WO2016035417A1 - Zinc oxide substrate and method for producing group 13 nitride crystal using same - Google Patents

Zinc oxide substrate and method for producing group 13 nitride crystal using same Download PDF

Info

Publication number
WO2016035417A1
WO2016035417A1 PCT/JP2015/067290 JP2015067290W WO2016035417A1 WO 2016035417 A1 WO2016035417 A1 WO 2016035417A1 JP 2015067290 W JP2015067290 W JP 2015067290W WO 2016035417 A1 WO2016035417 A1 WO 2016035417A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
oxide substrate
substrate
plane
orientation
Prior art date
Application number
PCT/JP2015/067290
Other languages
French (fr)
Japanese (ja)
Inventor
吉川 潤
倉岡 義孝
滑川 政彦
尭之 近藤
隆史 吉野
七瀧 努
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2016546355A priority Critical patent/JP6489621B2/en
Publication of WO2016035417A1 publication Critical patent/WO2016035417A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/024Group 12/16 materials
    • H01L21/02403Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02414Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides

Definitions

  • the present invention relates to a zinc oxide substrate and a method for producing a group 13 nitride crystal using the same.
  • ZnO zinc oxide
  • Non-Patent Document 1 Ray-Ming Lin et al., Proc. SPIE, 2010, vol. 7602, pp. 76021L-1-6
  • Non-Patent Document 2 SJ Wang et al., J. Phys. D) : Appl. Phys. 42 (2009) 245302
  • a buffer layer of AlN or Al 2 O 3 is previously formed on a ZnO substrate in order to suppress the reaction between GaN and ZnO to obtain high quality GaN. It is proposed to keep.
  • the inventors of the present invention have recently used a zinc oxide substrate containing a predetermined amount of Mg to form a Group 13 nitride crystal having excellent crystallinity by MOCVD without forming an insulating layer in advance. The knowledge that it can be grown on a substrate was obtained.
  • an object of the present invention is to provide a zinc oxide substrate capable of growing a group 13 nitride crystal having excellent crystallinity on the substrate by MOCVD without forming an insulating layer in advance. There is.
  • a zinc oxide substrate containing 0.1 wt% or more of Mg, which is used as a substrate for growing a group 13 nitride crystal thereon by MOCVD method A substrate is provided.
  • a step of preparing a zinc oxide substrate according to the above aspect A Group 13 nitride crystal represented by Ga x Al y In 1-xy N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) is grown on the zinc oxide substrate by MOCVD.
  • a method for producing a Group 13 nitride crystal is provided.
  • FIG. 6 is a schematic diagram showing the configuration of a crystal manufacturing apparatus 20 used in Example 7. It is a figure explaining the scanning method of the slit 37 shown by FIG. It is the image which image
  • the zinc oxide substrate according to the present invention is a zinc oxide substrate containing 0.1 wt% or more of Mg.
  • the Mg-containing zinc oxide substrate is used as a substrate for growing a group 13 nitride crystal on the substrate by MOCVD. This makes it possible to grow a Group 13 nitride crystal having excellent crystallinity on the substrate by MOCVD without forming an insulating layer in advance.
  • the present inventors used a zinc oxide substrate containing 0.1% by weight or more of Mg, so that the MOCVD method did not form an insulating layer in advance. It was found that a group 13 nitride crystal can be grown on a substrate. Although the mechanism of improving the crystallinity of the Group 13 nitride crystal by inclusion of Mg in zinc oxide and the adoption of the MOCVD method is not necessarily clear, the solid solution of Mg in ZnO causes ZnO in the GaN film formation atmosphere in MOCVD. It is presumed that this is because the volatilization of silicon and the reactivity with Group 13 nitrides such as GaN are suppressed.
  • the group 13 nitride crystal is not particularly limited as long as it is a crystal having a group 13 element nitride as a main phase, but preferably a gallium nitride (GaN) crystal, an aluminum nitride (AlN) crystal, or indium nitride.
  • An (InN) crystal particularly preferably a gallium nitride (GaN) crystal.
  • the group 13 element nitride crystal may be a mixed crystal in which, for example, AlN, InN or the like is dissolved in GaN.
  • a preferred Group 13 element nitride is expressed as a Group 13 nitride crystal represented by Ga x Al y In 1-xy N (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1). More preferably, 0.5 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.5, still more preferably 0.7 ⁇ x ⁇ 1, and 0 ⁇ y ⁇ 0.3. Further, the Group 13 element nitride crystal may be a non-doped material or may appropriately include a dopant for controlling the p-type or n-type.
  • the zinc oxide substrate according to the present invention contains 0.1% by weight or more of Mg.
  • the effect of improving the crystallinity of the Group 13 nitride crystal can be expected when Mg is dissolved in zinc oxide in a certain amount or more. Therefore, the upper limit of the Mg content is not particularly limited.
  • the Mg content is preferably 0.1 to 5.0% by weight, more preferably 0.5 to 4.5% by weight, still more preferably 1.0 to 4.0% by weight, and particularly preferably 2%. 0.0 to 4.0% by weight. Within such a range, Mg can be sufficiently dissolved in zinc oxide while preventing or suppressing the formation of a different phase MgO phase.
  • the crystallinity of the group 13 nitride crystal formed on the substrate by MOCVD can be further improved. If a sputtering method is used, a larger amount of Mg (which may exceed the above-mentioned preferable range) can be dissolved in ZnO without generating a different phase (MgO phase) as compared with a normal solid phase reaction. .
  • the zinc oxide substrate of the present invention does not contain the MgO phase as a different phase.
  • the crystallinity of the group 13 nitride crystal formed on the substrate by MOCVD is further improved.
  • XRD apparatus for example, product name “RINT-TTR III” manufactured by Rigaku Corporation
  • the zinc oxide substrate according to the present invention preferably contains 0.05 to 2% by weight, more preferably 0.1 to 1%, of one or more dopant elements selected from the group consisting of Al, Ga and In. 0.5% by weight, more preferably 0.2 to 1.3% by weight.
  • dopant elements selected from the group consisting of Al, Ga and In. 0.5% by weight, more preferably 0.2 to 1.3% by weight.
  • the zinc oxide substrate contains an element other than Mg, Al, Ga and In (which may be an n-type dopant or a p-type dopant) and / or an inevitable impurity within a range that does not impair the spirit of the present invention. Needless to say, it is good.
  • the zinc oxide substrate according to the present invention preferably has a resistivity of 2 ⁇ ⁇ cm or less, more preferably less than 0.1 ⁇ ⁇ cm, still more preferably less than 2 ⁇ 10 ⁇ 2 ⁇ ⁇ cm.
  • the zinc oxide substrate according to the present invention may be either a single crystal or a polycrystal, and the polycrystal is a group 13 film formed on the substrate by MOCVD by controlling the grain size. This is preferable in that the crystallinity of the nitride crystal is easily improved.
  • the zinc oxide substrate includes zinc oxide crystal particles.
  • the zinc oxide crystal particle is a particle composed of zinc oxide, and Mg and the dopant element (that is, Al, Ga and / or In) are substituted with a hexagonal wurtzite structure Zn site or O site. Alternatively, it may be contained as an additive element that does not constitute a crystal structure, or may exist at a grain boundary.
  • the average grain size of the polycrystal (that is, the average grain size of the crystal grains constituting the zinc oxide substrate) is preferably 10 to 200 ⁇ m, more preferably 30 to 200 ⁇ m, still more preferably. 50 to 200 ⁇ m.
  • the aspect ratio of the crystal grains constituting the zinc oxide substrate is preferably 2.0 or less, more preferably 1.5 or less, still more preferably 1.4 or less, and particularly preferably 1.0 to 1. 3.
  • This aspect ratio is a length ratio of (direction parallel to the plate surface of the zinc oxide substrate) / (direction perpendicular to the plate surface of the zinc oxide substrate), and if within this range, the aspect ratio is formed on the substrate by the MOCVD method.
  • the crystallinity of the Group 13 nitride crystal to be formed is further improved.
  • the average particle diameter and the aspect ratio can be determined as follows. That is, a sample about 10 mm square is cut out from a zinc oxide substrate, a surface perpendicular to the plate surface is polished, etched with nitric acid having a concentration of 0.3 M for 10 seconds, and then an image is taken with a scanning electron microscope.
  • the visual field range is a visual field range in which straight lines intersecting with 10 to 30 particles can be drawn when straight lines parallel and perpendicular to the disk surface are drawn.
  • a preferred polycrystalline body is an oriented polycrystalline body.
  • crystal grains constituting the zinc oxide substrate are oriented in a certain direction.
  • the plane orientation to be oriented on the plate surface of the oriented polycrystal is not particularly limited, but may be the (002) plane, the (100) plane, the (110) plane, and the like. It may be a surface.
  • the zinc oxide substrate according to the present invention has an orientation degree of (002) plane, an orientation degree of (100) plane, an orientation degree of (110) plane, or a total orientation degree of (100) plane and (110) plane on the substrate surface. It is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more, even more preferably 60% or more, particularly preferably 70% or more, particularly more preferably 80% or more, and most preferably 90%. % Or more. There is an advantage that the higher the degree of orientation, the higher the light emission efficiency when a light emitting device is manufactured.
  • the orientation degree of the (100) plane, the orientation degree of the (110) plane, or the total orientation degree of the (100) plane and the (110) plane on the substrate surface is preferably 30% or more, more preferably 40%. More preferably, it is 50% or more, still more preferably 60% or more, particularly preferably 70% or more, particularly more preferably 80% or more, and most preferably 90% or more.
  • the crystal quality of the MOCVD-GaN film is higher than when a zinc oxide substrate oriented in the c-plane is used. There is an advantage that the film is improved and the film is hardly peeled off.
  • the film peels less. Further, since GaN having high crystallinity with little peeling can be formed on a zinc oxide substrate, growth of GaN by a flux method as described in Patent Document 2 (Japanese Patent Laid-Open No. 2007-254206) can be achieved. It becomes possible. Na flux used for GaN growth by the flux method has high reactivity with zinc oxide, and the zinc oxide substrate dissolves when directly contacted at a high temperature. However, highly crystalline GaN is formed in advance by a vapor phase method. By forming a film, this not only functions as a seed crystal but also functions as a protective layer for suppressing dissolution of the zinc oxide substrate.
  • GaN and zinc oxide have close lattice constants and thermal expansion coefficients, it is possible to grow GaN of good quality even in the flux method by using a zinc oxide substrate.
  • the upper limit of the degree of orientation of the (002) plane, the degree of orientation of the (100) plane, the degree of orientation of the (110) plane, or the total degree of orientation of the (100) plane and the (110) plane should not be particularly limited. Ideally 100%.
  • the degree of orientation of the (002) plane, the degree of orientation of the (100) plane, the degree of orientation of the (110) plane, or the total degree of orientation of the (100) plane and the (110) plane is XRD apparatus (product name, manufactured by Rigaku Corporation). Using “RINT-TTR III”), the surface of the disc-shaped zinc oxide substrate can be measured by measuring the XRD profile when X-rays are irradiated.
  • the degree of orientation of the (002) plane can be calculated by the following formula (however, it can be omitted when I 0 (102) and I 0 (110) are negligible levels).
  • the degree of orientation of the (100) plane can be calculated by the following formula (however, it can be omitted when I 0 (102) and I 0 (110) are negligible levels).
  • the degree of orientation of the (110) plane can be calculated by the following formula (however, it can be omitted when I 0 (102) is a negligible level).
  • the total orientation degree of the (100) and (110) planes can be calculated by the following equation (however, it can be omitted when I 0 (102) is a negligible level).
  • a group 13 nitride crystal having excellent crystallinity can be grown on the substrate by MOCVD. That is, for the production of the Group 13 nitride crystal according to the present invention, the above-described zinc oxide substrate of the present invention is prepared, and Ga x Al y In 1-xy N (wherein 0 It is carried out by growing a group 13 nitride crystal represented by ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) by the MOCVD method. The details of the Group 13 nitride crystal are as described above.
  • the MOCVD method may be performed by appropriately adopting known procedures and conditions capable of epitaxially growing a group 13 nitride crystal on a zinc oxide substrate.
  • a gas containing at least an organometallic gas containing at least gallium (Ga) (for example, trimethylgallium) and nitrogen (N) in an MOCVD apparatus for example, Ammonia
  • an MOCVD apparatus for example, Ammonia
  • organometallic gases containing indium (In), aluminum (Al), silicon (Si) and magnesium (Mg) as n-type and p-type dopants for example, trimethylindium, trimethylaluminum, monosilane, disilane) Bis-cyclopentadienylmagnesium
  • n-type and p-type dopants for example, trimethylindium, trimethylaluminum, monosilane, disilane
  • Bis-cyclopentadienylmagnesium may be appropriately introduced to form a film.
  • the zinc oxide substrate of the present invention By using the zinc oxide substrate of the present invention, it is possible to grow a group 13 nitride crystal without forming an insulating layer on the surface of the zinc oxide substrate. Further, the crystal orientation of the group 13 nitride crystal thus grown on the zinc oxide substrate is preferably substantially coincident with the crystal orientation of the zinc oxide particles constituting the zinc oxide substrate, whereby the substrate is formed by MOCVD. There is an advantage that the crystallinity of the Group 13 nitride crystal formed thereon is further improved.
  • the zinc oxide substrate according to the present invention is not limited to single crystals, polycrystals, and the presence or absence of orientation as long as a zinc oxide substrate containing 0.1 wt% or more of Mg is finally obtained. It may be produced by any method. Therefore, the production of the zinc oxide substrate according to the present invention may be carried out by appropriately adopting known procedures and conditions capable of dissolving Mg in zinc oxide.
  • an oriented polycrystalline zinc oxide substrate (oriented polycrystalline zinc oxide sintered body), which is a preferred embodiment of a zinc oxide substrate, is molded and sintered using a plate-like zinc oxide powder as a raw material as described below. It can be manufactured by doing.
  • the plate-like zinc oxide powder used as a raw material was produced by any method as long as an oriented sintered body (oriented polycrystalline body) was obtained by the molding and firing steps described later. There may be.
  • a plate-like zinc oxide powder produced by the following production method may be used as a raw material.
  • the plate-like zinc oxide powder includes a step of producing zinc oxide precursor plate-like particles by a solution method using a zinc ion-containing raw material solution, and calcining the precursor plate-like particles at a heating rate of 150 ° C./h or less. And calcining by raising the temperature to a temperature and producing a zinc oxide powder composed of a plurality of zinc oxide plate-like particles.
  • zinc oxide precursor plate-like particles are produced by a solution method using a zinc ion-containing raw material solution.
  • the zinc ion supply source include organic acid salts such as zinc sulfate, zinc nitrate, zinc chloride, and zinc acetate, zinc alkoxide, and the like, but zinc sulfate is preferable because sulfate ions described later can also be supplied.
  • the production method of the zinc oxide precursor plate-like particles by the solution method is not particularly limited, and can be performed according to a known method.
  • the raw material solution preferably contains a water-soluble organic substance and sulfate ions because it is porous and can increase the specific surface area.
  • water-soluble organic substances include alcohols, polyols, ketones, polyethers, esters, carboxylic acids, polycarboxylic acids, celluloses, saccharides, sulfonic acids, amino acids, and amines, and more Specifically, aliphatic alcohols such as methanol, ethanol, propanol, butanol, pentanol and hexanol, aliphatic polyhydric alcohols such as ethylene glycol, propanediol, butanediol, glycerol, polyethylene glycol and polypropylene glycol, phenol and catechol , Aromatic alcohols such as cresol, alcohols having a heterocyclic ring such as furfuryl alcohol, ketones such as acetone, methyl ethyl ketone, acetylacetone, ethyl ether
  • water-soluble organic substances those having at least one functional group among hydroxyl group, carboxyl group, and amino group are preferable, hydroxycarboxylic acid having a hydroxyl group and a carboxyl group and salts thereof are particularly preferable, for example, sodium gluconate, Examples include tartaric acid.
  • the water-soluble organic substance is preferably allowed to coexist in a raw material solution to which ammonia water described later is added in a range of about 0.001 wt% to about 10 wt%.
  • a preferred sulfate ion source is zinc sulfate as described above.
  • the raw material solution may further contain an additive substance such as the dopant described above.
  • the raw material solution is preferably heated to a precursor reaction temperature of 70 to 100 ° C., more preferably 80 to 100 ° C. Further, it is preferable that ammonia water is added to the raw material solution after or during this heating, and the raw material solution to which the ammonia water is added is preferably held at 70 to 100 ° C. for 0.5 to 10 hours, more preferably. Is 80 to 100 ° C. for 2 to 8 hours.
  • the precursor plate-like particles are heated to the calcination temperature at a heating rate of 150 ° C./h or less and calcined to generate zinc oxide powder composed of a plurality of zinc oxide plate-like particles.
  • a heating rate of 150 ° C./h or less By slowing the heating rate to 150 ° C / h or less, the crystal surface of the precursor is easily transferred to zinc oxide when changing from precursor to zinc oxide, and the degree of orientation of plate-like particles in the compact is improved. It is thought to do. It is also considered that the connectivity between the primary particles increases and the plate-like particles are less likely to collapse.
  • a preferable temperature increase rate is 120 ° C./h or less, more preferably 100 ° C./h or less, further preferably 50 ° C./h or less, particularly preferably 30 ° C./h or less, and most preferably 15 It is below °C / h.
  • the zinc oxide precursor particles Prior to calcination, are preferably washed, filtered and dried.
  • the calcination temperature is not particularly limited as long as the precursor compound such as zinc hydroxide can be changed to zinc oxide, but is preferably 800 to 1100 ° C, more preferably 850 to 1000 ° C.
  • the precursor plate-like particles are preferably held for 0 to 3 hours, more preferably 0 to 1 hour.
  • Non-Patent Document 3 (Gui Han et. Al., EJ. Surf. Sci. Nanotech. Vol. 7 (2009) 354-357)) is also applicable. .
  • a plate-like zinc oxide powder produced by the following production method may be used as a raw material.
  • the plate-like zinc oxide powder is prepared by adding an aqueous alkaline salt solution to an aqueous zinc salt solution and stirring at 60 to 95 ° C. for 2 to 10 hours to precipitate a precipitate, washing and drying the precipitate, and further pulverizing the precipitate.
  • the aqueous zinc salt solution may be an aqueous solution containing zinc ions, and is preferably an aqueous solution of a zinc salt such as zinc nitrate, zinc chloride, or zinc acetate.
  • the alkaline aqueous solution is preferably an aqueous solution of sodium hydroxide, potassium hydroxide or the like.
  • concentration and mixing ratio of the zinc salt aqueous solution and the alkaline aqueous solution are not particularly limited, but it is preferable to mix the zinc salt aqueous solution and the alkaline aqueous solution having the same molar concentration in the same volume ratio. It is preferable to wash the precipitate with ion exchange water a plurality of times.
  • the washed precipitate is preferably dried at 100 to 300 ° C. Since the dried precipitate is a spherical secondary particle in which plate-like zinc oxide primary particles are aggregated, it is preferably subjected to a pulverization step.
  • This pulverization is preferably carried out by adding a solvent such as ethanol to the washed precipitate in a ball mill for 1 to 10 hours.
  • a solvent such as ethanol
  • plate-like zinc oxide powder as primary particles is obtained.
  • the plate-like zinc oxide powder thus obtained preferably has a volume-based D50 average particle diameter of 0.1 to 1.0 ⁇ m, more preferably 0.3 to 0.8 ⁇ m. This volume standard D50 average particle diameter can be measured by a laser diffraction particle size distribution measuring apparatus.
  • Mg and a dopant element selected from the group consisting of Al, Ga, and In as required are added to the zinc oxide powder, or Mg and optionally It is preferable that the dopant element is previously contained in the zinc oxide powder.
  • dopant elements may be added to the zinc oxide powder in the form of compounds or ions containing these elements.
  • the addition method of the additive substance is not particularly limited, but in order to spread the additive substance even inside the fine pores of the zinc oxide powder, (1) a method of adding the additive substance to the zinc oxide powder in the form of fine powder such as nanoparticles (2) A method of adding the zinc oxide powder after dissolving the additive substance in the solvent and drying the solution is preferably exemplified.
  • the additive substance containing Mg (for example, magnesium oxide) has a Mg content of 0.1 wt% or more, preferably 0.1 to 5.0 wt%, more preferably 0.1 wt% in the finally obtained zinc oxide substrate. It may be added in an amount of ⁇ 4.5% by weight, more preferably 1.0 to 4.0% by weight, particularly preferably 2.0 to 4.0% by weight.
  • the dopant element content in the finally obtained zinc oxide substrate is 0.05 to 2% by weight. More preferably, it may be added in an amount such that it is 0.1 to 1.5% by weight, more preferably 0.2 to 1.3% by weight.
  • the plate-like zinc oxide powder produced by the above method is oriented by a technique using shearing force to obtain an oriented molded body.
  • another element or component such as a metal oxide powder for dopant (for example, ⁇ -Al 2 O 3 powder) may be added to the plate-like zinc oxide powder.
  • the technique using shearing force include tape molding, extrusion molding, doctor blade method, and any combination thereof.
  • the orientation method using the shearing force is made into a slurry by appropriately adding additives such as a binder, a plasticizer, a dispersant, and a dispersion medium to the plate-like zinc oxide powder.
  • the slit width of the discharge port is preferably 10 to 400 ⁇ m.
  • the amount of the dispersion medium is preferably such that the slurry viscosity is 5000 to 100,000 cP, more preferably 8000 to 60000 cP.
  • the thickness of the oriented molded body formed into a sheet is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m. It is preferable to stack a large number of oriented molded bodies formed in this sheet shape to form a precursor laminate having a desired thickness, and press-mold the precursor laminate.
  • This press molding can be preferably performed by isostatic pressing at a pressure of 10 to 2000 kgf / cm 2 in warm water at 50 to 95 ° C. by packaging the precursor laminate with a vacuum pack or the like.
  • the sheet-shaped molded body is integrated and laminated in the mold after passing through a narrow discharge port in the mold due to the design of the flow path in the mold.
  • the molded body may be discharged.
  • the obtained molded body is preferably degreased according to known conditions.
  • the oriented molded body obtained as described above is fired at a firing temperature of 1000 to 1500 ° C., preferably 1100 to 1400 ° C., to form a zinc oxide sintered body comprising oriented zinc oxide crystal particles. .
  • the firing time at the above-mentioned firing temperature is not particularly limited, but is preferably 1 to 10 hours, and more preferably 2 to 5 hours.
  • the zinc oxide sintered body thus obtained is an oriented sintered body oriented in the (100) plane, (002) plane, etc., depending on the type of plate-like zinc oxide powder used as the raw material, that is, an oriented polycrystalline zinc oxide substrate and Become.
  • the degree of orientation is high, preferably 50% or more on the substrate surface, preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, particularly preferably 90% or more. is there.
  • Example 1 (1) Preparation of zinc oxide substrate 99.5 parts by weight of commercially available high-purity ZnO powder (specific surface area 9.4 m 2 / g) and 0.5 parts by weight of commercially available high-purity MgO powder (specific surface area 23 m 2 / g) Were mixed in a ball mill using ethanol as a solvent for 4 hours. The obtained slurry was dried with a rotary evaporator to obtain a mixed powder.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer DOP: di (2-ethylhexyl) phthalate, black gold chemical stock
  • a dispersant product name: Leodol SP-O30, manufactured by Kao Corporation
  • a dispersion medium 2-ethylhexanol
  • the slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 100 ⁇ m.
  • the obtained tape was cut and laminated, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed in warm water of 85 ° C. at a pressure of 100 kgf / cm 2 to produce a disk-shaped molded body having a diameter of about 65 mm and a thickness of about 1.5 mm.
  • the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C.
  • the obtained degreased body was fired in the atmosphere at 1200 ° C. for 5 hours under normal pressure to obtain a disk-shaped ZnO-based sintered body.
  • the obtained sintered body was subjected to HIP treatment under conditions of an atmospheric pressure of 150 MPa and 1300 ° C. for 2 hours using Ar gas as a pressure medium.
  • the periphery of the obtained sintered body was processed, the surface was mirror-polished with a diamond slurry, and then subjected to CMP treatment using colloidal silica to obtain a zinc oxide substrate having a diameter of about 50 mm and a thickness of about 0.6 mm.
  • ⁇ Average particle size> The average particle size of the substrate is about 10 mm square cut out from the substrate, the surface perpendicular to the plate surface is polished, etched with nitric acid with a concentration of 0.3 M for 10 seconds, and then imaged with a scanning electron microscope. I took a picture. The visual field range was such that when straight lines parallel to and perpendicular to the plate surface were drawn, straight lines intersecting 10 to 30 particles could be drawn.
  • ⁇ Resistivity> The resistivity of the substrate was measured by a four-probe method using a resistivity meter (Made by Mitsubishi Chemical, Loresta GP MCP-T610 type).
  • MOCVD-GaN film formation Using MOCVD, TMG (trimethylgallium) and NH 3 (ammonia) are used as source gases and N 2 is used as a carrier gas on a ZnO substrate at a substrate temperature of 800 ° C. About 4 ⁇ m of GaN was deposited.
  • Example 2 The raw material mixing ratio of the zinc oxide substrate was 92.0 parts by weight of a commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and a commercially available high purity MgO powder (specific surface area 23 m 2 / g) 8.0 weight.
  • a zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that it was made a part. The results are as shown in Table 1.
  • the Raman peak half-value width indicating GaN crystallinity was as small as 35 cm ⁇ 1 , indicating good crystallinity.
  • Example 3 (Comparison) The raw material mixing ratio of the zinc oxide substrate was 99.95 parts by weight of a commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and a commercially available high purity MgO powder (specific surface area 23 m 2 / g) 0.05 weight.
  • a zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that it was made a part. The results are as shown in Table 1. A clear Raman peak due to GaN E2 phonons was not observed, and the crystallinity of GaN was low.
  • Example 4 The raw material mixing ratio of the zinc oxide substrate was 85.8 parts by weight of a commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and a commercially available high purity MgO powder (specific surface area 23 m 2 / g) 14.2 weights.
  • a zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that it was made a part. The results are as shown in Table 1.
  • the Raman peak half-value width indicating GaN crystallinity was 82 cm ⁇ 1 , indicating good crystallinity.
  • Example 5 The raw material mixing ratio of the zinc oxide substrate is 94.8 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and commercially available high purity MgO powder (specific surface area 23 m 2 / g) 5.2 weight.
  • the zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that the temperature of the HIP treatment was 1400 ° C. The results are as shown in Table 1.
  • the Raman peak half-value width indicating GaN crystallinity was as small as 28 cm ⁇ 1 , indicating good crystallinity.
  • Example 6 A zinc oxide substrate was produced and evaluated in the same manner as in Example 5 except that the temperature of the HIP treatment was 1200 ° C. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 42 cm ⁇ 1 , indicating good crystallinity.
  • Example 7 94.8 parts by weight of commercially available high-purity ZnO powder (specific surface area 9.4 m 2 / g) and 5.2 parts by weight of commercially available high-purity MgO powder (specific surface area 23 m 2 / g) were ball milled using ethanol as a solvent. For 4 hours. The mixture was dried and then heat treated at 1400 ° C. for 5 hours. The resulting powder was coarsely pulverized in a mortar, and pulverized to a volume reference D 50 average particle size 1 ⁇ m by a ball mill using alumina balls.
  • the crystal manufacturing apparatus 20 includes an aerosol generating unit 22 that generates an aerosol of a raw material powder containing a raw material component, and a crystal that injects the raw material powder onto a seed substrate 21 to form a film containing the raw material component and crystallizes the film. And a generation unit 30.
  • the aerosol generation unit 22 includes an aerosol generation chamber 23 that stores raw material powder and receives aerosol from a carrier gas (not shown) to generate aerosol, and a raw material supply pipe 24 that supplies the generated aerosol to the crystal generation unit 30.
  • a preheater heater 26 for preheating the aerosol is disposed on the crystal supply unit 30 side of the raw material supply pipe 24, and the preheated aerosol is supplied to the crystal generation unit 30.
  • the crystal generation unit 30 fixes the seed substrate 21 by being disposed inside the vacuum chamber 31 for injecting the aerosol onto the seed substrate 21, the room-like heat insulating material 32 provided in the vacuum chamber 31, and the heat insulating material 32.
  • the crystal generation unit 30 includes a heating unit 35 that is disposed inside the heat insulating material 32 and heats the seed substrate 21, a spray nozzle 36 that has a slit 37 formed at the tip thereof and sprays aerosol onto the seed substrate 21, and a vacuum chamber And a vacuum pump 38 for depressurizing 31.
  • each is configured using a member such as quartz glass or ceramics so that the heat treatment can be performed at a temperature at which the raw material powder is single-crystallized in the vacuum chamber 31.
  • aerosol was injected using a ceramic nozzle 36 in which He was used as a carrier gas and a pressure adjusting gas, and a slit 37 having a long side of 5 mm and a short side of 0.4 mm was formed.
  • the nozzle 36 was scanned at a scanning speed of 0.5 mm / s. As shown in FIG. 2, this scan is moved 10 mm in the direction perpendicular to the long side of the slit 37 (first film formation region 21 a) and moved 5 mm in the long side direction of the slit 37.
  • the cycle of moving 10 mm in the direction perpendicular to the long side and returning in the direction of returning (second film formation region 21 b) and moving 5 mm in the long side direction and the initial position direction of the slit 37 was repeated 200 times.
  • the set pressure of the carrier gas was adjusted to 0.06 MPa
  • the flow rate was adjusted to 6 L / min
  • the pressure in the chamber was adjusted to 100 Pa or less.
  • the temperature of the chamber film forming chamber which is a temperature at which a single crystal grows, was 1200 ° C.
  • the thickness of the obtained single crystal substrate was 0.5 mm.
  • the substrate About 4 ⁇ m of GaN was deposited at a temperature of 800 ° C.
  • the results are as shown in Table 1.
  • the Raman peak half-value width indicating GaN crystallinity was as small as 50 cm ⁇ 1 , indicating good crystallinity.
  • Example 8 The raw material mixing ratio of the zinc oxide substrate is 94.8 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and commercially available high purity MgO powder (specific surface area 23 m 2 / g) 5.2 weight.
  • a zinc oxide substrate was prepared and evaluated in the same manner as in Example 1, except that the content was 2.0 parts by weight and 2.0 parts by weight of commercially available high-purity ⁇ -Al 2 O 3 powder (specific surface area 82 m 2 / g). The results are as shown in Table 1, and the Raman peak half-value width indicating GaN crystallinity was as small as 26 cm ⁇ 1 , indicating good crystallinity.
  • Example 9 The raw material mixing ratio of the zinc oxide substrate is 94.8 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and commercially available high purity MgO powder (specific surface area 23 m 2 / g) 5.2 weight.
  • a zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that the content was 0.1 parts by weight and 0.1 parts by weight of commercially available high-purity Ga 2 O 3 powder (specific surface area 5.3 m 2 / g). The results are as shown in Table 1.
  • the Raman peak half-value width indicating GaN crystallinity was as small as 28 cm ⁇ 1 , indicating good crystallinity.
  • Example 10 The raw material mixing ratio of the zinc oxide substrate is 94.8 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and commercially available high purity MgO powder (specific surface area 23 m 2 / g) 5.2 weight.
  • a zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that 0.3 parts by weight and 0.3 parts by weight of commercially available high-purity In 2 O 3 powder (specific surface area 4.2 m 2 / g) were used. The results are as shown in Table 1.
  • the Raman peak half-value width indicating GaN crystallinity was as small as 25 cm ⁇ 1 , indicating good crystallinity.
  • Example 11 A zinc oxide substrate was prepared and evaluated in the same manner as in Example 5 except that the MOCVD film formation temperature was 700 ° C. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 39 cm ⁇ 1 , indicating good crystallinity.
  • Example 12 A zinc oxide substrate was prepared and evaluated in the same manner as in Example 5 except that the MOCVD film formation temperature was 900 ° C. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 22 cm ⁇ 1 , indicating good crystallinity.
  • Example 13 1730 g of zinc sulfate heptahydrate (manufactured by Kojundo Chemical Laboratory) and 4.5 g of sodium gluconate (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 3000 g of ion-exchanged water. This solution was placed in a beaker and heated to 90 ° C. while stirring with a magnetic stirrer. While this solution was maintained at 90 ° C. and stirred, 490 g of 25% aqueous ammonium was added dropwise with a microtube pump. After completion of dropping, the mixture was kept at 90 ° C. with stirring for 4 hours and then allowed to stand.
  • the precipitate was separated by filtration, further washed with ion-exchanged water three times, and dried to obtain a white powdered zinc oxide precursor.
  • the obtained zinc oxide precursor was placed on a zirconia setter and calcined in the air in an electric furnace to obtain a plate-like porous zinc oxide powder.
  • the temperature schedule at the time of calcination was raised from room temperature to 900 ° C. at a rate of temperature increase of 100 ° C./h, and then kept at 900 ° C. for 30 minutes to allow natural cooling.
  • the obtained plate-like zinc oxide powder was pulverized to a mean particle size of 1.0 ⁇ m with a ball mill using ZrO 2 balls.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer DOP: di (2-ethylhexyl) phthalate, black metal conversion
  • a dispersant product name: Leodol SP-O30, manufactured by Kao Corporation
  • a dispersion medium 2-ethylhexanol
  • the slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 100 ⁇ m.
  • the obtained tape was cut and laminated, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed in warm water of 85 ° C. at a pressure of 100 kgf / cm 2 to produce a disk-shaped molded body having a diameter of about 65 mm and a thickness of about 1.5 mm.
  • the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C.
  • the obtained degreased body was fired in the atmosphere at 1200 ° C. for 5 hours under normal pressure to obtain a disk-shaped ZnO-based sintered body.
  • the obtained sintered body was subjected to HIP treatment under conditions of an atmospheric pressure of 150 MPa and 1300 ° C. for 2 hours using Ar gas as a pressure medium.
  • the periphery of the obtained sintered body was processed, the surface was mirror-polished with a diamond slurry, and then subjected to CMP treatment using colloidal silica to obtain a zinc oxide substrate having a diameter of about 50 mm and a thickness of about 0.6 mm.
  • the zinc oxide substrate thus obtained was evaluated in the same manner as in Example 1, and the degree of orientation and aspect ratio were also evaluated as follows. The results are as shown in Table 1.
  • the Raman peak half-value width indicating GaN crystallinity was as small as 29 cm ⁇ 1 , indicating good crystallinity.
  • the aspect ratio of the particles constituting the zinc oxide substrate was as small as 1.1.
  • the degree of orientation of the substrate was determined by measuring the orientation degree of the (002) plane by XRD with the plate surface of the zinc oxide substrate as the sample surface. This measurement was performed using an XRD apparatus (product name “RINT-TTR III” manufactured by Rigaku Corporation) and measuring the XRD profile when the surface of the zinc oxide substrate was irradiated with X-rays.
  • the degree of (002) orientation was calculated by the following formula (however, in this example, I 0 (102) and I 0 (110) can be omitted as negligible levels).
  • Example 14 A zinc (NO 3 ) 2 aqueous solution with a concentration of 0.1 M was prepared using zinc nitrate hexahydrate (manufactured by Kanto Chemical Co., Inc.). In addition, a 0.1 M NaOH aqueous solution was prepared using sodium hydroxide (manufactured by Sigma-Aldrich). A Zn (NO 3 ) 2 aqueous solution was mixed with the NaOH aqueous solution at a volume ratio of 1: 1, and the mixture was held at 80 ° C. for 6 hours with stirring to obtain a precipitate. The precipitate was washed with ion-exchanged water three times and then dried to obtain spherical secondary particles in which plate-like zinc oxide primary particles were aggregated.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer DOP: di (2-ethylhexyl) phthalate, black metal conversion
  • a dispersant product name: Leodol SP-O30, manufactured by Kao Corporation
  • a dispersion medium 2-ethylhexanol
  • the slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 100 ⁇ m.
  • the obtained tape was cut and laminated, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed in warm water of 85 ° C. at a pressure of 100 kgf / cm 2 to produce a disk-shaped molded body having a diameter of about 65 mm and a thickness of about 1.5 mm.
  • the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C.
  • the obtained degreased body was fired in the atmosphere at 1200 ° C. for 5 hours under normal pressure to obtain a disk-shaped ZnO-based sintered body.
  • the obtained sintered body was subjected to HIP treatment under conditions of an atmospheric pressure of 150 MPa and 1300 ° C. for 2 hours using Ar gas as a pressure medium.
  • the periphery of the obtained sintered body was processed, the surface was mirror-polished with a diamond slurry, and then subjected to CMP treatment using colloidal silica to obtain a zinc oxide substrate having a diameter of about 50 mm and a thickness of about 0.6 mm.
  • the zinc oxide substrate thus obtained was evaluated in the same manner as in Example 1, and the particle aspect ratio was measured in the same manner as in Example 13.
  • the degree of orientation was evaluated as follows. The results are as shown in Table 1.
  • the Raman peak half-value width indicating GaN crystallinity was as small as 31 cm ⁇ 1 , indicating good crystallinity.
  • the particle aspect ratio was as small as 1.3.
  • the degree of orientation of the substrate was determined by measuring the degree of orientation of the (100) plane by XRD using the plate surface of the zinc oxide substrate as the sample surface. This measurement was performed using an XRD apparatus (product name “RINT-TTR III” manufactured by Rigaku Corporation) and measuring the XRD profile when the surface of the zinc oxide substrate was irradiated with X-rays.
  • the degree of (100) orientation was calculated by the following formula (however, in this example, I 0 (102) and I 0 (110) can be omitted as negligible levels).
  • Example 15 The raw material mixing ratio of the zinc oxide substrate is 94.8 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and commercially available high purity MgO powder (specific surface area 23 m 2 / g) 5.2 weight.
  • the zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that the temperature of the HIP treatment was 1450 ° C. The results are as shown in Table 1.
  • the Raman peak half-value width indicating GaN crystallinity was as small as 24 cm ⁇ 1 , indicating good crystallinity.
  • Example 16 1730 g of zinc sulfate heptahydrate (manufactured by Kojundo Chemical Laboratory) and 4.5 g of sodium gluconate (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 3000 g of ion-exchanged water. This solution was placed in a beaker and heated to 90 ° C. while stirring with a magnetic stirrer. While this solution was maintained at 90 ° C. and stirred, 490 g of 25% aqueous ammonium was added dropwise with a microtube pump. After completion of dropping, the mixture was kept at 90 ° C. with stirring for 4 hours and then allowed to stand.
  • the precipitate was separated by filtration, further washed with ion-exchanged water three times, and dried to obtain a white powdered zinc oxide precursor.
  • 100 g of the obtained zinc oxide precursor was placed on a zirconia setter and calcined in the air in an electric furnace to obtain 65 g of a plate-like porous zinc oxide powder.
  • the temperature schedule at the time of calcination was raised from room temperature to 900 ° C. at a rate of temperature increase of 100 ° C./h, and then kept at 900 ° C. for 30 minutes to allow natural cooling.
  • the obtained plate-like zinc oxide powder was pulverized to a mean particle size of 0.5 ⁇ m with a ball mill using ZrO 2 balls.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer DOP: di (2-ethylhexyl) phthalate, black gold chemical stock
  • a dispersant product name: Leodol SP-O30, manufactured by Kao Corporation
  • a dispersion medium 2-ethylhexanol
  • the slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 3 ⁇ m.
  • the obtained sheet-like molded body was placed in a degreasing furnace and degreased at 600 ° C.
  • the obtained degreased body was fired in the atmosphere at 1200 ° C. for 5 hours under normal pressure to obtain a sheet-like ZnO-based sintered body.
  • binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • plasticizer DOP: di (2-ethylhexyl) phthalate, black gold 6.2 parts by weight of Kasei Co., Ltd.
  • a dispersant product name: Leodol SP-O30, manufactured by Kao Corporation
  • a dispersion medium 2-ethylhexanol
  • the slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 100 ⁇ m.
  • the obtained tape was cut and laminated, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed in warm water of 85 ° C. at a pressure of 100 kgf / cm 2 to produce a disk-shaped molded body having a diameter of about 65 mm and a thickness of about 1.5 mm.
  • the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C.
  • the obtained degreased body was fired in the atmosphere at 1200 ° C. for 5 hours under normal pressure to obtain a disk-shaped ZnO-based sintered body.
  • the obtained sintered body was subjected to HIP treatment using Ar gas as a pressure medium at an atmospheric pressure of 150 MPa and 1400 ° C. for 2 hours.
  • the periphery of the obtained sintered body was processed, the surface was mirror-polished with a diamond slurry, and then subjected to CMP treatment using colloidal silica to obtain a zinc oxide substrate having a diameter of about 50 mm and a thickness of about 0.6 mm.
  • the zinc oxide substrate thus obtained was evaluated in the same manner as in Examples 1 and 13. The results are as shown in Table 1, and the aspect ratio of the particles constituting the zinc oxide substrate was as large as 3.0.
  • the value of the half-width of the Raman peak indicating GaN crystallinity was as small as 40 cm ⁇ 1 , indicating good crystallinity, but the crystallinity was lower than that of the zinc oxide substrates of Examples 13 and 14 having a particle aspect ratio as small as 2.0 or less. It was inferior.
  • Example 17 In the same manner as in Example 13, plate-like zinc oxide particles were produced. And zinc oxide-shaped particles 4.8 parts by weight, commercially available high purity ZnO powder (specific surface area 9.4m 2 /g)90.0 parts, commercially available high-purity MgO powder (specific surface area 23m 2 / g) 5.2 parts by weight and 0.6 parts by weight of commercially available high-purity ⁇ -Al 2 O 3 powder (specific surface area 82 m 2 / g) were mixed in a ball mill using ethanol as a solvent for 4 hours.
  • a binder polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.
  • a plasticizer DOP: di (2-ethylhexyl) phthalate, black metal conversion
  • a dispersant product name: Leodol SP-O30, manufactured by Kao Corporation
  • a dispersion medium 2-ethylhexanol
  • the slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 100 ⁇ m.
  • Many of the obtained tapes were cut into strips of 8 mm ⁇ 65 mm, and about 650 sheets were laminated and vacuum packed.
  • This vacuum pack was hydrostatically pressed at a pressure of 100 kgf / cm 2 in 85 ° C. warm water to produce a molded body of 65 mm ⁇ 8 mm ⁇ 65 mm.
  • the obtained molded body was placed in a degreasing furnace and degreased at 600 ° C.
  • the obtained degreased body was fired at atmospheric pressure at 1200 ° C. for 5 hours under normal pressure to obtain a square plate-like ZnO-based sintered body.
  • the obtained sintered body was subjected to HIP treatment under conditions of an atmospheric pressure of 150 MPa and 1300 ° C. for 2 hours using Ar gas as a pressure medium.
  • the obtained sintered body was sliced in the thickness direction, the periphery was processed, the surface was mirror-polished with diamond slurry, and then subjected to CMP treatment using colloidal silica.
  • the diameter was about 50 mm ⁇ thickness was about 0.6 mm.
  • a zinc oxide substrate was obtained.
  • ⁇ (100) and (110) total orientation degree> For the substrate of Example 17, the plate surface of the zinc oxide substrate was used as the sample surface, and the total orientation degree of the (100) plane and the (110) plane was measured by XRD. This measurement was performed using an XRD apparatus (product name “RINT-TTR III” manufactured by Rigaku Corporation) and measuring the XRD profile when the surface of the zinc oxide substrate was irradiated with X-rays. The total orientation degree of the (100) plane and the (110) plane was calculated by the following formula.
  • the zinc oxide substrate thus obtained was evaluated in the same manner as in Example 1. The results are as shown in the table.
  • the Raman peak half-value width indicating GaN crystallinity was as small as 28 cm ⁇ 1 , indicating good crystallinity.
  • Example 18 A zinc oxide substrate was prepared and evaluated in the same manner as in Example 17 except that the plate-like zinc oxide was ground to an average particle size of 0.1 ⁇ m with a ball mill. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 35 cm ⁇ 1 , indicating good crystallinity.
  • Example 7 film peeling as indicated by arrows in FIG. 3 was observed.
  • the average film peeling location in 5 fields was 9 locations.
  • Example 13 relating to the (002) plane-oriented polycrystalline substrate
  • the average film peeling location was 4 locations.
  • Example 17, and Example 18 related to the (100) plane oriented or (100) and (110) plane oriented polycrystalline substrates, no film peeling was observed. Although the reason is not clear, the stress applied to the film is reduced in the polycrystal as compared with the single crystal, and the (100) plane orientation, or the (100) and (110) plane orientations, rather than the (002) plane orientation.
  • this not only functions as a seed crystal but also functions as a protective layer for suppressing dissolution of the zinc oxide substrate. If the MOCVD GaN film is peeled off, Na flux penetrates from the peeled portion and reacts and dissolves with ZnO. Therefore, it is preferable that the number of peeled portions is small. Since GaN and zinc oxide have close lattice constants and thermal expansion coefficients, it is possible to grow GaN of good quality even in the flux method by using a zinc oxide substrate.

Abstract

Provided is a zinc oxide substrate which contains 0.1% by weight or more of Mg, and which is used for the purpose of growing a group 13 nitride crystal thereon by an MOCVD method. A zinc oxide substrate according to the present invention enables growth of a group 13 nitride crystal having excellent crystallinity on a substrate by an MOCVD method without forming an insulating layer in advance.

Description

酸化亜鉛基板及びそれを用いた第13族窒化物結晶の製造方法Zinc oxide substrate and method for producing group 13 nitride crystal using the same
 本発明は、酸化亜鉛基板及びそれを用いた第13族窒化物結晶の製造方法に関する。 The present invention relates to a zinc oxide substrate and a method for producing a group 13 nitride crystal using the same.
 窒化ガリウム(GaN)系発光素子等用の基板材料として、酸化亜鉛(ZnO)が注目されている(例えば特許文献1(国際公開第2014/092163号)参照)。これは、ZnOがGaNと格子定数が近いため、ZnO基板上に成長させたGaNの結晶品質の向上が期待されるためである。 As a substrate material for gallium nitride (GaN) -based light-emitting elements, zinc oxide (ZnO) has been attracting attention (see, for example, Patent Document 1 (International Publication No. 2014/092163)). This is because ZnO has a lattice constant close to that of GaN, so that an improvement in crystal quality of GaN grown on a ZnO substrate is expected.
 しかしながら、GaNとZnOは反応性が高いため、MOCVD法(有機金属気相成長法)を用いてGaNをZnO基板に成膜する場合、GaNとZnOの反応を抑制させることが望まれる。例えば、非特許文献1(Ray-Ming Lin et al., Proc. SPIE, 2010, vol. 7602, pp. 76021L-1-6)及び非特許文献2(S-J Wang et al., J. Phys. D: Appl. Phys. 42 (2009) 245302)には、GaNとZnOの反応を抑制させて高品質なGaNを得るべく、予めAlNやAlのバッファ層をZnO基板上に成膜しておくことが提案されている。この場合、AlNやAlは絶縁性であるため、高効率かつ小型化に有利な縦型のLED構造を作製することは不可能であった。また、このような層の成膜は製造コストの増加につながるため、省略されることが望まれる。 However, since GaN and ZnO are highly reactive, it is desired to suppress the reaction between GaN and ZnO when GaN is formed on a ZnO substrate using MOCVD (metal organic vapor phase epitaxy). For example, Non-Patent Document 1 (Ray-Ming Lin et al., Proc. SPIE, 2010, vol. 7602, pp. 76021L-1-6) and Non-Patent Document 2 (SJ Wang et al., J. Phys. D) : Appl. Phys. 42 (2009) 245302), a buffer layer of AlN or Al 2 O 3 is previously formed on a ZnO substrate in order to suppress the reaction between GaN and ZnO to obtain high quality GaN. It is proposed to keep. In this case, since AlN and Al 2 O 3 are insulative, it has been impossible to produce a vertical LED structure that is highly efficient and advantageous for downsizing. In addition, it is desirable to omit the formation of such a layer because it leads to an increase in manufacturing cost.
国際公開第2014/092163号International Publication No. 2014/092163 特開2007-254206号公報JP 2007-254206 A
 本発明者らは、今般、所定量のMgを含有する酸化亜鉛基板を用いることで、絶縁性の層を予め形成することなく、MOCVD法により、結晶性に優れた第13族窒化物結晶を基板上に成長させることができるとの知見を得た。 The inventors of the present invention have recently used a zinc oxide substrate containing a predetermined amount of Mg to form a Group 13 nitride crystal having excellent crystallinity by MOCVD without forming an insulating layer in advance. The knowledge that it can be grown on a substrate was obtained.
 したがって、本発明の目的は、絶縁性の層を予め形成することなく、MOCVD法により、結晶性に優れた第13族窒化物結晶を基板上に成長させることが可能な酸化亜鉛基板を提供することにある。 Accordingly, an object of the present invention is to provide a zinc oxide substrate capable of growing a group 13 nitride crystal having excellent crystallinity on the substrate by MOCVD without forming an insulating layer in advance. There is.
 本発明の一態様によれば、Mgを0.1重量%以上含有する酸化亜鉛基板であって、その上にMOCVD法により第13族窒化物結晶を成長させるための基板として用いられる、酸化亜鉛基板が提供される。 According to one aspect of the present invention, a zinc oxide substrate containing 0.1 wt% or more of Mg, which is used as a substrate for growing a group 13 nitride crystal thereon by MOCVD method A substrate is provided.
 本発明の他の一態様によれば、上記態様による酸化亜鉛基板を用意する工程と、
 前記酸化亜鉛基板上に、GaAlIn1-x-yN(式中、0≦x≦1、0≦y≦1)で表される第13族窒化物結晶をMOCVD法により成長させる工程と、
を含む、第13族窒化物結晶の製造方法が提供される。
According to another aspect of the present invention, a step of preparing a zinc oxide substrate according to the above aspect;
A Group 13 nitride crystal represented by Ga x Al y In 1-xy N (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) is grown on the zinc oxide substrate by MOCVD. Process,
A method for producing a Group 13 nitride crystal is provided.
例7で使用した結晶製造装置20の構成を示す概略模式図である。FIG. 6 is a schematic diagram showing the configuration of a crystal manufacturing apparatus 20 used in Example 7. 図1に示されるスリット37の走査方法を説明する図である。It is a figure explaining the scanning method of the slit 37 shown by FIG. 例7において観察されたMOCVD-GaN膜の膜剥がれを撮影した画像であり、矢印が膜剥がれ箇所を示す。It is the image which image | photographed film peeling of the MOCVD-GaN film | membrane observed in Example 7, and an arrow shows a film peeling part.
 本発明による酸化亜鉛基板は、Mgを0.1重量%以上含有する酸化亜鉛基板である。そして、このMg含有酸化亜鉛基板は、その上にMOCVD法により第13族窒化物結晶を成長させるための基板として用いられる。こうすることで、絶縁性の層を予め形成することなく、MOCVD法により、結晶性に優れた第13族窒化物結晶を基板上に成長させることが可能となる。 The zinc oxide substrate according to the present invention is a zinc oxide substrate containing 0.1 wt% or more of Mg. The Mg-containing zinc oxide substrate is used as a substrate for growing a group 13 nitride crystal on the substrate by MOCVD. This makes it possible to grow a Group 13 nitride crystal having excellent crystallinity on the substrate by MOCVD without forming an insulating layer in advance.
 すなわち、前述のとおり、ZnOはGaN等の第13族窒化物結晶と格子定数が近いため、酸化亜鉛基板上に成長させたGaNの結晶品質の向上が期待される。しかしながら、GaNとZnOは反応性が高いため、MOCVD法を用いてGaNをZnO基板に成膜する場合、GaNとZnOの反応を抑制させて高品質なGaNを得るためには、予めAlNやAlのバッファ層をZnO基板上に成膜しておくことが望まれていた(例えば、非特許文献1及び2)。しかし、この場合、AlNやAlは絶縁性であるため、高効率かつ小型化に有利な縦型のLED構造を作製することは不可能であった。かかる状況の下、本発明者らは、Mgを0.1重量%以上含有する酸化亜鉛基板を用いることで、絶縁性の層を予め形成することなく、MOCVD法により、結晶性に優れた第13族窒化物結晶を基板上に成長させることができるとの知見を得た。酸化亜鉛へのMgの含有及びMOCVD法の採用により第13族窒化物結晶の結晶性が向上するメカニズムは必ずしも明らかではないが、MgのZnOへの固溶により、MOCVDにおけるGaN成膜雰囲気におけるZnOの揮発やGaN等の第13族窒化物との反応性が抑制されるためではないかと推定される。 That is, as described above, since ZnO has a lattice constant close to that of a group 13 nitride crystal such as GaN, an improvement in crystal quality of GaN grown on a zinc oxide substrate is expected. However, since GaN and ZnO are highly reactive, when depositing GaN on a ZnO substrate using the MOCVD method, in order to suppress the reaction between GaN and ZnO and obtain high quality GaN, AlN or Al It has been desired to form a 2 O 3 buffer layer on a ZnO substrate (for example, Non-Patent Documents 1 and 2). However, in this case, since AlN and Al 2 O 3 are insulative, it is impossible to produce a vertical LED structure that is highly efficient and advantageous for downsizing. Under such circumstances, the present inventors used a zinc oxide substrate containing 0.1% by weight or more of Mg, so that the MOCVD method did not form an insulating layer in advance. It was found that a group 13 nitride crystal can be grown on a substrate. Although the mechanism of improving the crystallinity of the Group 13 nitride crystal by inclusion of Mg in zinc oxide and the adoption of the MOCVD method is not necessarily clear, the solid solution of Mg in ZnO causes ZnO in the GaN film formation atmosphere in MOCVD. It is presumed that this is because the volatilization of silicon and the reactivity with Group 13 nitrides such as GaN are suppressed.
 ところで、第13族窒化物結晶は、第13族元素窒化物を主相とする結晶であれば特に限定されないが、好ましくは窒化ガリウム(GaN)系結晶、窒化アルミニウム(AlN)系結晶、窒化インジウム(InN)系結晶、特に好ましくは窒化ガリウム(GaN)系結晶である。また、第13族元素窒化物結晶は、例えばGaNにAlN、InN等を固溶させた混晶としてもよい。したがって、好ましい第13族元素窒化物はGaAlIn1-x-yN(式中、0≦x≦1、0≦y≦1)で表される第13族窒化物結晶と表現することができ、より好ましくは0.5≦x≦1、0≦y≦0.5、さらに好ましくは0.7≦x≦1、0≦y≦0.3である。さらに、第13族元素窒化物結晶は、ノンドープの材料であってもよいし、p型ないしn型に制御するためのドーパントを適宜含むものであってよい。 By the way, the group 13 nitride crystal is not particularly limited as long as it is a crystal having a group 13 element nitride as a main phase, but preferably a gallium nitride (GaN) crystal, an aluminum nitride (AlN) crystal, or indium nitride. An (InN) crystal, particularly preferably a gallium nitride (GaN) crystal. The group 13 element nitride crystal may be a mixed crystal in which, for example, AlN, InN or the like is dissolved in GaN. Therefore, a preferred Group 13 element nitride is expressed as a Group 13 nitride crystal represented by Ga x Al y In 1-xy N (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1). More preferably, 0.5 ≦ x ≦ 1, 0 ≦ y ≦ 0.5, still more preferably 0.7 ≦ x ≦ 1, and 0 ≦ y ≦ 0.3. Further, the Group 13 element nitride crystal may be a non-doped material or may appropriately include a dopant for controlling the p-type or n-type.
 本発明による酸化亜鉛基板は、Mgを0.1重量%以上含有する。Mgが酸化亜鉛に一定量以上固溶されることで第13族窒化物結晶の結晶性向上効果が期待できる。従って、Mg含有量の上限は特に限定されない。Mgの含有量は、好ましくは0.1~5.0重量%であり、より好ましくは0.5~4.5重量%、さらに好ましくは1.0~4.0重量%、特に好ましくは2.0~4.0重量%である。このような範囲内であると異相であるMgO相の生成を防止又は抑制しつつ、Mgを酸化亜鉛に十分に固溶させることができる。その結果、MOCVD法により基板上に成膜される第13族窒化物結晶の結晶性をさらに向上させることができる。なお、スパッタリング法を用いれば、通常の固相反応と比較して、より多くの量(上記好ましい範囲を超えうる)のMgを異相(MgO相)を生成させることなくZnOに固溶可能である。 The zinc oxide substrate according to the present invention contains 0.1% by weight or more of Mg. The effect of improving the crystallinity of the Group 13 nitride crystal can be expected when Mg is dissolved in zinc oxide in a certain amount or more. Therefore, the upper limit of the Mg content is not particularly limited. The Mg content is preferably 0.1 to 5.0% by weight, more preferably 0.5 to 4.5% by weight, still more preferably 1.0 to 4.0% by weight, and particularly preferably 2%. 0.0 to 4.0% by weight. Within such a range, Mg can be sufficiently dissolved in zinc oxide while preventing or suppressing the formation of a different phase MgO phase. As a result, the crystallinity of the group 13 nitride crystal formed on the substrate by MOCVD can be further improved. If a sputtering method is used, a larger amount of Mg (which may exceed the above-mentioned preferable range) can be dissolved in ZnO without generating a different phase (MgO phase) as compared with a normal solid phase reaction. .
 このように、本発明の酸化亜鉛基板はMgO相を異相として含まないのが好ましい。MgO相を含まないことで、MOCVD法により基板上に成膜される第13族窒化物結晶の結晶性がさらに向上する。基板のMgO異相の有無は、酸化亜鉛基板の板面を試料面とし、XRD装置(例えば、株式会社リガク製、製品名「RINT-TTR III」)を用い、2θ=20°~80°の範囲にて、酸化亜鉛基板の表面に対してX線を照射したときのXRDプロファイルを測定することにより、評価することができる。ZnO(異種元素を固溶したものも含む)に起因するピークの最大値をm、MgO(異種元素を固溶したものも含む)に起因するピークの最大値をmとしたとき、m/m≦0.01となった場合に「MgO異相なし」と、m/m>0.01となった場合に「MgO異相あり」と判定すればよい。 Thus, it is preferable that the zinc oxide substrate of the present invention does not contain the MgO phase as a different phase. By not including the MgO phase, the crystallinity of the group 13 nitride crystal formed on the substrate by MOCVD is further improved. Presence or absence of MgO heterogeneous phase on the substrate is determined from 2θ = 20 ° to 80 ° using an XRD apparatus (for example, product name “RINT-TTR III” manufactured by Rigaku Corporation) with the plate surface of the zinc oxide substrate as the sample surface. Thus, it can be evaluated by measuring the XRD profile when the surface of the zinc oxide substrate is irradiated with X-rays. When the maximum value of the peak due to ZnO (including a solid solution of different elements) is m 1 and the maximum value of the peak due to MgO (including a solid solution of different elements) is m 2 , m When 2 / m 1 ≦ 0.01, it may be determined that “no MgO different phase” and when m 2 / m 1 > 0.01, “MgO different phase exists”.
 本発明による酸化亜鉛基板は、Al、Ga及びInからなる群から選択される1種以上のドーパント元素を0.05~2重量%含有しているのが好ましく、より好ましくは0.1~1.5重量%、さらに好ましくは0.2~1.3重量%である。このようなドーパントの添加により、MOCVD法により基板上に成膜される第13族窒化物結晶の結晶性をさらに向上させることができる。また、基板に導電性を付与し、高効率かつ小型化が可能な縦型のLED構造を作製することが可能となる。なお、本発明の趣旨を損なわない範囲において酸化亜鉛基板がMg、Al、Ga及びIn以外の他の元素(n型ドーパント又はp型ドーパントでありうる)及び/又は不可避不純物が含有されていてもよいことはいうまでもない。 The zinc oxide substrate according to the present invention preferably contains 0.05 to 2% by weight, more preferably 0.1 to 1%, of one or more dopant elements selected from the group consisting of Al, Ga and In. 0.5% by weight, more preferably 0.2 to 1.3% by weight. By adding such a dopant, the crystallinity of the Group 13 nitride crystal formed on the substrate by MOCVD can be further improved. In addition, it is possible to produce a vertical LED structure that imparts conductivity to the substrate and can be highly efficient and downsized. In addition, even if the zinc oxide substrate contains an element other than Mg, Al, Ga and In (which may be an n-type dopant or a p-type dopant) and / or an inevitable impurity within a range that does not impair the spirit of the present invention. Needless to say, it is good.
 本発明による酸化亜鉛基板は、2Ω・cm以下の抵抗率を有するのが好ましく、より好ましくは0.1Ω・cm未満、さらに好ましくは2×10-2Ω・cm未満である。抵抗率が低いほど酸化亜鉛基材は導電性基材として好ましく使用可能となる。したがって、基板に導電性を付与し、高効率かつ小型化が可能な縦型のLED構造を作製することが可能となる。 The zinc oxide substrate according to the present invention preferably has a resistivity of 2 Ω · cm or less, more preferably less than 0.1 Ω · cm, still more preferably less than 2 × 10 −2 Ω · cm. The lower the resistivity, the more preferably the zinc oxide substrate can be used as a conductive substrate. Therefore, it is possible to produce a vertical LED structure that imparts conductivity to the substrate and can be highly efficient and downsized.
 本発明による酸化亜鉛基板は、単結晶体及び多結晶体のいずれであってもよいが、多結晶体の方が粒径を制御することでMOCVD法により基板上に成膜される第13族窒化物結晶の結晶性を向上しやすい点で好ましい。多結晶体である場合、酸化亜鉛基板は酸化亜鉛結晶粒子を含んで構成される。酸化亜鉛結晶粒子は酸化亜鉛を含んで構成される粒子であり、Mg及び上記ドーパント元素(すなわちAl、Ga及び/又はIn)は六方晶ウルツ鉱型構造のZnサイトやOサイトに置換されていてもよいし、結晶構造を構成しない添加元素として含まれていてもよいし、あるいは粒界に存在するものであってもよい。 The zinc oxide substrate according to the present invention may be either a single crystal or a polycrystal, and the polycrystal is a group 13 film formed on the substrate by MOCVD by controlling the grain size. This is preferable in that the crystallinity of the nitride crystal is easily improved. In the case of a polycrystal, the zinc oxide substrate includes zinc oxide crystal particles. The zinc oxide crystal particle is a particle composed of zinc oxide, and Mg and the dopant element (that is, Al, Ga and / or In) are substituted with a hexagonal wurtzite structure Zn site or O site. Alternatively, it may be contained as an additive element that does not constitute a crystal structure, or may exist at a grain boundary.
 酸化亜鉛基板が多結晶体である場合、多結晶体の平均粒径(すなわち酸化亜鉛基板を構成する結晶粒の平均粒径)は10~200μmが好ましく、より好ましくは30~200μm、さらに好ましくは50~200μmである。これにより、MOCVD法により基板上に成膜される第13族窒化物結晶の結晶性をさらに向上させることができる。また、酸化亜鉛基板を構成する結晶粒のアスペクト比が2.0以下であるのが好ましく、より好ましくは1.5以下、さらに好ましくは1.4以下で、特に好ましくは1.0~1.3である。このアスペクト比は、(酸化亜鉛基板の板面に平行な方向)/(酸化亜鉛基板の板面に垂直な方向)の長さ比であり、上記範囲内であるとMOCVD法により基板上に成膜される第13族窒化物結晶の結晶性がさらに向上するとの利点がある。 When the zinc oxide substrate is a polycrystal, the average grain size of the polycrystal (that is, the average grain size of the crystal grains constituting the zinc oxide substrate) is preferably 10 to 200 μm, more preferably 30 to 200 μm, still more preferably. 50 to 200 μm. Thereby, the crystallinity of the group 13 nitride crystal formed on the substrate by the MOCVD method can be further improved. The aspect ratio of the crystal grains constituting the zinc oxide substrate is preferably 2.0 or less, more preferably 1.5 or less, still more preferably 1.4 or less, and particularly preferably 1.0 to 1. 3. This aspect ratio is a length ratio of (direction parallel to the plate surface of the zinc oxide substrate) / (direction perpendicular to the plate surface of the zinc oxide substrate), and if within this range, the aspect ratio is formed on the substrate by the MOCVD method. There is an advantage that the crystallinity of the Group 13 nitride crystal to be formed is further improved.
 本発明において、平均粒径及びアスペクト比は次のようにして決定することができる。すなわち、酸化亜鉛基板より約10mm角の試料を切り出し、板面と垂直な面を研磨し、濃度0.3Mの硝酸にて10秒間エッチングを行った後、走査電子顕微鏡にて画像を撮影する。視野範囲は、円板面に平行及び垂直な直線を引いた場合に、いずれの直線も10個から30個の粒子と交わるような直線が引けるような視野範囲とする。円板面に平行に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をaとし、同様に、円板面に垂直に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をaとし、(a+a)/2を平均粒径とし、a/aをアスペクト比とする。 In the present invention, the average particle diameter and the aspect ratio can be determined as follows. That is, a sample about 10 mm square is cut out from a zinc oxide substrate, a surface perpendicular to the plate surface is polished, etched with nitric acid having a concentration of 0.3 M for 10 seconds, and then an image is taken with a scanning electron microscope. The visual field range is a visual field range in which straight lines intersecting with 10 to 30 particles can be drawn when straight lines parallel and perpendicular to the disk surface are drawn. In three straight lines drawn parallel to the disc surface, for all particles straight lines intersect, the individual values obtained by multiplying 1.5 to that the length of the inner segment and an average particle as a 1 Similarly, in the three straight lines drawn perpendicular to the disk surface, the value obtained by multiplying the average of the lengths of the inner line segments of each particle by 1.5 for all the particles intersecting each other. Is a 2 , (a 1 + a 2 ) / 2 is the average particle size, and a 1 / a 2 is the aspect ratio.
 好ましい多結晶体は配向多結晶体である。配向多結晶体においては、酸化亜鉛基板を構成する結晶粒子が一定の方向に配向したものである。配向多結晶体の板面において配向する面方位は特に限定されるものではないが、(002)面であってもよいし、(100)面や(110)面であってもよいし、他の面であってもよい。 A preferred polycrystalline body is an oriented polycrystalline body. In the oriented polycrystal, crystal grains constituting the zinc oxide substrate are oriented in a certain direction. The plane orientation to be oriented on the plate surface of the oriented polycrystal is not particularly limited, but may be the (002) plane, the (100) plane, the (110) plane, and the like. It may be a surface.
 本発明による酸化亜鉛基板は、基板面における(002)面の配向度、(100)面の配向度、(110)面の配向度、又は(100)面及び(110)面の合計配向度が30%以上であるのが好ましく、より好ましくは40%以上、さらに好ましくは50%以上、さらにより好ましくは60%以上、特に好ましくは70%以上、特により好ましくは80%以上、最も好ましくは90%以上である。これらの配向度が高いほど発光デバイスを作製した際の発光効率が向上するとの利点がある。 The zinc oxide substrate according to the present invention has an orientation degree of (002) plane, an orientation degree of (100) plane, an orientation degree of (110) plane, or a total orientation degree of (100) plane and (110) plane on the substrate surface. It is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more, even more preferably 60% or more, particularly preferably 70% or more, particularly more preferably 80% or more, and most preferably 90%. % Or more. There is an advantage that the higher the degree of orientation, the higher the light emission efficiency when a light emitting device is manufactured.
 特に、基板面における(100)面の配向度、(110)面の配向度、又は(100)面及び(110)面の合計配向度が30%以上であるのが好ましく、より好ましくは40%以上、さらに好ましくは50%以上、さらにより好ましくは60%以上、特に好ましくは70%以上、特により好ましくは80%以上、最も好ましくは90%以上である。このようにm面やa面に配向した酸化亜鉛基板上にMOCVD法でGaN膜を作製した場合、c面に配向した酸化亜鉛基板を用いた場合と比べて、MOCVD-GaN膜の結晶品質が良くなり、膜が剥がれにくくなるとの利点がある。膜の剥がれはLED構造を作製する際にリーク源となるため、少ない方が好ましい。また、剥がれの少ない結晶性の高いGaNを酸化亜鉛基板上に成膜可能となることで、特許文献2(特開2007-254206号公報)に記載されるような、フラックス法によるGaNの成長が可能となる。フラックス法でのGaN成長に用いられるNaフラックスは、酸化亜鉛との反応性が高く、高温で直接接触させると酸化亜鉛基板が溶解してしまうが、高結晶性のGaNを気相法により予め成膜しておくことで、これが種結晶として機能するだけでなく、酸化亜鉛基板の溶解を抑制するための保護層として機能する。MOCVD法GaN膜に剥がれがあると、剥がれ部よりNaフラックスが侵入し、ZnOと反応、溶解させてしまうため、剥がれ部は少ない方が好ましい。GaNと酸化亜鉛は格子定数及び熱膨張係数が近いため、酸化亜鉛基板を用いることで、フラックス法においても良好な品質のGaNを成長させることが可能となる。 In particular, the orientation degree of the (100) plane, the orientation degree of the (110) plane, or the total orientation degree of the (100) plane and the (110) plane on the substrate surface is preferably 30% or more, more preferably 40%. More preferably, it is 50% or more, still more preferably 60% or more, particularly preferably 70% or more, particularly more preferably 80% or more, and most preferably 90% or more. Thus, when a GaN film is formed by MOCVD on a zinc oxide substrate oriented in the m-plane or a-plane, the crystal quality of the MOCVD-GaN film is higher than when a zinc oxide substrate oriented in the c-plane is used. There is an advantage that the film is improved and the film is hardly peeled off. Since peeling of the film becomes a leak source when the LED structure is manufactured, it is preferable that the film peels less. Further, since GaN having high crystallinity with little peeling can be formed on a zinc oxide substrate, growth of GaN by a flux method as described in Patent Document 2 (Japanese Patent Laid-Open No. 2007-254206) can be achieved. It becomes possible. Na flux used for GaN growth by the flux method has high reactivity with zinc oxide, and the zinc oxide substrate dissolves when directly contacted at a high temperature. However, highly crystalline GaN is formed in advance by a vapor phase method. By forming a film, this not only functions as a seed crystal but also functions as a protective layer for suppressing dissolution of the zinc oxide substrate. If the MOCVD GaN film is peeled off, Na flux penetrates from the peeled portion and reacts and dissolves with ZnO. Therefore, it is preferable that the number of peeled portions is small. Since GaN and zinc oxide have close lattice constants and thermal expansion coefficients, it is possible to grow GaN of good quality even in the flux method by using a zinc oxide substrate.
 したがって、(002)面の配向度、(100)面の配向度、(110)面の配向度、又は(100)面及び(110)面の合計配向度の上限は特に限定されるべきではなく、理想的には100%である。この(002)面の配向度、(100)面の配向度、(110)面の配向度、又は(100)面及び(110)面の合計配向度は、XRD装置(株式会社リガク製 製品名「RINT-TTR III」)を用い、円板状酸化亜鉛系基板の表面に対してX線を照射したときのXRDプロファイルを測定することにより行うことができる。 Therefore, the upper limit of the degree of orientation of the (002) plane, the degree of orientation of the (100) plane, the degree of orientation of the (110) plane, or the total degree of orientation of the (100) plane and the (110) plane should not be particularly limited. Ideally 100%. The degree of orientation of the (002) plane, the degree of orientation of the (100) plane, the degree of orientation of the (110) plane, or the total degree of orientation of the (100) plane and the (110) plane is XRD apparatus (product name, manufactured by Rigaku Corporation). Using “RINT-TTR III”), the surface of the disc-shaped zinc oxide substrate can be measured by measuring the XRD profile when X-rays are irradiated.
 (002)面の配向度は、以下の式により算出することができる(ただし、I(102)とI(110)が無視可能なレベルの場合、省略可能である)。
Figure JPOXMLDOC01-appb-M000001
The degree of orientation of the (002) plane can be calculated by the following formula (however, it can be omitted when I 0 (102) and I 0 (110) are negligible levels).
Figure JPOXMLDOC01-appb-M000001
 また、(100)面の配向度は、以下の式により算出することができる(ただし、I(102)とI(110)が無視可能なレベルの場合、省略可能である)。
Figure JPOXMLDOC01-appb-M000002
Further, the degree of orientation of the (100) plane can be calculated by the following formula (however, it can be omitted when I 0 (102) and I 0 (110) are negligible levels).
Figure JPOXMLDOC01-appb-M000002
 さらに、(110)面の配向度は、以下の式により算出することができる(ただし、I(102)が無視可能なレベルの場合、省略可能である)。
Figure JPOXMLDOC01-appb-M000003
Furthermore, the degree of orientation of the (110) plane can be calculated by the following formula (however, it can be omitted when I 0 (102) is a negligible level).
Figure JPOXMLDOC01-appb-M000003
 さらに、(100)及び(110)面の合計配向度は、以下の式により算出することができる(ただし、I(102)が無視可能なレベルの場合、省略可能である)。
Figure JPOXMLDOC01-appb-M000004
Furthermore, the total orientation degree of the (100) and (110) planes can be calculated by the following equation (however, it can be omitted when I 0 (102) is a negligible level).
Figure JPOXMLDOC01-appb-M000004
 第13族窒化物結晶の製造方法
 上述したとおり、本発明の酸化亜鉛基板を用いることで、MOCVD法により、結晶性に優れた第13族窒化物結晶を基板上に成長させることができる。すなわち、本発明による第13族窒化物結晶の製造は、上述した本発明の酸化亜鉛基板を用意し、この酸化亜鉛基板上に、GaAlIn1-x-yN(式中、0≦x≦1、0≦y≦1)で表される第13族窒化物結晶をMOCVD法により成長させることにより行われる。第13族窒化物結晶の詳細については前述したとおりである。
Method for Producing Group 13 Nitride Crystal As described above, by using the zinc oxide substrate of the present invention, a group 13 nitride crystal having excellent crystallinity can be grown on the substrate by MOCVD. That is, for the production of the Group 13 nitride crystal according to the present invention, the above-described zinc oxide substrate of the present invention is prepared, and Ga x Al y In 1-xy N (wherein 0 It is carried out by growing a group 13 nitride crystal represented by ≦ x ≦ 1, 0 ≦ y ≦ 1) by the MOCVD method. The details of the Group 13 nitride crystal are as described above.
 MOCVD法は、酸化亜鉛基板上に第13族窒化物結晶をエピタキシャル成長させることが可能な公知の手順及び条件を適宜採用して行えばよい。例えば、窒化ガリウム系材料からなる第13族窒化物結晶を製造する場合、MOCVD装置内に、少なくともガリウム(Ga)を含む有機金属ガス(例えばトリメチルガリウム)と窒素(N)を少なくとも含むガス(例えばアンモニア)を原料として基板上にフローさせ、水素、窒素又はその両方を含む雰囲気等において好ましくは450~1200℃、より好ましくは600~1100℃の温度範囲で成長させればよい。この場合、バンドギャップ制御のためインジウム(In)、アルミニウム(Al)、n型及びp型ドーパントとしてシリコン(Si)及びマグネシウム(Mg)を含む有機金属ガス(例えばトリメチルインジウム、トリメチルアルミニウム、モノシラン、ジシラン、ビス-シクロペンタジエニルマグネシウム)を適宜導入して成膜を行ってもよい。 The MOCVD method may be performed by appropriately adopting known procedures and conditions capable of epitaxially growing a group 13 nitride crystal on a zinc oxide substrate. For example, when a Group 13 nitride crystal made of a gallium nitride-based material is manufactured, a gas containing at least an organometallic gas containing at least gallium (Ga) (for example, trimethylgallium) and nitrogen (N) in an MOCVD apparatus (for example, Ammonia) is flowed over the substrate as a raw material, and is preferably grown in a temperature range of 450 to 1200 ° C., more preferably 600 to 1100 ° C. in an atmosphere containing hydrogen, nitrogen, or both. In this case, in order to control the band gap, organometallic gases containing indium (In), aluminum (Al), silicon (Si) and magnesium (Mg) as n-type and p-type dopants (for example, trimethylindium, trimethylaluminum, monosilane, disilane) Bis-cyclopentadienylmagnesium) may be appropriately introduced to form a film.
 本発明の酸化亜鉛基板を用いることで、酸化亜鉛基板の表面に、絶縁性の層を形成することなく、第13族窒化物結晶を成長させることができる。また、こうして酸化亜鉛基板上に成長した第13族窒化物結晶の結晶方位は、酸化亜鉛基板を構成する酸化亜鉛粒子の結晶方位と概ね一致しているのが好ましく、それにより、MOCVD法により基板上に成膜される第13族窒化物結晶の結晶性がさらに向上するとの利点がある。 By using the zinc oxide substrate of the present invention, it is possible to grow a group 13 nitride crystal without forming an insulating layer on the surface of the zinc oxide substrate. Further, the crystal orientation of the group 13 nitride crystal thus grown on the zinc oxide substrate is preferably substantially coincident with the crystal orientation of the zinc oxide particles constituting the zinc oxide substrate, whereby the substrate is formed by MOCVD. There is an advantage that the crystallinity of the Group 13 nitride crystal formed thereon is further improved.
 酸化亜鉛基板の製造方法
 本発明による酸化亜鉛基板は、Mgを0.1重量%以上含有する酸化亜鉛基板が最終的に得られるかぎり、単結晶体、多結晶体、及び配向の有無を問わず、いかなる方法により製造されたものであってもよい。したがって、本発明による酸化亜鉛基板の製造は、Mgを酸化亜鉛に固溶させることが可能な公知の手順及び条件を適宜採用して行えばよい。
Method for Producing Zinc Oxide Substrate The zinc oxide substrate according to the present invention is not limited to single crystals, polycrystals, and the presence or absence of orientation as long as a zinc oxide substrate containing 0.1 wt% or more of Mg is finally obtained. It may be produced by any method. Therefore, the production of the zinc oxide substrate according to the present invention may be carried out by appropriately adopting known procedures and conditions capable of dissolving Mg in zinc oxide.
 例えば、酸化亜鉛基板の好ましい態様である配向多結晶酸化亜鉛基板(配向多結晶酸化亜鉛焼結体)は、以下に説明するように、原料に板状酸化亜鉛粉末を用いて成形及び焼結を行うことにより製造することができる。 For example, an oriented polycrystalline zinc oxide substrate (oriented polycrystalline zinc oxide sintered body), which is a preferred embodiment of a zinc oxide substrate, is molded and sintered using a plate-like zinc oxide powder as a raw material as described below. It can be manufactured by doing.
(1)板状酸化亜鉛粉末の作製
 原料となる板状酸化亜鉛粉末は、後述する成形及び焼成工程によって配向焼結体(配向多結晶体)が得られる限り、いかなる方法により製造されたものであってもよい。
(1) Preparation of plate-like zinc oxide powder The plate-like zinc oxide powder used as a raw material was produced by any method as long as an oriented sintered body (oriented polycrystalline body) was obtained by the molding and firing steps described later. There may be.
 例えば、(002)面配向焼結体を得るには、以下の製法を持って製造した板状酸化亜鉛粉末を原料として用いればよい。該板状酸化亜鉛粉末は、亜鉛イオン含有原料溶液を用いて溶液法により酸化亜鉛前駆体板状粒子を生成させる工程と、前駆体板状粒子を150℃/h以下の昇温速度で仮焼温度まで昇温させて仮焼し、複数の酸化亜鉛板状粒子からなる酸化亜鉛粉末を生成させる工程とを有する方法により作製することができる。 For example, in order to obtain a (002) plane oriented sintered body, a plate-like zinc oxide powder produced by the following production method may be used as a raw material. The plate-like zinc oxide powder includes a step of producing zinc oxide precursor plate-like particles by a solution method using a zinc ion-containing raw material solution, and calcining the precursor plate-like particles at a heating rate of 150 ° C./h or less. And calcining by raising the temperature to a temperature and producing a zinc oxide powder composed of a plurality of zinc oxide plate-like particles.
 (002)面配向焼結体を得るための板状酸化亜鉛粉末の製造方法においては、まず、亜鉛イオン含有原料溶液を用いて溶液法により酸化亜鉛前駆体板状粒子を生成させる。亜鉛イオン供給源の例としては、硫酸亜鉛、硝酸亜鉛、塩化亜鉛、酢酸亜鉛等の有機酸塩、亜鉛アルコキシド等が挙げられるが、硫酸亜鉛が後述する硫酸イオンも供給できる点で好ましい。溶液法による酸化亜鉛前駆体板状粒子の生成手法は特に限定されず公知の手法に従って行うことができる。 In the method for producing a plate-like zinc oxide powder for obtaining a (002) plane-oriented sintered body, first, zinc oxide precursor plate-like particles are produced by a solution method using a zinc ion-containing raw material solution. Examples of the zinc ion supply source include organic acid salts such as zinc sulfate, zinc nitrate, zinc chloride, and zinc acetate, zinc alkoxide, and the like, but zinc sulfate is preferable because sulfate ions described later can also be supplied. The production method of the zinc oxide precursor plate-like particles by the solution method is not particularly limited, and can be performed according to a known method.
 原料溶液は水溶性有機物質及び硫酸イオンを含むのが多孔質として比表面積を大きくできる点で好ましい。水溶性有機物質の例としてはアルコール類、ポリオール類、ケトン類、ポリエーテル類、エステル類、カルボン酸類、ポリカルボン酸類、セルロース類、糖類、スルホン酸類、アミノ酸類、及びアミン類が挙げられ、より具体的には、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール等の脂肪族アルコール、エチレングリコール、プロパンジオール、ブタンジオール、グルセリン、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコール、フェノール、カテコール、クレゾール等の芳香族アルコール、フルフリルアコール等の複素環を有するアルコール類、アセトン、メチルエチルケトン、アセチルアセトン等のケトン類、エチルエーテル、テトラヒドロフラン、ジオキサン、ポリオキシアルキレンエーテル、エチレンオキサイド付加物、プロピレンオキサイド付加物等のエーテルあるいはポリエーテル類、酢酸エチル、アセト酢酸エチル、グリシンエチルエステル等のエステル類、蟻酸、酢酸、プロピオン酸、ブタン酸、酪酸、蓚酸、マロン酸、クエン酸、酒石酸、グルコン酸、サリチル酸、安息香酸、アクリル酸、マレイン酸、グリセリン酸、エレオステアリン酸、ポリアクリル酸、ポリマレイン酸、アクリル酸-マレイン酸コポリマー等のカルボン酸、ポリカルボン酸、あるいはヒドロキシカルボン酸やその塩類、カルボキシメチルセルロース類、グルコース、ガラクトース等の単糖類、蔗糖、ラクトース、アミロース、キチン、セルロース等の多糖類、アルキルベンゼンスルホン酸、パラトルエンスルホン酸、アルキルスルホン酸、α-オレフィンスルホン酸、ポリオキシエチレンアルキルスルホン酸、リグニンスルホン酸、ナフタレンスルホン酸等のスルホン酸類やその塩類、グリシン、グルタミン酸、アスパラギン酸、アラニン等のアミノ酸、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ブタノールアミン等のヒドロキシアミン類、トリメチルアミノエチルアルキルアミド、アルキルピリジニウム硫酸塩、アルキルトリメチルアンモニウムハロゲン化物、アルキルベタイン、アルキルジエチレントリアミノ酢酸等が挙げられる。これらの水溶性有機物質の中でも、水酸基、カルボキシル基、アミノ基のうち少なくとも一種の官能基を有するものが好ましく、水酸基とカルボキシル基を有するヒドロキシカルボン酸やその塩類が特に好ましく、例えばグルコン酸ナトリウム、酒石酸等が挙げられる。水溶性有機物質は、後述するアンモニア水が添加された原料溶液中に約0.001重量%~約10重量%の範囲で共存させるのが好ましい。好ましい硫酸イオン供給源は、上述したとおり硫酸亜鉛である。原料溶液は前述したドーパント等の添加物質を更に含むものであってもよい。 The raw material solution preferably contains a water-soluble organic substance and sulfate ions because it is porous and can increase the specific surface area. Examples of water-soluble organic substances include alcohols, polyols, ketones, polyethers, esters, carboxylic acids, polycarboxylic acids, celluloses, saccharides, sulfonic acids, amino acids, and amines, and more Specifically, aliphatic alcohols such as methanol, ethanol, propanol, butanol, pentanol and hexanol, aliphatic polyhydric alcohols such as ethylene glycol, propanediol, butanediol, glycerol, polyethylene glycol and polypropylene glycol, phenol and catechol , Aromatic alcohols such as cresol, alcohols having a heterocyclic ring such as furfuryl alcohol, ketones such as acetone, methyl ethyl ketone, acetylacetone, ethyl ether, tetrahydrofuran, dioxane, poly Ethers or polyethers such as xylalkylene ether, ethylene oxide adduct, propylene oxide adduct, esters such as ethyl acetate, ethyl acetoacetate, glycine ethyl ester, formic acid, acetic acid, propionic acid, butanoic acid, butyric acid, succinic acid, Malonic acid, citric acid, tartaric acid, gluconic acid, salicylic acid, benzoic acid, acrylic acid, maleic acid, glyceric acid, eleostearic acid, polyacrylic acid, polymaleic acid, carboxylic acid such as acrylic acid-maleic acid copolymer, polycarboxylic acid Acids or hydroxycarboxylic acids and salts thereof, carboxymethylcelluloses, monosaccharides such as glucose and galactose, polysaccharides such as sucrose, lactose, amylose, chitin and cellulose, alkylbenzenesulfonic acid, paratoluenesulfonic acid, alcohol Kill sulfonic acid, α-olefin sulfonic acid, polyoxyethylene alkyl sulfonic acid, lignin sulfonic acid, naphthalene sulfonic acid and other sulfonic acids and their salts, glycine, glutamic acid, aspartic acid, alanine and other amino acids, monoethanolamine, diethanolamine, Examples thereof include hydroxyamines such as ethanolamine and butanolamine, trimethylaminoethylalkylamide, alkylpyridinium sulfate, alkyltrimethylammonium halide, alkylbetaine, and alkyldiethylenetriaminoacetic acid. Among these water-soluble organic substances, those having at least one functional group among hydroxyl group, carboxyl group, and amino group are preferable, hydroxycarboxylic acid having a hydroxyl group and a carboxyl group and salts thereof are particularly preferable, for example, sodium gluconate, Examples include tartaric acid. The water-soluble organic substance is preferably allowed to coexist in a raw material solution to which ammonia water described later is added in a range of about 0.001 wt% to about 10 wt%. A preferred sulfate ion source is zinc sulfate as described above. The raw material solution may further contain an additive substance such as the dopant described above.
 このとき、原料溶液は70~100℃の前駆反応温度に加熱されるのが好ましく、より好ましくは80~100℃である。また、この加熱後又はその間に原料溶液にアンモニア水が添加されるのが好ましく、アンモニア水が添加された原料溶液が70~100℃で0.5~10時間保持されるのが好ましく、より好ましくは80~100℃で2~8時間である。 At this time, the raw material solution is preferably heated to a precursor reaction temperature of 70 to 100 ° C., more preferably 80 to 100 ° C. Further, it is preferable that ammonia water is added to the raw material solution after or during this heating, and the raw material solution to which the ammonia water is added is preferably held at 70 to 100 ° C. for 0.5 to 10 hours, more preferably. Is 80 to 100 ° C. for 2 to 8 hours.
 次に、前駆体板状粒子を150℃/h以下の昇温速度で仮焼温度まで昇温させて仮焼し、複数の酸化亜鉛板状粒子からなる酸化亜鉛粉末を生成させる。昇温速度を150℃/h以下と遅くすることで、前駆物質から酸化亜鉛に変化する際に前駆物質の結晶面が酸化亜鉛に引き継がれ易くなり、成形体における板状粒子の配向度が向上するものと考えられる。また、一次粒子同士の連結性が増大して板状粒子が崩れにくくなるとも考えられる。好ましい昇温速度は120℃/h以下であり、より好ましくは100℃/h以下であり、更に好ましくは50℃/h以下であり、特に好ましくは30℃/h以下であり、最も好ましくは15℃/h以下である。仮焼前に、酸化亜鉛前駆体粒子は洗浄、濾過及び乾燥されるのが好ましい。仮焼温度は水酸化亜鉛等の前駆化合物が酸化亜鉛に変化できる温度であれば特に限定されないが、好ましくは800~1100℃、より好ましくは850~1000℃であり、このような仮焼温度で前駆体板状粒子が好ましくは0~3時間、より好ましくは0~1時間保持される。このような温度保持条件であると水酸化亜鉛等の前駆化合物を酸化亜鉛により確実に変化させることができる。このような仮焼工程により、前駆体板状粒子が多くの気孔を有する板状酸化亜鉛粒子に変化する。上記に示した方法の他、公知の方法(例えば非特許文献3(Gui Han et. al., e-J. Surf. Sci. Nanotech. Vol. 7 (2009) 354-357)参照)も適用可能である。 Next, the precursor plate-like particles are heated to the calcination temperature at a heating rate of 150 ° C./h or less and calcined to generate zinc oxide powder composed of a plurality of zinc oxide plate-like particles. By slowing the heating rate to 150 ° C / h or less, the crystal surface of the precursor is easily transferred to zinc oxide when changing from precursor to zinc oxide, and the degree of orientation of plate-like particles in the compact is improved. It is thought to do. It is also considered that the connectivity between the primary particles increases and the plate-like particles are less likely to collapse. A preferable temperature increase rate is 120 ° C./h or less, more preferably 100 ° C./h or less, further preferably 50 ° C./h or less, particularly preferably 30 ° C./h or less, and most preferably 15 It is below ℃ / h. Prior to calcination, the zinc oxide precursor particles are preferably washed, filtered and dried. The calcination temperature is not particularly limited as long as the precursor compound such as zinc hydroxide can be changed to zinc oxide, but is preferably 800 to 1100 ° C, more preferably 850 to 1000 ° C. The precursor plate-like particles are preferably held for 0 to 3 hours, more preferably 0 to 1 hour. Under such temperature holding conditions, a precursor compound such as zinc hydroxide can be reliably changed by zinc oxide. By such a calcination step, the precursor plate-like particles are changed to plate-like zinc oxide particles having many pores. In addition to the method described above, a known method (for example, see Non-Patent Document 3 (Gui Han et. Al., EJ. Surf. Sci. Nanotech. Vol. 7 (2009) 354-357)) is also applicable. .
 一方、(100)面配向焼結体を得るには、以下の製法を持って製造した板状酸化亜鉛粉末を原料として用いればよい。該板状酸化亜鉛粉末は、亜鉛塩水溶液にアルカリ水溶液を加えて60~95℃で2~10時間攪拌することにより沈殿物を析出させ、この沈殿物を洗浄及び乾燥し、さらに粉砕することにより得ることができる。亜鉛塩水溶液は、亜鉛イオンを含む水溶液であればよく、好ましくは、硝酸亜鉛、塩化亜鉛、酢酸亜鉛等の亜鉛塩の水溶液である。アルカリ水溶液は、水酸化ナトリウム、水酸化カリウム等の水溶液であるのが好ましい。亜鉛塩水溶液及びアルカリ水溶液の濃度及び混合比は特に限定されないが、モル濃度が同じ亜鉛塩水溶液及びアルカリ水溶液を同じ体積比で混合するのが好ましい。沈殿物の洗浄はイオン交換水で複数回行うのが好ましい。洗浄された沈殿物の乾燥は100~300℃で行われるのが好ましい。乾燥された沈殿物は板状の酸化亜鉛一次粒子が凝集した球状の二次粒子であるため、粉砕工程に付されるのが好ましい。この粉砕は、洗浄された沈殿物にエタノール等の溶媒を加えてボールミルで1~10時間行うのが好ましい。この粉砕によって、一次粒子としての板状酸化亜鉛粉末が得られる。こうして得られる板状酸化亜鉛粉末は、好ましくは0.1~1.0μmであり、より好ましくは0.3~0.8μmの体積基準D50平均粒径を有する。この体積基準D50平均粒径はレーザー回折式粒度分布測定装置によって測定することができる。 On the other hand, in order to obtain a (100) plane oriented sintered body, a plate-like zinc oxide powder produced by the following production method may be used as a raw material. The plate-like zinc oxide powder is prepared by adding an aqueous alkaline salt solution to an aqueous zinc salt solution and stirring at 60 to 95 ° C. for 2 to 10 hours to precipitate a precipitate, washing and drying the precipitate, and further pulverizing the precipitate. Obtainable. The aqueous zinc salt solution may be an aqueous solution containing zinc ions, and is preferably an aqueous solution of a zinc salt such as zinc nitrate, zinc chloride, or zinc acetate. The alkaline aqueous solution is preferably an aqueous solution of sodium hydroxide, potassium hydroxide or the like. The concentration and mixing ratio of the zinc salt aqueous solution and the alkaline aqueous solution are not particularly limited, but it is preferable to mix the zinc salt aqueous solution and the alkaline aqueous solution having the same molar concentration in the same volume ratio. It is preferable to wash the precipitate with ion exchange water a plurality of times. The washed precipitate is preferably dried at 100 to 300 ° C. Since the dried precipitate is a spherical secondary particle in which plate-like zinc oxide primary particles are aggregated, it is preferably subjected to a pulverization step. This pulverization is preferably carried out by adding a solvent such as ethanol to the washed precipitate in a ball mill for 1 to 10 hours. By this pulverization, plate-like zinc oxide powder as primary particles is obtained. The plate-like zinc oxide powder thus obtained preferably has a volume-based D50 average particle diameter of 0.1 to 1.0 μm, more preferably 0.3 to 0.8 μm. This volume standard D50 average particle diameter can be measured by a laser diffraction particle size distribution measuring apparatus.
 ところで、後続の工程である配向成形体の作製に先立ち、Mgと、所望によりAl、Ga及びInからなる群から選択されるドーパント元素とが酸化亜鉛粉末に添加されるか、又はMg及び所望により上記ドーパント元素が酸化亜鉛粉末に予め含有されるのが好ましい。これらのドーパント元素はこれらの元素を含む化合物又はイオンの形態で酸化亜鉛粉末に添加すればよい。添加物質の添加方法は特に限定されないが、酸化亜鉛粉末の微細気孔の内部にまで添加物質を行き渡らせるため、(1)添加物質をナノ粒子等の微細粉末の形態で酸化亜鉛粉末に添加する方法、(2)添加物質を溶媒に溶解させた後に酸化亜鉛粉末を添加し、この溶液を乾燥する方法等が好ましく例示される。Mgを含む添加物質(例えば酸化マグネシウム)は、最終的に得られる酸化亜鉛基板におけるMg含有量が0.1重量%以上、好ましくは0.1~5.0重量%、より好ましくは0.1~4.5重量%、さらに好ましくは1.0~4.0重量%、特に好ましくは2.0~4.0重量%となるような量で添加すればよい。Al、Ga及びInからなる群から選択される1種以上のドーパント元素を含む添加物質が添加される場合は、最終的に得られる酸化亜鉛基板におけるドーパント元素含有量が0.05~2重量%以上、より好ましくは0.1~1.5重量%、さらに好ましくは0.2~1.3重量%となるような量で添加すればよい。 By the way, prior to the production of the oriented molded body, which is a subsequent process, Mg and a dopant element selected from the group consisting of Al, Ga, and In as required are added to the zinc oxide powder, or Mg and optionally It is preferable that the dopant element is previously contained in the zinc oxide powder. These dopant elements may be added to the zinc oxide powder in the form of compounds or ions containing these elements. The addition method of the additive substance is not particularly limited, but in order to spread the additive substance even inside the fine pores of the zinc oxide powder, (1) a method of adding the additive substance to the zinc oxide powder in the form of fine powder such as nanoparticles (2) A method of adding the zinc oxide powder after dissolving the additive substance in the solvent and drying the solution is preferably exemplified. The additive substance containing Mg (for example, magnesium oxide) has a Mg content of 0.1 wt% or more, preferably 0.1 to 5.0 wt%, more preferably 0.1 wt% in the finally obtained zinc oxide substrate. It may be added in an amount of ˜4.5% by weight, more preferably 1.0 to 4.0% by weight, particularly preferably 2.0 to 4.0% by weight. When an additive substance containing one or more dopant elements selected from the group consisting of Al, Ga and In is added, the dopant element content in the finally obtained zinc oxide substrate is 0.05 to 2% by weight. More preferably, it may be added in an amount such that it is 0.1 to 1.5% by weight, more preferably 0.2 to 1.3% by weight.
(2)成形及び焼成工程
 上記の方法で製造した板状酸化亜鉛粉末をせん断力を用いた手法により配向させ、配向成形体とする。このとき、板状酸化亜鉛粉末に、ドーパント用の金属酸化物粉末(例えばα-Al粉末)等の他の元素又は成分を添加してもよい。せん断力を用いた手法の好ましい例としては、テープ成形、押出し成形、ドクターブレード法、及びこれらの任意の組合せが挙げられる。せん断力を用いた配向手法は、上記例示したいずれの手法においても、板状酸化亜鉛粉末にバインダー、可塑剤、分散剤、分散媒等の添加物を適宜加えてスラリー化し、このスラリーをスリット状の細い吐出口を通過させることにより、基板上にシート状に吐出及び成形するのが好ましい。吐出口のスリット幅は10~400μmとするのが好ましい。なお、分散媒の量はスラリー粘度が5000~100000cPとなるような量にするのが好ましく、より好ましくは8000~60000cPである。シート状に成形した配向成形体の厚さは5~300μmであるのが好ましく、より好ましくは10~200μmである。このシート状に成形した配向成形体を多数枚積み重ねて、所望の厚さを有する前駆積層体とし、この前駆積層体にプレス成形を施すのが好ましい。このプレス成形は前駆積層体を真空パック等で包装して、50~95℃の温水中で10~2000kgf/cmの圧力で静水圧プレスにより好ましく行うことができる。また、押出し成形を用いる場合には、金型内の流路の設計により、金型内で細い吐出口を通過した後、シート状の成形体が金型内で一体化され、積層された状態で成形体が排出されるようにしてもよい。得られた成形体には公知の条件に従い脱脂を施すのが好ましい。
(2) Molding and firing step The plate-like zinc oxide powder produced by the above method is oriented by a technique using shearing force to obtain an oriented molded body. At this time, another element or component such as a metal oxide powder for dopant (for example, α-Al 2 O 3 powder) may be added to the plate-like zinc oxide powder. Preferable examples of the technique using shearing force include tape molding, extrusion molding, doctor blade method, and any combination thereof. In any of the methods exemplified above, the orientation method using the shearing force is made into a slurry by appropriately adding additives such as a binder, a plasticizer, a dispersant, and a dispersion medium to the plate-like zinc oxide powder. It is preferable to discharge and form the sheet on the substrate by passing through a thin discharge port. The slit width of the discharge port is preferably 10 to 400 μm. The amount of the dispersion medium is preferably such that the slurry viscosity is 5000 to 100,000 cP, more preferably 8000 to 60000 cP. The thickness of the oriented molded body formed into a sheet is preferably 5 to 300 μm, more preferably 10 to 200 μm. It is preferable to stack a large number of oriented molded bodies formed in this sheet shape to form a precursor laminate having a desired thickness, and press-mold the precursor laminate. This press molding can be preferably performed by isostatic pressing at a pressure of 10 to 2000 kgf / cm 2 in warm water at 50 to 95 ° C. by packaging the precursor laminate with a vacuum pack or the like. In addition, when using extrusion molding, the sheet-shaped molded body is integrated and laminated in the mold after passing through a narrow discharge port in the mold due to the design of the flow path in the mold. The molded body may be discharged. The obtained molded body is preferably degreased according to known conditions.
 上記のようにして得られた配向成形体は1000~1500℃、好ましくは1100~1400℃の焼成温度で焼成されて、酸化亜鉛結晶粒子を配向して含んでなる酸化亜鉛焼結体を形成する。上記焼成温度での焼成時間は特に限定されないが、好ましくは1~10時間であり、より好ましくは2~5時間である。こうして得られた酸化亜鉛焼結体は、前述した原料となる板状酸化亜鉛粉末の種類により(100)面、(002)面等に配向した配向焼結体、すなわち配向多結晶酸化亜鉛基板となる。その配向度は高いものであり、好ましくは基板表面における50%以上であるのが好ましく、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上、特に好ましくは90%以上である。 The oriented molded body obtained as described above is fired at a firing temperature of 1000 to 1500 ° C., preferably 1100 to 1400 ° C., to form a zinc oxide sintered body comprising oriented zinc oxide crystal particles. . The firing time at the above-mentioned firing temperature is not particularly limited, but is preferably 1 to 10 hours, and more preferably 2 to 5 hours. The zinc oxide sintered body thus obtained is an oriented sintered body oriented in the (100) plane, (002) plane, etc., depending on the type of plate-like zinc oxide powder used as the raw material, that is, an oriented polycrystalline zinc oxide substrate and Become. The degree of orientation is high, preferably 50% or more on the substrate surface, preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, particularly preferably 90% or more. is there.
 本発明を以下の例によってさらに具体的に説明する。 The present invention will be described more specifically by the following examples.
 例1
(1)酸化亜鉛基板の作製
 市販の高純度ZnO粉末(比表面積9.4m/g)99.5重量部と、市販の高純度MgO粉末(比表面積23m/g)0.5重量部とを、エタノールを溶媒としてボールミルにて4時間混合した。得られたスラリーをロータリーエバポレーターにて乾燥し、混合粉末を得た。得られた混合粉末100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)15重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)6.2重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)3重量部と、分散媒(2-エチルヘキサノール)とを混合した。分散媒の量はスラリー粘度が10000cPとなるように調整した。こうして調製されたスラリーを、ドクターブレード法により、PETフィルムの上に、乾燥後の厚さが100μmとなるようにシート状に成形した。得られたテープを切断及び積層して、厚さ10mmのアルミニウム板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cmの圧力にて静水圧プレスを行い、直径約65mm×厚さ約1.5mmの円板状の成形体を作製した。得られた成形体を脱脂炉中に配置し、600℃で脱脂を行った。得られた脱脂体を大気中、1200℃で5時間の条件で常圧焼成して、円板状のZnO質焼結体を得た。得られた焼結体を、Arガスを圧媒とし、雰囲気圧150MPa、1300℃で2時間の条件にてHIP処理した。得られた焼結体の周囲を加工し、ダイヤモンドスラリーにて表面を鏡面研磨した後、コロイダルシリカを用いてCMP処理し、直径約50mm×厚さ約0.6mmの酸化亜鉛基板を得た。
Example 1
(1) Preparation of zinc oxide substrate 99.5 parts by weight of commercially available high-purity ZnO powder (specific surface area 9.4 m 2 / g) and 0.5 parts by weight of commercially available high-purity MgO powder (specific surface area 23 m 2 / g) Were mixed in a ball mill using ethanol as a solvent for 4 hours. The obtained slurry was dried with a rotary evaporator to obtain a mixed powder. With respect to 100 parts by weight of the obtained mixed powder, 15 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), a plasticizer (DOP: di (2-ethylhexyl) phthalate, black gold chemical stock) 6.2 parts by weight of a company), 3 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation), and a dispersion medium (2-ethylhexanol) were mixed. The amount of the dispersion medium was adjusted so that the slurry viscosity was 10,000 cP. The slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 100 μm. The obtained tape was cut and laminated, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed in warm water of 85 ° C. at a pressure of 100 kgf / cm 2 to produce a disk-shaped molded body having a diameter of about 65 mm and a thickness of about 1.5 mm. The obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. The obtained degreased body was fired in the atmosphere at 1200 ° C. for 5 hours under normal pressure to obtain a disk-shaped ZnO-based sintered body. The obtained sintered body was subjected to HIP treatment under conditions of an atmospheric pressure of 150 MPa and 1300 ° C. for 2 hours using Ar gas as a pressure medium. The periphery of the obtained sintered body was processed, the surface was mirror-polished with a diamond slurry, and then subjected to CMP treatment using colloidal silica to obtain a zinc oxide substrate having a diameter of about 50 mm and a thickness of about 0.6 mm.
(2)酸化亜鉛基板の評価
 こうして作製された酸化亜鉛基板に対して以下に示す各種評価を行った。結果は表1に示されるとおりであった。
(2) Evaluation of Zinc Oxide Substrate Various evaluations shown below were performed on the zinc oxide substrate thus prepared. The results were as shown in Table 1.
<定量分析>
 基板のMg含有量及び3B族元素含有量をICP(誘導結合プラズマ)発光分光法により測定した。
<Quantitative analysis>
The Mg content and 3B group element content of the substrate were measured by ICP (inductively coupled plasma) emission spectroscopy.
<平均粒径>
 基板の平均粒径は、基板より約10mm角の試料を切り出し、板面と垂直な面を研磨し、濃度0.3Mの硝酸にて10秒間エッチングを行った後、走査電子顕微鏡にて画像を撮影した。視野範囲は、板面に平行及び垂直な直線を引いた場合に、いずれの直線も10個から30個の粒子と交わるような直線が引けるような視野範囲とした。板面に平行に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をaとし、同様に、板面に垂直に引いた3本の直線において、直線が交わる全ての粒子に対し、個々の粒子の内側の線分の長さを平均したものに1.5を乗じた値をaとし、(a+a)/2を平均粒径とした。
<Average particle size>
The average particle size of the substrate is about 10 mm square cut out from the substrate, the surface perpendicular to the plate surface is polished, etched with nitric acid with a concentration of 0.3 M for 10 seconds, and then imaged with a scanning electron microscope. I took a picture. The visual field range was such that when straight lines parallel to and perpendicular to the plate surface were drawn, straight lines intersecting 10 to 30 particles could be drawn. In three straight lines drawn parallel to the plate surface, a value obtained by multiplying the average length of the line segments inside the individual particles by 1.5 for all the particles intersecting the straight line is a 1 , Similarly, in three straight lines drawn perpendicularly to the plate surface, a value obtained by multiplying the average length of the inner line segment of each particle by 1.5 for all the particles intersecting with each other is a 2 and (a 1 + a 2 ) / 2 was defined as the average particle size.
<抵抗率>
 基板の抵抗率は、抵抗率計(三菱化学製、ロレスタGP MCP-T610型)を用いて四探針法により測定した。
<Resistivity>
The resistivity of the substrate was measured by a four-probe method using a resistivity meter (Made by Mitsubishi Chemical, Loresta GP MCP-T610 type).
<MgO異相の有無>
 基板のMgO異相の有無は、酸化亜鉛基板の板面を試料面とし、XRD装置(株式会社リガク製、製品名「RINT-TTR III」)を用い、2θ=20°~80°の範囲にて、酸化亜鉛基板の表面に対してX線を照射したときのXRDプロファイルを測定することにより、評価した。ZnO(異種元素を固溶したものも含む)に起因するピークの最大値をm、MgO(異種元素を固溶したものも含む)に起因するピークの最大値をmとしたとき、m/m≦0.01となった場合に「MgO異相なし」と、m/m>0.01となった場合に「MgO異相あり」と判定した。
<Presence / absence of MgO heterogeneous phase>
Presence or absence of MgO heterogeneous phase on the substrate was determined in the range of 2θ = 20 ° -80 ° using an XRD apparatus (product name “RINT-TTR III” manufactured by Rigaku Corporation) with the plate surface of the zinc oxide substrate as the sample surface. Evaluation was made by measuring the XRD profile when the surface of the zinc oxide substrate was irradiated with X-rays. When the maximum value of the peak due to ZnO (including a solid solution of different elements) is m 1 and the maximum value of the peak due to MgO (including a solid solution of different elements) is m 2 , m When 2 / m 1 ≦ 0.01, it was determined that “no MgO different phase” and when m 2 / m 1 > 0.01, “MgO different phase existed”.
(3)MOCVD-GaNの成膜
 MOCVD法を用い、TMG(トリメチルガリウム)及びNH(アンモニア)を原料ガスとして、かつ、Nをキャリアガスとして、基板温度800℃にて、ZnO基板上にGaNを約4μm堆積した。
(3) MOCVD-GaN film formation Using MOCVD, TMG (trimethylgallium) and NH 3 (ammonia) are used as source gases and N 2 is used as a carrier gas on a ZnO substrate at a substrate temperature of 800 ° C. About 4 μm of GaN was deposited.
(4)GaN結晶性の評価
 顕微ラマン分光装置(堀場製作所製ARAMIS)を用い、波長532nmのレーザー光にて、568cm-1付近のGaN E2フォノンによるラマンピークについて、半値幅を測定した。半値幅は32cm-1と小さく、良好な結晶性を示した。
(4) Evaluation of GaN crystallinity Using a microscopic Raman spectroscope (ARAMIS manufactured by Horiba, Ltd.), the half width of the Raman peak due to GaN E2 phonons near 568 cm −1 was measured with a laser beam having a wavelength of 532 nm. The full width at half maximum was as small as 32 cm −1 , indicating good crystallinity.
 例2
 酸化亜鉛基板の原料混合比を、市販の高純度ZnO粉末(比表面積9.4m/g)92.0重量部と、市販の高純度MgO粉末(比表面積23m/g)8.0重量部としたこと以外、例1と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は35cm-1と小さく、良好な結晶性を示した。
Example 2
The raw material mixing ratio of the zinc oxide substrate was 92.0 parts by weight of a commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and a commercially available high purity MgO powder (specific surface area 23 m 2 / g) 8.0 weight. A zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that it was made a part. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 35 cm −1 , indicating good crystallinity.
 例3(比較)
 酸化亜鉛基板の原料混合比を、市販の高純度ZnO粉末(比表面積9.4m/g)99.95重量部と、市販の高純度MgO粉末(比表面積23m/g)0.05重量部としたこと以外、例1と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、明瞭なGaN E2フォノンによるラマンピークは観測されず、GaNの結晶性は低かった。
Example 3 (Comparison)
The raw material mixing ratio of the zinc oxide substrate was 99.95 parts by weight of a commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and a commercially available high purity MgO powder (specific surface area 23 m 2 / g) 0.05 weight. A zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that it was made a part. The results are as shown in Table 1. A clear Raman peak due to GaN E2 phonons was not observed, and the crystallinity of GaN was low.
 例4
 酸化亜鉛基板の原料混合比を、市販の高純度ZnO粉末(比表面積9.4m/g)85.8重量部と、市販の高純度MgO粉末(比表面積23m/g)14.2重量部としたこと以外、例1と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は82cm-1であり、良好な結晶性を示した。
Example 4
The raw material mixing ratio of the zinc oxide substrate was 85.8 parts by weight of a commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and a commercially available high purity MgO powder (specific surface area 23 m 2 / g) 14.2 weights. A zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that it was made a part. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was 82 cm −1 , indicating good crystallinity.
 例5
 酸化亜鉛基板の原料混合比を、市販の高純度ZnO粉末(比表面積9.4m/g)94.8重量部と、市販の高純度MgO粉末(比表面積23m/g)5.2重量部とし、HIP処理の温度を1400℃としたこと以外、例1と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は28cm-1と小さく、良好な結晶性を示した。
Example 5
The raw material mixing ratio of the zinc oxide substrate is 94.8 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and commercially available high purity MgO powder (specific surface area 23 m 2 / g) 5.2 weight. The zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that the temperature of the HIP treatment was 1400 ° C. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 28 cm −1 , indicating good crystallinity.
 例6
 HIP処理の温度を1200℃としたこと以外、例5と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は42cm-1と小さく、良好な結晶性を示した。
Example 6
A zinc oxide substrate was produced and evaluated in the same manner as in Example 5 except that the temperature of the HIP treatment was 1200 ° C. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 42 cm −1 , indicating good crystallinity.
 例7
 市販の高純度ZnO粉末(比表面積9.4m/g)94.8重量部と、市販の高純度MgO粉末(比表面積23m/g)5.2重量部とを、エタノールを溶媒としてボールミルにて4h混合した。混合物を乾燥した後、1400℃で5時間熱処理した。得られた粉末を乳鉢で粗解砕した後、アルミナ製ボールを用いてボールミルにより体積基準D50平均粒径1μmまで粉砕した。
Example 7
94.8 parts by weight of commercially available high-purity ZnO powder (specific surface area 9.4 m 2 / g) and 5.2 parts by weight of commercially available high-purity MgO powder (specific surface area 23 m 2 / g) were ball milled using ethanol as a solvent. For 4 hours. The mixture was dried and then heat treated at 1400 ° C. for 5 hours. The resulting powder was coarsely pulverized in a mortar, and pulverized to a volume reference D 50 average particle size 1μm by a ball mill using alumina balls.
 上記で得られた粉末を、種基板として酸化亜鉛単結晶基板(10mm×10mm角、c板)を用いて、図1に示される結晶製造装置20によりMgO固溶酸化亜鉛単結晶を製造した。この装置は、チャンバー内温度が1200℃に対応する、エアロゾルデポジション(AD)法により結晶を製造する装置である。この結晶製造装置20は、原料成分を含む原料粉末のエアロゾルを生成するエアロゾル生成部22と、原料粉末を種基板21に噴射して原料成分を含む膜を形成すると共にこの膜を結晶化させる結晶生成部30とを備えている。エアロゾル生成部22は、原料粉末を収容し図示しないガスボンベからの搬送ガスの供給を受けてエアロゾルを生成するエアロゾル生成室23と、生成したエアロゾルを結晶生成部30へ供給する原料供給管24とを備えている。原料供給管24の結晶生成部30側には、エアロゾルを予備加熱する予備加熱ヒーター26が配設されており、予備加熱したエアロゾルが結晶生成部30へ供給されるようになっている。結晶生成部30は、種基板21にエアロゾルを噴射する真空チャンバー31と、真空チャンバー31内に設けられた部屋状の断熱材32と、断熱材32の内部に配設され種基板21を固定する基板ホルダ34と、基板ホルダ34をX軸-Y軸方向に移動するX-Yステージ33とを備えている。また、結晶生成部30は、断熱材32の内部に配設され種基板21を加熱する加熱部35と、先端にスリット37が形成されエアロゾルを種基板21へ噴射する噴射ノズル36と、真空チャンバー31を減圧する真空ポンプ38とを備えている。この結晶製造装置20では、真空チャンバー31内において、原料粉末が単結晶化する温度での加熱処理を行えるように、石英ガラスやセラミックスなどの部材を用いて各々が構成されている。 Using the powder obtained above, a zinc oxide single crystal substrate (10 mm × 10 mm square, c plate) was used as a seed substrate, and an MgO solid solution zinc oxide single crystal was manufactured by the crystal manufacturing apparatus 20 shown in FIG. This apparatus is an apparatus for producing crystals by an aerosol deposition (AD) method in which the temperature in the chamber corresponds to 1200 ° C. The crystal manufacturing apparatus 20 includes an aerosol generating unit 22 that generates an aerosol of a raw material powder containing a raw material component, and a crystal that injects the raw material powder onto a seed substrate 21 to form a film containing the raw material component and crystallizes the film. And a generation unit 30. The aerosol generation unit 22 includes an aerosol generation chamber 23 that stores raw material powder and receives aerosol from a carrier gas (not shown) to generate aerosol, and a raw material supply pipe 24 that supplies the generated aerosol to the crystal generation unit 30. I have. A preheater heater 26 for preheating the aerosol is disposed on the crystal supply unit 30 side of the raw material supply pipe 24, and the preheated aerosol is supplied to the crystal generation unit 30. The crystal generation unit 30 fixes the seed substrate 21 by being disposed inside the vacuum chamber 31 for injecting the aerosol onto the seed substrate 21, the room-like heat insulating material 32 provided in the vacuum chamber 31, and the heat insulating material 32. A substrate holder 34 and an XY stage 33 that moves the substrate holder 34 in the X-axis-Y-axis directions are provided. The crystal generation unit 30 includes a heating unit 35 that is disposed inside the heat insulating material 32 and heats the seed substrate 21, a spray nozzle 36 that has a slit 37 formed at the tip thereof and sprays aerosol onto the seed substrate 21, and a vacuum chamber And a vacuum pump 38 for depressurizing 31. In the crystal manufacturing apparatus 20, each is configured using a member such as quartz glass or ceramics so that the heat treatment can be performed at a temperature at which the raw material powder is single-crystallized in the vacuum chamber 31.
 この装置において、エアロゾルの噴射は、搬送ガス及び圧力調整ガスとしてHeを用い、長辺5mm×短辺0.4mmのスリット37が形成されたセラミックス製のノズル36を用いて行った。その際、ノズル36は0.5mm/sのスキャン速度でスキャンさせた。このスキャンは、図2に示されるように、スリット37の長辺に対して垂直且つ進む方向に10mm移動させ(第1成膜領域21a)、スリット37の長辺方向に5mm移動させ、スリット37の長辺に対して垂直且つ戻る方向に10mm移動させ(第2成膜領域21b)、スリット37の長辺方向且つ初期位置方向に5mm移動させるサイクルを200サイクル繰り返すことにより行った。室温での1サイクルの製膜において、搬送ガスの設定圧力を0.06MPa、流量を6L/min、チャンバー内圧力を100Pa以下に調整した。結晶成長条件として、単結晶が成長する温度であるチャンバー成膜室の温度を1200℃とした。得られた単結晶基板の厚さは0.5mmであった。 In this apparatus, aerosol was injected using a ceramic nozzle 36 in which He was used as a carrier gas and a pressure adjusting gas, and a slit 37 having a long side of 5 mm and a short side of 0.4 mm was formed. At that time, the nozzle 36 was scanned at a scanning speed of 0.5 mm / s. As shown in FIG. 2, this scan is moved 10 mm in the direction perpendicular to the long side of the slit 37 (first film formation region 21 a) and moved 5 mm in the long side direction of the slit 37. The cycle of moving 10 mm in the direction perpendicular to the long side and returning in the direction of returning (second film formation region 21 b) and moving 5 mm in the long side direction and the initial position direction of the slit 37 was repeated 200 times. In one cycle of film formation at room temperature, the set pressure of the carrier gas was adjusted to 0.06 MPa, the flow rate was adjusted to 6 L / min, and the pressure in the chamber was adjusted to 100 Pa or less. As a crystal growth condition, the temperature of the chamber film forming chamber, which is a temperature at which a single crystal grows, was 1200 ° C. The thickness of the obtained single crystal substrate was 0.5 mm.
 得られた単結晶基板(MgO固溶酸化亜鉛単結晶成長面)上にMOCVD法を用い、TMG(トリメチルガリウム)及びNH(アンモニア)を原料ガスとして、かつ、Nをキャリアガスとして、基板温度800℃にて、GaNを約4μm堆積した。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は50cm-1と小さく、良好な結晶性を示した。 Using the MOCVD method on the obtained single crystal substrate (MgO solid solution zinc oxide single crystal growth surface), using TMG (trimethylgallium) and NH 3 (ammonia) as source gases and N 2 as a carrier gas, the substrate About 4 μm of GaN was deposited at a temperature of 800 ° C. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 50 cm −1 , indicating good crystallinity.
 例8
 酸化亜鉛基板の原料混合比を、市販の高純度ZnO粉末(比表面積9.4m/g)94.8重量部と、市販の高純度MgO粉末(比表面積23m/g)5.2重量部と、市販の高純度θ-Al粉末(比表面積82m/g)2.0重量部としたこと以外、例1と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は26cm-1と小さく、良好な結晶性を示した。
Example 8
The raw material mixing ratio of the zinc oxide substrate is 94.8 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and commercially available high purity MgO powder (specific surface area 23 m 2 / g) 5.2 weight. A zinc oxide substrate was prepared and evaluated in the same manner as in Example 1, except that the content was 2.0 parts by weight and 2.0 parts by weight of commercially available high-purity θ-Al 2 O 3 powder (specific surface area 82 m 2 / g). The results are as shown in Table 1, and the Raman peak half-value width indicating GaN crystallinity was as small as 26 cm −1 , indicating good crystallinity.
 例9
 酸化亜鉛基板の原料混合比を、市販の高純度ZnO粉末(比表面積9.4m/g)94.8重量部と、市販の高純度MgO粉末(比表面積23m/g)5.2重量部と、市販の高純度Ga粉末(比表面積5.3m/g)0.1重量部としたこと以外、例1と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は28cm-1と小さく、良好な結晶性を示した。
Example 9
The raw material mixing ratio of the zinc oxide substrate is 94.8 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and commercially available high purity MgO powder (specific surface area 23 m 2 / g) 5.2 weight. A zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that the content was 0.1 parts by weight and 0.1 parts by weight of commercially available high-purity Ga 2 O 3 powder (specific surface area 5.3 m 2 / g). The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 28 cm −1 , indicating good crystallinity.
 例10
 酸化亜鉛基板の原料混合比を、市販の高純度ZnO粉末(比表面積9.4m/g)94.8重量部と、市販の高純度MgO粉末(比表面積23m/g)5.2重量部と、市販の高純度In粉末(比表面積4.2m/g)0.3重量部としたこと以外、例1と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は25cm-1と小さく、良好な結晶性を示した。
Example 10
The raw material mixing ratio of the zinc oxide substrate is 94.8 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and commercially available high purity MgO powder (specific surface area 23 m 2 / g) 5.2 weight. A zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that 0.3 parts by weight and 0.3 parts by weight of commercially available high-purity In 2 O 3 powder (specific surface area 4.2 m 2 / g) were used. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 25 cm −1 , indicating good crystallinity.
 例11
 MOCVD成膜温度を700℃としたこと以外、例5と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は39cm-1と小さく、良好な結晶性を示した。
Example 11
A zinc oxide substrate was prepared and evaluated in the same manner as in Example 5 except that the MOCVD film formation temperature was 700 ° C. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 39 cm −1 , indicating good crystallinity.
 例12
 MOCVD成膜温度を900℃としたこと以外、例5と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は22cm-1と小さく、良好な結晶性を示した。
Example 12
A zinc oxide substrate was prepared and evaluated in the same manner as in Example 5 except that the MOCVD film formation temperature was 900 ° C. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 22 cm −1 , indicating good crystallinity.
 例13
 硫酸亜鉛七水和物(高純度化学研究所製)1730gとグルコン酸ナトリウム(和光純薬工業製)4.5gをイオン交換水3000gに溶解した。この溶液をビーカーに入れ、マグネットスターラーで攪拌しながら90℃に加熱した。この溶液を90℃に保持し且つ攪拌しながら、25%アンモニウム水490gをマイクロチューブポンプにて滴下した。滴下終了後、90℃にて攪拌しながら4時間保持した後、静置した。沈殿物をろ過により分離し、更にイオン交換水による洗浄を3回行い、乾燥して白色粉末状の酸化亜鉛前駆物質を得た。得られた酸化亜鉛前駆物質をジルコニア製のセッターに載置し、電気炉にて大気中で仮焼することにより、板状多孔質酸化亜鉛粉末を得た。仮焼時の温度スケジュールは、室温から900℃まで昇温速度100℃/hにて昇温した後、900℃で30分間保持し、自然放冷とした。得られた板状酸化亜鉛粉末をZrO製ボールを用い、ボールミルにて平均粒径1.0μmまで粉砕した。
Example 13
1730 g of zinc sulfate heptahydrate (manufactured by Kojundo Chemical Laboratory) and 4.5 g of sodium gluconate (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 3000 g of ion-exchanged water. This solution was placed in a beaker and heated to 90 ° C. while stirring with a magnetic stirrer. While this solution was maintained at 90 ° C. and stirred, 490 g of 25% aqueous ammonium was added dropwise with a microtube pump. After completion of dropping, the mixture was kept at 90 ° C. with stirring for 4 hours and then allowed to stand. The precipitate was separated by filtration, further washed with ion-exchanged water three times, and dried to obtain a white powdered zinc oxide precursor. The obtained zinc oxide precursor was placed on a zirconia setter and calcined in the air in an electric furnace to obtain a plate-like porous zinc oxide powder. The temperature schedule at the time of calcination was raised from room temperature to 900 ° C. at a rate of temperature increase of 100 ° C./h, and then kept at 900 ° C. for 30 minutes to allow natural cooling. The obtained plate-like zinc oxide powder was pulverized to a mean particle size of 1.0 μm with a ball mill using ZrO 2 balls.
 上記の方法により得た酸化亜鉛板状粒子4.8重量部と、市販の高純度ZnO粉末(比表面積9.4m/g)90.0重量部と、市販の高純度MgO粉末(比表面積23m/g)5.2重量部と、市販の高純度θ-Al粉末(比表面積82m/g)0.6重量部を、エタノールを溶媒としてボールミルにて4時間混合した。こうして得られた混合粉末100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)15重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)6.2重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)3重量部と、分散媒(2-エチルヘキサノール)とを混合した。分散媒の量はスラリー粘度が10000cPとなるように調整した。こうして調製されたスラリーを、ドクターブレード法により、PETフィルムの上に、乾燥後の厚さが100μmとなるようにシート状に成形した。得られたテープを切断及び積層して、厚さ10mmのアルミニウム板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cmの圧力にて静水圧プレスを行い、直径約65mm×厚さ約1.5mmの円板状の成形体を作製した。得られた成形体を脱脂炉中に配置し、600℃で脱脂を行った。得られた脱脂体を大気中、1200℃で5時間の条件で常圧焼成して、円板状のZnO質焼結体を得た。得られた焼結体を、Arガスを圧媒とし、雰囲気圧150MPa、1300℃で2時間の条件にてHIP処理した。得られた焼結体の周囲を加工し、ダイヤモンドスラリーにて表面を鏡面研磨した後、コロイダルシリカを用いてCMP処理し、直径約50mm×厚さ約0.6mmの酸化亜鉛基板を得た。 4.8 parts by weight of zinc oxide plate-like particles obtained by the above method, 90.0 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g), and commercially available high purity MgO powder (specific surface area) 23 parts by weight (23 m 2 / g) and 0.6 parts by weight of commercially available high-purity θ-Al 2 O 3 powder (specific surface area 82 m 2 / g) were mixed in a ball mill for 4 hours using ethanol as a solvent. With respect to 100 parts by weight of the mixed powder thus obtained, 15 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), a plasticizer (DOP: di (2-ethylhexyl) phthalate, black metal conversion) 6.2 parts by weight (manufactured by Co., Ltd.), 3 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation), and a dispersion medium (2-ethylhexanol) were mixed. The amount of the dispersion medium was adjusted so that the slurry viscosity was 10,000 cP. The slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 100 μm. The obtained tape was cut and laminated, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed in warm water of 85 ° C. at a pressure of 100 kgf / cm 2 to produce a disk-shaped molded body having a diameter of about 65 mm and a thickness of about 1.5 mm. The obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. The obtained degreased body was fired in the atmosphere at 1200 ° C. for 5 hours under normal pressure to obtain a disk-shaped ZnO-based sintered body. The obtained sintered body was subjected to HIP treatment under conditions of an atmospheric pressure of 150 MPa and 1300 ° C. for 2 hours using Ar gas as a pressure medium. The periphery of the obtained sintered body was processed, the surface was mirror-polished with a diamond slurry, and then subjected to CMP treatment using colloidal silica to obtain a zinc oxide substrate having a diameter of about 50 mm and a thickness of about 0.6 mm.
 こうして得られた酸化亜鉛基板に対して、例1と同様にして評価を行うとともに、配向度及びアスペクト比の評価も以下のとおり行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は29cm-1と小さく、良好な結晶性を示した。酸化亜鉛基板を構成する粒子のアスペクト比は1.1と小さかった。 The zinc oxide substrate thus obtained was evaluated in the same manner as in Example 1, and the degree of orientation and aspect ratio were also evaluated as follows. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 29 cm −1 , indicating good crystallinity. The aspect ratio of the particles constituting the zinc oxide substrate was as small as 1.1.
<(002)配向度>
 基板配向度は酸化亜鉛基板の板面を試料面とし、XRDにより(002)面の配向度を測定した。この測定は、XRD装置(株式会社リガク製 製品名「RINT-TTR III」)を用い、酸化亜鉛基板の表面に対してX線を照射したときのXRDプロファイルを測定することにより行った。(002)配向度は、以下の式により算出した(ただし、本例ではI(102)とI(110)は無視可能なレベルとして省略可能である)。
Figure JPOXMLDOC01-appb-M000005
<(002) Degree of orientation>
The degree of orientation of the substrate was determined by measuring the orientation degree of the (002) plane by XRD with the plate surface of the zinc oxide substrate as the sample surface. This measurement was performed using an XRD apparatus (product name “RINT-TTR III” manufactured by Rigaku Corporation) and measuring the XRD profile when the surface of the zinc oxide substrate was irradiated with X-rays. The degree of (002) orientation was calculated by the following formula (however, in this example, I 0 (102) and I 0 (110) can be omitted as negligible levels).
Figure JPOXMLDOC01-appb-M000005
<アスペクト比>
 基板の平均粒径測定時に求めたa及びaを用い、a/aをアスペクト比とした。 
<Aspect ratio>
With a 1 and a 2 obtained to a mean particle diameter measuring time of the substrate, was a 1 / a 2 and aspect ratio.
 例14
 硝酸亜鉛六水和物(関東化学株式会社製)を用いて、濃度0.1MのZn(NO水溶液を作製した。また、水酸化ナトリウム(シグマアルドリッチ社製)を用いて、濃度0.1MのNaOH水溶液を作製した。NaOH水溶液に対し、Zn(NO水溶液を体積比1:1で混合し、攪拌しながら80℃で6時間保持して、沈殿物を得た。沈殿物をイオン交換水で3回洗浄した後、乾燥することで、板状の酸化亜鉛一次粒子が凝集した球状の二次粒子を得た。続いて、直径2mmのZrO製ボールを用い、エタノールを溶媒として、ボールミル粉砕処理を3時間行うことにより、酸化亜鉛二次粒子を体積基準D50平均粒径0.6μmの板状一次粒子へと粉砕した。
Example 14
A zinc (NO 3 ) 2 aqueous solution with a concentration of 0.1 M was prepared using zinc nitrate hexahydrate (manufactured by Kanto Chemical Co., Inc.). In addition, a 0.1 M NaOH aqueous solution was prepared using sodium hydroxide (manufactured by Sigma-Aldrich). A Zn (NO 3 ) 2 aqueous solution was mixed with the NaOH aqueous solution at a volume ratio of 1: 1, and the mixture was held at 80 ° C. for 6 hours with stirring to obtain a precipitate. The precipitate was washed with ion-exchanged water three times and then dried to obtain spherical secondary particles in which plate-like zinc oxide primary particles were aggregated. Subsequently, using ZrO 2 balls having a diameter of 2 mm, ethanol as a solvent, by performing the ball milling process 3 hours, the zinc oxide secondary particle to volume basis D 50 average particle size 0.6μm of the plate-like primary particles And crushed.
 上記の方法により得た酸化亜鉛板状粒子4.8重量部と、市販の高純度ZnO粉末(比表面積9.4m/g)90.0重量部と、市販の高純度MgO粉末(比表面積23m/g)5.2重量部と、市販の高純度θ-Al粉末(比表面積82m/g)0.15重量部を、エタノールを溶媒としてボールミルにて4時間混合した。こうして得られた混合粉末100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)15重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)6.2重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)3重量部と、分散媒(2-エチルヘキサノール)とを混合した。分散媒の量はスラリー粘度が10000cPとなるように調整した。こうして調製されたスラリーを、ドクターブレード法により、PETフィルムの上に、乾燥後の厚さが100μmとなるようにシート状に成形した。得られたテープを切断及び積層して、厚さ10mmのアルミニウム板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cmの圧力にて静水圧プレスを行い、直径約65mm×厚さ約1.5mmの円板状の成形体を作製した。得られた成形体を脱脂炉中に配置し、600℃で脱脂を行った。得られた脱脂体を大気中、1200℃で5時間の条件で常圧焼成して、円板状のZnO質焼結体を得た。得られた焼結体を、Arガスを圧媒とし、雰囲気圧150MPa、1300℃で2時間の条件にてHIP処理した。得られた焼結体の周囲を加工し、ダイヤモンドスラリーにて表面を鏡面研磨した後、コロイダルシリカを用いてCMP処理し、直径約50mm×厚さ約0.6mmの酸化亜鉛基板を得た。 4.8 parts by weight of zinc oxide plate-like particles obtained by the above method, 90.0 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g), and commercially available high purity MgO powder (specific surface area) 23 m 2 / g) and 5.2 parts by weight of commercially available high-purity θ-Al 2 O 3 powder (specific surface area of 82 m 2 / g) were mixed for 4 hours in a ball mill using ethanol as a solvent. With respect to 100 parts by weight of the mixed powder thus obtained, 15 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), a plasticizer (DOP: di (2-ethylhexyl) phthalate, black metal conversion) 6.2 parts by weight (manufactured by Co., Ltd.), 3 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation), and a dispersion medium (2-ethylhexanol) were mixed. The amount of the dispersion medium was adjusted so that the slurry viscosity was 10,000 cP. The slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 100 μm. The obtained tape was cut and laminated, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed in warm water of 85 ° C. at a pressure of 100 kgf / cm 2 to produce a disk-shaped molded body having a diameter of about 65 mm and a thickness of about 1.5 mm. The obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. The obtained degreased body was fired in the atmosphere at 1200 ° C. for 5 hours under normal pressure to obtain a disk-shaped ZnO-based sintered body. The obtained sintered body was subjected to HIP treatment under conditions of an atmospheric pressure of 150 MPa and 1300 ° C. for 2 hours using Ar gas as a pressure medium. The periphery of the obtained sintered body was processed, the surface was mirror-polished with a diamond slurry, and then subjected to CMP treatment using colloidal silica to obtain a zinc oxide substrate having a diameter of about 50 mm and a thickness of about 0.6 mm.
 こうして得られた酸化亜鉛基板に対して、例1と同様にして評価を行うとともに、例13と同様にして粒子アスペクト比を測定した。また、配向度の評価を以下のとおり行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は31cm-1と小さく、良好な結晶性を示した。粒子アスペクト比は1.3と小さかった。 The zinc oxide substrate thus obtained was evaluated in the same manner as in Example 1, and the particle aspect ratio was measured in the same manner as in Example 13. In addition, the degree of orientation was evaluated as follows. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 31 cm −1 , indicating good crystallinity. The particle aspect ratio was as small as 1.3.
<(100)配向度>
 基板配向度は酸化亜鉛基板の板面を試料面とし、XRDにより(100)面の配向度を測定した。この測定は、XRD装置(株式会社リガク製 製品名「RINT-TTR III」)を用い、酸化亜鉛基板の表面に対してX線を照射したときのXRDプロファイルを測定することにより行った。(100)配向度は、以下の式により算出した(ただし、本例ではI(102)とI(110)は無視可能なレベルとして省略可能である)。
Figure JPOXMLDOC01-appb-M000006
<(100) degree of orientation>
The degree of orientation of the substrate was determined by measuring the degree of orientation of the (100) plane by XRD using the plate surface of the zinc oxide substrate as the sample surface. This measurement was performed using an XRD apparatus (product name “RINT-TTR III” manufactured by Rigaku Corporation) and measuring the XRD profile when the surface of the zinc oxide substrate was irradiated with X-rays. The degree of (100) orientation was calculated by the following formula (however, in this example, I 0 (102) and I 0 (110) can be omitted as negligible levels).
Figure JPOXMLDOC01-appb-M000006
 例15
 酸化亜鉛基板の原料混合比を、市販の高純度ZnO粉末(比表面積9.4m/g)94.8重量部と、市販の高純度MgO粉末(比表面積23m/g)5.2重量部とし、HIP処理の温度を1450℃としたこと以外、例1と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は24cm-1と小さく、良好な結晶性を示した。
Example 15
The raw material mixing ratio of the zinc oxide substrate is 94.8 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g) and commercially available high purity MgO powder (specific surface area 23 m 2 / g) 5.2 weight. The zinc oxide substrate was prepared and evaluated in the same manner as in Example 1 except that the temperature of the HIP treatment was 1450 ° C. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 24 cm −1 , indicating good crystallinity.
 例16
 硫酸亜鉛七水和物(高純度化学研究所製)1730gとグルコン酸ナトリウム(和光純薬工業製)4.5gをイオン交換水3000gに溶解した。この溶液をビーカーに入れ、マグネットスターラーで攪拌しながら90℃に加熱した。この溶液を90℃に保持し且つ攪拌しながら、25%アンモニウム水490gをマイクロチューブポンプにて滴下した。滴下終了後、90℃にて攪拌しながら4時間保持した後、静置した。沈殿物をろ過により分離し、更にイオン交換水による洗浄を3回行い、乾燥して白色粉末状の酸化亜鉛前駆物質を得た。得られた酸化亜鉛前駆物質のうち100gをジルコニア製のセッターに載置し、電気炉にて大気中で仮焼することにより、65gの板状多孔質酸化亜鉛粉末を得た。仮焼時の温度スケジュールは、室温から900℃まで昇温速度100℃/hにて昇温した後、900℃で30分間保持し、自然放冷とした。得られた板状酸化亜鉛粉末をZrO製ボールを用い、ボールミルにて平均粒径0.5μmまで粉砕した。
Example 16
1730 g of zinc sulfate heptahydrate (manufactured by Kojundo Chemical Laboratory) and 4.5 g of sodium gluconate (manufactured by Wako Pure Chemical Industries, Ltd.) were dissolved in 3000 g of ion-exchanged water. This solution was placed in a beaker and heated to 90 ° C. while stirring with a magnetic stirrer. While this solution was maintained at 90 ° C. and stirred, 490 g of 25% aqueous ammonium was added dropwise with a microtube pump. After completion of dropping, the mixture was kept at 90 ° C. with stirring for 4 hours and then allowed to stand. The precipitate was separated by filtration, further washed with ion-exchanged water three times, and dried to obtain a white powdered zinc oxide precursor. 100 g of the obtained zinc oxide precursor was placed on a zirconia setter and calcined in the air in an electric furnace to obtain 65 g of a plate-like porous zinc oxide powder. The temperature schedule at the time of calcination was raised from room temperature to 900 ° C. at a rate of temperature increase of 100 ° C./h, and then kept at 900 ° C. for 30 minutes to allow natural cooling. The obtained plate-like zinc oxide powder was pulverized to a mean particle size of 0.5 μm with a ball mill using ZrO 2 balls.
 上記の方法により得た酸化亜鉛板状粒子4.8重量部と、市販の高純度ZnO粉末(比表面積9.4m/g)90.0重量部と、市販の高純度MgO粉末(比表面積23m/g)5.2重量部と、市販の高純度θ-Al粉末(比表面積82m/g)0.6重量部を、エタノールを溶媒としてボールミルにて4h混合した。得られたスラリーをロータリーエバポレーターにて乾燥し、混合粉末を得た。得られた混合粉末100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)15重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)6.2重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)3重量部と、分散媒(2-エチルヘキサノール)とを混合した。分散媒の量はスラリー粘度が10000cPとなるように調整した。こうして調製されたスラリーを、ドクターブレード法により、PETフィルムの上に、乾燥後の厚さが3μmとなるようにシート状に成形した。得られたシート状成形体を脱脂炉中に配置し、600℃で脱脂を行った。得られた脱脂体を大気中、1200℃で5時間の条件で常圧焼成して、シート状のZnO質焼結体を得た。これをポットミルで粉砕し、厚さ2.0μm、板面方向の大きさが7μm程度の板状粉末を得た。 4.8 parts by weight of zinc oxide plate-like particles obtained by the above method, 90.0 parts by weight of commercially available high purity ZnO powder (specific surface area 9.4 m 2 / g), and commercially available high purity MgO powder (specific surface area) 23 m 2 / g) 5.2 parts by weight and commercially available high-purity θ-Al 2 O 3 powder (specific surface area 82 m 2 / g) 0.6 parts by weight were mixed for 4 hours in a ball mill using ethanol as a solvent. The obtained slurry was dried with a rotary evaporator to obtain a mixed powder. With respect to 100 parts by weight of the obtained mixed powder, 15 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), a plasticizer (DOP: di (2-ethylhexyl) phthalate, black gold chemical stock) 6.2 parts by weight of a company), 3 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation), and a dispersion medium (2-ethylhexanol) were mixed. The amount of the dispersion medium was adjusted so that the slurry viscosity was 10,000 cP. The slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 3 μm. The obtained sheet-like molded body was placed in a degreasing furnace and degreased at 600 ° C. The obtained degreased body was fired in the atmosphere at 1200 ° C. for 5 hours under normal pressure to obtain a sheet-like ZnO-based sintered body. This was pulverized by a pot mill to obtain a plate-like powder having a thickness of 2.0 μm and a size in the plate surface direction of about 7 μm.
 こうして得られた板状粉末100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)15重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)6.2重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)3重量部と、分散媒(2-エチルヘキサノール)とを混合した。分散媒の量はスラリー粘度が10000cPとなるように調整した。こうして調製されたスラリーを、ドクターブレード法により、PETフィルムの上に、乾燥後の厚さが100μmとなるようにシート状に成形した。得られたテープを切断及び積層して、厚さ10mmのアルミニウム板の上に載置した後、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cmの圧力にて静水圧プレスを行い、直径約65mm×厚さ約1.5mmの円板状の成形体を作製した。得られた成形体を脱脂炉中に配置し、600℃で脱脂を行った。得られた脱脂体を大気中、1200℃で5時間の条件で常圧焼成して、円板状のZnO質焼結体を得た。得られた焼結体を、Arガスを圧媒とし、雰囲気圧150MPa、1400℃で2時間の条件にてHIP処理した。得られた焼結体の周囲を加工し、ダイヤモンドスラリーにて表面を鏡面研磨した後、コロイダルシリカを用いてCMP処理し、直径約50mm×厚さ約0.6mmの酸化亜鉛基板を得た。 With respect to 100 parts by weight of the plate powder thus obtained, 15 parts by weight of binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), plasticizer (DOP: di (2-ethylhexyl) phthalate, black gold 6.2 parts by weight of Kasei Co., Ltd., 3 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation), and a dispersion medium (2-ethylhexanol) were mixed. The amount of the dispersion medium was adjusted so that the slurry viscosity was 10,000 cP. The slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 100 μm. The obtained tape was cut and laminated, placed on an aluminum plate having a thickness of 10 mm, and then vacuum packed. This vacuum pack was hydrostatically pressed in warm water of 85 ° C. at a pressure of 100 kgf / cm 2 to produce a disk-shaped molded body having a diameter of about 65 mm and a thickness of about 1.5 mm. The obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. The obtained degreased body was fired in the atmosphere at 1200 ° C. for 5 hours under normal pressure to obtain a disk-shaped ZnO-based sintered body. The obtained sintered body was subjected to HIP treatment using Ar gas as a pressure medium at an atmospheric pressure of 150 MPa and 1400 ° C. for 2 hours. The periphery of the obtained sintered body was processed, the surface was mirror-polished with a diamond slurry, and then subjected to CMP treatment using colloidal silica to obtain a zinc oxide substrate having a diameter of about 50 mm and a thickness of about 0.6 mm.
 こうして得られた酸化亜鉛基板に対して、例1及び13と同様にして評価を行った。結果は表1に示されるとおりであり、酸化亜鉛基板を構成する粒子のアスペクト比は3.0と大きかった。GaN結晶性を示すラマンピーク半値幅の値は40cm-1と小さく、良好な結晶性を示したが、粒子アスペクト比が2.0以下と小さい例13及び14の酸化亜鉛基板よりは結晶性が劣るものであった。 The zinc oxide substrate thus obtained was evaluated in the same manner as in Examples 1 and 13. The results are as shown in Table 1, and the aspect ratio of the particles constituting the zinc oxide substrate was as large as 3.0. The value of the half-width of the Raman peak indicating GaN crystallinity was as small as 40 cm −1 , indicating good crystallinity, but the crystallinity was lower than that of the zinc oxide substrates of Examples 13 and 14 having a particle aspect ratio as small as 2.0 or less. It was inferior.
 酸化亜鉛基板の粒子アスペクト比が小さい方がGaNの結晶性が向上する理由は明らかでないが、ZnO粒子のアスペクト比が小さい方がZnO粒子内に応力が蓄積されにくく、その上に成長するGaNの歪を低減させているものと考えられる。 The reason why the crystallinity of GaN is improved when the particle aspect ratio of the zinc oxide substrate is small is not clear, but when the aspect ratio of the ZnO particles is small, stress is not easily accumulated in the ZnO particles, and the GaN grown on the ZnO particles has a smaller aspect ratio. It is thought that distortion is reduced.
 例17
 例13と同様にして板状酸化亜鉛粒子を作製した。この酸化亜鉛板状粒子4.8重量部と、市販の高純度ZnO粉末(比表面積9.4m/g)90.0重量部と、市販の高純度MgO粉末(比表面積23m/g)5.2重量部と、市販の高純度θ-Al粉末(比表面積82m/g)0.6重量部を、エタノールを溶媒としてボールミルにて4時間混合した。こうして得られた混合粉末100重量部に対し、バインダー(ポリビニルブチラール:品番BM-2、積水化学工業株式会社製)15重量部と、可塑剤(DOP:ジ(2-エチルヘキシル)フタレート、黒金化成株式会社製)6.2重量部と、分散剤(製品名レオドールSP-O30、花王株式会社製)3重量部と、分散媒(2-エチルヘキサノール)とを混合した。分散媒の量はスラリー粘度が10000cPとなるように調整した。こうして調製されたスラリーを、ドクターブレード法により、PETフィルムの上に、乾燥後の厚さが100μmとなるようにシート状に成形した。得られたテープを、8mm×65mmの短冊状に多数切断し、約650枚を積層し、真空パックを行った。この真空パックを85℃の温水中で、100kgf/cmの圧力にて静水圧プレスを行い、65mm×8mm×65mmの成形体を作製した。得られた成形体を脱脂炉中に配置し、600℃で脱脂を行った。得られた脱脂体を大気中、1200℃で5時間の条件で常圧焼成して、角板状のZnO質焼結体を得た。得られた焼結体を、Arガスを圧媒とし、雰囲気圧150MPa、1300℃で2時間の条件にてHIP処理した。得られた焼結体を厚さ方向にスライス、又周囲を加工し、ダイヤモンドスラリーにて表面を鏡面研磨した後、コロイダルシリカを用いてCMP処理し、直径約50mm×厚さ約0.6mmの酸化亜鉛基板を得た。
Example 17
In the same manner as in Example 13, plate-like zinc oxide particles were produced. And zinc oxide-shaped particles 4.8 parts by weight, commercially available high purity ZnO powder (specific surface area 9.4m 2 /g)90.0 parts, commercially available high-purity MgO powder (specific surface area 23m 2 / g) 5.2 parts by weight and 0.6 parts by weight of commercially available high-purity θ-Al 2 O 3 powder (specific surface area 82 m 2 / g) were mixed in a ball mill using ethanol as a solvent for 4 hours. With respect to 100 parts by weight of the mixed powder thus obtained, 15 parts by weight of a binder (polyvinyl butyral: product number BM-2, manufactured by Sekisui Chemical Co., Ltd.), a plasticizer (DOP: di (2-ethylhexyl) phthalate, black metal conversion) 6.2 parts by weight (manufactured by Co., Ltd.), 3 parts by weight of a dispersant (product name: Leodol SP-O30, manufactured by Kao Corporation), and a dispersion medium (2-ethylhexanol) were mixed. The amount of the dispersion medium was adjusted so that the slurry viscosity was 10,000 cP. The slurry thus prepared was formed into a sheet shape on a PET film by a doctor blade method so that the thickness after drying was 100 μm. Many of the obtained tapes were cut into strips of 8 mm × 65 mm, and about 650 sheets were laminated and vacuum packed. This vacuum pack was hydrostatically pressed at a pressure of 100 kgf / cm 2 in 85 ° C. warm water to produce a molded body of 65 mm × 8 mm × 65 mm. The obtained molded body was placed in a degreasing furnace and degreased at 600 ° C. The obtained degreased body was fired at atmospheric pressure at 1200 ° C. for 5 hours under normal pressure to obtain a square plate-like ZnO-based sintered body. The obtained sintered body was subjected to HIP treatment under conditions of an atmospheric pressure of 150 MPa and 1300 ° C. for 2 hours using Ar gas as a pressure medium. The obtained sintered body was sliced in the thickness direction, the periphery was processed, the surface was mirror-polished with diamond slurry, and then subjected to CMP treatment using colloidal silica. The diameter was about 50 mm × thickness was about 0.6 mm. A zinc oxide substrate was obtained.
<(100)及び(110)合計配向度>
 例17の基板に対しては、酸化亜鉛基板の板面を試料面とし、XRDにより(100)面及び(110)面の合計配向度を測定した。この測定は、XRD装置(株式会社リガク製 製品名「RINT-TTR III」)を用い、酸化亜鉛基板の表面に対してX線を照射したときのXRDプロファイルを測定することにより行った。(100)面及び(110)面の合計配向度は、以下の式により算出した。
Figure JPOXMLDOC01-appb-M000007
<(100) and (110) total orientation degree>
For the substrate of Example 17, the plate surface of the zinc oxide substrate was used as the sample surface, and the total orientation degree of the (100) plane and the (110) plane was measured by XRD. This measurement was performed using an XRD apparatus (product name “RINT-TTR III” manufactured by Rigaku Corporation) and measuring the XRD profile when the surface of the zinc oxide substrate was irradiated with X-rays. The total orientation degree of the (100) plane and the (110) plane was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000007
 こうして得られた酸化亜鉛基板に対して、例1と同様にして評価を行った。結果は表に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は28cm-1と小さく、良好な結晶性を示した。 The zinc oxide substrate thus obtained was evaluated in the same manner as in Example 1. The results are as shown in the table. The Raman peak half-value width indicating GaN crystallinity was as small as 28 cm −1 , indicating good crystallinity.
 例18
 板状酸化亜鉛をボールミルにて平均粒径0.1μmまで粉砕したこと以外は例17と同様にして酸化亜鉛基板の作製及び評価を行った。結果は表1に示されるとおりであり、GaN結晶性を示すラマンピーク半値幅の値は35cm-1と小さく、良好な結晶性を示した。
Example 18
A zinc oxide substrate was prepared and evaluated in the same manner as in Example 17 except that the plate-like zinc oxide was ground to an average particle size of 0.1 μm with a ball mill. The results are as shown in Table 1. The Raman peak half-value width indicating GaN crystallinity was as small as 35 cm −1 , indicating good crystallinity.
 MOCVD-GaN膜剥がれ箇所の評価
 例7、13、14、17及び18において、酸化亜鉛基板上にMOCVDにてGaN層を成膜したサンプルの表面を光学顕微鏡にて、1mm四方の視野で5視野観察し、膜剥がれ箇所の平均個数を求めた。
In evaluation examples 7, 13, 14, 17 and 18 of the MOCVD-GaN film peeling site, the surface of the sample in which the GaN layer was formed on the zinc oxide substrate by MOCVD was observed with an optical microscope in 5 fields with a 1 mm square field. Observation was made to determine the average number of film peeling points.
 単結晶基板に関する例7においては、図3において矢印で示されるような膜剥がれが観察された。5視野での平均膜剥がれ箇所は9箇所であった。一方、(002)面配向多結晶基板に関する例13では平均膜剥がれ箇所は4箇所であった。また、(100)面配向、又は(100)及び(110)面配向の配向多結晶基板に関する例14、例17及び例18では、膜剥がれは観察されなかった。理由は明らかでないが、単結晶と比較して多結晶の方が膜にかかる応力が低減すると共に、(002)面配向よりも、(100)面配向、又は(100)及び(110)面配向の方が、粒子と膜の密着性が高くなり、膜が剥がれにくくなったものと推測される。膜の剥がれはLED構造を作製する際にリーク源となるため、少ない方が好ましい。また、剥がれの少ない結晶性の高いGaNを酸化亜鉛基板上に成膜可能となることで、特許文献2(特開2007-254206号公報)に記載されるような、フラックス法によるGaNの成長が可能となる。フラックス法でのGaN成長に用いられるNaフラックスは、酸化亜鉛との反応性が高く、高温で直接接触させると酸化亜鉛基板が溶解してしまうが、高結晶性のGaNを気相法により予め成膜しておくことで、これが種結晶として機能するだけでなく、酸化亜鉛基板の溶解を抑制するための保護層として機能する。MOCVD法GaN膜に剥がれがあると、剥がれ部よりNaフラックスが侵入し、ZnOと反応、溶解させてしまうため、剥がれ部は少ない方が好ましい。GaNと酸化亜鉛は格子定数及び熱膨張係数が近いため、酸化亜鉛基板を用いることで、フラックス法においても良好な品質のGaNを成長させることが可能となる。 In Example 7 relating to the single crystal substrate, film peeling as indicated by arrows in FIG. 3 was observed. The average film peeling location in 5 fields was 9 locations. On the other hand, in Example 13 relating to the (002) plane-oriented polycrystalline substrate, the average film peeling location was 4 locations. Moreover, in Example 14, Example 17, and Example 18 related to the (100) plane oriented or (100) and (110) plane oriented polycrystalline substrates, no film peeling was observed. Although the reason is not clear, the stress applied to the film is reduced in the polycrystal as compared with the single crystal, and the (100) plane orientation, or the (100) and (110) plane orientations, rather than the (002) plane orientation. This is presumed that the adhesion between the particles and the film was increased, and the film was less likely to peel off. Since peeling of the film becomes a leak source when the LED structure is manufactured, it is preferable that the film peels less. Further, since GaN having high crystallinity with little peeling can be formed on a zinc oxide substrate, growth of GaN by a flux method as described in Patent Document 2 (Japanese Patent Laid-Open No. 2007-254206) can be achieved. It becomes possible. Na flux used for GaN growth by the flux method has high reactivity with zinc oxide, and the zinc oxide substrate dissolves when directly contacted at a high temperature. However, highly crystalline GaN is formed in advance by a vapor phase method. By forming a film, this not only functions as a seed crystal but also functions as a protective layer for suppressing dissolution of the zinc oxide substrate. If the MOCVD GaN film is peeled off, Na flux penetrates from the peeled portion and reacts and dissolves with ZnO. Therefore, it is preferable that the number of peeled portions is small. Since GaN and zinc oxide have close lattice constants and thermal expansion coefficients, it is possible to grow GaN of good quality even in the flux method by using a zinc oxide substrate.
 EBSDによる結晶方位評価
 例1~18において、GaN成膜後の試料の断面をEBSD(電子線後方散乱回折装置)にて確認した。その結果、例3を除く全ての例において、GaNの結晶方位は下地のZnOの粒子の結晶方位とほぼ一致していることが確認された。
In crystal orientation evaluation examples 1 to 18 by EBSD, the cross section of the sample after the GaN film formation was confirmed by EBSD (electron beam backscatter diffraction apparatus). As a result, in all examples except Example 3, it was confirmed that the crystal orientation of GaN substantially coincided with the crystal orientation of the underlying ZnO particles.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008

Claims (14)

  1.  Mgを0.1重量%以上含有する酸化亜鉛基板であって、その上にMOCVD法により第13族窒化物結晶を成長させるための基板として用いられる、酸化亜鉛基板。 A zinc oxide substrate containing 0.1% by weight or more of Mg, which is used as a substrate for growing a group 13 nitride crystal by MOCVD.
  2.  2Ω・cm以下の抵抗率を有する、請求項1に記載の酸化亜鉛基板。 The zinc oxide substrate according to claim 1, having a resistivity of 2 Ω · cm or less.
  3.  平均粒径が10~200μmの多結晶体である、請求項1又は2に記載の酸化亜鉛基板。 The zinc oxide substrate according to claim 1 or 2, which is a polycrystal having an average particle diameter of 10 to 200 µm.
  4.  MgO相を異相として含まない、請求項1~3のいずれか一項に記載の酸化亜鉛基板。 The zinc oxide substrate according to any one of claims 1 to 3, which does not contain an MgO phase as a different phase.
  5.  Al、Ga及びInからなる群から選択される1種以上のドーパント元素を0.05~2重量%含有している、請求項1~4のいずれか一項に記載の酸化亜鉛基板。 The zinc oxide substrate according to any one of claims 1 to 4, comprising 0.05 to 2% by weight of one or more dopant elements selected from the group consisting of Al, Ga and In.
  6.  0.1Ω・cm以下の抵抗率を有する、請求項1~5のいずれか一項に記載の酸化亜鉛基板。 The zinc oxide substrate according to any one of claims 1 to 5, which has a resistivity of 0.1 Ω · cm or less.
  7.  基板面における(002)面の配向度、(100)面の配向度、(110)面の配向度、又は(100)面及び(110)の合計配向度が30%以上である、請求項1~6のいずれか一項に記載の酸化亜鉛基板。 The orientation degree of the (002) plane, the orientation degree of the (100) plane, the orientation degree of the (110) plane, or the total orientation degree of the (100) plane and (110) on the substrate surface is 30% or more. The zinc oxide substrate according to any one of 1 to 6.
  8.  基板面における(100)面の配向度、(110)面の配向度、又は(100)面及び(110)面の合計配向度が40%以上である、請求項1~6のいずれか一項に記載の酸化亜鉛基板。 7. The degree of orientation of the (100) plane, the degree of orientation of the (110) plane, or the total degree of orientation of the (100) plane and the (110) plane on the substrate surface is 40% or more. A zinc oxide substrate according to 1.
  9.  基板面における(100)面の配向度、(110)面の配向度、又は(100)面及び(110)面の合計配向度が70%以上である、請求項1~6のいずれか一項に記載の酸化亜鉛基板。 7. The degree of orientation of the (100) plane, the degree of orientation of the (110) plane, or the total degree of orientation of the (100) plane and the (110) plane on the substrate surface is 70% or more. A zinc oxide substrate according to 1.
  10.  前記酸化亜鉛基板を構成する結晶粒のアスペクト比が2.0以下である、請求項1~9のいずれか一項に記載の酸化亜鉛基板。 The zinc oxide substrate according to any one of claims 1 to 9, wherein an aspect ratio of crystal grains constituting the zinc oxide substrate is 2.0 or less.
  11.  Mgの含有量が0.1~5.0重量%である、請求項1~10のいずれか一項に記載の酸化亜鉛基板。 The zinc oxide substrate according to any one of claims 1 to 10, wherein the Mg content is 0.1 to 5.0 wt%.
  12.  請求項1~11のいずれか一項に記載の酸化亜鉛基板を用意する工程と、
     前記酸化亜鉛基板上に、GaAlIn1-x-yN(式中、0≦x≦1、0≦y≦1)で表される第13族窒化物結晶をMOCVD法により成長させる工程と、
    を含む、第13族窒化物結晶の製造方法。
    Preparing the zinc oxide substrate according to any one of claims 1 to 11,
    A Group 13 nitride crystal represented by Ga x Al y In 1-xy N (where 0 ≦ x ≦ 1, 0 ≦ y ≦ 1) is grown on the zinc oxide substrate by MOCVD. Process,
    A method for producing a Group 13 nitride crystal.
  13.  前記酸化亜鉛基板上に成長した前記第13族窒化物結晶の結晶方位が、前記酸化亜鉛基板を構成する酸化亜鉛粒子の結晶方位と概ね一致している、請求項12に記載の方法。 The method according to claim 12, wherein a crystal orientation of the group 13 nitride crystal grown on the zinc oxide substrate is substantially coincident with a crystal orientation of zinc oxide particles constituting the zinc oxide substrate.
  14.  前記酸化亜鉛基板の表面に、絶縁性の層を形成することなく、前記第13族窒化物結晶を成長させる、請求項12又は13に記載の方法。

      
     
    The method according to claim 12 or 13, wherein the group 13 nitride crystal is grown on the surface of the zinc oxide substrate without forming an insulating layer.


PCT/JP2015/067290 2014-09-04 2015-06-16 Zinc oxide substrate and method for producing group 13 nitride crystal using same WO2016035417A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016546355A JP6489621B2 (en) 2014-09-04 2015-06-16 Zinc oxide substrate and method for producing group 13 nitride crystal using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-180659 2014-09-04
JP2014180659 2014-09-04
JP2015060776 2015-03-24
JP2015-060776 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016035417A1 true WO2016035417A1 (en) 2016-03-10

Family

ID=55439488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067290 WO2016035417A1 (en) 2014-09-04 2015-06-16 Zinc oxide substrate and method for producing group 13 nitride crystal using same

Country Status (2)

Country Link
JP (1) JP6489621B2 (en)
WO (1) WO2016035417A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121000A1 (en) * 2005-05-09 2006-11-16 Rohm Co., Ltd. Nitride semiconductor element and production method therefor
JP2010212611A (en) * 2009-03-12 2010-09-24 Furukawa Electric Co Ltd:The Semiconductor laser element
WO2014092167A1 (en) * 2012-12-14 2014-06-19 日本碍子株式会社 Surface light-emission element using zinc oxide substrate
WO2014092163A1 (en) * 2012-12-14 2014-06-19 日本碍子株式会社 Surface light-emission element using zinc oxide substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006121000A1 (en) * 2005-05-09 2006-11-16 Rohm Co., Ltd. Nitride semiconductor element and production method therefor
JP2010212611A (en) * 2009-03-12 2010-09-24 Furukawa Electric Co Ltd:The Semiconductor laser element
WO2014092167A1 (en) * 2012-12-14 2014-06-19 日本碍子株式会社 Surface light-emission element using zinc oxide substrate
WO2014092163A1 (en) * 2012-12-14 2014-06-19 日本碍子株式会社 Surface light-emission element using zinc oxide substrate

Also Published As

Publication number Publication date
JP6489621B2 (en) 2019-03-27
JPWO2016035417A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
JP6480398B2 (en) Polycrystalline gallium nitride free-standing substrate and light emitting device using the same
EP2933847B1 (en) Surface light-emission element using zinc oxide substrate
JPWO2016035721A1 (en) Zinc oxide sintered body and method for producing the same
JP7289357B2 (en) semiconductor film
JP6890117B2 (en) Self-supporting substrate made of polycrystalline Group 13 element nitride and light emitting device using it
JPWO2014192911A1 (en) Gallium nitride free-standing substrate, light emitting device, and manufacturing method thereof
KR102172356B1 (en) Gallium nitride self-supported substrate, light-emitting device and manufacturing method therefor
CN108699727B (en) Polycrystalline gallium nitride free-standing substrate and light-emitting element using same
JP6522631B2 (en) Mg-containing zinc oxide sintered body and method for producing the same
JPWO2014091968A1 (en) Single crystal manufacturing method and single crystal manufactured by the method
WO2014092165A1 (en) Surface light-emission element using zinc oxide substrate
WO2020194802A1 (en) Ground substrate and method for producing same
JP6784870B1 (en) Semiconductor film
WO2017057271A1 (en) Oriented alumina substrate for epitaxial growth
JP6489621B2 (en) Zinc oxide substrate and method for producing group 13 nitride crystal using the same
WO2020195355A1 (en) Underlying substrate
JP6092015B2 (en) Method for producing single crystal
WO2020195497A1 (en) Semiconductor film
WO2020261574A1 (en) Semiconductor film
JP2015003837A (en) Method for manufacturing doped zinc oxide single crystal
WO2021064817A1 (en) Base substrate and method for manufacturing same
WO2021064816A1 (en) Base substrate and method for producing same
WO2020066926A1 (en) DELAFOSSITE-TYPE Cu COMPOSITE OXIDE FILM AND COMPOSITE MATERIAL
JP6385009B2 (en) Zinc oxide free-standing substrate and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15837425

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016546355

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15837425

Country of ref document: EP

Kind code of ref document: A1