WO2016035623A1 - Composite wiring and production method therefor - Google Patents

Composite wiring and production method therefor Download PDF

Info

Publication number
WO2016035623A1
WO2016035623A1 PCT/JP2015/073922 JP2015073922W WO2016035623A1 WO 2016035623 A1 WO2016035623 A1 WO 2016035623A1 JP 2015073922 W JP2015073922 W JP 2015073922W WO 2016035623 A1 WO2016035623 A1 WO 2016035623A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite wiring
hfac
cvd
copper
carbon nanotubes
Prior art date
Application number
PCT/JP2015/073922
Other languages
French (fr)
Japanese (ja)
Inventor
貴士 松本
伊藤 大輔
亮太 井福
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2016035623A1 publication Critical patent/WO2016035623A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/10Applying interconnections to be used for carrying current between separate components within a device
    • H01L2221/1068Formation and after-treatment of conductors
    • H01L2221/1094Conducting structures comprising nanotubes or nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a composite wiring and a manufacturing method thereof, and more particularly to a fine composite wiring and a manufacturing method thereof.
  • Nanocarbon materials different from metals such as graphene and carbon nanotubes
  • metals such as graphene and carbon nanotubes
  • nanocarbon material is used for wiring instead of metal, for example, for horizontal wiring formed by trenches. It has been studied to use a plurality of bundled graphene ribbons and use a plurality of bundled carbon nanotubes for the wiring in the depth direction formed by via holes.
  • a carbon nanotube is a cylindrical cluster of carbon atoms obtained by decomposing a carbon-containing gas using catalyst metal particles as a catalyst and bonding carbon atoms together, and grows in one direction from each catalyst metal particle. Therefore, it can be suitably used for wiring in the depth direction in a three-dimensional mounting device, for example, wiring for via holes.
  • a metal such as Cu.
  • a Cu filling method for example, a PVD (Physical Vapor Deposition) method using a sputtered Cu particle, a CVD (Chemical Vapor Deposition) method, and a plating method have been studied (for example, see Patent Document 1).
  • the aspect ratio of the gaps between the carbon nanotubes is high, and sputtered particles cannot enter the depths of the gaps.
  • the wettability between the metal and the carbon nanotube is low, Cu atoms cannot enter the back of the gap in the plating method.
  • the gaps 71 between the carbon nanotubes 70 are not completely filled with Cu 72, and the gaps 71 remain in the composite wiring composed of the Cu 72 and the carbon nanotubes 70.
  • the resistance of the composite wiring does not decrease so much and the structure may become brittle.
  • An object of the present invention is to provide a composite wiring and a method for manufacturing the same capable of greatly reducing the resistance and strengthening the structure.
  • another molecule having a conjugated system and a metal atom are bonded to a conductor having a microstructure including a molecule having a conjugated system by an interaction caused by ⁇ electrons.
  • a method of manufacturing a composite wiring that performs CVD using a complex is provided.
  • a composite wiring in which a metal atom is filled in a gap generated in a fine-structure conductor including a molecule having a conjugated system, and the metal atom has a conjugated system.
  • a composite wiring that is filled by subjecting the fine-structured conductor to CVD using a complex in which other molecules of the metal atom and the metal atom are bonded by an interaction caused by ⁇ electrons.
  • a metal atom of a complex from which another molecule is eliminated by heat or the like in CVD binds to the molecule by an interaction caused by a ⁇ electron of a molecule having a conjugated system of a fine structure conductor.
  • metal atoms can be arranged at locations where a conjugated system exists in a fine-structure conductor, even if the aspect ratio of the gap generated in the fine-structure conductor is high, as long as the conjugated system exists, the metal atoms Can be made to enter the depth of the gap, and the gap generated in the fine-structured conductor can be almost completely filled with metal atoms.
  • the resistance can be greatly reduced and the structure can be strengthened.
  • FIGS. 4A and 4B are process diagrams for explaining CVD performed in the CVD processing apparatus of FIG. FIG.
  • FIG. 5 is a cross-sectional view schematically showing a configuration of a composite wiring made of copper and carbon nanotubes manufactured by the composite wiring manufacturing method according to the first embodiment of the present invention.
  • FIGS. 6A to 6H are process diagrams for explaining a method of manufacturing a composite wiring according to the second embodiment of the present invention.
  • FIG. 7 is a cross sectional view schematically showing a configuration of a modified example of the CVD processing apparatus of FIG.
  • FIG. 8 is a cross-sectional view schematically showing a configuration of a composite wiring made of copper and carbon nanotubes manufactured by a conventional composite wiring manufacturing method.
  • 1A to 1E are process diagrams for explaining a method of manufacturing a composite wiring according to the present embodiment.
  • an insulating interlayer film 12 is formed on the substrate S through a lower electrode layer 10 and a hard mask 11 made of, for example, silicon nitride (SiN), and the insulating interlayer film 12 is etched to be perpendicular to the substrate S.
  • a via hole 13 is formed in the opening.
  • the lower electrode layer 10 is exposed at the bottom of the via hole 13, and then the surface of the insulating interlayer film 12 including the surface of the via hole 13 is made of, for example, titanium nitride (TiN), tantalum nitride (TaN), manganese oxide (MnO x ) is covered with a barrier metal layer 14.
  • a catalytic metal layer (not shown) made of, for example, nickel (Ni) is formed on the bottom of the via hole 13, and the size and shape are uniform from the catalytic metal layer using plasma or the like as shown in FIG. 1A. A large number of catalyst metal fine particles 15 are formed.
  • the metal constituting the catalyst metal layer is copper (Cu), iron (Fe), cobalt (Co), ruthenium (Ru), gold (Au), platinum (Pt), molybdenum (Mo).
  • Transition metals such as manganese (Mn), or alloys containing these transition metals may be used.
  • each catalytic metal fine particle 15 activation is performed by removing the oxide on the surface of each catalytic metal fine particle 15 using plasma or the like, and as shown in FIG. 1B, carbon generated by pyrolysis from a carbon-containing gas such as acetylene gas or ethylene gas. Atoms are bonded to each other using each catalytic metal fine particle 15 as a nucleus to generate a plurality of carbon nanotubes 16 (microstructured conductors). At this time, the carbon nanotubes 16 grow in one direction (upward in FIG. 1B) from the catalytic metal fine particles 15 so as not to collide with each other while maintaining the properties of the catalytic metal fine particles 15. Therefore, the plurality of carbon nanotubes 16 are oriented substantially perpendicular to the surface of the substrate S.
  • a carbon-containing gas such as acetylene gas or ethylene gas.
  • each carbon nanotube 16 grows from each catalytic metal fine particle 15, when forming the catalytic metal fine particle 15, the type of processing gas and the energy for exciting the processing gas are adjusted to make each catalytic metal fine particle 15 dense. When formed, high-density carbon nanotubes 16 are obtained. On the other hand, even if the catalyst metal fine particles 15 are formed at a high density, minute gaps remain between the catalyst metal fine particles 15. 17 occurs.
  • a metal for example, copper 18 is filled into the gaps 17 by CVD (FIG. 1C).
  • FIG. 2 is a cross-sectional view schematically showing a configuration of a CVD processing apparatus that performs CVD for filling the gaps between the carbon nanotubes with copper.
  • a CVD processing apparatus 19 includes a substantially cylindrical chamber 20, a lower stage heater 21 disposed at the bottom of the chamber 20, and an upper portion disposed on the ceiling of the chamber 20 and facing the lower stage heater 21.
  • a gas supply system 25 that supplies a carrier gas or the like into the chamber 20, a gas discharge system 26 that exhausts a residual gas or the like inside the chamber 20, and a control unit 27 that controls the operation of each component.
  • the substrate S is placed on the lower stage heater 21, and the atmosphere inside the chamber 20 is replaced with, for example, nitrogen gas.
  • the pressure is reduced to 3 Torr.
  • the temperature of the substrate S is set to any one of 200 ° C. to 250 ° C. by the lower stage heater 21, and a metal complex 28 made of, for example, COD-Cu-hfac molecules is disposed on the sample stage 24. Is heated by the upper stage heater 22. At this time, COD-Cu-hfac molecules scattered from the heated metal complex 28 float inside the chamber 20, pass through the through hole 23, reach the substrate S, and each carbon nanotube 16 formed on the substrate S.
  • the gap 17 is filled with copper 18.
  • FIG. 3 is a diagram for explaining the molecular structure of COD-Cu-hfac molecules constituting a metal complex used in CVD to fill gaps generated between the carbon nanotubes
  • FIGS. 4A and 4B are diagrams. It is process drawing for demonstrating CVD performed with the CVD processing apparatus of 2.
  • FIG. 3 is a diagram for explaining the molecular structure of COD-Cu-hfac molecules constituting a metal complex used in CVD to fill gaps generated between the carbon nanotubes
  • FIGS. 4A and 4B are diagrams. It is process drawing for demonstrating CVD performed with the CVD processing apparatus of 2.
  • FIG. 3 is a diagram for explaining the molecular structure of COD-Cu-hfac molecules constituting a metal complex used in CVD to fill gaps generated between the carbon nanotubes
  • FIGS. 4A and 4B are diagrams. It is process drawing for demonstrating CVD performed with the CVD processing apparatus of 2.
  • FIG. 3 is a diagram for explaining the molecular structure of COD
  • a COD-Cu-hfac molecule is composed of cyclooctadiene (hereinafter simply referred to as “COD”), a copper atom, and hexafluoroacetylacetone (hereinafter simply referred to as “hfac”).
  • COD cyclooctadiene
  • hfac hexafluoroacetylacetone
  • the copper atom is single-bonded to each of the two oxygen atoms of hfac by a bond
  • COD has a conjugated system consisting of a single bond and a double bond. Specifically, it bonds to a copper atom by sharing ⁇ electrons.
  • each carbon nanotube 16 is constituted by a carbon six-membered ring (benzene ring) continuous over the entire area. Since each benzene ring has a conjugated system composed of a single bond and a double bond, ⁇ electrons exist in each benzene ring.
  • Cu-hfac molecule the copper atom of the COD-Cu-hfac molecule (hereinafter referred to as “Cu-hfac molecule”) from which COD has been eliminated is in a state where it can share an electron, the copper atom is responsible for the ⁇ electron of each benzene ring. Share and actively bond to each benzene ring.
  • the copper atom of the Cu-hfac molecule shares the ⁇ electron of the benzene ring of the carbon nanotube 16 and actively bonds to each benzene ring. That is, since the copper atoms can be arranged over the entire surface of the carbon nanotubes 16 due to the presence of ⁇ electrons in the benzene ring, even if the aspect ratio of the gaps 17 between the carbon nanotubes 16 is high, the copper atoms As shown in FIG. 5, the gaps 17 between the carbon nanotubes 16 can be almost completely filled with the copper 18.
  • the CVD processing apparatus 19 by continuing the CVD by the CVD processing apparatus 19 for a predetermined time, not only the gaps 17 between the carbon nanotubes 16 are filled with the copper 18, but also the copper 18 is used to form the substrate S. Cover the entire surface.
  • the surface of the substrate S is covered with an upper electrode layer 29 formed by CVD or PVD.
  • the upper electrode layer 29 and the tips of the carbon nanotubes 16 are in contact with each other, and the lower electrode layer 10 and the upper electrode layer 29 are electrically connected to each other through the carbon nanotubes 16, the catalytic metal fine particles 15, and the barrier metal layer 14. (FIG. 1E). Thereafter, the method ends.
  • the copper atoms of COD-Cu-hfac molecules (Cu-hfac molecules) from which COD has been desorbed by heat or the like in CVD are formed on the benzene ring of each carbon nanotube 16. It binds to the benzene ring by interaction caused by ⁇ electrons. That is, Cu-hfac molecules can be arranged at locations where benzene rings are present in each carbon nanotube 16, and each carbon nanotube 16 has a benzene ring over the entire surface.
  • ⁇ electrons are used for bonding between the copper atom of the Cu-hfac molecule and the benzene ring of each carbon nanotube 16, so that the gap 17 between each carbon nanotube 16 is made of copper 18 by CVD.
  • the temperature of the substrate S is set to only 200 ° C. to 250 ° C., which is relatively low, and even if the applied energy is small, the copper atoms of the Cu-hfac molecules and the carbon nanotubes 16 Can be bonded to the benzene ring.
  • the wiring composed of the carbon nanotubes 16 and the copper 18 manufactured by the above-described composite wiring manufacturing method is also applied to wiring of a nonvolatile memory element such as a magnetoresistive memory (MRAM) or a resistance change memory (ReRAM). can do.
  • MRAM magnetoresistive memory
  • ReRAM resistance change memory
  • each carbon nanotube 16 conducts the lower electrode layer 10 and the upper electrode layer 29 to each other in the via hole 13, but the carbon nanotube 16 has high thermal conductivity.
  • heat can be prevented from staying in the lower electrode layer 10, the upper electrode layer 29, or the like.
  • This embodiment is basically the same in configuration and operation as the first embodiment described above, and the first embodiment described above in that a plurality of carbon nanotubes are oriented substantially horizontally with respect to the surface of the substrate S. This is different from the embodiment. Therefore, the description of the duplicated configuration and operation is omitted, and the description of the different configuration and operation is given below.
  • 6A to 6H are process diagrams for explaining the method of manufacturing the composite wiring according to the present embodiment.
  • an insulating interlayer film 30 is formed on the substrate S, the insulating interlayer film 30 is etched to form a trench 31, and a part of the bottom of the trench 31 is etched to form a wiring hole 32.
  • the lower electrode 33 is formed by filling the wiring hole 32 with a conductor.
  • the surfaces of the trench 31 and the wiring hole 32 are covered with a barrier metal layer 34 made of, for example, titanium nitride.
  • a catalytic metal layer (not shown) made of, for example, nickel is formed on one side surface of the trench 31, and, as shown in FIG. 6A, a large number of uniform sizes and shapes are formed from the catalytic metal layer using plasma or the like.
  • the catalyst metal fine particles 35 are formed.
  • each catalytic metal fine particle 35 is activated using plasma or the like, and as shown in FIG. 6B, carbon atoms generated by pyrolysis from the carbon-containing gas are bonded to each other using each catalytic metal fine particle 35 as a nucleus.
  • a plurality of carbon nanotubes 36 (fine conductors) are generated.
  • Each carbon nanotube 36 grows in one direction (left side in FIG. 6B) from each catalytic metal fine particle 35 so as not to collide with each other. Therefore, the plurality of carbon nanotubes 36 are aligned substantially horizontally with respect to the surface of the substrate S. At this time, a gap 37 having a small and high aspect ratio is generated between the carbon nanotubes 36.
  • the CVD processing apparatus 19 performs CVD on the substrate S using the metal complex 28 made of COD-Cu-hfac molecules.
  • COD is desorbed from each COD-Cu-hfac molecule, and the ⁇ -electron bond is formed between the copper atom of the Cu-hfac molecule and the benzene ring of each carbon nanotube 36.
  • the surface of each carbon nanotube 36 is covered with copper atoms through the heterogeneous reaction of two adjacent Cu-hfac molecules, and the copper 18 is filled into the gap 37 (FIG. 6C).
  • the gaps 37 between the carbon nanotubes 36 are filled with the copper 18, but the entire surface of the substrate S is covered with the copper 18.
  • the copper atom of the Cu-hfac molecule is bonded to the benzene ring of each carbon nanotube 36 by the sharing of ⁇ electrons. That is, also in the manufacturing method of the composite wiring according to the present embodiment, Cu-hfac molecules can be arranged at locations where benzene rings exist in each carbon nanotube 36, and the aspect ratio of the gap 37 of each carbon nanotube 36 is Even if it is high, the gaps 37 between the carbon nanotubes 36 can be almost completely filled with the copper 18.
  • the carbon nanotube is used as a fine conductor.
  • any conductor containing a molecule having a conjugated system can be used as a fine conductor.
  • a high aspect ratio graphene ribbon may be disposed in the via hole 13 or the trench 31 as a fine-structured conductor.
  • the gap between the graphene ribbons has a high aspect ratio, but the graphene ribbon is also composed of a continuous benzene ring over the entire region, so that CVD using a metal complex 28 made of COD-Cu-hfac molecules is used.
  • the gaps between the graphene ribbons can be almost completely filled with the copper 18.
  • the metal complex having a conjugated system to which the present invention can be applied includes, for example, any of copper, platinum, iridium (Ir), nickel, cobalt, and molybdenum in addition to the metal complex 28 composed of COD-Cu-hfac molecules.
  • a ligand having a conjugated system of 5-cyclooctadiene, 1,5-hexadiene, 1,3-pentadiene, 4-vinyl-1-cyclohexene and norbornadiene, and a single bond by the above metal atom and a bond For example, hexafluoroacetylacetonate (hfac), acetylacetonate (acac) and 1,1,1-trimethyl This corresponds to a metal complex having any ligand of ruacetylacetonate.
  • the CVD processing apparatus for performing the CVD for filling the gaps 17 between the carbon nanotubes 16 with the copper 18 is not limited to the CVD processing apparatus 19 shown in FIG. 2, but for example, a shower head as shown in FIG. It may be a type of CVD processing apparatus 42.
  • FIG. 7 is a cross-sectional view schematically showing a configuration of a modified example of the CVD processing apparatus of FIG.
  • a CVD processing apparatus 42 includes a substantially cylindrical chamber 43, a table-like stage heater 44 disposed at the bottom of the chamber 43, and a ceiling portion of the chamber 43 facing the stage heater 44.
  • a metal complex gas supply system 46 for supplying a metal complex 28, for example, a gas of COD-Cu-hfac molecule, together with a carrier gas made of argon (Ar) or helium (He) into the shower head 45 and the chamber 43, for example.
  • An additive gas supply system 47 for supplying an additive gas, for example, COD or hfac gas, into the chamber 43; and a dilution gas supply system 48 for supplying a diluent gas, for example, argon or helium gas, into the chamber 43. And a cleaning gas for supplying a cleaning gas such as hfac or HCOOH into the chamber 43.
  • Ngugasu supply system 49 purge gas into the interior of the chamber 43, for example, nitrogen (N 2) and a purge gas supply system 50 for supplying a gas, evacuating the interior of the chamber 43, for example, a pressure adjusting variable valve 51 and the exhaust pump 52 And a stage heater control unit 54 for controlling the operation of the stage heater 44.
  • the metal complex gas supply system 46, the additive gas supply system 47, the dilution gas supply system 48, and the cleaning gas supply system 49 supply each gas to the inside of the chamber 43 via the shower head 45, and the purge gas supply system 50 supplies the purge gas to the chamber. It supplies directly to the inside of 43.
  • the substrate S is placed on the stage heater 44, the atmosphere inside the chamber 43 is evacuated by the gas exhaust system 53, and the additive gas is supplied from the additive gas supply system 47 or the dilution gas supply system.
  • a dilution gas is supplied from 48 to adjust the pressure inside the chamber 43 to 3 Torr.
  • the temperature of the substrate S is set to any one of 200 ° C. to 250 ° C. by the stage heater 44, and the gas of the metal complex 28 is supplied into the chamber 43 together with the additive gas, the dilution gas, and the carrier gas.
  • the COD-Cu-hfac molecules in 28 reach the heated substrate S, and the gaps 17 between the carbon nanotubes 16 formed on the substrate S are filled with copper 18 (see FIG. 1C and the like).
  • An object of the present invention is to supply a computer, for example, the control unit 27, with a storage medium storing software program codes that implement the functions of the above-described embodiments, and the CPU of the control unit 27 is stored in the storage medium. It is also achieved by reading and executing the program code.
  • the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code and the storage medium storing the program code constitute the present invention.
  • Examples of the storage medium for supplying the program code include RAM, NV-RAM, floppy (registered trademark) disk, hard disk, magneto-optical disk, CD-ROM, CD-R, CD-RW, DVD (DVD). -ROM, DVD-RAM, DVD-RW, DVD + RW) and other optical disks, magnetic tapes, non-volatile memory cards, other ROMs, etc., as long as they can store the program code.
  • the program code may be supplied to the control unit 27 by downloading from another computer or database (not shown) connected to the Internet, a commercial network, a local area network, or the like.
  • the program code read from the storage medium is written in the memory provided in the function expansion board inserted into the control unit 27 or the function expansion unit connected to the control unit 27, the program code is read based on the instruction of the program code.
  • the CPU of the function expansion board or function expansion unit performs part or all of the actual processing, and the functions of the above-described embodiments are realized by the processing.
  • the form of the program code may be in the form of object code, program code executed by an interpreter, script data supplied to the OS, and the like.

Abstract

Provided is a production method for composite wiring, allowing the resistance to be decreased greatly, and allowing the structure to be strong. On each carbon nanotube (16) formed inside a via hole (13) and containing successive benzene rings, CVD is performed using a metal complex (28) comprising a COD-Cu-hfac molecule.

Description

複合配線及びその製造方法Composite wiring and manufacturing method thereof
 本発明は、複合配線及びその製造方法に関し、特に微細な複合配線及びその製造方法に関する。 The present invention relates to a composite wiring and a manufacturing method thereof, and more particularly to a fine composite wiring and a manufacturing method thereof.
 金属とは異なるナノカーボン材料、例えば、グラフェンやカーボンナノチューブは極めて長い平均自由行程や高移動度を有し、極微細配線構造に適用した場合、金属よりも低抵抗の配線の実現の可能性が示されている。これに応じて、微細な配線構造を実現する必要がある次世代の三次元実装デバイスでは、金属の代わりにナノカーボン材料を配線に用いること、例えば、トレンチによって形成される水平方向の配線には束ねられた複数のグラフェンリボンを用い、ビアホールによって形成される深さ方向の配線には束ねられた複数のカーボンナノチューブを用いることが検討されている。 Nanocarbon materials different from metals, such as graphene and carbon nanotubes, have extremely long mean free paths and high mobility, and when applied to ultrafine wiring structures, there is a possibility of realizing wiring with lower resistance than metals. It is shown. Accordingly, in next-generation three-dimensional mounting devices that need to realize a fine wiring structure, a nanocarbon material is used for wiring instead of metal, for example, for horizontal wiring formed by trenches. It has been studied to use a plurality of bundled graphene ribbons and use a plurality of bundled carbon nanotubes for the wiring in the depth direction formed by via holes.
 特に、カーボンナノチューブは、触媒金属の微粒子を触媒として炭素含有ガスを分解し、炭素原子同士を結合させることによって得られる円筒状の炭素原子のクラスターであり、触媒金属の各微粒子から一方向に成長するため、三次元実装デバイスにおける深さ方向の配線、例えば、ビアホールの配線へ好適に用いることができる。 In particular, a carbon nanotube is a cylindrical cluster of carbon atoms obtained by decomposing a carbon-containing gas using catalyst metal particles as a catalyst and bonding carbon atoms together, and grows in one direction from each catalyst metal particle. Therefore, it can be suitably used for wiring in the depth direction in a three-dimensional mounting device, for example, wiring for via holes.
 ところで、各カーボンナノチューブの配置密度は触媒金属の各微粒子の配置密度に依存するため、各カーボンナノチューブの間には隙間が生じることがある。この隙間を埋めるために、SOG(Spin on Glass)を充填することが提案されているが、SOGは絶縁性材料であるため、配線の低抵抗化に寄与することがなく、SOGは誘電率が高いため、寧ろ、配線の寄生容量を増大させるおそれがある。 Incidentally, since the arrangement density of the carbon nanotubes depends on the arrangement density of the fine particles of the catalyst metal, a gap may be formed between the carbon nanotubes. In order to fill this gap, it has been proposed to fill with SOG (Spin on Glass). However, since SOG is an insulating material, it does not contribute to lower resistance of wiring, and SOG has a dielectric constant. Rather, it may increase the parasitic capacitance of the wiring.
 そこで、近年、各カーボンナノチューブの間の隙間を金属、例えば、Cuで充填することが提案されている。Cuの充填方法としては、例えば、Cuのスパッタ粒子を用いるPVD(Physical Vapor Deposition)法やCVD(Chemical Vapor Deposition)法、さらにはめっき法が検討されている(例えば、特許文献1参照。)。 Therefore, in recent years, it has been proposed to fill the gaps between the carbon nanotubes with a metal such as Cu. As a Cu filling method, for example, a PVD (Physical Vapor Deposition) method using a sputtered Cu particle, a CVD (Chemical Vapor Deposition) method, and a plating method have been studied (for example, see Patent Document 1).
特開2005−277096号公報JP 2005-277096 A
 しかしながら、各カーボンナノチューブの間の隙間のアスペクト比は高く、スパッタ粒子が隙間の奥まで進入できない。また、金属とカーボンナノチューブの濡れ性は低いため、めっき法においてCu原子が隙間の奥まで進入できない。これにより、図8に示すように、各カーボンナノチューブ70の間の隙間71はCu72によって完全に充填されず、Cu72とカーボンナノチューブ70からなる複合配線において隙間71が残存する。その結果、複合配線の抵抗がさほど低下せず、構造も脆くなるおそれがある。 However, the aspect ratio of the gaps between the carbon nanotubes is high, and sputtered particles cannot enter the depths of the gaps. In addition, since the wettability between the metal and the carbon nanotube is low, Cu atoms cannot enter the back of the gap in the plating method. As a result, as shown in FIG. 8, the gaps 71 between the carbon nanotubes 70 are not completely filled with Cu 72, and the gaps 71 remain in the composite wiring composed of the Cu 72 and the carbon nanotubes 70. As a result, the resistance of the composite wiring does not decrease so much and the structure may become brittle.
 本発明の目的は、抵抗を大幅に低下させることができるとともに、構造を強固にすることができる複合配線及びその製造方法を提供することにある。 An object of the present invention is to provide a composite wiring and a method for manufacturing the same capable of greatly reducing the resistance and strengthening the structure.
 上記目的を達成するために、本発明によれば、共役系を有する分子を含む微細構造の導電体へ、共役系を有する他の分子と金属原子とがπ電子に起因する相互作用によって結合する錯体を用いるCVDを施す複合配線の製造方法が提供される。 In order to achieve the above object, according to the present invention, another molecule having a conjugated system and a metal atom are bonded to a conductor having a microstructure including a molecule having a conjugated system by an interaction caused by π electrons. A method of manufacturing a composite wiring that performs CVD using a complex is provided.
 上記目的を達成するために、本発明によれば、共役系を有する分子を含む微細構造の導電体に生じる隙間に金属原子が充填された複合配線であって、前記金属原子は、共役系を有する他の分子と前記金属原子とがπ電子に起因する相互作用によって結合する錯体を用いるCVDを前記微細構造の導電体に施すことによって充填される複合配線が提供される。 In order to achieve the above object, according to the present invention, there is provided a composite wiring in which a metal atom is filled in a gap generated in a fine-structure conductor including a molecule having a conjugated system, and the metal atom has a conjugated system. Provided is a composite wiring that is filled by subjecting the fine-structured conductor to CVD using a complex in which other molecules of the metal atom and the metal atom are bonded by an interaction caused by π electrons.
 本発明によれば、CVDにおいて熱等によって他の分子が脱離した錯体の金属原子が、微細構造の導電体の共役系を有する分子のπ電子に起因する相互作用によって当該分子と結合する。すなわち、微細構造の導電体において共役系が存在する箇所へ金属原子を配置することができるため、微細構造の導電体に生じる隙間のアスペクト比が高くても、共役系が存在する限り、金属原子を隙間の奥まで進入させることができ、もって、微細構造の導電体に生じる隙間を金属原子でほぼ完全に充填することができる。その結果、金属原子及び微細構造の導電体からなる複合配線において、抵抗を大幅に低下させることができるとともに、構造を強固にすることができる。 According to the present invention, a metal atom of a complex from which another molecule is eliminated by heat or the like in CVD binds to the molecule by an interaction caused by a π electron of a molecule having a conjugated system of a fine structure conductor. In other words, since metal atoms can be arranged at locations where a conjugated system exists in a fine-structure conductor, even if the aspect ratio of the gap generated in the fine-structure conductor is high, as long as the conjugated system exists, the metal atoms Can be made to enter the depth of the gap, and the gap generated in the fine-structured conductor can be almost completely filled with metal atoms. As a result, in the composite wiring composed of the metal atoms and the fine-structure conductor, the resistance can be greatly reduced and the structure can be strengthened.
 [図1A乃至図1E]本発明の第1の実施の形態に係る複合配線の製造方法を説明するための工程図である。
 [図2]各カーボンナノチューブの間の隙間を銅で充填するためのCVDを実行するCVD処理装置の構成を概略的に示す断面図である。
 [図3]各カーボンナノチューブの間に生じた隙間を埋めるためにCVDで用いられる金属錯体を構成するCOD−Cu−hfac分子の分子構造を説明する図である。
 [図4A及び図4B]図2のCVD処理装置で実行されるCVDを説明するための工程図である。
 [図5]本発明の第1の実施の形態に係る複合配線の製造方法で製造された銅及びカーボンナノチューブからなる複合配線の構成を概略的に示す断面図である。
 [図6A乃至図6H]本発明の第2の実施の形態に係る複合配線の製造方法を説明するための工程図である。
 [図7]図2のCVD処理装置の変形例の構成を概略的に示す断面図である。
 [図8]従来の複合配線の製造方法で製造された銅及びカーボンナノチューブからなる複合配線の構成を概略的に示す断面図である。
1A to 1E are process diagrams for explaining a method of manufacturing a composite wiring according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view schematically showing a configuration of a CVD processing apparatus that performs CVD for filling a gap between carbon nanotubes with copper.
FIG. 3 is a diagram for explaining the molecular structure of COD-Cu-hfac molecules constituting a metal complex used in CVD to fill a gap generated between carbon nanotubes.
[FIGS. 4A and 4B] FIGS. 4A and 4B are process diagrams for explaining CVD performed in the CVD processing apparatus of FIG.
FIG. 5 is a cross-sectional view schematically showing a configuration of a composite wiring made of copper and carbon nanotubes manufactured by the composite wiring manufacturing method according to the first embodiment of the present invention.
[FIGS. 6A to 6H] FIGS. 6A to 6H are process diagrams for explaining a method of manufacturing a composite wiring according to the second embodiment of the present invention.
FIG. 7 is a cross sectional view schematically showing a configuration of a modified example of the CVD processing apparatus of FIG.
FIG. 8 is a cross-sectional view schematically showing a configuration of a composite wiring made of copper and carbon nanotubes manufactured by a conventional composite wiring manufacturing method.
 以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 まず、本発明の第1の実施の形態に係る複合配線の製造方法について説明する。 First, the method for manufacturing the composite wiring according to the first embodiment of the present invention will be described.
 図1A乃至図1Eは、本実施の形態に係る複合配線の製造方法を説明するための工程図である。 1A to 1E are process diagrams for explaining a method of manufacturing a composite wiring according to the present embodiment.
 まず、基板S上に下部電極層10や、例えば、窒化珪素(SiN)からなるハードマスク11を介して絶縁層間膜12を成膜し、さらに、絶縁層間膜12をエッチングして基板Sに垂直に開口するビアホール13を形成する。ビアホール13の底部には下部電極層10が露出するが、その後、ビアホール13の表面を含めた絶縁層間膜12の表面を、例えば、窒化チタン(TiN)、窒化タンタル(TaN)や酸化マンガン(MnO)からなるバリアメタル層14で覆う。 First, an insulating interlayer film 12 is formed on the substrate S through a lower electrode layer 10 and a hard mask 11 made of, for example, silicon nitride (SiN), and the insulating interlayer film 12 is etched to be perpendicular to the substrate S. A via hole 13 is formed in the opening. The lower electrode layer 10 is exposed at the bottom of the via hole 13, and then the surface of the insulating interlayer film 12 including the surface of the via hole 13 is made of, for example, titanium nitride (TiN), tantalum nitride (TaN), manganese oxide (MnO x ) is covered with a barrier metal layer 14.
 次いで、ビアホール13の底部に、例えば、ニッケル(Ni)からなる触媒金属層(図示しない)を形成し、さらに、図1Aに示すように、プラズマ等を用いて触媒金属層から大きさや形状が均一の多数の触媒金属微粒子15を形成する。なお、触媒金属層を構成する金属として、ニッケルの他に、銅(Cu)、鉄(Fe)、コバルト(Co)、ルテニウム(Ru)、金(Au)、白金(Pt)、モリブデン(Mo)、マンガン(Mn)等の遷移金属、又はこれらの遷移金属を含む合金を用いてもよい。 Next, a catalytic metal layer (not shown) made of, for example, nickel (Ni) is formed on the bottom of the via hole 13, and the size and shape are uniform from the catalytic metal layer using plasma or the like as shown in FIG. 1A. A large number of catalyst metal fine particles 15 are formed. In addition to nickel, the metal constituting the catalyst metal layer is copper (Cu), iron (Fe), cobalt (Co), ruthenium (Ru), gold (Au), platinum (Pt), molybdenum (Mo). , Transition metals such as manganese (Mn), or alloys containing these transition metals may be used.
 次いで、プラズマ等を用いて各触媒金属微粒子15の表面の酸化物を除去して活性化を行い、図1Bに示すように、アセチレンガスやエチレンガス等の炭素含有ガスから熱分解によって生じた炭素原子を、各触媒金属微粒子15を核として互いに結合させて複数のカーボンナノチューブ16(微細構造の導電体)を生成する。このとき、各カーボンナノチューブ16は、触媒金属微粒子15の性状を保ったまま、互いに衝突しないように各触媒金属微粒子15から一方向(図1B中の上方)に成長する。したがって、複数のカーボンナノチューブ16が基板Sの表面に対して略垂直に配向する。また、各カーボンナノチューブ16は各触媒金属微粒子15から成長するので、触媒金属微粒子15を形成する際、処理ガスの種類や処理ガスを励起するエネルギーを調整して各触媒金属微粒子15を高密度に形成すると、高密度のカーボンナノチューブ16が得られる。一方、各触媒金属微粒子15を高密度に形成しても、各触媒金属微粒子15の間には微少な隙間が残存するため、各カーボンナノチューブ16の間には微少であって高アスペクト比の隙間17が生じる。 Next, activation is performed by removing the oxide on the surface of each catalytic metal fine particle 15 using plasma or the like, and as shown in FIG. 1B, carbon generated by pyrolysis from a carbon-containing gas such as acetylene gas or ethylene gas. Atoms are bonded to each other using each catalytic metal fine particle 15 as a nucleus to generate a plurality of carbon nanotubes 16 (microstructured conductors). At this time, the carbon nanotubes 16 grow in one direction (upward in FIG. 1B) from the catalytic metal fine particles 15 so as not to collide with each other while maintaining the properties of the catalytic metal fine particles 15. Therefore, the plurality of carbon nanotubes 16 are oriented substantially perpendicular to the surface of the substrate S. Further, since each carbon nanotube 16 grows from each catalytic metal fine particle 15, when forming the catalytic metal fine particle 15, the type of processing gas and the energy for exciting the processing gas are adjusted to make each catalytic metal fine particle 15 dense. When formed, high-density carbon nanotubes 16 are obtained. On the other hand, even if the catalyst metal fine particles 15 are formed at a high density, minute gaps remain between the catalyst metal fine particles 15. 17 occurs.
 次いで、各カーボンナノチューブ16の間に生じた隙間17を埋めるために、金属、例えば、銅18をCVDによって隙間17へ充填する(図1C)。 Next, in order to fill the gaps 17 formed between the carbon nanotubes 16, a metal, for example, copper 18 is filled into the gaps 17 by CVD (FIG. 1C).
 図2は、各カーボンナノチューブの間の隙間を銅で充填するためのCVDを実行するCVD処理装置の構成を概略的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing a configuration of a CVD processing apparatus that performs CVD for filling the gaps between the carbon nanotubes with copper.
 図2において、CVD処理装置19は、略円筒状のチャンバ20と、該チャンバ20の底部に配置される下部ステージヒータ21と、チャンバ20の天井部に配置されて下部ステージヒータ21に対向する上部ステージヒータ22と、下部ステージヒータ21及び上部ステージヒータ22の間においてチャンバ20の内部を横断するように配置され、中心部に上下方向に貫通する貫通穴23を有する棚状の試料ステージ24と、チャンバ20の内部へキャリアガス等を供給するガス供給系25と、チャンバ20の内部の残存ガス等を排気するガス排出系26と、各構成要素の動作を制御する制御部27とを備える。 In FIG. 2, a CVD processing apparatus 19 includes a substantially cylindrical chamber 20, a lower stage heater 21 disposed at the bottom of the chamber 20, and an upper portion disposed on the ceiling of the chamber 20 and facing the lower stage heater 21. A stage heater 22, a shelf-like sample stage 24 that is disposed between the lower stage heater 21 and the upper stage heater 22 so as to cross the inside of the chamber 20 and has a through hole 23 that penetrates in the vertical direction in the center portion; A gas supply system 25 that supplies a carrier gas or the like into the chamber 20, a gas discharge system 26 that exhausts a residual gas or the like inside the chamber 20, and a control unit 27 that controls the operation of each component.
 CVD処理装置19では、下部ステージヒータ21に基板Sが載置され、チャンバ20の内部の雰囲気が、例えば、窒素ガスで置換された後、ガス排出系26によってチャンバ20の内部の圧力が、例えば、3Torrまで減圧される。下部ステージヒータ21によって基板Sの温度が200℃~250℃のいずれかに設定され、さらに、試料ステージ24には、例えば、COD−Cu−hfac分子からなる金属錯体28が配置され、金属錯体28は上部ステージヒータ22によって加熱される。このとき、加熱された金属錯体28から飛散したCOD−Cu−hfac分子がチャンバ20の内部を浮遊し、貫通穴23を通過して基板Sへ到達し、基板Sに形成された各カーボンナノチューブ16の間の隙間17が銅18で充填される。 In the CVD processing apparatus 19, the substrate S is placed on the lower stage heater 21, and the atmosphere inside the chamber 20 is replaced with, for example, nitrogen gas. The pressure is reduced to 3 Torr. The temperature of the substrate S is set to any one of 200 ° C. to 250 ° C. by the lower stage heater 21, and a metal complex 28 made of, for example, COD-Cu-hfac molecules is disposed on the sample stage 24. Is heated by the upper stage heater 22. At this time, COD-Cu-hfac molecules scattered from the heated metal complex 28 float inside the chamber 20, pass through the through hole 23, reach the substrate S, and each carbon nanotube 16 formed on the substrate S. The gap 17 is filled with copper 18.
 図3は、各カーボンナノチューブの間に生じた隙間を埋めるためにCVDで用いられる金属錯体を構成するCOD−Cu−hfac分子の分子構造を説明する図であり、図4A及び図4Bは、図2のCVD処理装置で実行されるCVDを説明するための工程図である。 FIG. 3 is a diagram for explaining the molecular structure of COD-Cu-hfac molecules constituting a metal complex used in CVD to fill gaps generated between the carbon nanotubes, and FIGS. 4A and 4B are diagrams. It is process drawing for demonstrating CVD performed with the CVD processing apparatus of 2. FIG.
 図3において、COD−Cu−hfac分子は、シクロオクタジエン(cyclooctadiene、以下、単に「COD」という。)と、銅原子と、ヘキサフルオロアセチルアセトン(hexafluoroacetylacetone、以下、単に「hfac」という。)とからなり、銅原子はhfacの2つの酸素原子のそれぞれと結合手によって単結合するが、CODは単結合及び二重結合からなる共役系を有し、共役系のπ電子に起因する相互作用、具体的には、π電子の共有によって銅原子と結合する。 In FIG. 3, a COD-Cu-hfac molecule is composed of cyclooctadiene (hereinafter simply referred to as “COD”), a copper atom, and hexafluoroacetylacetone (hereinafter simply referred to as “hfac”). The copper atom is single-bonded to each of the two oxygen atoms of hfac by a bond, while COD has a conjugated system consisting of a single bond and a double bond. Specifically, it bonds to a copper atom by sharing π electrons.
 通常、結合手による結合よりもπ電子の共有による結合の方が結合力は弱いため、基板Sが下部ステージヒータ21によって加熱されると、該基板Sへ到達した各COD−Cu−hfac分子からCOD(他の分子)が脱離し、2つのCODが結合して気化する。 In general, since the bonding force of π electron sharing is weaker than that of bonding by a bond, when the substrate S is heated by the lower stage heater 21, each COD-Cu-hfac molecule that has reached the substrate S COD (another molecule) is desorbed, and the two CODs are combined and vaporized.
 ところで、各カーボンナノチューブ16の表面は全域に亘って連続する炭素の六員環(ベンゼン環)によって構成される。各ベンゼン環は単結合及び二重結合からなる共役系を有するため、各ベンゼン環にはπ電子が存在する。ここで、CODが脱離したCOD−Cu−hfac分子(以下、「Cu−hfac分子」という。)の銅原子は電子を共有可能な状態にあるため、銅原子は各ベンゼン環のπ電子を共有して積極的に各ベンゼン環と結合する。本実施の形態では、2つのCODが結合すべく、基板Sへ到達した2つのCOD−Cu−hfac分子が互いに隣接する傾向にあるため、結果として、隣接する2つのベンゼン環のそれぞれにCu−hfac分子の銅原子が結合する(図4A)。なお、このときの各銅原子は1価である。 By the way, the surface of each carbon nanotube 16 is constituted by a carbon six-membered ring (benzene ring) continuous over the entire area. Since each benzene ring has a conjugated system composed of a single bond and a double bond, π electrons exist in each benzene ring. Here, since the copper atom of the COD-Cu-hfac molecule (hereinafter referred to as “Cu-hfac molecule”) from which COD has been eliminated is in a state where it can share an electron, the copper atom is responsible for the π electron of each benzene ring. Share and actively bond to each benzene ring. In the present embodiment, since two COD-Cu-hfac molecules that have reached the substrate S tend to be adjacent to each other so that the two CODs are bonded to each other, as a result, Cu-- The copper atom of the hfac molecule binds (FIG. 4A). In addition, each copper atom at this time is monovalent.
 次いで、基板Sを下部ステージヒータ21によって加熱しつづけると、熱エネルギーによって隣接する2つのCu−hfac分子が不均一反応を起こして電子の授受が行われ、1つの銅原子は2価となり、2つのCu−hfac分子のhfacと結合してCu(hfac)2として気化する。一方、他の銅原子は0価となり、安定してベンゼン環と結合する(図4B)。これにより、各カーボンナノチューブ16の表面を銅原子で覆うことができる。 Next, when the substrate S is continuously heated by the lower stage heater 21, two adjacent Cu-hfac molecules cause a heterogeneous reaction due to thermal energy, and electrons are exchanged, so that one copper atom becomes divalent, 2 It binds to hfac of two Cu-hfac molecules and vaporizes as Cu (hfac) 2. On the other hand, other copper atoms become zero-valent and are stably bonded to the benzene ring (FIG. 4B). Thereby, the surface of each carbon nanotube 16 can be covered with copper atoms.
 上述したCVD処理装置19によるCVDでは、Cu−hfac分子の銅原子がカーボンナノチューブ16のベンゼン環のπ電子を共有して積極的に各ベンゼン環と結合する。すなわち、ベンゼン環のπ電子の存在により、カーボンナノチューブ16の表面の全域に亘って銅原子を配置することができるため、各カーボンナノチューブ16の間の隙間17のアスペクト比が高くても、銅原子を隙間17の奥まで進入させることができ、もって、図5に示すように、各カーボンナノチューブ16の間の隙間17を銅18でほぼ完全に充填することができる。 In the above-described CVD by the CVD processing apparatus 19, the copper atom of the Cu-hfac molecule shares the π electron of the benzene ring of the carbon nanotube 16 and actively bonds to each benzene ring. That is, since the copper atoms can be arranged over the entire surface of the carbon nanotubes 16 due to the presence of π electrons in the benzene ring, even if the aspect ratio of the gaps 17 between the carbon nanotubes 16 is high, the copper atoms As shown in FIG. 5, the gaps 17 between the carbon nanotubes 16 can be almost completely filled with the copper 18.
 なお、本実施の形態では、CVD処理装置19によるCVDを所定時間に亘って継続することにより、各カーボンナノチューブ16の間の隙間17を銅18で充填するだけでなく、銅18によって基板Sの全面を覆う。 In the present embodiment, by continuing the CVD by the CVD processing apparatus 19 for a predetermined time, not only the gaps 17 between the carbon nanotubes 16 are filled with the copper 18, but also the copper 18 is used to form the substrate S. Cover the entire surface.
 次いで、CMP(Chemical Mechanical Polishing)等によって基板Sを覆う余剰の銅18を除去し、基板Sにおいて各カーボンナノチューブ16の先端を露出させる(図1D)。 Next, excess copper 18 covering the substrate S is removed by CMP (Chemical Mechanical Polishing) or the like, and the tips of the carbon nanotubes 16 are exposed on the substrate S (FIG. 1D).
 次いで、基板Sの表面をCVDやPVDによって成膜される上部電極層29で覆う。このとき、上部電極層29と各カーボンナノチューブ16の先端が接触し、各カーボンナノチューブ16、各触媒金属微粒子15及びバリアメタル層14を介して下部電極層10及び上部電極層29が互いに導通される(図1E)。その後、本方法を終了する。 Next, the surface of the substrate S is covered with an upper electrode layer 29 formed by CVD or PVD. At this time, the upper electrode layer 29 and the tips of the carbon nanotubes 16 are in contact with each other, and the lower electrode layer 10 and the upper electrode layer 29 are electrically connected to each other through the carbon nanotubes 16, the catalytic metal fine particles 15, and the barrier metal layer 14. (FIG. 1E). Thereafter, the method ends.
 本実施の形態に係る複合配線の製造方法によれば、CVDにおいて熱等によってCODが脱離したCOD−Cu−hfac分子(Cu−hfac分子)の銅原子が、各カーボンナノチューブ16のベンゼン環のπ電子に起因する相互作用によってベンゼン環と結合する。すなわち、各カーボンナノチューブ16においてベンゼン環が存在する箇所へCu−hfac分子を配置することができ、各カーボンナノチューブ16は表面の全域に亘ってベンゼン環を有するので、各カーボンナノチューブ16の隙間17のアスペクト比が高くても、カーボンナノチューブ16の表面が露出する限り、Cu−hfac分子を隙間17の奥まで進入させることができ、もって、各カーボンナノチューブ16の間の隙間17を銅18でほぼ完全に充填することができる。その結果、銅18及び各カーボンナノチューブ16からなる複合配線の抵抗を大幅に低下させることができるとともに、複合配線の構造を強固にすることができる。 According to the method for manufacturing a composite wiring according to the present embodiment, the copper atoms of COD-Cu-hfac molecules (Cu-hfac molecules) from which COD has been desorbed by heat or the like in CVD are formed on the benzene ring of each carbon nanotube 16. It binds to the benzene ring by interaction caused by π electrons. That is, Cu-hfac molecules can be arranged at locations where benzene rings are present in each carbon nanotube 16, and each carbon nanotube 16 has a benzene ring over the entire surface. Even if the aspect ratio is high, as long as the surface of the carbon nanotubes 16 is exposed, Cu-hfac molecules can enter deep into the gaps 17, and the gaps 17 between the carbon nanotubes 16 are almost completely covered with copper 18. Can be filled. As a result, the resistance of the composite wiring composed of the copper 18 and each carbon nanotube 16 can be greatly reduced, and the structure of the composite wiring can be strengthened.
 また、上述した複合配線の製造方法では、Cu−hfac分子の銅原子と各カーボンナノチューブ16のベンゼン環との結合にπ電子を利用するため、CVDによって各カーボンナノチューブ16の隙間17を銅18で充填する際、基板Sの温度が比較的低温である、200℃~250℃のいずれかにしか設定されず、付与されるエネルギーが少なくても、Cu−hfac分子の銅原子と各カーボンナノチューブ16のベンゼン環とを結合することができる。これにより、基板Sの温度を高温に設定する必要を無くすことができ、もって、基板Sに形成される三次元実装デバイス等の有機系の低誘電率層間膜が熱によって破壊されるのを防止することができる。また、上述した複合配線の製造方法によって製造される各カーボンナノチューブ16及び銅18からなる配線は、磁気抵抗メモリ(MRAM)や抵抗変化型メモリ(ReRAM)等の不揮発性メモリ素子の配線にも適用することができる。 Further, in the above-described composite wiring manufacturing method, π electrons are used for bonding between the copper atom of the Cu-hfac molecule and the benzene ring of each carbon nanotube 16, so that the gap 17 between each carbon nanotube 16 is made of copper 18 by CVD. At the time of filling, the temperature of the substrate S is set to only 200 ° C. to 250 ° C., which is relatively low, and even if the applied energy is small, the copper atoms of the Cu-hfac molecules and the carbon nanotubes 16 Can be bonded to the benzene ring. This eliminates the need to set the temperature of the substrate S to a high temperature, thereby preventing the organic low dielectric constant interlayer film such as a three-dimensional mounting device formed on the substrate S from being destroyed by heat. can do. Further, the wiring composed of the carbon nanotubes 16 and the copper 18 manufactured by the above-described composite wiring manufacturing method is also applied to wiring of a nonvolatile memory element such as a magnetoresistive memory (MRAM) or a resistance change memory (ReRAM). can do.
 また、本実施の形態に係る複合配線の製造方法によれば、ビアホール13において各カーボンナノチューブ16が下部電極層10及び上部電極層29を互いに導通するが、カーボンナノチューブ16は高熱伝導性を有するので、基板Sに形成される三次元実装デバイス等において下部電極層10や上部電極層29等に熱が滞留するのを防止することができる。 Further, according to the method for manufacturing a composite wiring according to the present embodiment, each carbon nanotube 16 conducts the lower electrode layer 10 and the upper electrode layer 29 to each other in the via hole 13, but the carbon nanotube 16 has high thermal conductivity. In the three-dimensional mounting device or the like formed on the substrate S, heat can be prevented from staying in the lower electrode layer 10, the upper electrode layer 29, or the like.
 次に、本発明の第2の実施の形態に係る複合配線の製造方法の生成方法について説明する。 Next, a generation method of the composite wiring manufacturing method according to the second embodiment of the present invention will be described.
 本実施の形態は、その構成や作用が上述した第1の実施の形態と基本的に同じであり、複数のカーボンナノチューブを基板Sの表面に対して略水平に配向させる点で上述した第1の実施の形態と異なる。したがって、重複した構成、作用については説明を省略し、以下に異なる構成、作用についての説明を行う。 This embodiment is basically the same in configuration and operation as the first embodiment described above, and the first embodiment described above in that a plurality of carbon nanotubes are oriented substantially horizontally with respect to the surface of the substrate S. This is different from the embodiment. Therefore, the description of the duplicated configuration and operation is omitted, and the description of the different configuration and operation is given below.
 図6A乃至図6Hは、本実施の形態に係る複合配線の製造方法を説明するための工程図である。 6A to 6H are process diagrams for explaining the method of manufacturing the composite wiring according to the present embodiment.
 まず、基板S上に絶縁層間膜30を成膜し、絶縁層間膜30をエッチングしてトレンチ31を形成し、さらに、トレンチ31の底部の一部をエッチングして配線穴32を形成し、該配線穴32に導電体を充填して下部電極33を形成する。なお、トレンチ31や配線穴32の表面は、例えば、窒化チタンからなるバリアメタル層34で覆われる。 First, an insulating interlayer film 30 is formed on the substrate S, the insulating interlayer film 30 is etched to form a trench 31, and a part of the bottom of the trench 31 is etched to form a wiring hole 32. The lower electrode 33 is formed by filling the wiring hole 32 with a conductor. The surfaces of the trench 31 and the wiring hole 32 are covered with a barrier metal layer 34 made of, for example, titanium nitride.
 次いで、トレンチ31の一側面に、例えば、ニッケルからなる触媒金属層(図示しない)を形成し、さらに、図6Aに示すように、プラズマ等を用いて触媒金属層から大きさや形状が均一の多数の触媒金属微粒子35を形成する。 Next, a catalytic metal layer (not shown) made of, for example, nickel is formed on one side surface of the trench 31, and, as shown in FIG. 6A, a large number of uniform sizes and shapes are formed from the catalytic metal layer using plasma or the like. The catalyst metal fine particles 35 are formed.
 次いで、プラズマ等を用いて各触媒金属微粒子35の表面の活性化を行い、図6Bに示すように、炭素含有ガスから熱分解によって生じた炭素原子を、各触媒金属微粒子35を核として互いに結合させて複数のカーボンナノチューブ36(微細構造の導電体)を生成する。各カーボンナノチューブ36は、互いに衝突しないように各触媒金属微粒子35から一方向(図6B中の左方)に成長する。したがって、複数のカーボンナノチューブ36が基板Sの表面に対して略水平に配向する。このとき、各カーボンナノチューブ36の間には微少であって高アスペクト比の隙間37が生じる。 Next, the surface of each catalytic metal fine particle 35 is activated using plasma or the like, and as shown in FIG. 6B, carbon atoms generated by pyrolysis from the carbon-containing gas are bonded to each other using each catalytic metal fine particle 35 as a nucleus. Thus, a plurality of carbon nanotubes 36 (fine conductors) are generated. Each carbon nanotube 36 grows in one direction (left side in FIG. 6B) from each catalytic metal fine particle 35 so as not to collide with each other. Therefore, the plurality of carbon nanotubes 36 are aligned substantially horizontally with respect to the surface of the substrate S. At this time, a gap 37 having a small and high aspect ratio is generated between the carbon nanotubes 36.
 次いで、各カーボンナノチューブ36の間に生じた隙間37を埋めるために、CVD処理装置19においてCOD−Cu−hfac分子からなる金属錯体28を用いて基板SにCVDを施す。このとき、第1の実施の形態と同様に、各COD−Cu−hfac分子からのCODの脱離、Cu−hfac分子の銅原子と各カーボンナノチューブ36のベンゼン環とのπ電子の共有による結合、並びに、隣接する2つのCu−hfac分子の不均一反応を通じて各カーボンナノチューブ36の表面が銅原子で覆われ、銅18が隙間37へ充填される(図6C)。なお、本実施の形態でも、各カーボンナノチューブ36の間の隙間37を銅18で充填するだけでなく、銅18によって基板Sの全面を覆う。 Next, in order to fill the gaps 37 generated between the carbon nanotubes 36, the CVD processing apparatus 19 performs CVD on the substrate S using the metal complex 28 made of COD-Cu-hfac molecules. At this time, as in the first embodiment, COD is desorbed from each COD-Cu-hfac molecule, and the π-electron bond is formed between the copper atom of the Cu-hfac molecule and the benzene ring of each carbon nanotube 36. In addition, the surface of each carbon nanotube 36 is covered with copper atoms through the heterogeneous reaction of two adjacent Cu-hfac molecules, and the copper 18 is filled into the gap 37 (FIG. 6C). In the present embodiment, not only the gaps 37 between the carbon nanotubes 36 are filled with the copper 18, but the entire surface of the substrate S is covered with the copper 18.
 次いで、CMP等によって基板Sを覆う余剰の銅18を除去し(図6D)、窒化珪素からなるハードマスク38を介して他の層間絶縁膜39を基板S上に成膜し(図6E)、さらに、エッチングによって他の層間絶縁膜39及びハードマスク38の一部を貫通する配線穴40を形成し(図6F)、該配線穴40の表面をバリアメタル層34で覆った(図6G)後、配線穴40に導電体を充填して上部電極41を形成する。このとき、トレンチ31内の各カーボンナノチューブ36や銅18、バリアメタル層34を介して下部電極33及び上部電極41が互いに導通される(図6H)。その後、本方法を終了する。 Next, excess copper 18 covering the substrate S is removed by CMP or the like (FIG. 6D), and another interlayer insulating film 39 is formed on the substrate S through the hard mask 38 made of silicon nitride (FIG. 6E). Further, a wiring hole 40 penetrating a part of another interlayer insulating film 39 and the hard mask 38 is formed by etching (FIG. 6F), and the surface of the wiring hole 40 is covered with the barrier metal layer 34 (FIG. 6G). Then, the upper electrode 41 is formed by filling the wiring hole 40 with a conductor. At this time, the lower electrode 33 and the upper electrode 41 are electrically connected to each other through the carbon nanotubes 36, the copper 18, and the barrier metal layer 34 in the trench 31 (FIG. 6H). Thereafter, the method ends.
 本実施の形態に係る複合配線の製造方法によれば、Cu−hfac分子の銅原子が各カーボンナノチューブ36のベンゼン環とπ電子の共有によって結合する。すなわち、本実施の形態に係る複合配線の製造方法においても、各カーボンナノチューブ36においてベンゼン環が存在する箇所へCu−hfac分子を配置することができ、各カーボンナノチューブ36の隙間37のアスペクト比が高くても、各カーボンナノチューブ36の間の隙間37を銅18でほぼ完全に充填することができる。 According to the method for manufacturing a composite wiring according to the present embodiment, the copper atom of the Cu-hfac molecule is bonded to the benzene ring of each carbon nanotube 36 by the sharing of π electrons. That is, also in the manufacturing method of the composite wiring according to the present embodiment, Cu-hfac molecules can be arranged at locations where benzene rings exist in each carbon nanotube 36, and the aspect ratio of the gap 37 of each carbon nanotube 36 is Even if it is high, the gaps 37 between the carbon nanotubes 36 can be almost completely filled with the copper 18.
 以上、本発明について、上述した各実施の形態を用いて説明したが、本発明は上述した各実施の形態に限定されるものではない。 As mentioned above, although this invention was demonstrated using each embodiment mentioned above, this invention is not limited to each embodiment mentioned above.
 例えば、上述した各実施の形態では、カーボンナノチューブを微細構造の導電体として用いたが、共役系を有する分子を含む導電体であれば微細構造の導電体として用いることができる。例えば、微細構造の導電体として高アスペクト比のグラフェンリボンをビアホール13やトレンチ31に配置してもよい。この場合、各グラフェンリボンの間の隙間は高アスペクト比となるが、グラフェンリボンも全域に亘って連続するベンゼン環によって構成されるため、COD−Cu−hfac分子からなる金属錯体28を用いたCVDにより、各グラフェンリボンの間の隙間を銅18でほぼ完全に充填することができる。なお、本発明を適用可能な共役系を有する金属錯体には、COD−Cu−hfac分子からなる金属錯体28の他に、例えば、銅、白金、イリジウム(Ir)、ニッケル、コバルト及びモリブデンのいずれかからなる金属原子、該金属原子とπ電子の共有によって銅原子と結合(π共役結合)する、例えば、1,5−シクロオクタジエン、ジメチル−1,5−シクロオクタジエン、ジエチル−1,5−シクロオクタジエン、1,5−ヘキサジエン、1,3−ペンタジエン、4−ビニル−1−シクロヘキセン及びノルボルナジエンのいずれかの共役系を有する配位子、並びに、上記金属原子と結合手によって単結合する、例えば、ヘキサフルオロアセチルアセトネート(hfac)、アセチルアセトネート(acac)及び1,1,1−トリメチルアセチルアセトネートのいずれかの配位子を有する金属錯体が該当する。 For example, in each of the above-described embodiments, the carbon nanotube is used as a fine conductor. However, any conductor containing a molecule having a conjugated system can be used as a fine conductor. For example, a high aspect ratio graphene ribbon may be disposed in the via hole 13 or the trench 31 as a fine-structured conductor. In this case, the gap between the graphene ribbons has a high aspect ratio, but the graphene ribbon is also composed of a continuous benzene ring over the entire region, so that CVD using a metal complex 28 made of COD-Cu-hfac molecules is used. Thus, the gaps between the graphene ribbons can be almost completely filled with the copper 18. The metal complex having a conjugated system to which the present invention can be applied includes, for example, any of copper, platinum, iridium (Ir), nickel, cobalt, and molybdenum in addition to the metal complex 28 composed of COD-Cu-hfac molecules. A metal atom composed of the above, and bonded to a copper atom by sharing the π electron with the metal atom (π conjugated bond), for example, 1,5-cyclooctadiene, dimethyl-1,5-cyclooctadiene, diethyl-1, A ligand having a conjugated system of 5-cyclooctadiene, 1,5-hexadiene, 1,3-pentadiene, 4-vinyl-1-cyclohexene and norbornadiene, and a single bond by the above metal atom and a bond For example, hexafluoroacetylacetonate (hfac), acetylacetonate (acac) and 1,1,1-trimethyl This corresponds to a metal complex having any ligand of ruacetylacetonate.
 また、各カーボンナノチューブ16の間の隙間17を銅18で充填するためのCVDを実行するCVD処理装置は、図2に示すCVD処理装置19に限られず、例えば、図7に示すようなシャワーヘッド型のCVD処理装置42であってもよい。 Further, the CVD processing apparatus for performing the CVD for filling the gaps 17 between the carbon nanotubes 16 with the copper 18 is not limited to the CVD processing apparatus 19 shown in FIG. 2, but for example, a shower head as shown in FIG. It may be a type of CVD processing apparatus 42.
 図7は、図2のCVD処理装置の変形例の構成を概略的に示す断面図である。 FIG. 7 is a cross-sectional view schematically showing a configuration of a modified example of the CVD processing apparatus of FIG.
 図7において、CVD処理装置42は、略円筒状のチャンバ43と、該チャンバ43の底部に配置されるテーブル状のステージヒータ44と、チャンバ43の天井部に配置されてステージヒータ44に対向するシャワーヘッド45と、チャンバ43の内部へ、例えば、アルゴン(Ar)やヘリウム(He)からなるキャリアガスとともに金属錯体28、例えば、COD−Cu−hfac分子のガスを供給する金属錯体ガス供給系46と、チャンバ43の内部へ添加ガス、例えば、CODやhfacのガスを供給する添加ガス供給系47と、チャンバ43の内部へ希釈ガス、例えば、アルゴンやヘリウムのガスを供給する希釈ガス供給系48と、チャンバ43の内部へクリーニングガス、例えば、hfacやHCOOHのガスを供給するクリーニングガス供給系49と、チャンバ43の内部へパージガス、例えば、窒素(N)ガスを供給するパージガス供給系50と、チャンバ43の内部を排気する、例えば、圧力調整用可変バルブ51や排気ポンプ52からなるガス排出系53と、ステージヒータ44の動作を制御するステージヒータ制御部54とを備える。金属錯体ガス供給系46、添加ガス供給系47、希釈ガス供給系48及びクリーニングガス供給系49はシャワーヘッド45を介して各ガスをチャンバ43の内部へ供給し、パージガス供給系50はパージガスをチャンバ43の内部へ直接供給する。 In FIG. 7, a CVD processing apparatus 42 includes a substantially cylindrical chamber 43, a table-like stage heater 44 disposed at the bottom of the chamber 43, and a ceiling portion of the chamber 43 facing the stage heater 44. For example, a metal complex gas supply system 46 for supplying a metal complex 28, for example, a gas of COD-Cu-hfac molecule, together with a carrier gas made of argon (Ar) or helium (He) into the shower head 45 and the chamber 43, for example. An additive gas supply system 47 for supplying an additive gas, for example, COD or hfac gas, into the chamber 43; and a dilution gas supply system 48 for supplying a diluent gas, for example, argon or helium gas, into the chamber 43. And a cleaning gas for supplying a cleaning gas such as hfac or HCOOH into the chamber 43. And Ngugasu supply system 49, purge gas into the interior of the chamber 43, for example, nitrogen (N 2) and a purge gas supply system 50 for supplying a gas, evacuating the interior of the chamber 43, for example, a pressure adjusting variable valve 51 and the exhaust pump 52 And a stage heater control unit 54 for controlling the operation of the stage heater 44. The metal complex gas supply system 46, the additive gas supply system 47, the dilution gas supply system 48, and the cleaning gas supply system 49 supply each gas to the inside of the chamber 43 via the shower head 45, and the purge gas supply system 50 supplies the purge gas to the chamber. It supplies directly to the inside of 43.
 CVD処理装置42では、ステージヒータ44に基板Sが載置され、チャンバ43の内部の雰囲気がガス排出系53によって真空排気され、さらに、添加ガス供給系47から添加ガスを、または希釈ガス供給系48から希釈ガスを供給してチャンバ43の内部の圧力を3Torrに調圧する。その後、ステージヒータ44によって基板Sの温度が200℃~250℃のいずれかに設定され、さらに、チャンバ43の内部に添加ガス、希釈ガスやキャリアガスとともに金属錯体28のガスが供給され、金属錯体28中のCOD−Cu−hfac分子が加熱された基板Sへ到達し、基板Sに形成された各カーボンナノチューブ16の間の隙間17が銅18で充填される(図1C等参照)。 In the CVD processing apparatus 42, the substrate S is placed on the stage heater 44, the atmosphere inside the chamber 43 is evacuated by the gas exhaust system 53, and the additive gas is supplied from the additive gas supply system 47 or the dilution gas supply system. A dilution gas is supplied from 48 to adjust the pressure inside the chamber 43 to 3 Torr. Thereafter, the temperature of the substrate S is set to any one of 200 ° C. to 250 ° C. by the stage heater 44, and the gas of the metal complex 28 is supplied into the chamber 43 together with the additive gas, the dilution gas, and the carrier gas. The COD-Cu-hfac molecules in 28 reach the heated substrate S, and the gaps 17 between the carbon nanotubes 16 formed on the substrate S are filled with copper 18 (see FIG. 1C and the like).
 本発明の目的は、上述した各実施の形態の機能を実現するソフトウェアのプログラムコードを記録した記憶媒体を、コンピュータ、例えば、制御部27に供給し、制御部27のCPUが記憶媒体に格納されたプログラムコードを読み出して実行することによっても達成される。 An object of the present invention is to supply a computer, for example, the control unit 27, with a storage medium storing software program codes that implement the functions of the above-described embodiments, and the CPU of the control unit 27 is stored in the storage medium. It is also achieved by reading and executing the program code.
 この場合、記憶媒体から読み出されたプログラムコード自体が上述した各実施の形態の機能を実現することになり、プログラムコード及びそのプログラムコードを記憶した記憶媒体は本発明を構成することになる。 In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiments, and the program code and the storage medium storing the program code constitute the present invention.
 また、プログラムコードを供給するための記憶媒体としては、例えば、RAM、NV−RAM、フロッピー(登録商標)ディスク、ハードディスク、光磁気ディスク、CD−ROM、CD−R、CD−RW、DVD(DVD−ROM、DVD−RAM、DVD−RW、DVD+RW)等の光ディスク、磁気テープ、不揮発性のメモリカード、他のROM等の上記プログラムコードを記憶できるものであればよい。或いは、上記プログラムコードは、インターネット、商用ネットワーク、若しくはローカルエリアネットワーク等に接続される不図示の他のコンピュータやデータベース等からダウンロードすることにより制御部27に供給されてもよい。 Examples of the storage medium for supplying the program code include RAM, NV-RAM, floppy (registered trademark) disk, hard disk, magneto-optical disk, CD-ROM, CD-R, CD-RW, DVD (DVD). -ROM, DVD-RAM, DVD-RW, DVD + RW) and other optical disks, magnetic tapes, non-volatile memory cards, other ROMs, etc., as long as they can store the program code. Alternatively, the program code may be supplied to the control unit 27 by downloading from another computer or database (not shown) connected to the Internet, a commercial network, a local area network, or the like.
 また、制御部27が読み出したプログラムコードを実行することにより、上記各実施の形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、CPU上で稼動しているOS(オペレーティングシステム)等が実際の処理の一部又は全部を行い、その処理によって上述した各実施の形態の機能が実現される場合も含まれる。 Further, by executing the program code read by the control unit 27, not only the functions of the above-described embodiments are realized, but also an OS (operating system) running on the CPU based on an instruction of the program code. ) Etc. perform part or all of actual processing, and the functions of the above-described embodiments are realized by the processing.
 更に、記憶媒体から読み出されたプログラムコードが、制御部27に挿入された機能拡張ボードや制御部27に接続された機能拡張ユニットに備わるメモリに書き込まれた後、そのプログラムコードの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPU等が実際の処理の一部又は全部を行い、その処理によって上述した各実施の形態の機能が実現される場合も含まれる。 Further, after the program code read from the storage medium is written in the memory provided in the function expansion board inserted into the control unit 27 or the function expansion unit connected to the control unit 27, the program code is read based on the instruction of the program code. The CPU of the function expansion board or function expansion unit performs part or all of the actual processing, and the functions of the above-described embodiments are realized by the processing.
 上記プログラムコードの形態は、オブジェクトコード、インタプリタにより実行されるプログラムコード、OSに供給されるスクリプトデータ等の形態から成ってもよい。 The form of the program code may be in the form of object code, program code executed by an interpreter, script data supplied to the OS, and the like.
 本出願は、2014年9月5日に出願された日本出願第2014−181204号に基づく優先権を主張するものであり、当該日本出願に記載された全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2014-181204 filed on September 5, 2014, the entire contents of which are incorporated in this application.
S 基板
13 ビアホール
16,36 カーボンナノチューブ
17,37 隙間
18 銅
19 CVD処理装置
28 金属錯体
31 トレンチ
S substrate 13 via hole 16, 36 carbon nanotube 17, 37 gap 18 copper 19 CVD processing device 28 metal complex 31 trench

Claims (6)

  1.  共役系を有する分子を含む微細構造の導電体へ、共役系を有する他の分子と金属原子とがπ電子に起因する相互作用によって結合する錯体を用いるCVDを施すことを特徴とする複合配線の製造方法。 A composite wiring characterized by subjecting a fine-structured conductor including a molecule having a conjugated system to CVD using a complex in which another molecule having a conjugated system and a metal atom are bonded by an interaction caused by π electrons. Production method.
  2.  前記微細構造の導電体は基板に形成され、
     前記CVDを前記微細構造の導電体に施す際、前記基板の温度を250℃以下に設定することを特徴とする請求項1記載の複合配線の製造方法。
    The microstructured conductor is formed on a substrate;
    2. The method of manufacturing a composite wiring according to claim 1, wherein the temperature of the substrate is set to 250 [deg.] C. or lower when the CVD is applied to the fine-structure conductor.
  3.  前記微細構造の導電体は、カーボンナノチューブ又はグラフェンリボンであることを特徴とする請求項1又は2記載の複合配線の製造方法。 3. The method of manufacturing a composite wiring according to claim 1, wherein the fine-structured conductor is a carbon nanotube or a graphene ribbon.
  4.  前記錯体はCOD−Cu−hfac分子であることを特徴とする請求項1乃至3のいずれか1項に記載の複合配線の製造方法。 The method for manufacturing a composite wiring according to any one of claims 1 to 3, wherein the complex is a COD-Cu-hfac molecule.
  5.  共役系を有する分子を含む微細構造の導電体に生じる隙間に金属原子が充填された複合配線であって、
     前記金属原子は、共役系を有する他の分子と前記金属原子とがπ電子に起因する相互作用によって結合する錯体を用いるCVDを前記微細構造の導電体に施すことによって充填されることを特徴とする複合配線。
    It is a composite wiring in which metal atoms are filled in gaps generated in a finely structured conductor containing molecules having a conjugated system,
    The metal atom is filled by subjecting the fine-structured conductor to CVD using a complex in which another molecule having a conjugated system and the metal atom are bonded by an interaction caused by π electrons. Composite wiring.
  6.  前記微細構造の導電体は、カーボンナノチューブ又はグラフェンリボンであることを特徴とする請求項5記載の複合配線。 6. The composite wiring according to claim 5, wherein the fine-structured conductor is a carbon nanotube or a graphene ribbon.
PCT/JP2015/073922 2014-09-05 2015-08-19 Composite wiring and production method therefor WO2016035623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014181204A JP2016058434A (en) 2014-09-05 2014-09-05 Composite wiring and production method therefor
JP2014-181204 2014-09-05

Publications (1)

Publication Number Publication Date
WO2016035623A1 true WO2016035623A1 (en) 2016-03-10

Family

ID=55439689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073922 WO2016035623A1 (en) 2014-09-05 2015-08-19 Composite wiring and production method therefor

Country Status (2)

Country Link
JP (1) JP2016058434A (en)
WO (1) WO2016035623A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285821A (en) * 2004-03-26 2005-10-13 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2006148063A (en) * 2004-10-22 2006-06-08 Renesas Technology Corp Wiring structure, semiconductor device, mram, and manufacturing method of semiconductor device
JP2010523452A (en) * 2007-05-30 2010-07-15 エルジー・ケム・リミテッド Carbon nanotube dispersant containing metal complex
JP2010192600A (en) * 2009-02-17 2010-09-02 Tokyo Electron Ltd METHOD OF FORMING Cu FILM, AND STORAGE MEDIUM
JP2010212323A (en) * 2009-03-09 2010-09-24 Tokyo Electron Ltd METHOD OF FORMING Cu FILM, AND STORAGE MEDIUM

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005285821A (en) * 2004-03-26 2005-10-13 Fujitsu Ltd Semiconductor device and its manufacturing method
JP2006148063A (en) * 2004-10-22 2006-06-08 Renesas Technology Corp Wiring structure, semiconductor device, mram, and manufacturing method of semiconductor device
JP2010523452A (en) * 2007-05-30 2010-07-15 エルジー・ケム・リミテッド Carbon nanotube dispersant containing metal complex
JP2010192600A (en) * 2009-02-17 2010-09-02 Tokyo Electron Ltd METHOD OF FORMING Cu FILM, AND STORAGE MEDIUM
JP2010212323A (en) * 2009-03-09 2010-09-24 Tokyo Electron Ltd METHOD OF FORMING Cu FILM, AND STORAGE MEDIUM

Also Published As

Publication number Publication date
JP2016058434A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP5181512B2 (en) Manufacturing method of electronic device
US8951444B2 (en) Gas-phase functionalization of carbon nanotubes
TW503482B (en) Semiconductor electronic device, method for producing a conductive connection in a semiconductor electronic device, and method for producing a semiconductor electronic device
US20140321026A1 (en) Layer system having a layer of carbon nanotubes arranged parallel to one another and an electrically conductive surface layer, method for producing the layer system, and use of the layer system in microsystem technology
JP5826783B2 (en) Semiconductor device
JP5414756B2 (en) Semiconductor device and manufacturing method thereof
US8487449B2 (en) Carbon nanotube interconnection and manufacturing method thereof
JP5624600B2 (en) Wiring and semiconductor device manufacturing method
EP1436823B1 (en) Method for localized growth of nanotubes and method for making a self-aligned cathode using the nanotube growth method
JP5583236B1 (en) Graphene wiring
US8338822B2 (en) Electrical connection structure having elongated carbon structures with fine catalyst particle layer
JP2008016849A (en) Interlayer interconnection of semiconductor device using carbon nanotube, and its manufacturing method
JP2004336054A (en) Method for forming wiring of semiconductor element using carbon nano-tube and semiconductor element manufactured by the same
JP2011204769A (en) Semiconductor device, and method of manufacturing the same
JP2009027157A (en) Method for manufacturing carbon nanotube-based electrical connection
JP2015191937A (en) Semiconductor device manufacturing method and semiconductor device
JP2008258184A (en) Electronic device and its manufacturing method
JP5701920B2 (en) Semiconductor device and manufacturing method thereof
TWI474973B (en) Selective nanotube growth inside vias using an ion beam
WO2016035623A1 (en) Composite wiring and production method therefor
KR20120113766A (en) Interconnection structure made of redirected carbon nanotubes
Speets et al. Noble Metal Nanoparticles Deposited on Self‐Assembled Monolayers by Pulsed Laser Deposition Show Coulomb Blockade at Room Temperature
JP5181105B2 (en) Method for forming corrected wiring of integrated circuit
CN104821291B (en) Damascene processes based on nano tube structure
JP5893096B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837768

Country of ref document: EP

Kind code of ref document: A1