51 to R 56 groups other than the linkage with R are more preferably a hydrogen atom.
  • the number of hydrogen atoms represented by R 51 to R 56 is preferably 1 to 4, more preferably 2 to 4.
  • Q is preferably a 5- to 7-membered nitrogen-containing heteroaromatic ring, more preferably a 5- or 6-membered nitrogen-containing heteroaromatic ring.
  • the nitrogen-containing heteroaromatic ring may contain a heteroatom in addition to a nitrogen atom, but preferably contains only a nitrogen atom as a heteroatom.
  • R in the general formula (1) represents a halogen atom, a substituted or unsubstituted alkyl group, or a substituent represented by the following general formulas (2) to (5), and Q includes a nitrogen-containing heteroaromatic ring.
  • at least one R represents a substituent represented by the following general formulas (2) to (5).
  • Q does not contain a nitrogen-containing heteroaromatic ring
  • Q is an atomic group composed of a 5- to 7-membered aromatic ring, or Q is a 5- to 7-membered heteroaromatic ring.
  • This is an atomic group composed of a ring and a group composed of a heteroaromatic ring in which a nitrogen atom is not a ring constituent atom.
  • R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group.
  • R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may be bonded to each other to form a ring. * Represents a bond to Q.
  • At least one R represents a substituent represented by the following general formulas (2) to (5).
  • the nitrogen-containing organic compound includes a structure represented by the general formulas (2) to (5), so that a CN bond is generated in the decomposition product, and the CN and metal interact with each other. Nitrogen is retained until carbonization. Therefore, it is preferable because nitrogen is easily introduced into the graphene of carbon alloy and the oxygen reduction reaction activity can be enhanced.
  • R is a halogen atom. It represents an atom, a substituted or unsubstituted alkyl group, or a substituent represented by the following general formulas (2) to (5).
  • nitrogen is introduced into the heteroaromatic ring, which is more preferable because nitrogen atoms are uniformly introduced into the nitrogen-containing graphene skeleton constituting the carbon alloy and the oxygen reduction reaction activity can be enhanced.
  • R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group.
  • R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may be bonded to each other to form a ring.
  • R 1 to R 8 are groups having a substituent, examples of the substituent include the specific examples described above.
  • R 1 to R 4 are preferably each independently a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
  • R 5 and R 6 are preferably each independently a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
  • R 7 and R 8 are preferably each independently a hydrogen atom or an alkyl group.
  • R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may be bonded to each other to form a ring.
  • Examples of the ring formed by combining R 1 and R 2 , R 3 and R 4 , R 7 and R 8 with each other include, for example, a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyridazine ring, a pyrrole ring, Examples include a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, an oxadiazole ring, a thiazole ring, a thiadiazole ring, a furan ring, a thiophene ring, a selenophene ring, a silole ring, a gelmol ring, a phosphole ring, and a pyrrolidone ring.
  • the ring formed by bonding R 7 and R 8 to each other includes pyrrolidone ring, benzene ring, pyridine ring, pyrazine ring, pyrimidine ring, triazine ring, pyridazine ring, pyrrole ring, pyrazole ring, imidazole ring, triazole ring.
  • a pyrrole ring or a pyrrolidone ring is more preferable.
  • the ring formed by combining R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may further have a substituent.
  • R is preferably a substituent represented by general formula (2).
  • Q is preferably a 5- to 7-membered nitrogen-containing heteroaromatic ring.
  • at least one R is a substituted or unsubstituted alkyl group, or the general formula (2 It is preferable that it is a substituent represented by.
  • the nitrogen-containing organic compound is a compound represented by the general formula (1) in JP2011-225431A. Can be mentioned.
  • n represents an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 1 or 2.
  • Q represents an atomic group composed of at least one 5- to 7-membered aromatic ring or 5- to 7-membered heteroaromatic ring.
  • a linking ring in which a 5-membered aromatic ring or a 5- to 7-membered heteroaromatic ring is directly connected is included. That is, the nitrogen-containing organic compound represented by the general formula (1) may be a dimer or more multimer in which the general formula (7) or (8) is connected by a single bond.
  • n1 represents an integer of 1 to 5
  • n2 represents an integer of 1 to 6.
  • n1 is preferably 1 to 4, more preferably 2 to 4, and even more preferably 2.
  • n2 is preferably from 1 to 4, more preferably from 2 to 4, and even more preferably 2.
  • the compound represented by the general formula (7) or (8) may have a substituent other than a cyano group, but preferably has only a cyano group.
  • the nitrogen-containing organic compound used in the present invention is a salt of the nitrogen-containing organic compound represented by the general formula (1)
  • the salt of the nitrogen-containing organic compound represented by the general formula (1) 9).
  • Q n + represents, for example, an organic cation represented by the following general formulas (A-21) to (A-24)
  • Y m ⁇ represents an m-valent anion
  • n and m Each independently represents a natural number, preferably an integer of 1 to 5, more preferably an integer of 1 to 3, particularly preferably 1 or 2, and particularly preferably 1.
  • R 61 to R 63 each independently represents a hydrogen atom or an alkyl group.
  • the alkyl group of R 61 to R 63 may have a substituent, and examples of the substituent include the above-described substituents, and a cyano group and a vinyl group can be given as preferable examples. .
  • an alkyl group having 1 to 8 carbon atoms is preferable.
  • a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a hexadecyl group, an octadecyl group Group and allyl group are more preferable, and methyl group, ethyl group, propyl group and butyl group are particularly preferable.
  • R 61 to R 63 may be the same or different, but when the molecule has two or more substituents represented by R 61 to R 63, it may contain at least two kinds of alkyl groups. In this case, it is preferable that any one of R 61 to R 63 represents a methyl group, and the other represents one of an ethyl group, a propyl group, and a butyl group.
  • [Y] n m- in the general formula (9) is a halogen anion (Cl ⁇ , Br ⁇ , F ⁇ , I ⁇ ), BF 4 ⁇ , PF 6 ⁇ , an imide anion [N (SO 2 CF 3 ) 2 ⁇ , N (COCF 3 ) (SO 2 CF 3 ) ⁇ , N (CN) 2 — etc.], Carbanion [C (CN) 3 — etc.], R 21 OSO 3 ⁇ , R 21 SO 3 ⁇ , FeCl 4 ⁇ CoCl 4 2- and the like.
  • R 21 each independently represents an alkyl group, preferably an alkyl group having 1 to 8 carbon atoms, and more preferably an alkyl group having 1 to 2 carbon atoms. Further, R 21 is preferably fluorine as a substituent of the alkyl group, more preferably a trifluoroalkyl group, and particularly preferably a trifluoromethyl group.
  • the nitrogen-containing organic compound is preferably a nitrogen-containing crystalline organic compound from the viewpoint of crystallinity that the molecules are easily arranged regularly.
  • the nitrogen-containing crystalline organic compound is preferably other than a nitrogen-containing metal complex. Nitrogen-containing metal complexes are difficult to purify and the composition ratio of nitrogen-containing ligands and metal complexes is constant, so when decomposed during firing, the decomposition rate of nitrogen-containing ligands and the vaporization of coordination metal complexes The speed cannot be controlled and it is difficult to obtain the target nitrogen-containing carbon alloy.
  • the nitrogen-containing metal complex and the low-molecular organic compound are mixed, the nitrogen-containing metal complex crystal is decomposed and the metal is directly reduced, so that the generated adjacent metals are easily aggregated and crystallized. Since the metal is removed by acid cleaning, the obtained nitrogen-containing carbon alloy becomes non-uniform, and there is a fear that the required function may be reduced.
  • the nitrogen-containing crystalline organic compound preferably forms a crystal structure by two or more bonds or interactions selected from ⁇ - ⁇ interaction, coordination bond, charge transfer interaction, and hydrogen bond.
  • the crystal structure here refers to the arrangement and arrangement of molecules in the crystal.
  • the crystal structure consists of a repeating structure of unit cell, and the molecules are arranged at any position in the unit cell and oriented. In the crystal, the molecules have a uniform appearance. That is, since the arrangement of functional groups in the crystal is uniform, each molecular interaction is the same inside or outside the unit cell.
  • aromatic rings for example, in the case of a nitrogen-containing organic compound having a laminated structure, aromatic rings, heterocyclic rings, condensed polycyclic rings, condensed heterocyclic polycyclic rings, unsaturated groups (C ⁇ N group, vinyl group, allyl group, acetylene group), etc.
  • Action for example, an aromatic ring is face-to-face and has a ⁇ - ⁇ interaction ( ⁇ - ⁇ stack)).
  • Stacking is performed by SP 2 orbits of carbons derived from unsaturated bonds in these rings and groups being overlapped regularly at equal intervals between molecules to form a stacked column structure.
  • the nitrogen-containing organic compound is preferably a low-molecular compound, has crystallinity, and is preferably heat-resistant by being relaxed by phonons (quantized lattice vibration) against heat. Therefore, the decomposition temperature is maintained up to the carbonization temperature, the vaporization of the decomposition product is reduced and carbonized, and a carbon alloy skeleton is formed.
  • a crystalline compound is preferable because the orientation can be controlled at the time of firing, so that it becomes a uniform carbon material.
  • the nitrogen-containing organic compound preferably has a melting point of 25 ° C. or higher.
  • the melting point is 25 ° C. or higher, an air layer that contributes to heat resistance during firing exists, boiling or bumping can be suppressed, and a good carbon material can be obtained.
  • the nitrogen-containing organic compound preferably has a molecular weight of 60 to 2000, more preferably 100 to 1500, and still more preferably 130 to 1000. By making the molecular weight within the above range, purification before firing becomes easy.
  • the metal content in the nitrogen-containing organic compound is preferably 10 ppm or less.
  • the metal content in the nitrogen-containing organic compound means a content other than the inorganic metal salt described later.
  • the nitrogen content of the nitrogen-containing organic compound is preferably from 0.1 to 55% by mass, more preferably from 1 to 30% by mass, and even more preferably from 4 to 20% by mass.
  • the nitrogen-containing organic compound is preferably a hardly volatile compound having a ⁇ TG of ⁇ 95% to ⁇ 0.1% at 400 ° C. in a nitrogen atmosphere, and is hardly volatile having a ⁇ 95% to ⁇ 1%. More preferably, the compound is -90% to -5%.
  • the nitrogen-containing organic compound is preferably a hardly volatile compound that is carbonized without being vaporized during firing.
  • ⁇ TG is 10 ° C./min from 30 ° C. to 1000 ° C. under a flow of 100 mL / min in a TG-DTA measurement (simultaneous measurement of differential heat-thermogravimetry) of a mixture of a nitrogen-containing organic compound and an inorganic metal salt. Refers to the mass reduction rate at 400 ° C. based on the mass at room temperature (30 ° C.).
  • At least one selected from the nitrogen-containing organic compound represented by the general formula (1), a tautomer of the nitrogen-containing organic compound, a salt of the nitrogen-containing organic compound, and a hydrate of the nitrogen-containing organic compound is
  • the content of the precursor is preferably more than 0.5% by mass, more preferably 1 to 95% by mass, and still more preferably 5 to 70% by mass.
  • the nitrogen-containing organic compound is also preferably a pigment having a structure represented by the general formula (1).
  • the pigment has a stacked column structure due to ⁇ - ⁇ interaction between molecules. Since hydrogen bonding or van der Waals interaction occurs between the stacked columns, the stacked column structure has a uniform structure with a defined intermolecular distance. For this reason, it has the effect that the heat transfer in a crystal
  • the pigment is a low-molecular compound, it has crystallinity and has heat resistance because the vibration is reduced by phonons (quantized lattice vibration) against heat.
  • pigments include isoindoline pigments, isoindolinone pigments, diketopyrrolopyrrole pigments, quinacridone pigments, oxazine pigments, phthalocyanine pigments, quinophthalone pigments, and latent pigments or dyes made from the above pigments.
  • metal ions such as diketopyrrolopyrrole pigments, quinacridone pigments, isoindoline pigments, isoindolinone pigments, quinophthalone pigments, and latin pigments obtained by latinizing the above pigments.
  • the benzonitrile (Ph-CN) skeleton which is decomposed and formed, becomes a reactive species, and a carbon alloy catalyst having higher oxygen reduction reaction activity is generated.
  • the metal species (M) coexists, a complex of Ph—CN... M is formed, and a carbon alloy that is more active in high oxygen reduction reaction is generated.
  • Covalent organic framework materials and metal organic framework materials Preparation of the precursor in the method for producing a nitrogen-containing carbon alloy of the present invention includes at least selected from a covalent organic framework material (COF) and a metal-organic framework material (MOF).
  • COF covalent organic framework material
  • MOF metal-organic framework material
  • the covalent organic skeleton material (COF) and the metal organic skeleton material (MOF) are porous materials, and there are innumerable pores of several nm in the structure.
  • the porous material may be a structure having pores therein, and an organic skeleton material or a metal organic skeleton material can be preferably used.
  • the pore diameter of the porous material used in the present invention is preferably from 0.1 to 100 nm, and more preferably from 0.2 to 10 nm.
  • the porous material preferably has one or more of micropores having a pore diameter of 2 nm or less, 2 to 50 nm mesopores, and 50 nm to macropores, and more preferably mesopores.
  • the pore diameter is in this range, it is preferable because the number of action points increases and the generated water is easily discharged. Further, it is preferable because the internal pores of the porous material have a pore volume and easily interact with oxygen.
  • an inorganic metal salt or an organometallic complex and a nitrogen-containing organic compound are formed inside the pores of the added material.
  • a covalent organic framework material COF
  • MOF metal organic framework material
  • an inorganic metal salt or an organometallic complex and a nitrogen-containing organic compound are formed inside the pores of the added material.
  • At least one selected from a covalent organic skeleton material and a metal organic skeleton material is preferably included in an amount exceeding 5% by mass with respect to the total mass of the precursor, and is included in an amount of 10 to 95% by mass.
  • the content is more preferably 20 to 70% by mass.
  • Covalent organic skeletal material is a material having a crystalline porous structure using only an organic skeleton.
  • the porous structure is formed from a two-dimensional or three-dimensional network of organic compounds linked by covalent bonds.
  • the covalent organic framework material (COF) preferably contains at least one atom of an element other than carbon, such as hydrogen, oxygen, nitrogen, silicon, phosphorus, selenium, fluorine, boron or sulfur.
  • covalent organic skeleton material for example, Science, 2005, 310, 1166. J. et al. Am. Chem. Soc. 2007, 129, 12914. , Science, 2007, 316, 268. , J .; Am. Chem. Soc. , 2009, 131, 4570. Chem. Matter, 2006, 18, 5296. , Angew. Chem. , Int. Ed. 2008, 47, 8826.
  • Covalent organic skeletal materials (COF) described in US Patent Publication No. US2006 / 015480780A1 and JP-T 2010-516869 are preferably used.
  • a metal organic framework material is a material having a porous structure utilizing a coordinate bond between a metal ion and an organic substance.
  • an organic compound coordinated to at least one metal ion forms a porous structure.
  • the metal ions constituting the metal organic framework material (MOF) can be almost any metal of the periodic table, but among them, it is preferable to be Co 2+ , Ni 2+ , Cu 2+ , Fe 2+ , Fe 3+ or Zn 2+. Zn 2+ is more preferable.
  • Examples of organic substances that form a coordinate bond with a metal ion include 3-pyridyltriazine, 4-pyridyltriazine, alkylimidazole, bipyridine, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or 1,3,5-benzenetricarboxylic acid.
  • 3-pyridyltriazine, 4-pyridyltriazine, alkylimidazole, or bipyridine is more preferable
  • 3-pyridyltriazine, 4-pyridyltriazine, or alkylimidazole is particularly preferable.
  • the metal organic framework material (MOF) is particularly preferably an equi-reticular metal organic framework material (IRMOF) or a zeolite type imidazole framework material (ZIF).
  • the metal ion becomes the core of the metal organic framework material (MOF), and the core is linked using a linking ligand or a linking moiety.
  • the core refers to a repeating unit (single or plural) found in the skeleton.
  • Such a skeleton may include a uniform repeating core structure or a non-uniform repeating core structure.
  • the core includes a metal or metal cluster and a connecting portion, and a skeleton is defined by a plurality of cores connected to each other.
  • the metal cluster is a combination of two or more metal atoms.
  • the linking moiety refers to a monodentate or multidentate compound that bonds a metal or a plurality of metals through a linking cluster.
  • the linking moiety includes a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group, and a substituted or unsubstituted aryl group.
  • the linking part may contain nitrogen, oxygen, sulfur, boron, phosphorus, silicon or aluminum in addition to the carbon atom.
  • a linking cluster refers to one or more condensable reactive species containing atoms that can form a bond between a linking moiety and a metal, or between a linking moiety and another linking moiety. .
  • Examples of such species are preferably selected from the group consisting of boron, oxygen, carbon, nitrogen, and phosphorus atoms.
  • the linked cluster includes, for example, —COOH, —CS 2 H, —NO 2 , —SO 3 H, —Si (OH) 3 , —Ge (OH) 3 , —Sn (OH) 3 , —Si (SH) 4.
  • R is an alkyl group having 1 to 20 carbon atoms or an aryl group.
  • metal organic framework materials examples include US Pat. No. 5,648,508, US Pat. No. 7,196,210, European Patent Publication No. EP 0790253 A2, O'Keeff et al. Sol. State Chem. , 152 (2000), pages 3 to 20, H .; Li et al., Nature 402, (1999), p. Edaudi et al., Topics, in, Catalysis 9 (1999), pp. 105-111; Chen et al., Science 291, (2001), pages 1021-1023, German Patent Publication DE10111230 A1, European Patent Publication EP1785428A1, International Publication WO2007 / 045481, International Publication WO2005 / 044982 and International Publication WO2007.
  • the materials described in Japanese Patent No. 023134 can be used. Among these, ZIF-8 (Zn (2-Methylimidazole)) is preferable.
  • metal organic framework material As the metal organic framework material (MOF), a restricted framework material having a polyhedral structure in which the porous structure does not expand infinitely may be used. Such materials are formed by special selection of organic compounds. For example, A.I. C. Sudik et al. Am. Chem. Soc. 127 (2005), 7110-7118 describes such a specific skeletal material and is specifically called a metal organic polyhedron (MOP). In the present invention, such a metal organic polyhedron (MOP) is also preferably used.
  • MOP metal organic polyhedron
  • Inorganic metal salts and organometallic complexes For the preparation of the precursor in the method for producing a nitrogen-containing carbon alloy of the present invention, at least one selected from inorganic metal salts and organometallic complexes is used.
  • the inorganic metal salt is not particularly limited, but hydroxide, oxide, nitride, sulfite, sulfide, sulfonate, carbonylate, nitrate, nitrite, halide and the like can be used.
  • the counter ion is a halogen ion or a nitrate ion.
  • the counter ion is a halide or nitrate in which a halogen ion, a nitrate ion or a sulfate ion is used, because the specific surface area can be increased by binding to carbon on the carbon surface generated during the thermal decomposition.
  • the inorganic metal salt is preferably a halide, and particularly preferably an inorganic metal chloride.
  • the inorganic metal salt can contain crystal water, and the inorganic metal salt is preferably a hydrated salt. Since the inorganic metal salt contains crystal water, the thermal conductivity is improved, which is preferable in that it can be uniformly fired.
  • the inorganic metal salt containing crystal water for example, cobalt chloride (III) hydrate salt, iron chloride (III) hydrate salt, cobalt chloride (II) hydrate salt, iron chloride (II) hydrate salt is preferably used. it can.
  • the metal species of the inorganic metal salt is preferably at least one of Fe, Co, Ni, Mn and Cr, more preferably Fe or Co, and even more preferably Fe.
  • Fe, Co, Ni, Mn, and Cr salts are excellent in forming a nano-sized shell structure that improves the catalytic activity of the carbon catalyst, and in particular, Co and Fe form a nano-sized shell structure. It is preferable because it is particularly excellent.
  • Co and Fe contained in the carbon catalyst can improve the oxygen reduction activity of the catalyst in the carbon catalyst. Most preferably, it is Fe as a transition metal.
  • the Fe-containing nitrogen-containing carbon alloy has a high rising potential, has a higher number of reaction electrons than Co, and can relatively improve the durability of the fuel cell.
  • elements other than transition metals for example, B, alkali metals (Na, K, Cs), alkaline earths (Mg, Ca, Ba), lead, tin, indium, thallium, etc. ) May be included in one or more types.
  • the present invention there is an advantage that it is not necessary to uniformly disperse the nitrogen-containing organic compound and the inorganic metal salt in the organic material before firing. That is, when the nitrogen-containing organic compound is decomposed by firing, if the decomposition product is in contact with a vaporized substance such as an inorganic metal salt, it is considered that an active species having oxygen reduction reaction activity is formed. The oxygen reduction reaction activity of the carbon alloy is not affected by the mixed state of the nitrogen-containing organic compound and the inorganic metal salt.
  • the particle diameter of the inorganic metal salt is preferably 0.001 to 100 ⁇ m. More preferably, it is 0.01 to 10 ⁇ m. By making the particle size of the inorganic metal salt within this range, it becomes possible to uniformly mix with the nitrogen-containing organic compound, and the nitrogen-containing organic compound is likely to form a complex when decomposed.
  • the precursor contains at least one selected from inorganic metal salts and organometallic complexes.
  • organometallic complexes include compounds described in the Basic Complex Engineering Study Group, Coordination Chemistry-Fundamentals and Latest Topics, and Kodansha Scientific (1994).
  • a compound in which a ligand is coordinated can be preferably exemplified, and at least one selected from a metal acetate complex, a ⁇ -diketone metal complex, and a salen complex can be preferably used.
  • the organometallic complex may be a derivative of the above-described metal complex.
  • the organometallic complex can take the coordination number of various ligands, may be a coordination geometric isomer, and may have different valences of metal ions.
  • the organometallic complex may be an organometallic compound having a metal-carbon bond.
  • Preferred as metal ions are Fe, Co, Ni, Mn and Cr ions.
  • Preferable ligands include monodentate ligands (halide ions, cyanide ions, ammonia, pyridine (py), triphenylphosphine, carboxylic acid, etc.), bidentate ligands (ethylenediamine (en), ⁇ - Diketonate (acetylacetonate (acac), pivaloylmethane (DPM), diisobutoxymethane (DIBM), isobutoxypivaloylmethane (IBPM), tetramethyloctadione (TMOD)), trifluoroacetylacetonate (TFA), bipyridine (Bpy), phenanthrene (phen), etc.), polydentate ligands (ethylenediaminetetraacetate ion (edta), N, N′-bis (salicylidene) ethylenediamine (sal
  • the metal complex examples include the ⁇ -diketone metal complex (bis (acetylacetonato) iron (II) [Fe (acac) 2 ], tris (acetylacetonato) iron (III) [Fe ( acac) 3 ], bis (acetylacetonato) cobalt (II) [Co (acac) 2 ], tris (acetylacetonato) cobalt (III) [Co (acac) 3 ], bis (dipivaloylmethane) iron (II) [Fe (DPM) 2 ], tris (dipivaloylmethane) iron (III) [Fe (DPM) 3 ], tris (dipivaloylmethane) cobalt (III) [Co (DPM) 3 ] , bis (diisobutoxyphenyl methane) iron (II) [Fe (DIBM) 2], tris (diisobutoxyphen
  • ⁇ -diketone metal complexes bis (acetylacetonato) iron (II) [Fe (acac) 2 ], tris (acetylacetonato) iron (III) [Fe (acac) 3 ], bis (dipivaloyl) Methane) iron (II) [Fe (DPM) 2 ], bis (diisobutoxymethane) iron (II) [Fe (DIBM) 2 ], bis (isobutoxypivaloylmethane) iron (II) [Fe (IBPM) 2 ], bis (tetramethyloctadione) iron (II) [Fe (TMOD) 2 ]), N, N′-ethylenediaminebis (salicylideneaminato) iron (II) [Fe (salen)], tris (2,2'-bipyridine) iron (II) chloride [Fe (bpy) 3] Cl 2, iron
  • the organometallic complex preferably contains a ⁇ -diketone metal complex.
  • a ⁇ -diketone metal complex may be used alone, or a ⁇ -diketone metal complex and another organometallic complex may be mixed and used.
  • the ⁇ -diketone metal complex represents a compound represented by the following general formula (10) and tautomers thereof.
  • M represents a metal
  • R 1 and R 3 each independently represents a hydrocarbon group which may have a substituent
  • R 2 has a hydrogen atom or a substituent.
  • the hydrocarbon group which may be carried out is shown.
  • R 1 , R 2 and R 3 may be bonded to each other to form a ring.
  • n represents an integer of 0 or more
  • m represents an integer of 1 or more.
  • the ⁇ -diketone or its ion is coordinated or bonded to the atom or ion of the metal M.
  • Preferred metals include Fe, Co, Ni, Mn and Cr, more preferably Fe and Co, and still more preferably Fe.
  • examples of the “hydrocarbon group” in the hydrocarbon group which may have a substituent of R 1 , R 2 , and R 3 include an aliphatic hydrocarbon group and an alicyclic hydrocarbon.
  • Examples of the aliphatic hydrocarbon group include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, and hexyl groups (C 1-6 alkyl groups); An alkenyl group ( C2-6 alkenyl group etc.) etc. are mentioned.
  • Examples of the alicyclic hydrocarbon group include cycloalkyl groups such as cyclopentyl and cyclohexyl groups (3 to 15-membered cycloalkyl groups and the like); cycloalkenyl groups such as cyclohexenyl groups (3 to 15-membered cycloalkenyl groups and the like) ); A bridged carbocyclic group such as an adamantyl group (such as a bridged carbocyclic group having about 6 to 20 carbon atoms).
  • Examples of the aromatic hydrocarbon group include an aromatic hydrocarbon group (aryl group) having about 6 to 20 carbon atoms such as a phenyl group and a naphthyl group.
  • Heterocyclic (heterocyclic) hydrocarbon groups include, for example, nitrogen-containing five-membered hydrocarbon groups such as pyrrolyl, imidazolyl and pyrazolyl groups; nitrogen-containing six-membered pyridyl, pyrazinyl, pyrimidinyl and pyridazinyl groups Member ring hydrocarbon group; pyrrolidinyl group, indolizinyl group, isoindolyl group, isoinindolinyl group, indolyl group, indazolyl group, purinyl group, quinolidinyl group, quinolinyl group, naphthyridinyl group, phthalazinyl group, quinoxalinyl group, cinnolinyl group, pteridinyl group Nitrogen-containing condensed bicyclic hydrocarbon groups such as carbazolyl group, ⁇ -carbolinyl group, phenanthridinyl group, a
  • Examples of the substituent that the hydrocarbon group may have include, for example, a halogen atom such as fluorine, chlorine, bromine atom; an alkoxy group such as methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy, t-butyloxy group (C 1-4 alkoxy group etc.); hydroxyl group; alkoxycarbonyl groups such as methoxycarbonyl and ethoxycarbonyl groups (C 1-4 alkoxy-carbonyl group etc.); acyl groups such as acetyl, propionyl and benzoyl groups (C 1- 1 10 acyl group); cyano group; nitro group and the like.
  • a halogen atom such as fluorine, chlorine, bromine atom
  • an alkoxy group such as methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy, t-butyloxy group (C 1-4 alkoxy
  • R 1 , R 2 , and R 3 are each bonded to each other to form a ring of, for example, a 5- to 15-membered cyclohexane such as a cyclopentane ring, a cyclopentene ring, a cyclohexane ring, or a cyclohexene ring.
  • a 5- to 15-membered cyclohexane such as a cyclopentane ring, a cyclopentene ring, a cyclohexane ring, or a cyclohexene ring.
  • Examples include an alkane ring and a cycloalkene ring.
  • R 1 and R 3 in the general formula (10) are an alkyl group (C 1-6 alkyl group etc.), an alkenyl group (C 2-6 alkenyl group etc.), a cycloalkyl group (3 to 15 membered cycloalkyl group). Etc.), cycloalkenyl groups (3- to 15-membered cycloalkenyl groups, etc.), aryl groups (C 6-15 aryl groups, etc.), substituted aryl groups (p-methylphenyl groups, p-hydroxyphenyl groups, etc.) C 6-15 aryl group having a substituent, etc.) are preferred.
  • R 2 includes a hydrogen atom, an alkyl group (C 1-6 alkyl group, etc.), an alkenyl group (C 2-6 alkenyl group, etc.), a cycloalkyl group (3-15 membered cycloalkyl group, etc.), a cycloalkenyl group. (3- to 15-membered cycloalkenyl group etc.), aryl group (C 6-15 aryl group etc.), aryl group having a substituent (C 6 having a substituent such as p-methylphenyl group, p-hydroxyphenyl group) -15 aryl group, etc.) are preferred.
  • the valence n of the metal may be any of 0, 1, 2, 3 and the like, but is usually divalent or trivalent.
  • the ⁇ -diketone coordinates as the corresponding anion, ⁇ -diketonate.
  • the coordination number m is usually the same.
  • a solvent or the like may be axially coordinated with the metal. In that case, the valence n and the coordination number m of the metal may be different. Examples of the solvent that may be axially coordinated include pyridine, acetonitrile, alcohol, and the like, but are not particularly limited as long as they are axially coordinated.
  • ⁇ -diketone iron complex As the ⁇ -diketone iron complex, a commercially available product may be used as it is or after purification, or it may be prepared and used. It can also be generated and used in a reaction system. When it is generated in the reaction system, for example, iron chloride, hydroxide and ⁇ -diketone such as acetylacetone may be added. At this time, a base such as ammonia, amines, alkali metal or alkaline earth metal hydroxides, carbonates or carboxylates can be added as necessary.
  • a base such as ammonia, amines, alkali metal or alkaline earth metal hydroxides, carbonates or carboxylates can be added as necessary.
  • At least one selected from an inorganic metal salt and an organometallic complex is preferably contained in an amount exceeding 0.1% by mass, and 0.5 to 85% by mass with respect to the total mass of the precursor. More preferably, the content is 0.5 to 70% by mass.
  • a carbon alloy having higher oxygen reduction activity can be generated by interaction with a nitrogen atom.
  • at least one selected from inorganic metal salts and organometallic complexes may be 0.1 to 10% by mass relative to the total mass of the precursor.
  • a nitrogen-containing organic compound having a specific structure in combination with a covalent organic skeleton material and a metal organic skeleton material at least one selected from inorganic metal salts and organometallic complexes is used. Even when the content is kept low, a carbon alloy having high oxygen reduction activity can be generated.
  • the oxygen reduction activity can be measured as an ORR activity value by obtaining a potential by the method described in detail in Examples.
  • ORR activity it is preferred high value of the potential at the time of oxygen reduction, specifically, the potential at a current density value -2 mA / cm 2 in the electrode coating amount of 0.5 mg / cm 2, 0 .67V or more is preferable, 0.70V or more is more preferable, and 0.73V or more is more preferable.
  • the coating amount and the current density increase linearly, but as the coating amount increases, the current density decreases from the assumed straight line due to an increase in resistance between carbon alloy particles, an increase in diffusion resistance of oxygen and water, and the like.
  • the coating amount and the potential are similarly deviated from the straight line in the relationship between the coating amount and the potential.
  • the value of the potential at 0.5 mg / cm 2 is a value that takes into account the potential of the catalyst activity at 0.05 mg / cm 2 and the conductivity of the carbon alloy. By making this potential range, the conductivity is excellent. This is particularly preferable.
  • the nitrogen-containing organic compound By firing an organic material containing a nitrogen-containing organic compound, the nitrogen-containing organic compound is decomposed, and the generated decomposition product forms a nitrogen-containing carbon alloy catalyst in the gas phase. At that time, if a metal is present in the vicinity of the gas phase, the decomposition product interacts with the metal (forms a complex), and the performance of the nitrogen-containing carbon alloy catalyst is further improved.
  • the nitrogen atom (N) is immobilized on the surface of the carbon catalyst at a high concentration due to the catalytic action of a specific transition metal compound added to the nitrogen-containing organic compound containing the nitrogen atom (N) as a constituent element.
  • carbon fine particles containing a transition metal compound that forms a nitrogen carbon alloy and interacts with the nitrogen atom (N) are formed.
  • the transition metal compound which interacted with some nitrogen atoms (N) by the acid treatment mentioned later may drop off.
  • a conductive additive may be added to the precursor and fired, or may be added to the carbon alloy. Since a conductive support agent is disperse
  • a conductive support agent For example, Norrit (made by NORIT), Ketjen black (made by Lion), Vulcan (made by Cabot), black pearl (made by Cabot), acetylene black (Chevron) Carbon black such as (manufactured) (all are trade names), graphite, and carbon materials such as fullerenes such as C60 and C70, carbon nanotubes, carbon nanohorns, and carbon fibers.
  • the addition rate of the conductive auxiliary is preferably 0.01 to 50% by mass, more preferably 0.1 to 20% by mass, and more preferably 1 to 10% by mass with respect to the total mass of the precursor. More preferably it is.
  • the method for producing the nitrogen-containing carbon alloy of the present invention comprises: (1) A precursor is prepared by mixing a nitrogen-containing organic compound, at least one selected from a covalent organic skeleton material and a metal organic skeleton material, and at least one selected from an inorganic metal salt and an organometallic complex. Process, (2) a temperature raising step of raising the temperature of the precursor from 1 to 2000 ° C. per minute from room temperature to the carbonization temperature under an inert atmosphere; (3) a carbonization step of holding at 400 to 2000 ° C. for 1 second to 100 hours; (4) It is preferable to include a cooling step of cooling from the carbonization temperature to room temperature.
  • the manufacturing method of the nitrogen-containing carbon alloy of the present invention is the firing step, (6) It preferably includes a step of washing the baked nitrogen-containing carbon alloy with an acid, (7) More preferably, after the acid cleaning step, a step of refiring the acid-cleaned nitrogen-containing carbon alloy is included.
  • the steps (1) to (7) will be described in order with respect to the method for producing a nitrogen-containing carbon alloy of the present invention.
  • Precursor preparation step In the precursor preparation step, the above-mentioned nitrogen-containing organic compound, at least one selected from a covalent organic skeleton material and a metal organic skeleton material, an inorganic metal salt and an organometallic complex are used.
  • a precursor is prepared by mixing at least one selected.
  • the precursor prepared in the production process of the nitrogen-containing carbon alloy is then fired, but preferably further includes a step of pulverizing the precursor before the firing step.
  • the pulverization method can be any method known to those skilled in the art, for example, using ball mill, agate pulverization, mechanical pulverization, etc. And can be crushed.
  • the mechanical pulverization method is preferably used.
  • the specific surface area of the produced nitrogen-containing carbon alloy is increased, and high oxygen reduction activity (ORR activity) is obtained.
  • ORR activity oxygen reduction activity
  • machine pulverization for example, X-TREME MX1200XTM manufactured by Waring Co., Ltd. can be used.
  • mixing is preferably performed at a rotating blade rotation speed of 80 to 30000 rpm, more preferably 300 to 25000 rpm, and even more preferably 1300 to 20000 rpm.
  • the rotation method can be performed by continuous rotation, intermittent rotation, or a combination of continuous and intermittent rotation.
  • the pulverization time is preferably from 0.1 seconds to 15 minutes, and the pulverization frequency is preferably at least once.
  • the stop time of the rotary blade is preferably 0.1 to 100 times, more preferably 1 to 50 times, and further preferably 2 to 30 times the pulverization time.
  • the pulverization time is 10 seconds or less
  • the rotary blade stop time is 0.1 times or more
  • the number of pulverizations is 2 times or more
  • decomposition of the precursor mixture by heat is reduced, and the precursor mixture Since the mixing can be made uniform, the oxygen reduction reaction activity can be increased more effectively.
  • the pulverization time by continuous pulverization is 30 seconds or more
  • the precursor mixture generates heat, and at least one kind of pores selected from a covalently bonded organic skeleton material and a metal organic skeleton material has a nitrogen-containing organic compound and a nitrogen-containing organic compound.
  • the oxygen reduction reaction activity can be increased.
  • the nitrogen-containing organic compound having a specific structure, its tautomer, its salt and its hydrate The precursor containing at least one selected from the group consisting of at least one selected from the group consisting of a covalent organic skeleton material and a metal organic skeleton material and at least one selected from inorganic metal salts and organometallic complexes is heated to a carbonization temperature. After the heat treatment, it is preferable to cool to room temperature.
  • the temperature may be raised in multiple stages in the temperature raising process of the temperature raising process and the re-baking process described later.
  • the latter stage of the temperature raising process may be carried out by holding the temperature after the completion of the preceding temperature raising process or by raising the temperature as it is.
  • the temperature may be raised and a subsequent temperature increase process may be performed.
  • the sample after a process may be grind
  • the metal may be removed by acid cleaning of the sample after the treatment in (6) acid cleaning step described later.
  • the sample before treatment may be inserted from the normal temperature to a predetermined temperature after being inserted into the carbonization apparatus, or the temperature may be increased by inserting the sample before treatment into the carbonization apparatus at the predetermined temperature. May be warm.
  • the temperature of the sample before processing is raised from room temperature to a predetermined temperature.
  • the rate of temperature increase is preferably 1 to 2000 ° C./min, more preferably 1 to 1000 ° C./min, and 1 to 500 ° C./min. Is more preferable.
  • the pre-treatment of the organic material containing the nitrogen-containing organic compound, the covalently bonded organic skeleton material or the metal organic skeleton material, the inorganic metal salt, etc. is performed at a relatively low temperature. Preferably it is done. In such a low temperature treatment, a constant temperature may be maintained. As a result, only the heat-stable structure can be maintained, and unstable impurity components, solvents, and the like can be removed.
  • the temperature of the organic material containing the nitrogen-containing organic compound and the inorganic metal salt is preferably raised to 100 to 1500 ° C., more preferably raised to 150 to 1050 ° C., More preferably, the temperature is raised to 200 to 1000 ° C. Thereby, a uniform preliminary carbide is obtained.
  • the inert atmosphere refers to a gas atmosphere such as a nitrogen gas or a rare gas atmosphere. Note that even if oxygen is contained, the atmosphere may be any atmosphere in which the amount of oxygen is limited to such an extent that the workpiece is not combusted.
  • the inert atmosphere may be either a closed system or a distribution system for circulating a new gas, and is preferably a distribution system. In the case of a circulation system, it is preferable to circulate a gas of 0.01 to 2.0 liter / min per 36 mm ⁇ inner diameter, and a gas of 0.05 to 1.0 liter / min per 36 mm ⁇ inner diameter. More preferably, it is particularly preferable to circulate a gas of 0.1 to 0.5 liter / min per 36 mm ⁇ inside diameter.
  • the temperature holding time is 1 second to 100 hours, preferably 1 minute to 50 hours, and more preferably 5 minutes to 10 hours. Even if the carbonization treatment is performed for more than 100 hours, an effect corresponding to the treatment time may not be obtained.
  • the heating device used in the above temperature raising treatment is not particularly limited, but is a tubular furnace (Kantar wire furnace, imaging furnace), muffle furnace, vacuum gas replacement furnace, rotary furnace (rotary kiln), roller hearth kiln, pusher kiln, multistage It is preferable to use a furnace, a tunnel furnace, a fluidized firing furnace or the like, and it is more preferable to use a tubular furnace (a cantal wire furnace, an imaging furnace), a muffle furnace, a rotary furnace (rotary kiln), a fluidized firing furnace, a tubular furnace (a cantal wire) Furnaces, imaging furnaces) and muffle furnaces are particularly preferred.
  • the portions of the temperature rise treatment are collectively referred to as an infusible treatment.
  • an infusible treatment a nitrogen-containing organic compound having a specific structure in the previous stage, at least one selected from a covalent organic skeleton material and a metal organic skeleton material, and an inorganic metal salt and an organometallic complex are selected.
  • the subsequent temperature raising treatment is continuously performed following the temperature raising treatment of the precursor containing at least one kind.
  • the residual heat of the previous stage can be utilized, the decomposition reaction and the carbonization reaction of the organic material can be continuously performed, and the decomposition product and the metal interact with each other, so that the metal is more active. It can be stabilized with.
  • the subsequent temperature increase treatment is preferably performed in an inert atmosphere
  • the inert atmosphere may be either a closed system or a distribution system for circulating a new gas, and is preferably a distribution system.
  • a circulation system it is preferable to circulate a gas of 0.01 ml to 2.0 liter / min per 36 mm ⁇ inner diameter, and a gas of 0.02 ml to 1.0 liter / min per 36 mm ⁇ inner diameter. More preferably, a gas of 0.05 milliliter to 0.5 liter / min is circulated per 36 mm ⁇ inside diameter.
  • the downstream gas flow rate may be different from the upstream gas flow rate.
  • the temperature holding time is 1 second to 100 hours, preferably 1 minute to 50 hours, and more preferably 5 minutes to 10 hours. Even if the carbonization treatment is performed for more than 100 hours, an effect corresponding to the treatment time may not be obtained.
  • the heating device used in the above temperature raising treatment is not particularly limited, but is a tubular furnace (Kantar wire furnace, imaging furnace), muffle furnace, vacuum gas replacement furnace, rotary furnace (rotary kiln), roller hearth kiln, pusher kiln, multistage It is preferable to use a furnace, a tunnel furnace, a fluidized firing furnace or the like, and it is more preferable to use a tubular furnace (a cantal wire furnace, an imaging furnace), a muffle furnace, a rotary furnace (rotary kiln), a fluidized firing furnace, a tubular furnace (a cantal wire) Furnaces, imaging furnaces) and muffle furnaces are particularly preferred.
  • the firing temperature of the carbonization treatment of the precursor containing a nitrogen-containing organic compound having a specific structure and an inorganic metal salt is not particularly limited as long as the nitrogen-containing organic compound is thermally decomposed and carbonized.
  • the upper limit of is required to be 2000 ° C.
  • the lower limit of the reaction temperature is preferably 400 ° C, more preferably 500 ° C, and even more preferably 600 ° C. 700 ° C. is even more preferable.
  • reaction temperature is 2000 degrees C or less, nitrogen will remain in carbon skeleton and it can be set as desired N / C atomic ratio, and sufficient oxygen reduction reaction activity will be obtained.
  • the firing temperature is preferably 600 to 1500 ° C., more preferably 700 to 1200 ° C., and particularly preferably 700 to 1050 ° C.
  • carbonization treatment is performed within this range, the yield of carbon alloy may be reduced, but the crystallite size of the obtained carbon alloy is uniform, so that the metal is uniformly distributed and the state of high activity is maintained. The As a result, it becomes possible to produce a carbon alloy having excellent oxygen reduction performance. Further, by performing the carbonization treatment within the above range, nitrogen easily remains in the carbon skeleton due to the action of the generated inorganic metal, and the oxygen reduction reaction activity can be enhanced.
  • the temperature raising treatment is preferably performed under a flow of an inert gas or a non-oxidizing gas, and these atmospheres may be either a closed system or a flow system through which a new gas is circulated. is there.
  • the gas flow rate is preferably 0.01 to 2.0 liters / min per 36 mm ⁇ inner diameter, and 0.02 to 1.0 liter / min per 36 mm ⁇ inner diameter. Is more preferable, and it is particularly preferably 0.05 to 0.5 liter / min per 36 mm ⁇ inside diameter. It is preferable for the flow rate to be within this range because the desired nitrogen-containing carbon alloy can be suitably obtained.
  • the treatment time for the carbonization treatment is 1 second to 100 hours, preferably 1 minute to 50 hours, and more preferably 1 hour to 10 hours.
  • the oxygen reduction reaction activity can be enhanced.
  • a nitrogen-containing organic compound present outside the pores of the covalently bonded organic skeleton material or the metal organic skeleton material, a tautomer of the nitrogen-containing organic compound, Of the salt of the nitrogen-containing organic compound, the hydrate of the nitrogen-containing organic compound, the inorganic metal salt, and the organometallic complex, unnecessary substances that have not been used in the carbonization reaction can be volatilized.
  • the holding time to 1 to 10 hours, the decomposition product of the precursor mixture can be removed, and the oxygen reduction reaction activity can be enhanced more effectively.
  • the heating device used in the above temperature raising treatment is not particularly limited, but is a tubular furnace (Kantar wire furnace, imaging furnace), muffle furnace, vacuum gas replacement furnace, rotary furnace (rotary kiln), roller hearth kiln, pusher kiln, multistage It is preferable to use a furnace, a tunnel furnace, a fluidized firing furnace or the like, and it is more preferable to use a tubular furnace (a cantal wire furnace, an imaging furnace), a muffle furnace, a rotary furnace (rotary kiln), a fluidized firing furnace, a tubular furnace (a cantal wire) Furnaces, imaging furnaces) and muffle furnaces are particularly preferred.
  • the carbon alloy may be cooled to room temperature and then crushed.
  • the pulverization treatment can be performed by any method known to those skilled in the art.
  • the pulverization can be performed using a ball mill, agate pulverization, mechanical pulverization, or the like.
  • the method for producing a nitrogen-containing carbon alloy of the present invention may include an acid washing process for washing the fired nitrogen-containing carbon alloy with an acid after the firing process.
  • the ORR activity can be improved by acid cleaning of the metal on the surface of the produced carbon alloy catalyst.
  • any aqueous Bronsted (proton) acid including a strong acid or a weak acid having a pH of 7 or less can be used in the acid cleaning step.
  • an inorganic acid (mineral acid) or an organic acid can be used.
  • Suitable acids include HCI, HBr, HI, H 2 SO 4 , H 2 SO 3 , HNO 3 , HClO 4 , [HSO 4 ] ⁇ , [HSO 3 ] ⁇ , [H 3 O] + , H 2 [C 2 O 4 ], HCO 2 H, HCIO 3 , HBrO 3 , HBrO 4 , HIO 3 , HIO 4 , FSO 3 H, CF 3 SO 3 H, CF 3 CO 2 H, CH 3 CO 2 H, B (OH) 3 , etc. (including any combination thereof), but are not limited to these. Further, the method described in JP-T-2010-524195 can also be used in the present invention.
  • the manufacturing method of the nitrogen-containing carbon alloy of this invention further includes the process of grind
  • a refiring step By such a refiring step, the potential can be improved with an increase in the coating amount when the nitrogen-containing carbon alloy is applied to the electrode, and the ORR activity can be improved.
  • MOF decomposes and the metal is volatilized and desorbed from the carbon material, so that it can be made porous and the specific surface area can be increased. Can be increased.
  • the calcining temperature in the refiring process is preferably 500 to 2000 ° C, and preferably 600 to 1500 ° C. Is more preferable, and a temperature of 1000 to 1500 ° C. is even more preferable.
  • firing may be performed in a pressurized state during the reaction.
  • the gas discharge port may be trapped with water and fired in a state where back pressure is applied.
  • the pressure in the carbonization step is 0.01 to 5 MPa, preferably 0.05 to 1 MPa, more preferably 0.08 to 0.3 MPa, and particularly preferably 0.09 to 0.15 MPa.
  • the method of the refiring step is not particularly limited, but preferably a tubular furnace, a rotary furnace (rotary kiln), a roller hearth kiln, a pusher kiln, a multi-stage furnace, a vacuum gas replacement furnace, a tunnel furnace, a fluidized firing furnace, and the like are more preferable.
  • a rotary furnace rotary kiln
  • a vacuum gas replacement furnace a vacuum gas replacement rotary furnace (rotary kiln)
  • a tunnel furnace and a fluidized firing furnace
  • a vacuum gas replacement rotary furnace vacuum gas replacement rotary furnace
  • the apparatus used for deaeration is not particularly limited as long as it can be deaerated, but it is preferable to use a vacuum gas replacement furnace or a vacuum gas replacement rotary furnace (rotary kiln).
  • the pressure at the time of vacuum deaeration is not particularly limited, but is preferably 4 ⁇ 10 4 Pa or less, more preferably 4 ⁇ 10 3 Pa or less, and particularly preferably 2 ⁇ 10 2 Pa or less.
  • the apparatus used at this time is not particularly limited as long as it can flow the carbon alloy, but it is preferable to use a rotary furnace (rotary kiln), a vacuum gas replacement rotary furnace (rotary kiln), or a fluidized firing furnace.
  • a rotary furnace (rotary kiln) or a vacuum gas replacement rotary furnace (rotary kiln) the sample tube is rotated during firing, but the rotational speed, speed change, etc. are not particularly limited.
  • the rotation speed is preferably 10 rpm or less, more preferably 5 rpm or less. By setting the rotation speed within this range, rubbing occurs between the tube wall and the preparatory carbon, and the carbon alloy is further refined and made porous. Therefore, the oxygen reduction reaction activity can be enhanced more effectively.
  • the method for producing a nitrogen-containing carbon alloy of the present invention it is preferable to perform a carbonization treatment in the presence of an activator (activation step).
  • an activator activation step
  • the pores of the carbon alloy develop and the surface area increases, and the exposure of the metal on the surface of the carbon alloy improves, thereby improving the performance as a catalyst.
  • the surface area of the carbide can be measured by the N 2 adsorption amount.
  • the activator that can be used is not particularly limited.
  • carbon dioxide, ammonia gas, water vapor, air, oxygen gas, hydrogen gas, carbon monoxide gas, methane gas, alkali metal hydroxide, zinc chloride, and phosphoric acid At least one selected from the group consisting of carbon dioxide, ammonia gas, water vapor, air, and oxygen gas can be used, more preferably at least one selected from the group consisting of:
  • the gas activator is preferably diluted with an inert gas.
  • the inert gas to be diluted include nitrogen gas and rare gases (for example, argon gas, helium gas, and neon gas).
  • the gas activator may be contained in the atmosphere of carbonization treatment in an amount of 2 to 80 mol%, preferably 10 to 60 mol%. By including the gas activator so as to be within the above range, a sufficient activation effect can be obtained.
  • the solid activator such as alkali metal hydroxide may be mixed with the carbonized substance in a solid state, or after being dissolved or diluted with a solvent such as water, impregnated with the carbonized substance or in a slurry state. And may be kneaded into the article to be carbonized. The liquid activator may be diluted with water or the like and then impregnated with the carbonized material or kneaded into the carbonized material.
  • the pressure in the gas phase may be any of normal pressure, pressurization, and reduced pressure, but is preferably pressurized at a high temperature.
  • the gas may be stationary or distributed, but is preferably distributed from the viewpoint of discharging generated impurities.
  • Nitrogen atoms can be introduced after carbonization.
  • a liquid phase doping method a gas phase doping method, or a gas phase-liquid phase doping method can be used.
  • nitrogen atoms can be introduced into the surface of the carbon catalyst by heat treatment by maintaining the carbon alloy in an ammonia atmosphere as a nitrogen source at 200 to 1200 ° C. for 5 to 180 minutes.
  • the present invention relates to a nitrogen-containing carbon alloy produced by the above-described method for producing a nitrogen-containing carbon alloy.
  • the nitrogen-containing carbon alloy of the present invention obtained by firing the precursor is a nitrogen-containing carbon alloy into which nitrogen has been introduced.
  • the nitrogen-containing carbon alloy of the present invention preferably contains graphene, which is an aggregate of carbon atoms having a hexagonal network structure in which carbon is chemically bonded by sp 2 hybrid orbitals and spreads in two dimensions.
  • the content of surface nitrogen atoms in the carbon catalyst is more preferably 0.02 to 0.3 in terms of atomic ratio (N / C) to surface carbon.
  • N / C atomic ratio
  • strength of the carbon skeleton of a carbon alloy can be raised by making atomic ratio (N / C) of a nitrogen atom and a carbon atom into the said range, and the fall of electrical conductivity can be suppressed.
  • the skeleton of the carbon alloy may be formed of at least carbon atoms and nitrogen atoms, and may contain hydrogen atoms, oxygen atoms, and the like as other atoms.
  • the atomic ratio ((other atoms) / (C + N)) of other atoms to carbon atoms and nitrogen atoms is preferably 0.3 or less.
  • carbon alloy is put in a predetermined container, cooled to liquid nitrogen temperature (-196 ° C), nitrogen gas is introduced into the container and adsorbed, and the adsorption amount of single molecules and adsorption parameters are determined from the adsorption isotherm.
  • BET Brunauer-Emmett-Teller
  • the pore shape of the carbon alloy is not particularly limited, and for example, pores may be formed only on the surface, or pores may be formed not only on the surface but also inside.
  • pores may be tunnel-shaped, and it has a shape in which polygonal cavities such as spherical or hexagonal columns are connected to each other. It may be.
  • the specific surface area of the carbon alloy is preferably at 90m 2 / g or more, more preferably 350 meters 2 / g or more, and particularly preferably 560 m 2 / g or more.
  • the catalytically active site metal coordination product or configuration space (field) having at least C, N, and metal ions as constituents
  • the specific surface area of the carbon alloy is preferably 3000 m 2 / g or less, and preferably 2000 m 2 / g or less. More preferably, it is particularly preferably 1500 m 2 / g or less.
  • the shape of the nitrogen-containing carbon alloy of the present invention is not particularly limited as long as it has oxygen reduction reaction activity.
  • a large distorted structure such as a sheet shape, a fiber shape, a plate shape, a column shape, a block shape, a particle shape, many ellipses other than a spherical shape, a flat shape, a square shape, and the like can be given.
  • it is preferably a block shape or a particle shape.
  • a slurry described later is applied and dried, it is preferably a fiber shape, a plate shape, or a column shape from the viewpoint of imparting thixotropy.
  • the slurry containing a carbon alloy can be produced by dispersing the nitrogen-containing carbon alloy of the present invention in a solvent.
  • a slurry in which a carbon alloy is dispersed in a solvent is applied to a support material, baked, and dried, so that an arbitrary shape is obtained. It is possible to form a carbon catalyst that has been processed into Thus, by making a carbon alloy into a slurry, the workability of the carbon catalyst is improved and it can be easily used as an electrode catalyst or an electrode material.
  • the coating amount after drying of the nitrogen-containing carbon alloy is preferably 0.01 mg / cm 2 or more, more preferably 0.02 to 100 mg / cm 2 , Particularly preferred is 0.05 to 10 mg / cm 2 .
  • the solvent a solvent used when producing an electrode catalyst for a fuel cell or an electrode material for a power storage device can be appropriately selected and used.
  • a solvent used for producing an electrode material for a power storage device diethyl carbonate (DEC), dimethyl carbonate (DMC), 1,2-dimethoxyethane (DME), ethylene carbonate (EC), ethyl methyl carbonate (EMC) ), N-methyl-2-pyrrolidone (NMP), propylene carbonate (PC), ⁇ -butyrolactone (GBL), etc.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • DME 1,2-dimethoxyethane
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • NMP N-methyl-2-pyrrolidone
  • PC propylene carbonate
  • GBL ⁇ -butyrolactone
  • the use of the nitrogen-containing carbon alloy of the present invention is not particularly limited to structural materials, electrode materials, filtration materials, catalyst materials, etc., but is preferably used as electrode materials for power storage devices such as capacitors and lithium secondary batteries. More preferably, it is used as a carbon catalyst for a fuel cell, zinc-air battery, lithium-air battery or the like having reactive activity.
  • the catalyst can be included in the catalyst layer. Furthermore, the electrode membrane assembly can be provided in a fuel cell.
  • FIG. 1 shows a schematic configuration diagram of a fuel cell 10 using a carbon catalyst made of a nitrogen-containing carbon alloy of the present invention.
  • the carbon catalyst is applied to the anode electrode and the cathode electrode.
  • the fuel cell 10 includes a separator 12, an anode electrode catalyst (fuel electrode) 13, a cathode electrode catalyst (oxidant electrode) 15, and a separator 16 that are disposed so as to sandwich the solid polymer electrolyte 14.
  • a fluorine-based cation exchange resin membrane represented by a perfluorosulfonic acid resin membrane is used.
  • the fuel cell 10 provided with the carbon catalyst in the anode electrode catalyst 13 and the cathode electrode catalyst 15 is configured by bringing the carbon catalyst into contact with both the solid polymer electrolyte 14 as the anode electrode catalyst 13 and the cathode electrode catalyst 15.
  • The By forming the carbon catalyst described above on both sides of the solid polymer electrolyte, and adhering the anode electrode catalyst 13 and the cathode electrode catalyst 15 to both main surfaces of the solid polymer electrolyte 14 on the electrode reaction layer side by hot pressing, It integrates as MEA (Membrane Electrode Assembly).
  • a gas diffusion layer made of a porous sheet (for example, carbon paper) that also functions as a current collector is interposed between the separator and the anode and cathode electrode catalyst.
  • a carbon catalyst having a large specific surface area and high gas diffusibility can be used as the anode and cathode electrode catalyst.
  • the separators 12 and 16 support the anode and cathode electrode catalyst layers 13 and 15 and supply and discharge reaction gases such as fuel gas H 2 and oxidant gas O 2 .
  • a reaction gas is supplied to each of the anode and cathode electrode catalysts 13 and 15, a gas phase (reaction gas) and a liquid phase (solid) are formed at the boundary between the carbon catalyst provided on both electrodes and the solid polymer electrolyte 14.
  • a three-phase interface of a polymer electrolyte membrane) and a solid phase (a catalyst possessed by both electrodes) is formed.
  • Cathode side O 2 + 4H + + 4e ⁇ ⁇ 2H 2 O
  • Anode side H 2 ⁇ 2H + + 2e ⁇ H + ions generated on the anode side move in the solid polymer electrolyte 14 toward the cathode side, and e ⁇ (electrons) move to the cathode side through an external load.
  • oxygen contained in the oxidant gas reacts with H + ions and e ⁇ that have moved from the anode side to generate water.
  • the above-described fuel cell generates direct-current power from hydrogen and oxygen to generate water.
  • FIG. 2 shows a schematic configuration diagram of an electric double layer capacitor 20 using a carbon catalyst made of nitrogen-containing carbon alloy and having an excellent storage capacity.
  • the first electrode 21 and the second electrode 22 which are polarizable electrodes are opposed to each other through the separator 23, and are accommodated in the outer lid 24a and the outer case 24b. ing.
  • the first electrode 21 and the second electrode 22 are connected to the exterior lid 24a and the exterior case 24b via current collectors 25, respectively.
  • the separator 23 is impregnated with an electrolytic solution.
  • the electric double layer capacitor 20 is configured by caulking and sealing the outer lid 24a and the outer case 24b while being electrically insulated via the gasket 26.
  • the carbon catalyst made of the above-described nitrogen-containing carbon alloy can be applied to the first electrode 21 and the second electrode 22.
  • the electric double layer capacitor by which the carbon catalyst was applied to the electrode material can be comprised.
  • the above-described carbon catalyst has a fibrous structure in which nanoshell carbon is aggregated, and furthermore, since the fiber diameter is in a nanometer unit, the specific surface area is large, and the electrode interface where charges are accumulated in the capacitor is large.
  • the above-mentioned carbon catalyst is electrochemically inactive with respect to the electrolytic solution, and has appropriate electrical conductivity. For this reason, the electrostatic capacitance per unit volume of an electrode can be improved by applying as an electrode of a capacitor.
  • the above-described carbon catalyst can be applied as an electrode material composed of a carbon material, such as a negative electrode material of a lithium ion secondary battery. And since the specific surface area of a carbon catalyst is large, a secondary battery with a large electrical storage capacity can be comprised.
  • the nitrogen-containing carbon alloy of the present invention is used as a substitute for an environmental catalyst containing a noble metal such as platinum.
  • a catalyst for exhaust gas purification for removing pollutants contained in polluted air (mainly gaseous substances) etc. by decomposition treatment a catalyst material composed of noble metal materials such as platinum alone or in combination Environmental catalysts are used.
  • the above-mentioned carbon catalyst can be used as an alternative to these exhaust gas purifying catalysts containing noble metals such as platinum. Since the above-described carbon catalyst is provided with an oxygen reduction reaction catalytic action, it has a function of decomposing substances to be treated such as pollutants.
  • a low-cost environmental catalyst can be provided.
  • the specific surface area is large, the treatment area for decomposing the material to be treated per unit volume can be increased, and an environmental catalyst having an excellent decomposition function per unit volume can be constituted.
  • a noble metal-based material such as platinum used in conventional environmental catalysts is carried alone or in a composite, so that an environmental catalyst with more excellent catalytic action such as a decomposition function can be obtained.
  • the environmental catalyst provided with the above-mentioned carbon catalyst can also be used as a purification catalyst for water treatment as well as the above-described exhaust gas purification catalyst.
  • the nitrogen-containing carbon alloy of the present invention can be widely used as a catalyst for chemical reaction, and in particular, can be used as a substitute for a platinum catalyst. That is, the above-mentioned carbon catalyst can be used as a substitute for a general process catalyst for the chemical industry containing a noble metal such as platinum. For this reason, according to the above-mentioned carbon catalyst, a low-cost chemical reaction process catalyst can be provided without using expensive noble metals such as platinum. Furthermore, since the above-mentioned carbon catalyst has a large specific surface area, it can constitute a chemical reaction process catalyst excellent in chemical reaction efficiency per unit volume.
  • Such a carbon catalyst for chemical reaction is applied to, for example, a hydrogenation reaction catalyst, a dehydrogenation reaction catalyst, an oxidation reaction catalyst, a polymerization reaction catalyst, a reforming reaction catalyst, and a steam reforming catalyst. be able to. More specifically, it is possible to apply a carbon catalyst to each chemical reaction with reference to a catalyst related literature such as “Catalyst Preparation (Kodansha) by Takaho Shirasaki and Naoyuki Todo, 1975”.
  • Example 1 Synthesis of non-acid-washed carbon material (1E) of ZIF8, Fe (OAc) 2 added (2-mim) mixture> (Preparation of ZIF8, Fe (OAc) 2 addition (2-mim) mixture) 2-methylimidazole (2-mim) (manufactured by Aldrich) 0.10 g, ZIF8 (manufactured by BASF, Basolite Z1200) 0.90 g, Fe (OAc) 2 (manufactured by Aldrich, iron (II) acetate, purity 99.
  • the obtained carbon precursor (1B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and allowed to stand overnight to obtain 0.3463 g of acid-washed carbon precursor (1C).
  • the quartz tube was rotated at 2.0 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained the carbon material (1D) of non-acid washing
  • the carbon material (1D) was pulverized in an agate mortar, washed with water, filtered and air-dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.1381 g of non-acid washed carbon material (1E).
  • the obtained non-acid cleaned carbon material (1E) was used as the nitrogen-containing carbon alloy of Example 1.
  • Oxygen reduction reaction (ORR) activity of carbon alloy coated electrode preparation of carbon alloy coated electrode
  • ORR Oxygen reduction reaction activity of carbon alloy coated electrode
  • Nafion solution 5% alcohol aqueous solution
  • IPA 1-propanol
  • a nitrogen-containing carbon alloy dispersion was applied on the carbon electrode so that the nitrogen-containing carbon alloy was 0.50 mg / cm 2, and And dried to obtain a carbon alloy coated electrode.
  • the obtained carbon precursor (3B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.3225 g of acid-washed carbon precursor (3C).
  • the carbon material (3D) was pulverized in an agate mortar to obtain 0.1175 g of a non-acid-washed carbon material (3E).
  • the obtained non-acid cleaned carbon material (3E) was used as the nitrogen-containing carbon alloy of Example 3.
  • Example 4 ⁇ Synthesis of ZIF8, Fe (OAc) 2 addition (2-mim) mixture of acid washed carbon material (4E)> 0.0786 g of the above carbon material (3D) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight to obtain 0.0674 g of acid-washed carbon material (4E). The obtained acid-washed carbon material (4E) was used as the nitrogen-containing carbon alloy of Example 4.
  • the obtained carbon precursor (5B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.6244 g of acid-washed carbon precursor (5C).
  • the carbon material (5D) was pulverized in an agate mortar to obtain 0.3587 g of a non-acid-cleaned carbon material (5E).
  • the obtained non-acid cleaned carbon material (5E) was used as the nitrogen-containing carbon alloy of Example 5.
  • Example 6 ⁇ Synthesis of carbon material of ZIF8, Fe (acac) 2 addition (2-mim) mixture (6E)> (Continuous firing distribution furnace, pulverization)
  • the above-mentioned ZIF8, Fe (acac) 2 added 2-mim mixture (5A) (2.0666 g) was weighed into a quartz boat and installed in the center of a 4.0 cm ⁇ (inner diameter 3.6 cm ⁇ ) quartz tube inserted into a tubular furnace. Then, the nitrogen flow rate was set to 200 mL per minute, and the mixture was circulated at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 700 ° C. at 5 ° C. per minute, held at 700 ° C.
  • Example 6 The obtained carbon precursor (6B) was pulverized in an agate mortar to obtain 0.6206 g of an unacid-washed carbon precursor (6C).
  • the obtained non-acid cleaned carbon material (6E) was used as the nitrogen-containing carbon alloy of Example 6.
  • Example 7 ⁇ Synthesis of carbon material of ZIF8, Fe (acac) 2 addition (2-mim) mixture (7E)> (Continuous firing, pulverization, acid cleaning treatment, first firing, distribution furnace)
  • the obtained carbon precursor (7B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.6257 g of acid-washed carbon precursor (7C).
  • Carbon material (7D) was pulverized in an agate mortar to obtain 0.3806 g of carbon material (7E) that was not acid-washed.
  • the obtained non-acid cleaned carbon material (7E) was used as the nitrogen-containing carbon alloy of Example 7.
  • Example 8 ⁇ Synthesis of carbon material of ZIF8, FeCl 2 .4H 2 O added (2-mim) mixture (8E)> (Preparation of ZIF8, FeCl 2 .4H 2 O addition (2-mim) mixture) 2-methylimidazole (2-mim) (Aldrich) 1.00 g, ZIF8 9.00 g (BASF, Basolite Z1200), FeCl 2 .4H 2 O 0.37 g (Wako Pure Chemical Industries, purity 99) 9%) was added to an X-TREME MX1200XTM container manufactured by Waring Co., purged with nitrogen, and mixed at 10,000 rpm for 40 seconds to obtain a 2-mim mixture (8A) containing ZIF8 and FeCl 2 .4H 2 O. It was.
  • the obtained carbon precursor (8B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and allowed to stand overnight to obtain 0.5412 g of an acid cleaned carbon precursor (8C).
  • Example 9 Carbon Material Synthesis of ZIF8, Fe (salen) Addition (2-Mim) Mixture (9E)> (Preparation of ZIF8, Fe (salen) addition (2-mim) mixture) 2-methylimidazole (2-mim) (manufactured by Aldrich) 1.00 g, ZIF8 (manufactured by BASF, Basolite Z1200) 9.00 g, N, N′-ethylenebis (salicylideneaminato) iron (II) ( Fe (salen)) (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.596 g was added to a Waring Co., Ltd. X-TREME MX1200XTM container, purged with nitrogen, mixed at 10,000 rpm for 40 seconds, and ZIF8 and Fe (salen) added. A 2-mim mixture (9A) was obtained.
  • the obtained carbon precursor (9B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.6795 g of acid-washed carbon precursor (9C).
  • Example 10 ⁇ Synthesis of carbon material of ZIF8, FeCl 2 ⁇ 4H 2 O added DCPy mixture (10E)> (Preparation of DCPy mixture containing ZIF8 and FeCl 2 .4H 2 O) 3,4-dicyanopyridine (DCPy, Aldrich) 1.00 g, ZIF8 (BASF, Basolite Z1200) 9.00 g, FeCl 2 .4H 2 O (Wako Pure Chemical Industries, purity 99.9%) 0.37 g was added to an X-TREME MX1200XTM container manufactured by Waring Co., purged with nitrogen, and mixed at 10,000 rpm for 40 seconds to obtain a DCPy mixture (10A) containing ZIF8 and FeCl 2 .4H 2 O.
  • DCPy mixture (10A) containing ZIF8 and FeCl 2 .4H 2 O.
  • Example 11 ⁇ Synthesis of carbon material of ZIF8 and FeCl 2 .4H 2 O added DCPy mixture (11E)> (Acid cleaning treatment) 0.8496 g of the above-mentioned non-acid cleaned carbon material (10B) was pulverized in an agate mortar, and concentrated hydrochloric acid cleaning, centrifugal filtration, and removal of the supernatant were repeated until no coloration occurred. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.7923 g of acid-washed carbon material (11C).
  • Example 12 ⁇ Synthesis of carbon material of ZIF8 and FeCl 2 .4H 2 O added DCPN mixture (12E)> (Preparation of DCPN mixture containing ZIF8 and FeCl 2 .4H 2 O) 3,4-dichlorophthalonitrile (DCPN, manufactured by Aldrich) 1.00 g, ZIF8 (BASF, Basolite Z1200) 9.00 g, FeCl 2 .4H 2 O (Wako Pure Chemical Industries, purity 99.9%) ) 0.37 g was added to an X-TREME MX1200XTM container manufactured by Waring Co., and purged with nitrogen, followed by mixing at 10,000 rpm for 40 seconds to obtain a DCPN mixture (12A) containing ZIF8 and FeCl 2 .4H 2 O.
  • DCPN 3,4-dichlorophthalonitrile
  • the obtained carbon precursor (C1-B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and allowed to stand overnight to obtain 0.1870 g of an acid cleaned carbon precursor (C1-C).
  • the carbon material (C1-D) was pulverized in an agate mortar, washed with water, filtered and air-dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then allowed to stand overnight to obtain 0.0540 g of non-acid washed carbon material (C1-E). The obtained non-acid cleaned carbon material (C1-E) was used as the nitrogen-containing carbon alloy of Comparative Example 1.
  • the obtained preliminary carbide (C4-B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained preliminary carbide material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.2026 g of acid-cleaned preliminary carbide (C4-C).
  • the carbon material (C4-D) was pulverized in an agate mortar, washed with water, filtered and air-dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then allowed to stand overnight to obtain 0.1159 g of non-acid washed carbon material (C4-E). The obtained non-acid cleaned carbon material (C4-E) was used as the nitrogen-containing carbon alloy of Comparative Example 4.
  • the obtained carbon precursor (C6-B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until no coloration occurred. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and allowed to stand overnight to obtain 0.4994 g of acid-washed carbon precursor (C6-C).
  • the carbon material (C6-D) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.2048 g of acid-washed carbon material (C6-E). The obtained acid cleaned carbon material (C6-E) was used as the carbon material of Comparative Example 6.
  • the obtained carbon precursor (C7-B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and left overnight to obtain 0.2561 g of an acid cleaned carbon precursor (C7-C).
  • the carbon precursor (C7-B) was pulverized in an agate mortar, 0.1607 g was weighed into a quartz boat, and placed in the center of a 4.0 cm ⁇ (inner diameter 3.6 cm ⁇ ) quartz tube inserted into a vacuum gas displacement rotary furnace. It was installed and the nitrogen flow rate was 200 mL per minute and allowed to flow at room temperature for 1 minute. Next, the inside of a pipe
  • the carbon material (C7-D) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.1119 g of acid-cleaned carbon material (C7-E). The obtained acid cleaned carbon material (C7-E) was used as the carbon material of Comparative Example 7.
  • a 2-mim mixture (C8-A) containing Fe (acac) 2 and FeCl 2 .4H 2 O was calcined in the same manner as in Comparative Example 7, but only a very small amount of carbon material was obtained, and the specific surface area was measured by the BET method. In addition, the production of carbon alloy-coated electrodes and the measurement of oxygen reduction reaction (ORR) activity could not be performed.
  • thermocompression-bonded film was taken out from the two polyimide films, and the catalyst layer was transferred to both sides of the proton conducting film by peeling off the Teflon (registered trademark) sheet which is the base of the cathode coating film and the anode coating film.
  • Teflon registered trademark
  • An electrode composite membrane was obtained. This electrode composite membrane was immersed in a 0.5 mol / L sulfuric acid aqueous solution for 10 hours, washed with ion-exchanged water, and dried to obtain the desired electrode composite membrane.

Abstract

The objective of the present invention is to provide: a method for producing a nitrogen-containing carbon alloy having higher oxygen reduction activity; a nitrogen-containing carbon alloy; and a fuel cell catalyst. A method for producing a nitrogen-containing carbon alloy according to the present invention comprises a step for firing a precursor that contains: at least one substance selected from among nitrogen-containing organic compounds represented by general formula (1), tautomers of the nitrogen-containing organic compounds, salts of the nitrogen-containing organic compounds and hydrates of the nitrogen-containing organic compounds; at least one substance selected from among covalently bondable organic framework materials and metal organic framework materials; and at least one substance selected from among inorganic metal salts and organic metal complexes.

Description

含窒素カーボンアロイの製造方法、含窒素カーボンアロイ及び燃料電池触媒Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst
 本発明は、含窒素カーボンアロイの製造方法、含窒素カーボンアロイ及び燃料電池触媒に関する。具体的には、本発明は、含窒素有機化合物と、多孔性骨格材料と、無機金属塩又は有機金属錯体とを含む前駆体を焼成する工程を含む含窒素カーボンアロイの製造方法に関する。さらに、本発明は、含窒素カーボンアロイ及び含窒素カーボンアロイを用いた燃料電池触媒に関する。 The present invention relates to a method for producing a nitrogen-containing carbon alloy, a nitrogen-containing carbon alloy, and a fuel cell catalyst. Specifically, the present invention relates to a method for producing a nitrogen-containing carbon alloy including a step of firing a precursor containing a nitrogen-containing organic compound, a porous skeleton material, and an inorganic metal salt or an organometallic complex. Furthermore, the present invention relates to a nitrogen-containing carbon alloy and a fuel cell catalyst using the nitrogen-containing carbon alloy.
 従来、白金(Pt)やパラジウム(Pd)等を用いる貴金属系触媒は、高い酸素還元活性を有する触媒として、例えば自動車や家庭用電熱併給システム等に使用される固体高分子電解質型燃料電池に用いられてきた。しかし、このような貴金属系触媒は高コストであるため、さらなる普及が難しくなっているのが現状である。このため、白金を大幅に低減した触媒や、白金を使用することなく形成された触媒の技術開発が進められている。 Conventionally, a noble metal catalyst using platinum (Pt), palladium (Pd), etc. is used as a catalyst having a high oxygen reduction activity, for example, for a solid polymer electrolyte fuel cell used in automobiles, household electric heat supply systems, etc. Has been. However, since such noble metal-based catalysts are expensive, it is difficult to further spread them. For this reason, technological development of a catalyst in which platinum is greatly reduced or a catalyst formed without using platinum is being promoted.
 白金を使用することなく形成され得る触媒としては、炭素触媒が知られており、含窒素有機化合物を熱処理することによって得られる含窒素カーボンアロイは炭素触媒として用いられている。例えば、特許文献1には、s-トリアジン環誘導体と金属との複合体からなる固体高分子型燃料電池用触媒が開示されている。また、特許文献2には、分子量が60~2000の含窒素複素環化合物と無機金属又は無機金属塩を焼成して製造される含窒素カーボンアロイ触媒が開示されている。 Carbon catalysts are known as catalysts that can be formed without using platinum, and nitrogen-containing carbon alloys obtained by heat-treating nitrogen-containing organic compounds are used as carbon catalysts. For example, Patent Document 1 discloses a polymer electrolyte fuel cell catalyst comprising a composite of an s-triazine ring derivative and a metal. Patent Document 2 discloses a nitrogen-containing carbon alloy catalyst produced by firing a nitrogen-containing heterocyclic compound having a molecular weight of 60 to 2000 and an inorganic metal or inorganic metal salt.
 また、特許文献3及び4には、含窒素複素環化合物、金属錯体及びMOF(Metal-Organic framworks)等の多孔性材料の混合物を焼成して製造される含窒素カーボンアロイ触媒が開示されている。特許文献3では、含窒素複素環化合物としてTPTZ(2,4,6-トリ(2-ピリジル)-1,3,5-トリアジン)が用いられている。なお、特許文献3では、含窒素有機化合物として、フタロニトリル系化合物やピリジン系化合物が列挙されているが、これらの化合物は非限定的な例として列挙されているのみである。また、特許文献4では、含窒素複素環化合物として6-(2-ピリジル)-1,3,5-トリアジン-2,4-ジアミンが列挙されている。 Patent Documents 3 and 4 disclose a nitrogen-containing carbon alloy catalyst produced by firing a mixture of a porous material such as a nitrogen-containing heterocyclic compound, a metal complex, and MOF (Metal-Organic frameworks). . In Patent Document 3, TPTZ (2,4,6-tri (2-pyridyl) -1,3,5-triazine) is used as a nitrogen-containing heterocyclic compound. In Patent Document 3, phthalonitrile-based compounds and pyridine-based compounds are listed as nitrogen-containing organic compounds, but these compounds are only listed as non-limiting examples. Patent Document 4 lists 6- (2-pyridyl) -1,3,5-triazine-2,4-diamine as a nitrogen-containing heterocyclic compound.
特開2007-175578号公報JP 2007-175578 A 特開2011-225431号公報JP 2011-225431 A 米国特許公開US2014/0099571号公報US Patent Publication US2014 / 0099571 米国特許公開US2011/0294658号公報US Patent Publication US2011 / 0294658
 上述したように、含窒素有機化合物を含む含窒素カーボンアロイ触媒は、白金を用いなくとも触媒活性を発揮することができる。しかしながら、近年の燃料電池等の用途では、さらに高い酸素還元活性を有することが求められており、従来の炭素触媒が有する酸素還元活性では不十分な場合があった。このため、より高い酸素還元活性を発揮できる含窒素カーボンアロイを製造することが求められていた。
 また、従来の含窒素化合物を用いた含窒素カーボンアロイの製造方法においては、その収率が悪く、生産性に関してさらなる改善が求められていた。
As described above, the nitrogen-containing carbon alloy catalyst containing a nitrogen-containing organic compound can exhibit catalytic activity without using platinum. However, recent applications such as fuel cells are required to have higher oxygen reduction activity, and the oxygen reduction activity of conventional carbon catalysts may be insufficient. For this reason, it has been desired to produce a nitrogen-containing carbon alloy that can exhibit higher oxygen reduction activity.
Moreover, in the conventional method for producing a nitrogen-containing carbon alloy using a nitrogen-containing compound, the yield is poor, and further improvement in productivity has been demanded.
 そこで本発明者は、このような従来技術の課題を解決するために、より高い酸素還元活性を有する含窒素カーボンアロイであって、生産効率の高い含窒素カーボンアロイを製造することを目的として検討を進めた。 Therefore, in order to solve such problems of the prior art, the present inventor has studied for the purpose of producing a nitrogen-containing carbon alloy having higher oxygen reduction activity and high production efficiency. Advanced.
 上記の課題を解決するために鋭意検討を行った結果、本発明者は、特定の構造を有する含窒素有機化合物と、共有結合性有機骨格材料及び金属有機骨格材料から選択される少なくとも一種と、無機金属塩又は有機金属錯体から選択される少なくとも一種とを含む前駆体を焼成して、含窒素カーボンアロイを製造することにより、酸素還元活性が十分に高められた含窒素カーボンアロイが得られることを見出した。さらに、本発明者は、このように製造された含窒素カーボンアロイは生産効率が高く、十分な収量が得られることを見出し、本発明を完成するに至った。
 具体的に、本発明は、以下の構成を有する。
As a result of intensive studies to solve the above problems, the present inventor has a nitrogen-containing organic compound having a specific structure, at least one selected from a covalent organic skeleton material and a metal organic skeleton material, By calcining a precursor containing at least one selected from an inorganic metal salt or an organic metal complex to produce a nitrogen-containing carbon alloy, a nitrogen-containing carbon alloy having sufficiently enhanced oxygen reduction activity can be obtained. I found. Furthermore, the present inventor has found that the nitrogen-containing carbon alloy produced in this way has high production efficiency and a sufficient yield can be obtained, and has completed the present invention.
Specifically, the present invention has the following configuration.
[1]下記一般式(1)で表される含窒素有機化合物、含窒素有機化合物の互変異性体、含窒素有機化合物の塩及び含窒素有機化合物の水和物から選択される少なくとも一種と、共有結合性有機骨格材料及び金属有機骨格材料から選択される少なくとも一種と、無機金属塩及び有機金属錯体から選択される少なくとも一種とを含む前駆体を焼成する工程を含む含窒素カーボンアロイの製造方法;
Figure JPOXMLDOC01-appb-C000004
一般式(1)中、Qは、少なくとも1つの5~7員環の芳香族環又は5~7員環の複素芳香族環から構成される原子団を表し、Rは、ハロゲン原子、置換もしくは無置換のアルキル基、又は下記一般式(2)~(5)で表される置換基を表し、Qが含窒素複素芳香族環を含まない場合は、少なくとも1つのRは下記一般式(2)~(5)で表される置換基を表す。nは1~4の整数を表す。
Figure JPOXMLDOC01-appb-C000005
 一般式(2)中、*はQへの結合部を表す。
Figure JPOXMLDOC01-appb-C000006
一般式(3)~(5)中、R~Rはそれぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロ環基を表し、RとR、RとR、RとRは互いに結合して環を構成してもよい。*はQへの結合部を表す。
[2]一般式(1)において、Qは、5~7員環の芳香族環又は5~7員環の複素芳香族環である[1]に記載の含窒素カーボンアロイの製造方法。
[3]一般式(1)において、Qは、ベンゼン環、ピリジン環又はイミダゾール環である[1]又は[2]に記載の含窒素カーボンアロイの製造方法。
[4]一般式(1)において、Qは、5~7員環の含窒素複素芳香族環である[1]又は[2]に記載の含窒素カーボンアロイの製造方法。
[5]一般式(1)において、Qは、5~7員環の含窒素複素芳香族環であり、Rは置換もしくは無置換のアルキル基、又は一般式(2)で表される置換基を表す[4]に記載の含窒素カーボンアロイの製造方法。
[6]金属有機骨格材料は、ゼオライト型イミダゾール骨格材料である[1]~[5]のいずれかに記載の含窒素カーボンアロイの製造方法。
[7]無機金属塩は、無機金属塩化物である[1]~[6]のいずれかに記載の含窒素カーボンアロイの製造方法。
[8]無機金属塩の金属種が、Feである[1]~[7]のいずれかに記載の含窒素カーボンアロイの製造方法。
[9]無機金属塩は、含水塩である[1]~[8]のいずれかに記載の含窒素カーボンアロイの製造方法。
[10]有機金属錯体は、金属アセタート錯体、β-ジケトン金属錯体、及びサレン錯体から選択される少なくとも一種である[1]~[9]のいずれかに記載の含窒素カーボンアロイの製造方法。
[11]有機金属錯体は、アセチルアセトン鉄(II)錯体である[1]~[10]のいずれかに記載の含窒素カーボンアロイの製造方法。
[12]有機金属錯体は、鉄サレン錯体である[1]~[10]のいずれかに記載の含窒素カーボンアロイの製造方法。
[13]焼成する工程は、前駆体を400℃以上で焼成する工程である[1]~[12]のいずれかに記載の含窒素カーボンアロイの製造方法。
[14]焼成する工程は、前駆体を700~1050℃で焼成する工程である[1]~[13]のいずれかに記載の含窒素カーボンアロイの製造方法。
[15]焼成する工程は、前駆体を700~1050℃で1秒~100時間保持する工程を含む[14]に記載の含窒素カーボンアロイの製造方法。
[16]焼成する工程の前に、前駆体を粉砕する工程をさらに含む[1]~[15]のいずれかに記載の含窒素カーボンアロイの製造方法。
[17]焼成する工程の後に、焼成された含窒素カーボンアロイを粉砕する工程と、再焼成する工程とをさらに含む[1]~[16]のいずれかに記載の含窒素カーボンアロイの製造方法。
[18]再焼成する工程は、1000~1500℃で焼成する工程である[17]に記載の含窒素カーボンアロイの製造方法。
[19]再焼成する工程の前に、脱気及び窒素置換する工程をさらに含む[17]又は[18]に記載の含窒素カーボンアロイの製造方法。
[20][1]~[19]のいずれかに記載の方法で製造された含窒素カーボンアロイ。
[21][20]に記載の含窒素カーボンアロイを用いた燃料電池触媒。
[1] At least one selected from nitrogen-containing organic compounds represented by the following general formula (1), tautomers of nitrogen-containing organic compounds, salts of nitrogen-containing organic compounds, and hydrates of nitrogen-containing organic compounds And production of a nitrogen-containing carbon alloy comprising a step of firing a precursor comprising at least one selected from a covalently bonded organic skeleton material and a metal organic skeleton material and at least one selected from an inorganic metal salt and an organometallic complex Method;
Figure JPOXMLDOC01-appb-C000004
In the general formula (1), Q represents an atomic group composed of at least one 5- to 7-membered aromatic ring or 5- to 7-membered heteroaromatic ring, and R represents a halogen atom, a substituted or When an unsubstituted alkyl group or a substituent represented by the following general formulas (2) to (5) is represented and Q does not include a nitrogen-containing heteroaromatic ring, at least one R is represented by the following general formula (2 ) To (5). n represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000005
In the general formula (2), * represents a bond to Q.
Figure JPOXMLDOC01-appb-C000006
In general formulas (3) to (5), R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may be bonded to each other to form a ring. * Represents a bond to Q.
[2] The method for producing a nitrogen-containing carbon alloy according to [1], wherein in the general formula (1), Q is a 5- to 7-membered aromatic ring or a 5- to 7-membered heteroaromatic ring.
[3] The method for producing a nitrogen-containing carbon alloy according to [1] or [2], wherein Q in the general formula (1) is a benzene ring, a pyridine ring or an imidazole ring.
[4] The method for producing a nitrogen-containing carbon alloy according to [1] or [2], wherein in the general formula (1), Q is a 5- to 7-membered nitrogen-containing heteroaromatic ring.
[5] In the general formula (1), Q is a 5- to 7-membered nitrogen-containing heteroaromatic ring, R is a substituted or unsubstituted alkyl group, or a substituent represented by the general formula (2) The method for producing a nitrogen-containing carbon alloy according to [4], wherein
[6] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [5], wherein the metal organic framework material is a zeolite type imidazole framework material.
[7] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [6], wherein the inorganic metal salt is an inorganic metal chloride.
[8] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [7], wherein the metal species of the inorganic metal salt is Fe.
[9] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [8], wherein the inorganic metal salt is a hydrate salt.
[10] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [9], wherein the organometallic complex is at least one selected from a metal acetate complex, a β-diketone metal complex, and a salen complex.
[11] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [10], wherein the organometallic complex is an acetylacetone iron (II) complex.
[12] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [10], wherein the organometallic complex is an iron-salen complex.
[13] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [12], wherein the firing step is a step of firing the precursor at 400 ° C. or higher.
[14] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [13], wherein the firing step is a step of firing the precursor at 700 to 1050 ° C.
[15] The method for producing a nitrogen-containing carbon alloy according to [14], wherein the firing step includes a step of holding the precursor at 700 to 1050 ° C. for 1 second to 100 hours.
[16] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [15], further comprising a step of pulverizing the precursor before the firing step.
[17] The method for producing a nitrogen-containing carbon alloy according to any one of [1] to [16], further comprising a step of pulverizing the fired nitrogen-containing carbon alloy and a step of re-firing after the firing step. .
[18] The method for producing a nitrogen-containing carbon alloy according to [17], wherein the re-baking step is a step of baking at 1000 to 1500 ° C.
[19] The method for producing a nitrogen-containing carbon alloy according to [17] or [18], further comprising a step of deaeration and nitrogen substitution before the step of refiring.
[20] A nitrogen-containing carbon alloy produced by the method according to any one of [1] to [19].
[21] A fuel cell catalyst using the nitrogen-containing carbon alloy according to [20].
 本発明の製造方法によれば、十分に高い酸素還元活性を有する含窒素カーボンアロイを得ることができる。このため、本発明の製造方法により得られた含窒素カーボンアロイは、炭素触媒として使用することができ、このような炭素触媒は、燃料電池や環境触媒に好ましく用いられる。
 また、本発明の製造方法によれば、含窒素カーボンアロイの収量を高めることができ、生産性を高めることができる。
According to the production method of the present invention, a nitrogen-containing carbon alloy having a sufficiently high oxygen reduction activity can be obtained. For this reason, the nitrogen-containing carbon alloy obtained by the production method of the present invention can be used as a carbon catalyst, and such a carbon catalyst is preferably used for a fuel cell or an environmental catalyst.
Moreover, according to the manufacturing method of this invention, the yield of a nitrogen-containing carbon alloy can be raised and productivity can be improved.
本発明の含窒素カーボンアロイを用いた燃料電池の概略構成図である。It is a schematic block diagram of the fuel cell using the nitrogen-containing carbon alloy of this invention. 本発明の含窒素カーボンアロイを用いた電気二重層キャパシタの概略構成図である。It is a schematic block diagram of the electric double layer capacitor using the nitrogen-containing carbon alloy of this invention.
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。 Hereinafter, the present invention will be described in detail. The constituent elements described below may be described based on representative embodiments and specific examples, but the present invention is not limited to such embodiments. In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 また、本発明における置換基とは、置換可能な基であればよく、例えばハロゲン原子(フッ素原子、クロル原子、臭素原子又は沃素原子)、ヒドロキシル基、シアノ基、脂肪族基(アラルキル基、シクロアルキル基、活性メチン基等を含む)、アリール基(置換する位置は問わない)、ヘテロ環基(置換する位置は問わない)、アシル基、脂肪族オキシ基(アルコキシ基又は、アルキレンオキシ基、エチレンオキシ基若しくはプロピレンオキシ基単位を繰り返し含む基を含む)、アリールオキシ基、ヘテロ環オキシ基、脂肪族カルボニル基、アリールカルボニル基、ヘテロ環カルボニル基、脂肪族オキシカルボニル基、アリールオキシカルボニル基、ヘテロ環オキシカルボニル基、カルバモイル基、スルホニルカルバモイル基、アシルカルバモイル基、スルファモイルカルバモイル基、チオカルバモイル基、脂肪族カルボニルオキシ基、アリールオキシカルボニルオキシ基、ヘテロ環カルボニルオキシ基、アミノ基、脂肪族アミノ基、アリールアミノ基、ヘテロ環アミノ基、アシルアミノ基、脂肪族オキシアミノ基、アリールオキシアミノ基、スルファモイルアミノ基、アシルスルファモイルアミノ基、オキサモイルアミノ基、脂肪族オキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、ヘテロ環オキシカルボニルアミノ基、カルバモイルアミノ基、メルカプト基、脂肪族チオ基、アリールチオ基、ヘテロ環チオ基、アルキルスルフィニル基、アリールスルフィニル基、脂肪族スルホニル基、アリールスルホニル基、ヘテロ環スルホニル基、スルファモイル基、脂肪族スルホニルウレイド基、アリールスルホニルウレイド基、ヘテロ環スルホニルウレイド基、脂肪族スルホニルオキシ基、アリールスルホニルオキシ基、ヘテロ環スルホニルオキシ基、スルファモイル基、脂肪族スルファモイル基、アリールスルファモイル基、ヘテロ環スルファモイル基、アシルスルファモイル基、スルフォニルスルファモイル基又はその塩、カルバモイルスルファモイル基、スルホンアミド基、脂肪族ウレイド基、アリールウレイド基、ヘテロ環ウレイド基、脂肪族スルホンアミド基、アリールスルホンアミド基、ヘテロ環スルホンアミド基、脂肪族スルフィニル基、アリールスルフィニル基、ニトロ基、ニトロソ基、ジアゾ基、アゾ基、ヒドラジノ基、ジ脂肪族オキシホスフィニル基、ジアリールオキシホスフィニル基、シリル基(例えばトリメチルシリル、t-ブチルジメチルシリル、フェニルジメチルシリル)、シリルオキシ基(例えばトリメチルシリルオキシ、t-ブチルジメチルシリルオキシ)、ボロノ基、イオン性親水性基(例えば、カルボキシル基、スルホ基、ホスホノ基及び4級アンモニウム基)等を挙げることができる。これらの置換基群は更に置換されてもよく、更なる置換基としては、以上に説明した置換基から選択される基を挙げることができる。 Further, the substituent in the present invention may be any group that can be substituted. For example, a halogen atom (fluorine atom, chloro atom, bromine atom or iodine atom), hydroxyl group, cyano group, aliphatic group (aralkyl group, cyclohexane) Alkyl group, including active methine group, etc.), aryl group (regarding the position of substitution), heterocyclic group (regardless of the position of substitution), acyl group, aliphatic oxy group (alkoxy group or alkyleneoxy group, Ethyleneoxy group or a group containing a propyleneoxy group unit repeatedly), aryloxy group, heterocyclic oxy group, aliphatic carbonyl group, arylcarbonyl group, heterocyclic carbonyl group, aliphatic oxycarbonyl group, aryloxycarbonyl group, Heterocyclic oxycarbonyl group, carbamoyl group, sulfonylcarbamoyl group, acylcal Moyl group, sulfamoylcarbamoyl group, thiocarbamoyl group, aliphatic carbonyloxy group, aryloxycarbonyloxy group, heterocyclic carbonyloxy group, amino group, aliphatic amino group, arylamino group, heterocyclic amino group, acylamino group Aliphatic oxyamino group, aryloxyamino group, sulfamoylamino group, acylsulfamoylamino group, oxamoylamino group, aliphatic oxycarbonylamino group, aryloxycarbonylamino group, heterocyclic oxycarbonylamino group, Carbamoylamino group, mercapto group, aliphatic thio group, arylthio group, heterocyclic thio group, alkylsulfinyl group, arylsulfinyl group, aliphatic sulfonyl group, arylsulfonyl group, heterocyclic sulfonyl group, sulfamoyl group, fat Sulfonylureido group, arylsulfonylureido group, heterocyclic sulfonylureido group, aliphatic sulfonyloxy group, arylsulfonyloxy group, heterocyclic sulfonyloxy group, sulfamoyl group, aliphatic sulfamoyl group, arylsulfamoyl group, heterocyclic sulfamoyl group , Acylsulfamoyl group, sulfonylsulfamoyl group or a salt thereof, carbamoylsulfamoyl group, sulfonamide group, aliphatic ureido group, arylureido group, heterocyclic ureido group, aliphatic sulfonamido group, arylsulfonamido group , Heterocyclic sulfonamido group, aliphatic sulfinyl group, arylsulfinyl group, nitro group, nitroso group, diazo group, azo group, hydrazino group, dialiphatic oxyphosphinyl group, diaryloxyphosphinyl group, Silyl group (eg trimethylsilyl, t-butyldimethylsilyl, phenyldimethylsilyl), silyloxy group (eg trimethylsilyloxy, t-butyldimethylsilyloxy), borono group, ionic hydrophilic group (eg carboxyl group, sulfo group, phosphono group) Group and quaternary ammonium group). These substituent groups may be further substituted, and examples of the further substituent include groups selected from the substituents described above.
 本発明は、特定の構造を有する含窒素有機化合物、含窒素有機化合物の互変異性体、含窒素有機化合物の塩及び含窒素有機化合物の水和物から選択される少なくとも一種と、共有結合性有機骨格材料及び金属有機骨格材料から選択される少なくとも一種と、無機金属塩及び有機金属錯体から選択される少なくとも一種とを含む前駆体を焼成する工程を含む含窒素カーボンアロイの製造方法に関する。 The present invention relates to at least one selected from nitrogen-containing organic compounds having a specific structure, tautomers of nitrogen-containing organic compounds, salts of nitrogen-containing organic compounds, and hydrates of nitrogen-containing organic compounds, and covalent bonding. The present invention relates to a method for producing a nitrogen-containing carbon alloy including a step of firing a precursor containing at least one selected from an organic skeleton material and a metal organic skeleton material and at least one selected from an inorganic metal salt and an organometallic complex.
 本発明では、焼成により含窒素カーボンアロイを得る際、後述する構造を有する含窒素有機化合物と無機金属塩又は有機金属錯体が、多孔性材料(MOF(Metal-organic framework)やCOF(Covalent organic framework)等)の反応空間場で、細孔の形態を鋳型に、無機金属塩又は有機金属錯体に含窒素有機化合物が配位して、多孔性を有する含窒素カーボンアロイを形成する。これらの化合物をさらに昇温加熱することで含窒素有機化合物の中心の原子団が熱分解して、酸素還元反応(ORR)活性部位を形成し、高活性な含窒素カーボンアロイを得ることができる。本発明では、一般式(1)におけるQを5~7員環の芳香族環又は5~7員環の複素芳香族環から構成される原子団から構成することにより、原子団の熱分解を容易に進行させることができる。これにより、酸素還元反応(ORR)活性部位の形成を促進することができ、より高活性な含窒素カーボンアロイを得ることができる。
 以下では、含窒素有機化合物、共有結合性有機骨格材料及び金属有機骨格材料、無機金属塩及び有機金属錯体について詳細に説明する。
In the present invention, when a nitrogen-containing carbon alloy is obtained by calcination, a nitrogen-containing organic compound having an after-mentioned structure and an inorganic metal salt or organometallic complex are mixed with a porous material (MOF (Metal-organic framework) or COF (Covalent organic framework). ) Etc.) in the reaction space field, a nitrogen-containing organic compound is coordinated to an inorganic metal salt or an organometallic complex using a pore shape as a template to form a nitrogen-containing carbon alloy having porosity. When these compounds are further heated and heated, the central atomic group of the nitrogen-containing organic compound is thermally decomposed to form an oxygen reduction reaction (ORR) active site, and a highly active nitrogen-containing carbon alloy can be obtained. . In the present invention, Q in the general formula (1) is composed of an atomic group composed of a 5- to 7-membered aromatic ring or a 5- to 7-membered heteroaromatic ring, whereby thermal decomposition of the atomic group is performed. It can be easily advanced. Thereby, formation of an oxygen reduction reaction (ORR) active site can be promoted, and a higher activity nitrogen-containing carbon alloy can be obtained.
Hereinafter, the nitrogen-containing organic compound, the covalently bonded organic skeleton material, the metal organic skeleton material, the inorganic metal salt, and the organometallic complex will be described in detail.
(含窒素有機化合物)
 本発明の含窒素カーボンアロイの製造方法で用いる含窒素有機化合物は、一般式(1)で表わされる。なお、本発明の含窒素カーボンアロイの製造方法には、一般式(1)で表わされる含窒素有機化合物の互変異性体、含窒素有機化合物の塩又は含窒素有機化合物の水和物が用いられてもよい。なお、一般式(1)で表わされる含窒素有機化合物、含窒素有機化合物の互変異性体、含窒素有機化合物の塩及び含窒素有機化合物の水和物はいずれか一種のみが用いられてもよく、二種以上が用いられてもよい。
(Nitrogen-containing organic compounds)
The nitrogen-containing organic compound used in the method for producing a nitrogen-containing carbon alloy of the present invention is represented by the general formula (1). In the method for producing the nitrogen-containing carbon alloy of the present invention, a tautomer of the nitrogen-containing organic compound represented by the general formula (1), a salt of the nitrogen-containing organic compound or a hydrate of the nitrogen-containing organic compound is used. May be. The nitrogen-containing organic compound represented by the general formula (1), the tautomer of the nitrogen-containing organic compound, the salt of the nitrogen-containing organic compound, and the hydrate of the nitrogen-containing organic compound may be used alone. Two or more kinds may be used.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 一般式(1)中、Qは、少なくとも1つの5~7員環の芳香族環又は5~7員環の複素芳香族環から構成される原子団を表し、Rは、ハロゲン原子、置換もしくは無置換のアルキル基、又は下記一般式(2)~(5)で表される置換基を表し、Qが含窒素複素芳香族環を含まない場合は、少なくとも1つのRは下記一般式(2)~(5)で表される置換基を表す。nは1~4の整数を表す。 In the general formula (1), Q represents an atomic group composed of at least one 5- to 7-membered aromatic ring or 5- to 7-membered heteroaromatic ring, and R represents a halogen atom, a substituted or When an unsubstituted alkyl group or a substituent represented by the following general formulas (2) to (5) is represented and Q does not include a nitrogen-containing heteroaromatic ring, at least one R is represented by the following general formula (2 ) To (5). n represents an integer of 1 to 4.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 一般式(2)中、*はQへの結合部を表す。 In general formula (2), * represents a bond to Q.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 一般式(3)~(5)中、R~Rはそれぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロ環基を表し、RとR、RとR、RとRは互いに結合して環を構成してもよい。*はQへの結合部を表す。 In general formulas (3) to (5), R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may be bonded to each other to form a ring. * Represents a bond to Q.
 含窒素有機化合物は、一般式(1)で表される有機化合物であって、分子内に炭素原子と窒素原子を少なくとも有する有機化合物である。このような含窒素有機化合物と他の材料を焼成することによって得られる含窒素カーボンアロイには、炭素原子、窒素原子及び金属からなる高酸素還元活性を有する活性点が生成すると考えられる。 The nitrogen-containing organic compound is an organic compound represented by the general formula (1), and is an organic compound having at least a carbon atom and a nitrogen atom in the molecule. The nitrogen-containing carbon alloy obtained by firing such a nitrogen-containing organic compound and other materials is considered to generate active sites having high oxygen reduction activity consisting of carbon atoms, nitrogen atoms and metals.
 一般式(1)において、Qは少なくとも1つの5~7員環の芳香族環又は5~7員環の複素芳香族環から構成される原子団を表す。Qは、5~7員環の芳香族環又は5~7員環の複素芳香族環のみから構成される原子団であることが好ましく、5~7員環の芳香族環又は5~7員環の複素芳香族環であることがより好ましい。なお、Qは、5~7員環の芳香族環又は5~7員環の複素芳香族環から構成される縮合環であってもよく、5~7員環の芳香族環又は5~7員環の複素芳香族環が直接連結した原子団であってもよい。すなわち、原子団は少なくとも1つの5~7員環の芳香族環又は5~7員環の複素芳香族環から構成されていればよく、原子団には、5~7員環の芳香族環又は5~7員環の複素芳香族環、5~7員環の芳香族環又は5~7員環の複素芳香族環から構成される縮合環、及び、5~7員環の芳香族環又は5~7員環の複素芳香族環が直接連結した連結環が含まれる。 In the general formula (1), Q represents an atomic group composed of at least one 5- to 7-membered aromatic ring or 5- to 7-membered heteroaromatic ring. Q is preferably an atomic group composed of only a 5- to 7-membered aromatic ring or a 5- to 7-membered heteroaromatic ring, and a 5- to 7-membered aromatic ring or 5- to 7-membered ring. A heteroaromatic ring is more preferable. Q may be a condensed ring composed of a 5- to 7-membered aromatic ring or a 5- to 7-membered heteroaromatic ring, or a 5- to 7-membered aromatic ring or 5 to 7 It may be an atomic group in which membered heteroaromatic rings are directly connected. That is, the atomic group may be composed of at least one 5- to 7-membered aromatic ring or 5- to 7-membered heteroaromatic ring, and the atomic group includes a 5- to 7-membered aromatic ring. Or a condensed ring composed of a 5- to 7-membered heteroaromatic ring, a 5- to 7-membered aromatic ring, or a 5- to 7-membered heteroaromatic ring, and a 5- to 7-membered aromatic ring Alternatively, a linking ring in which a 5- to 7-membered heteroaromatic ring is directly connected is included.
 一般式(1)において、Qは5~7員環の芳香族環又は5~7員環の複素芳香族環であることが好ましく、5あるいは6員環の芳香族環又は5あるいは6員環の複素芳香族環であることがより好ましい。また、Qは、ベンゼン環、ピリジン環又はイミダゾール環であることがより好ましい。なお、Qは不飽和結合を有することで、後述する各種の相互作用によりカーボンアロイ骨格を形成しやすくなる。 In the general formula (1), Q is preferably a 5- to 7-membered aromatic ring or a 5- to 7-membered heteroaromatic ring, preferably a 5- or 6-membered aromatic ring or a 5- or 6-membered ring. The heteroaromatic ring is more preferable. Q is more preferably a benzene ring, a pyridine ring or an imidazole ring. In addition, since Q has an unsaturated bond, it becomes easy to form a carbon alloy skeleton by various interactions described later.
 一般式(1)中、Qが表す5あるいは6員環の芳香族環又は5あるいは6員環の複素芳香族環は、下記一般式(A-1)~(A-20)で表される構造であることが好ましい。 In the general formula (1), the 5- or 6-membered aromatic ring or the 5- or 6-membered heteroaromatic ring represented by Q is represented by the following general formulas (A-1) to (A-20). A structure is preferred.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(A-1)~(A-20)中、R51~R56のうち少なくとも一つは一般式(1)におけるRとの連結部を表し、R51~R56のうちRとの連結部以外の基はそれぞれ独立に水素原子、又は置換基を表し、隣接する置換基は互いに結合して5又は6員環を形成してもよい。 In formula (A-1) ~ (A -20), at least one of R 51 ~ R 56 represents a linking portion between the R in the general formula (1), the R of the R 51 ~ R 56 Groups other than the linking part each independently represent a hydrogen atom or a substituent, and adjacent substituents may be bonded to each other to form a 5- or 6-membered ring.
 R51~R56で表される置換基は、置換可能な基であれば制限されないが、好ましくは脂肪族基、アリール基、ヘテロ環基、ヒドロキシル基、アシル基、脂肪族オキシカルボニル基、置換基を有していてもよいカルバモイル基、置換基を有していてもよいウレイド基、アシルアミノ基、スルホンアミド基、脂肪族オキシ基、脂肪族チオ基、シアノ基又はスルホニル基等であり、より好ましくはハロゲン原子(フッ素原子、クロル原子、臭素原子又は沃素原子)、脂肪族基、アリール基、ヘテロ環基、ヒドロキシル基、脂肪族オキシカルボニル基、置換基を有していてもよいカルバモイル基、置換基を有していてもよいウレイド基、脂肪族オキシ基等である。中でも、R51~R56で表される置換基は、アルキル基(メチル基、エチル基、t-ブチル基など)、アリール基(フェニル基、ナフチル基など)、ハロゲン原子(塩素原子、臭素原子、フッ素原子など)およびヘテロアリール基(ピリジル基など)であることが好ましい。 The substituent represented by R 51 to R 56 is not limited as long as it is a substitutable group, but is preferably an aliphatic group, aryl group, heterocyclic group, hydroxyl group, acyl group, aliphatic oxycarbonyl group, substituted A carbamoyl group which may have a group, an ureido group which may have a substituent, an acylamino group, a sulfonamide group, an aliphatic oxy group, an aliphatic thio group, a cyano group or a sulfonyl group, and more Preferably, a halogen atom (fluorine atom, chloro atom, bromine atom or iodine atom), aliphatic group, aryl group, heterocyclic group, hydroxyl group, aliphatic oxycarbonyl group, carbamoyl group which may have a substituent, Examples thereof include a ureido group and an aliphatic oxy group which may have a substituent. Among them, the substituents represented by R 51 to R 56 are alkyl groups (methyl group, ethyl group, t-butyl group, etc.), aryl groups (phenyl group, naphthyl group, etc.), halogen atoms (chlorine atom, bromine atom). , Fluorine atoms, etc.) and heteroaryl groups (pyridyl groups, etc.) are preferred.
 R51~R56のうちRとの連結部以外の基は水素原子であることがより好ましい。R51~R56が表す水素原子の数は、1~4個であることが好ましく、2~4個であることがより好ましい。 Of R 51 to R 56 , groups other than the linkage with R are more preferably a hydrogen atom. The number of hydrogen atoms represented by R 51 to R 56 is preferably 1 to 4, more preferably 2 to 4.
 一般式(1)において、Qは5~7員環の含窒素複素芳香族環であることが好ましく、5又は6員環の含窒素複素芳香族環であることがより好ましい。なお、含窒素複素芳香族環には、窒素原子の他にヘテロ原子が含まれていてもよいが、ヘテロ原子として窒素原子のみが含まれていることが好ましい。これにより、含窒素有機化合物の結晶構造に由来したエッジ部に規則正しく窒素が配列するため、遊離した金属イオンが配位することができる。 In the general formula (1), Q is preferably a 5- to 7-membered nitrogen-containing heteroaromatic ring, more preferably a 5- or 6-membered nitrogen-containing heteroaromatic ring. The nitrogen-containing heteroaromatic ring may contain a heteroatom in addition to a nitrogen atom, but preferably contains only a nitrogen atom as a heteroatom. Thereby, since nitrogen is regularly arranged in the edge part derived from the crystal structure of the nitrogen-containing organic compound, the liberated metal ion can be coordinated.
 一般式(1)におけるRは、ハロゲン原子、置換もしくは無置換のアルキル基、又は下記一般式(2)~(5)で表される置換基を表し、Qが含窒素複素芳香族環を含まない場合は、少なくとも1つのRは下記一般式(2)~(5)で表される置換基を表す。
ここで、Qが含窒素複素芳香族環を含まない場合とは、Qが5~7員環の芳香族環から構成される原子団の場合、又はQが5~7員環の複素芳香族環から構成される原子団であって、窒素原子を環構成原子としない複素芳香族環から構成される原子団の場合のことをいう。
R in the general formula (1) represents a halogen atom, a substituted or unsubstituted alkyl group, or a substituent represented by the following general formulas (2) to (5), and Q includes a nitrogen-containing heteroaromatic ring. When not present, at least one R represents a substituent represented by the following general formulas (2) to (5).
Here, when Q does not contain a nitrogen-containing heteroaromatic ring, Q is an atomic group composed of a 5- to 7-membered aromatic ring, or Q is a 5- to 7-membered heteroaromatic ring. This is an atomic group composed of a ring and a group composed of a heteroaromatic ring in which a nitrogen atom is not a ring constituent atom.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(2)中、*はQへの結合部を表す。 In general formula (2), * represents a bond to Q.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(3)~(5)中、R~Rはそれぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロ環基を表し、RとR、RとR、RとRは互いに結合して環を構成してもよい。*はQへの結合部を表す。 In general formulas (3) to (5), R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may be bonded to each other to form a ring. * Represents a bond to Q.
 Qが含窒素複素芳香族環を含まない場合は、少なくとも1つのRは下記一般式(2)~(5)で表される置換基を表す。この場合、含窒素有機化合物に一般式(2)~(5)で表される構造が含まれることにより、分解生成物中にCN結合が生成し、このCNと金属とが相互作用することによって、炭素化まで窒素が保持される。このため、カーボンアロイのグラフェン内に窒素が導入されやすくなり、酸素還元反応活性を高めることができるため好ましい。 When Q does not contain a nitrogen-containing heteroaromatic ring, at least one R represents a substituent represented by the following general formulas (2) to (5). In this case, the nitrogen-containing organic compound includes a structure represented by the general formulas (2) to (5), so that a CN bond is generated in the decomposition product, and the CN and metal interact with each other. Nitrogen is retained until carbonization. Therefore, it is preferable because nitrogen is easily introduced into the graphene of carbon alloy and the oxygen reduction reaction activity can be enhanced.
 また、Qが5~7員環の複素芳香族環から構成される原子団であって、窒素原子を環構成原子とする複素芳香族環から構成される原子団の場合は、Rは、ハロゲン原子、置換もしくは無置換のアルキル基、又は下記一般式(2)~(5)で表される置換基を表す。この場合、複素芳香族環に窒素が導入されており、カーボンアロイを構成する含窒素グラフェン骨格中に、窒素原子が均一に導入され、酸素還元反応活性を高めることができるためより好ましい。 When Q is an atomic group composed of a 5- to 7-membered heteroaromatic ring and composed of a heteroaromatic ring having a nitrogen atom as a ring-constituting atom, R is a halogen atom. It represents an atom, a substituted or unsubstituted alkyl group, or a substituent represented by the following general formulas (2) to (5). In this case, nitrogen is introduced into the heteroaromatic ring, which is more preferable because nitrogen atoms are uniformly introduced into the nitrogen-containing graphene skeleton constituting the carbon alloy and the oxygen reduction reaction activity can be enhanced.
 一般式(3)~(5)中、R~Rはそれぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロ環基を表し、RとR、RとR、RとRは互いに結合して環を構成してもよい。R~Rが置換基を有する基である場合、置換基としては上述した具体例を挙げることができる。 In general formulas (3) to (5), R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may be bonded to each other to form a ring. When R 1 to R 8 are groups having a substituent, examples of the substituent include the specific examples described above.
 一般式(3)~(5)中、R~Rはそれぞれ独立に水素原子またはアルキル基であることが好ましく、水素原子であることがより好ましい。
 R及びRはそれぞれ独立に水素原子またはアルキル基であることが好ましく、水素原子であることがより好ましい。
 R及びRはそれぞれ独立に水素原子またはアルキル基であることが好ましい。
 また、RとR、RとR、RとRは互いに結合して環を形成してもよい。RとR、RとR、RとRが互いに結合して形成する環としては、例えばベンゼン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環、オキサゾール環、オキサジアゾール環、チアゾール環、チアジアゾール環、フラン環、チオフェン環、セレノフェン環、シロール環、ゲルモール環、ホスホール環、ピロリドン環等が挙げられる。中でも、RとRが互いに結合して形成する環としては、ピロリドン環、ベンゼン環、ピリジン環、ピラジン環、ピリミジン環、トリアジン環、ピリダジン環、ピロール環、ピラゾール環、イミダゾール環、トリアゾール環が好ましく、ピロール環またはピロリドン環がより好ましい。また、RとR、RとR、RとRが互いに結合して形成された環は、さらに置換基を有していてもよい。
In general formulas (3) to (5), R 1 to R 4 are preferably each independently a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
R 5 and R 6 are preferably each independently a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
R 7 and R 8 are preferably each independently a hydrogen atom or an alkyl group.
R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may be bonded to each other to form a ring. Examples of the ring formed by combining R 1 and R 2 , R 3 and R 4 , R 7 and R 8 with each other include, for example, a benzene ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a triazine ring, a pyridazine ring, a pyrrole ring, Examples include a pyrazole ring, an imidazole ring, a triazole ring, an oxazole ring, an oxadiazole ring, a thiazole ring, a thiadiazole ring, a furan ring, a thiophene ring, a selenophene ring, a silole ring, a gelmol ring, a phosphole ring, and a pyrrolidone ring. Among them, the ring formed by bonding R 7 and R 8 to each other includes pyrrolidone ring, benzene ring, pyridine ring, pyrazine ring, pyrimidine ring, triazine ring, pyridazine ring, pyrrole ring, pyrazole ring, imidazole ring, triazole ring. Are preferable, and a pyrrole ring or a pyrrolidone ring is more preferable. Moreover, the ring formed by combining R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may further have a substituent.
 一般式(1)において、Qが含窒素複素芳香族環を含まない場合は、Rの少なくとも1つは一般式(2)で表される置換基であることが好ましい。 In general formula (1), when Q does not include a nitrogen-containing heteroaromatic ring, at least one of R is preferably a substituent represented by general formula (2).
 一般式(1)において、Qは、5~7員環の含窒素複素芳香族環であることが好ましく、この場合、Rの少なくとも1つは置換もしくは無置換のアルキル基、又は一般式(2)で表される置換基であることが好ましい。 In the general formula (1), Q is preferably a 5- to 7-membered nitrogen-containing heteroaromatic ring. In this case, at least one R is a substituted or unsubstituted alkyl group, or the general formula (2 It is preferable that it is a substituent represented by.
 なお、Rの少なくとも1つが一般式(4)で表される置換基である場合、含窒素有機化合物としては、特開2011-225431号公報中において一般式(1)で表されている化合物を挙げることができる。 When at least one of R is a substituent represented by the general formula (4), the nitrogen-containing organic compound is a compound represented by the general formula (1) in JP2011-225431A. Can be mentioned.
 一般式(1)において、nは1~4の整数を表し、1~3の整数であることが好ましく、1又は2であることがより好ましい。 In the general formula (1), n represents an integer of 1 to 4, preferably an integer of 1 to 3, and more preferably 1 or 2.
 一般式(1)において、Qは少なくとも1つの5~7員環の芳香族環又は5~7員環の複素芳香族環から構成される原子団を表し、この原子団には、5~7員環の芳香族環又は5~7員環の複素芳香族環が直接連結した連結環が含まれる。すなわち、一般式(1)で表される含窒素有機化合物は、一般式(7)又は(8)が単結合で連結した2量体以上の多量体であってもよい。 In the general formula (1), Q represents an atomic group composed of at least one 5- to 7-membered aromatic ring or 5- to 7-membered heteroaromatic ring. A linking ring in which a 5-membered aromatic ring or a 5- to 7-membered heteroaromatic ring is directly connected is included. That is, the nitrogen-containing organic compound represented by the general formula (1) may be a dimer or more multimer in which the general formula (7) or (8) is connected by a single bond.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(7)及び(8)中、n1は1~5の整数を表し、n2は1~6の整数を表す。n1は1~4であることが好ましく、2~4であることが好ましく、2であることがより好ましい。n2は1~4であることが好ましく、2~4であることが好ましく、2であることがより好ましい。 In general formulas (7) and (8), n1 represents an integer of 1 to 5, and n2 represents an integer of 1 to 6. n1 is preferably 1 to 4, more preferably 2 to 4, and even more preferably 2. n2 is preferably from 1 to 4, more preferably from 2 to 4, and even more preferably 2.
 なお、一般式(7)または(8)で表される化合物は、シアノ基以外の置換基を有していてもよいが、シアノ基のみを有することが好ましい。 The compound represented by the general formula (7) or (8) may have a substituent other than a cyano group, but preferably has only a cyano group.
 一般式(1)で表される含窒素有機化合物を以下の具体的に例示するが、本発明はこれらに限定されない。 Specific examples of the nitrogen-containing organic compound represented by the general formula (1) are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 本発明で用いられる含窒素有機化合物が、一般式(1)で表される含窒素有機化合物の塩である場合、一般式(1)で表される含窒素有機化合物の塩は、一般式(9)で表される。
 [Q] n+[Y] m-      一般式(9)
 一般式(9)中、Qn+は、例えば、下記一般式(A-21)~(A-24)で表される有機カチオンを表し、Ym-はm価のアニオンを表し、n及びmはそれぞれ独立に自然数を表し、1~5の整数であることが好ましく、1~3の整数であることがより好ましく、1または2であることが特に好ましく、1であることがより特に好ましい。
When the nitrogen-containing organic compound used in the present invention is a salt of the nitrogen-containing organic compound represented by the general formula (1), the salt of the nitrogen-containing organic compound represented by the general formula (1) 9).
[Q] m n + [Y] n m− General formula (9)
In the general formula (9), Q n + represents, for example, an organic cation represented by the following general formulas (A-21) to (A-24), Y m− represents an m-valent anion, and n and m Each independently represents a natural number, preferably an integer of 1 to 5, more preferably an integer of 1 to 3, particularly preferably 1 or 2, and particularly preferably 1.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(A-21)~(A-24)中、R61~R63はそれぞれ独立に水素原子又はアルキル基を表す。なお、R61~R63のアルキル基は置換基を有していてもよく、置換基としては、上述した置換基を列挙することができ、シアノ基やビニル基を好ましい例として挙げることができる。 In general formulas (A-21) to (A-24), R 61 to R 63 each independently represents a hydrogen atom or an alkyl group. Note that the alkyl group of R 61 to R 63 may have a substituent, and examples of the substituent include the above-described substituents, and a cyano group and a vinyl group can be given as preferable examples. .
 R61~R63のアルキル基としては、炭素数1~8のアルキル基が好ましく、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ヘキサデシル基、オクタデシル基、アリル基がより好ましく、メチル基、エチル基、プロピル基、ブチル基が特に好ましい。R61~R63は同一であっても異なっていてもよいが、分子中にR61~R63で表される置換基を2以上有する場合は、少なくとも2種以上のアルキル基を含むことが好ましく、その場合はR61~R63のいずれか一方がメチル基を表し、もう一方がエチル基、プロピル基およびブチル基のいずれかを表すことが好ましい。 As the alkyl group of R 61 to R 63 , an alkyl group having 1 to 8 carbon atoms is preferable. A methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a hexadecyl group, an octadecyl group Group and allyl group are more preferable, and methyl group, ethyl group, propyl group and butyl group are particularly preferable. R 61 to R 63 may be the same or different, but when the molecule has two or more substituents represented by R 61 to R 63, it may contain at least two kinds of alkyl groups. In this case, it is preferable that any one of R 61 to R 63 represents a methyl group, and the other represents one of an ethyl group, a propyl group, and a butyl group.
 一般式(9)における[Y] m-としては、ハロゲンアニオン(Cl,Br、F、I)、BF 、PF 、イミドアニオン[N(SOCF 、N(COCF)(SOCF、N(CN) など]、カルバニオン[C(CN) など]、R21OSO 、R21SO 、FeCl 、CoCl 2-などが挙げられる。
 R21はそれぞれ独立にアルキル基を表し、炭素数1~8のアルキル基であることが好ましく、炭素数1~2のアルキル基であることがより好ましい。さらにR21はアルキル基の置換基として、フッ素が好ましく、トリフルオロアルキル基であることがより好ましく、トリフルオロメチル基が特に好ましい。
[Y] n m- in the general formula (9) is a halogen anion (Cl , Br , F , I ), BF 4 , PF 6 , an imide anion [N (SO 2 CF 3 ) 2 , N (COCF 3 ) (SO 2 CF 3 ) , N (CN) 2 etc.], Carbanion [C (CN) 3 etc.], R 21 OSO 3 , R 21 SO 3 , FeCl 4 CoCl 4 2- and the like.
R 21 each independently represents an alkyl group, preferably an alkyl group having 1 to 8 carbon atoms, and more preferably an alkyl group having 1 to 2 carbon atoms. Further, R 21 is preferably fluorine as a substituent of the alkyl group, more preferably a trifluoroalkyl group, and particularly preferably a trifluoromethyl group.
 一般式(1)で表される含窒素有機化合物の塩を以下の具体的に例示するが、本発明はこれらに限定されない。 Specific examples of the salt of the nitrogen-containing organic compound represented by the general formula (1) are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 含窒素有機化合物は、分子が規則的に配列しやすいという結晶性を有する観点から、含窒素結晶性有機化合物であることが好ましい。但し、含窒素結晶性有機化合物は含窒素金属錯体以外であることが好ましい。含窒素金属錯体は、精製が困難であり、含窒素配位子と金属錯体の組成比が一定であるため、焼成時に分解した際、含窒素配位子の分解速度と配位金属錯体の気化速度の制御ができず、目的とする含窒素カーボンアロイを得ることが難しい。含窒素金属錯体と低分子有機化合物とを混ぜ合わせたとしても、含窒素金属錯体結晶が分解し、金属が直接還元を被るため、生成した近接金属同士が凝集結晶化しやすくなる。酸洗浄により金属が除去されてしまうため、得られる含窒素カーボンアロイが不均一になるため求める機能が低減する恐れがある。 The nitrogen-containing organic compound is preferably a nitrogen-containing crystalline organic compound from the viewpoint of crystallinity that the molecules are easily arranged regularly. However, the nitrogen-containing crystalline organic compound is preferably other than a nitrogen-containing metal complex. Nitrogen-containing metal complexes are difficult to purify and the composition ratio of nitrogen-containing ligands and metal complexes is constant, so when decomposed during firing, the decomposition rate of nitrogen-containing ligands and the vaporization of coordination metal complexes The speed cannot be controlled and it is difficult to obtain the target nitrogen-containing carbon alloy. Even when the nitrogen-containing metal complex and the low-molecular organic compound are mixed, the nitrogen-containing metal complex crystal is decomposed and the metal is directly reduced, so that the generated adjacent metals are easily aggregated and crystallized. Since the metal is removed by acid cleaning, the obtained nitrogen-containing carbon alloy becomes non-uniform, and there is a fear that the required function may be reduced.
 含窒素結晶性有機化合物は、π-π相互作用、配位結合、電荷移動相互作用、及び水素結合より選択される2つ以上の結合又は相互作用により結晶構造を形成していることが好ましい。結晶構造を形成した低分子化合物を用いることにより分子間相互作用を向上させて、含窒素カーボンアロイを得る際の焼成時の気化を抑制することができる。
 ここで言う結晶構造とは結晶中の分子の配列様式・配置様式のことをいう。言い換えると、結晶構造は単位格子の繰り返し構造からなり、分子はこの単位胞内の任意の部位に配置して、配向をしている。また、結晶中、分子は均一な様体をなしている。すなわち、結晶中の官能基の配置が均一であるため、分子の各相互作用は、単位胞内もしくは単位胞外で同一である。例えば、積層構造を有する含窒素有機化合物の場合、芳香族環、複素環、縮合多環、縮合複素多環、不飽和基(C≡N基、ビニル基、アリル基、アセチレン基)等は相互作用(例えば芳香族環はface-to-faceでπ-π相互作用(π-πスタック))が生じる。これらの環や基における不飽和結合由来の炭素のSP軌道もしくはSP軌道が分子間で規則正しく等間隔で重なることで積層し、積層カラム構造を形成する。
The nitrogen-containing crystalline organic compound preferably forms a crystal structure by two or more bonds or interactions selected from π-π interaction, coordination bond, charge transfer interaction, and hydrogen bond. By using a low molecular weight compound having a crystal structure, the intermolecular interaction can be improved, and vaporization during firing when obtaining a nitrogen-containing carbon alloy can be suppressed.
The crystal structure here refers to the arrangement and arrangement of molecules in the crystal. In other words, the crystal structure consists of a repeating structure of unit cell, and the molecules are arranged at any position in the unit cell and oriented. In the crystal, the molecules have a uniform appearance. That is, since the arrangement of functional groups in the crystal is uniform, each molecular interaction is the same inside or outside the unit cell. For example, in the case of a nitrogen-containing organic compound having a laminated structure, aromatic rings, heterocyclic rings, condensed polycyclic rings, condensed heterocyclic polycyclic rings, unsaturated groups (C≡N group, vinyl group, allyl group, acetylene group), etc. Action (for example, an aromatic ring is face-to-face and has a π-π interaction (π-π stack)). Stacking is performed by SP 2 orbits of carbons derived from unsaturated bonds in these rings and groups being overlapped regularly at equal intervals between molecules to form a stacked column structure.
 さらにこの積層カラム構造において、隣接する積層カラム間は水素結合またはファンデルワールス相互作用により、分子間距離が規定された均一な構造を有する。このため、結晶内の熱伝達が容易に達成される効果を有する。
 また、含窒素有機化合物は低分子化合物でありながら結晶性を有し、熱に対してフォノン(量子化された格子振動)により振動緩和され耐熱性を有することが好ましい。そのため分解温度が炭素化温度まで保持され、分解物の気化が低減されて炭素化され、カーボンアロイ骨格が形成される。
Further, in this stacked column structure, adjacent stacked columns have a uniform structure in which the intermolecular distance is defined by hydrogen bonding or van der Waals interaction. For this reason, it has the effect that the heat transfer in a crystal | crystallization is achieved easily.
In addition, the nitrogen-containing organic compound is preferably a low-molecular compound, has crystallinity, and is preferably heat-resistant by being relaxed by phonons (quantized lattice vibration) against heat. Therefore, the decomposition temperature is maintained up to the carbonization temperature, the vaporization of the decomposition product is reduced and carbonized, and a carbon alloy skeleton is formed.
 また、結晶性の化合物は焼成時に配向が制御できることから、均一な炭素材料となるため好ましい。 Further, a crystalline compound is preferable because the orientation can be controlled at the time of firing, so that it becomes a uniform carbon material.
 さらに、含窒素有機化合物は、融点が25℃以上であることが好ましい。融点が25℃以上であると、焼成時に耐熱性に寄与する空気層が存在し、沸騰もしくは突沸を抑制することができ、良好な炭素材料を得ることができる。 Further, the nitrogen-containing organic compound preferably has a melting point of 25 ° C. or higher. When the melting point is 25 ° C. or higher, an air layer that contributes to heat resistance during firing exists, boiling or bumping can be suppressed, and a good carbon material can be obtained.
 含窒素有機化合物は、分子量が60~2000であることが好ましく、100~1500であることがより好ましく、130~1000であることがさらに好ましい。分子量を上記範囲とすることで、焼成前の精製が容易となる。 The nitrogen-containing organic compound preferably has a molecular weight of 60 to 2000, more preferably 100 to 1500, and still more preferably 130 to 1000. By making the molecular weight within the above range, purification before firing becomes easy.
 含窒素有機化合物中の金属含率は10ppm以下であることが好ましい。含窒素有機化合物中の金属含率は後述する無機金属塩以外の含有量をいう。 The metal content in the nitrogen-containing organic compound is preferably 10 ppm or less. The metal content in the nitrogen-containing organic compound means a content other than the inorganic metal salt described later.
 含窒素有機化合物の窒素含率は、0.1~55質量%であることが好ましく、1~30質量%であることがより好ましく、4~20質量%であることがさらに好ましい。上記範囲内で窒素原子を含有する含窒素有機化合物を使用することにより、別途窒素源となる化合物を導入する必要がなく、結晶エッジに規則正しく窒素原子と金属が均一に位置して、窒素と金属が相互作用しやすくなる。これにより窒素原子と金属の組成比がより高酸素還元活性を有する組成比となり得る。 The nitrogen content of the nitrogen-containing organic compound is preferably from 0.1 to 55% by mass, more preferably from 1 to 30% by mass, and even more preferably from 4 to 20% by mass. By using a nitrogen-containing organic compound containing a nitrogen atom within the above range, it is not necessary to introduce a separate nitrogen source compound, and the nitrogen atom and the metal are regularly and uniformly positioned on the crystal edge. Are more likely to interact. Thereby, the composition ratio of nitrogen atom and metal can be a composition ratio having higher oxygen reduction activity.
 また、含窒素有機化合物は、窒素雰囲気下で400℃におけるΔTGが-95%~-0.1%である難揮発性化合物であることが好ましく、-95%~-1%である難揮発性化合物であることがより好ましく、-90%~-5%であることがさらに好ましい。含窒素有機化合物は、焼成時に気化しないで、炭素化する難揮発性化合物であることが好ましい。ここで、ΔTGは含窒素有機化合物および無機金属塩との混合物のTG-DTA測定(示差熱-熱重量同時測定)において、窒素を毎分100mL流通下、30℃から1000℃まで毎分10℃で昇温した際、室温(30℃)における質量を基準にした400℃での質量減少率を指す。 The nitrogen-containing organic compound is preferably a hardly volatile compound having a ΔTG of −95% to −0.1% at 400 ° C. in a nitrogen atmosphere, and is hardly volatile having a −95% to −1%. More preferably, the compound is -90% to -5%. The nitrogen-containing organic compound is preferably a hardly volatile compound that is carbonized without being vaporized during firing. Here, ΔTG is 10 ° C./min from 30 ° C. to 1000 ° C. under a flow of 100 mL / min in a TG-DTA measurement (simultaneous measurement of differential heat-thermogravimetry) of a mixture of a nitrogen-containing organic compound and an inorganic metal salt. Refers to the mass reduction rate at 400 ° C. based on the mass at room temperature (30 ° C.).
 本発明では、一般式(1)で表される含窒素有機化合物、含窒素有機化合物の互変異性体、含窒素有機化合物の塩及び含窒素有機化合物の水和物から選択される少なくとも一種は、前駆体の全質量に対して0.5質量%を超えて含まれることが好ましく、1~95質量%含まれることがより好ましく、5~70質量%含まれることがさらに好ましい。含窒素有機化合物を上記範囲内含有させることにより、より高い酸素還元活性を有するカーボンアロイを生成し得る。 In the present invention, at least one selected from the nitrogen-containing organic compound represented by the general formula (1), a tautomer of the nitrogen-containing organic compound, a salt of the nitrogen-containing organic compound, and a hydrate of the nitrogen-containing organic compound is The content of the precursor is preferably more than 0.5% by mass, more preferably 1 to 95% by mass, and still more preferably 5 to 70% by mass. By containing the nitrogen-containing organic compound within the above range, a carbon alloy having higher oxygen reduction activity can be generated.
 含窒素有機化合物は、一般式(1)で表される構造の顔料であることも好ましい。顔料は分子間でπ-π相互作用により、積層カラム構造を有する。積層カラム間には水素結合又はファンデルワールス相互作用が生じるため、積層カラム構造は、分子間距離が規定された均一な構造を有する。このため、結晶内の熱伝達が容易に達成される効果を有する。また、顔料は、低分子化合物でありながら結晶性を有し、熱に対してフォノン(量子化された格子振動)により振動緩和されるため、耐熱性を有する。このため分解温度が炭素化温度まで保持され、分解物の気化が低減されて炭素化が達成されるという効果を有する。
 顔料としては、イソインドリン系顔料、イソインドリノン系顔料、ジケトピロロピロール系顔料、キナクリドン系顔料、オキサジン系顔料、フタロシアニン系顔料、キノフタロン系顔料、および上記顔料をラテント化したラテント顔料、また染料を金属イオンで顔料化したレーキ顔料等が好ましく、ジケトピロロピロール系顔料、キナクリドン系顔料、イソインドリン系顔料、イソインドリノン系顔料、キノフタロン系顔料、および上記顔料をラテント化したラテント顔料がより好ましい。これらの顔料を焼成すると分解生成するベンゾニトリル(Ph-CN)骨格が反応活性種となり、より高い酸素還元反応活性を有するカーボンアロイ触媒が生成する。また金属種(M)が共存することによりPh-CN…Mの錯体を形成し、更に高酸素還元反応活性なカーボンアロイが生成する。
The nitrogen-containing organic compound is also preferably a pigment having a structure represented by the general formula (1). The pigment has a stacked column structure due to π-π interaction between molecules. Since hydrogen bonding or van der Waals interaction occurs between the stacked columns, the stacked column structure has a uniform structure with a defined intermolecular distance. For this reason, it has the effect that the heat transfer in a crystal | crystallization is achieved easily. In addition, although the pigment is a low-molecular compound, it has crystallinity and has heat resistance because the vibration is reduced by phonons (quantized lattice vibration) against heat. For this reason, it has the effect that decomposition temperature is hold | maintained to carbonization temperature, vaporization of a decomposition product is reduced, and carbonization is achieved.
Examples of pigments include isoindoline pigments, isoindolinone pigments, diketopyrrolopyrrole pigments, quinacridone pigments, oxazine pigments, phthalocyanine pigments, quinophthalone pigments, and latent pigments or dyes made from the above pigments. Preferred are lake pigments that are pigmented with metal ions, such as diketopyrrolopyrrole pigments, quinacridone pigments, isoindoline pigments, isoindolinone pigments, quinophthalone pigments, and latin pigments obtained by latinizing the above pigments. preferable. When these pigments are calcined, the benzonitrile (Ph-CN) skeleton, which is decomposed and formed, becomes a reactive species, and a carbon alloy catalyst having higher oxygen reduction reaction activity is generated. Further, when the metal species (M) coexists, a complex of Ph—CN... M is formed, and a carbon alloy that is more active in high oxygen reduction reaction is generated.
(共有結合性有機骨格材料及び金属有機骨格材料)
 本発明の含窒素カーボンアロイの製造方法にける前駆体の調製には、共有結合性有機骨格材料(COF:Covalent organic framework)及び金属有機骨格材料(MOF:Metal-organic framework)から選択される少なくとも一種が用いられる。共有結合性有機骨格材料(COF)及び金属有機骨格材料(MOF)は多孔性材料であり、構造内部には数nmの細孔が無数に存在している。多孔性材料は、内部に細孔を有する構造体であればよく、有機骨格材料又は金属有機骨格材料などを好ましく用いることができる。
(Covalent organic framework materials and metal organic framework materials)
Preparation of the precursor in the method for producing a nitrogen-containing carbon alloy of the present invention includes at least selected from a covalent organic framework material (COF) and a metal-organic framework material (MOF). One kind is used. The covalent organic skeleton material (COF) and the metal organic skeleton material (MOF) are porous materials, and there are innumerable pores of several nm in the structure. The porous material may be a structure having pores therein, and an organic skeleton material or a metal organic skeleton material can be preferably used.
 本発明で用いる多孔性材料の細孔径は0.1~100nmであることが好ましく、0.2~10nmであることがより好ましい。多孔性材料は、細孔径が2nm以下のマイクロポア、2nm~50nmのメソポア、50nm以上マクロポアのいずれか1つ以上を有しているものが好ましく、メソポアを有しているものがより好ましい。細孔径をこの範囲とした場合、作用点の数が多くなり、生成した水が排出しやすくなるため好ましい。また、多孔性材料の内部空孔に細孔容積を有し、酸素と相互作用しやすくなるため好ましい。 The pore diameter of the porous material used in the present invention is preferably from 0.1 to 100 nm, and more preferably from 0.2 to 10 nm. The porous material preferably has one or more of micropores having a pore diameter of 2 nm or less, 2 to 50 nm mesopores, and 50 nm to macropores, and more preferably mesopores. When the pore diameter is in this range, it is preferable because the number of action points increases and the generated water is easily discharged. Further, it is preferable because the internal pores of the porous material have a pore volume and easily interact with oxygen.
 本発明では、共有結合性有機骨格材料(COF)及び金属有機骨格材料(MOF)を添加することにより、添加した材料の細孔の内部で、無機金属塩又は有機金属錯体と含窒素有機化合物とが配位し、細孔の形態を鋳型とした形で多孔性含窒素カーボンアロイを形成し得る。 In the present invention, by adding a covalent organic framework material (COF) and a metal organic framework material (MOF), an inorganic metal salt or an organometallic complex and a nitrogen-containing organic compound are formed inside the pores of the added material. Can form a porous nitrogen-containing carbon alloy in a form using the shape of the pores as a template.
 本発明では、共有結合性有機骨格材料及び金属有機骨格材料から選択される少なくとも一種は、前駆体の全質量に対して5質量%を超えて含まれることが好ましく、10~95質量%含まれることがより好ましく、20~70質量%含まれることがさらに好ましい。共有結合性有機骨格材料及び金属有機骨格材料から選択される少なくとも一種を上記範囲内含有させることにより、より高い酸素還元活性を有するカーボンアロイを生成し得る。 In the present invention, at least one selected from a covalent organic skeleton material and a metal organic skeleton material is preferably included in an amount exceeding 5% by mass with respect to the total mass of the precursor, and is included in an amount of 10 to 95% by mass. The content is more preferably 20 to 70% by mass. By containing at least one selected from a covalent organic framework material and a metal organic framework material within the above range, a carbon alloy having higher oxygen reduction activity can be produced.
 共有結合性有機骨格材料(COF)は、有機骨格のみを利用した結晶性の多孔性構造を有する材料である。多孔性構造は、共有結合により結合した有機化合物の二次元又は三次元ネットワークから形成されている。共有結合性有機骨格材料(COF)は、少なくとも1つの炭素以外の元素の原子、例えば、水素、酸素、窒素、ケイ素、リン、セレン、フッ素、ホウ素又は硫黄を含むものであることが好ましい。 Covalent organic skeletal material (COF) is a material having a crystalline porous structure using only an organic skeleton. The porous structure is formed from a two-dimensional or three-dimensional network of organic compounds linked by covalent bonds. The covalent organic framework material (COF) preferably contains at least one atom of an element other than carbon, such as hydrogen, oxygen, nitrogen, silicon, phosphorus, selenium, fluorine, boron or sulfur.
 共有結合性有機骨格材料(COF)としては、特に特定されないが、例えば、Science,2005,310,1166.J.Am.Chem.Soc.,2007,129,12914.,Science,2007,316,268.、J.Am.Chem.Soc.,2009,131,4570.、Chem.Matter,2006,18,5296.,Angew.Chem.,Int.Ed.,2008,47,8826.、米国特許公開US2006/0154807 A1号公報、特表2010-516869号公報に掲載されている共有結合性有機骨格材料(COF)が好適に用いられる。 Although it is not particularly specified as a covalent organic skeleton material (COF), for example, Science, 2005, 310, 1166. J. et al. Am. Chem. Soc. 2007, 129, 12914. , Science, 2007, 316, 268. , J .; Am. Chem. Soc. , 2009, 131, 4570. Chem. Matter, 2006, 18, 5296. , Angew. Chem. , Int. Ed. 2008, 47, 8826. Covalent organic skeletal materials (COF) described in US Patent Publication No. US2006 / 015480780A1 and JP-T 2010-516869 are preferably used.
 金属有機骨格材料(MOF)は、金属イオンと有機物の配位結合を利用した多孔性構造を有する材料である。金属有機骨格材料(MOF)においては、少なくとも1種の金属イオンに配位結合した有機化合物が多孔性構造を形成する。金属有機骨格材料(MOF)を構成する金属イオンは周期表のほとんどすべての金属で可能であるが、中でも、Co2+、Ni2+、Cu2+、Fe2+、Fe3+又はZn2+であることが好ましく、Zn2+であることがより好ましい。金属イオンと配位結合を形成する有機物としては、3-ピリジルトリアジン、4-ピリジルトリアジン、アルキルイミダゾール、ビピリジン、テレフタル酸、2,6-ナフタレンジカルボン酸、又は1,3,5-ベンゼントリカルボン酸であることが好ましく、3-ピリジルトリアジン、4-ピリジルトリアジン、アルキルイミダゾール、又はビピリジンであることがさらに好ましく、3-ピリジルトリアジン、4-ピリジルトリアジン、又はアルキルイミダゾールであることが特に好ましい。中でも、金属有機骨格材料(MOF)は、等網目状金属有機骨格材料(IRMOF)、ゼオライト型イミダゾール骨格材料(ZIF)であることが特に好ましい。 A metal organic framework material (MOF) is a material having a porous structure utilizing a coordinate bond between a metal ion and an organic substance. In the metal organic framework material (MOF), an organic compound coordinated to at least one metal ion forms a porous structure. The metal ions constituting the metal organic framework material (MOF) can be almost any metal of the periodic table, but among them, it is preferable to be Co 2+ , Ni 2+ , Cu 2+ , Fe 2+ , Fe 3+ or Zn 2+. Zn 2+ is more preferable. Examples of organic substances that form a coordinate bond with a metal ion include 3-pyridyltriazine, 4-pyridyltriazine, alkylimidazole, bipyridine, terephthalic acid, 2,6-naphthalenedicarboxylic acid, or 1,3,5-benzenetricarboxylic acid. Among them, 3-pyridyltriazine, 4-pyridyltriazine, alkylimidazole, or bipyridine is more preferable, and 3-pyridyltriazine, 4-pyridyltriazine, or alkylimidazole is particularly preferable. Among them, the metal organic framework material (MOF) is particularly preferably an equi-reticular metal organic framework material (IRMOF) or a zeolite type imidazole framework material (ZIF).
 金属イオンは、金属有機骨格材料(MOF)のコアとなり、コアは連結リガンド又は連結部分を用いて連結される。ここで、コアとは、骨格中に見いだされる繰り返し単位(単数または複数)を指す。このような骨格は均一な繰り返しコア構造又は不均一な繰り返しコア構造を含んでもよい。コアは金属または金属クラスターおよび連結部分を含み、互いに連結された複数のコアにより骨格が規定される。なお、ここで、金属クラスターとは、2個以上の金属原子が結合したものである。 The metal ion becomes the core of the metal organic framework material (MOF), and the core is linked using a linking ligand or a linking moiety. Here, the core refers to a repeating unit (single or plural) found in the skeleton. Such a skeleton may include a uniform repeating core structure or a non-uniform repeating core structure. The core includes a metal or metal cluster and a connecting portion, and a skeleton is defined by a plurality of cores connected to each other. Here, the metal cluster is a combination of two or more metal atoms.
 連結部分とは、連結クラスターを介して、それぞれ金属または複数の金属を結合する単座または多座化合物を指す。一般に、連結部分は、炭素数1~20の置換または無置換のアルキル基、置換または無置換のシクロアルキル基、置換または無置換のアリール基を含む。また、連結部分には、炭素原子の他に窒素、酸素、硫黄、ホウ素、リン、ケイ素またはアルミニウムを含んでもよい。 The linking moiety refers to a monodentate or multidentate compound that bonds a metal or a plurality of metals through a linking cluster. In general, the linking moiety includes a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cycloalkyl group, and a substituted or unsubstituted aryl group. Further, the linking part may contain nitrogen, oxygen, sulfur, boron, phosphorus, silicon or aluminum in addition to the carbon atom.
 連結クラスターとは、連結部分構造と金属との間、又は連結部分構造と別の連結部分構造との間に結合を形成することができる原子を含む、縮合可能な1個以上の反応種を指す。このような種の例は、ホウ素、酸素、炭素、窒素、およびリン原子からなる群より選択されることが好ましい。連結クラスターは、例えば、-COOH、-CSH、-NO、-SOH、-Si(OH)、-Ge(OH)、-Sn(OH)、-Si(SH)、-Ge(SH)、-Sn(SH)、-POH、-AsOH、-AsOH、-P(SH)、-As(SH)、-CH(RSH)、-C(RSH)、-CH(RNH、-C(RNH、-CH(ROH)、-C(ROH)、-CH(RCN)、-C(RCN)、-CH(SH)、-C(SH)、-CH(NH、-C(NH、-CH(OH)、-C(OH)、-CH(CN)又は-C(CN)を含んでもよい。なお、上記のRは炭素数1~20のアルキル基、またはアリール基である。 A linking cluster refers to one or more condensable reactive species containing atoms that can form a bond between a linking moiety and a metal, or between a linking moiety and another linking moiety. . Examples of such species are preferably selected from the group consisting of boron, oxygen, carbon, nitrogen, and phosphorus atoms. The linked cluster includes, for example, —COOH, —CS 2 H, —NO 2 , —SO 3 H, —Si (OH) 3 , —Ge (OH) 3 , —Sn (OH) 3 , —Si (SH) 4. , -Ge (SH) 4 , -Sn (SH) 4 , -PO 3 H, -AsO 3 H, -AsO 4 H, -P (SH) 3 , -As (SH) 3 , -CH (RSH) 2 , —C (RSH) 3 , —CH (RNH 2 ) 2 , —C (RNH 2 ) 3 , —CH (ROH) 2 , —C (ROH) 3 , —CH (RCN) 2 , —C (RCN) 3 , —CH (SH) 2 , —C (SH) 3 , —CH (NH 2 ) 2 , —C (NH 2 ) 3 , —CH (OH) 2 , —C (OH) 3 , —CH (CN) ) 2 or -C (CN) 3 may be included. The above R is an alkyl group having 1 to 20 carbon atoms or an aryl group.
 金属有機骨格材料(MOF)としては、例えば、米国特許第5648508号公報、米国特許第7196210号公報、欧州特許公開EP0790253 A2号公報、M.O’Keeffeら、J.Sol.State Chem.,152(2000)、3~20頁、H.Liら、Nature402,(1999)、276頁、M.Eddaudiら,Topics、in、Catalysis 9,(1999),105~111頁、B.Chenら,Science 291,(2001),1021~1023頁、ドイツ特許公開DE10111230 A1号公報、欧州特許公開EP1785428 A1号公報、国際公開WO2007/054581号公報、国際公開WO2005/049892号公報及び国際公開WO2007/023134号公報に記載されている材料を用いることができる。中でも、ZIF-8(Zn(2-MethylImidazole))が好ましい。 Examples of metal organic framework materials (MOF) include US Pat. No. 5,648,508, US Pat. No. 7,196,210, European Patent Publication No. EP 0790253 A2, O'Keeff et al. Sol. State Chem. , 152 (2000), pages 3 to 20, H .; Li et al., Nature 402, (1999), p. Edaudi et al., Topics, in, Catalysis 9 (1999), pp. 105-111; Chen et al., Science 291, (2001), pages 1021-1023, German Patent Publication DE10111230 A1, European Patent Publication EP1785428A1, International Publication WO2007 / 045481, International Publication WO2005 / 044982 and International Publication WO2007. The materials described in Japanese Patent No. 023134 can be used. Among these, ZIF-8 (Zn (2-Methylimidazole)) is preferable.
Figure JPOXMLDOC01-appb-C000019
  ZIF-8
Figure JPOXMLDOC01-appb-C000019
ZIF-8
 金属有機骨格材料(MOF)としては、多孔性構造が無限に拡がらない多面体の構造を有する制限骨格材料を用いてもよい。このような材料は有機化合物を特別に選択することで形成される。例えば、A.C.Sudikら,J.Am.Chem.Soc.127(2005),7110-7118には、このような特定の骨格材料が記載され、特に金属有機多面体(MOP)と呼ばれている。本発明では、このような金属有機多面体(MOP)も好ましく用いられる。 As the metal organic framework material (MOF), a restricted framework material having a polyhedral structure in which the porous structure does not expand infinitely may be used. Such materials are formed by special selection of organic compounds. For example, A.I. C. Sudik et al. Am. Chem. Soc. 127 (2005), 7110-7118 describes such a specific skeletal material and is specifically called a metal organic polyhedron (MOP). In the present invention, such a metal organic polyhedron (MOP) is also preferably used.
(無機金属塩及び有機金属錯体)
<無機金属塩>
 本発明の含窒素カーボンアロイの製造方法にける前駆体の調製には、無機金属塩及び有機金属錯体から選択される少なくとも一種が用いられる。無機金属塩としては、特に限定はされないが、水酸化物、酸化物、窒化物、亜硫酸化物、硫化物、スルホン化物、カルボニル化物、硝酸化物、亜硝酸化物、ハロゲン化物等を用いることができる。好ましくは対イオンがハロゲンイオン、又は硝酸イオンである。対イオンがハロゲンイオン、硝酸イオン又は硫酸イオンであるハロゲン化物、又は硝酸化物であれば、加熱分解時に生成した炭素表面で炭素と結合し、比表面積を増大させることができるため好ましい。
 本発明では、無機金属塩がハロゲン化物であることが好ましく、無機金属塩化物であることが特に好ましい。
(Inorganic metal salts and organometallic complexes)
<Inorganic metal salt>
For the preparation of the precursor in the method for producing a nitrogen-containing carbon alloy of the present invention, at least one selected from inorganic metal salts and organometallic complexes is used. The inorganic metal salt is not particularly limited, but hydroxide, oxide, nitride, sulfite, sulfide, sulfonate, carbonylate, nitrate, nitrite, halide and the like can be used. Preferably, the counter ion is a halogen ion or a nitrate ion. It is preferable that the counter ion is a halide or nitrate in which a halogen ion, a nitrate ion or a sulfate ion is used, because the specific surface area can be increased by binding to carbon on the carbon surface generated during the thermal decomposition.
In the present invention, the inorganic metal salt is preferably a halide, and particularly preferably an inorganic metal chloride.
 また、無機金属塩は結晶水を含むことができ、無機金属塩は含水塩であることが好ましい。無機金属塩が結晶水を含むことにより熱伝導率が向上するため、均一に焼成可能になる点で好ましい。結晶水を含む無機金属塩としては、例えば、塩化コバルト(III)含水塩、塩化鉄(III)含水塩、塩化コバルト(II)含水塩、塩化鉄(II)含水塩を好適に使用することができる。 Further, the inorganic metal salt can contain crystal water, and the inorganic metal salt is preferably a hydrated salt. Since the inorganic metal salt contains crystal water, the thermal conductivity is improved, which is preferable in that it can be uniformly fired. As the inorganic metal salt containing crystal water, for example, cobalt chloride (III) hydrate salt, iron chloride (III) hydrate salt, cobalt chloride (II) hydrate salt, iron chloride (II) hydrate salt is preferably used. it can.
 無機金属塩の金属種は、Fe、Co、Ni、MnおよびCrのうち少なくとも1種類であることが好ましく、FeまたはCoであることがより好ましく、Feであることがさらに好ましい。Fe、Co、Ni、Mn、Crの塩は、炭素触媒の触媒活性を向上させるナノサイズのシェル構造を形成することに優れ、その中でも特に、Co、Feは、ナノサイズのシェル構造を形成することに優れるため好ましい。また、炭素触媒に含有されたCo、Feは、炭素触媒中において触媒の酸素還元活性を向上させることができる。遷移金属として最も好ましくはFeである。Fe含有含窒素カーボンアロイは立上り電位が高く、反応電子数がCoよりも高く、燃料電池の耐久性を比較的向上させることができる。なお、炭素触媒の活性を阻害しない限り、遷移金属以外の元素(例えば、B、アルカリ金属(Na,K,Cs)、アルカリ土類(Mg,Ca,Ba)、鉛、スズ、インジウム、タリウム等)が1種類以上含まれてもよい。 The metal species of the inorganic metal salt is preferably at least one of Fe, Co, Ni, Mn and Cr, more preferably Fe or Co, and even more preferably Fe. Fe, Co, Ni, Mn, and Cr salts are excellent in forming a nano-sized shell structure that improves the catalytic activity of the carbon catalyst, and in particular, Co and Fe form a nano-sized shell structure. It is preferable because it is particularly excellent. Moreover, Co and Fe contained in the carbon catalyst can improve the oxygen reduction activity of the catalyst in the carbon catalyst. Most preferably, it is Fe as a transition metal. The Fe-containing nitrogen-containing carbon alloy has a high rising potential, has a higher number of reaction electrons than Co, and can relatively improve the durability of the fuel cell. As long as the activity of the carbon catalyst is not inhibited, elements other than transition metals (for example, B, alkali metals (Na, K, Cs), alkaline earths (Mg, Ca, Ba), lead, tin, indium, thallium, etc. ) May be included in one or more types.
 なお、本発明では、焼成前の有機材料において、含窒素有機化合物と無機金属塩は均一分散させる必要がないという利点を有する。すなわち、含窒素有機化合物が焼成分解した際に、その分解生成物と無機金属塩等の気化物が接触していれば、酸素還元反応活性を有する活性種が形成すると考えられるため、室温での含窒素有機化合物と無機金属塩との混合状態にカーボンアロイの酸素還元反応活性は影響を受けない。 In the present invention, there is an advantage that it is not necessary to uniformly disperse the nitrogen-containing organic compound and the inorganic metal salt in the organic material before firing. That is, when the nitrogen-containing organic compound is decomposed by firing, if the decomposition product is in contact with a vaporized substance such as an inorganic metal salt, it is considered that an active species having oxygen reduction reaction activity is formed. The oxygen reduction reaction activity of the carbon alloy is not affected by the mixed state of the nitrogen-containing organic compound and the inorganic metal salt.
 なお、無機金属塩の粒径は、直径0.001~100μmであることが好ましい。より好ましくは0.01~10μmである。無機金属塩の粒径をこの範囲内にすることで、含窒素有機化合物と均一に混合させることが可能となり、含窒素有機化合物が分解生成時に錯体を形成しやすくなる。 The particle diameter of the inorganic metal salt is preferably 0.001 to 100 μm. More preferably, it is 0.01 to 10 μm. By making the particle size of the inorganic metal salt within this range, it becomes possible to uniformly mix with the nitrogen-containing organic compound, and the nitrogen-containing organic compound is likely to form a complex when decomposed.
<有機金属錯体>
 本発明の含窒素カーボンアロイの製造方法において、前駆体は無機金属塩及び有機金属錯体から選択される少なくとも一種を含む。前駆体に有機金属錯体を添加することにより、高いORR活性が得られることに加えて、高反応電子数を有するカーボンアロイ触媒を得ることができる。
 有機金属錯体としては、基礎錯体工学研究会編、錯体化学-基礎と最新の話題-、講談社サイエンティフィク(1994)に記載されている化合物を例示することができ、具体的には金属イオンに配位子が配位した化合物を好ましく例示することができ、金属アセタート錯体、β-ジケトン金属錯体、及びサレン錯体から選択される少なくとも一種を好ましく用いることができる。また、有機金属錯体は、上述した金属錯体の誘導体であってもよい。有機金属錯体は、多様な配位子の配位数をとることができ、配位幾何異性体でもよいし、金属イオンの価数が異なってもよい。また、有機金属錯体は、金属-炭素結合を有する有機金属化合物でもよい。
<Organic metal complex>
In the method for producing a nitrogen-containing carbon alloy of the present invention, the precursor contains at least one selected from inorganic metal salts and organometallic complexes. By adding an organometallic complex to the precursor, in addition to obtaining high ORR activity, a carbon alloy catalyst having a high number of reaction electrons can be obtained.
Examples of organometallic complexes include compounds described in the Basic Complex Engineering Study Group, Coordination Chemistry-Fundamentals and Latest Topics, and Kodansha Scientific (1994). A compound in which a ligand is coordinated can be preferably exemplified, and at least one selected from a metal acetate complex, a β-diketone metal complex, and a salen complex can be preferably used. The organometallic complex may be a derivative of the above-described metal complex. The organometallic complex can take the coordination number of various ligands, may be a coordination geometric isomer, and may have different valences of metal ions. The organometallic complex may be an organometallic compound having a metal-carbon bond.
 金属イオンとして好ましいものは、Fe、Co、Ni、MnおよびCrのイオンである。配位子として好ましいものは、単座配位子(ハロゲン化物イオン、シアン化物イオン、アンモニア、ピリジン(py)、トリフェニルホスフィン、カルボン酸等)、二座配位子(エチレンジアミン(en)、β-ジケトナート(アセチルアセトナート(acac)、ピバロイルメタン(DPM)、ジイソブトキシメタン(DIBM)、イソブトキシピバロイルメタン(IBPM)、テトラメチルオクタジオン(TMOD))、トリフルオロアセチルアセトナート(TFA)、ビピリジン(bpy)、フェナントレン(phen)等)、多座配位子(エチレンジアミンテトラ酢酸イオン(edta))、N,N’-ビス(サリチリデン)エチレンジアミン(salen)等)である。 Preferred as metal ions are Fe, Co, Ni, Mn and Cr ions. Preferable ligands include monodentate ligands (halide ions, cyanide ions, ammonia, pyridine (py), triphenylphosphine, carboxylic acid, etc.), bidentate ligands (ethylenediamine (en), β- Diketonate (acetylacetonate (acac), pivaloylmethane (DPM), diisobutoxymethane (DIBM), isobutoxypivaloylmethane (IBPM), tetramethyloctadione (TMOD)), trifluoroacetylacetonate (TFA), bipyridine (Bpy), phenanthrene (phen), etc.), polydentate ligands (ethylenediaminetetraacetate ion (edta), N, N′-bis (salicylidene) ethylenediamine (salen), etc.).
 上述した金属錯体として用いることができるものとしては、β-ジケトン金属錯体(ビス(アセチルアセトナト)鉄(II)[Fe(acac)]、トリス(アセチルアセトナト)鉄(III)[Fe(acac)]、ビス(アセチルアセトナト)コバルト(II)[Co(acac)]、トリス(アセチルアセトナト)コバルト(III)[Co(acac)]、ビス(ジピバロイルメタン)鉄(II)[Fe(DPM)]、トリス(ジピバロイルメタン)鉄(III)[Fe(DPM)]、トリス(ジピバロイルメタン)コバルト(III)[Co(DPM)]、ビス(ジイソブトキシメタン)鉄(II)[Fe(DIBM)]、トリス(ジイソブトキシメタン)鉄(III)[Fe(DIBM)]、トリス(ジイソブトキシメタン)コバルト(III)[Co(DIBM)]、ビス(イソブトキシピバロイルメタン)鉄(II)[Fe(IBPM)]、トリス(イソブトキシピバロイルメタン)コバルト(III)[Co(IBPM)]、ビス(テトラメチルオクタジオン)鉄(II)[Fe(TMOD)])、トリス(テトラメチルオクタジオン)鉄(III)[Fe(TMOD)]、トリス(テトラメチルオクタジオン)コバルト(III)[Co(TMOD)])、トリス(1,10-フェナントロリナート)鉄(III)塩化物[Fe(phen)]Cl、トリス(1,10-フェナントロリナート)コバルト(III)塩化物[Co(phen)]Cl、N,N’-メチレンビス(サリチリデンアミナト)金属錯体および類縁体(サレン金属錯体)(N,N’-エチレンジアミンビス(サリチリデンアミナト)鉄(II)[Fe(salen)]、N,N’-エチレンジアミンビス(サリチリデンアミナト)鉄(III)塩化物[Fe(salen)Cl]、N,N‘-ビス(サリチリデン)-o-フェニレンヂアミノ鉄(II)[Fe(Saloph)]、N,N’-エチレンジアミンビス(サリチリデンアミナト)コバルト(II)[Co(salen)]、N,N’-エチレンジアミンビス(サリチリデンアミナト)コバルト(III)塩化物[Co(salen)Cl]、N,N’-ビス(サリチリデン)-o-フェニレンヂアミノコバルト(II)[Co(saloph)])、トリス(2,2’-ビピリジン)鉄(II)塩化物[Fe(bpy)]Cl、トリス(2,2’-ビピリジン)コバルト(II)塩化物[Co(bpy)]Cl、鉄フタロシアニン(MPc)及び酢酸鉄[Fe(OAc)]を挙げることができる。
 その中でもβ-ジケトン金属錯体(ビス(アセチルアセトナト)鉄(II)[Fe(acac)]、トリス(アセチルアセトナト)鉄(III)[Fe(acac)]、ビス(ジピバロイルメタン)鉄(II)[Fe(DPM)]、ビス(ジイソブトキシメタン)鉄(II)[Fe(DIBM)]、ビス(イソブトキシピバロイルメタン)鉄(II)[Fe(IBPM)]、ビス(テトラメチルオクタジオン)鉄(II)[Fe(TMOD)])、N,N’-エチレンジアミンビス(サリチリデンアミナト)酸鉄(II)[Fe(salen)]、トリス(2,2’-ビピリジン)鉄(II)塩化物[Fe(bpy)]Cl、鉄フタロシアニン(MPc)、酢酸鉄[Fe(OAc)]、N,N’-エチレンジアミンビス(サリチリデンアミナト)鉄(II)[Fe(salen)]又はN,N’-エチレンジアミンビス(サリチリデンアミナト)コバルト(II)[Co(salen)]が好ましく、アセチルアセトン鉄(II)錯体であるビス(アセチルアセトナト)鉄(II)[Fe(acac)]、酢酸鉄[Fe(OAc)]又はN,N’-エチレンジアミンビス(サリチリデンアミナト)鉄(II)[Fe(salen)]がより好ましく用いられる。
Examples of the metal complex that can be used include the β-diketone metal complex (bis (acetylacetonato) iron (II) [Fe (acac) 2 ], tris (acetylacetonato) iron (III) [Fe ( acac) 3 ], bis (acetylacetonato) cobalt (II) [Co (acac) 2 ], tris (acetylacetonato) cobalt (III) [Co (acac) 3 ], bis (dipivaloylmethane) iron (II) [Fe (DPM) 2 ], tris (dipivaloylmethane) iron (III) [Fe (DPM) 3 ], tris (dipivaloylmethane) cobalt (III) [Co (DPM) 3 ] , bis (diisobutoxyphenyl methane) iron (II) [Fe (DIBM) 2], tris (diisobutoxyphenyl methane) iron (III) [Fe (DIBM) 3], preparative Scan (diisobutoxyphenyl methane) cobalt (III) [Co (DIBM) 3], bis (iso-butoxy pivaloyl methane) iron (II) [Fe (IBPM) 2], tris (isobutoxy pivaloyl methane) cobalt ( III) [Co (IBPM) 3 ], bis (tetramethyloctadione) iron (II) [Fe (TMOD) 2 ]), tris (tetramethyloctadione) iron (III) [Fe (TMOD) 3 ], tris (Tetramethyloctadione) cobalt (III) [Co (TMOD) 3 ])), tris (1,10-phenanthrolinato) iron (III) chloride [Fe (phen) 3 ] Cl 2 , tris (1, 10-phenanthrolinato) cobalt (III) chloride [Co (phen) 3 ] Cl 2 , N, N′-methylenebis (salicylidenea) Minato) metal complexes and analogs (salen metal complexes) (N, N′-ethylenediaminebis (salicylideneaminato) iron (II) [Fe (salen)], N, N′-ethylenediaminebis (salicylidenea) Minato) Iron (III) chloride [Fe (salen) Cl], N, N′-bis (salicylidene) -o-phenylenediaminoiron (II) [Fe (Saloph)], N, N′-ethylenediaminebis ( Salicylideneaminato) cobalt (II) [Co (salen)], N, N′-ethylenediaminebis (salicylideneaminato) cobalt (III) chloride [Co (salen) Cl], N, N′— Bis (salicylidene) -o-phenylenediaminocobalt (II) [Co (saloph)]), tris (2,2′-bipyridine) iron (II) chloride [Fe (Bpy) 3 ] Cl 2 , tris (2,2′-bipyridine) cobalt (II) chloride [Co (bpy) 3 ] Cl 2 , iron phthalocyanine (MPc) and iron acetate [Fe (OAc) 2 ] be able to.
Among them, β-diketone metal complexes (bis (acetylacetonato) iron (II) [Fe (acac) 2 ], tris (acetylacetonato) iron (III) [Fe (acac) 3 ], bis (dipivaloyl) Methane) iron (II) [Fe (DPM) 2 ], bis (diisobutoxymethane) iron (II) [Fe (DIBM) 2 ], bis (isobutoxypivaloylmethane) iron (II) [Fe (IBPM) 2 ], bis (tetramethyloctadione) iron (II) [Fe (TMOD) 2 ]), N, N′-ethylenediaminebis (salicylideneaminato) iron (II) [Fe (salen)], tris (2,2'-bipyridine) iron (II) chloride [Fe (bpy) 3] Cl 2, iron phthalocyanine (MPc), iron acetate [Fe (OAc) 2], N, N'- ethylenediamine Bis (salicylideneaminato) iron (II) [Fe (salen)] or N, N′-ethylenediaminebis (salicylideneaminato) cobalt (II) [Co (salen)] is preferred, and acetylacetone iron (II) ) Complex bis (acetylacetonato) iron (II) [Fe (acac) 2 ], iron acetate [Fe (OAc) 2 ] or N, N′-ethylenediaminebis (salicylideneaminato) iron (II) [Fe (salen)] is more preferably used.
 (β-ジケトン金属錯体)
 有機金属錯体としては、β-ジケトン金属錯体を含むことが好ましい。有機金属錯体としてβ-ジケトン金属錯体を単独で用いてもよく、β-ジケトン金属錯体と他の有機金属錯体を混合して用いてもよい。β-ジケトン金属錯体は、下記一般式(10)で表される化合物およびその互変異性体を示す。
(Β-diketone metal complex)
The organometallic complex preferably contains a β-diketone metal complex. As the organometallic complex, a β-diketone metal complex may be used alone, or a β-diketone metal complex and another organometallic complex may be mixed and used. The β-diketone metal complex represents a compound represented by the following general formula (10) and tautomers thereof.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(10)中、Mは金属を示し、RおよびRはそれぞれ独立に、置換基を有していてもよい炭化水素基を示し、また、Rは水素原子又は置換基を有していてもよい炭化水素基を示す。R、R、Rは、それぞれ互いに結合して環を形成していてもよい。nは0以上の整数を示し、mは1以上の整数を示す。この化合物においては、金属Mの原子又はイオンに対して、β-ジケトン又はそのイオンが配位又は結合している。 In the general formula (10), M represents a metal, R 1 and R 3 each independently represents a hydrocarbon group which may have a substituent, and R 2 has a hydrogen atom or a substituent. The hydrocarbon group which may be carried out is shown. R 1 , R 2 and R 3 may be bonded to each other to form a ring. n represents an integer of 0 or more, and m represents an integer of 1 or more. In this compound, the β-diketone or its ion is coordinated or bonded to the atom or ion of the metal M.
 好ましい金属としては、Fe、Co、Ni、MnおよびCrを挙げることができ、より好ましくはFe、Coであり、さらに好ましくはFeである。 Preferred metals include Fe, Co, Ni, Mn and Cr, more preferably Fe and Co, and still more preferably Fe.
 一般式(10)中、R、R、Rの置換基を有していてもよい炭化水素基における「炭化水素基」としては、例えば、脂肪族炭化水素基、脂環式炭化水素基、芳香族炭化水素基、複素環式(ヘテロ環式)炭化水素基、およびこれらが複数個結合した基などが挙げられる。脂肪族炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、t-ブチル、ヘキシル基などのアルキル基(C1-6アルキル基等);アリル基などのアルケニル基(C2-6アルケニル基等)などが挙げられる。脂環式炭化水素基としては、例えば、シクロペンチル、シクロヘキシル基などのシクロアルキル基(3~15員のシクロアルキル基等);シクロヘキセニル基などのシクロアルケニル基(3~15員のシクロアルケニル基等);アダマンチル基などの橋かけ炭素環式基(炭素数6~20程度の橋かけ炭素環式基等)などが挙げられる。芳香族炭化水素基としては、例えば、フェニル基、ナフチル基等の炭素数6~20程度の芳香族炭化水素基(アリール基)などが挙げられる。複素環式(ヘテロ環式)炭化水素基としては、例えば、ピロリル基、イミダゾリル基、ピラゾリル基等の含窒素五員環炭化水素基;ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基の含窒素六員環炭化水素基;ピロリジジニル基、インドリジニル基、イソインドリル基、イソインインドリニル基、インドリル基、インダゾリル基、プリニル基、キノリジニル基、キノリニル基、ナフチリジニル基、フタラジニル基、キノキサリニル基、シンノリニル基、プテリジニル基等の含窒素縮合二環系炭化水素基;カルバゾリル基、β-カルボリニル基、フェナントリジニル基、アクリジニル基、ペリミジニル基、フェナントロリニル基、フェナジニル基、アンチリジニル基等の含窒素縮合三環系炭化水素基;含酸素単環系、含酸素多環系、含硫黄系、含セレン・テルル環系炭化水素基などが挙げられる。 In the general formula (10), examples of the “hydrocarbon group” in the hydrocarbon group which may have a substituent of R 1 , R 2 , and R 3 include an aliphatic hydrocarbon group and an alicyclic hydrocarbon. A group, an aromatic hydrocarbon group, a heterocyclic (heterocyclic) hydrocarbon group, and a group in which a plurality of these groups are bonded. Examples of the aliphatic hydrocarbon group include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, and hexyl groups (C 1-6 alkyl groups); An alkenyl group ( C2-6 alkenyl group etc.) etc. are mentioned. Examples of the alicyclic hydrocarbon group include cycloalkyl groups such as cyclopentyl and cyclohexyl groups (3 to 15-membered cycloalkyl groups and the like); cycloalkenyl groups such as cyclohexenyl groups (3 to 15-membered cycloalkenyl groups and the like) ); A bridged carbocyclic group such as an adamantyl group (such as a bridged carbocyclic group having about 6 to 20 carbon atoms). Examples of the aromatic hydrocarbon group include an aromatic hydrocarbon group (aryl group) having about 6 to 20 carbon atoms such as a phenyl group and a naphthyl group. Heterocyclic (heterocyclic) hydrocarbon groups include, for example, nitrogen-containing five-membered hydrocarbon groups such as pyrrolyl, imidazolyl and pyrazolyl groups; nitrogen-containing six-membered pyridyl, pyrazinyl, pyrimidinyl and pyridazinyl groups Member ring hydrocarbon group; pyrrolidinyl group, indolizinyl group, isoindolyl group, isoinindolinyl group, indolyl group, indazolyl group, purinyl group, quinolidinyl group, quinolinyl group, naphthyridinyl group, phthalazinyl group, quinoxalinyl group, cinnolinyl group, pteridinyl group Nitrogen-containing condensed bicyclic hydrocarbon groups such as carbazolyl group, β-carbolinyl group, phenanthridinyl group, acridinyl group, perimidinyl group, phenanthrolinyl group, phenazinyl group, and antiridinyl group Hydrocarbon group; oxygen-containing monocyclic system, oxygen-containing polycyclic system Sulfur-containing and selenium-containing tellurium ring system hydrocarbon group.
 炭化水素基が有していてもよい置換基としては、例えば、フッ素、塩素、臭素原子などのハロゲン原子;メトキシ、エトキシ、プロポキシ、イソプロピルオキシ、ブトキシ、イソブチルオキシ、t-ブチルオキシ基などのアルコキシ基(C1-4アルコキシ基等);ヒドロキシル基;メトキシカルボニル、エトキシカルボニル基などのアルコキシカルボニル基(C1-4アルコキシ-カルボニル基等);アセチル、プロピオニル、ベンゾイル基などのアシル基(C1-10アシル基等);シアノ基;ニトロ基などが挙げられる。 Examples of the substituent that the hydrocarbon group may have include, for example, a halogen atom such as fluorine, chlorine, bromine atom; an alkoxy group such as methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy, t-butyloxy group (C 1-4 alkoxy group etc.); hydroxyl group; alkoxycarbonyl groups such as methoxycarbonyl and ethoxycarbonyl groups (C 1-4 alkoxy-carbonyl group etc.); acyl groups such as acetyl, propionyl and benzoyl groups (C 1- 1 10 acyl group); cyano group; nitro group and the like.
 一般式(10)中、R、R、Rが、それぞれ互いに結合して形成する環としては、例えば、シクロペンタン環、シクロペンテン環、シクロヘキサン環、シクロヘキセン環などの5~15員のシクロアルカン環又はシクロアルケン環などが挙げられる。 In general formula (10), R 1 , R 2 , and R 3 are each bonded to each other to form a ring of, for example, a 5- to 15-membered cyclohexane such as a cyclopentane ring, a cyclopentene ring, a cyclohexane ring, or a cyclohexene ring. Examples include an alkane ring and a cycloalkene ring.
 一般式(10)におけるR、Rとしては、アルキル基(C1-6アルキル基等)、アルケニル基(C2-6アルケニル基等)、シクロアルキル基(3~15員のシクロアルキル基等)、シクロアルケニル基(3~15員のシクロアルケニル基等)、アリール基(C6-15アリール基等)、置換基を有するアリール基(p-メチルフェニル基、p-ヒドロキシフェニル基などの置換基を有するC6-15アリール基等)などが好ましい。Rとしては、水素原子、アルキル基(C1-6アルキル基等)、アルケニル基(C2-6アルケニル基等)、シクロアルキル基(3~15員のシクロアルキル基等)、シクロアルケニル基(3~15員のシクロアルケニル基等)、アリール基(C6-15アリール基等)、置換基を有するアリール基(p-メチルフェニル基、p-ヒドロキシフェニル基などの置換基を有するC6-15アリール基等)などが好ましい。 R 1 and R 3 in the general formula (10) are an alkyl group (C 1-6 alkyl group etc.), an alkenyl group (C 2-6 alkenyl group etc.), a cycloalkyl group (3 to 15 membered cycloalkyl group). Etc.), cycloalkenyl groups (3- to 15-membered cycloalkenyl groups, etc.), aryl groups (C 6-15 aryl groups, etc.), substituted aryl groups (p-methylphenyl groups, p-hydroxyphenyl groups, etc.) C 6-15 aryl group having a substituent, etc.) are preferred. R 2 includes a hydrogen atom, an alkyl group (C 1-6 alkyl group, etc.), an alkenyl group (C 2-6 alkenyl group, etc.), a cycloalkyl group (3-15 membered cycloalkyl group, etc.), a cycloalkenyl group. (3- to 15-membered cycloalkenyl group etc.), aryl group (C 6-15 aryl group etc.), aryl group having a substituent (C 6 having a substituent such as p-methylphenyl group, p-hydroxyphenyl group) -15 aryl group, etc.) are preferred.
 一般式(10)で表される化合物において、金属の価数nは、0価、1価、2価、3価等のいずれであってもよいが、通常2価または3価である。金属が2価又は3価の場合には、β-ジケトンは、対応するアニオンであるβ-ジケトナートとして配位する。金属の価数をnとした場合、通常、配位数mは同一である。ただし、金属に溶媒等を軸配位させても良く、その場合、金属の価数nと配位数mが異なっても良い。軸配位しても良い溶媒として、ピリジン、アセトニトリル、アルコール等が例示されるが、軸配位するものであれば特に制限されることはない。 In the compound represented by the general formula (10), the valence n of the metal may be any of 0, 1, 2, 3 and the like, but is usually divalent or trivalent. When the metal is divalent or trivalent, the β-diketone coordinates as the corresponding anion, β-diketonate. When the metal valence is n, the coordination number m is usually the same. However, a solvent or the like may be axially coordinated with the metal. In that case, the valence n and the coordination number m of the metal may be different. Examples of the solvent that may be axially coordinated include pyridine, acetonitrile, alcohol, and the like, but are not particularly limited as long as they are axially coordinated.
 β-ジケトン鉄錯体は、市販のものをそのまま、または精製して使用してもよいし、調製して使用してもよい。また、反応系中で発生させて使用することもできる。反応系中で発生させる場合には、例えば、鉄の塩化物、水酸化物とアセチルアセトン等のβ-ジケトンを添加すればよい。この際、必要に応じてアンモニア、アミン類、アルカリ金属またはアルカリ土類金属の水酸化物や炭酸塩、カルボン酸塩などの塩基を添加することができる。 As the β-diketone iron complex, a commercially available product may be used as it is or after purification, or it may be prepared and used. It can also be generated and used in a reaction system. When it is generated in the reaction system, for example, iron chloride, hydroxide and β-diketone such as acetylacetone may be added. At this time, a base such as ammonia, amines, alkali metal or alkaline earth metal hydroxides, carbonates or carboxylates can be added as necessary.
 本発明では、無機金属塩及び有機金属錯体から選択される少なくとも一種は、前駆体の全質量に対して0.1質量%を超えて含まれることが好ましく、0.5~85質量%含まれることがより好ましく、0.5~70質量%含まれることがさらに好ましい。無機金属塩及び有機金属錯体から選択される少なくとも一種を上記範囲内含有させることにより、窒素原子との相互作用によって、より高い酸素還元活性を有するカーボンアロイを生成し得る。なお、本発明では、無機金属塩及び有機金属錯体から選択される少なくとも一種は、前駆体の全質量に対して0.1~10質量%とすることも可能である。このように、本発明では、特定の構造を有する含窒素有機化合物と、共有結合性有機骨格材料及び金属有機骨格材料を併用することにより、無機金属塩及び有機金属錯体から選択される少なくとも一種の含有量を少なく抑えた場合であっても、高い酸素還元活性を有するカーボンアロイを生成することができる。 In the present invention, at least one selected from an inorganic metal salt and an organometallic complex is preferably contained in an amount exceeding 0.1% by mass, and 0.5 to 85% by mass with respect to the total mass of the precursor. More preferably, the content is 0.5 to 70% by mass. By containing at least one selected from an inorganic metal salt and an organometallic complex within the above range, a carbon alloy having higher oxygen reduction activity can be generated by interaction with a nitrogen atom. In the present invention, at least one selected from inorganic metal salts and organometallic complexes may be 0.1 to 10% by mass relative to the total mass of the precursor. Thus, in the present invention, by using a nitrogen-containing organic compound having a specific structure in combination with a covalent organic skeleton material and a metal organic skeleton material, at least one selected from inorganic metal salts and organometallic complexes is used. Even when the content is kept low, a carbon alloy having high oxygen reduction activity can be generated.
 酸素還元活性(ORR活性)は、実施例にて詳述する方法により電位を求め、これをORR活性値として測定することができる。高出力を得るために、酸素還元する際の電位の値が高いことが好ましく、具体的には、0.5mg/cmの電極塗布量における電流密度値-2mA/cmにおける電位が、0.67V以上が好ましく、0.70V以上がより好ましく、0.73V以上がさらに好ましい。塗布量と電流密度は直線的に増加するが、塗布量が増すとカーボンアロイ粒子間の抵抗の増加、酸素および水の拡散抵抗の増加等により電流密度が想定した直線から低くなる。オームの法則により、塗布量と電位の関係においても、同様に、塗布量と電位は直線からずれて低くなる。0.5mg/cmにおける電位の値は、0.05mg/cmにおける触媒活性を示す電位とカーボンアロイの導電性を加味した値であり、この電位の範囲にすることにより導電性に優れているため特に好ましい。 The oxygen reduction activity (ORR activity) can be measured as an ORR activity value by obtaining a potential by the method described in detail in Examples. To obtain high output, it is preferred high value of the potential at the time of oxygen reduction, specifically, the potential at a current density value -2 mA / cm 2 in the electrode coating amount of 0.5 mg / cm 2, 0 .67V or more is preferable, 0.70V or more is more preferable, and 0.73V or more is more preferable. The coating amount and the current density increase linearly, but as the coating amount increases, the current density decreases from the assumed straight line due to an increase in resistance between carbon alloy particles, an increase in diffusion resistance of oxygen and water, and the like. According to Ohm's law, the coating amount and the potential are similarly deviated from the straight line in the relationship between the coating amount and the potential. The value of the potential at 0.5 mg / cm 2 is a value that takes into account the potential of the catalyst activity at 0.05 mg / cm 2 and the conductivity of the carbon alloy. By making this potential range, the conductivity is excellent. This is particularly preferable.
 含窒素有機化合物を含む有機材料を焼成することにより、含窒素有機化合物が分解し、生成した分解生成物が気相中で含窒素カーボンアロイ触媒が形成される。その際に、気相中に金属が近傍に存在すると、分解生成物は金属と相互作用(錯体を形成)し、含窒素カーボンアロイ触媒の性能がさらに向上する。また、窒素原子(N)を構成元素として含む含窒素有機化合物に添加されている特定の遷移金属化合物の触媒作用等により、窒素原子(N)が炭素触媒表面に高濃度に固定化された含窒素カーボンアロイを形成し、この窒素原子(N)と相互作用した遷移金属化合物を含んだ炭素微粒子が形成されることが好ましい。なお、後述する酸処理によって一部の窒素原子(N)と相互作用した遷移金属化合物は脱落してもよい。 By firing an organic material containing a nitrogen-containing organic compound, the nitrogen-containing organic compound is decomposed, and the generated decomposition product forms a nitrogen-containing carbon alloy catalyst in the gas phase. At that time, if a metal is present in the vicinity of the gas phase, the decomposition product interacts with the metal (forms a complex), and the performance of the nitrogen-containing carbon alloy catalyst is further improved. In addition, the nitrogen atom (N) is immobilized on the surface of the carbon catalyst at a high concentration due to the catalytic action of a specific transition metal compound added to the nitrogen-containing organic compound containing the nitrogen atom (N) as a constituent element. It is preferable that carbon fine particles containing a transition metal compound that forms a nitrogen carbon alloy and interacts with the nitrogen atom (N) are formed. In addition, the transition metal compound which interacted with some nitrogen atoms (N) by the acid treatment mentioned later may drop off.
(導電助剤)
 本発明では、前駆体に導電助剤を添加して焼成してもよく、カーボンアロイに添加してもよい。導電助剤が均一に分散されるため、導電助剤を添加して焼成する方が好ましい。
(Conductive aid)
In the present invention, a conductive additive may be added to the precursor and fired, or may be added to the carbon alloy. Since a conductive support agent is disperse | distributed uniformly, it is more preferable to add a conductive support agent and to bake.
 導電助剤としては、特に限定はされないが、例えば、ノーリット(NORIT社製)、ケッチェンブラック(Lion社製)、バルカン(Cabot社製)、ブラックパール(Cabot社製)、アセチレンブラック(Chevron社製)(いずれも商品名)等のカーボンブラック、黒鉛をはじめ、C60やC70等のフラーレン、カーボンナノチューブ、カーボンナノホーン、カーボン繊維等の炭素材料が挙げられる。 Although it does not specifically limit as a conductive support agent, For example, Norrit (made by NORIT), Ketjen black (made by Lion), Vulcan (made by Cabot), black pearl (made by Cabot), acetylene black (Chevron) Carbon black such as (manufactured) (all are trade names), graphite, and carbon materials such as fullerenes such as C60 and C70, carbon nanotubes, carbon nanohorns, and carbon fibers.
 導電助剤の添加率は、前駆体の全体質量に対して、0.01~50質量%であることが好ましく、0.1~20質量%であることがより好ましく、1~10質量%であることがさらに好ましい。導電助剤の添加量を上記範囲内とすることにより、系中で無機金属塩から生成する金属の凝集・成長が均一になり、目的とする多孔性含窒素炭素を得ることがきる。 The addition rate of the conductive auxiliary is preferably 0.01 to 50% by mass, more preferably 0.1 to 20% by mass, and more preferably 1 to 10% by mass with respect to the total mass of the precursor. More preferably it is. By setting the addition amount of the conductive assistant within the above range, the aggregation and growth of the metal generated from the inorganic metal salt in the system becomes uniform, and the target porous nitrogen-containing carbon can be obtained.
<含窒素カーボンアロイの製造方法>
 本発明の含窒素カーボンアロイの製造方法は、
 (1)含窒素有機化合物と、共有結合性有機骨格材料及び金属有機骨格材料から選択される少なくとも一種と、無機金属塩及び有機金属錯体から選択される少なくとも一種を混合して前駆体を調製する工程と、
 (2)前駆体を不活性雰囲気下で室温から炭素化温度まで毎分1~2000℃で昇温する昇温工程と、
 (3)400~2000℃で、1秒~100時間保持する炭素化工程と、
 (4)炭素化温度から室温まで冷却する冷却工程を含んでいることが好ましい。
 また、(2)~(4)の前駆体を焼成する工程の後(炭素化処理後に、カーボンアロイを室温まで冷却した後)に、
 (5)粉砕処理を行ってもよい。
 さらに、本発明の含窒素カーボンアロイの製造方法は焼成工程の後に、
 (6)焼成された含窒素カーボンアロイを酸で洗浄する工程を含むことが好ましく、
 (7)酸洗浄工程の後に、酸洗浄された含窒素カーボンアロイを再焼成する工程を含むことがより好ましい。
 以下、本発明の含窒素カーボンアロイの製造方法について、以上の(1)~(7)の工程を順に説明する。
<Method for producing nitrogen-containing carbon alloy>
The method for producing the nitrogen-containing carbon alloy of the present invention comprises:
(1) A precursor is prepared by mixing a nitrogen-containing organic compound, at least one selected from a covalent organic skeleton material and a metal organic skeleton material, and at least one selected from an inorganic metal salt and an organometallic complex. Process,
(2) a temperature raising step of raising the temperature of the precursor from 1 to 2000 ° C. per minute from room temperature to the carbonization temperature under an inert atmosphere;
(3) a carbonization step of holding at 400 to 2000 ° C. for 1 second to 100 hours;
(4) It is preferable to include a cooling step of cooling from the carbonization temperature to room temperature.
Further, after the step of firing the precursors (2) to (4) (after carbonization treatment, after cooling the carbon alloy to room temperature),
(5) A pulverization process may be performed.
Furthermore, the manufacturing method of the nitrogen-containing carbon alloy of the present invention is the firing step,
(6) It preferably includes a step of washing the baked nitrogen-containing carbon alloy with an acid,
(7) More preferably, after the acid cleaning step, a step of refiring the acid-cleaned nitrogen-containing carbon alloy is included.
Hereinafter, the steps (1) to (7) will be described in order with respect to the method for producing a nitrogen-containing carbon alloy of the present invention.
(1)前駆体の調製工程
 前駆体の調製工程では、上述した含窒素有機化合物と、共有結合性有機骨格材料及び金属有機骨格材料から選択される少なくとも一種と、無機金属塩及び有機金属錯体から選択される少なくとも一種を混合して前駆体を調製する。
(1) Precursor preparation step In the precursor preparation step, the above-mentioned nitrogen-containing organic compound, at least one selected from a covalent organic skeleton material and a metal organic skeleton material, an inorganic metal salt and an organometallic complex are used. A precursor is prepared by mixing at least one selected.
 含窒素カーボンアロイの製造工程において調製された前駆体はその後焼成されるが、焼成工程の前に前駆体を粉砕する工程をさらに含むことが好ましい。 The precursor prepared in the production process of the nitrogen-containing carbon alloy is then fired, but preferably further includes a step of pulverizing the precursor before the firing step.
 焼成工程の前に前駆体を粉砕する工程を含む場合、粉砕方法としては、当業者に公知のいずれの方法でも行うことができ、例えば、ボールミル(Ball Mill)、メノウ粉砕、機械粉砕等を用いて粉砕することができる。中でも、機械粉砕方法は好ましく用いられる。機械粉砕方法を用いることにより、生成される含窒素カーボンアロイの比表面積が大きくなり、高い酸素還元活性(ORR活性)が得られる。機械粉砕には、例えば、ワーリング社製、X-TREME MX1200XTMを用いることができる。粉砕条件に関して特に限定されないが、回転刃の回転数が80~30000rpmで混合することが好ましく、300~25000rpmで混合することがより好ましく、1300~20000rpmで混合することがさらに好ましい。回転方法は、連続回転、断続回転、および連続と断続回転の組合せで行うことができる。粉砕時間は0.1秒~15分間であることが好ましく、粉砕回数は少なくとも1回以上であることが好ましい。
 断続粉砕において、回転刃の停止時間は粉砕時間の0.1~100倍であることが好ましく、1~50倍であることがより好ましく、2~30倍であることがさらに好ましい。たとえば、回転数が10000rpm以上、粉砕時間が10秒以下、回転刃の停止時間が0.1倍以上、粉砕回数が2回以上の場合、前駆体混合物の熱による分解が低下し、前駆体混合物を微細化できることに加え、混合を均一にすることができるため、より効果的に酸素還元反応活性を高めることができる。
 連続粉砕による粉砕時間が30秒以上の場合、前駆体混合物が発熱し、共有結合性有機骨格材料及び金属有機骨格材料から選択される少なくとも一種の細孔内に、含窒素有機化合物、含窒素有機化合物の互変異性体、含窒素有機化合物の塩及び含窒素有機化合物の水和物から選択される少なくとも一種と、無機金属塩及び有機金属錯体から選択される少なくとも一種が揮散するため、より効果的に酸素還元反応活性を高めることができる。
In the case of including a step of pulverizing the precursor before the firing step, the pulverization method can be any method known to those skilled in the art, for example, using ball mill, agate pulverization, mechanical pulverization, etc. And can be crushed. Among these, the mechanical pulverization method is preferably used. By using the mechanical pulverization method, the specific surface area of the produced nitrogen-containing carbon alloy is increased, and high oxygen reduction activity (ORR activity) is obtained. For machine pulverization, for example, X-TREME MX1200XTM manufactured by Waring Co., Ltd. can be used. Although there are no particular limitations on the pulverization conditions, mixing is preferably performed at a rotating blade rotation speed of 80 to 30000 rpm, more preferably 300 to 25000 rpm, and even more preferably 1300 to 20000 rpm. The rotation method can be performed by continuous rotation, intermittent rotation, or a combination of continuous and intermittent rotation. The pulverization time is preferably from 0.1 seconds to 15 minutes, and the pulverization frequency is preferably at least once.
In the intermittent pulverization, the stop time of the rotary blade is preferably 0.1 to 100 times, more preferably 1 to 50 times, and further preferably 2 to 30 times the pulverization time. For example, when the rotational speed is 10000 rpm or more, the pulverization time is 10 seconds or less, the rotary blade stop time is 0.1 times or more, and the number of pulverizations is 2 times or more, decomposition of the precursor mixture by heat is reduced, and the precursor mixture Since the mixing can be made uniform, the oxygen reduction reaction activity can be increased more effectively.
When the pulverization time by continuous pulverization is 30 seconds or more, the precursor mixture generates heat, and at least one kind of pores selected from a covalently bonded organic skeleton material and a metal organic skeleton material has a nitrogen-containing organic compound and a nitrogen-containing organic compound. More effective because at least one selected from tautomers of compounds, salts of nitrogen-containing organic compounds and hydrates of nitrogen-containing organic compounds and at least one selected from inorganic metal salts and organometallic complexes are volatilized. In particular, the oxygen reduction reaction activity can be increased.
(2)昇温工程、(3)炭素化工程および(4)冷却工程
 本発明の製造方法においては、特定の構造を有する含窒素有機化合物、その互変異性体、その塩及びその水和物の少なくとも一種と、共有結合性有機骨格材料及び金属有機骨格材料から選択される少なくとも一種と、無機金属塩及び有機金属錯体から選択される少なくとも一種とを含む前駆体を炭素化温度まで昇温し、加熱処理後、室温まで冷却することが好ましい。
(2) Temperature raising step, (3) Carbonization step and (4) Cooling step In the production method of the present invention, the nitrogen-containing organic compound having a specific structure, its tautomer, its salt and its hydrate The precursor containing at least one selected from the group consisting of at least one selected from the group consisting of a covalent organic skeleton material and a metal organic skeleton material and at least one selected from inorganic metal salts and organometallic complexes is heated to a carbonization temperature. After the heat treatment, it is preferable to cool to room temperature.
 また、昇温工程の昇温処理や後述の再焼成工程では、多段階で昇温しても良い。
 多段階の昇温処理のうち、後段の昇温処理は、前段の昇温処理の終了後に、温度保持しても、そのまま温度を上げて昇温処理を行ってもよい。また、一旦室温まで冷却した後に温度を上げ、後段の昇温処理を行ってもよい。
 また、前段の昇温処理後に室温まで冷却した際には、後述の(5)粉砕処理により、処理後の試料を均一に粉砕してもよいし、さらに成形してもよい。また、後述の、(6)酸洗浄工程により、処理後の試料を酸洗浄して金属を除去してもよい。
Further, the temperature may be raised in multiple stages in the temperature raising process of the temperature raising process and the re-baking process described later.
Of the multi-stage temperature raising processes, the latter stage of the temperature raising process may be carried out by holding the temperature after the completion of the preceding temperature raising process or by raising the temperature as it is. Alternatively, after cooling to room temperature, the temperature may be raised and a subsequent temperature increase process may be performed.
Moreover, when it cools to room temperature after the temperature rising process of a front | former stage, the sample after a process may be grind | pulverized uniformly by the below-mentioned (5) grinding | pulverization process, and you may shape | mold further. Alternatively, the metal may be removed by acid cleaning of the sample after the treatment in (6) acid cleaning step described later.
 昇温処理においては、処理前の試料を炭化装置等に挿入した後に常温から所定温度まで昇温してもよいし、あるいは、所定温度の炭化装置等へ処理前の試料を挿入することで昇温してもよい。
 好ましくは、処理前の試料を常温から所定温度まで昇温するのがよい。所定温度まで昇温する場合には、昇温速度を一定にすることが好ましい。より具体的には、昇温速度は毎分1~2000℃で昇温することが好ましく、毎分1~1000℃で昇温することがより好ましく、毎分1~500℃で昇温することがさらに好ましい。
In the temperature raising process, the sample before treatment may be inserted from the normal temperature to a predetermined temperature after being inserted into the carbonization apparatus, or the temperature may be increased by inserting the sample before treatment into the carbonization apparatus at the predetermined temperature. May be warm.
Preferably, the temperature of the sample before processing is raised from room temperature to a predetermined temperature. When raising the temperature to a predetermined temperature, it is preferable to keep the temperature raising rate constant. More specifically, the rate of temperature increase is preferably 1 to 2000 ° C./min, more preferably 1 to 1000 ° C./min, and 1 to 500 ° C./min. Is more preferable.
(予備炭化物)
 細孔を形成した予備炭化物を得るために、含窒素有機化合物と、共有結合性有機骨格材料又は金属有機骨格材料と、無機金属塩等とを含む有機材料の前段の処理は、比較的低温で行うことが好ましい。また、このような低温処理においては、一定温度を保持してもよい。これにより、熱に安定な構造だけを保持し、不安定な不純物成分、溶媒等を除去できる。
(Preliminary carbide)
In order to obtain a pre-carbide having pores, the pre-treatment of the organic material containing the nitrogen-containing organic compound, the covalently bonded organic skeleton material or the metal organic skeleton material, the inorganic metal salt, etc. is performed at a relatively low temperature. Preferably it is done. In such a low temperature treatment, a constant temperature may be maintained. As a result, only the heat-stable structure can be maintained, and unstable impurity components, solvents, and the like can be removed.
 比較的低温で行う昇温処理は、含窒素有機化合物と無機金属塩等とを含む有機材料を100~1500℃まで昇温することが好ましく、150~1050℃まで昇温することがより好ましく、200~1000℃まで昇温することがさらに好ましい。これにより、均一な予備炭化物が得られる。 In the temperature raising treatment performed at a relatively low temperature, the temperature of the organic material containing the nitrogen-containing organic compound and the inorganic metal salt is preferably raised to 100 to 1500 ° C., more preferably raised to 150 to 1050 ° C., More preferably, the temperature is raised to 200 to 1000 ° C. Thereby, a uniform preliminary carbide is obtained.
 上記の昇温処理は、不活性雰囲気下で行うことが好ましい。不活性雰囲気とは、窒素ガスや希ガス雰囲気下などのガス雰囲気をいう。なお、酸素が含まれていたとしても、被処理物を燃焼させない程度まで酸素量を制限した雰囲気であればよい。不活性雰囲気は、閉鎖系又は新たなガスを流通させる流通系のいずれであってもよく、好ましくは流通系である。流通系とする場合には、内径36mmφ当たり0.01~2.0リットル/分のガスを流通させることが好ましく、内径36mmφ当たり0.05~1.0リットル/分のガスを流通させることがより好ましく、内径36mmφ当たり0.1~0.5リットル/分のガスを流通させることが特に好ましい。 It is preferable to perform the above temperature raising process in an inert atmosphere. The inert atmosphere refers to a gas atmosphere such as a nitrogen gas or a rare gas atmosphere. Note that even if oxygen is contained, the atmosphere may be any atmosphere in which the amount of oxygen is limited to such an extent that the workpiece is not combusted. The inert atmosphere may be either a closed system or a distribution system for circulating a new gas, and is preferably a distribution system. In the case of a circulation system, it is preferable to circulate a gas of 0.01 to 2.0 liter / min per 36 mmφ inner diameter, and a gas of 0.05 to 1.0 liter / min per 36 mmφ inner diameter. More preferably, it is particularly preferable to circulate a gas of 0.1 to 0.5 liter / min per 36 mmφ inside diameter.
 昇温処理後、温度保持の時間は、1秒~100時間であり、好ましくは1分~50時間であり、より好ましくは5分~10時間である。100時間を超えて炭素化処理しても処理時間に相応する効果は得られない場合がある。 After the temperature raising treatment, the temperature holding time is 1 second to 100 hours, preferably 1 minute to 50 hours, and more preferably 5 minutes to 10 hours. Even if the carbonization treatment is performed for more than 100 hours, an effect corresponding to the treatment time may not be obtained.
 上記の昇温処理で使用する加熱装置は、特に限定されないが、管状炉(カンタル線炉、イメージング炉)、マッフル炉、真空ガス置換炉、回転炉(ロータリーキルン)、ローラーハースキルン、プッシャーキルン、多段炉、トンネル炉、流動焼成炉等を用いることが好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉、回転炉(ロータリーキルン)、流動焼成炉を用いることがより好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉を用いることが特に好ましい。 The heating device used in the above temperature raising treatment is not particularly limited, but is a tubular furnace (Kantar wire furnace, imaging furnace), muffle furnace, vacuum gas replacement furnace, rotary furnace (rotary kiln), roller hearth kiln, pusher kiln, multistage It is preferable to use a furnace, a tunnel furnace, a fluidized firing furnace or the like, and it is more preferable to use a tubular furnace (a cantal wire furnace, an imaging furnace), a muffle furnace, a rotary furnace (rotary kiln), a fluidized firing furnace, a tubular furnace (a cantal wire) Furnaces, imaging furnaces) and muffle furnaces are particularly preferred.
(不融体)
 炭素化温度までの加熱処理において、昇温処理の部分をまとめて不融化処理とする。不融体を得るためには、前段の特定の構造を有する含窒素有機化合物と、共有結合性有機骨格材料及び金属有機骨格材料から選択される少なくとも一種と、無機金属塩及び有機金属錯体から選択される少なくとも一種とを含む前駆体の昇温処理に引き続き、後段の昇温処理を連続して行うことが好ましい。これにより、前段の余熱を利用することができ、有機材料の分解反応と炭素化反応を連続して行うことができ、分解生成物と金属とが相互作用して、金属をより活性が高い状態で安定化することができる。なお、金属としては、鉄イオンを、2価の状態で含むものを用いることが好ましい。その結果、高い酸素還元性能を有するカーボンアロイを製造することができる。
(Infusible)
In the heat treatment up to the carbonization temperature, the portions of the temperature rise treatment are collectively referred to as an infusible treatment. In order to obtain an infusible material, a nitrogen-containing organic compound having a specific structure in the previous stage, at least one selected from a covalent organic skeleton material and a metal organic skeleton material, and an inorganic metal salt and an organometallic complex are selected. It is preferable that the subsequent temperature raising treatment is continuously performed following the temperature raising treatment of the precursor containing at least one kind. As a result, the residual heat of the previous stage can be utilized, the decomposition reaction and the carbonization reaction of the organic material can be continuously performed, and the decomposition product and the metal interact with each other, so that the metal is more active. It can be stabilized with. In addition, it is preferable to use what contains an iron ion in a bivalent state as a metal. As a result, a carbon alloy having high oxygen reduction performance can be produced.
 後段の昇温処理は、不活性雰囲気下で行うことが好ましく、不活性雰囲気は、閉鎖系又は新たなガスを流通させる流通系のいずれであってもよく、好ましくは流通系である。流通系とする場合には、内径36mmφ当たり0.01ミリリットル~2.0リットル/分のガスを流通させることが好ましく、内径36mmφ当たり0.02ミリリットル~1.0リットル/分のガスを流通させることがより好ましく内径36mmφ当たり0.05ミリリットル~0.5リットル/分のガスを流通させることが特に好ましい。なお、後段のガス流量は、前段でのガス流量と異なっていても良い。 The subsequent temperature increase treatment is preferably performed in an inert atmosphere, and the inert atmosphere may be either a closed system or a distribution system for circulating a new gas, and is preferably a distribution system. In the case of a circulation system, it is preferable to circulate a gas of 0.01 ml to 2.0 liter / min per 36 mmφ inner diameter, and a gas of 0.02 ml to 1.0 liter / min per 36 mmφ inner diameter. More preferably, a gas of 0.05 milliliter to 0.5 liter / min is circulated per 36 mmφ inside diameter. The downstream gas flow rate may be different from the upstream gas flow rate.
 昇温処理後、温度保持の時間は、1秒~100時間であり、好ましくは1分~50時間であり、より好ましくは5分~10時間である。100時間を超えて炭素化処理しても処理時間に相応する効果は得られない場合がある。 After the temperature raising treatment, the temperature holding time is 1 second to 100 hours, preferably 1 minute to 50 hours, and more preferably 5 minutes to 10 hours. Even if the carbonization treatment is performed for more than 100 hours, an effect corresponding to the treatment time may not be obtained.
 上記の昇温処理で使用する加熱装置は、特に限定されないが、管状炉(カンタル線炉、イメージング炉)、マッフル炉、真空ガス置換炉、回転炉(ロータリーキルン)、ローラーハースキルン、プッシャーキルン、多段炉、トンネル炉、流動焼成炉等を用いることが好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉、回転炉(ロータリーキルン)、流動焼成炉を用いることがより好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉を用いることが特に好ましい。 The heating device used in the above temperature raising treatment is not particularly limited, but is a tubular furnace (Kantar wire furnace, imaging furnace), muffle furnace, vacuum gas replacement furnace, rotary furnace (rotary kiln), roller hearth kiln, pusher kiln, multistage It is preferable to use a furnace, a tunnel furnace, a fluidized firing furnace or the like, and it is more preferable to use a tubular furnace (a cantal wire furnace, an imaging furnace), a muffle furnace, a rotary furnace (rotary kiln), a fluidized firing furnace, a tubular furnace (a cantal wire) Furnaces, imaging furnaces) and muffle furnaces are particularly preferred.
(炭化物)
 炭化物を得るために、前段の昇温処理後、室温まで冷却し、均一に粉砕して、酸洗浄を行い後段の昇温処理をすることが好ましい。これにより、炭素化処理における処理温度を上げることができ、炭素構造の規則性がより高められたカーボンアロイを得ることが可能になる。その結果、カーボンアロイの導電性が向上し、高い酸素還元性能が得られ、また、触媒としての耐久性も向上する。
 また、前段から直接高温度での炭素化処理を行うことも好ましい。これにより、カーボンアロイの収率が低減する場合があるが、得られるカーボンアロイの結晶子サイズが揃い、そのため金属が均一に分布し、活性が高い状態が保持される。結果として、優れた酸素還元性能を有するカーボンアロイの製造が可能となる。なお、このような処理温度は、炭素化温度を超えないことが好ましく、このような温度範囲で炭素化処理を行うことにより、適切なカーボンアロイを得ることができる。
(carbide)
In order to obtain a carbide, it is preferable to cool to room temperature after the temperature rising treatment in the previous stage, uniformly pulverize, perform acid cleaning, and then perform the temperature rising process in the subsequent stage. As a result, the treatment temperature in the carbonization treatment can be increased, and it becomes possible to obtain a carbon alloy in which the regularity of the carbon structure is further improved. As a result, the conductivity of the carbon alloy is improved, high oxygen reduction performance is obtained, and durability as a catalyst is also improved.
It is also preferable to perform carbonization treatment at a high temperature directly from the previous stage. Thereby, the yield of carbon alloy may be reduced, but the crystallite size of the obtained carbon alloy is uniform, so that the metal is uniformly distributed and the state of high activity is maintained. As a result, it becomes possible to produce a carbon alloy having excellent oxygen reduction performance. In addition, it is preferable that such process temperature does not exceed carbonization temperature, and an appropriate carbon alloy can be obtained by performing carbonization process in such a temperature range.
 特定の構造を有する含窒素有機化合物と無機金属塩とを含む前駆体の炭素化処理の焼成温度は、含窒素有機化合物が熱分解及び炭素化する温度であれば特に制限されないが、炭素化温度の上限は2000℃である必要がある。
 無機金属塩及び有機金属錯体から選択される少なくとも一種を含む前駆体の場合、反応温度の下限は400℃であることが好ましく、500℃であることがより好ましく、600℃であることがさらに好ましく、700℃であることがよりさらに好ましい。反応温度を上記範囲内とすることによって、炭化が進んで高い触媒性能を有するカーボンアロイが得られる。また、反応温度が2000℃以下であれば炭素骨格中に窒素が残留し、所望のN/C原子比とすることでき、十分な酸素還元反応活性が得られる。
 焼成温度は、600~1500℃であることが好ましく、700~1200℃であることがより好ましく、700~1050℃であることが特に好ましい。この範囲内で炭素化処理を行うと、カーボンアロイの収率が低減する場合があるが、得られるカーボンアロイの結晶子サイズが揃い、そのため金属が均一に分布し、活性が高い状態が保持される。結果として、優れた酸素還元性能を有するカーボンアロイの製造が可能となる。また、上記範囲内で炭素化処理を行うことにより、生成した無機金属の作用に炭素骨格中に窒素が残留し易くなり、酸素還元反応活性を高めることができる。
The firing temperature of the carbonization treatment of the precursor containing a nitrogen-containing organic compound having a specific structure and an inorganic metal salt is not particularly limited as long as the nitrogen-containing organic compound is thermally decomposed and carbonized. The upper limit of is required to be 2000 ° C.
In the case of a precursor containing at least one selected from inorganic metal salts and organometallic complexes, the lower limit of the reaction temperature is preferably 400 ° C, more preferably 500 ° C, and even more preferably 600 ° C. 700 ° C. is even more preferable. By setting the reaction temperature within the above range, carbon alloy having high catalytic performance due to progress of carbonization can be obtained. Moreover, if reaction temperature is 2000 degrees C or less, nitrogen will remain in carbon skeleton and it can be set as desired N / C atomic ratio, and sufficient oxygen reduction reaction activity will be obtained.
The firing temperature is preferably 600 to 1500 ° C., more preferably 700 to 1200 ° C., and particularly preferably 700 to 1050 ° C. When carbonization treatment is performed within this range, the yield of carbon alloy may be reduced, but the crystallite size of the obtained carbon alloy is uniform, so that the metal is uniformly distributed and the state of high activity is maintained. The As a result, it becomes possible to produce a carbon alloy having excellent oxygen reduction performance. Further, by performing the carbonization treatment within the above range, nitrogen easily remains in the carbon skeleton due to the action of the generated inorganic metal, and the oxygen reduction reaction activity can be enhanced.
 昇温処理は、不活性ガスまたは非酸化性ガス流通下で行うことが好ましく、これらの雰囲気は、閉鎖系又は新たなガスを流通させる流通系のいずれであってもよく、好ましくは流通系である。流通系とする場合には、ガスの流速は、内径36mmφ当たり0.01ミリリットル~2.0リットル/分であることが好ましく、内径36mmφ当たり0.02ミリリットル~1.0リットル/分であることがより好ましく、内径36mmφ当たり0.05ミリリットル~0.5リットル/分であることが特に好ましい。流速がこの範囲であると、好適に目的とする含窒素カーボンアロイを得ることができるので好ましい。 The temperature raising treatment is preferably performed under a flow of an inert gas or a non-oxidizing gas, and these atmospheres may be either a closed system or a flow system through which a new gas is circulated. is there. In the case of a circulation system, the gas flow rate is preferably 0.01 to 2.0 liters / min per 36 mmφ inner diameter, and 0.02 to 1.0 liter / min per 36 mmφ inner diameter. Is more preferable, and it is particularly preferably 0.05 to 0.5 liter / min per 36 mmφ inside diameter. It is preferable for the flow rate to be within this range because the desired nitrogen-containing carbon alloy can be suitably obtained.
 炭素化処理の処理時間は、1秒~100時間であり、好ましくは1分~50時間であり、より好ましくは1時間~10時間である。炭素化処理の処理時間を上記範囲内とすることにより、酸素還元反応活性を高めることができる。特に、700℃以上で、1時間~10時間保持することにより、共有結合性有機骨格材料または金属有機骨格材料の細孔外に存在する含窒素有機化合物、含窒素有機化合物の互変異性体、含窒素有機化合物の塩及び含窒素有機化合物の水和物及び無機金属塩及び有機金属錯体の内、炭化反応に用いられなかった不要物を揮散させることができる。さらに保持時間を1時間~10時間とすることにより、前駆体混合物の分解生成物を除去することができ、より効果的に酸素還元反応活性を高めることができる。 The treatment time for the carbonization treatment is 1 second to 100 hours, preferably 1 minute to 50 hours, and more preferably 1 hour to 10 hours. By setting the treatment time of the carbonization treatment within the above range, the oxygen reduction reaction activity can be enhanced. In particular, by holding at 700 ° C. or higher for 1 to 10 hours, a nitrogen-containing organic compound present outside the pores of the covalently bonded organic skeleton material or the metal organic skeleton material, a tautomer of the nitrogen-containing organic compound, Of the salt of the nitrogen-containing organic compound, the hydrate of the nitrogen-containing organic compound, the inorganic metal salt, and the organometallic complex, unnecessary substances that have not been used in the carbonization reaction can be volatilized. Furthermore, by setting the holding time to 1 to 10 hours, the decomposition product of the precursor mixture can be removed, and the oxygen reduction reaction activity can be enhanced more effectively.
 上記の昇温処理で使用する加熱装置は、特に限定されないが、管状炉(カンタル線炉、イメージング炉)、マッフル炉、真空ガス置換炉、回転炉(ロータリーキルン)、ローラーハースキルン、プッシャーキルン、多段炉、トンネル炉、流動焼成炉等を用いることが好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉、回転炉(ロータリーキルン)、流動焼成炉を用いることがより好ましく、管状炉(カンタル線炉、イメージング炉)、マッフル炉を用いることが特に好ましい。 The heating device used in the above temperature raising treatment is not particularly limited, but is a tubular furnace (Kantar wire furnace, imaging furnace), muffle furnace, vacuum gas replacement furnace, rotary furnace (rotary kiln), roller hearth kiln, pusher kiln, multistage It is preferable to use a furnace, a tunnel furnace, a fluidized firing furnace or the like, and it is more preferable to use a tubular furnace (a cantal wire furnace, an imaging furnace), a muffle furnace, a rotary furnace (rotary kiln), a fluidized firing furnace, a tubular furnace (a cantal wire) Furnaces, imaging furnaces) and muffle furnaces are particularly preferred.
(5)粉砕処理
 また、炭素化処理後に、カーボンアロイを室温まで冷却した後、粉砕処理を行ってもよい。粉砕処理は当業者に公知のいずれの方法でも行うことができ、例えば、ボールミル(Ball Mill)、メノウ粉砕、機械粉砕等を用いて粉砕することができる。
(5) Crushing treatment After the carbonization treatment, the carbon alloy may be cooled to room temperature and then crushed. The pulverization treatment can be performed by any method known to those skilled in the art. For example, the pulverization can be performed using a ball mill, agate pulverization, mechanical pulverization, or the like.
(6)酸洗浄工程
 本発明の含窒素カーボンアロイの製造方法は、焼成工程の後に、焼成された含窒素カーボンアロイを酸で洗浄する酸洗浄工程を含んでもよい。生成したカーボンアロイ触媒の表面上の金属を酸洗浄することにより、ORR活性を向上させることができる。この酸洗浄処理により、最適な多孔性を有する多孔性含窒素カーボンアロイを得ることができると予想される。
 酸洗浄処理においては、pH7以下の強酸又は弱酸を含む、任意の水性ブロンステッド(プロトン)酸を酸洗浄工程内で用いることができる。さらに、無機酸(鉱酸)又は有機酸を用いることができる。好適な酸の例としては、HCI、HBr、HI、HSO、HSO、HNO、HClO、[HSO、[HSO、[HO]、H[C]、HCOH、HCIO、HBrO、HBrO、HIO、HIO、FSOH、CFSOH、CFCOH、CHCOH、B(OH)、など(これらの任意の組み合わせを含む)が挙げられるが、これらに限定されない。また、特表2010-524195号公報に記載の方法を本発明でも用いることができる。
(6) Acid Washing Process The method for producing a nitrogen-containing carbon alloy of the present invention may include an acid washing process for washing the fired nitrogen-containing carbon alloy with an acid after the firing process. The ORR activity can be improved by acid cleaning of the metal on the surface of the produced carbon alloy catalyst. By this acid cleaning treatment, it is expected that a porous nitrogen-containing carbon alloy having optimum porosity can be obtained.
In the acid cleaning treatment, any aqueous Bronsted (proton) acid including a strong acid or a weak acid having a pH of 7 or less can be used in the acid cleaning step. Furthermore, an inorganic acid (mineral acid) or an organic acid can be used. Examples of suitable acids include HCI, HBr, HI, H 2 SO 4 , H 2 SO 3 , HNO 3 , HClO 4 , [HSO 4 ] , [HSO 3 ] , [H 3 O] + , H 2 [C 2 O 4 ], HCO 2 H, HCIO 3 , HBrO 3 , HBrO 4 , HIO 3 , HIO 4 , FSO 3 H, CF 3 SO 3 H, CF 3 CO 2 H, CH 3 CO 2 H, B (OH) 3 , etc. (including any combination thereof), but are not limited to these. Further, the method described in JP-T-2010-524195 can also be used in the present invention.
(7)再焼成工程
 本発明の含窒素カーボンアロイの製造方法は、焼成工程の後に、焼成された含窒素カーボンアロイを粉砕する工程と再焼成する工程をさらに含むことが好ましい。より好ましくは酸洗浄工程の後に、酸洗浄された含窒素カーボンアロイを再焼成する工程を含む。このような再焼成工程により、含窒素カーボンアロイを電極に塗布したときの塗布量の増加に伴って電位を向上させることができ、ORR活性を向上させることができる。また、再焼成工程を設けることにより、MOFが分解し、金属が炭素材料から揮散して、脱離するため、多孔化し、比表面積を増大することができ、より効果的に酸素還元反応活性を高めることができる。
(7) Re-baking process It is preferable that the manufacturing method of the nitrogen-containing carbon alloy of this invention further includes the process of grind | pulverizing the baked nitrogen-containing carbon alloy, and the process of re-baking after a baking process. More preferably, after the acid cleaning step, a step of refiring the acid-cleaned nitrogen-containing carbon alloy is included. By such a refiring step, the potential can be improved with an increase in the coating amount when the nitrogen-containing carbon alloy is applied to the electrode, and the ORR activity can be improved. In addition, by providing a refiring step, MOF decomposes and the metal is volatilized and desorbed from the carbon material, so that it can be made porous and the specific surface area can be increased. Can be increased.
 再焼成工程は炭素の黒鉛化を促進する目的で、焼成工程以上の高温で行う必要があるため、再焼成工程の焼成温度は500~2000℃であることが好ましく、600~1500℃であることがより好ましく、1000~1500℃であることがさらに好ましい。 Since the refiring process needs to be performed at a higher temperature than the calcining process for the purpose of promoting carbon graphitization, the calcining temperature in the refiring process is preferably 500 to 2000 ° C, and preferably 600 to 1500 ° C. Is more preferable, and a temperature of 1000 to 1500 ° C. is even more preferable.
 焼成の際にカーボンアロイ中の窒素原子の含有割合を高く保持しながら炭素の黒鉛化を進行させる観点から、反応時に加圧状態で焼成しても良い。ガス排出口を水でトラップして背圧がかかる状態で焼成しても良い。炭素化工程の圧力は、0.01~5MPa、好ましくは0.05~1MPa、より好ましくは0.08~0.3MPa、特に好ましくは、0.09~0.15MPaである。 From the viewpoint of promoting graphitization of carbon while maintaining a high nitrogen atom content ratio in the carbon alloy during firing, firing may be performed in a pressurized state during the reaction. The gas discharge port may be trapped with water and fired in a state where back pressure is applied. The pressure in the carbonization step is 0.01 to 5 MPa, preferably 0.05 to 1 MPa, more preferably 0.08 to 0.3 MPa, and particularly preferably 0.09 to 0.15 MPa.
 再焼成工程の方法は、特に限定されないが、好ましくは管状炉、回転炉(ロータリーキルン)、ローラーハースキルン、プッシャーキルン、多段炉、真空ガス置換炉、トンネル炉、流動焼成炉等を用い、より好ましくは回転炉(ロータリーキルン)、真空ガス置換炉、真空ガス置換回転炉(ロータリーキルン)、トンネル炉、流動焼成炉を用い、特に好ましくは真空ガス置換回転炉(真空ガス置換式ロータリーキルン)を用いる。 The method of the refiring step is not particularly limited, but preferably a tubular furnace, a rotary furnace (rotary kiln), a roller hearth kiln, a pusher kiln, a multi-stage furnace, a vacuum gas replacement furnace, a tunnel furnace, a fluidized firing furnace, and the like are more preferable. Uses a rotary furnace (rotary kiln), a vacuum gas replacement furnace, a vacuum gas replacement rotary furnace (rotary kiln), a tunnel furnace, and a fluidized firing furnace, and particularly preferably a vacuum gas replacement rotary furnace (vacuum gas replacement rotary kiln).
 再焼成する工程の前には、脱気及び窒素置換する工程をさらに含むことが好ましい。このような工程を設けることで、酸素濃度を低減させることができる。脱気及び窒素置換する工程では、真空ポンプで脱気した後、窒素ガス置換することが好ましい。特に、真空ポンプで脱気した後、窒素ガス置換する操作を複数回繰り返すことが好ましい。この際、脱気用いる装置は、脱気が可能な装置であれば特に限定されないが、真空ガス置換炉、真空ガス置換回転炉(ロータリーキルン)を用いることが好ましい。真空脱気時の圧力は特に限定されないが、4×10Pa以下が好ましく、4×10Pa以下がより好ましく、2×10Pa以下が特に好ましい。 It is preferable to further include a step of deaeration and nitrogen substitution before the step of refiring. By providing such a process, the oxygen concentration can be reduced. In the step of deaeration and nitrogen replacement, it is preferable to perform nitrogen gas replacement after deaeration with a vacuum pump. In particular, it is preferable to repeat the operation of replacing nitrogen gas multiple times after deaeration with a vacuum pump. At this time, the apparatus used for deaeration is not particularly limited as long as it can be deaerated, but it is preferable to use a vacuum gas replacement furnace or a vacuum gas replacement rotary furnace (rotary kiln). The pressure at the time of vacuum deaeration is not particularly limited, but is preferably 4 × 10 4 Pa or less, more preferably 4 × 10 3 Pa or less, and particularly preferably 2 × 10 2 Pa or less.
 カーボンアロイの再焼成時、カーボンアロイの性能を均一化させる目的でカーボンアロイを流動させることが好ましい。この際用いられる装置は、カーボンアロイを流動させることが可能な装置あれば特に限定されないが、回転炉(ロータリーキルン)、真空ガス置換回転炉(ロータリーキルン)、流動焼成炉を用いることが好ましい。
 回転炉(ロータリーキルン)、真空ガス置換回転炉(ロータリーキルン)を用いる場合、焼成時、試料管を回転させるが、回転速度、速度変化等は特に限定されない。回転速度は好ましくは10rpm以下、より好ましくは5rpm以下である。回転速度をこの範囲にすることにより、管壁と予備炭素間で擦りが生じてカーボンアロイの微細化が進み、多孔化するため、より効果的に酸素還元反応活性を高めることができる。
When re-firing the carbon alloy, it is preferable to flow the carbon alloy in order to make the performance of the carbon alloy uniform. The apparatus used at this time is not particularly limited as long as it can flow the carbon alloy, but it is preferable to use a rotary furnace (rotary kiln), a vacuum gas replacement rotary furnace (rotary kiln), or a fluidized firing furnace.
When using a rotary furnace (rotary kiln) or a vacuum gas replacement rotary furnace (rotary kiln), the sample tube is rotated during firing, but the rotational speed, speed change, etc. are not particularly limited. The rotation speed is preferably 10 rpm or less, more preferably 5 rpm or less. By setting the rotation speed within this range, rubbing occurs between the tube wall and the preparatory carbon, and the carbon alloy is further refined and made porous. Therefore, the oxygen reduction reaction activity can be enhanced more effectively.
 本発明の含窒素カーボンアロイの製造方法は、賦活剤の存在下で炭素化処理を行うことが好ましい(賦活工程)。賦活剤の存在下、高温で炭素化処理することにより、カーボンアロイの細孔が発達して表面積が増大し、カーボンアロイの表面における金属の露出度が向上することにより、触媒としての性能が向上する。なお、炭化物の表面積は、N吸着量により測定することができる。 In the method for producing a nitrogen-containing carbon alloy of the present invention, it is preferable to perform a carbonization treatment in the presence of an activator (activation step). By carbonizing at high temperature in the presence of an activator, the pores of the carbon alloy develop and the surface area increases, and the exposure of the metal on the surface of the carbon alloy improves, thereby improving the performance as a catalyst. To do. Note that the surface area of the carbide can be measured by the N 2 adsorption amount.
 使用できる賦活剤としては、特に制限されないが、例えば、二酸化炭素、アンモニアガス、水蒸気、空気、酸素ガス、水素ガス、一酸化炭素ガス、メタンガス、アルカリ金属水酸化物、塩化亜鉛、及びリン酸からなる群より選択される少なくとも1種を用いることができ、さらに好ましくは、二酸化炭素、アンモニアガス、水蒸気、空気、酸素ガスからなる群より選択される少なくとも1種を用いることができる。
 気体賦活剤は、不活性ガスで希釈することが好ましく、希釈する不活性ガスとしては、窒素ガス、及び希ガス(例えば、アルゴンガス、ヘリウムガス及びネオンガス)が挙げられる。
 気体賦活剤は、炭素化処理の雰囲気中に2~80モル%、好ましくは10~60モル%含有させればよい。気体賦活剤を上記範囲内となるように含有させることにより、十分な賦活効果が得られる。また、アルカリ金属水酸化物等の固体賦活剤は、固体の状態で被炭化物と混合してもよく、あるいは、水等の溶媒で溶解又は希釈した後、被炭化物を含浸するか、あるいはスラリー状にして被炭化物に練り込んでもよい。液体賦活剤は、水等で希釈した後、被炭化物を含浸するかあるいは被炭化物に練り込めばよい。
 熱処理の際、気相の圧力は、常圧、加圧、減圧のいずれであってもよいが、高温下で加圧していることが好ましい。
 ガスは静止していても流通していてもよいが、生成した不純物を排出する観点から、流通していることが好ましい。
The activator that can be used is not particularly limited. For example, carbon dioxide, ammonia gas, water vapor, air, oxygen gas, hydrogen gas, carbon monoxide gas, methane gas, alkali metal hydroxide, zinc chloride, and phosphoric acid. At least one selected from the group consisting of carbon dioxide, ammonia gas, water vapor, air, and oxygen gas can be used, more preferably at least one selected from the group consisting of:
The gas activator is preferably diluted with an inert gas. Examples of the inert gas to be diluted include nitrogen gas and rare gases (for example, argon gas, helium gas, and neon gas).
The gas activator may be contained in the atmosphere of carbonization treatment in an amount of 2 to 80 mol%, preferably 10 to 60 mol%. By including the gas activator so as to be within the above range, a sufficient activation effect can be obtained. In addition, the solid activator such as alkali metal hydroxide may be mixed with the carbonized substance in a solid state, or after being dissolved or diluted with a solvent such as water, impregnated with the carbonized substance or in a slurry state. And may be kneaded into the article to be carbonized. The liquid activator may be diluted with water or the like and then impregnated with the carbonized material or kneaded into the carbonized material.
During the heat treatment, the pressure in the gas phase may be any of normal pressure, pressurization, and reduced pressure, but is preferably pressurized at a high temperature.
The gas may be stationary or distributed, but is preferably distributed from the viewpoint of discharging generated impurities.
 炭素化後に窒素原子を導入することもできる。このとき、窒素原子を導入する方法としては、液相ドープ法、気相ドープ法、又は、気相-液相ドープ法を用いて行うことができる。例えば、カーボンアロイに窒素源であるアンモニア雰囲気下で200~1200℃、5~180分保持することにより、熱処理して、炭素触媒の表面に窒素原子を導入することができる。 Nitrogen atoms can be introduced after carbonization. At this time, as a method of introducing nitrogen atoms, a liquid phase doping method, a gas phase doping method, or a gas phase-liquid phase doping method can be used. For example, nitrogen atoms can be introduced into the surface of the carbon catalyst by heat treatment by maintaining the carbon alloy in an ammonia atmosphere as a nitrogen source at 200 to 1200 ° C. for 5 to 180 minutes.
(含窒素カーボンアロイ)
 本発明は、上述した含窒素カーボンアロイの製造方法で製造された含窒素カーボンアロイに関する。
(Nitrogen-containing carbon alloy)
The present invention relates to a nitrogen-containing carbon alloy produced by the above-described method for producing a nitrogen-containing carbon alloy.
 上記前駆体の焼成により得られた本発明の含窒素カーボンアロイは、窒素が導入されている含窒素カーボンアロイである。本発明の含窒素カーボンアロイには、炭素がsp混成軌道により化学結合し、二次元に広がった六角網面構造を持つ炭素原子の集合体であるグラフェンが存在することが好ましい。 The nitrogen-containing carbon alloy of the present invention obtained by firing the precursor is a nitrogen-containing carbon alloy into which nitrogen has been introduced. The nitrogen-containing carbon alloy of the present invention preferably contains graphene, which is an aggregate of carbon atoms having a hexagonal network structure in which carbon is chemically bonded by sp 2 hybrid orbitals and spreads in two dimensions.
 さらに、本発明の含窒素カーボンアロイにおいて、炭素触媒中の表面窒素原子の含有量は表面の炭素に対して原子比(N/C)で0.02~0.3であることがより好ましい。窒素原子と炭素原子との原子比(N/C)を上記範囲内とすることにより、金属と結合する有効な窒素原子の数を確保することができ、十分な酸素還元触媒特性が得られる。また、窒素原子と炭素原子との原子比(N/C)を上記範囲内とすることにより、カーボンアロイの炭素骨格の強度を高めることができ、電気伝導性の低下を抑制することができる。 Furthermore, in the nitrogen-containing carbon alloy of the present invention, the content of surface nitrogen atoms in the carbon catalyst is more preferably 0.02 to 0.3 in terms of atomic ratio (N / C) to surface carbon. By setting the atomic ratio (N / C) of nitrogen atoms to carbon atoms within the above range, the number of effective nitrogen atoms bonded to the metal can be ensured, and sufficient oxygen reduction catalyst characteristics can be obtained. Moreover, the intensity | strength of the carbon skeleton of a carbon alloy can be raised by making atomic ratio (N / C) of a nitrogen atom and a carbon atom into the said range, and the fall of electrical conductivity can be suppressed.
 また、カーボンアロイの骨格は、少なくとも炭素原子及び窒素原子により形成されていればよく、その他の原子として水素原子や酸素原子等を含んでいてもよい。その場合、その他の原子と炭素原子及び窒素原子との原子比((その他の原子)/(C+N))は0.3以下であることが好ましい。 Further, the skeleton of the carbon alloy may be formed of at least carbon atoms and nitrogen atoms, and may contain hydrogen atoms, oxygen atoms, and the like as other atoms. In that case, the atomic ratio ((other atoms) / (C + N)) of other atoms to carbon atoms and nitrogen atoms is preferably 0.3 or less.
 比表面積分析は、カーボンアロイを所定の容器に入れて液体窒素温度(-196℃)に冷却し、容器内に窒素ガスを導入して吸着させ、その吸着等温線から単分子吸着量と吸着パラメーターを算出し、窒素の分子占有断面積(0.162cm)から試料の比表面積を算出して求めるBET(Brunauer-Emmett-Teller)法により求めることができる。 In specific surface area analysis, carbon alloy is put in a predetermined container, cooled to liquid nitrogen temperature (-196 ° C), nitrogen gas is introduced into the container and adsorbed, and the adsorption amount of single molecules and adsorption parameters are determined from the adsorption isotherm. And the BET (Brunauer-Emmett-Teller) method for calculating the specific surface area of the sample from the molecular occupation cross section (0.162 cm 2 ) of nitrogen.
 カーボンアロイの細孔形状は特に制限されず、例えば、表面のみに細孔が形成されていても、表面のみならず内部にも細孔が形成されていてもよい。内部にも細孔が形成されている場合には、例えば、トンネル状に貫通したものであってもよく、また、球状又は六角柱状等の多角形状の空洞が互いに連結したような形状を有していてもよい。 The pore shape of the carbon alloy is not particularly limited, and for example, pores may be formed only on the surface, or pores may be formed not only on the surface but also inside. When pores are also formed inside, for example, it may be tunnel-shaped, and it has a shape in which polygonal cavities such as spherical or hexagonal columns are connected to each other. It may be.
 カーボンアロイの比表面積は、90m/g以上であることが好ましく、350m/g以上であることがより好ましく、560m/g以上であることが特に好ましい。ただし、触媒活性部位(少なくともCとNと金属イオンを構成要件とする金属配位物、あるいは配置空間(場))が高密度に生成・形成した場合は上記範囲外でもよい。
 細孔奥まで酸素が十分に行き届き、十分な酸素還元触媒特性が得られる観点からは、カーボンアロイの比表面積は、3000m/g以下であることが好ましく、2000m/g以下であることがより好ましく、1500m/g以下であることが特に好ましい。
The specific surface area of the carbon alloy is preferably at 90m 2 / g or more, more preferably 350 meters 2 / g or more, and particularly preferably 560 m 2 / g or more. However, when the catalytically active site (metal coordination product or configuration space (field) having at least C, N, and metal ions as constituents) is generated and formed at a high density, it may be outside the above range.
From the viewpoint of sufficient oxygen reaching the depth of the pores and obtaining sufficient oxygen reduction catalyst characteristics, the specific surface area of the carbon alloy is preferably 3000 m 2 / g or less, and preferably 2000 m 2 / g or less. More preferably, it is particularly preferably 1500 m 2 / g or less.
 本発明の含窒素カーボンアロイの形状は、酸素還元反応活性を有する限り特に限定はされない。例えば、シート状、繊維状、板状、柱状、ブロック状、粒子状、球状以外の多くの楕円、扁平、角型など、大きく歪んだ構造等が挙げられる。分散がし易いという観点から、好ましくはブロック状、粒子状であるが、後述のスラリーを塗布して乾燥させる場合、チキソ性を付与する観点から好ましくは繊維状、板状、柱状である。 The shape of the nitrogen-containing carbon alloy of the present invention is not particularly limited as long as it has oxygen reduction reaction activity. For example, a large distorted structure such as a sheet shape, a fiber shape, a plate shape, a column shape, a block shape, a particle shape, many ellipses other than a spherical shape, a flat shape, a square shape, and the like can be given. From the viewpoint of easy dispersion, it is preferably a block shape or a particle shape. However, when a slurry described later is applied and dried, it is preferably a fiber shape, a plate shape, or a column shape from the viewpoint of imparting thixotropy.
 さらに、本発明の含窒素カーボンアロイを溶媒に分散させることにより、カーボンアロイを含有するスラリーを作製することができる。これにより、例えば、燃料電池の電極触媒や、蓄電装置の電極材の作製を容易する際に、カーボンアロイが溶媒に分散されたスラリーを支持材料に塗布して焼成、乾燥させて、任意の形状に加工した炭素触媒を形成することができる。このようにカーボンアロイをスラリーとすることにより、炭素触媒の加工性が向上し、容易に電極触媒や電極材として用いることができる。
 本発明の燃料電池用カーボンアロイ触媒は、含窒素カーボンアロイの乾燥後の塗布量が0.01mg/cm以上であることが好ましく、0.02~100mg/cmであることがより好ましく、0.05~10mg/cmであることが特に好ましい。
 溶媒としては、燃料電池の電極触媒や、蓄電装置の電極材を作製する際に用いられる溶媒を適宜選択して使用することができる。例えば蓄電装置の電極材を作製する際に用いられる溶媒としては、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、1,2-ジメトキシエタン(DME)、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、N-メチル-2-ピロリドン(NMP)、プロピレンカーボネート(PC)、γ-ブチロラクトン(GBL)等一般的な極性溶媒を単独又は複数混合して使用することができる。また、燃料電池の電極触媒を作製する際に用いられる溶媒としては、例えば、水、メタノール、エタノール、イソプロピルアルコール、ブタノール、トルエン、キシレン、メチルエチルケトン、アセトン等を挙げることができる。
Furthermore, the slurry containing a carbon alloy can be produced by dispersing the nitrogen-containing carbon alloy of the present invention in a solvent. Thus, for example, when preparing an electrode catalyst for a fuel cell or an electrode material for a power storage device, a slurry in which a carbon alloy is dispersed in a solvent is applied to a support material, baked, and dried, so that an arbitrary shape is obtained. It is possible to form a carbon catalyst that has been processed into Thus, by making a carbon alloy into a slurry, the workability of the carbon catalyst is improved and it can be easily used as an electrode catalyst or an electrode material.
In the carbon alloy catalyst for fuel cells of the present invention, the coating amount after drying of the nitrogen-containing carbon alloy is preferably 0.01 mg / cm 2 or more, more preferably 0.02 to 100 mg / cm 2 , Particularly preferred is 0.05 to 10 mg / cm 2 .
As the solvent, a solvent used when producing an electrode catalyst for a fuel cell or an electrode material for a power storage device can be appropriately selected and used. For example, as a solvent used for producing an electrode material for a power storage device, diethyl carbonate (DEC), dimethyl carbonate (DMC), 1,2-dimethoxyethane (DME), ethylene carbonate (EC), ethyl methyl carbonate (EMC) ), N-methyl-2-pyrrolidone (NMP), propylene carbonate (PC), γ-butyrolactone (GBL), etc., can be used alone or in combination. In addition, examples of the solvent used in preparing the fuel cell electrode catalyst include water, methanol, ethanol, isopropyl alcohol, butanol, toluene, xylene, methyl ethyl ketone, and acetone.
(含窒素カーボンアロイの用途)
 本発明の含窒素カーボンアロイの用途は、構造材料、電極材料、ろ過材料、触媒材料など特に限定されないが、キャパシタやリチウム二次電池などの蓄電装置の電極材料として用いることが好ましく、高い酸素還元反応活性を有する燃料電池や亜鉛空気電池、リチウム空気電池などの炭素触媒として用いることがより好ましい。また、固体高分子電解質膜と、固体高分子電解質膜に接して設けられた触媒層とを備えた電極膜接合体において、上記触媒を触媒層に含むことができる。さらに、上記電極膜接合体は、燃料電池に備えることができる。
(Use of nitrogen-containing carbon alloy)
The use of the nitrogen-containing carbon alloy of the present invention is not particularly limited to structural materials, electrode materials, filtration materials, catalyst materials, etc., but is preferably used as electrode materials for power storage devices such as capacitors and lithium secondary batteries. More preferably, it is used as a carbon catalyst for a fuel cell, zinc-air battery, lithium-air battery or the like having reactive activity. In the electrode membrane assembly including the solid polymer electrolyte membrane and the catalyst layer provided in contact with the solid polymer electrolyte membrane, the catalyst can be included in the catalyst layer. Furthermore, the electrode membrane assembly can be provided in a fuel cell.
(燃料電池)
 図1に本発明の含窒素カーボンアロイから成る炭素触媒を用いた燃料電池10の概略構成図を示す。炭素触媒はアノード電極及びカソード電極に適用されている。
 燃料電池10は、固体高分子電解質14を挟むように、対向配置されたセパレータ12、アノード電極触媒(燃料極)13、カソード電極触媒(酸化剤極)15及びセパレータ16とから構成される。固体高分子電解質14としては、パーフルオロスルホン酸樹脂膜を代表とするフッ素系陽イオン交換樹脂膜が用いられる。また、炭素触媒をアノード電極触媒13及びカソード電極触媒15として、固体高分子電解質14の双方に接触させることにより、アノード電極触媒13及びカソード電極触媒15に炭素触媒を備えた燃料電池10が構成される。上述の炭素触媒を固体高分子電解質の双方の面に形成し、アノード電極触媒13及びカソード電極触媒15を電極反応層側で固体高分子電解質14の両主面にホットプレスにより密着することにより、MEA(Membrane Electrode Assembly)として一体化させる。
(Fuel cell)
FIG. 1 shows a schematic configuration diagram of a fuel cell 10 using a carbon catalyst made of a nitrogen-containing carbon alloy of the present invention. The carbon catalyst is applied to the anode electrode and the cathode electrode.
The fuel cell 10 includes a separator 12, an anode electrode catalyst (fuel electrode) 13, a cathode electrode catalyst (oxidant electrode) 15, and a separator 16 that are disposed so as to sandwich the solid polymer electrolyte 14. As the solid polymer electrolyte 14, a fluorine-based cation exchange resin membrane represented by a perfluorosulfonic acid resin membrane is used. Moreover, the fuel cell 10 provided with the carbon catalyst in the anode electrode catalyst 13 and the cathode electrode catalyst 15 is configured by bringing the carbon catalyst into contact with both the solid polymer electrolyte 14 as the anode electrode catalyst 13 and the cathode electrode catalyst 15. The By forming the carbon catalyst described above on both sides of the solid polymer electrolyte, and adhering the anode electrode catalyst 13 and the cathode electrode catalyst 15 to both main surfaces of the solid polymer electrolyte 14 on the electrode reaction layer side by hot pressing, It integrates as MEA (Membrane Electrode Assembly).
 従来の燃料電池では、集電体としての機能も有する多孔質のシート(例えば、カーボンペーパー)からなるガス拡散層を、セパレータとアノード及カソード電極触媒との間に介在させていた。これに対して図1の燃料電池10では、比表面積が大きく、さらに、気体の拡散性が高い炭素触媒がアノード及びカソード電極触媒として用いることができる。上述の炭素触媒を電極として使用することにより、ガス拡散層が無い場合にも炭素触媒にガス拡散層の作用を持たせ、アノード及びカソード電極触媒13,15とガス拡散層とを一体化した燃料電池を構成することができるため、ガス拡散層を省略することによる燃料電池の小型化や、コストの削減が可能となる。 In conventional fuel cells, a gas diffusion layer made of a porous sheet (for example, carbon paper) that also functions as a current collector is interposed between the separator and the anode and cathode electrode catalyst. In contrast, in the fuel cell 10 of FIG. 1, a carbon catalyst having a large specific surface area and high gas diffusibility can be used as the anode and cathode electrode catalyst. By using the above-mentioned carbon catalyst as an electrode, even when there is no gas diffusion layer, the carbon catalyst has a gas diffusion layer function, and the anode and cathode electrode catalysts 13, 15 and the gas diffusion layer are integrated. Since the battery can be configured, the fuel cell can be reduced in size and the cost can be reduced by omitting the gas diffusion layer.
 上記セパレータ12,16は、アノード及びカソード電極触媒層13,15を支持すると共に燃料ガスHや酸化剤ガスO等の反応ガスの供給・排出を行う。そして、アノード及びカソード電極触媒13,15にそれぞれ反応ガスが供給されると、両電極に備えられた炭素触媒と固体高分子電解質14との境界において、気相(反応ガス)、液相(固体高分子電解質膜)、固相(両電極が持つ触媒)の三相界面が形成される。そして、電気化学反応を生じさせることで直流電力が発生する。
 上記電気化学反応において、下記の反応が起こる。
カソード側:O+4H+4e→2H
アノード側:H→2H+2e
 アノード側で生成されたHイオンは固体高分子電解質14中をカソード側に向かって移動し、e(電子)は外部の負荷を通ってカソード側に移動する。一方、カソード側では酸化剤ガス中に含まれる酸素と、アノード側から移動してきたHイオン及びeとが反応して水が生成される。この結果、上述の燃料電池は、水素と酸素とから直流電力を発生し、水を生成することになる。
The separators 12 and 16 support the anode and cathode electrode catalyst layers 13 and 15 and supply and discharge reaction gases such as fuel gas H 2 and oxidant gas O 2 . When a reaction gas is supplied to each of the anode and cathode electrode catalysts 13 and 15, a gas phase (reaction gas) and a liquid phase (solid) are formed at the boundary between the carbon catalyst provided on both electrodes and the solid polymer electrolyte 14. A three-phase interface of a polymer electrolyte membrane) and a solid phase (a catalyst possessed by both electrodes) is formed. And direct-current power generate | occur | produces by producing an electrochemical reaction.
In the electrochemical reaction, the following reaction occurs.
Cathode side: O 2 + 4H + + 4e → 2H 2 O
Anode side: H 2 → 2H + + 2e
H + ions generated on the anode side move in the solid polymer electrolyte 14 toward the cathode side, and e (electrons) move to the cathode side through an external load. On the other hand, on the cathode side, oxygen contained in the oxidant gas reacts with H + ions and e that have moved from the anode side to generate water. As a result, the above-described fuel cell generates direct-current power from hydrogen and oxygen to generate water.
(蓄電装置)
 次に、本発明の含窒素カーボンアロイから成る炭素触媒を電極材に適用した蓄電装置について説明する。図2に含窒素カーボンアロイから成る炭素触媒を用いた、蓄電容量に優れた電気二重層キャパシタ20の概略構成図を示す。
 図2に示した電気二重層キャパシタ20は、セパレータ23を介して、分極性電極である第1の電極21及び第2の電極22が対向し、外装蓋24aと外装ケース24bの中に収容されている。また、第1の電極21及び第2の電極22は、それぞれ集電体25を介して、外装蓋24aと外装ケース24bに接続されている。また、セパレータ23には、電解液が含浸されている。そして、ガスケット26を介して電気的に絶縁させた状態で、外装蓋24aと外装ケース24bとをかしめて密封させて電気二重層キャパシタ20が構成されている。
(Power storage device)
Next, a power storage device in which the carbon catalyst made of the nitrogen-containing carbon alloy of the present invention is applied to an electrode material will be described. FIG. 2 shows a schematic configuration diagram of an electric double layer capacitor 20 using a carbon catalyst made of nitrogen-containing carbon alloy and having an excellent storage capacity.
In the electric double layer capacitor 20 shown in FIG. 2, the first electrode 21 and the second electrode 22 which are polarizable electrodes are opposed to each other through the separator 23, and are accommodated in the outer lid 24a and the outer case 24b. ing. The first electrode 21 and the second electrode 22 are connected to the exterior lid 24a and the exterior case 24b via current collectors 25, respectively. The separator 23 is impregnated with an electrolytic solution. The electric double layer capacitor 20 is configured by caulking and sealing the outer lid 24a and the outer case 24b while being electrically insulated via the gasket 26.
 図2の電気二重層キャパシタ20において、上述の含窒素カーボンアロイから成る炭素触媒を第1の電極21及び第2の電極22に適用することができる。そして、電極材に炭素触媒が適用された電気二重層キャパシタを構成することができる。上述の炭素触媒は、ナノシェル炭素が集合した繊維状の構造を有し、さらに、繊維径がナノメートル単位であるため比表面積が大きく、キャパシタにおいて電荷が蓄積する電極界面が大きい。さらに、上述の炭素触媒は、電解液に対して電気化学的に不活性であり、適度な電気導電性を有する。このため、キャパシタの電極として適用することにより、電極の単位体積あたりの静電容量を向上させることができる。 In the electric double layer capacitor 20 of FIG. 2, the carbon catalyst made of the above-described nitrogen-containing carbon alloy can be applied to the first electrode 21 and the second electrode 22. And the electric double layer capacitor by which the carbon catalyst was applied to the electrode material can be comprised. The above-described carbon catalyst has a fibrous structure in which nanoshell carbon is aggregated, and furthermore, since the fiber diameter is in a nanometer unit, the specific surface area is large, and the electrode interface where charges are accumulated in the capacitor is large. Furthermore, the above-mentioned carbon catalyst is electrochemically inactive with respect to the electrolytic solution, and has appropriate electrical conductivity. For this reason, the electrostatic capacitance per unit volume of an electrode can be improved by applying as an electrode of a capacitor.
 また、上述のキャパシタと同様に、例えば、リチウムイオン二次電池の負極材等のように、炭素材料から構成される電極材として上述の炭素触媒を適用することができる。そして、炭素触媒の比表面積が大きいことにより、蓄電容量の大きな二次電池を構成することができる。 Also, like the above-described capacitor, the above-described carbon catalyst can be applied as an electrode material composed of a carbon material, such as a negative electrode material of a lithium ion secondary battery. And since the specific surface area of a carbon catalyst is large, a secondary battery with a large electrical storage capacity can be comprised.
(環境触媒)
 次に、本発明の含窒素カーボンアロイを、白金等の貴金属を含む環境触媒の代替品として使用する例について説明する。
 汚染空気に含まれる汚染物質を(主にガス状物質)等を分解処理により除去するための排ガス浄化用触媒として、白金等の貴金属系の材料が単独又は複合化物されて構成された触媒材料による環境触媒が用いられている。これらの白金等の貴金属を含む排ガス浄化用触媒の代替品として、上述の炭素触媒を使用することができる。上述の炭素触媒は、酸素還元反応触媒作用が付与されているため、汚染物質等の被処理物質の分解機能を有する。このため、上述の炭素触媒を用いて環境触媒を構成することにより、白金等の高価な貴金属類を使用する必要がないため、低コストの環境触媒を提供することができる。また、比表面積が大きいことにより、単位体積あたりの被処理物質を分解する処理面積を大きくすることができ、単位体積あたりの分解機能が優れた環境触媒を構成できる。
 なお、上述の炭素触媒を担体として、従来の環境触媒に使用されている白金等の貴金属系の材料が単独又は複合化物を担持させることにより、より分解機能等の触媒作用に優れた環境触媒を構成することができる。なお、上述の炭素触媒を備える環境触媒は、上述の排ガス浄化用触媒だけでなく、水処理用の浄化触媒として用いることもできる。
(Environmental catalyst)
Next, an example in which the nitrogen-containing carbon alloy of the present invention is used as a substitute for an environmental catalyst containing a noble metal such as platinum will be described.
As a catalyst for exhaust gas purification for removing pollutants contained in polluted air (mainly gaseous substances) etc. by decomposition treatment, a catalyst material composed of noble metal materials such as platinum alone or in combination Environmental catalysts are used. The above-mentioned carbon catalyst can be used as an alternative to these exhaust gas purifying catalysts containing noble metals such as platinum. Since the above-described carbon catalyst is provided with an oxygen reduction reaction catalytic action, it has a function of decomposing substances to be treated such as pollutants. For this reason, since it is not necessary to use expensive noble metals, such as platinum, by comprising an environmental catalyst using the above-mentioned carbon catalyst, a low-cost environmental catalyst can be provided. Further, since the specific surface area is large, the treatment area for decomposing the material to be treated per unit volume can be increased, and an environmental catalyst having an excellent decomposition function per unit volume can be constituted.
By using the above-mentioned carbon catalyst as a carrier, a noble metal-based material such as platinum used in conventional environmental catalysts is carried alone or in a composite, so that an environmental catalyst with more excellent catalytic action such as a decomposition function can be obtained. Can be configured. In addition, the environmental catalyst provided with the above-mentioned carbon catalyst can also be used as a purification catalyst for water treatment as well as the above-described exhaust gas purification catalyst.
 また、本発明の含窒素カーボンアロイは、広く化学反応用の触媒として使用することができ、中でも白金触媒の代替品として使用することができる。つまり、白金等の貴金属を含む化学工業用の一般的なプロセス触媒の代替品として、上述の炭素触媒を使用することができる。このため、上述の炭素触媒によれば、白金等の高価な貴金属類を使用することなく、低コストの化学反応プロセス触媒を提供することができる。さらに、上述の炭素触媒は、比表面積が大きいことにより、単位体積あたりの化学反応効率に優れた化学反応プロセス触媒を構成することができる。
 このような化学反応用の炭素触媒は、例えば、水素化反応用触媒、脱水素反応用触媒、酸化反応用触媒、重合反応用触媒、改質反応用触媒、水蒸気改質用触媒等に適用することができる。さらに具体的には、「触媒調製(講談社)白崎高保、藤堂尚之共著、1975年」等の触媒に関する文献を参照し、各々の化学反応に炭素触媒を適用することが可能である。
Further, the nitrogen-containing carbon alloy of the present invention can be widely used as a catalyst for chemical reaction, and in particular, can be used as a substitute for a platinum catalyst. That is, the above-mentioned carbon catalyst can be used as a substitute for a general process catalyst for the chemical industry containing a noble metal such as platinum. For this reason, according to the above-mentioned carbon catalyst, a low-cost chemical reaction process catalyst can be provided without using expensive noble metals such as platinum. Furthermore, since the above-mentioned carbon catalyst has a large specific surface area, it can constitute a chemical reaction process catalyst excellent in chemical reaction efficiency per unit volume.
Such a carbon catalyst for chemical reaction is applied to, for example, a hydrogenation reaction catalyst, a dehydrogenation reaction catalyst, an oxidation reaction catalyst, a polymerization reaction catalyst, a reforming reaction catalyst, and a steam reforming catalyst. be able to. More specifically, it is possible to apply a carbon catalyst to each chemical reaction with reference to a catalyst related literature such as “Catalyst Preparation (Kodansha) by Takaho Shirasaki and Naoyuki Todo, 1975”.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention is not limitedly interpreted by the specific examples shown below.
(実施例1)
<ZIF8、Fe(OAc)添加(2-mim)混合物の未酸洗浄の炭素材料合成(1E)>
(ZIF8、Fe(OAc)添加(2-mim)混合物の調製)
 2-メチルイミダゾール(2-mim)(Aldrich社製)0.10g、ZIF8(BASF社製、Basolite Z1200)0.90g、Fe(OAc)2 (Aldrich社製、酢酸鉄(II)、純度99.99%以上(残存金属量基準))32mg、SUS(Stainless Used Steel)304鋼球20個をジルコニア製の45ml容器(フリッチュ製)に入れ、真空脱気し、窒素置換後、オバーポットで密閉した。遊星型ボールミル クラッシクラインP-7(フリッチュ製)を用いて、400rpmで3時間粉砕し、金属メッシュでSUS304鋼球を除き、ZIF8、Fe(OAc)添加2-mim混合物(1A)を得た。
(Example 1)
<Synthesis of non-acid-washed carbon material (1E) of ZIF8, Fe (OAc) 2 added (2-mim) mixture>
(Preparation of ZIF8, Fe (OAc) 2 addition (2-mim) mixture)
2-methylimidazole (2-mim) (manufactured by Aldrich) 0.10 g, ZIF8 (manufactured by BASF, Basolite Z1200) 0.90 g, Fe (OAc) 2 (manufactured by Aldrich, iron (II) acetate, purity 99. 99% or more (residual metal amount standard) 32 mg, SUS (Stainless Used Steel) 304 steel balls were placed in a 45 ml container (made by Fritsch) made of zirconia, vacuum degassed, purged with nitrogen, and sealed with an overpot. Using a planetary ball mill Classic Line P-7 (manufactured by Fritsch), the mixture was pulverized at 400 rpm for 3 hours, and SUS304 steel balls were removed with a metal mesh to obtain ZIF8, Fe (OAc) 2 added 2-mim mixture (1A). .
Figure JPOXMLDOC01-appb-C000021
 ZIF-8
Figure JPOXMLDOC01-appb-C000021
ZIF-8
分子式:C10Zn、分子量:227.57
元素分析(計算値):C,42.22;H,4.43;N,24.62;Zn,28.73
Molecular formula: C 8 H 10 N 4 Zn 1, molecular weight: 227.57
Elemental analysis (calculated values): C, 42.22; H, 4.43; N, 24.62; Zn, 28.73
Figure JPOXMLDOC01-appb-C000022
 Fe(OAc)2 
Figure JPOXMLDOC01-appb-C000022
Fe (OAc) 2
分子式:CFe、分子量:173.93
元素分析(計算値):C,27.62;H,3.48;Fe,32.11;O,36.79
Molecular formula: C 4 H 6 Fe 1 O 4, molecular weight: 173.93
Elemental analysis (calculated values): C, 27.62; H, 3.48; Fe, 32.11; O, 36.79
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
分子式:C、分子量:82.10
元素分析(計算値):C,58.51;H,7.37;N,34.12
Molecular formula: C 4 H 6 N 2 , molecular weight: 82.10
Elemental analysis (calculated values): C, 58.51; H, 7.37; N, 34.12
(焼成・粉砕・酸洗浄処理、1回目焼成、流通炉)
 ZIF8、Fe(OAc)添加2-mim混合物(1A)0.9591gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。30℃から900℃まで毎分5℃昇温し、900℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(1B)を得た。得られた炭素前駆体(1B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素前駆体(1C)を0.3463g得た。
(Baking / Crushing / Acid cleaning treatment, 1st baking, Distribution furnace)
0.9591 g of ZIF8, Fe (OAc) 2 added 2-mim mixture (1A) was weighed into a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace, The nitrogen flow rate was set at 200 mL / min and was allowed to flow at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 900 ° C. at 5 ° C. per minute, and held at 900 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon precursor (1B). The obtained carbon precursor (1B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and allowed to stand overnight to obtain 0.3463 g of acid-washed carbon precursor (1C).
(焼成・粉砕・水洗浄処理、2回目焼成、真空ガス置換/回転炉)
 炭素前駆体(1C)0.1882gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その際に石英管を毎分2.0rpmで回転させた。その後、3時間かけて室温まで冷却し、未酸洗浄の炭素材料(1D)を得た。炭素材料(1D)をメノウ乳鉢で粉砕し、水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、未酸洗浄の炭素材料(1E)を0.1381g得た。得られた未酸洗浄の炭素材料(1E)を実施例1の含窒素カーボンアロイとした。
(Firing, grinding, water washing treatment, second firing, vacuum gas replacement / rotary furnace)
We measure 0.1882 g of carbon precursor (1C) in a quartz boat and place it in the center of a 4.0 cmφ (inside diameter 3.6 cmφ) quartz tube inserted in a vacuum gas displacement rotary furnace, with a nitrogen flow rate of 200 mL per minute. And allowed to circulate at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. At that time, the quartz tube was rotated at 2.0 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained the carbon material (1D) of non-acid washing | cleaning. The carbon material (1D) was pulverized in an agate mortar, washed with water, filtered and air-dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.1381 g of non-acid washed carbon material (1E). The obtained non-acid cleaned carbon material (1E) was used as the nitrogen-containing carbon alloy of Example 1.
<含窒素カーボンアロイの評価方法>
1.BET法による比表面積測定
 試料前処理装置(日本ベル社製、BELPREP-flow)を用いて、含窒素カーボンアロイ(炭素材料(1E))を200℃で、3時間、真空下で乾燥した。その後、自動比表面積/細孔分布測定装置(日本ベル社製、BELSORP-miniII(商品名))を用いて、含窒素カーボンアロイの比表面積を簡易測定条件で測定した。
 比表面積は、装置備え付けの解析プログラムを用いて、BET(Brunauer-Emmett-Teller)法により求めた。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
<Evaluation method of nitrogen-containing carbon alloy>
1. Specific surface area measurement by BET method Nitrogen-containing carbon alloy (carbon material (1E)) was dried under vacuum at 200 ° C. for 3 hours using a sample pretreatment apparatus (BELPREP-flow, manufactured by Nippon Bell Co., Ltd.). Thereafter, the specific surface area of the nitrogen-containing carbon alloy was measured under simple measurement conditions using an automatic specific surface area / pore distribution measuring device (BELSORP-mini II (trade name) manufactured by Nippon Bell Co., Ltd.).
The specific surface area was determined by the BET (Brunauer-Emmett-Teller) method using an analysis program installed in the apparatus. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
2.カーボンアロイ塗付電極の酸素還元反応(ORR)活性
(カーボンアロイ塗付電極の作製)
 実施例1の含窒素カーボンアロイ25mgに、バインダーとしてナフィオン溶液(5%アルコール水溶液)220mgと、溶媒としての水2.4mL及び1-プロパノール(IPA)1.6mLを加え、7mmφのアタッチメントを接続した超音波ホモジナイザー(日精社製、US-150T)で30分間分散させた。回転リングディスク電極(北斗電工社製HR2-RD1-Pt8/GC5)を用い、含窒素カーボンアロイ分散液を含窒素カーボンアロイが0.50mg/cmになるようにカーボン電極上に塗布し、室温で乾燥させて、カーボンアロイ塗付電極を得た。
2. Oxygen reduction reaction (ORR) activity of carbon alloy coated electrode (preparation of carbon alloy coated electrode)
To 25 mg of the nitrogen-containing carbon alloy of Example 1, 220 mg of Nafion solution (5% alcohol aqueous solution) as a binder, 2.4 mL of water as a solvent and 1.6 mL of 1-propanol (IPA) were added, and a 7 mmφ attachment was connected. The mixture was dispersed with an ultrasonic homogenizer (Nissei Corp., US-150T) for 30 minutes. Using a rotating ring disk electrode (HR2-RD1-Pt8 / GC5 manufactured by Hokuto Denko), a nitrogen-containing carbon alloy dispersion was applied on the carbon electrode so that the nitrogen-containing carbon alloy was 0.50 mg / cm 2, and And dried to obtain a carbon alloy coated electrode.
(カーボンアロイ塗付電極の酸素還元反応(ORR)活性測定)
 Automatic Polarization System(北斗電工(株)社製、HZ-3000)に回転電極装置(北斗電工(株)社製、HR-201)を接続し、作用極には得られたカーボンアロイ塗付電極を用い、対極と参照極にはそれぞれ白金電極と飽和カロメル電極(SCE)を用いて以下の手順により測定した。
 A.カーボンアロイ塗付電極のクリーニングのため、20℃で、アルゴンを30分以上バブリングした0.1M硫酸水溶液中で掃引電位0.946~-0.204V(vs.SCE)、掃引速度50mV/sで、10サイクルのサイクリックボルタンメトリーを測定した。
 B.ブランク測定のため、20℃で、アルゴンを30分以上バブリングした0.1M硫酸水溶液中で掃引電位0.746~-0.204V(vs.SCE)、掃引速度5mV/s、電極回転速度1500rpmでリニアースイープボルタンメトリーを測定した。
 C.酸素還元活性測定のため、酸素を30分以上バブリングした0.5M硫酸水溶液中で掃引電位0.746~-0.204V(vs.SCE)、掃引速度5mV/s、電極回転数1500rpmでリニアースイープボルタンメトリーを測定した。
 D.Cの測定データからBの測定データを減算し、真の酸素還元活性として採用した。得られたボルタモグラム(電圧-電流密度曲線)から、電流密度-2.00mA/cmの時の電圧(V vs.RHE)を求め、これをORR活性値とした。
 得られた結果を下記表1に記載した。
(Measurement of oxygen reduction reaction (ORR) activity of carbon alloy coated electrode)
A rotating electrode device (Hokuto Denko Co., Ltd., HR-201) is connected to an Automatic Polarization System (Hokuto Denko Co., Ltd., HZ-3000), and the obtained carbon alloy coated electrode is connected to the working electrode. The platinum electrode and saturated calomel electrode (SCE) were used for the counter electrode and the reference electrode, respectively, and the measurement was performed according to the following procedure.
A. For cleaning the carbon alloy-coated electrode, a sweep potential of 0.946 to -0.204 V (vs. SCE) and a sweep speed of 50 mV / s in a 0.1 M sulfuric acid aqueous solution bubbled with argon for 30 minutes or more at 20 ° C. Ten cycles of cyclic voltammetry were measured.
B. For a blank measurement, in a 0.1 M sulfuric acid aqueous solution bubbled with argon for 30 minutes or more at 20 ° C., a sweep potential of 0.746 to −0.204 V (vs. SCE), a sweep speed of 5 mV / s, and an electrode rotation speed of 1500 rpm. Linear sweep voltammetry was measured.
C. To measure oxygen reduction activity, sweep linearly with a sweep potential of 0.746 to -0.204 V (vs. SCE), a sweep speed of 5 mV / s, and an electrode rotational speed of 1500 rpm in a 0.5 M sulfuric acid aqueous solution bubbled with oxygen for 30 minutes or more. Voltammetry was measured.
D. The measurement data of B was subtracted from the measurement data of C and adopted as the true oxygen reduction activity. From the obtained voltammogram (voltage-current density curve), a voltage (V vs. RHE) at a current density of −2.00 mA / cm 2 was obtained and used as an ORR activity value.
The obtained results are shown in Table 1 below.
(実施例2)
<ZIF8、Fe(OAc)添加(2-mim)混合物の酸洗浄済み炭素材料合成(2E)>
 上述の炭素材料(1D)0.1055gをメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(2E)を0.0921g得た。得られた酸洗浄済み炭素材料(2E)を実施例2の含窒素カーボンアロイとした。
(Example 2)
<Synthesis of ZIF8, Fe (OAc) 2 Addition (2-Mim) Mixture of Acid-washed Carbon Material (2E)>
The above-mentioned carbon material (1D) (0.1055 g) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until no coloration occurred. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.0921 g of acid-cleaned carbon material (2E). The obtained acid cleaned carbon material (2E) was used as the nitrogen-containing carbon alloy of Example 2.
(BET法による比表面積測定)
 酸洗浄済み炭素材料(2E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後に単離した含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the acid cleaned carbon material (2E) was used. The results are shown in the column of nitrogen-containing carbon alloy isolated after acid washing in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 酸洗浄済み炭素材料(2E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the acid cleaned carbon material (2E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(実施例3)
<ZIF8、Fe(OAc)添加(2-mim)混合物の炭素材料合成(3E)>
(ZIF8、Fe(OAc)添加(2-mim)混合物の調製)
 2-メチルイミダゾール(2-mim)(Aldrich社製)1.00g、ZIF8 9.00g(BASF社製、Basolite Z1200)、Fe(OAc)2 0.32g(Aldrich社製、酢酸鉄(II)、純度99.99%以上(残存金属量基準))を、ワーリング社製、X-TREME MX1200XTM容器に添加し、窒素置換した後、10000rpmで、40秒間混合し、ZIF8、Fe(OAc)添加2-mim混合物(3A)を得た。
(Example 3)
<Synthesis of carbon material of ZIF8, Fe (OAc) 2 addition (2-mim) mixture (3E)>
(Preparation of ZIF8, Fe (OAc) 2 addition (2-mim) mixture)
2-methylimidazole (2-mim) (Aldrich) 1.00 g, ZIF8 9.00 g (BASF, Basolite Z1200), Fe (OAc) 2 0.32 g (Aldrich, iron (II) acetate, Purified 99.99% or more (residual metal amount standard)) was added to an X-TREME MX1200XTM container manufactured by Waring Co., purged with nitrogen, mixed at 10,000 rpm for 40 seconds, and added with ZIF8, Fe (OAc) 2 2 A -mim mixture (3A) was obtained.
(焼成・粉砕・酸洗浄処理、1回目焼成、流通炉)
 ZIF8、Fe(OAc)添加2-mim混合物(3A)0.9604gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。30℃から900℃まで毎分5℃昇温し、900℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(3B)を得た。得られた炭素前駆体(3B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素前駆体(3C)を0.3225g得た。
(Baking / Crushing / Acid cleaning treatment, 1st baking, Distribution furnace)
0.9604 g of ZIF8, Fe (OAc) 2 added 2-mim mixture (3A) was weighed into a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace, The nitrogen flow rate was set at 200 mL / min and was allowed to flow at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 900 ° C. at 5 ° C. per minute, and held at 900 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon precursor (3B). The obtained carbon precursor (3B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.3225 g of acid-washed carbon precursor (3C).
(焼成・粉砕・酸洗浄処理、2回目焼成、真空ガス置換/回転炉)
 炭素前駆体(3C)0.1326gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その際に石英管を毎分2.0rpmで回転させた。その後、3時間かけて室温まで冷却し、未酸洗浄の炭素材料(3D)を得た。炭素材料(3D)をメノウ乳鉢で粉砕し、未酸洗浄の炭素材料(3E)を0.1175g得た。得られた未酸洗浄の炭素材料(3E)を実施例3の含窒素カーボンアロイとした。
(Baking, grinding, acid cleaning treatment, second firing, vacuum gas replacement / rotary furnace)
We measure 0.1326 g of carbon precursor (3C) in a quartz boat and install it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted in a vacuum gas displacement rotary furnace, with a nitrogen flow rate of 200 mL per minute. And allowed to circulate at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. At that time, the quartz tube was rotated at 2.0 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained the carbon material (3D) of non-acid washing | cleaning. The carbon material (3D) was pulverized in an agate mortar to obtain 0.1175 g of a non-acid-washed carbon material (3E). The obtained non-acid cleaned carbon material (3E) was used as the nitrogen-containing carbon alloy of Example 3.
(BET法による比表面積測定)
 未酸洗浄の炭素材料(3E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the non-acid cleaned carbon material (3E) was used. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 未酸洗浄の炭素材料(3E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the non-acid cleaned carbon material (3E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(実施例4)
<ZIF8、Fe(OAc)添加(2-mim)混合物の酸洗浄済み炭素材料合成(4E)>
 上述の炭素材料(3D)0.0786gをメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(4E)を0.0674g得た。得られた酸洗浄済み炭素材料(4E)を実施例4の含窒素カーボンアロイとした。
Example 4
<Synthesis of ZIF8, Fe (OAc) 2 addition (2-mim) mixture of acid washed carbon material (4E)>
0.0786 g of the above carbon material (3D) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight to obtain 0.0674 g of acid-washed carbon material (4E). The obtained acid-washed carbon material (4E) was used as the nitrogen-containing carbon alloy of Example 4.
(BET法による比表面積測定)
 酸洗浄済み炭素材料(4E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後に単離した含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the acid cleaned carbon material (4E) was used. The results are shown in the column of nitrogen-containing carbon alloy isolated after acid washing in Table 1 below.
 (カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
  酸洗浄済み炭素材料(4E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the acid cleaned carbon material (4E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(実施例5)
<ZIF8、Fe(acac)添加(2-mim)混合物の炭素材料合成(5E)>
(ZIF8、Fe(acac)添加(2-mim)混合物の調製)
 2-メチルイミダゾール(2-mim)(Aldrich社製)1.00g、ZIF8 9.00g(BASF社製、Basolite Z1200)、Fe(acac)2  0.47g(Aldrich社製、純度99.95%以上(残存金属量基準))を、ワーリング社製、X-TREME MX1200XTM容器に添加し、窒素置換した後、10000rpmで、40秒間混合し、ZIF8、Fe(acac)添加2-mim混合物(5A)を得た。
(Example 5)
<Synthesis of carbon material of ZIF8, Fe (acac) 2 addition (2-mim) mixture (5E)>
(Preparation of ZIF8, Fe (acac) 2 addition (2-mim) mixture)
2-methylimidazole (2-mim) (Aldrich) 1.00 g, ZIF8 9.00 g (BASF, Basolite Z1200), Fe (acac) 2 0.47 g (Aldrich, purity 99.95% or more) (Based on the amount of residual metal)) was added to an X-TREME MX1200XTM container manufactured by Waring Co., purged with nitrogen, mixed at 10000 rpm for 40 seconds, and ZIF8, Fe (acac) 2 added 2-mim mixture (5A) Got.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
分子式:C1014Fe、分子量:254.061
元素分析(計算値):C,47.27;H,5.55;Fe,21.98;O,25.19
Molecular formula: C 10 H 14 Fe 1 O 4, molecular weight: 254.061
Elemental analysis (calculated values): C, 47.27; H, 5.55; Fe, 21.98; O, 25.19
(焼成・粉砕・酸洗浄処理、1回目焼成、流通炉)
 ZIF8、Fe(acac)添加2-mim混合物(5A)2.0361gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(5B)を得た。得られた炭素前駆体(5B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素前駆体(5C)を0.6244g得た。
(Baking / Crushing / Acid cleaning treatment, 1st baking, Distribution furnace)
ZIF8, Fe (acac) 2- added 2-mim mixture (5A) 2.0361 g was weighed into a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace, The nitrogen flow rate was set at 200 mL / min and was allowed to flow at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 1000 ° C. by 5 ° C. per minute, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon precursor (5B). The obtained carbon precursor (5B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.6244 g of acid-washed carbon precursor (5C).
(焼成・粉砕処理、2回目焼成、真空ガス置換/回転炉)
 炭素前駆体(5C)0.4100gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その際に石英管を毎分2.0rpmで回転させた。その後、3時間かけて室温まで冷却し、未酸洗浄の炭素材料(5D)を得た。炭素材料(5D)をメノウ乳鉢で粉砕し、未酸洗浄の炭素材料(5E)を0.3587g得た。得られた未酸洗浄の炭素材料(5E)を実施例5の含窒素カーボンアロイとした。
(Firing / Crushing process, Second firing, Vacuum gas replacement / Rotating furnace)
Weigh 0.4100 g of carbon precursor (5C) in a quartz boat and place it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace, with a nitrogen flow rate of 200 mL per minute. And allowed to circulate at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. At that time, the quartz tube was rotated at 2.0 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained the carbon material (5D) of non-acid washing | cleaning. The carbon material (5D) was pulverized in an agate mortar to obtain 0.3587 g of a non-acid-cleaned carbon material (5E). The obtained non-acid cleaned carbon material (5E) was used as the nitrogen-containing carbon alloy of Example 5.
(BET法による比表面積測定)
 未酸洗浄の炭素材料(5E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後に単離した含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the non-acid cleaned carbon material (5E) was used. The results are shown in the column of nitrogen-containing carbon alloy isolated after acid washing in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 未酸洗浄の炭素材料(5E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the non-acid cleaned carbon material (5E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(実施例6)
<ZIF8、Fe(acac)添加(2-mim)混合物の炭素材料合成(6E)>
(連続焼成 流通炉・粉砕処理)
 上述のZIF8、Fe(acac)添加2-mim混合物(5A)2.0666gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。30℃から700℃まで毎分5℃昇温し、700℃で5時間保持し、さらに700℃から1000℃まで毎分5℃で昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(6B)を得た。得られた炭素前駆体(6B)をメノウ乳鉢で粉砕し、未酸洗浄の炭素前駆体(6C)を0.6206g得た。得られた未酸洗浄の炭素材料(6E)を実施例6の含窒素カーボンアロイとした。
(Example 6)
<Synthesis of carbon material of ZIF8, Fe (acac) 2 addition (2-mim) mixture (6E)>
(Continuous firing distribution furnace, pulverization)
The above-mentioned ZIF8, Fe (acac) 2 added 2-mim mixture (5A) (2.0666 g) was weighed into a quartz boat and installed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace. Then, the nitrogen flow rate was set to 200 mL per minute, and the mixture was circulated at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 700 ° C. at 5 ° C. per minute, held at 700 ° C. for 5 hours, further raised from 700 ° C. to 1000 ° C. at 5 ° C. per minute, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon precursor (6B). The obtained carbon precursor (6B) was pulverized in an agate mortar to obtain 0.6206 g of an unacid-washed carbon precursor (6C). The obtained non-acid cleaned carbon material (6E) was used as the nitrogen-containing carbon alloy of Example 6.
(BET法による比表面積測定)
 未酸洗浄の炭素材料(6E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the non-acid cleaned carbon material (6E) was used. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 未酸洗浄の炭素材料(6E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the non-acid cleaned carbon material (6E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(実施例7)
<ZIF8、Fe(acac)添加(2-mim)混合物の炭素材料合成(7E)>
(連続焼成・粉砕・酸洗浄処理、1回目焼成、流通炉)
 上述のZIF8、Fe(acac)添加2-mim混合物(5A)2.2351gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。その後、窒素の流量を毎分20mLに下げて、30℃から700℃まで毎分5℃昇温し、700℃で10時間保持し、さらに700℃から1000℃まで毎分5℃で昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(7B)を得た。得られた炭素前駆体(7B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素前駆体(7C)を0.6257g得た。
(Example 7)
<Synthesis of carbon material of ZIF8, Fe (acac) 2 addition (2-mim) mixture (7E)>
(Continuous firing, pulverization, acid cleaning treatment, first firing, distribution furnace)
We measure 2.2351 g of ZIF8, Fe (acac) 2 added 2-mim mixture (5A) in a quartz boat and place it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace. Then, the nitrogen flow rate was set to 200 mL / min and the mixture was allowed to flow at room temperature for 30 minutes. Thereafter, the flow rate of nitrogen is lowered to 20 mL per minute, the temperature is raised from 30 ° C. to 700 ° C. at 5 ° C. per minute, held at 700 ° C. for 10 hours, and further raised from 700 ° C. to 1000 ° C. at 5 ° C. per minute. And held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon precursor (7B). The obtained carbon precursor (7B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.6257 g of acid-washed carbon precursor (7C).
(焼成・粉砕処理 2回目焼成 真空ガス置換炉)
 炭素前駆体(7C)0.4424gを石英ボートに測り取り、真空ガス置換炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(7D)を得た。炭素材料(7D)をメノウ乳鉢で粉砕し、未酸洗浄の炭素材料(7E)を0.3806g得た。得られた未酸洗浄の炭素材料(7E)を実施例7の含窒素カーボンアロイとした。
(Firing / Crushing process 2nd firing Vacuum gas replacement furnace)
We measure 0.4424 g of carbon precursor (7C) in a quartz boat and place it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement furnace, and set the nitrogen flow rate to 200 mL per minute. It was circulated at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon material (7D). Carbon material (7D) was pulverized in an agate mortar to obtain 0.3806 g of carbon material (7E) that was not acid-washed. The obtained non-acid cleaned carbon material (7E) was used as the nitrogen-containing carbon alloy of Example 7.
(BET法による比表面積測定)
 未酸洗浄の炭素材料(7E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the non-acid cleaned carbon material (7E) was used. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 未酸洗浄の炭素材料(7E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the non-acid cleaned carbon material (7E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(実施例8)
<ZIF8、FeCl・4HO添加(2-mim)混合物の炭素材料合成(8E)>
(ZIF8、FeCl・4HO添加(2-mim)混合物の調製)
 2-メチルイミダゾール(2-mim)(Aldrich社製)1.00g、ZIF8 9.00g(BASF社製、Basolite Z1200)、FeCl・4HO 0.37g(和光純薬工業社製、純度99.9%)を、ワーリング社製、X-TREME MX1200XTM容器に添加し、窒素置換した後、10000rpmで、40秒間混合し、ZIF8、FeCl・4HO添加2-mim混合物(8A)を得た。
(Example 8)
<Synthesis of carbon material of ZIF8, FeCl 2 .4H 2 O added (2-mim) mixture (8E)>
(Preparation of ZIF8, FeCl 2 .4H 2 O addition (2-mim) mixture)
2-methylimidazole (2-mim) (Aldrich) 1.00 g, ZIF8 9.00 g (BASF, Basolite Z1200), FeCl 2 .4H 2 O 0.37 g (Wako Pure Chemical Industries, purity 99) 9%) was added to an X-TREME MX1200XTM container manufactured by Waring Co., purged with nitrogen, and mixed at 10,000 rpm for 40 seconds to obtain a 2-mim mixture (8A) containing ZIF8 and FeCl 2 .4H 2 O. It was.
(連続焼成・粉砕・酸洗浄処理、1回目焼成、流通炉)
 ZIF8、FeCl・4HO添加2-mim混合物(8A)2.0584gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。30℃から700℃まで毎分5℃昇温し、700℃で10時間保持し、さらに700℃から1000℃まで毎分5℃で昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(8B)を得た。得られた炭素前駆体(8B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素前駆体(8C)を0.5412g得た。
(Continuous firing, pulverization, acid cleaning treatment, first firing, distribution furnace)
Measure 2.0584 g of ZIF8 and FeCl 2 · 4H 2 O added 2-mim mixture (8A) in a quartz boat and place it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace. The nitrogen flow rate was 200 mL per minute and the mixture was allowed to flow at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 700 ° C. at 5 ° C. per minute, held at 700 ° C. for 10 hours, further raised from 700 ° C. to 1000 ° C. at 5 ° C. per minute, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon precursor (8B). The obtained carbon precursor (8B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and allowed to stand overnight to obtain 0.5412 g of an acid cleaned carbon precursor (8C).
(焼成・粉砕処理、2回目焼成、真空ガス置換炉)
 炭素前駆体(8C)0.1409gを石英ボートに測り取り、真空ガス置換炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、未酸洗浄の炭素材料(8D)を得た。炭素材料(8D)をメノウ乳鉢で粉砕し、未酸洗浄の炭素材料(8E)を0.1141g得た。得られた未酸洗浄の炭素材料(8E)を実施例8の含窒素カーボンアロイとした。
(Baking / Crushing process, Second baking, Vacuum gas replacement furnace)
We measure 0.1409g of carbon precursor (8C) in a quartz boat and install it in the center of a 4.0cmφ (inside diameter 3.6cmφ) quartz tube inserted in a vacuum gas replacement furnace, and set the nitrogen flow rate to 200mL per minute. It was circulated at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon material (8D) of non-acid washing | cleaning. The carbon material (8D) was pulverized in an agate mortar to obtain 0.1141 g of non-acid cleaned carbon material (8E). The obtained non-acid cleaned carbon material (8E) was used as the nitrogen-containing carbon alloy of Example 8.
(BET法による比表面積測定)
 未酸洗浄の炭素材料(8E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the non-acid cleaned carbon material (8E) was used. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 未酸洗浄の炭素材料(8E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the non-acid cleaned carbon material (8E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(実施例9)
<ZIF8、Fe(salen)添加(2-mim)混合物の炭素材料合成(9E)>
(ZIF8、Fe(salen)添加(2-mim)混合物の調製)
 2-メチルイミダゾール(2-mim)(Aldrich社製)1.00g、ZIF8(BASF社製、Basolite Z1200)9.00g、N,N’-エチレンビス(サリチリデンアミナト)鉄(II) (Fe(salen))(東京化成工業社製)0.596gを、ワーリング社製、X-TREME MX1200XTM容器に添加し、窒素置換した後、10000rpmで、40秒間混合し、ZIF8、Fe(salen)添加2-mim混合物(9A)を得た。
Example 9
<Carbon Material Synthesis of ZIF8, Fe (salen) Addition (2-Mim) Mixture (9E)>
(Preparation of ZIF8, Fe (salen) addition (2-mim) mixture)
2-methylimidazole (2-mim) (manufactured by Aldrich) 1.00 g, ZIF8 (manufactured by BASF, Basolite Z1200) 9.00 g, N, N′-ethylenebis (salicylideneaminato) iron (II) ( Fe (salen)) (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.596 g was added to a Waring Co., Ltd. X-TREME MX1200XTM container, purged with nitrogen, mixed at 10,000 rpm for 40 seconds, and ZIF8 and Fe (salen) added. A 2-mim mixture (9A) was obtained.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
分子式:C1614Fe、分子量:322.14
元素分析(計算値):C,59.65;H,4.38;Fe,17.34;N,8.70;O,9.93
Molecular formula: C 16 H 14 Fe 1 N 2 O 2 , molecular weight: 322.14
Elemental analysis (calculated value): C, 59.65; H, 4.38; Fe, 17.34; N, 8.70; O, 9.93
(焼成・粉砕・酸洗浄処理、1回目焼成、流通炉)
 ZIF8、Fe(salen)添加2-mim混合物(9A)2.1658gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。30℃から700℃まで毎分5℃昇温し、700℃で10時間保持し、さらに700℃から1000℃まで毎分5℃で昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(9B)を得た。得られた炭素前駆体(9B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素前駆体(9C)を0.6795g得た。
(Baking / Crushing / Acid cleaning treatment, 1st baking, Distribution furnace)
ZIF8, Fe (salen) added 2-mim mixture (9A) 2.1658g was weighed into a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tube furnace, The flow rate was 200 mL per minute, and the mixture was circulated at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 700 ° C. at 5 ° C. per minute, held at 700 ° C. for 10 hours, further raised from 700 ° C. to 1000 ° C. at 5 ° C. per minute, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon precursor (9B). The obtained carbon precursor (9B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.6795 g of acid-washed carbon precursor (9C).
(焼成・粉砕処理 2回目焼成 真空ガス置換炉)
 炭素前駆体(9C)0.1618gを石英ボートに測り取り、真空ガス置換炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、未酸洗浄の炭素材料(9D)を得た。炭素材料(9D)をメノウ乳鉢で粉砕し、未酸洗浄の炭素材料(9E)を0.1366g得た。得られた未酸洗浄の炭素材料(9E)を実施例9の含窒素カーボンアロイとした。
(Firing / Crushing process 2nd firing Vacuum gas replacement furnace)
We measure 0.1618 g of carbon precursor (9C) in a quartz boat and install it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted in a vacuum gas replacement furnace, and set the nitrogen flow rate to 200 mL per minute. It was circulated at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon material (9D) of non-acid washing | cleaning. The carbon material (9D) was pulverized in an agate mortar to obtain 0.1366 g of non-acid cleaned carbon material (9E). The obtained non-acid cleaned carbon material (9E) was used as the nitrogen-containing carbon alloy of Example 9.
(BET法による比表面積測定)
 未酸洗浄の炭素材料(9E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the non-acid cleaned carbon material (9E) was used. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 未酸洗浄の炭素材料(9E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the non-acid cleaned carbon material (9E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(実施例10)
<ZIF8、FeCl・4HO添加DCPy混合物の炭素材料合成(10E)>
(ZIF8、FeCl・4HO添加DCPy混合物の調製)
 3,4-ジシアノピリジン(DCPy、Aldrich社製)1.00g、ZIF8(BASF社製、Basolite Z1200)9.00g、FeCl・4HO(和光純薬工業社製、純度99.9%)0.37gを、ワーリング社製、X-TREME MX1200XTM容器に添加し、窒素置換した後、10000rpmで、40秒間混合し、ZIF8、FeCl・4HO添加DCPy混合物(10A)を得た。
(Example 10)
<Synthesis of carbon material of ZIF8, FeCl 2 · 4H 2 O added DCPy mixture (10E)>
(Preparation of DCPy mixture containing ZIF8 and FeCl 2 .4H 2 O)
3,4-dicyanopyridine (DCPy, Aldrich) 1.00 g, ZIF8 (BASF, Basolite Z1200) 9.00 g, FeCl 2 .4H 2 O (Wako Pure Chemical Industries, purity 99.9%) 0.37 g was added to an X-TREME MX1200XTM container manufactured by Waring Co., purged with nitrogen, and mixed at 10,000 rpm for 40 seconds to obtain a DCPy mixture (10A) containing ZIF8 and FeCl 2 .4H 2 O.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
分子式:C733、分子量:129.119
元素分析(計算値):C,65.11;H,2.34;N,32.54
Molecular formula: C 7 H 3 N 3 , molecular weight: 129.119
Elemental analysis (calculated values): C, 65.11; H, 2.34; N, 32.54
(連続焼成 流通炉・粉砕処理) 
 ZIF8、FeCl・4HO添加DCPy混合物(10A)3.2329gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。
30℃から700℃まで毎分5℃昇温し、700℃で10時間保持し、さらに700℃から1000℃まで毎分5℃で昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(10B)を0.9369g得た。得られた炭素前駆体(10B)をメノウ乳鉢で粉砕し、未酸洗浄の炭素材料(10E)を得た。得られた未酸洗浄の炭素材料(10E)を実施例10の含窒素カーボンアロイとした。
(Continuous firing distribution furnace, pulverization)
ZIF8, FeCl 2 .4H 2 O added DCPy mixture (10A) 3.2329 g was weighed into a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace. The flow rate was 200 mL per minute, and the mixture was circulated at room temperature for 30 minutes.
The temperature was raised from 30 ° C. to 700 ° C. at 5 ° C. per minute, held at 700 ° C. for 10 hours, further raised from 700 ° C. to 1000 ° C. at 5 ° C. per minute, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained 0.9369g of carbon precursors (10B). The obtained carbon precursor (10B) was pulverized in an agate mortar to obtain a non-acid cleaned carbon material (10E). The obtained non-acid cleaned carbon material (10E) was used as the nitrogen-containing carbon alloy of Example 10.
(BET法による比表面積測定)
 未酸洗浄の炭素材料(10E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the non-acid cleaned carbon material (10E) was used. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 未酸洗浄の炭素材料(10E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the non-acid cleaned carbon material (10E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(実施例11)
<ZIF8、FeCl・4HO添加DCPy混合物の炭素材料合成(11E)>
(酸洗浄処理)
 上述の未酸洗浄の炭素材料(10B)0.8496gをメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(11C)を0.7923g得た。
(Example 11)
<Synthesis of carbon material of ZIF8 and FeCl 2 .4H 2 O added DCPy mixture (11E)>
(Acid cleaning treatment)
0.8496 g of the above-mentioned non-acid cleaned carbon material (10B) was pulverized in an agate mortar, and concentrated hydrochloric acid cleaning, centrifugal filtration, and removal of the supernatant were repeated until no coloration occurred. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.7923 g of acid-washed carbon material (11C).
(焼成・粉砕処理、2回目焼成、真空ガス置換/回転炉)
 上述の炭素前駆体(11C)0.6589gを石英ボートに測り取り、真空ガス置換炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その際に石英管を毎分2.0rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(11D)を0.6017g得た。 炭素材料(11D)をメノウ乳鉢で粉砕し、未酸洗浄の炭素材料(11E)を実施例11の含窒素カーボンアロイとした。
(Firing / Crushing process, Second firing, Vacuum gas replacement / Rotating furnace)
0.6589 g of the carbon precursor (11C) described above was measured in a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement furnace, and the nitrogen flow rate was adjusted every minute. It was made 200 mL and it was distribute | circulated at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. At that time, the quartz tube was rotated at 2.0 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained 0.6017g of carbon materials (11D). The carbon material (11D) was pulverized in an agate mortar, and the non-acid cleaned carbon material (11E) was used as the nitrogen-containing carbon alloy of Example 11.
(BET法による比表面積測定)
 未酸洗浄の炭素材料(11E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the non-acid cleaned carbon material (11E) was used. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 未酸洗浄の炭素材料(11E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the non-acid cleaned carbon material (11E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(実施例12)
<ZIF8、FeCl・4HO添加DCPN混合物の炭素材料合成(12E)>
(ZIF8、FeCl・4HO添加DCPN混合物の調製)
 3,4-ジクロロフタロニトリル(DCPN、Aldrich社製)1.00g、ZIF8(BASF社製、Basolite Z1200)9.00g、FeCl・4HO(和光純薬工業社製、純度99.9%)0.37gを、ワーリング社製、X-TREME MX1200XTM容器に添加し、窒素置換した後、10000rpmで、40秒間混合し、ZIF8、FeCl・4HO添加DCPN混合物(12A)を得た。
Example 12
<Synthesis of carbon material of ZIF8 and FeCl 2 .4H 2 O added DCPN mixture (12E)>
(Preparation of DCPN mixture containing ZIF8 and FeCl 2 .4H 2 O)
3,4-dichlorophthalonitrile (DCPN, manufactured by Aldrich) 1.00 g, ZIF8 (BASF, Basolite Z1200) 9.00 g, FeCl 2 .4H 2 O (Wako Pure Chemical Industries, purity 99.9%) ) 0.37 g was added to an X-TREME MX1200XTM container manufactured by Waring Co., and purged with nitrogen, followed by mixing at 10,000 rpm for 40 seconds to obtain a DCPN mixture (12A) containing ZIF8 and FeCl 2 .4H 2 O.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
分子式:C82Cl22、分子量:197.02
元素分析(計算値):C,48.77;H,1.02;Cl,35.99;N,14.22
Molecular formula: C 8 H 2 Cl 2 N 2 , molecular weight: 197.02
Elemental analysis (calculated): C, 48.77; H, 1.02; Cl, 35.99; N, 14.22
(焼成・粉砕処理、1回目焼成、流通炉)
 ZIF8、FeCl・4HO添加DCPN混合物(12A)2.1185gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分300mLとし、30分間室温で流通させた。30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(12B)を0.7043g得た。得られた炭素前駆体(12B)をメノウ乳鉢で粉砕し、未酸洗浄の炭素前駆体(12C)を得た。
(Firing / Crushing treatment, First firing, Distribution furnace)
Weighing 2.1185 g of DCIF mixture (12A) containing ZIF8 and FeCl 2 .4H 2 O (12A) in a quartz boat and installing it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted in a tubular furnace, The flow rate was 300 mL per minute and the mixture was circulated at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 1000 ° C. by 5 ° C. per minute, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained 0.7043g of carbon precursors (12B). The obtained carbon precursor (12B) was pulverized in an agate mortar to obtain an unacid-washed carbon precursor (12C).
(焼成・粉砕処理、2回目焼成、真空ガス置換炉)
 炭素前駆体(12C)0.2096gを石英ボートに測り取り、真空ガス置換炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(12D)を0.1910g得た。炭素材料(12D)をメノウ乳鉢で粉砕し、未酸洗浄の炭素材料(12E)を実施例12の含窒素カーボンアロイとした。
(Baking / Crushing process, Second baking, Vacuum gas replacement furnace)
Weigh 0.2096 g of carbon precursor (12C) in a quartz boat and place it in the center of a 4.0 cmφ (inside diameter 3.6 cmφ) quartz tube inserted into a vacuum gas replacement furnace, and the nitrogen flow rate is 200 mL per minute. It was circulated at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained carbon-material (12D) 0.1910g. The carbon material (12D) was pulverized in an agate mortar, and the non-acid cleaned carbon material (12E) was used as the nitrogen-containing carbon alloy of Example 12.
(BET法による比表面積測定)
 未酸洗浄の炭素材料(12E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the non-acid cleaned carbon material (12E) was used. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 未酸洗浄の炭素材料(12E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the non-acid cleaned carbon material (12E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(比較例1)
<ZIF8、Fe(OAc)添加(2-Py)-TAz混合物の未酸洗浄の炭素材料合成(C1-E)>
(ZIF8、Fe(OAc)添加(2-Py)-TAz混合物の調製)
 (2-Py)-TAz(東京化成工業社製)0.10g、ZIF8(BASF社製、Basolite Z1200)0.90g、Fe(OAc)(Aldrich社製、酢酸鉄(II)、純度99.99%以上(残存金属量基準))32mg、SUS304鋼球20個をジルコニア製45ml容器(フリッチュ製)に入れ、真空脱気し、窒素置換後、オバーポットで密閉した。遊星型ボールミル クラッシクラインP-7(フリッチュ製)を用いて、400rpmで3時間粉砕し、金属メッシュでSUS304鋼球を除き、ZIF8、Fe(OAc)添加(2-Py)-TAz混合物(C1-A)を得た。
(Comparative Example 1)
<ZIF8, Fe (OAc) 2 Addition (2-Py) 3 -TAz Mixture of Non-Acid Washed Carbon Material Synthesis (C1-E)>
(Preparation of ZIF8, Fe (OAc) 2 added (2-Py) 3 -TAz mixture)
(2-Py) 3 -TAz (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.10 g, ZIF8 (manufactured by BASF, Basolite Z1200) 0.90 g, Fe (OAc) 2 (manufactured by Aldrich, iron (II) acetate, purity 99 .99% or more (residual metal amount standard) 32 mg and 20 SUS304 steel balls were put into a 45 ml container (made by Fritsch) made of zirconia, vacuum deaerated, purged with nitrogen, and sealed with an overpot. Using a planetary ball mill Classic Line P-7 (manufactured by Fritsch), pulverization was performed at 400 rpm for 3 hours, SUS304 steel balls were removed with a metal mesh, and ZIF8, Fe (OAc) 2 added (2-Py) 3 -TAz mixture ( C1-A) was obtained.
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
分子式:C1812、分子量:312.33
元素分析(計算値):C, 69.22, H, 3.87, N, 26.91
Molecular formula: C 18 H 12 N 6 , molecular weight: 312.33
Elemental analysis (calculated value): C, 69.22, H, 3.87, N, 26.91
(焼成・粉砕・酸洗浄処理、1回目焼成、流通炉)
 ZIF8、Fe(OAc)添加(2-Py)-TAz混合物(C1-A)0.5823gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。30℃から900℃まで毎分5℃昇温し、900℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(C1-B)を得た。得られた炭素前駆体(C1-B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素前駆体(C1-C)を0.1870g得た。
(Baking / Crushing / Acid cleaning treatment, 1st baking, Distribution furnace)
0.5823 g of ZIF8, Fe (OAc) 2 added (2-Py) 3 -TAz mixture (C1-A) was weighed into a quartz boat and inserted into a tubular furnace with 4.0 cmφ (inner diameter 3.6 cmφ) quartz It installed in the center of a pipe | tube, the nitrogen flow rate was 200 mL / min, and it was distribute | circulated at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 900 ° C. at 5 ° C. per minute, and held at 900 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon precursor (C1-B). The obtained carbon precursor (C1-B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and allowed to stand overnight to obtain 0.1870 g of an acid cleaned carbon precursor (C1-C).
(焼成・粉砕・水洗浄処理、2回目焼成、真空ガス置換/回転炉)
 炭素前駆体(C1-C)0.0909gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その際に石英管を毎分2.0rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(C1-D)を得た。炭素材料(C1-D)をメノウ乳鉢で粉砕し、水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、未酸洗浄の炭素材料(C1-E)0.0540gを得た。得られた未酸洗浄の炭素材料(C1-E)を比較例1の含窒素カーボンアロイとした。
(Firing, grinding, water washing treatment, second firing, vacuum gas replacement / rotary furnace)
We measure 0.0909 g of carbon precursor (C1-C) in a quartz boat and install it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted in a vacuum gas-replacement rotary furnace. The minute volume was 200 mL, and the mixture was allowed to flow at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. At that time, the quartz tube was rotated at 2.0 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon material (C1-D). The carbon material (C1-D) was pulverized in an agate mortar, washed with water, filtered and air-dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then allowed to stand overnight to obtain 0.0540 g of non-acid washed carbon material (C1-E). The obtained non-acid cleaned carbon material (C1-E) was used as the nitrogen-containing carbon alloy of Comparative Example 1.
(BET法による比表面積測定)
 未酸洗浄の炭素材料(C1-E)の比表面積をBET法により測定した。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area of the non-acid cleaned carbon material (C1-E) was measured by the BET method. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 未酸洗浄の炭素材料(C1-E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the non-acid cleaned carbon material (C1-E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(比較例2)
<ZIF8、Fe(OAc)添加(2-Py)-TAz混合物の酸洗浄済み炭素材料合成(C2-E)>
 上述の炭素材料(C1-D)0.0547gをメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(C2-E)0.0441gを得た。得られた酸洗浄済み炭素材料(C2-E)を比較例2の含窒素カーボンアロイとした。
(Comparative Example 2)
<Synthesis of ZIF8, Fe (OAc) 2 added (2-Py) 3 -TAz mixture with acid washed carbon material (C2-E)>
0.0547 g of the above carbon material (C1-D) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, left to room temperature, and left overnight to obtain 0.0441 g of acid-cleaned carbon material (C2-E). The obtained acid-washed carbon material (C2-E) was used as the nitrogen-containing carbon alloy of Comparative Example 2.
(BET法による比表面積測定)
 酸洗浄済み炭素材料(C2-E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後に単離した含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the acid-cleaned carbon material (C2-E) was used. The results are shown in the column of nitrogen-containing carbon alloy isolated after acid washing in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 酸洗浄済み炭素材料(C2-E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the acid-cleaned carbon material (C2-E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(比較例3)
<加熱乾燥済みZIF8の調製(C3-E)>
 ZIF8(BASF社製、Basolite Z1200)2.0gを粉砕せずに、石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、脱気窒素置換を3回した後、窒素流量を毎分200mLとし、30分間室温で流通させた。30℃から100℃まで毎分5℃昇温し、100℃で24時間乾燥し、その後、12時間かけて室温まで冷却し、加熱乾燥済みZIF8を1.98g得た。得られた加熱乾燥済みZIF8を比較例3の加熱乾燥済みZIF8(C3-E)とした。表1の収率の欄には、加熱乾燥済みZIF8の収率を記載した。
(Comparative Example 3)
<Preparation of heat-dried ZIF8 (C3-E)>
ZIF8 (BASF Corp., Basolite Z1200) 2.0 g was measured without pulverizing into a quartz boat and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a tubular furnace. After substituting with nitrogen for 3 times, the nitrogen flow rate was set to 200 mL per minute and the mixture was allowed to flow at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 100 ° C. at 5 ° C. per minute, dried at 100 ° C. for 24 hours, and then cooled to room temperature over 12 hours to obtain 1.98 g of heat-dried ZIF8. The obtained heat-dried ZIF8 was used as heat-dried ZIF8 (C3-E) of Comparative Example 3. In the yield column of Table 1, the yield of heat-dried ZIF8 is described.
(BET法による比表面積測定)
 加熱乾燥済みZIF8(C3-E)の比表面積をBET法により測定した。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area of heat-dried ZIF8 (C3-E) was measured by the BET method. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 加熱乾燥済みZIF8(C3-E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that heat-dried ZIF8 (C3-E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(比較例4)
<ZIF8の未酸洗浄の炭素材料合成(C4-E)>
(ZIF8粉砕品の調製)
 ZIF8(BASF社製、Basolite Z1200)1.00g、SUS304鋼球20個をジルコニア製45ml容器(フリッチュ製)に入れ、真空脱気し、窒素置換後、オバーポットで密閉した。遊星型ボールミル クラッシクラインP-7(フリッチュ製)を用いて、400rpmで3時間粉砕し、金属メッシュでSUS304鋼球を除き、ZIF8粉砕品(C4-A)を得た。
(Comparative Example 4)
<Synthesis of ZIF8 non-acid washed carbon material (C4-E)>
(Preparation of ZIF8 ground product)
1.00 g of ZIF8 (manufactured by BASF, Basolite Z1200) and 20 SUS304 steel balls were placed in a 45 ml container (manufactured by Fritsch) made of zirconia, vacuum degassed, purged with nitrogen, and sealed with an overpot. Using a planetary ball mill Classic Line P-7 (manufactured by Fritsch), grinding was performed at 400 rpm for 3 hours, and SUS304 steel balls were removed with a metal mesh to obtain a ZIF8 ground product (C4-A).
(焼成・粉砕・酸洗浄処理、1回目焼成、流通炉)
 ZIF8粉砕品(C4-A)0.5126gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。30℃から900℃まで毎分5℃昇温し、900℃で1時間保持した。その後、3時間かけて室温まで冷却し、ZIF8の予備炭化物(C4-B)を得た。得られた予備炭化物(C4-B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた予備炭化物材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み予備炭化物(C4-C)を0.2026g得た。
(Baking / Crushing / Acid cleaning treatment, 1st baking, Distribution furnace)
Weigh 0.5126 g of ZIF8 pulverized product (C4-A) into a quartz boat and place it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted in a tubular furnace, and set the nitrogen flow rate to 200 mL per minute. For 30 minutes at room temperature. The temperature was raised from 30 ° C. to 900 ° C. at 5 ° C. per minute, and held at 900 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the preliminary carbide (C4-B) of ZIF8. The obtained preliminary carbide (C4-B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained preliminary carbide material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.2026 g of acid-cleaned preliminary carbide (C4-C).
(焼成・粉砕処理、2回目焼成、真空ガス置換/回転炉)
 上述の酸洗浄済み予備炭化物前駆体(C4-C)0.1836gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その際に石英管を毎分2.0rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(C4-D)を得た。炭素材料(C4-D)をメノウ乳鉢で粉砕し、水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、未酸洗浄の炭素材料(C4-E)0.1159g得た。得られた未酸洗浄の炭素材料(C4-E)を比較例4の含窒素カーボンアロイとした。
(Firing / Crushing process, Second firing, Vacuum gas replacement / Rotating furnace)
0.1836 g of the above-mentioned acid-cleaned pre-carbide precursor (C4-C) was weighed into a quartz boat and installed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace. Then, the nitrogen flow rate was set at 200 mL per minute and the mixture was allowed to flow at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. At that time, the quartz tube was rotated at 2.0 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained carbon material (C4-D). The carbon material (C4-D) was pulverized in an agate mortar, washed with water, filtered and air-dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then allowed to stand overnight to obtain 0.1159 g of non-acid washed carbon material (C4-E). The obtained non-acid cleaned carbon material (C4-E) was used as the nitrogen-containing carbon alloy of Comparative Example 4.
(BET法による比表面積測定)
 未酸洗浄の炭素材料(C4-E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の未酸洗浄含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the non-acid cleaned carbon material (C4-E) was used. The results are shown in the column of non-acid-washed nitrogen-containing carbon alloy in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 未酸洗浄の炭素材料(C4-E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the non-acid cleaned carbon material (C4-E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(比較例5)
<ZIF8の酸洗浄済み炭素材料合成(C5-E)>
 上述の炭素材料(C4-D)0.0570gをメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(C5-E)0.0513gを得た。得られた酸洗浄済み炭素材料(C5-E)を比較例5の含窒素カーボンアロイとした。
(Comparative Example 5)
<Synthesis of ZIF8 acid-washed carbon material (C5-E)>
0.0570 g of the above carbon material (C4-D) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.0513 g of acid-washed carbon material (C5-E). The obtained acid-washed carbon material (C5-E) was used as the nitrogen-containing carbon alloy of Comparative Example 5.
(BET法による比表面積測定)
 酸洗浄済み炭素材料(C5-E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後に単離した含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the acid-cleaned carbon material (C5-E) was used. The results are shown in the column of nitrogen-containing carbon alloy isolated after acid washing in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 酸洗浄済みZIF8材料(C5-E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the acid-washed ZIF8 material (C5-E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(比較例6)
<ZIF8、Fe(OAc)添加2-PyTAz(NH混合物の炭素材料合成(C6-E)>
(2-PyTAz(NHの調製)
 J.Org.Chem.,2003,68,1158.を参考に、2-PyTAz(NHを調製した。2-ピリジルカルゴキシアルデヒド(東京化成工業社製)107.1mg、ヨウ素 500mgを、28%アンモニア水 9mLとTHF 1mLの混合溶媒に添加し、室温で1時間撹拌した。これにジシアノジアミド(東京化成工業社製)100mgとKOH 120mgの混合物を添加して、18時間加熱還流した。生成した沈殿をろ過し、Et2O(20%エタノール)で洗浄乾燥し2-PyTAz(NHを80mg得た。
(Comparative Example 6)
<ZIF8, Fe (OAc) 2- added 2-PyTAz (NH 2 ) 2 mixture carbon material synthesis (C6-E)>
(Preparation of 2-PyTAz (NH 2 ) 2 )
J. et al. Org. Chem. , 2003, 68, 1158. From the above, 2-PyTAz (NH 2 ) 2 was prepared. 2-Pyridylcarboxaldehyde (Tokyo Chemical Industry Co., Ltd.) 107.1 mg and iodine 500 mg were added to a mixed solvent of 28% aqueous ammonia 9 mL and THF 1 mL, and the mixture was stirred at room temperature for 1 hour. To this was added a mixture of 100 mg of dicyanodiamide (manufactured by Tokyo Chemical Industry Co., Ltd.) and 120 mg of KOH, and the mixture was heated to reflux for 18 hours. The produced precipitate was filtered, washed with Et2O (20% ethanol) and dried to obtain 80 mg of 2-PyTAz (NH 2 ) 2 .
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
2-PyTAz(NH
Figure JPOXMLDOC01-appb-C000030
2-PyTAz (NH 2 )
分子式:C、分子量:188.19
元素分析(計算値):C, 51.06, H, 4.28, N, 44.66
Molecular formula: C 8 H 8 N 6 , molecular weight: 188.19
Elemental analysis (calculated values): C, 51.06, H, 4.28, N, 44.66
(ZIF8、Fe(OAc)添加2-PyTAz(NH混合物の調製)
 2-PyTAz(NH2 0.10g、ZIF8(BASF社製、Basolite Z1200)0.90g、Fe(OAc)(Aldrich社製、酢酸鉄(II)、純度99.99%以上(残存金属量基準))32mg、SUS304鋼球20個をジルコニア製45ml容器(フリッチュ製)に入れ、真空脱気し、窒素置換後、オバーポットで密閉した。遊星型ボールミル クラッシクラインP-7(フリッチュ製)を用いて、400rpmで3時間粉砕し、金属メッシュでSUS304鋼球を除き、ZIF8、Fe(OAc)添加2-PyTAz(NH混合物(C6-A)を得た。
(Preparation of ZIF8, Fe (OAc) 2 added 2-PyTAz (NH 2 ) 2 mixture)
2-PyTAz (NH 2 ) 2 0.10 g, ZIF8 (manufactured by BASF, Basolite Z1200) 0.90 g, Fe (OAc) 2 (manufactured by Aldrich, iron (II) acetate, purity 99.99% or more (residual metal) Amount standard)) 32 mg, 20 SUS304 steel balls were put into a 45 ml container (manufactured by Fritsch) made of zirconia, vacuum degassed, purged with nitrogen, and sealed with an overpot. Using a planetary ball mill Classic Line P-7 (manufactured by Fritsch), pulverization was performed at 400 rpm for 3 hours, SUS304 steel balls were removed with a metal mesh, and ZIF8, Fe (OAc) 2 added 2-PyTAz (NH 2 ) 2 mixture ( C6-A) was obtained.
(焼成・粉砕・酸洗浄処理、1回目焼成、流通炉)
 ZIF8、Fe(OAc)添加2-PyTAz(NH混合物(C6-A)2.5315gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。30℃から900℃まで毎分5℃昇温し、900℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(C6-B)を得た。得られた炭素前駆体(C6-B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素前駆体(C6-C)を0.4994g得た。
(Baking / Crushing / Acid cleaning treatment, 1st baking, Distribution furnace)
2.51.5 g of ZIF8, Fe (OAc) 2 added 2-PyTAz (NH 2 ) 2 mixture (C6-A) was weighed into a quartz boat and inserted into a tubular furnace with 4.0 cmφ (inner diameter 3.6 cmφ) quartz It installed in the center of a pipe | tube, the nitrogen flow rate was 200 mL / min, and it distribute | circulated at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 900 ° C. at 5 ° C. per minute, and held at 900 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon precursor (C6-B). The obtained carbon precursor (C6-B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until no coloration occurred. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and allowed to stand overnight to obtain 0.4994 g of acid-washed carbon precursor (C6-C).
(焼成・粉砕・酸洗浄処理、2回目焼成、真空ガス置換/回転炉)
 炭素前駆体(C6-C)0.3069gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その際に石英管を毎分2.0rpmで回転させた。その後、3時間かけて室温まで冷却し、炭素材料(C6-D)を得た。炭素材料(C6-D)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(C6-E)0.2048gを得た。得られた酸洗浄済み炭素材料(C6-E)を比較例6の炭素材料とした。
(Baking, grinding, acid cleaning treatment, second firing, vacuum gas replacement / rotary furnace)
We measure 0.3069 g of carbon precursor (C6-C) in a quartz boat and place it in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace. The minute volume was 200 mL, and the mixture was allowed to flow at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. At that time, the quartz tube was rotated at 2.0 rpm per minute. Then, it cooled to room temperature over 3 hours, and obtained the carbon material (C6-D). The carbon material (C6-D) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand to room temperature, and then left overnight to obtain 0.2048 g of acid-washed carbon material (C6-E). The obtained acid cleaned carbon material (C6-E) was used as the carbon material of Comparative Example 6.
(BET法による比表面積測定)
 酸洗浄済み炭素材料(C6-E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後に単離した含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the acid-cleaned carbon material (C6-E) was used. The results are shown in the column of nitrogen-containing carbon alloy isolated after acid washing in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 酸洗浄済み炭素材料(C6-E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the acid-cleaned carbon material (C6-E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(比較例7)
<Fe(acac)、FeCl・4HO添加2-mim混合物の炭素材料合成(C7-E)>
(Fe(acac)、FeCl・4HO添加2-mim混合物の調製)
 FeCl・4HO(和光純薬工業社製、純度99.9%)6.30g、2-メチルイミダゾール(2-mim)(Aldrich社製) 6.30g、Fe(acac)(Aldrich社製、純度99.95%)0.40gをワーリング社製、X-TREME MX1200XTM容器に添加し、窒素置換した後、10000rpmで、40秒間混合し、Fe(acac)、FeCl・4HO添加2-mim混合物(C7-A)を得た。
(Comparative Example 7)
<Synthesis of carbon material of Fe (acac) 2 , FeCl 2 .4H 2 O added 2-mim mixture (C7-E)>
(Preparation of 2- (mim) mixture containing Fe (acac) 2 and FeCl 2 .4H 2 O)
FeCl 2 · 4H 2 O (Wako Pure Chemical Industries, Ltd., purity 99.9%) 6.30 g, 2-methylimidazole (2-mim) (Aldrich Co.) 6.30g, Fe (acac) 2 (Aldrich Co. 0.40 g (manufactured, purity 99.95%) was added to a Waring Co. X-TREME MX1200XTM container, purged with nitrogen, mixed at 10000 rpm for 40 seconds, Fe (acac) 2 , FeCl 2 .4H 2 O An added 2-mim mixture (C7-A) was obtained.
(焼成・粉砕・酸洗浄処理、1回目焼成、流通炉) 
 Fe(acac)、FeCl・4HO添加2-mim混合物(C7-A)2.9987gを石英ボートに測り取り、管状炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、30分間室温で流通させた。30℃から800℃まで毎分5℃昇温し、800℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素前駆体(C7-B)を得た。得られた炭素前駆体(C7-B)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素前駆体(C7-C)を0.2561g得た。
(Baking / Crushing / Acid cleaning treatment, 1st baking, Distribution furnace)
2.99987 g of Fe (acac) 2 , FeCl 2 .4H 2 O added 2-mim mixture (C7-A) was weighed into a quartz boat and inserted into a tubular furnace with 4.0 cmφ (inner diameter 3.6 cmφ) quartz It installed in the center of a pipe | tube, the nitrogen flow rate was 200 mL / min, and it distribute | circulated at room temperature for 30 minutes. The temperature was raised from 30 ° C. to 800 ° C. by 5 ° C. per minute and held at 800 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon precursor (C7-B). The obtained carbon precursor (C7-B) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and left overnight to obtain 0.2561 g of an acid cleaned carbon precursor (C7-C).
(焼成・粉砕・酸洗浄処理 2回目焼成 真空ガス置換炉)
 炭素前駆体(C7-B)をメノウ乳鉢で粉砕し、0.1607gを石英ボートに測り取り、真空ガス置換回転炉内に挿入された4.0cmφ(内径3.6cmφ)の石英管の中央に設置し、窒素流量を毎分200mLとし、1分間室温で流通させた。次に、真空ポンプで管内が1.9×10Paとなるまで排気し、窒素置換を3度繰返した。その後、窒素の流量を毎分20mLに下げて、30℃から1000℃まで毎分5℃昇温し、1000℃で1時間保持した。その後、3時間かけて室温まで冷却し、炭素材料(C7-D)を得た。炭素材料(C7-D)をメノウ乳鉢で粉砕し、濃塩酸洗浄・遠心ろ過・上澄み液の除去を着色がなくなるまで繰返した。水で洗浄後、濾過・風乾した。得られた炭素材料を110℃で3時間真空乾燥し、室温まで放置し、そのまま一晩放置して、酸洗浄済み炭素材料(C7-E)0.1119gを得た。得られた酸洗浄済み炭素材料(C7-E)を比較例7の炭素材料とした。
(Baking / Crushing / Acid cleaning treatment 2nd baking Vacuum gas replacement furnace)
The carbon precursor (C7-B) was pulverized in an agate mortar, 0.1607 g was weighed into a quartz boat, and placed in the center of a 4.0 cmφ (inner diameter 3.6 cmφ) quartz tube inserted into a vacuum gas displacement rotary furnace. It was installed and the nitrogen flow rate was 200 mL per minute and allowed to flow at room temperature for 1 minute. Next, the inside of a pipe | tube was exhausted with the vacuum pump until it became 1.9 * 10 < 1 > Pa, and nitrogen substitution was repeated 3 times. Thereafter, the flow rate of nitrogen was lowered to 20 mL / min, the temperature was raised from 30 ° C. to 1000 ° C. at 5 ° C./min, and held at 1000 ° C. for 1 hour. Then, it cooled to room temperature over 3 hours, and obtained the carbon material (C7-D). The carbon material (C7-D) was pulverized in an agate mortar, and concentrated hydrochloric acid washing, centrifugal filtration, and removal of the supernatant were repeated until there was no coloration. After washing with water, it was filtered and air dried. The obtained carbon material was vacuum-dried at 110 ° C. for 3 hours, allowed to stand at room temperature, and then left overnight to obtain 0.1119 g of acid-cleaned carbon material (C7-E). The obtained acid cleaned carbon material (C7-E) was used as the carbon material of Comparative Example 7.
(BET法による比表面積測定)
 酸洗浄済み炭素材料(C7-E)を用いた以外は実施例1と同様にして、比表面積をBET法により測定した。その結果を、下記表1の酸洗浄後に単離した含窒素カーボンアロイの欄に記載した。
(Specific surface area measurement by BET method)
The specific surface area was measured by the BET method in the same manner as in Example 1 except that the acid-cleaned carbon material (C7-E) was used. The results are shown in the column of nitrogen-containing carbon alloy isolated after acid washing in Table 1 below.
(カーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定)
 酸洗浄済み炭素材料(C7-E)を用いた以外は実施例1と同様にして、カーボンアロイ塗付電極を製造し、ORR活性値を測定した。その結果を、下記表1に記載した。
(Production of carbon alloy coated electrode / Oxygen reduction reaction (ORR) activity measurement)
A carbon alloy-coated electrode was produced in the same manner as in Example 1 except that the acid-cleaned carbon material (C7-E) was used, and the ORR activity value was measured. The results are shown in Table 1 below.
(比較例8)
 無機金属塩又は有機金属錯体の割合が1質量%(対基質+触媒)になるように、2-メチルイミダゾール(2-mim)(Aldrich社製)1.00gに、FeCl・4HO(和光純薬工業社製、純度99.9%)16mg、Fe(acac)(Aldrich社製、純度99.95%)23mgをワーリング社製、X-TREME MX1200XTM容器に添加し、窒素置換した後、10000rpmで、40秒間混合し、Fe(acac)、FeCl・4HO添加2-mim混合物(C8-A)を得た。
 Fe(acac)、FeCl・4HO添加2-mim混合物(C8-A)を比較例7と同様に焼成したが、極微量の炭素材料のみしか得られず、BET法による比表面積測定およびカーボンアロイ塗付電極の作製・酸素還元反応(ORR)活性測定もできなかった。
(Comparative Example 8)
To 1.00 g of 2-methylimidazole (2-mim) (manufactured by Aldrich) so that the ratio of inorganic metal salt or organometallic complex is 1% by mass (vs. substrate + catalyst), FeCl 2 .4H 2 O ( Wako Pure Chemical Industries, Ltd., purity 99.9%) 16 mg, Fe (acac) 2 (Aldrich, purity 99.95%) 23 mg were added to Waring Co., X-TREME MX1200XTM container and purged with nitrogen. The mixture was mixed at 10,000 rpm for 40 seconds to obtain a 2-mim mixture (C8-A) containing Fe (acac) 2 and FeCl 2 .4H 2 O.
A 2-mim mixture (C8-A) containing Fe (acac) 2 and FeCl 2 .4H 2 O was calcined in the same manner as in Comparative Example 7, but only a very small amount of carbon material was obtained, and the specific surface area was measured by the BET method. In addition, the production of carbon alloy-coated electrodes and the measurement of oxygen reduction reaction (ORR) activity could not be performed.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表1より、実施例の含窒素カーボンアロイは、触媒性能を示すORR電圧が十分に高いことがわかった。さらに、含窒素カーボンアロイの収率も良好であった。
 一方、比較例の含窒素カーボンアロイは、ORR電圧が低く、触媒として性能が劣るものであった。比較例1、2、6、7及び8は収率も劣るものであった。また、共有結合性有機骨格材料及び金属有機骨格材料を添加せず、無機金属塩又は有機金属錯体の割合を1質量%とした比較例8では、極微量の含窒素カーボンアロイしか得られなかった。
From Table 1, it was found that the nitrogen-containing carbon alloy of the example had a sufficiently high ORR voltage indicating catalyst performance. Furthermore, the yield of nitrogen-containing carbon alloy was also good.
On the other hand, the nitrogen-containing carbon alloy of the comparative example had a low ORR voltage and poor performance as a catalyst. Comparative Examples 1, 2, 6, 7, and 8 were inferior in yield. Further, in Comparative Example 8 in which the ratio of the inorganic metal salt or the organometallic complex was 1% by mass without adding the covalent organic skeleton material and the metal organic skeleton material, only a very small amount of nitrogen-containing carbon alloy was obtained. .
(燃料電池発電性能評価)
(1)触媒インクの調製
(1)-1 カソード用触媒インクの調製
 各実施例の含窒素カーボンアロイ材料0.1gと、1.0gの5質量%ナフィオン(登録商標)溶液(溶媒:水と低級アルコールの混合物、WAKO 番号321-86703)、0.25mLの水(イオン交換水)、及び0.5mLの1-プロパノールを、超音波分散機で2.5時間分散し、カソード用非白金触媒インクを得た。
(Fuel cell power generation performance evaluation)
(1) Preparation of catalyst ink (1) -1 Preparation of catalyst ink for cathode 0.1 g of nitrogen-containing carbon alloy material of each example and 1.0 g of 5 mass% Nafion (registered trademark) solution (solvent: water and A mixture of lower alcohols, WAKO number 321-86703), 0.25 mL of water (ion-exchanged water), and 0.5 mL of 1-propanol were dispersed with an ultrasonic disperser for 2.5 hours, and the non-platinum catalyst for cathode Ink was obtained.
(1)-2 アノード用触媒インクの調製
 50質量%白金が担持された白金担持カーボン(田中貴金属工業(株)社製、TEC10V50E)0.5gをガラス容器に秤取り、0.8mLの水を加えた後、セプタムシールでガラス容器を封管し、容器内を窒素置換した。上述した5質量%ナフィオン4.3mLと1-プロパノール1mLをガラス容器内に注入し、超音波を2.5時間照射することでアノード用触媒インクを得た。
(1) -2 Preparation of anode catalyst ink 0.5 g of platinum-supported carbon (TEC 10V50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) carrying 50% by mass of platinum was weighed in a glass container, and 0.8 mL of water was added. After the addition, the glass container was sealed with a septum seal, and the inside of the container was purged with nitrogen. The catalyst ink for anode was obtained by injecting 4.3 mL of 5% by mass Nafion and 1 mL of 1-propanol into a glass container and irradiating with ultrasonic waves for 2.5 hours.
(2)転写用触媒塗布膜の作製
(2)-1 カソード用触媒膜の調製
 (1)-1で調製したカソード用触媒インクをテフロン(登録商標)シートベース上に、200μmクリアランスのアプリケータで塗布し、24時間かけてゆっくり乾燥させた。乾燥後、5cm×5cmサイズの正方形にカットした。この塗布膜の重量からベース重量を差し引いた塗布物重量は、47.6mg(1.9mg/cm)であった。
(2) Preparation of transfer catalyst coating film (2) -1 Preparation of cathode catalyst film (1) Cathode catalyst ink prepared in (1) -1 was applied onto a Teflon (registered trademark) sheet base with a 200 μm clearance applicator. It was applied and slowly dried over 24 hours. After drying, it was cut into a 5 cm × 5 cm size square. The coating weight obtained by subtracting the base weight from the weight of the coating film was 47.6 mg (1.9 mg / cm 2 ).
(2)-2 アノード用触媒膜の調製
 (1)-2で調製したアノード用触媒インクをテフロン(登録商標)シートベース上に、300μmクリアランスのアプリケータで塗布し、24時間かけてゆっくり乾燥させた。乾燥後、5cm×5cmサイズの正方形にカットした。この塗布膜の重量からベース重量を差し引いた塗布物重量は、21.5mg(0.86mg/cm)であった。
(2) -2 Preparation of anode catalyst membrane The anode catalyst ink prepared in (1) -2 was applied onto a Teflon (registered trademark) sheet base with a 300 μm clearance applicator and slowly dried over 24 hours. It was. After drying, it was cut into a 5 cm × 5 cm size square. The coating weight obtained by subtracting the base weight from the weight of the coating film was 21.5 mg (0.86 mg / cm 2 ).
(3)転写用プロトン伝導膜の調製
 ナフィオン膜(NR211、デュポン社製)を8cm×8cmサイズの正方形にカットしたものを、1mol/LのCsCl水溶液に10時間浸漬し、イオン交換水で水洗した後、乾燥し、転写用プロトン伝導膜を得た。
(3) Preparation of transfer proton conducting membrane A Nafion membrane (NR211, manufactured by DuPont) cut into a square of 8 cm x 8 cm size was immersed in a 1 mol / L CsCl aqueous solution for 10 hours and washed with ion-exchanged water. Thereafter, it was dried to obtain a proton conductive membrane for transfer.
(4)電極複合膜の調製
 10cm×10cmサイズの正方形にカットした2枚のポリイミド膜(ユーピレックス75:宇部興産社製)の間に、(2)-1で調製した触媒膜、(3)で調製したプロトン伝導膜、(2)-2で調製した触媒膜の順に重ね合わせた。この際、触媒膜がプロトン伝導膜の中央で、塗布面がプトロン伝導膜に接する向きとした。この重ね合わせたシートを210℃、15MPaで10分間プレスした。2枚のポリイミド膜から、熱圧着された膜を取り出し、カソード塗布膜とアノード塗布膜のベースであるテフロン(登録商標)シートを剥離することにより、プロトン伝導膜の両面に触媒層が転写された電極複合膜を得た。この電極複合膜を0.5mol/Lの硫酸水溶液に10時間浸漬した後、イオン交換水で水洗し、乾燥後、目的の電極複合膜を得た。
(4) Preparation of electrode composite membrane Between two polyimide membranes (UPILEX 75: manufactured by Ube Industries Co., Ltd.) cut into 10 cm × 10 cm squares, a catalyst membrane prepared in (2) -1; The proton conducting membrane prepared and the catalyst membrane prepared in (2) -2 were superposed in this order. At this time, the catalyst membrane was at the center of the proton conducting membrane, and the coating surface was in contact with the ptrone conducting membrane. The laminated sheet was pressed at 210 ° C. and 15 MPa for 10 minutes. The thermocompression-bonded film was taken out from the two polyimide films, and the catalyst layer was transferred to both sides of the proton conducting film by peeling off the Teflon (registered trademark) sheet which is the base of the cathode coating film and the anode coating film. An electrode composite membrane was obtained. This electrode composite membrane was immersed in a 0.5 mol / L sulfuric acid aqueous solution for 10 hours, washed with ion-exchanged water, and dried to obtain the desired electrode composite membrane.
(5)評価用燃料電池の組立て
 (4)で得た電極複合膜を、5cm×5cmサイズの正方形にカットした2枚のカーボンクロス(ガス拡散層ELAT BASF社製)で挟み、200μm厚みのガスケット(テプロン製)を使用して、JARI標準セル(エフシー開発(株)社製)に組み込み、触媒有効面積25cmの燃料電池セルを得た。
(5) Assembly of fuel cell for evaluation The electrode composite membrane obtained in (4) is sandwiched between two carbon cloths (made by gas diffusion layer ELAT BASF) cut into a square of 5 cm × 5 cm size, and a gasket having a thickness of 200 μm (Made by Tepron) was incorporated into a JARI standard cell (manufactured by FC Development Co., Ltd.) to obtain a fuel cell having a catalyst effective area of 25 cm 2 .
(6)発電性能評価
 この燃料電池セルを80℃に保ちながら、アノードに加湿水素、カソードに加湿空気を供給した。水素及び空気の加湿は、水を貯めたバブラーに各ガスを通すことで行った。水素用バブラーの水温は80℃、空気用バブラーの水温は80℃とした。ここで、水素のガス流量は1000ml/分、空気のガス流量は2500ml/分とし、常圧下で測定した。燃料電池セルの電流値を0Aから7.5Aまで、30秒毎に変化させ、各電流での安定した電圧を計測することにより、電流-電圧曲線を得た。
(6) Power generation performance evaluation While keeping the fuel cell at 80 ° C., humidified hydrogen was supplied to the anode and humidified air was supplied to the cathode. Hydrogen and air were humidified by passing each gas through a bubbler containing water. The water temperature of the hydrogen bubbler was 80 ° C, and the water temperature of the air bubbler was 80 ° C. Here, the hydrogen gas flow rate was 1000 ml / min, the air gas flow rate was 2500 ml / min, and measurement was performed under normal pressure. A current-voltage curve was obtained by changing the current value of the fuel cell from 0 A to 7.5 A every 30 seconds and measuring a stable voltage at each current.
10 燃料電池、
12 セパレータ、
13 アノード電極触媒、
14 固体高分子電解質、
15 カソード電極触媒、
16 セパレータ、
20 電気二重層キャパシタ、
21 第1の電極、
22 第2の電極、
23 セパレータ、
24a 外装蓋、
24b 外装ケース、
25 集電体、
26 ガスケット
10 Fuel cell,
12 separator,
13 Anode electrocatalyst,
14 solid polymer electrolyte,
15 cathode catalyst,
16 separator,
20 electric double layer capacitor,
21 first electrode;
22 second electrode,
23 separator,
24a exterior lid,
24b exterior case,
25 Current collector,
26 Gasket

Claims (21)

  1.  下記一般式(1)で表される含窒素有機化合物、前記含窒素有機化合物の互変異性体、前記含窒素有機化合物の塩及び前記含窒素有機化合物の水和物から選択される少なくとも一種と、
     共有結合性有機骨格材料及び金属有機骨格材料から選択される少なくとも一種と、
     無機金属塩及び有機金属錯体から選択される少なくとも一種とを含む前駆体を焼成する工程を含む含窒素カーボンアロイの製造方法;
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、Qは、少なくとも1つの5~7員環の芳香族環又は5~7員環の複素芳香族環から構成される原子団を表し、Rは、ハロゲン原子、置換もしくは無置換のアルキル基、又は下記一般式(2)~(5)で表される置換基を表し、Qが含窒素複素芳香族環を含まない場合は、少なくとも1つのRは下記一般式(2)~(5)で表される置換基を表す。nは1~4の整数を表す。
    Figure JPOXMLDOC01-appb-C000002
     一般式(2)中、*はQへの結合部を表す。
    Figure JPOXMLDOC01-appb-C000003
     一般式(3)~(5)中、R~Rはそれぞれ独立に、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のアリール基、又は置換もしくは無置換のヘテロ環基を表し、RとR、RとR、RとRは互いに結合して環を構成してもよい。*はQへの結合部を表す。
    At least one selected from a nitrogen-containing organic compound represented by the following general formula (1), a tautomer of the nitrogen-containing organic compound, a salt of the nitrogen-containing organic compound, and a hydrate of the nitrogen-containing organic compound ,
    At least one selected from a covalent organic framework material and a metal organic framework material;
    A method for producing a nitrogen-containing carbon alloy comprising a step of firing a precursor containing at least one selected from an inorganic metal salt and an organometallic complex;
    Figure JPOXMLDOC01-appb-C000001
    In the general formula (1), Q represents an atomic group composed of at least one 5- to 7-membered aromatic ring or 5- to 7-membered heteroaromatic ring, and R represents a halogen atom, a substituted or When an unsubstituted alkyl group or a substituent represented by the following general formulas (2) to (5) is represented and Q does not include a nitrogen-containing heteroaromatic ring, at least one R is represented by the following general formula (2 ) To (5). n represents an integer of 1 to 4.
    Figure JPOXMLDOC01-appb-C000002
    In the general formula (2), * represents a bond to Q.
    Figure JPOXMLDOC01-appb-C000003
    In general formulas (3) to (5), R 1 to R 8 each independently represents a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted heterocyclic group. R 1 and R 2 , R 3 and R 4 , R 7 and R 8 may be bonded to each other to form a ring. * Represents a bond to Q.
  2.  前記一般式(1)において、Qは、5~7員環の芳香族環又は5~7員環の複素芳香族環である請求項1に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to claim 1, wherein in the general formula (1), Q is a 5- to 7-membered aromatic ring or a 5- to 7-membered heteroaromatic ring.
  3.  前記一般式(1)において、Qは、ベンゼン環、ピリジン環又はイミダゾール環である請求項1又は2に記載の含窒素カーボンアロイの製造方法。 In the said General formula (1), Q is a benzene ring, a pyridine ring, or an imidazole ring, The manufacturing method of the nitrogen-containing carbon alloy of Claim 1 or 2.
  4.  前記一般式(1)において、Qは、5~7員環の含窒素複素芳香族環である請求項1又は2に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to claim 1 or 2, wherein in the general formula (1), Q is a 5- to 7-membered nitrogen-containing heteroaromatic ring.
  5.  前記一般式(1)において、Qは、5~7員環の含窒素複素芳香族環であり、Rは置換もしくは無置換のアルキル基、又は前記一般式(2)で表される置換基を表す請求項4に記載の含窒素カーボンアロイの製造方法。 In the general formula (1), Q is a 5- to 7-membered nitrogen-containing heteroaromatic ring, and R is a substituted or unsubstituted alkyl group, or a substituent represented by the general formula (2). The manufacturing method of the nitrogen-containing carbon alloy of Claim 4 represented.
  6.  前記金属有機骨格材料は、ゼオライト型イミダゾール骨格材料である請求項1~5のいずれか1項に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 5, wherein the metal organic framework material is a zeolite type imidazole framework material.
  7.  前記無機金属塩は、無機金属塩化物である請求項1~6のいずれか1項に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 6, wherein the inorganic metal salt is an inorganic metal chloride.
  8.  前記無機金属塩の金属種が、Feである請求項1~7のいずれか1項に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 7, wherein the metal species of the inorganic metal salt is Fe.
  9.  前記無機金属塩は、含水塩である請求項1~8のいずれか1項に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 8, wherein the inorganic metal salt is a hydrate salt.
  10.  前記有機金属錯体は、金属アセタート錯体、β-ジケトン金属錯体、及びサレン錯体から選択される少なくとも一種である請求項1~9のいずれか1項に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 9, wherein the organometallic complex is at least one selected from a metal acetate complex, a β-diketone metal complex, and a salen complex.
  11.  前記有機金属錯体は、アセチルアセトン鉄(II)錯体である請求項1~10のいずれか1項に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 10, wherein the organometallic complex is an acetylacetone iron (II) complex.
  12.  前記有機金属錯体は、鉄サレン錯体である請求項1~10のいずれか1項に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 10, wherein the organometallic complex is an iron-salen complex.
  13.  前記焼成する工程は、前記前駆体を400℃以上で焼成する工程である請求項1~12のいずれか1項に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 12, wherein the firing step is a step of firing the precursor at 400 ° C or higher.
  14.  前記焼成する工程は、前記前駆体を700~1050℃で焼成する工程である請求項1~13のいずれか1項に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 13, wherein the firing step is a step of firing the precursor at 700 to 1050 ° C.
  15.  前記焼成する工程は、前記前駆体を700~1050℃で1秒~100時間保持する工程を含む請求項14に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to claim 14, wherein the firing step includes a step of holding the precursor at 700 to 1050 ° C for 1 second to 100 hours.
  16.  前記焼成する工程の前に、前記前駆体を粉砕する工程をさらに含む請求項1~15のいずれか1項に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 15, further comprising a step of pulverizing the precursor before the firing step.
  17.  前記焼成する工程の後に、焼成された含窒素カーボンアロイを粉砕する工程と、再焼成する工程とをさらに含む請求項1~16のいずれか1項に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to any one of claims 1 to 16, further comprising a step of pulverizing the calcined nitrogen-containing carbon alloy and a step of re-firing after the calcining step.
  18.  前記再焼成する工程は、1000~1500℃で焼成する工程である請求項17に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to claim 17, wherein the re-baking step is a step of baking at 1000 to 1500 ° C.
  19.  前記再焼成する工程の前に、脱気及び窒素置換する工程をさらに含む請求項17又は18に記載の含窒素カーボンアロイの製造方法。 The method for producing a nitrogen-containing carbon alloy according to claim 17 or 18, further comprising a step of deaeration and nitrogen substitution before the re-baking step.
  20.  請求項1~19のいずれか1項に記載の方法で製造された含窒素カーボンアロイ。 A nitrogen-containing carbon alloy produced by the method according to any one of claims 1 to 19.
  21.  請求項20に記載の含窒素カーボンアロイを用いた燃料電池触媒。 A fuel cell catalyst using the nitrogen-containing carbon alloy according to claim 20.
PCT/JP2015/074426 2014-09-01 2015-08-28 Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst WO2016035705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016546611A JP6454350B2 (en) 2014-09-01 2015-08-28 Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014177100 2014-09-01
JP2014-177100 2014-09-01

Publications (1)

Publication Number Publication Date
WO2016035705A1 true WO2016035705A1 (en) 2016-03-10

Family

ID=55439768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074426 WO2016035705A1 (en) 2014-09-01 2015-08-28 Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst

Country Status (2)

Country Link
JP (1) JP6454350B2 (en)
WO (1) WO2016035705A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178005A (en) * 2015-03-20 2016-10-06 富士フイルム株式会社 Composite, manufacturing method of composite, and fuel cell catalyst
JP2020500096A (en) * 2016-09-30 2020-01-09 コーロン インダストリーズ インク Carrier, electrode for fuel cell, membrane-electrode assembly, and fuel cell including the same
CN112827510A (en) * 2021-02-08 2021-05-25 福州大学 Porous composite material for catalytic synthesis of propylene carbonate and preparation method thereof
WO2021177359A1 (en) * 2020-03-04 2021-09-10 国立大学法人東京大学 Ammonia decomposition method and fuel cell using same
WO2022163752A1 (en) * 2021-01-29 2022-08-04 国立大学法人東海国立大学機構 Carbon material production method, carbon material, electrode production method, electrode, and fuel cell
CN116396489A (en) * 2023-03-17 2023-07-07 西北农林科技大学 Preparation method and application of flexible metal organic framework material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013125503A1 (en) * 2012-02-20 2013-08-29 富士フイルム株式会社 Nitrogen-containing carbon alloy, method for manufacturing same, carbon alloy catalyst and fuel cell
JP2014512251A (en) * 2011-02-08 2014-05-22 アンスティチュ ナショナル ド ラ ルシェルシュ シアンティフィーク Catalyst produced using a thermally decomposable porous support

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512251A (en) * 2011-02-08 2014-05-22 アンスティチュ ナショナル ド ラ ルシェルシュ シアンティフィーク Catalyst produced using a thermally decomposable porous support
WO2013125503A1 (en) * 2012-02-20 2013-08-29 富士フイルム株式会社 Nitrogen-containing carbon alloy, method for manufacturing same, carbon alloy catalyst and fuel cell

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016178005A (en) * 2015-03-20 2016-10-06 富士フイルム株式会社 Composite, manufacturing method of composite, and fuel cell catalyst
JP2020500096A (en) * 2016-09-30 2020-01-09 コーロン インダストリーズ インク Carrier, electrode for fuel cell, membrane-electrode assembly, and fuel cell including the same
WO2021177359A1 (en) * 2020-03-04 2021-09-10 国立大学法人東京大学 Ammonia decomposition method and fuel cell using same
WO2022163752A1 (en) * 2021-01-29 2022-08-04 国立大学法人東海国立大学機構 Carbon material production method, carbon material, electrode production method, electrode, and fuel cell
CN112827510A (en) * 2021-02-08 2021-05-25 福州大学 Porous composite material for catalytic synthesis of propylene carbonate and preparation method thereof
CN112827510B (en) * 2021-02-08 2022-04-12 福州大学 Porous composite material for catalytic synthesis of propylene carbonate and preparation method thereof
CN116396489A (en) * 2023-03-17 2023-07-07 西北农林科技大学 Preparation method and application of flexible metal organic framework material
CN116396489B (en) * 2023-03-17 2024-04-12 西北农林科技大学 Preparation method and application of flexible metal organic framework material

Also Published As

Publication number Publication date
JP6454350B2 (en) 2019-01-16
JPWO2016035705A1 (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP5820408B2 (en) Nitrogen-containing carbon alloy and production method thereof, carbon alloy catalyst and fuel cell
JP6320333B2 (en) Composite, composite manufacturing method, and fuel cell catalyst
JP6454350B2 (en) Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst
Kong et al. Nitrogen‐Doped Wrinkled Carbon Foils Derived from MOF Nanosheets for Superior Sodium Storage
JP5608595B2 (en) Nitrogen-containing carbon alloy, method for producing the same, and carbon catalyst using the same
Li et al. Recent advances in carbonized non-noble metal–organic frameworks for electrochemical catalyst of oxygen reduction reaction
Wang et al. Metal–organic frameworks and metal–organic gels for oxygen electrocatalysis: Structural and compositional considerations
JP2016102037A (en) Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst
Li et al. Metal–organic frameworks as platforms for clean energy
Ma et al. Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts
JP5108168B2 (en) Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof
JP5557564B2 (en) Nitrogen-containing carbon alloy and carbon catalyst using the same
KR102014985B1 (en) Composite, electrode catalyst including the same, manufacturing method thereof, and fuel cell using the same
KR101753126B1 (en) Manufacturing method of graphene/platinum-gold nano composite and graphene/platinum-gold 3D nano composite using the same
Oh et al. Direct, soft chemical route to mesoporous metallic lead ruthenium pyrochlore and investigation of its electrochemical properties
JP5918156B2 (en) Carbon alloy material, carbon alloy catalyst, and fuel cell manufacturing method
WO2014208740A1 (en) Method for producing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy and fuel cell catalyst
WO2015199125A1 (en) Method for manufacturing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel-cell catalyst
US20150376218A1 (en) Method for manufacturing nitrogen-containing carbon alloy, nitrogen-containing carbon alloy, and fuel cell catalyst
Li et al. A novel adenine-based metal organic framework derived nitrogen-doped nanoporous carbon for flexible solid-state supercapacitor
JP2009231049A (en) Platinum-supported carbon, catalyst for fuel cell, membrane electrode assembly, and fuel cell
JP5164627B2 (en) Platinum-supported carbon, fuel cell catalyst, electrode membrane assembly, and fuel cell
JP2009226318A (en) Platinum-supported carbon, catalyst for fuel cell, electrode membrane cemented product and fuel cell
JP5837356B2 (en) Method for producing fuel cell electrode catalyst, fuel cell electrode catalyst and use thereof
Singh et al. Co and Fe bimetallic MOF for enhanced electrocatalytic oxygen evolution performance: Exploring the electronic environment modifications upon Fe incorporation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838516

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546611

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838516

Country of ref document: EP

Kind code of ref document: A1