WO2016035468A1 - Process and device for producing nanofiber - Google Patents

Process and device for producing nanofiber Download PDF

Info

Publication number
WO2016035468A1
WO2016035468A1 PCT/JP2015/070842 JP2015070842W WO2016035468A1 WO 2016035468 A1 WO2016035468 A1 WO 2016035468A1 JP 2015070842 W JP2015070842 W JP 2015070842W WO 2016035468 A1 WO2016035468 A1 WO 2016035468A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
solution
tip
collector
cooling
Prior art date
Application number
PCT/JP2015/070842
Other languages
French (fr)
Japanese (ja)
Inventor
小倉 徹
片井 幸祐
新井 利直
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016035468A1 publication Critical patent/WO2016035468A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/04Dry spinning methods
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/425Cellulose series
    • D04H1/4258Regenerated cellulose series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Definitions

  • the present invention relates to a nanofiber manufacturing method and apparatus.
  • a fiber having a nano-order diameter of several nm or more and less than 1000 nm can be used as a material of a product such as a biofilter, a sensor, a fuel cell electrode material, a precision filter, electronic paper, or a heat pipe wick. It is possible to develop applications in various fields such as engineering and medical care.
  • the electrospinning method is performed using an electrospinning device (electrospinning device) having a nozzle, a collector, and a power source (see Patent Document 1).
  • an electrospinning device electrospinning device having a nozzle, a collector, and a power source (see Patent Document 1).
  • a voltage is applied between a nozzle and a collector by a power source, and for example, the nozzle is negatively charged and the collector is positively charged.
  • a conical protrusion composed of a solution called a Taylor cone is formed at an opening at the tip of the nozzle (hereinafter referred to as a tip opening).
  • a tip opening When the applied voltage is gradually increased and the Coulomb force exceeds the surface tension of the solution, the solution is ejected from the tip of the Taylor cone and a spinning jet is formed. The spinning jet moves to the collector by Coulomb force and is collected as nanofibers on the collector.
  • the solution When using a highly volatile solvent for the solution sent from the nozzle, the solution may solidify and clog at the opening of the tip. Moreover, when the solution solidified to some extent moves away from the opening of the tip, the solidified solution may fall on the collecting surface of the nanofibers collected on the collector. Thus, the clogging or solidification of the solution makes it impossible to reduce the quality of the product or to use it as a product. For this reason, in Patent Document 2, the cleaning means is used to remove the solidified solution by bringing the flexible member into contact with the tip opening, or to remove the solidified solution by sucking the tip opening.
  • an air spraying portion is provided at a position separated from the nozzle tip opening by a predetermined distance, and air is sprayed by the air spraying portion in the traveling direction of the spinning jet to promote the movement of the spinning jet to the collector. Increasing fiber production.
  • Patent Document 2 in the method of moving the nozzle to the cleaning station and bringing the flexible member into contact with the tip opening to remove the solidified solution, the flexible member and the nozzle are brought into contact with the tip opening by contacting the flexible member. Will bend. And when the flexible member leaves the tip opening, the deflected member or nozzle returns to its original posture, and the solidified solution adhering to the flexible member or tip opening jumps off with the momentum of returning. There are cases where stable production for a long time is difficult.
  • the solidified solution becomes quite hard, and thus strong suction is required.
  • the wind flow in the spinning area (the area where spinning is performed in the spinning device) is disturbed, and the nanofibers laminated on the collector may not be uniform, and the product quality may be significantly reduced.
  • a Taylor cone is stably formed, and the spinning jet and the flying of the fiber are also stabilized.
  • a liquid ball may be generated due to rapid evaporation of the solvent on the surface of the solution extruded from the nozzle.
  • the liquid ball has a substantially spherical shape due to deformation of the Taylor cone, and the surface is increased in viscosity by evaporation of the solvent to form a skin, and the inside remains as a solution having a high solvent concentration. If a liquid ball is generated, it will be difficult to blow out the solution from the surface even if there is sufficient charge, and even if the spinning jet is ejected, the flight will be discontinuous and the nanofiber will be of uniform thickness It becomes difficult to form.
  • the liquid ball may fall due to the vibration of the device.
  • the integrated nanofiber may not be used as a product, or the quality of the nonwoven fabric may be deteriorated, for example.
  • An object of this invention is to provide the nanofiber manufacturing method and apparatus which can maintain a Taylor cone stably and can improve manufacturing efficiency in view of the said problem.
  • a solution in which a cellulosic polymer is dissolved in a solvent is sent from the tip of the nozzle as a constant temperature within a range of 5 ° C. or more and 40 ° C. or less, and a voltage is applied between the solution and the collector.
  • a nanofiber manufacturing method in which a fiber is ejected from a solution to a collector, and a gas having a constant temperature within a range of 5 ° C. to 15 ° C. is sent to a peripheral surface of the solution sent from the tip of a nozzle. is there.
  • a blower pipe that is arranged concentrically with the nozzle on the outside of the nozzle and in which a blower slit is formed between the nozzle and the outer peripheral surface of the nozzle, and gas is blown from the blower slit.
  • tube protrudes rather than the front-end
  • tube protrudes has a cooling part by which a cooling medium circulates inside.
  • the gas flow rate from the blow slit is preferably a constant flow rate in the range of 5 mm / second to 50 mm / second.
  • a solution in which a cellulosic polymer is dissolved in a solvent is sent from the tip of the nozzle as a constant temperature within a range of 5 ° C. or more and 40 ° C. or less, and a voltage is applied between the solution and the collector.
  • the cooling pipe is arranged concentrically with the nozzle outside the nozzle, the cooling medium is circulated inside, the tip of the cooling pipe protrudes from the tip of the nozzle, and the tip of the cooling pipe protrudes from the tip of the nozzle. It is preferable to cover the solution being pumped.
  • the nanofiber manufacturing apparatus of the present invention sends a solution in which a cellulosic polymer is dissolved in a solvent from a tip of a nozzle as a constant temperature within a range of 5 ° C. or more and 40 ° C. or less, and applies a voltage between the solution and the collector.
  • a nanofiber manufacturing apparatus for applying and ejecting a fiber from a solution to a collector wherein the blower pipe is arranged concentrically with the nozzle on the outside of the nozzle and has a blower slit formed between the outer peripheral surface of the nozzle, And a cooling gas supply unit that sends a gas having a constant temperature within a range of 5 ° C. or more and 15 ° C. or less from the slit.
  • the tip of the blower tube protrudes from the tip of the nozzle, and the solution fed from the nozzle is covered with the tip of the blower tube protruding.
  • tip part which the blast pipe protrudes has a cooling part by which a cooling medium circulates inside.
  • the cooling gas supply unit preferably supplies the gas at a constant flow rate in the range of 5 mm / second or more and 50 mm / second or less from the blow slit.
  • the nanofiber manufacturing apparatus of the present invention sends a solution in which a cellulosic polymer is dissolved in a solvent from a tip of a nozzle as a constant temperature within a range of 5 ° C. or more and 40 ° C. or less, and applies a voltage between the solution and the collector.
  • a nanofiber manufacturing apparatus that applies and jets a fiber from a solution to a collector, and has a cooling pipe arranged concentrically with the nozzle outside the nozzle and circulating a cooling medium inside, and the tip of the cooling pipe is It protrudes from the tip of the nozzle, covers the solution delivered from the nozzle by the protruding tip of the cooling tube, and maintains the temperature of the peripheral surface of the solution at a constant temperature in the range of 5 ° C to 15 ° C. is there.
  • the solution fed from the nozzle tip can be cooled, and the evaporation rate of the solvent is suppressed. Therefore, electrospinning can be stably performed even with a solution having a high evaporation rate.
  • FIG. 1 It is a side view which shows the outline of the nanofiber manufacturing apparatus of this invention. It is sectional drawing which shows the front-end
  • the nanofiber manufacturing apparatus 10 of the present invention is for manufacturing a nanofiber 46 from a solution 25 in which a cellulose polymer is dissolved in a solvent.
  • the nanofiber manufacturing apparatus 10 includes a spinning chamber 11, a solution supply unit 12, an electrospinning nozzle (hereinafter simply referred to as a nozzle) 13, a cooling gas supply unit 14, an accumulation unit 15, and a power source 62.
  • the spinning chamber 11 accommodates, for example, the nozzle 13, the pipe 32 of the solution supply unit 12, the cooling gas supply unit 14 and a part of the accumulation unit 15, and is configured to be hermetically sealed, so that the solvent gas leaks to the outside. To prevent that.
  • the solvent gas is obtained by vaporizing the solvent of the solution 25.
  • a nozzle 13 is disposed in the upper part of the spinning chamber 11.
  • the nozzle 13 is for discharging the solution 25 in a state of being charged negatively ( ⁇ ), for example, by a power source 62 as will be described later.
  • the nozzle 13 is comprised from the cylinder.
  • a blower tube 20 is disposed outside the nozzle 13 concentrically with the nozzle 13.
  • the blower pipe 20 has an inner diameter larger than the outer diameter of the nozzle 13 so as to form a blower slit 21 between the blower pipe 20 and the outer peripheral surface of the nozzle 13.
  • the nozzle 13 is made of stainless steel having an outer diameter of 0.6 mm and an inner diameter of 0.4 mm, for example, and is cut so that a tip opening edge portion 13b around the tip opening 13a is orthogonal to the cylinder center direction.
  • the front end opening edge 13b, which is the cut surface, is polished flat.
  • the blower tube 20 is made of stainless steel having an outer diameter of 11 mm and an inner diameter of 10 mm, for example, and the nozzle 13 is held by a spacer (not shown) so that the tube core of the nozzle 13 and the tube core of the blower tube 20 coincide. .
  • the material of the nozzle 13 and the blower tube 20 may be made of a conductive material such as an aluminum alloy, a copper alloy, or a titanium alloy in addition to stainless steel.
  • the solution 25 only needs to be in contact with the metal member at any location and voltage is applied. Therefore, if a voltage is applied at any place, the tip opening 13a does not necessarily need to be a conductive material.
  • the tip 20a of the blower tube 20 protrudes with a protruding amount L1 of, for example, about 10 mm with respect to the tip opening 13a.
  • a tailor cone 44 made of the solution 25 sent out from the nozzle 13 is covered by the protruding tip portion 20 b of the blower pipe 20.
  • the protrusion amount L1 is preferably changed in accordance with the sizes of the inner diameters of the nozzle 13 and the blower pipe 20.
  • the protrusion amount L1 covers the Taylor cone 44 and is maintained at a constant temperature by the cooling gas 43. It is preferable that
  • a pipe 32 of the solution supply unit 12 is connected to the base end of the nozzle 13.
  • the solution supply unit 12 is for supplying the solution 25 to the nozzle 13 of the spinning chamber 11.
  • the solution supply unit 12 includes a storage container 30, a pump 31, and a pipe 32.
  • the storage container 30 stores the solution 25 as a constant temperature within a range of 5 ° C. or higher and 40 ° C. or lower. Thereby, the temperature of the solution 25 which comes out of the nozzle 13 is made into the range of 5 to 40 degreeC. If it is less than 5 degreeC, since a water
  • the pump 31 sends the solution 25 to the nozzle 13 via the pipe 32.
  • the flow rate of the solution 25 delivered from the nozzle 13 can be adjusted.
  • the flow rate of the solution 25 is 4 cm 3 / hour, but the flow rate is not limited to this.
  • a substantially conical Taylor cone 44 is formed by the solution 25 at the tip opening 13 a of the nozzle 13.
  • a syringe (not shown) may be used.
  • a pipe 38 of the cooling gas supply unit 14 is connected to the proximal end of the blower pipe 20.
  • the cooling gas supply unit 14 includes a blower 35, a flow rate adjustment valve 36, a cooler 37, and a pipe 38.
  • the blower 35 compresses air.
  • an inert gas such as carbon dioxide gas may be used.
  • an inert gas supply source is connected instead of the blower 35.
  • the cooler 37 which is a part of the cooling gas supply unit 14 is disposed in the spinning chamber 11, but may be disposed outside the spinning chamber 11.
  • the flow rate adjusting valve 36 adjusts the feed amount of the cooling gas 43 from the blow slit 21 of the blow pipe 20. By adjusting the feed amount, the flow rate of the cooling gas 43 from the blow slit 21 to the outer peripheral surface of the solution 25 is set to a constant flow rate within a range of 5 mm / second to 50 mm / second. By setting the flow rate of the cooling gas 43 within the range of 5 mm / second or more and 50 mm / second or less, the Taylor cone 44 can be wrapped with the cooling gas 43 and cooled.
  • the periphery of the Taylor cone 44 can be reliably cooled compared to less than 5 mm / second, and generation of liquid balls can be suppressed. Further, instability in the spinning direction of the spinning jet 45 and uneven distribution due to a part of the surface of the Taylor cone 44 becoming hard can be suppressed.
  • the speed of the cooling gas 43 is 50 mm / second or less, the supercooling to the spinning jet 45 flying from the Taylor cone 44 is suppressed as compared with the case where the cooling gas 43 exceeds 50 mm / second, and evaporation of the solvent from the spinning jet 45 is suppressed.
  • the nanofiber 46 can be obtained reliably without being obstructed.
  • the cooler 37 cools the air that has passed through the flow rate adjusting valve 36 to a constant temperature within a range of 5 ° C. to 15 ° C.
  • the accumulation unit 15 is disposed below the nozzle 13.
  • the stacking unit 15 includes a collector 50, a collector rotating unit 51, a support body supply unit 52, and a support body winding unit 53.
  • the collector 50 is for collecting the solution 25 delivered from the nozzle 13 as nanofibers 46.
  • the collector 50 is made of an endless belt made of a strip-shaped metal, for example, stainless steel.
  • the collector 50 is not limited to stainless steel, and may be formed of a material that is charged by application of a voltage from the power source 62.
  • the collector rotating unit 51 is composed of a pair of rollers 55 and 56, a motor 57, and the like. The collector 50 is stretched horizontally around a pair of rollers 55 and 56.
  • a motor 57 disposed outside the spinning chamber 11 is connected to the shaft of one roller 55 and rotates the roller 55 at a predetermined speed. By this rotation, the collector 50 circulates and moves between the pair of rollers 55 and 56.
  • the moving speed of the collector 50 is 10 cm / hour, but is not limited to this.
  • the support body 60 made of a strip-shaped aluminum sheet is supplied to the collector 50 by the support body supply section 52.
  • the support body 60 in the present embodiment has a thickness of approximately 25 ⁇ m.
  • the support 60 is for collecting the nanofibers 46 and obtaining the nanofiber layers (nonwoven fabrics) 47.
  • the support body 60 on the collector 50 is wound up by the support body winding part 53.
  • the support body supply unit 52 has a delivery shaft 52a.
  • a support roll 54 is attached to the delivery shaft 52a.
  • the support roll 54 is configured by winding the support 60.
  • the support winding portion 53 has a winding shaft 58.
  • the winding shaft 58 is rotated by a motor (not shown), and the support body 60 on which the nanofiber layer 47 is formed is wound around the core 61 to be set.
  • the nanofiber manufacturing apparatus 10 has a function of manufacturing a nonwoven fabric composed of the nanofiber layer 47 in addition to a function of manufacturing the nanofiber 46, and a nanofiber manufacturing method by an electrospinning method is performed.
  • the moving speed of the collector 50 and the moving speed of the support 60 are preferably the same so that friction does not occur between them.
  • the support 60 may be placed on the collector 50 and moved by the movement of the collector 50. Further, the support 60 may be interlocked with the collector 50 by applying a winding tension to the support 60.
  • the power source 62 applies a voltage of, for example, 30 kV between the nozzle 13 and the collector 50 to charge the nozzle 13 to minus ( ⁇ ) and charge the collector 50 to plus (+). Due to this charging, a spinning jet 45 is ejected from the Taylor cone 44 formed in the tip opening 13 a toward the collector 50. Note that the polarity of charging may be reversed.
  • the distance L2 between the tip of the nozzle 13 and the collector 50 varies depending on the type of polymer and solvent, the mass ratio of the solvent in the solution 25, etc., but is preferably in the range of 30 mm to 300 mm. In this embodiment, the distance L2 is 170 mm. Yes.
  • the spun jet 45 to be ejected is more reliably split by repulsion due to its own charge before reaching the collector 50, compared to a case where the distance L2 is shorter than 30 mm.
  • the nanofiber 46 can be obtained more reliably. Since the solvent evaporates more reliably by splitting in this way, a sticky nonwoven fabric can be more reliably prevented.
  • the applied voltage can be kept low compared with the case where the distance L2 exceeds 300 mm and is too long. Therefore, since the insulation of the apparatus is more reliably prevented from being broken by the application of a high voltage, the apparatus is not damaged due to an unintended short circuit.
  • the thickness of the obtained nanofiber 46 varies depending on the magnitude of the voltage applied to the nozzle 13 and the collector 50. From the viewpoint of forming a thin fiber, it is preferable that the voltage is as low as possible. However, if it is lowered too much, it may not be in the form of a fiber but may become a ball and adhere to the collector 50 in some cases. On the contrary, if the voltage is increased, the fiber becomes thicker. If the voltage is increased too much, the insulation of the device may be broken and the device may be damaged due to electric leakage from an unexpected place. Therefore, the voltage applied to the nozzle 13 and the collector 50 is preferably 2 kV or more and 40 kV or less.
  • cellulose triacetate As the cellulose-based polymer, cellulose triacetate (TAC) is used in the present embodiment, but is not limited to this.
  • Solvents for dissolving the cellulose polymer include methanol, ethanol, isopropanol, butanol, benzyl alcohol, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, hexane, cyclohexane, dichloromethane Chloroform, carbon tetrachloride, benzene, toluene, xylene, dimethylformamide, N-methylpyrrolidone (NMP), diethyl ether, dioxane, tetrahydrofuran, 1-methoxy-2-propanol and the like.
  • NMP N-methylpyrrolidone
  • the solvent When the solvent is used alone, the formation of liquid balls becomes prominent when the boiling point of the solvent is about 50 ° C. or lower. In addition, a solvent having a low boiling point tends to form a liquid ball because the evaporation rate of the solvent is high. In order to suppress this, it is preferable to adjust the evaporation rate of the solvent by mixing a solvent having a high boiling point. In the present embodiment, a mixture of dichloromethane and NMP is used as the solvent.
  • the viscosity often changes greatly as the temperature decreases.
  • the concentration of the solution 25 is sufficiently dilute at 2% by mass or more and 10% by mass or less, the solution viscosity is low, and the effect of suppressing the solvent evaporation by the cooling gas 43 appears remarkably.
  • FIG. 1 a voltage is applied by a power source 62 to the nozzle 13 and the collector 50 that circulates and moves.
  • the cooling gas supply part 14 is operated and the cooling gas 43 is sent from the ventilation slit 21 of the nozzle 13 (refer FIG. 2).
  • the collector 15 and the support 60 are moved by operating the stacking unit 15.
  • the solution supply unit 12 is operated and the solution 25 is sent out from the tip opening 13a of the nozzle 13 as shown in FIG. 2, a Taylor cone 44 is formed in the tip opening 13a.
  • the collector 50 which is positively charged by the application of voltage, attracts the solution 25 sent from the tip opening 16b in a negatively charged state, and the spinning jet 45 is ejected toward the collector 50.
  • the negatively charged spinning jet 45 splits into a smaller diameter due to repulsion due to its own charge while traveling toward the collector 50, and is collected as a nanofiber 46 on the support 60.
  • the collected nanofibers 46 are sent to the support winding portion 53 together with the support 60 as a nanofiber layer 47.
  • the nanofiber layer 47 is wound around the core 61 in a state where the nanofiber layer 47 overlaps the support 60.
  • the nanofiber layer 47 is separated from the support 60. Thereafter, the nanofiber layer 47 is cut into a desired size, and a nonwoven fabric made of the nanofibers 46 is obtained.
  • the cooling gas 43 is sent out from the blowing slit 21 between the blowing pipe 20 and the nozzle 13, and the cooling gas 43 covers the Taylor cone 44 at the tip of the nozzle 13, so that the solution The evaporation rate of 25 solvents is suppressed.
  • the surface of the Taylor cone 44 does not become hard, and generation
  • electrospinning can be performed stably even with a solution having a high evaporation rate.
  • the tip 71a of the blower pipe 71 may be positioned in accordance with the tip 70a of the nozzle 70. In this case, since the tip 70a of the nozzle 70 is not hidden in the tip 71b of the blower pipe 71 as in the first embodiment, the tip 70a can be easily cleaned.
  • the same constituent members are denoted by the same reference numerals, and redundant description is omitted.
  • a guide tube 75 is attached to the distal end portion 71b of the blower tube 71 of the second embodiment so as to be movable in the cylinder center direction.
  • the cooling gas 43 from the blow slit 21 covers the Taylor cone 44 by the guide tube 75 and the blow tube 71.
  • the Taylor cone 44 can be reliably cooled by the cooling gas 43.
  • the tip 70a of the nozzle 70 can be exposed by sliding the guide tube 75 upward from the guide position to the retracted position. For this reason, the tip opening 13a of the nozzle 13 can be reliably cleaned.
  • the guide tube 75 may be biased so as to protrude toward the tip by a spring (not shown) or the like, and may be positioned at a protruding position and a retracted position by a click mechanism (not shown).
  • a cooling portion 81 in which a cooling medium 80 is circulated is provided at the tip 20b of the blower tube 20 of the first embodiment.
  • the Taylor cone 44 can be cooled by the cooling unit 81 of the blow pipe 20 in addition to the cooling gas 43. Therefore, the evaporation rate of the solvent in the Taylor cone 44 can be further suppressed, and the generation of liquid balls can be suppressed.
  • the air from the air duct 20 of the fourth embodiment is eliminated, and the Taylor cone 44 is cooled by the cooling unit 81 of the air duct 20.
  • the cooling pipe having the cooling unit 81 may be used at the tip 20b.
  • the cooling unit 81 of the cooling pipe may use various cooling devices having a cooling function in addition to the cooling medium 80 that is circulated and cooled.
  • nozzles 13 or 70 may be used.
  • a plurality of nozzles 13 and 70 it is preferable to provide a plurality of nozzles 13 and 70 in a direction perpendicular to the feeding direction of the support 60.
  • the nozzles 13 and 70 may be arranged in a matrix in the feeding direction of the support 60 and in a direction orthogonal to the feeding direction.
  • the nozzles 13 and 70 By making the nozzles 13 and 70 plural, the area of the obtained nanofiber layer 47 can be increased, and the production efficiency can be increased.
  • a solvent recovery unit not shown in the spinning chamber 11.
  • the cross-sectional shape of the nozzles 13 and 70 is circular, but it may be a long and narrow rectangular slit not shown.
  • the blower slit is similarly formed into an elongated slit shape in accordance with the sectional shape of the nozzle.
  • Example 1 a solution 25 in which cellulose triacetate was dissolved in a mixed solvent was used.
  • the nozzle 13 used was a single stainless steel cylindrical tube having an inner diameter of 0.4 mm and an outer diameter of 0.6 mm.
  • the tip opening edge 13b was cut horizontally, and then the cut surface was polished.
  • the blower tube 20 having an inner diameter of 10 mm and an outer diameter of 11 mm was concentric with the nozzle 13, the tip of the blower tube 20 was projected from the tip opening edge 13 b, and the projection amount L 1 at this time was 10 mm.
  • An aluminum sheet having a thickness of about 25 ⁇ m was set as the support 60 on the collector 50, and the distance L2 from the nozzle 13 to the collector 50 was set to 170 mm.
  • the collector 50 was moved at a speed of 100 mm / hour.
  • the support 60 on the collector 50 was also moved at the same speed as the collector 50 was moved.
  • Air was used as the cooling gas 43 from the blower tube 20, and the air was cooled to 10 ° C. and sent out from the blower slit 21 at 20 mm / second.
  • a voltage of 35 kV was applied between the nozzle 13 and the collector 50, the nozzle 13 was charged negatively, and the collector 50 was charged positively.
  • the solution 25 was supplied to the nozzle 13 at a speed of 4 cm 3 / hour, and a sample of A4 size was collected.
  • Example 2 was the same as Example 1 except that the nozzle 13 shown in FIG. 3 was used instead of the nozzle 13 of Example 1.
  • the third embodiment is the same as the first embodiment except that the tailor cone 44 is maintained at 10 ° C. without using the blower pipe 20 having the cooling unit 81 in which the cooling medium 80 is circulated in the interior shown in FIG. Condition.
  • Comparative Example 1 was the same as Example 1 except that the cooling gas 43 was not supplied from the blower tube 20 in Example 1.
  • Comparative Example 2 the same conditions as in Example 1 were used except that the cooling gas 43 was supplied from the blower pipe 20 at 100 mm / second in Example 1.
  • Comparative Example 3 the same conditions as in Example 1 were used except that the cooling gas 43 was supplied at room temperature (25 ° C.) without being cooled.
  • Example 1 the number of nozzle clogging and the number of drops of liquid balls were both 0, which was acceptable.
  • Example 2 the number of drops of the liquid ball was 1, and the sample defect was minor and passed.
  • Comparative Example 1 the number of clogged nozzles was 3, the number of drops of the liquid ball was 13, and the spinning was interrupted, so it was rejected.
  • Comparative Example 2 the number of nozzle cloggings was 2, the number of drops of liquid balls was 19, and the spinning was interrupted, so it was rejected.
  • Comparative Example 3 the number of clogged nozzles was 5, the number of dropped liquid balls was 17, and the spinning was interrupted, so it was unacceptable.

Abstract

A process and a device for producing a nanofiber are provided in which a Taylor cone is stably maintained to improve the production efficiency. A solution (25) obtained by dissolving a cellulosic polymer in a solvent is sent out from the tip of a nozzle (13) while keeping the solution at a constant temperature in the range of 5-40°C, thereby forming a Taylor cone (44) at the tip orifice (13a). A voltage is applied between the solution (25) and a collector (50) by an electric power source (62) to eject a fiber as a spinning-solution jet (45) from the Taylor cone (44) to the collector (50). A cooling gas (43) supplied through a gas supply pipe (20) and having a constant temperature in the range of 5-15°C is sent to the periphery of the Taylor cone (44) through a gas supply slit (21), which is the space between the wall of the gas supply pipe (20) and the outer peripheral surface of the nozzle (13). Due to this, the evaporation of the solvent from the Taylor cone (44) is inhibited and the occurrence of droplets due to surface solidification and resultant skin formation is inhibited. Thus, production failures caused by the droplets are eliminated.

Description

ナノファイバ製造方法及び装置Nanofiber manufacturing method and apparatus
 本発明は、ナノファイバ製造方法及び装置に関する。 The present invention relates to a nanofiber manufacturing method and apparatus.
 例えば数nm以上1000nm未満のナノオーダの径を有する繊維(ナノファイバ)は、バイオフィルタ、センサ、燃料電池電極材、精密フィルタ、電子ペーパ、あるいはヒートパイプのウィック等の製品の素材として利用することができ、工学や医療等の各分野においての用途開発が盛んに行われている。 For example, a fiber (nanofiber) having a nano-order diameter of several nm or more and less than 1000 nm can be used as a material of a product such as a biofilter, a sensor, a fuel cell electrode material, a precision filter, electronic paper, or a heat pipe wick. It is possible to develop applications in various fields such as engineering and medical care.
 ナノファイバを製造する方法の一つに、電界紡糸法(エレクトロスピニング法)がある。電界紡糸法は、ノズルとコレクタと電源とを有する電界紡糸装置(エレクトロスピニング装置)を用いて行われる(特許文献1参照)。この電界紡糸装置では、電源によりノズルとコレクタとの間に電圧を印加し、例えば、ノズルをマイナス、コレクタをプラスに帯電させる。 One method for producing nanofibers is the electrospinning method (electrospinning method). The electrospinning method is performed using an electrospinning device (electrospinning device) having a nozzle, a collector, and a power source (see Patent Document 1). In this electrospinning apparatus, a voltage is applied between a nozzle and a collector by a power source, and for example, the nozzle is negatively charged and the collector is positively charged.
 電圧を印加した状態でノズルから原料である溶液を出すと、ノズルの先端の開口(以下、先端開口と称する)にテイラーコーンと呼ばれる溶液で構成される円錐状の突起が形成される。印加電圧を徐々に増加し、クーロン力が溶液の表面張力を上回ると、テイラーコーンの先端から溶液が飛び出し、紡糸ジェットが形成される。紡糸ジェットはクーロン力によってコレクタまで移動し、コレクタ上でナノファイバとして収集される。 When a solution as a raw material is taken out from the nozzle in a state where a voltage is applied, a conical protrusion composed of a solution called a Taylor cone is formed at an opening at the tip of the nozzle (hereinafter referred to as a tip opening). When the applied voltage is gradually increased and the Coulomb force exceeds the surface tension of the solution, the solution is ejected from the tip of the Taylor cone and a spinning jet is formed. The spinning jet moves to the collector by Coulomb force and is collected as nanofibers on the collector.
 ノズルから送られる溶液に、揮発性の高い溶媒を使用する場合には、先端開口で溶液が固化し、詰まることがある。また、ある程度固化した溶液が先端開口から離れると、コレクタ上に集積されたナノファイバの収集面に、固化した溶液が落ちてしまうことがある。このように溶液の詰まりや固化によって、製品の品質の低下や、製品としての使用が不可能になる。このため、特許文献2では、クリーニング手段を用いて、先端開口に柔軟部材を接触させて固化した溶液を除去したり、先端開口を吸引して固化した溶液を除去したりしている。 When using a highly volatile solvent for the solution sent from the nozzle, the solution may solidify and clog at the opening of the tip. Moreover, when the solution solidified to some extent moves away from the opening of the tip, the solidified solution may fall on the collecting surface of the nanofibers collected on the collector. Thus, the clogging or solidification of the solution makes it impossible to reduce the quality of the product or to use it as a product. For this reason, in Patent Document 2, the cleaning means is used to remove the solidified solution by bringing the flexible member into contact with the tip opening, or to remove the solidified solution by sucking the tip opening.
 特許文献3では、ノズルの先端開口から所定距離だけ離した位置にエア吹付部を設け、紡糸ジェットの進行方向にエア吹付部によりエアを吹き付けて、紡糸ジェットのコレクタへの移動を促進させ、ナノファイバの製造量を増加させている。 In Patent Document 3, an air spraying portion is provided at a position separated from the nozzle tip opening by a predetermined distance, and air is sprayed by the air spraying portion in the traveling direction of the spinning jet to promote the movement of the spinning jet to the collector. Increasing fiber production.
特開2005-330624号公報JP 2005-330624 A 特開2008-202169号公報JP 2008-202169 A 特開2014-47440号公報JP 2014-47440 A
 特許文献2に示されるように、ノズルをクリーニングステーションに移動させて先端開口に柔軟部材を接触させて固化した溶液を除去する方法では、先端開口に柔軟部材を接触させることにより、柔軟部材やノズルが撓む。そして、柔軟部材が先端開口から離れた際に撓んだ部材やノズルが元の姿勢に戻り、この戻る際の勢いで柔軟部材や先端開口に付着している固化した溶液を跳ね飛ばしてしまうことがあり、長時間の安定した製造が難しいことがある。 As shown in Patent Document 2, in the method of moving the nozzle to the cleaning station and bringing the flexible member into contact with the tip opening to remove the solidified solution, the flexible member and the nozzle are brought into contact with the tip opening by contacting the flexible member. Will bend. And when the flexible member leaves the tip opening, the deflected member or nozzle returns to its original posture, and the solidified solution adhering to the flexible member or tip opening jumps off with the momentum of returning. There are cases where stable production for a long time is difficult.
 また、吸引による先端開口のクリーニングでは、蒸発の早い溶媒の場合には固化した溶液がかなり硬くなるため、強い吸引が必要になる。そのために紡糸エリア(紡糸装置内の紡糸が行われるエリア)の風の流れに乱れが生じて、コレクタ上に積層するナノファイバが均一でなくなり、製品の品質が著しく低下することがある。 Also, in the cleaning of the tip opening by suction, in the case of a solvent that evaporates quickly, the solidified solution becomes quite hard, and thus strong suction is required. As a result, the wind flow in the spinning area (the area where spinning is performed in the spinning device) is disturbed, and the nanofibers laminated on the collector may not be uniform, and the product quality may be significantly reduced.
 ところで、たとえばポリビニルアルコールの希薄水溶液のような原料を用いると、テイラーコーンが安定的に形成され、紡糸ジェット及びファイバの飛翔も安定する。しかし、溶媒の揮発速度が速い溶液では、テイラーコーンがうまく形成できず、ノズルから押し出された溶液の表面の溶媒が早く蒸発することによって、液玉が発生することがある。液玉は、テイラーコーンが変形して略球状になっており、表面は溶媒蒸発により粘度が上昇して皮が形成され、内部は溶媒濃度の高い溶液のままになっている。液玉が発生してしまうと、十分に電荷がかかっていても、表面からの溶液の吹き出しが困難になり、紡糸ジェットが噴出しても飛翔が不連続になって均一な太さのナノファイバの形成が困難になる。 By the way, when a raw material such as a dilute aqueous solution of polyvinyl alcohol is used, a Taylor cone is stably formed, and the spinning jet and the flying of the fiber are also stabilized. However, in a solution having a high solvent volatilization rate, a Taylor cone cannot be formed well, and a liquid ball may be generated due to rapid evaporation of the solvent on the surface of the solution extruded from the nozzle. The liquid ball has a substantially spherical shape due to deformation of the Taylor cone, and the surface is increased in viscosity by evaporation of the solvent to form a skin, and the inside remains as a solution having a high solvent concentration. If a liquid ball is generated, it will be difficult to blow out the solution from the surface even if there is sufficient charge, and even if the spinning jet is ejected, the flight will be discontinuous and the nanofiber will be of uniform thickness It becomes difficult to form.
 また、液玉は装置の振動などによって落下することがある。この場合には、集積したナノファイバが製品として使用できなくなったり、例えば不織布としての品質が低下したりすることがある。 Also, the liquid ball may fall due to the vibration of the device. In this case, the integrated nanofiber may not be used as a product, or the quality of the nonwoven fabric may be deteriorated, for example.
 このように、特許文献2の電界紡糸方法では、ノズル先端での溶液の固化が原因で液玉が発生しているのに、対症療法的に液玉を洗浄して取り除くだけであり、根本的な解決には至っていない。 As described above, in the electrospinning method of Patent Document 2, although the liquid ball is generated due to the solidification of the solution at the nozzle tip, the liquid ball is merely washed and removed symptomatically. No solution has been reached.
 特許文献3の電界紡糸装置では、紡糸ジェットの進行方向にエア吹付部によりエアを吹き付けて、紡糸ジェットのコレクタへの移動を促進させ、ナノファイバの製造量を増加させている。しかし、目的は紡糸ジェットのコレクタへの移動促進であり、液玉の抑制については考慮されていない。 In the electrospinning apparatus of Patent Document 3, air is blown by an air blowing portion in the traveling direction of the spinning jet to promote the movement of the spinning jet to the collector, and the production amount of nanofibers is increased. However, the purpose is to promote the movement of the spinning jet to the collector and no consideration is given to the suppression of the liquid balls.
 以上のように、従来の電界紡糸装置においては、テイラーコーンの液玉に関して十分な検討がなされていないのが現状である。本発明は、上記問題点に鑑み、テイラーコーンを安定的に維持して製造効率を向上させることができるナノファイバ製造方法及び装置を提供することを目的とする。 As described above, in the conventional electrospinning apparatus, the Taylor corn liquid balls have not been sufficiently studied. An object of this invention is to provide the nanofiber manufacturing method and apparatus which can maintain a Taylor cone stably and can improve manufacturing efficiency in view of the said problem.
 本発明のナノファイバ製造方法は、セルロース系ポリマーが溶媒に溶解している溶液を、5℃以上40℃以下の範囲内の一定温度としてノズルの先端から送り出し、溶液とコレクタとの間に電圧を印加して、溶液からコレクタにファイバを噴出するナノファイバ製造方法であって、ノズルの先端から送り出された溶液の周面に5℃以上15℃以下の範囲内の一定温度の気体を送るものである。 In the nanofiber manufacturing method of the present invention, a solution in which a cellulosic polymer is dissolved in a solvent is sent from the tip of the nozzle as a constant temperature within a range of 5 ° C. or more and 40 ° C. or less, and a voltage is applied between the solution and the collector. A nanofiber manufacturing method in which a fiber is ejected from a solution to a collector, and a gas having a constant temperature within a range of 5 ° C. to 15 ° C. is sent to a peripheral surface of the solution sent from the tip of a nozzle. is there.
 なお、ノズルの外側にノズルと同心で配されノズルの外周面との間に送風スリットが形成される送風管を有し、送風スリットから気体が送風されることが好ましい。また、送風管の先端はノズルの先端よりも突出し、送風管の突出している先端部によりノズルから送り出された溶液を覆うことが好ましい。送風管の突出している先端部は内部に冷却媒体が循環される冷却部を有することが好ましい。送風スリットからの気体の流速は5mm/秒以上50mm/秒以下の範囲内の一定流速であることが好ましい。 In addition, it is preferable to have a blower pipe that is arranged concentrically with the nozzle on the outside of the nozzle and in which a blower slit is formed between the nozzle and the outer peripheral surface of the nozzle, and gas is blown from the blower slit. Moreover, it is preferable that the front-end | tip of a ventilation pipe | tube protrudes rather than the front-end | tip of a nozzle, and covers the solution sent out from the nozzle by the front-end | tip part which the ventilation pipe | tube protrudes. It is preferable that the front-end | tip part which the ventilation pipe | tube protrudes has a cooling part by which a cooling medium circulates inside. The gas flow rate from the blow slit is preferably a constant flow rate in the range of 5 mm / second to 50 mm / second.
 本発明のナノファイバ製造方法は、セルロース系ポリマーが溶媒に溶解している溶液を、5℃以上40℃以下の範囲内の一定温度としてノズルの先端から送り出し、溶液とコレクタとの間に電圧を印加して、溶液からコレクタにファイバを噴出するナノファイバ製造方法であって、ノズルの先端から送り出された溶液の周面を冷却管で覆って、溶液の周面の温度を5℃以上15℃以下の範囲内の一定温度に保持するものである。 In the nanofiber manufacturing method of the present invention, a solution in which a cellulosic polymer is dissolved in a solvent is sent from the tip of the nozzle as a constant temperature within a range of 5 ° C. or more and 40 ° C. or less, and a voltage is applied between the solution and the collector. A nanofiber manufacturing method in which a fiber is jetted from a solution to a collector, the peripheral surface of the solution sent from the tip of the nozzle is covered with a cooling pipe, and the temperature of the peripheral surface of the solution is 5 ° C. It is held at a constant temperature within the following range.
 なお、冷却管は、ノズルの外側にノズルと同心で配され、内部に冷却媒体が循環され、冷却管の先端はノズルの先端よりも突出し、冷却管の突出している先端部によりノズルの先端から送り出している溶液を覆うことが好ましい。 The cooling pipe is arranged concentrically with the nozzle outside the nozzle, the cooling medium is circulated inside, the tip of the cooling pipe protrudes from the tip of the nozzle, and the tip of the cooling pipe protrudes from the tip of the nozzle. It is preferable to cover the solution being pumped.
 本発明のナノファイバ製造装置は、セルロース系ポリマーが溶媒に溶解している溶液を、5℃以上40℃以下の範囲内の一定温度としてノズルの先端から送り出し、溶液とコレクタとの間に電圧を印加して、溶液からコレクタにファイバを噴出するナノファイバ製造装置であって、ノズルの外側にノズルと同心で配されノズルの外周面との間に送風スリットが形成されている送風管と、送風スリットから5℃以上15℃以下の範囲内の一定温度の気体を送る冷却気体供給部とを備えるものである。 The nanofiber manufacturing apparatus of the present invention sends a solution in which a cellulosic polymer is dissolved in a solvent from a tip of a nozzle as a constant temperature within a range of 5 ° C. or more and 40 ° C. or less, and applies a voltage between the solution and the collector. A nanofiber manufacturing apparatus for applying and ejecting a fiber from a solution to a collector, wherein the blower pipe is arranged concentrically with the nozzle on the outside of the nozzle and has a blower slit formed between the outer peripheral surface of the nozzle, And a cooling gas supply unit that sends a gas having a constant temperature within a range of 5 ° C. or more and 15 ° C. or less from the slit.
 なお、送風管の先端はノズルの先端よりも突出し、送風管の突出している先端部によりノズルから送り出している溶液を覆うことが好ましい。また、送風管の突出している先端部は内部に冷却媒体が循環される冷却部を有することが好ましい。冷却気体供給部は、送風スリットからの気体の流速を5mm/秒以上50mm/秒以下の範囲内の一定流速にして供給することが好ましい。 In addition, it is preferable that the tip of the blower tube protrudes from the tip of the nozzle, and the solution fed from the nozzle is covered with the tip of the blower tube protruding. Moreover, it is preferable that the front-end | tip part which the blast pipe protrudes has a cooling part by which a cooling medium circulates inside. The cooling gas supply unit preferably supplies the gas at a constant flow rate in the range of 5 mm / second or more and 50 mm / second or less from the blow slit.
 本発明のナノファイバ製造装置は、セルロース系ポリマーが溶媒に溶解している溶液を、5℃以上40℃以下の範囲内の一定温度としてノズルの先端から送り出し、溶液とコレクタとの間に電圧を印加して、溶液からコレクタにファイバを噴出するナノファイバ製造装置であって、ノズルの外側にノズルと同心で配され、内部に冷却媒体が循環される冷却管を有し、冷却管の先端はノズルの先端よりも突出し、冷却管の突出している先端部により、ノズルから送り出している溶液を覆い、溶液の周面の温度を5℃以上15℃以下の範囲内の一定温度に保持するものである。 The nanofiber manufacturing apparatus of the present invention sends a solution in which a cellulosic polymer is dissolved in a solvent from a tip of a nozzle as a constant temperature within a range of 5 ° C. or more and 40 ° C. or less, and applies a voltage between the solution and the collector. A nanofiber manufacturing apparatus that applies and jets a fiber from a solution to a collector, and has a cooling pipe arranged concentrically with the nozzle outside the nozzle and circulating a cooling medium inside, and the tip of the cooling pipe is It protrudes from the tip of the nozzle, covers the solution delivered from the nozzle by the protruding tip of the cooling tube, and maintains the temperature of the peripheral surface of the solution at a constant temperature in the range of 5 ° C to 15 ° C. is there.
 本発明によれば、ノズル先端から送り出された溶液を冷却することができ、溶媒の蒸発速度が抑制される。したがって、蒸発速度の高い溶液であっても電界紡糸を安定的に行える。 According to the present invention, the solution fed from the nozzle tip can be cooled, and the evaporation rate of the solvent is suppressed. Therefore, electrospinning can be stably performed even with a solution having a high evaporation rate.
本発明のナノファイバ製造装置の概略を示す側面図である。It is a side view which shows the outline of the nanofiber manufacturing apparatus of this invention. ノズル及び送風管の先端部を示す断面図である。It is sectional drawing which shows the front-end | tip part of a nozzle and a blast pipe. ノズル及び送風管の先端を同一位置とした別実施形態を示す断面図である。It is sectional drawing which shows another embodiment which made the front-end | tip of the nozzle and the blast pipe the same position. 送風管の外側にガイド筒を有する別実施形態を示す断面図である。It is sectional drawing which shows another embodiment which has a guide cylinder on the outer side of a ventilation pipe | tube. 送風管の先端部内に冷却部を有する別実施形態を示す断面図である。It is sectional drawing which shows another embodiment which has a cooling part in the front-end | tip part of a blast pipe.
 図1に示すように、本発明のナノファイバ製造装置10は、セルロース系ポリマーが溶媒に溶解した溶液25からナノファイバ46を製造するためのものである。ナノファイバ製造装置10は、紡糸室11と、溶液供給部12と、電界紡糸ノズル(以下、単にノズルと称する)13と、冷却気体供給部14と、集積部15と、電源62とを備える。紡糸室11は、例えば、ノズル13、溶液供給部12の配管32、冷却気体供給部14及び集積部15の一部などを収容して、密閉可能に構成されており、溶媒ガスが外部に洩れることを防止している。溶媒ガスは、溶液25の溶媒が気化したものである。 As shown in FIG. 1, the nanofiber manufacturing apparatus 10 of the present invention is for manufacturing a nanofiber 46 from a solution 25 in which a cellulose polymer is dissolved in a solvent. The nanofiber manufacturing apparatus 10 includes a spinning chamber 11, a solution supply unit 12, an electrospinning nozzle (hereinafter simply referred to as a nozzle) 13, a cooling gas supply unit 14, an accumulation unit 15, and a power source 62. The spinning chamber 11 accommodates, for example, the nozzle 13, the pipe 32 of the solution supply unit 12, the cooling gas supply unit 14 and a part of the accumulation unit 15, and is configured to be hermetically sealed, so that the solvent gas leaks to the outside. To prevent that. The solvent gas is obtained by vaporizing the solvent of the solution 25.
 紡糸室11内の上部には、ノズル13が配される。ノズル13は、後述のように電源62により例えばマイナス(-)に帯電された状態で溶液25を出すためのものである。図2に示すように、ノズル13は円筒から構成されている。ノズル13の外側にはノズル13と同心で送風管20が配される。送風管20は、ノズル13の外周面との間に送風スリット21を形成するように、内径がノズル13の外径よりも大きく形成されている。 A nozzle 13 is disposed in the upper part of the spinning chamber 11. The nozzle 13 is for discharging the solution 25 in a state of being charged negatively (−), for example, by a power source 62 as will be described later. As shown in FIG. 2, the nozzle 13 is comprised from the cylinder. A blower tube 20 is disposed outside the nozzle 13 concentrically with the nozzle 13. The blower pipe 20 has an inner diameter larger than the outer diameter of the nozzle 13 so as to form a blower slit 21 between the blower pipe 20 and the outer peripheral surface of the nozzle 13.
 ノズル13は、例えば外径が0.6mmで内径が0.4mmのステンレス製であり、先端開口13aの周りの先端開口縁部13bが筒心方向に直交するように切断されている。この切断面である先端開口縁部13bは、平坦に研磨されている。 The nozzle 13 is made of stainless steel having an outer diameter of 0.6 mm and an inner diameter of 0.4 mm, for example, and is cut so that a tip opening edge portion 13b around the tip opening 13a is orthogonal to the cylinder center direction. The front end opening edge 13b, which is the cut surface, is polished flat.
 送風管20は例えば外径が11mmで内径が10mmのステンレス製であり、ノズル13の筒心と送風管20の筒心とが一致するように、図示省略のスペーサによりノズル13を保持している。ノズル13及び送風管20の材質はステンレスの他に、例えばアルミニウム合金、銅合金、チタン合金等の導電性材料で構成してもよい。なお、電界紡糸のためには、溶液25はいずれかの場所で金属部材に接し、電圧が印加されていればよい。したがって、いずれかの場所で電圧が印加されていれば、先端開口13aは必ずしも導電性材料である必要はない。 The blower tube 20 is made of stainless steel having an outer diameter of 11 mm and an inner diameter of 10 mm, for example, and the nozzle 13 is held by a spacer (not shown) so that the tube core of the nozzle 13 and the tube core of the blower tube 20 coincide. . The material of the nozzle 13 and the blower tube 20 may be made of a conductive material such as an aluminum alloy, a copper alloy, or a titanium alloy in addition to stainless steel. For electrospinning, the solution 25 only needs to be in contact with the metal member at any location and voltage is applied. Therefore, if a voltage is applied at any place, the tip opening 13a does not necessarily need to be a conductive material.
 送風管20の先端20aは、先端開口13aに対して例えば10mm程度の突出量L1で突出している。この突出した送風管20の先端部20bによって、ノズル13から送り出された溶液25からなるテイラーコーン44が覆われる。突出量L1はノズル13及び送風管20の内径の大きさに対応して変えることが好ましく、テイラーコーン44を覆って、テイラーコーン44が冷却気体43により一定温度に保持されるような突出量L1とすることが好ましい。 The tip 20a of the blower tube 20 protrudes with a protruding amount L1 of, for example, about 10 mm with respect to the tip opening 13a. A tailor cone 44 made of the solution 25 sent out from the nozzle 13 is covered by the protruding tip portion 20 b of the blower pipe 20. The protrusion amount L1 is preferably changed in accordance with the sizes of the inner diameters of the nozzle 13 and the blower pipe 20. The protrusion amount L1 covers the Taylor cone 44 and is maintained at a constant temperature by the cooling gas 43. It is preferable that
 図1に示すように、ノズル13の基端には、溶液供給部12の配管32が接続されている。溶液供給部12は、紡糸室11のノズル13に溶液25を供給するためのものである。溶液供給部12は、貯留容器30とポンプ31と配管32とを備える。貯留容器30は溶液25を5℃以上40℃以下の範囲内の一定温度として貯留する。これにより、ノズル13から出る溶液25の温度を、5℃以上40℃以下の範囲内にしている。5℃未満では貯留容器30内で結露によって水分が混入するため好ましくない。また、40℃を超えると、溶液25中の溶媒の蒸発が抑制しにくくなり、好ましくない。 As shown in FIG. 1, a pipe 32 of the solution supply unit 12 is connected to the base end of the nozzle 13. The solution supply unit 12 is for supplying the solution 25 to the nozzle 13 of the spinning chamber 11. The solution supply unit 12 includes a storage container 30, a pump 31, and a pipe 32. The storage container 30 stores the solution 25 as a constant temperature within a range of 5 ° C. or higher and 40 ° C. or lower. Thereby, the temperature of the solution 25 which comes out of the nozzle 13 is made into the range of 5 to 40 degreeC. If it is less than 5 degreeC, since a water | moisture content mixes by the dew condensation in the storage container 30, it is not preferable. Moreover, when it exceeds 40 degreeC, it will become difficult to suppress evaporation of the solvent in the solution 25, and it is not preferable.
 ポンプ31は、配管32を介して溶液25をノズル13に送る。ポンプ31の回転数を変えることにより、ノズル13から送り出す溶液25の流量を調節することができる。本実施形態においては、溶液25の流量を4cm/時としているが、流量はこれに限定されない。ポンプ31によってノズル13に溶液25が送られると、図2に示すように、ノズル13の先端開口13aには溶液25によって略円錐状のテイラーコーン44が形成される。なお、貯留容器30やポンプ31からなる溶液供給部12を用いているが、ノズル13に供給する溶液25が少量である場合には、図示省略のシリンジを用いてもよい。 The pump 31 sends the solution 25 to the nozzle 13 via the pipe 32. By changing the number of rotations of the pump 31, the flow rate of the solution 25 delivered from the nozzle 13 can be adjusted. In the present embodiment, the flow rate of the solution 25 is 4 cm 3 / hour, but the flow rate is not limited to this. When the solution 25 is sent to the nozzle 13 by the pump 31, as shown in FIG. 2, a substantially conical Taylor cone 44 is formed by the solution 25 at the tip opening 13 a of the nozzle 13. In addition, although the solution supply part 12 which consists of the storage container 30 and the pump 31 is used, when the solution 25 supplied to the nozzle 13 is a small amount, a syringe (not shown) may be used.
 図1に示すように、送風管20の基端には、冷却気体供給部14の配管38が接続されている。冷却気体供給部14は、ブロア35と、流量調節バルブ36と、冷却器37と、配管38とを備える。ブロア35は空気を圧縮する。なお、冷却気体43として空気を用いているが、炭酸ガス等の不活性ガスを用いてもよい。不活性ガスを用いる場合にはブロア35に代えて、不活性ガス供給源を接続する。冷却気体供給部14の一部である冷却器37は紡糸室11内に配置しているが、紡糸室11外に配置してもよい。 As shown in FIG. 1, a pipe 38 of the cooling gas supply unit 14 is connected to the proximal end of the blower pipe 20. The cooling gas supply unit 14 includes a blower 35, a flow rate adjustment valve 36, a cooler 37, and a pipe 38. The blower 35 compresses air. In addition, although air is used as the cooling gas 43, an inert gas such as carbon dioxide gas may be used. When an inert gas is used, an inert gas supply source is connected instead of the blower 35. The cooler 37 which is a part of the cooling gas supply unit 14 is disposed in the spinning chamber 11, but may be disposed outside the spinning chamber 11.
 流量調節バルブ36は、送風管20の送風スリット21からの冷却気体43の送り量を調節する。送り量の調節によって、送風スリット21から溶液25の外周面への冷却気体43の流速を5mm/秒以上50mm/秒以下の範囲内で一定流速にする。冷却気体43の流速を5mm/秒以上50mm/秒以下の範囲内にすることで、テイラーコーン44を冷却気体43により包んで冷却することができる。なお、冷却気体43の速度が5mm/秒以上であると5mm/秒未満に比べてテイラーコーン44の周囲を確実に冷却することができ、液玉の発生が抑えられる。また、テイラーコーン44の表面の一部分が硬くなることによる紡糸ジェット45の紡糸方向の不安定や、分布の不均一が抑えられる。冷却気体43の速度が50mm/秒以下であると、50mm/秒を超える場合に比べて、テイラーコーン44から飛翔した紡糸ジェット45への過冷却が抑えられ、紡糸ジェット45からの溶媒の蒸発が阻害されることがなく、ナノファイバ46を確実に得ることができる。 The flow rate adjusting valve 36 adjusts the feed amount of the cooling gas 43 from the blow slit 21 of the blow pipe 20. By adjusting the feed amount, the flow rate of the cooling gas 43 from the blow slit 21 to the outer peripheral surface of the solution 25 is set to a constant flow rate within a range of 5 mm / second to 50 mm / second. By setting the flow rate of the cooling gas 43 within the range of 5 mm / second or more and 50 mm / second or less, the Taylor cone 44 can be wrapped with the cooling gas 43 and cooled. In addition, when the speed of the cooling gas 43 is 5 mm / second or more, the periphery of the Taylor cone 44 can be reliably cooled compared to less than 5 mm / second, and generation of liquid balls can be suppressed. Further, instability in the spinning direction of the spinning jet 45 and uneven distribution due to a part of the surface of the Taylor cone 44 becoming hard can be suppressed. When the speed of the cooling gas 43 is 50 mm / second or less, the supercooling to the spinning jet 45 flying from the Taylor cone 44 is suppressed as compared with the case where the cooling gas 43 exceeds 50 mm / second, and evaporation of the solvent from the spinning jet 45 is suppressed. The nanofiber 46 can be obtained reliably without being obstructed.
 冷却器37は、流量調節バルブ36を経た空気を5℃以上15℃以下の範囲内の一定温度に冷却する。冷却器37は、冷却媒体を用いるものや、その他の各種冷却方式を用いたものが使用可能である。5℃未満では、紡糸エリアでの温湿度条件によってはノズル13から出す溶液25に、紡糸エリアの気相(装置内の雰囲気ガス=通常はエア)に含まれる水分が部分的に凝縮し、紡糸が不安定になる。15℃を超えると、冷却による液玉抑制効果が低下する。 The cooler 37 cools the air that has passed through the flow rate adjusting valve 36 to a constant temperature within a range of 5 ° C. to 15 ° C. As the cooler 37, one using a cooling medium or one using various other cooling methods can be used. Below 5 ° C., depending on the temperature and humidity conditions in the spinning area, moisture contained in the gas phase (atmosphere gas in the apparatus = usually air) in the spinning area is partially condensed in the solution 25 discharged from the nozzle 13, and spinning is performed. Becomes unstable. When it exceeds 15 degreeC, the liquid-ball suppression effect by cooling will fall.
 ノズル13の下方には集積部15が配される。集積部15は、コレクタ50、コレクタ回転部51、支持体供給部52、及び支持体巻取り部53を有する。コレクタ50はノズル13から送り出された溶液25をナノファイバ46として収集するためのものである。コレクタ50は帯状の金属製、例えばステンレス製の無端ベルトから構成されている。コレクタ50はステンレス製に限定されず、電源62による電圧の印加により帯電する素材から形成されていればよい。コレクタ回転部51は、1対のローラ55,56、モータ57などから構成されている。コレクタ50は、1対のローラ55,56に水平に掛け渡されている。一方のローラ55の軸には紡糸室11の外に配されたモータ57が接続されており、ローラ55を所定速度で回転させる。この回転によりコレクタ50は1対のローラ55,56間で循環し移動する。本実施形態においては、コレクタ50の移動速度は、10cm/時としているが、これに限定されない。 The accumulation unit 15 is disposed below the nozzle 13. The stacking unit 15 includes a collector 50, a collector rotating unit 51, a support body supply unit 52, and a support body winding unit 53. The collector 50 is for collecting the solution 25 delivered from the nozzle 13 as nanofibers 46. The collector 50 is made of an endless belt made of a strip-shaped metal, for example, stainless steel. The collector 50 is not limited to stainless steel, and may be formed of a material that is charged by application of a voltage from the power source 62. The collector rotating unit 51 is composed of a pair of rollers 55 and 56, a motor 57, and the like. The collector 50 is stretched horizontally around a pair of rollers 55 and 56. A motor 57 disposed outside the spinning chamber 11 is connected to the shaft of one roller 55 and rotates the roller 55 at a predetermined speed. By this rotation, the collector 50 circulates and moves between the pair of rollers 55 and 56. In this embodiment, the moving speed of the collector 50 is 10 cm / hour, but is not limited to this.
 コレクタ50には支持体供給部52によって帯状のアルミウムシートからなる支持体60が供給される。本実施形態における支持体60は、厚みが概ね25μmである。支持体60は、ナノファイバ46を収集させてナノファイバ層(不織布)47として得るためのものである。コレクタ50上の支持体60は、支持体巻取り部53によって巻き取られる。支持体供給部52は送出軸52aを有する。送出軸52aには支持体ロール54が装着される。支持体ロール54は支持体60が巻き取られて構成されている。支持体巻取り部53は巻取り軸58を有する。巻取り軸58は図示省略のモータにより回転され、セットされる巻芯61に、ナノファイバ層47が形成された支持体60を巻き取る。このように、ナノファイバ製造装置10は、ナノファイバ46を製造する機能に加え、ナノファイバ層47からなる不織布を製造する機能を持ち、電界紡糸法によるナノファイバ製造方法が実施される。コレクタ50の移動速度と支持体60の移動速度は両者の間に摩擦が生じることがないように同じにすることが好ましい。なお、支持体60をコレクタ50上に載せて、コレクタ50の移動によって移動させてもよい。また、支持体60に巻取り張力をかけておくことにより、支持体60をコレクタ50に連動させてもよい。 The support body 60 made of a strip-shaped aluminum sheet is supplied to the collector 50 by the support body supply section 52. The support body 60 in the present embodiment has a thickness of approximately 25 μm. The support 60 is for collecting the nanofibers 46 and obtaining the nanofiber layers (nonwoven fabrics) 47. The support body 60 on the collector 50 is wound up by the support body winding part 53. The support body supply unit 52 has a delivery shaft 52a. A support roll 54 is attached to the delivery shaft 52a. The support roll 54 is configured by winding the support 60. The support winding portion 53 has a winding shaft 58. The winding shaft 58 is rotated by a motor (not shown), and the support body 60 on which the nanofiber layer 47 is formed is wound around the core 61 to be set. As described above, the nanofiber manufacturing apparatus 10 has a function of manufacturing a nonwoven fabric composed of the nanofiber layer 47 in addition to a function of manufacturing the nanofiber 46, and a nanofiber manufacturing method by an electrospinning method is performed. The moving speed of the collector 50 and the moving speed of the support 60 are preferably the same so that friction does not occur between them. Note that the support 60 may be placed on the collector 50 and moved by the movement of the collector 50. Further, the support 60 may be interlocked with the collector 50 by applying a winding tension to the support 60.
 電源62は、ノズル13とコレクタ50との間に例えば30kVの電圧を印加してノズル13をマイナス(-)に帯電させ、コレクタ50をプラス(+)に帯電させる。この帯電により、先端開口13aに形成されるテイラーコーン44からは紡糸ジェット45がコレクタ50に向かって噴出される。なお、帯電の極性は逆にしてもよい。ノズル13先端とコレクタ50との距離L2は、ポリマーと溶媒の種類、溶液25における溶媒の質量割合等によって適切な値が異なるが、30mm以上300mm以下の範囲内が好ましく、本実施形態では170mmとしている。この距離L2が30mm以上であることにより、30mmよりも短い場合に比べて、噴出される紡糸ジェット45が、コレクタ50に到達するまでに、自身の電荷による反発でより確実に分裂するので、細いナノファイバ46がより確実に得られる。このように細く分裂することで溶媒がより確実に蒸発するから、べたついた不織布となることがより確実に防がれる。また、距離L2が300mm以下であることにより、300mmを超えて長すぎる場合と比べて、印加する電圧を低く抑えることができる。従って、高電圧の印加により装置の絶縁が破れることがより確実に防止されるから、意図せぬ部分でのショートによる装置の破損が無い。 The power source 62 applies a voltage of, for example, 30 kV between the nozzle 13 and the collector 50 to charge the nozzle 13 to minus (−) and charge the collector 50 to plus (+). Due to this charging, a spinning jet 45 is ejected from the Taylor cone 44 formed in the tip opening 13 a toward the collector 50. Note that the polarity of charging may be reversed. The distance L2 between the tip of the nozzle 13 and the collector 50 varies depending on the type of polymer and solvent, the mass ratio of the solvent in the solution 25, etc., but is preferably in the range of 30 mm to 300 mm. In this embodiment, the distance L2 is 170 mm. Yes. Since the distance L2 is 30 mm or more, the spun jet 45 to be ejected is more reliably split by repulsion due to its own charge before reaching the collector 50, compared to a case where the distance L2 is shorter than 30 mm. The nanofiber 46 can be obtained more reliably. Since the solvent evaporates more reliably by splitting in this way, a sticky nonwoven fabric can be more reliably prevented. Moreover, when the distance L2 is 300 mm or less, the applied voltage can be kept low compared with the case where the distance L2 exceeds 300 mm and is too long. Therefore, since the insulation of the apparatus is more reliably prevented from being broken by the application of a high voltage, the apparatus is not damaged due to an unintended short circuit.
 ノズル13とコレクタ50とに印加する電圧の大きさによって、得られるナノファイバ46の太さが変わる。ファイバを細く形成する観点では電圧はなるべく低いほうが好ましいが、下げすぎると繊維状にならず玉状になってコレクタ50上に付着する場合がある。逆に電圧を上げていくとファイバが太くなり、上げ過ぎると装置の絶縁が破れて思わぬところから漏電して、装置が損傷する場合がある。そこで、ノズル13とコレクタ50とにかける電圧は、2kV以上40kV以下が好ましい。 The thickness of the obtained nanofiber 46 varies depending on the magnitude of the voltage applied to the nozzle 13 and the collector 50. From the viewpoint of forming a thin fiber, it is preferable that the voltage is as low as possible. However, if it is lowered too much, it may not be in the form of a fiber but may become a ball and adhere to the collector 50 in some cases. On the contrary, if the voltage is increased, the fiber becomes thicker. If the voltage is increased too much, the insulation of the device may be broken and the device may be damaged due to electric leakage from an unexpected place. Therefore, the voltage applied to the nozzle 13 and the collector 50 is preferably 2 kV or more and 40 kV or less.
 セルロース系ポリマーとしては、本実施形態ではセルローストリアセテート(TAC)を用いているが、これに限定されず、セルロースジアセテート(DAC)、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、ニトロセルロース、エチルセルロース、カルボキシメチルエチルセルロースの少なくともいずれかひとつ、またはそれらの混合物であればよい。 As the cellulose-based polymer, cellulose triacetate (TAC) is used in the present embodiment, but is not limited to this. Cellulose diacetate (DAC), cellulose propionate, cellulose butyrate, cellulose acetate propionate, nitro It may be at least one of cellulose, ethyl cellulose, carboxymethyl ethyl cellulose, or a mixture thereof.
 セルロース系ポリマーを溶解する溶媒としては、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール、アセトン、メチルエチルケトン、シクロヘキサノン、メチルアセテート、エチルアセテート、プロピルアセテート、ブチルアセテート、ギ酸メチル、ギ酸エチル、ヘキサン、シクロヘキサン、ジクロロメタン、クロロホルム、四塩化炭素、ベンゼン、トルエン、キシレン、ジメチルホルムアミド、N-メチルピロリドン(NMP)、ジエチルエーテル、ジオキサン、テトラヒドロフラン、1-メトキシ-2-プロパノールなどが挙げられる。これらは、セルロース系ポリマーの種類に応じて単独で使用しても混合して使用してもよい。溶媒を単独で使用する場合には、溶媒の沸点がおおよそ50℃以下になると、液玉の形成が顕著になる。また、沸点の低い溶媒は、溶媒の蒸発速度が速いため液玉を形成しやすい。これを抑制するために沸点の高い溶媒を混合して、溶媒の蒸発速度を調整することが好ましい。なお、本実施形態では、溶媒として、ジクロロメタンとNMPとの混合物を用いている。 Solvents for dissolving the cellulose polymer include methanol, ethanol, isopropanol, butanol, benzyl alcohol, acetone, methyl ethyl ketone, cyclohexanone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, hexane, cyclohexane, dichloromethane Chloroform, carbon tetrachloride, benzene, toluene, xylene, dimethylformamide, N-methylpyrrolidone (NMP), diethyl ether, dioxane, tetrahydrofuran, 1-methoxy-2-propanol and the like. These may be used alone or in combination depending on the type of cellulosic polymer. When the solvent is used alone, the formation of liquid balls becomes prominent when the boiling point of the solvent is about 50 ° C. or lower. In addition, a solvent having a low boiling point tends to form a liquid ball because the evaporation rate of the solvent is high. In order to suppress this, it is preferable to adjust the evaporation rate of the solvent by mixing a solvent having a high boiling point. In the present embodiment, a mixture of dichloromethane and NMP is used as the solvent.
 一般的にはポリマー溶液では、温度が下がると粘度が大きく変化してしまうことが多い。本実施形態では、溶液25の濃度が2質量%以上10質量%以下と十分希薄なため、溶液粘度が低く、冷却気体43による溶媒蒸発の抑制効果が顕著に現れる。 Generally, in a polymer solution, the viscosity often changes greatly as the temperature decreases. In the present embodiment, since the concentration of the solution 25 is sufficiently dilute at 2% by mass or more and 10% by mass or less, the solution viscosity is low, and the effect of suppressing the solvent evaporation by the cooling gas 43 appears remarkably.
 次に、本実施形態の作用を説明する。図1において、ノズル13と、循環して移動するコレクタ50とには、電源62により電圧が印加される。冷却気体供給部14を作動させ、ノズル13の送風スリット21から冷却気体43を送る(図2参照)。集積部15を作動させて、コレクタ50及び支持体60を移動させる。また、溶液供給部12を作動させて、図2に示すように、ノズル13の先端開口13aから溶液25を送り出すと、先端開口13aにテイラーコーン44が形成される。電圧の印加によりプラスに帯電しているコレクタ50は、マイナスに帯電した状態で先端開口16bから送り出された溶液25を誘引し、紡糸ジェット45がコレクタ50に向けて噴出される。マイナスに帯電している紡糸ジェット45は、コレクタ50に向かう間に、自身の電荷による反発でより細い径に分裂し、支持体60上にナノファイバ46として収集される。収集されたナノファイバ46はナノファイバ層47として支持体60と共に支持体巻取り部53に送られる。ナノファイバ層47は、支持体60と重なった状態で巻芯61に巻かれる。 Next, the operation of this embodiment will be described. In FIG. 1, a voltage is applied by a power source 62 to the nozzle 13 and the collector 50 that circulates and moves. The cooling gas supply part 14 is operated and the cooling gas 43 is sent from the ventilation slit 21 of the nozzle 13 (refer FIG. 2). The collector 15 and the support 60 are moved by operating the stacking unit 15. When the solution supply unit 12 is operated and the solution 25 is sent out from the tip opening 13a of the nozzle 13 as shown in FIG. 2, a Taylor cone 44 is formed in the tip opening 13a. The collector 50, which is positively charged by the application of voltage, attracts the solution 25 sent from the tip opening 16b in a negatively charged state, and the spinning jet 45 is ejected toward the collector 50. The negatively charged spinning jet 45 splits into a smaller diameter due to repulsion due to its own charge while traveling toward the collector 50, and is collected as a nanofiber 46 on the support 60. The collected nanofibers 46 are sent to the support winding portion 53 together with the support 60 as a nanofiber layer 47. The nanofiber layer 47 is wound around the core 61 in a state where the nanofiber layer 47 overlaps the support 60.
 巻芯61は巻取り軸58から取り外された後に、支持体60からナノファイバ層47が分離される。この後、ナノファイバ層47が所望のサイズに切断されて、ナノファイバ46からなる不織布が得られる。 After the core 61 is removed from the winding shaft 58, the nanofiber layer 47 is separated from the support 60. Thereafter, the nanofiber layer 47 is cut into a desired size, and a nonwoven fabric made of the nanofibers 46 is obtained.
 本実施形態では、図2に示すように、送風管20とノズル13との間の送風スリット21から冷却気体43が送り出され、この冷却気体43がノズル13先端のテイラーコーン44を覆うため、溶液25の溶媒の蒸発速度が抑えられる。これにより、テイラーコーン44の表面が固くなることがなく、液玉の発生が抑えられる。したがって、液玉の発生に起因する均一な太さのナノファイバ46の形成が困難になる問題や、液玉の落下による欠陥製品の発生の問題などが解消される。このように、蒸発速度の高い溶液であっても電界紡糸を安定的に行える。 In the present embodiment, as shown in FIG. 2, the cooling gas 43 is sent out from the blowing slit 21 between the blowing pipe 20 and the nozzle 13, and the cooling gas 43 covers the Taylor cone 44 at the tip of the nozzle 13, so that the solution The evaporation rate of 25 solvents is suppressed. Thereby, the surface of the Taylor cone 44 does not become hard, and generation | occurrence | production of a liquid ball is suppressed. Therefore, the problem that it becomes difficult to form the nanofiber 46 having a uniform thickness due to the generation of the liquid ball and the problem of the generation of defective products due to the drop of the liquid ball are solved. Thus, electrospinning can be performed stably even with a solution having a high evaporation rate.
 上記第1実施形態では、ノズル13の先端開口13aに対して、送風管20の先端20aを突出させて、先端開口13aのテイラーコーン44を送風管20で覆うようにしたが、図3に示す第2実施形態のように、ノズル70の先端70aに合わせて送風管71の先端71aを位置させてもよい。この場合には、第1実施形態のように、ノズル70の先端70aが送風管71の先端部71b内に隠れることがないため、先端70aのクリーニングが容易に行える。なお、各実施形態において、同じ構成部材には同一符号を付して重複した説明を省略している。 In the said 1st Embodiment, although the front-end | tip 20a of the ventilation pipe | tube 20 protruded with respect to the front-end | tip opening 13a of the nozzle 13, the tailor cone 44 of the front-end | tip opening 13a was covered with the ventilation pipe | tube 20, FIG. As in the second embodiment, the tip 71a of the blower pipe 71 may be positioned in accordance with the tip 70a of the nozzle 70. In this case, since the tip 70a of the nozzle 70 is not hidden in the tip 71b of the blower pipe 71 as in the first embodiment, the tip 70a can be easily cleaned. In each embodiment, the same constituent members are denoted by the same reference numerals, and redundant description is omitted.
 図4に示すように、本発明の第3実施形態は、第2実施形態の送風管71の先端部71bに、ガイド管75を筒心方向に移動自在に取り付けたものである。この第3実施形態の場合には、ガイド管75を下ろしたガイド位置(図4参照)では、ガイド管75及び送風管71によって、送風スリット21からの冷却気体43がテイラーコーン44を覆うため、テイラーコーン44を確実に冷却気体43で冷却することができる。また、クリーニングの際には、ガイド管75をガイド位置から上方にスライドさせて退避位置にすることにより、ノズル70の先端70aを露出させることができる。このため、ノズル13の先端開口13aを確実にクリーニングすることができる。ガイド管75は、図示省略のバネなどにより先端に向けて突出するように付勢してもよいし、同じく図示省略のクリック機構により突出位置と退避位置とに位置決め可能にしてもよい。 As shown in FIG. 4, in the third embodiment of the present invention, a guide tube 75 is attached to the distal end portion 71b of the blower tube 71 of the second embodiment so as to be movable in the cylinder center direction. In the case of this third embodiment, at the guide position where the guide tube 75 is lowered (see FIG. 4), the cooling gas 43 from the blow slit 21 covers the Taylor cone 44 by the guide tube 75 and the blow tube 71. The Taylor cone 44 can be reliably cooled by the cooling gas 43. In cleaning, the tip 70a of the nozzle 70 can be exposed by sliding the guide tube 75 upward from the guide position to the retracted position. For this reason, the tip opening 13a of the nozzle 13 can be reliably cleaned. The guide tube 75 may be biased so as to protrude toward the tip by a spring (not shown) or the like, and may be positioned at a protruding position and a retracted position by a click mechanism (not shown).
 図5に示す第4実施形態では、第1実施形態の送風管20の先端部20bに、内部に冷却媒体80が循環される冷却部81を設けたものである。この場合には、冷却気体43の他に送風管20の冷却部81によりテイラーコーン44を冷却することができる。したがって、テイラーコーン44の溶媒の蒸発速度を更に抑えることができ、液玉の発生が抑えられる。 In the fourth embodiment shown in FIG. 5, a cooling portion 81 in which a cooling medium 80 is circulated is provided at the tip 20b of the blower tube 20 of the first embodiment. In this case, the Taylor cone 44 can be cooled by the cooling unit 81 of the blow pipe 20 in addition to the cooling gas 43. Therefore, the evaporation rate of the solvent in the Taylor cone 44 can be further suppressed, and the generation of liquid balls can be suppressed.
 第5実施形態では、第4実施形態の送風管20からの送風を無くし、送風管20の冷却部81によって、テイラーコーン44を冷却している。このように送風管20を冷却管として用いた場合にも、テイラーコーン44を冷却することができ、液玉の発生が抑えられる。また、冷却部81を有する送風管20に代えて、図示は省略したが、先端部20bに冷却部81を有する冷却管を用いてもよい。冷却管の冷却部81は、冷却媒体80を循環させて冷却させるものの他に、冷却機能を有する各種冷却装置を用いてもよい。 In the fifth embodiment, the air from the air duct 20 of the fourth embodiment is eliminated, and the Taylor cone 44 is cooled by the cooling unit 81 of the air duct 20. As described above, even when the blower pipe 20 is used as a cooling pipe, the Taylor cone 44 can be cooled, and generation of liquid balls can be suppressed. In addition, although not shown in the drawing, the cooling pipe having the cooling unit 81 may be used at the tip 20b. The cooling unit 81 of the cooling pipe may use various cooling devices having a cooling function in addition to the cooling medium 80 that is circulated and cooled.
 上記各実施形態では、ノズル13,70を1本のみとして説明しているが、ノズル13,70は複数用いてもよい。複数用いる場合には、支持体60の送り方向に直交する方向にノズル13,70を離間して複数設けることが好ましい。また、支持体60の送り方向、及び送り方向に直交する方向でノズル13,70をマトリックスに配置してもよい。ノズル13,70を複数化することで、得られるナノファイバ層47の面積を増やすことができ、製造効率を上げることができる。また、ノズル13,70の本数が増加してノズル13,70からの総溶液吐出量が増加する場合には、紡糸室11内に図示省略の溶媒回収部を設けることが好ましい。 In each of the above embodiments, the description has been made assuming that only one nozzle 13 or 70 is provided, but a plurality of nozzles 13 or 70 may be used. When a plurality of nozzles are used, it is preferable to provide a plurality of nozzles 13 and 70 in a direction perpendicular to the feeding direction of the support 60. Further, the nozzles 13 and 70 may be arranged in a matrix in the feeding direction of the support 60 and in a direction orthogonal to the feeding direction. By making the nozzles 13 and 70 plural, the area of the obtained nanofiber layer 47 can be increased, and the production efficiency can be increased. In addition, when the number of nozzles 13 and 70 increases and the total solution discharge amount from the nozzles 13 and 70 increases, it is preferable to provide a solvent recovery unit (not shown) in the spinning chamber 11.
 上記実施形態では、ノズル13,70の断面形状を円形としたが、図示省略の細長い矩形状のスリット形としてもよい。この場合には、ノズルの断面形状に合わせて送風スリットも同様に細長いスリット形状にする。 In the above embodiment, the cross-sectional shape of the nozzles 13 and 70 is circular, but it may be a long and narrow rectangular slit not shown. In this case, the blower slit is similarly formed into an elongated slit shape in accordance with the sectional shape of the nozzle.
 次に、本発明の効果を確認するための実施例を説明する。実施例1は、セルローストリアセテートを混合溶媒に溶解した溶液25を用いた。混合溶媒は、ジクロロメタンとNMPとの混合比(質量)を、ジクロロメタン:NMP=8:2とし、セルローストリアセテート溶液の濃度は4質量%とした。 Next, an example for confirming the effect of the present invention will be described. In Example 1, a solution 25 in which cellulose triacetate was dissolved in a mixed solvent was used. For the mixed solvent, the mixing ratio (mass) of dichloromethane and NMP was dichloromethane: NMP = 8: 2, and the concentration of the cellulose triacetate solution was 4 mass%.
 使用したノズル13は1本で内径が0.4mmで外径が0.6mmのステンレス製円筒管を用い、先端開口縁部13bを水平にカットしたのち、カット面を研磨して用いた。内径が10mmで外径が11mmの送風管20をノズル13に対して同心として、先端開口縁部13bから、送風管20の先端を突出させ、この時の突出量L1を10mmとした。 The nozzle 13 used was a single stainless steel cylindrical tube having an inner diameter of 0.4 mm and an outer diameter of 0.6 mm. The tip opening edge 13b was cut horizontally, and then the cut surface was polished. The blower tube 20 having an inner diameter of 10 mm and an outer diameter of 11 mm was concentric with the nozzle 13, the tip of the blower tube 20 was projected from the tip opening edge 13 b, and the projection amount L 1 at this time was 10 mm.
 コレクタ50上に支持体60として厚さ約25μmのアルミニウムシートをセットし、ノズル13からコレクタ50までの距離L2を170mmとした。コレクタ50を100mm/時の速度で移動させた。コレクタ50上の支持体60もコレクタ50の移動に伴い同速度で移動させた。 An aluminum sheet having a thickness of about 25 μm was set as the support 60 on the collector 50, and the distance L2 from the nozzle 13 to the collector 50 was set to 170 mm. The collector 50 was moved at a speed of 100 mm / hour. The support 60 on the collector 50 was also moved at the same speed as the collector 50 was moved.
 送風管20からの冷却気体43として空気を用い、空気を10℃に冷却し20mm/秒で送風スリット21から送り出した。ノズル13とコレクタ50との間に35kVの電圧を印加し、ノズル13をマイナスに帯電させ、コレクタ50をプラスに帯電させた。溶液25を4cm/時の速度でノズル13に供給し、A4版サイズのサンプルを採取した。 Air was used as the cooling gas 43 from the blower tube 20, and the air was cooled to 10 ° C. and sent out from the blower slit 21 at 20 mm / second. A voltage of 35 kV was applied between the nozzle 13 and the collector 50, the nozzle 13 was charged negatively, and the collector 50 was charged positively. The solution 25 was supplied to the nozzle 13 at a speed of 4 cm 3 / hour, and a sample of A4 size was collected.
 実施例2は実施例1のノズル13に代えて、図3に示すノズル13を用いた以外は実施例1と同一条件とした。実施例3は、図5に示す内部に冷却媒体80が循環される冷却部81を有する送風管20を用いて送風せずに、テイラーコーン44を10℃に保持した以外は実施例1と同一条件とした。 Example 2 was the same as Example 1 except that the nozzle 13 shown in FIG. 3 was used instead of the nozzle 13 of Example 1. The third embodiment is the same as the first embodiment except that the tailor cone 44 is maintained at 10 ° C. without using the blower pipe 20 having the cooling unit 81 in which the cooling medium 80 is circulated in the interior shown in FIG. Condition.
 比較例1は、実施例1において、送風管20から冷却気体43を供給しなかった以外は実施例1と同一条件とした。比較例2は、実施例1において、送風管20から冷却気体43を100mm/秒として供給した以外は実施例1と同一条件とした。比較例3は、実施例1において、冷却気体43を冷却せずに室温(25℃)にて供給した以外は実施例1と同一条件とした。 Comparative Example 1 was the same as Example 1 except that the cooling gas 43 was not supplied from the blower tube 20 in Example 1. In Comparative Example 2, the same conditions as in Example 1 were used except that the cooling gas 43 was supplied from the blower pipe 20 at 100 mm / second in Example 1. In Comparative Example 3, the same conditions as in Example 1 were used except that the cooling gas 43 was supplied at room temperature (25 ° C.) without being cooled.
 A4版サイズのサンプルを採取するまでの間のノズル詰まり回数、液玉(固化した溶液)の落下回数を測定し、実施例と比較例を評価した。ノズルが詰まった場合にはノズル先端の固化した部分を除去することによって紡糸が再開可能な場合と、固化した部分を取り除いてもつまりが完全に解消されず、再開不能の場合がある。再開可能な場合にはそのまま紡糸を続行した。再開不能の場合には紡糸を中断した。A4版サイズのサンプルを採取することができた場合には合格と判定し、中断によりサンプルを採取することができない場合には不合格と判定した。 The number of clogged nozzles and the number of drops of liquid balls (solidified solution) before taking A4 size samples were measured, and the examples and comparative examples were evaluated. When the nozzle is clogged, there are a case where spinning can be resumed by removing the solidified portion at the tip of the nozzle and a case where removal is not completely eliminated even if the solidified portion is removed, and resumption is impossible. If resumable, spinning continued. If it was impossible to resume, spinning was interrupted. When a sample of A4 size was able to be collected, it was determined to be acceptable, and when a sample could not be collected due to interruption, it was determined to be unacceptable.
 実施例1,3ではノズル詰まり回数、液玉の落下回数が共に0であり、合格であった。実施例2では、液玉の落下回数が1で、サンプルの欠陥も軽微であり、合格であった。これに対して、比較例1ではノズル詰まり回数が3回、液玉の落下回数が13であり、紡糸が中断したため、不合格であった。また、比較例2では、ノズル詰まり回数が2、液玉の落下回数が19であり、紡糸が中断したため、不合格であった。比較例3では、ノズル詰まり回数が5、液玉の落下回数が17であり、紡糸が中断したため、不合格であった。このように、本発明では、ノズル詰まりや液玉の落下が殆ど無く、紡糸を円滑に行うことができる。 In Examples 1 and 3, the number of nozzle clogging and the number of drops of liquid balls were both 0, which was acceptable. In Example 2, the number of drops of the liquid ball was 1, and the sample defect was minor and passed. On the other hand, in Comparative Example 1, the number of clogged nozzles was 3, the number of drops of the liquid ball was 13, and the spinning was interrupted, so it was rejected. Further, in Comparative Example 2, the number of nozzle cloggings was 2, the number of drops of liquid balls was 19, and the spinning was interrupted, so it was rejected. In Comparative Example 3, the number of clogged nozzles was 5, the number of dropped liquid balls was 17, and the spinning was interrupted, so it was unacceptable. Thus, in the present invention, there is almost no nozzle clogging or drop of liquid balls, and spinning can be performed smoothly.
10 ナノファイバ製造装置
12 溶液供給部
13 ノズル
13a 先端開口
13b 先端開口縁部
14 冷却気体供給部
15 集積部
20 送風管
20a 先端
20b 先端部
21 送風スリット
25 溶液
43 冷却気体
44 テイラーコーン
45 紡糸ジェット
46 ファイバ
47 ナノファイバ層
50 コレクタ
62 電源
70 ノズル
71 送風管
75 ガイド管
80 冷却媒体
81 冷却部
DESCRIPTION OF SYMBOLS 10 Nanofiber manufacturing apparatus 12 Solution supply part 13 Nozzle 13a Tip opening 13b Tip opening edge part 14 Cooling gas supply part 15 Accumulation part 20 Air blower 20a Tip 20b Tip part 21 Air blow slit 25 Solution 43 Cooling gas 44 Taylor cone 45 Spinning jet 46 Fiber 47 Nanofiber layer 50 Collector 62 Power supply 70 Nozzle 71 Blower pipe 75 Guide pipe 80 Cooling medium 81 Cooling section

Claims (12)

  1.  セルロース系ポリマーが溶媒に溶解している溶液を、5℃以上40℃以下の範囲内の一定温度としてノズルの先端から送り出し、前記溶液とコレクタとの間に電圧を印加して、前記溶液から前記コレクタにファイバを噴出するナノファイバ製造方法において、
     前記ノズルの先端から送り出された前記溶液の周面に5℃以上15℃以下の範囲内の一定温度の気体を送るナノファイバ製造方法。
    A solution in which the cellulosic polymer is dissolved in the solvent is sent out from the tip of the nozzle as a constant temperature in the range of 5 ° C. or more and 40 ° C. or less, and a voltage is applied between the solution and the collector to remove the solution from the solution. In a nanofiber manufacturing method for ejecting a fiber to a collector,
    The nanofiber manufacturing method which sends the gas of the constant temperature in the range of 5 to 15 degreeC to the surrounding surface of the said solution sent out from the front-end | tip of the said nozzle.
  2.  前記ノズルの外側に前記ノズルと同心で配され前記ノズルの外周面との間に送風スリットが形成される送風管を有し、前記送風スリットから前記気体が送風される請求項1記載のナノファイバ製造方法。 2. The nanofiber according to claim 1, further comprising a blower pipe that is concentrically arranged on the outside of the nozzle and has a blower slit formed between the nozzle and an outer peripheral surface of the nozzle, and the gas is blown from the blower slit. Production method.
  3.  前記送風管の先端は前記ノズルの先端よりも突出し、前記送風管の突出している先端部により前記ノズルから送り出された前記溶液を覆う請求項2記載のナノファイバ製造方法。 The nanofiber manufacturing method according to claim 2, wherein a tip of the blower tube protrudes from a tip of the nozzle, and the solution fed from the nozzle is covered by a tip of the blower tube protruding.
  4.  前記送風管の突出している先端部は内部に冷却媒体が循環される冷却部を有する請求項3記載のナノファイバ製造方法。 4. The nanofiber manufacturing method according to claim 3, wherein the projecting tip of the air duct has a cooling part in which a cooling medium is circulated.
  5.  前記送風スリットからの前記気体の流速は5mm/秒以上50mm/秒以下の範囲内の一定流速である請求項2から4いずれか1項記載のナノファイバ製造方法。 The method of manufacturing a nanofiber according to any one of claims 2 to 4, wherein a flow rate of the gas from the blow slit is a constant flow rate in a range of 5 mm / second to 50 mm / second.
  6.  セルロース系ポリマーが溶媒に溶解している溶液を、5℃以上40℃以下の範囲内の一定温度としてノズルの先端から送り出し、前記溶液とコレクタとの間に電圧を印加して、前記溶液から前記コレクタにファイバを噴出するナノファイバ製造方法において、
     前記ノズルの先端から送り出された前記溶液の周面を冷却管で覆って、前記溶液の周面の温度を5℃以上15℃以下の範囲内の一定温度に保持するナノファイバ製造方法。
    A solution in which the cellulosic polymer is dissolved in the solvent is sent out from the tip of the nozzle as a constant temperature in the range of 5 ° C. or more and 40 ° C. or less, and a voltage is applied between the solution and the collector to remove the solution from the solution. In a nanofiber manufacturing method for ejecting a fiber to a collector,
    A method for producing nanofibers, wherein the peripheral surface of the solution fed from the tip of the nozzle is covered with a cooling pipe, and the temperature of the peripheral surface of the solution is maintained at a constant temperature within a range of 5 ° C to 15 ° C.
  7.  前記冷却管は、前記ノズルの外側に前記ノズルと同心で配され、内部に冷却媒体が循環され、前記冷却管の先端は前記ノズルの先端よりも突出し、前記冷却管の突出している先端部により前記ノズルの先端から送り出している前記溶液を覆う請求項6記載のナノファイバ製造方法。 The cooling pipe is arranged concentrically with the nozzle outside the nozzle, a cooling medium is circulated therein, a tip of the cooling pipe protrudes from a tip of the nozzle, and a tip of the cooling pipe protrudes. The nanofiber manufacturing method according to claim 6, wherein the solution fed from the tip of the nozzle is covered.
  8.  セルロース系ポリマーが溶媒に溶解している溶液を、5℃以上40℃以下の範囲内の一定温度としてノズルの先端から送り出し、前記溶液とコレクタとの間に電圧を印加して、前記溶液から前記コレクタにファイバを噴出するナノファイバ製造装置において、
     前記ノズルの外側に前記ノズルと同心で配され前記ノズルの外周面との間に送風スリットが形成されている送風管と、
     前記送風スリットから5℃以上15℃以下の範囲内の一定温度の気体を送る冷却気体供給部と
    を備えるナノファイバ製造装置。
    A solution in which the cellulosic polymer is dissolved in the solvent is sent out from the tip of the nozzle as a constant temperature in the range of 5 ° C. or more and 40 ° C. or less, and a voltage is applied between the solution and the collector to remove the solution from the solution. In the nanofiber manufacturing equipment that ejects the fiber to the collector,
    A blower pipe having a blower slit formed concentrically with the nozzle on the outside of the nozzle and formed between the outer peripheral surface of the nozzle;
    A nanofiber manufacturing apparatus comprising: a cooling gas supply unit configured to send a gas having a constant temperature within a range of 5 ° C. to 15 ° C. from the blow slit.
  9.  前記送風管の先端は前記ノズルの先端よりも突出し、前記送風管の突出している先端部により前記ノズルから送り出している前記溶液を覆う請求項8記載のナノファイバ製造装置。 9. The nanofiber manufacturing apparatus according to claim 8, wherein a tip of the blower tube protrudes from a tip of the nozzle, and the solution fed from the nozzle is covered by a protruding tip of the blower tube.
  10.  前記送風管の突出している先端部は内部に冷却媒体が循環される冷却部を有する請求項9記載のナノファイバ製造装置。 10. The nanofiber manufacturing apparatus according to claim 9, wherein the projecting tip of the air duct has a cooling part in which a cooling medium is circulated.
  11.  前記冷却気体供給部は、前記送風スリットからの前記気体の流速を5mm/秒以上50mm/秒以下の範囲内の一定流速にして供給する請求項8から10いずれか1項記載のナノファイバ製造装置。 11. The nanofiber manufacturing apparatus according to claim 8, wherein the cooling gas supply unit supplies the gas at a constant flow rate in a range of 5 mm / second to 50 mm / second from the air blowing slit. .
  12.  セルロース系ポリマーが溶媒に溶解している溶液を、5℃以上40℃以下の範囲内の一定温度としてノズルの先端から送り出し、前記溶液とコレクタとの間に電圧を印加して、前記溶液から前記コレクタにファイバを噴出するナノファイバ製造装置において、
     前記ノズルの外側に前記ノズルと同心で配され、内部に冷却媒体が循環される冷却管を有し、
     前記冷却管の先端は前記ノズルの先端よりも突出し、前記冷却管の突出している先端部により、前記ノズルから送り出している前記溶液を覆い、前記溶液の周面の温度を5℃以上15℃以下の範囲内の一定温度に保持するナノファイバ製造装置。
    A solution in which the cellulosic polymer is dissolved in the solvent is sent out from the tip of the nozzle as a constant temperature in the range of 5 ° C. or more and 40 ° C. or less, and a voltage is applied between the solution and the collector to remove the solution from the solution. In the nanofiber manufacturing equipment that ejects the fiber to the collector,
    A cooling pipe that is arranged concentrically with the nozzle outside the nozzle and in which a cooling medium is circulated;
    The tip of the cooling tube protrudes from the tip of the nozzle, the tip of the cooling tube protrudes to cover the solution fed from the nozzle, and the temperature of the peripheral surface of the solution is 5 ° C. or more and 15 ° C. or less. Nanofiber manufacturing equipment that maintains a constant temperature within the range of.
PCT/JP2015/070842 2014-09-04 2015-07-22 Process and device for producing nanofiber WO2016035468A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-180418 2014-09-04
JP2014180418A JP6170888B2 (en) 2014-09-04 2014-09-04 Nanofiber manufacturing method and apparatus

Publications (1)

Publication Number Publication Date
WO2016035468A1 true WO2016035468A1 (en) 2016-03-10

Family

ID=55439537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070842 WO2016035468A1 (en) 2014-09-04 2015-07-22 Process and device for producing nanofiber

Country Status (2)

Country Link
JP (1) JP6170888B2 (en)
WO (1) WO2016035468A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325673A (en) * 2017-02-23 2019-10-11 富士胶片株式会社 Nanofiber manufacturing method and device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6761748B2 (en) * 2016-12-12 2020-09-30 花王株式会社 Electric field spinning device and electric field spinning method
JP6755203B2 (en) * 2017-02-13 2020-09-16 富士フイルム株式会社 Sheet and sheet manufacturing method
CN113493933A (en) * 2020-04-01 2021-10-12 苏州合祥纺织科技有限公司 Preparation method of agar nanofiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138297A (en) * 2006-11-30 2008-06-19 Fujifilm Corp Material and method for eliminating harmful substance
JP2013519805A (en) * 2010-02-15 2013-05-30 コーネル ユニバーシティ Electrospinning apparatus and nanofiber produced thereby

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005026398A2 (en) * 2003-09-05 2005-03-24 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Nanofibers, and apparatus and methods for fabricating nanofibers by reactive electrospinning
US20100041296A1 (en) * 2008-08-13 2010-02-18 Lopez Leonardo C Electroblowing of fibers from molecularly self-assembling materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138297A (en) * 2006-11-30 2008-06-19 Fujifilm Corp Material and method for eliminating harmful substance
JP2013519805A (en) * 2010-02-15 2013-05-30 コーネル ユニバーシティ Electrospinning apparatus and nanofiber produced thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110325673A (en) * 2017-02-23 2019-10-11 富士胶片株式会社 Nanofiber manufacturing method and device

Also Published As

Publication number Publication date
JP6170888B2 (en) 2017-07-26
JP2016053228A (en) 2016-04-14

Similar Documents

Publication Publication Date Title
US10167575B2 (en) Nanofiber manufacturing method and nanofiber manufacturing device
JP6205330B2 (en) Electrospinning nozzle, nanofiber manufacturing apparatus and method
WO2016035468A1 (en) Process and device for producing nanofiber
US10151050B2 (en) Nanofiber production apparatus
EP2327817B9 (en) Spinning apparatus and process for manufacturing nonwoven fabric
EP3031959B1 (en) Nanofiber production apparatus, nanofiber production method, and nanofiber molded body
WO2016035473A1 (en) Nanofiber manufacturing method
US20090295014A1 (en) Spinning apparatus, and apparatus and process for manufacturing nonwoven fabric
US8475692B2 (en) Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP6170889B2 (en) Nanofiber manufacturing method and apparatus, nonwoven fabric manufacturing method
JP2009127150A (en) Electrospinning apparatus
JP2013227688A (en) Nanofiber producing apparatus and nanofiber producing method
JP2014047440A (en) Electrospinning apparatus
JP6755203B2 (en) Sheet and sheet manufacturing method
WO2018155474A1 (en) Nanofiber manufacturing method and device
JP6840854B2 (en) Nonwoven fabric manufacturing method and equipment
JP5253319B2 (en) Nonwoven fabric manufacturing apparatus and nonwoven fabric manufacturing method
JP6617055B2 (en) Electrospinning nozzle, nanofiber manufacturing apparatus and method
KR20050041198A (en) A nozzle for electrostatic spinning and a producing method of nano-fiber using the same
JP4904083B2 (en) Apparatus for producing polymer compound fiber structure by electrospinning method
JP5004898B2 (en) Nonwoven manufacturing method
JP5253361B2 (en) Nonwoven fabric manufacturing apparatus and nonwoven fabric manufacturing method
JP5903603B2 (en) Nanofiber manufacturing apparatus and manufacturing method
JP2011111687A (en) Apparatus and method for producing nanofiber
JP5481441B2 (en) Nonwoven fabric manufacturing apparatus and nonwoven fabric manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837947

Country of ref document: EP

Kind code of ref document: A1