WO2016035271A1 - Image processing device for vehicle - Google Patents

Image processing device for vehicle Download PDF

Info

Publication number
WO2016035271A1
WO2016035271A1 PCT/JP2015/004133 JP2015004133W WO2016035271A1 WO 2016035271 A1 WO2016035271 A1 WO 2016035271A1 JP 2015004133 W JP2015004133 W JP 2015004133W WO 2016035271 A1 WO2016035271 A1 WO 2016035271A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
vehicle
tire
unit
speed
Prior art date
Application number
PCT/JP2015/004133
Other languages
French (fr)
Japanese (ja)
Inventor
祥吾 大宮
博彦 柳川
敦 志村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015010341A external-priority patent/JP6327160B2/en
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112015004011.0T priority Critical patent/DE112015004011B4/en
Priority to CN201580045655.3A priority patent/CN106604847B/en
Publication of WO2016035271A1 publication Critical patent/WO2016035271A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R1/00Optical viewing arrangements; Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/20Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles
    • B60R1/22Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle
    • B60R1/23Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view
    • B60R1/27Real-time viewing arrangements for drivers or passengers using optical image capturing systems, e.g. cameras or video systems specially adapted for use in or on vehicles for viewing an area outside the vehicle, e.g. the exterior of the vehicle with a predetermined field of view providing all-round vision, e.g. using omnidirectional cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present disclosure relates to an image processing apparatus for a vehicle that performs processing on an image captured by an imaging apparatus installed in a vehicle.
  • An object of the present invention is to provide a vehicular image processing device that reduces the sense of discomfort.
  • An image processing device for a vehicle generates a vehicle peripheral image in which a periphery of the vehicle is viewed from above from an image of the periphery of the vehicle captured by a plurality of imaging devices installed in the vehicle, A peripheral image acquisition unit, a calculation unit, a composite image creation unit, and a tire parameter update unit are provided.
  • the peripheral image acquisition unit acquires a front captured image and a rear captured image from each of a front image capturing device that continuously images a front region of the vehicle and a rear image capturing device that continuously images a rear region of the vehicle.
  • the calculation unit calculates the travel distance of the vehicle using vehicle state information including information related to the rotation angle of the tire of the vehicle and parameter information related to the outer diameter of the tire stored in the storage unit.
  • the composite image creating unit uses one past image that shows the traveling direction of the vehicle among the front photographed image and the rear photographed image as a history image, and moves to the other image of the front photographed image and the rear photographed image.
  • a vehicle peripheral image is created by synthesizing history images based on the above.
  • the tire parameter update unit updates the parameter information stored in the storage unit so that the deviation between the history image synthesized based on the moving distance and the other image is reduced.
  • the vehicular image processing device of the present disclosure configured as described above is synthesized based on the other image not used for the history image among the front captured image and the rear captured image, and the moving distance calculated by the calculation unit.
  • the parameter information can be updated so as to reduce the deviation from the recorded history image. Therefore, even when the outer diameter of the tire changes for some reason, the vehicular image processing apparatus determines that the travel distance calculated by using the tire rotation angle specified by the vehicle state information and the parameter information is the actual distance of the vehicle. It is possible to suppress the occurrence of a situation in which the distance is different from the movement distance.
  • the vehicle image processing device of the present disclosure can smoothly connect the captured image and the history image even if the vehicle peripheral image is generated by synthesizing the history image with the captured image. Thereby, the vehicular image processing device according to the present disclosure can realize generation of a vehicle periphery image with reduced discomfort.
  • FIG. 1 is a block diagram showing a configuration of a vehicle display system
  • FIG. 2 is a flowchart showing the peripheral display process.
  • FIG. 3 is a diagram showing a configuration of a display top view image.
  • FIG. 4 is a flowchart showing the tire parameter update process of the first embodiment.
  • FIG. 5 is a view showing a top-view image for display when the tire outer diameter is increased
  • FIG. 6 is a view showing a top-view image for display when the tire outer diameter is reduced
  • FIG. 7 is a flowchart showing the tire parameter update process of the second embodiment
  • FIG. 1 is a block diagram showing a configuration of a vehicle display system
  • FIG. 2 is a flowchart showing the peripheral display process.
  • FIG. 3 is a diagram showing a configuration of a display top view image.
  • FIG. 4 is a flowchart showing the tire parameter update process of the first embodiment.
  • FIG. 5 is a view showing a top-view image for display when the tire outer diameter is increased
  • FIG. 8 is a diagram showing a display top view image in which measurement objects are displayed in the rear display area and the intermediate display area.
  • FIG. 9 is a flowchart showing the tire parameter update process of the third embodiment
  • FIG. 10 is a diagram showing a top view image for explaining a method of calculating the speed of a moving object.
  • FIG. 11A is a diagram showing a luminance change pattern in the front view top-view image;
  • FIG. 11B is a diagram showing a luminance change pattern in the rear display top view image.
  • the vehicle display system 1 of this embodiment is mounted on a vehicle and includes an in-vehicle camera group 2, a sensor group 3, an image processing device 4, and a display device 5, as shown in FIG.
  • the image processing device 4 is a vehicle image processing device according to the present disclosure.
  • the in-vehicle camera group 2 includes a front camera 11 and a rear camera 12.
  • the front camera 11 is attached to the front side of a vehicle (hereinafter referred to as the host vehicle) on which the vehicle display system 1 is mounted, and repeatedly photographs the ground surface in front of the host vehicle.
  • the rear camera 12 is attached to the rear side of the host vehicle, and repeatedly photographs the ground surface behind the host vehicle.
  • the sensor group 3 includes a vehicle speed sensor 21, a yaw rate sensor 22, a shift lever position sensor 23, and a steering angle sensor 24.
  • the vehicle speed sensor 21 outputs a vehicle speed signal that changes from a low level to a high level at every predetermined angle according to the rotation of the axle.
  • the yaw rate sensor 22 detects the yaw rate of the host vehicle and outputs a yaw rate signal indicating the detection result.
  • the shift lever position sensor 23 detects the position of the shift lever of the vehicle and outputs a shift position signal indicating the detection result.
  • the steering angle sensor 24 detects the steering angle of the steering wheel of the vehicle, and outputs a steering angle signal indicating the detection result.
  • the image processing apparatus 4 includes an image input signal processing unit 31, an input signal processing unit 32, an image conversion unit 33, a storage unit 34, a control unit 35, and an image output signal processing unit 36.
  • the image input signal processing unit 31 is an interface for inputting captured images from the front camera 11 and the rear camera 12.
  • the input signal processing unit 32 is an interface for inputting signals from the various sensors 21 to 24.
  • the image conversion unit 33 obtains a front photographed image and a rear photographed image from the front camera 11 and the rear camera 12 via the image input signal processing unit 31, and performs coordinate conversion of the photographed image, so that the image is viewed from the viewpoint above the vehicle.
  • a converted image (hereinafter referred to as a top view image) is created.
  • a top view image created by performing coordinate conversion on a captured image of the front camera 11 is referred to as a front top image.
  • a top view image created by coordinate-transforming a captured image of the rear camera 12 is referred to as a rear top image.
  • the image conversion unit 33 outputs the created front top image and rear top image to the control unit 35.
  • the storage unit 34 is a storage device for storing various data.
  • the tire parameter information indicates the outer diameter of one tire, not the outer diameter of each of the four tires, assuming that all four tires of the host vehicle have the same outer diameter.
  • the control unit 35 is mainly configured by a microcomputer including a CPU 41, a ROM 42, a RAM 43, and the like.
  • the control unit 35 controls the image processing apparatus 4 by the CPU 41 executing a process based on a program stored in the ROM 42.
  • the image output signal processing unit 36 is an interface for outputting image data processed by the control unit 35 to the display device 5.
  • the display device 5 is a color display device having a display screen such as a liquid crystal display, and displays various images on the display screen in response to input of image data from the image processing device 4.
  • the image processing device 4 executes a peripheral display process and a tire parameter update process which will be described later.
  • This peripheral display process is a process that is repeatedly executed every preset execution cycle during the operation of the image processing apparatus 4.
  • the control unit 35 When this peripheral display process is executed, the control unit 35, as shown in FIG. 2, first from the vehicle speed sensor 21, the yaw rate sensor 22, and the shift lever position sensor 23 via the input signal processing unit 32 in S10, respectively. A vehicle speed signal, a yaw rate signal, and a shift position signal are acquired. And the vehicle speed information which shows the vehicle speed specified by the vehicle speed signal acquired by S10, the yaw rate information which shows the yaw rate specified by the yaw rate signal acquired by S10, and the shift position information specified by the shift position signal acquired by S10 Is stored in a vehicle information storage area provided in the storage unit 34. The vehicle speed indicated by the vehicle speed information is calculated based on the time interval input by the vehicle speed signal. Thereby, a plurality of vehicle speed information, yaw rate information, and shift position information are stored in time series in the vehicle information storage area of the storage unit 34.
  • the front top image and the rear top image are acquired from the image conversion unit 33. Further, in S40, the front top image and the rear top image acquired in S30 are stored in the front / rear top image storage area provided in the storage unit 34. Accordingly, a plurality of front top images and rear top images are stored in time series in the front / rear top image storage area of the storage unit 34.
  • the traveling speed of the host vehicle is equal to or less than a preset low-speed traveling determination speed (in this embodiment, for example, 30 km / h) indicating that the vehicle is traveling at a low speed.
  • a preset low-speed traveling determination speed in this embodiment, for example, 30 km / h
  • the traveling speed of the host vehicle exceeds the low-speed traveling determination speed (S50: NO)
  • the front top image and the rear top image acquired in S30 are output to the display device 5 in S60, The display process is temporarily terminated. Thereby, the front top image and the rear top image are displayed on the display screen of the display device 5.
  • the shift position of the host vehicle is set to P (parking) or N (based on the acquired shift position signal in S70. It is determined whether it is neutral). If the shift position is P or N (S70: YES), the data indicating the front top image and the rear top image acquired in S30 is output to the display device 5 in S60, and the peripheral display processing is performed. Exit once.
  • a plurality of vehicle speed information, yaw rate information, and shift position information stored in time series in the storage unit 34 in S80 Based on the vehicle speed, yaw rate, and shift position specified by the above, the moving distance and moving direction of the host vehicle are sequentially calculated.
  • the left and right moving directions are calculated based on the yaw rate specified by the plurality of pieces of yaw rate information stored in time series in the storage unit 34.
  • the front and rear moving directions are calculated.
  • the vehicle speed specified by the plurality of vehicle speed information stored in the storage unit 34 in time series and the own vehicle tire outer diameter indicated by the tire parameter information stored in the storage unit 34 Calculate the travel distance.
  • the shift position of the host vehicle is D (drive). If the shift position is D (S90: YES), an intermediate top image is created using the front top image stored in the storage unit 34 in S100, and the created intermediate top image is After storing in the intermediate top image storage area provided in the storage unit 34, the process proceeds to S120.
  • the intermediate top image is a top view image in an area (hereinafter referred to as an intermediate area) located between the area indicated by the front top image and the area indicated by the rear top image. Note that the intermediate top image corresponds to a history image in the present disclosure.
  • the front top image capturing the intermediate region is extracted from the storage unit. Further, in S100, an intermediate top image is created by performing coordinate transformation in which the extracted front top image is translated or rotated in accordance with the difference between the extracted front top image and the above intermediate region. Note that the front top image extracted in S100 corresponds to one image in the present disclosure, and a history image in the present disclosure is created by the extracted front top image.
  • the shift position of the host vehicle is not D (S90: NO)
  • the top top image stored in the storage unit 34 is stored in S110.
  • the intermediate top image is created by using the same method as in S100, and the created intermediate top image is stored in the intermediate top image storage area provided in the storage unit 34, and then the process proceeds to S120.
  • the rear top image extracted in S110 corresponds to one image in the present disclosure, and a history image in the present disclosure is created by the extracted rear top image.
  • a top view image (hereinafter referred to as a display top view image) to be displayed on the display device 5 is created.
  • the display top view image includes a front display area R1, a rear display area R2, and an intermediate display area R3.
  • the front display area R1 is an area for displaying a top view image in front of the host vehicle.
  • the rear display area R2 is an area for displaying a top view image behind the host vehicle.
  • the intermediate display area R3 is an area for displaying a top view image between the front and rear of the host vehicle.
  • the front top image and the rear top image acquired in S30 are allocated to the front display region R1 and the rear display region R2, respectively, and the latest stored in the intermediate top image storage region of the storage unit 34 is stored in the intermediate display region R3. Assign an intermediate top image. Further, in S120, the host vehicle image CG is arranged in the intermediate display region R3. Thereby, the creation of the display top view image is completed.
  • This tire parameter update process is a process that is started immediately after the image processing apparatus 4 is started.
  • the control unit 35 first determines in S210 whether or not a preset process start condition is satisfied, as shown in FIG.
  • the process start condition of the present embodiment is that the host vehicle has traveled a predetermined process start determination distance from the establishment of the previous process start condition.
  • the traveling speed of the host vehicle is equal to or lower than the processing start determination speed (S220: YES), whether or not the host vehicle is traveling straight based on the steering angle signal from the steering angle sensor 24 in S230. Judging. Specifically, when the steering angle indicated by the steering angle signal is within a preset straight traveling determination angle range (for example, ⁇ 3 ° to + 3 °), it is determined that the host vehicle is traveling straight.
  • a preset straight traveling determination angle range for example, ⁇ 3 ° to + 3 °
  • the measurement object of the present embodiment is, for example, a pylon, a sign, a road surface printing, a manhole, and a pole.
  • S260 it is determined whether or not the measurement object is detected in S250.
  • the process proceeds to S250 and the above process is repeated.
  • the same measurement object as the measurement object detected in S250 is captured from the front top image stored in the storage unit 34 in S270. Extract the image that is.
  • a time difference (hereinafter referred to as a time difference between before and after) between the shooting timing of the rear top image where the measurement object is detected in S250 and the shooting timing of the front top image extracted in S270 is calculated. Further, in S290, based on the position where the measurement object appears in the rear top image where the measurement object is detected in S250 and the position where the measurement object appears in the front top image extracted in S270, The distance that the host vehicle has traveled within the time difference (hereinafter referred to as the front-rear travel distance) is calculated, and the process proceeds to S350.
  • the front-rear travel distance The distance that the host vehicle has traveled within the time difference
  • S310 it is determined whether or not a measurement object is detected in S300. If no measurement object has been detected (S310: NO), the process proceeds to S300 and the above-described processing is repeated. On the other hand, when the measurement object is detected (S310: YES), the same measurement object as the measurement object detected in S300 is captured from the rear top image stored in the storage unit 34 in S320. Extract the image that is.
  • a time difference (front-rear time difference) between the shooting timing of the front top image at which the measurement object is detected in S300 and the shooting timing of the rear top image extracted in S320 is calculated. Further, in S340, based on the position where the measurement object is reflected in the front top image where the measurement object is detected in S300 and the position where the measurement object is reflected in the rear top image extracted in S320, The distance traveled by the host vehicle within the time difference (front / rear travel distance) is calculated, and the process proceeds to S350.
  • an angle (hereinafter referred to as a front and rear tire rotation angle) in which the tire of the host vehicle is rotated by the front and rear time difference is calculated from the front and rear time difference calculated in S280 or S330 and the vehicle speed signal.
  • the front and rear tire rotation angles can be calculated based on the number of times the vehicle speed signal is input during the time period difference.
  • the front and rear tire rotation angles can be calculated beyond 360 °.
  • the vehicle tire outer diameter is calculated based on the front / rear travel distance calculated in S290 or S340 and the front / rear tire rotation angle calculated in S350. Specifically, based on the front and rear running distance and the front and rear tire rotation angle, the distance traveled while the tire rotates 360 ° is calculated as the tire circumference, and the tire circumference is divided by ⁇ .
  • the vehicle tire outer diameter is calculated based on the front and rear running distance and the front and rear tire rotation angle.
  • the image processing apparatus 4 configured as described above includes a front top image obtained by performing coordinate conversion for performing a bird's-eye view from above the vehicle on an image captured by the front camera 11 that continuously captures a front area of the vehicle, A rear top image obtained by performing coordinate transformation for bird's-eye view from above the vehicle on the captured image by the rear camera 12 that continuously captures the rear region is acquired (S30).
  • the image processing device 4 calculates the moving distance of the vehicle using the vehicle speed information, the yaw rate information, the shift position information, and the tire parameter information related to the outer diameter of the tire stored in the storage unit 34 (S80).
  • the image processing device 4 uses the past front top image stored in the storage unit 34 as a history image, and records the history based on the movement distance in the rear top image acquired at the present time.
  • a top view image for display is created by synthesizing the images (S100, S120).
  • the image processing device 4 uses the past rear top image stored in the storage unit 34 as a history image, and records the history based on the moving distance in the front top image acquired at the present time.
  • a top-view image for display is created by combining the images (S110, S120).
  • the image processing device 4 stores the tire parameter information stored in the storage unit 34 so that the deviation between the history image synthesized based on the moving distance and the front top image or the rear top image acquired at the present time is reduced. Is updated (S250 to S360).
  • the image processing device 4 reduces the deviation between the other image not used for the history image among the front top image and the rear top image, and the history image synthesized based on the calculated movement distance.
  • the tire parameter information can be updated. Therefore, even when the outer diameter of the tire changes for some reason, the image processing apparatus 4 determines that the travel distance calculated using the tire rotation angle specified by the vehicle speed information and the tire parameter information is the actual vehicle distance. Occurrence of a situation that is different from the moving distance can be suppressed.
  • the image processing apparatus 4 can smoothly connect the photographed image and the history image even when the top image for display is generated by synthesizing the history image with the photographed image. As a result, the image processing apparatus 4 can realize generation of a display top view image with reduced discomfort.
  • both the rear display region R2 and the intermediate display region R3 are the same.
  • the pylons PL2 and PL3 are displayed, and a deviation occurs in the traveling direction DM of the vehicle near the boundary between the rear display area R2 and the intermediate display area R3. This is because the actual travel distance of the host vehicle is longer than the travel distance calculated by the image processing device 4, and thereby the distance DC3 recognized by the image processing device 4 with respect to the distance between the host vehicle and the pylon. This is because the actual distance DC2 becomes longer.
  • the actual travel distance of the host vehicle is shorter than the travel distance calculated by the image processing device 4.
  • the distance DC2A recognized by the image processing device 4 with respect to the distance between the host vehicle and the pylon is not displayed in the rear display region R2.
  • the distance DC2 is shorter.
  • deviation occurs along the traveling direction DM of the vehicle near the boundary between the rear display region R2 and the intermediate display region R3.
  • the image processing apparatus 4 detects a preset measurement object from each of the plurality of front top images and the plurality of rear top images (S250 to S270, S290 to S310).
  • the image processing device 4 measures the time difference between the times when the front top image and the rear top image in which the common measurement object is captured are taken, and further determines the travel distance traveled by the vehicle within the time difference. Measurement is performed based on a common measurement object appearing in the top image (S280, S290, S330, S340).
  • the image processing device 4 calculates the vehicle tire outer diameter for update based on the measured time difference and travel distance and the tire rotation angle rotated within the time difference (S350).
  • the image processing apparatus 4 can measure the vehicle tire outer diameter using the in-vehicle camera group 2 necessary for creating the display top view image. That is, the image processing device 4 does not need to add a new measuring device for measuring the vehicle tire outer diameter, and can simplify the configuration of the image processing device 4. Moreover, since the image processing device 4 compares the photographed image of the front camera 11 and the photographed image of the rear camera 12, the vehicle tire outer diameter can be measured based on the result of rotating the tire a plurality of times. It is possible to accurately detect a change in the circumference along with a change in the tire outer diameter.
  • the image processing device 4 determines whether or not the vehicle is in a straight traveling state (S230), and performs a process of updating the tire parameter information when it is determined that the vehicle is traveling straight ahead. As a result, the image processing device 4 calculates the value indicated by the tire parameter information only when traveling straight ahead, and can update the tire parameter information while substantially ignoring the lateral displacement of the vehicle. The accuracy of information can be improved.
  • the image processing device 4 determines whether or not the traveling speed of the vehicle is equal to or lower than a preset processing start determination speed (S220), and when it is determined that the traveling speed of the vehicle is equal to or lower than the processing start determination speed, Processing to update tire parameter information is performed.
  • the image processing apparatus 4 calculates the value indicated by the tire parameter information only at a low speed, can reduce the influence of slip generated on the tire, and can easily ensure the accuracy of the tire parameter information. .
  • the front camera 11 and the rear camera 12 are the imaging devices in the present disclosure
  • the processing in S30 is the peripheral image acquisition unit in the present disclosure
  • the processing in S80 is the calculation unit in the present disclosure
  • the processing in S100, S110, and S120 Is a composite image creation unit in the present disclosure
  • the processes in S250 to S360 are a tire parameter update unit in the present disclosure.
  • the processing of S250 to S270 and S290 to S310 is the measurement object detection unit in the present disclosure
  • the processing of S280, S290, S330, and S340 is the measurement unit in the present disclosure
  • the processing of S230 is the straight traveling determination unit in the present disclosure
  • the processing of S220 is a vehicle speed determination unit in the present disclosure.
  • the vehicle display system 1 of the second embodiment is the same as that of the first embodiment except that the tire parameter update process is changed.
  • the tire parameter update process of the second embodiment is the same as that of the first embodiment except that the processes of S270 to S290 and S320 to S360 are omitted and the processes of S410 to S490 are added.
  • the front top image capturing the rear display area R2 and the intermediate display area R3 is extracted from the storage unit 34. Further, in S420, a position comparison image is created by performing coordinate conversion in which the extracted front top image is translated or rotated in accordance with the difference between the extracted front top image and the intermediate region.
  • the vehicle tire outer diameter is calculated, and the process proceeds to S490. Specifically, first, by using the distance between the measurement object of the rear top image detected in S250 and the measurement object of the position comparison image detected in S430, the change amount of the vehicle tire outer diameter is calculated. calculate. For example, as shown in FIG. 8, when the measurement object PL2 displayed in the rear display area R2 and the measurement object PL3 displayed in the intermediate display area R3 are the same measurement object, measurement is performed. The amount of change in the outer diameter of the vehicle tire is calculated using the distance DC between the object PL2 for measurement and the object PL3 for measurement. Then, the calculated change amount is added to or subtracted from the value of the tire parameter information stored in the storage unit 34, and this added value or subtracted value is set as a new own vehicle tire outer diameter.
  • the rear top image capturing the front display area R1 and the intermediate display area R3 is extracted from the storage unit 34. Further, in S470, a position comparison image is created by performing coordinate conversion in which the extracted rear top image is translated or rotated in accordance with the difference between the extracted rear top image and the intermediate region.
  • the image processing apparatus 4 configured as described above selects a measurement object set in advance from each of the front top image or the rear top image acquired at the present time and the position comparison image stored in the storage unit 34. It detects (S250, S420, S300, S470). Then, the image processing device 4 updates the tire parameter information so that the deviation between the measurement object shown in the front top image or the rear top image acquired at the present time and the measurement object shown in the position comparison image is reduced. (S440, S480, S490).
  • the image processing apparatus 4 can measure the vehicle tire outer diameter using the in-vehicle camera group 2 necessary for creating the display top view image. That is, the image processing device 4 does not need to add a new measuring device for measuring the vehicle tire outer diameter, and can simplify the configuration of the image processing device 4.
  • the processing of S250, S420, S300, and S470 is a measurement object detection unit in the present disclosure
  • the processing of S440, S480, and S490 is a tire parameter update unit in the present disclosure.
  • the vehicular display system 1 of the third embodiment is the same as that of the first embodiment except that the tire parameter update process is changed.
  • the tire parameter update process of the third embodiment is a process that is repeatedly executed at preset execution cycles during the operation of the image processing apparatus 4.
  • the control unit 35 When this tire parameter update process is executed, the control unit 35 first determines in S610 whether or not a preset process start condition is satisfied, as shown in FIG.
  • the processing start condition of the present embodiment is that a tire parameter update button provided in the passenger compartment is pushed down.
  • S640 it is determined whether or not the shift position of the host vehicle is D in the same manner as S90.
  • D the shift position
  • S640: YES an intermediate top image is created using the front top image stored in the storage unit 34 in S650 in the same manner as S100, and created. After storing the intermediate top image in the intermediate top image storage area provided in the storage unit 34, the process proceeds to S670.
  • S670 based on the acquired vehicle speed signal, it is determined whether or not the host vehicle is traveling at a constant speed from the present time to a preset speed determination period. If the host vehicle is not traveling at a constant speed (S670: NO), the process proceeds to S620.
  • an optical flow is detected from a plurality of intermediate top images created in S650 or S660 between the current time and before the speed determination period.
  • the velocity vector (see vectors V6 and V7 in FIG. 10) of the moving object (see moving objects MO6 and MO7 in FIG. 10) in the intermediate top image is calculated using the optical flow detected in S700. To do.
  • S720 based on the number and direction of the velocity vectors obtained in the optical flow detected in S680 and S700, it is determined whether or not the velocity vector calculated in S690 and S710 is valid. If the velocity vector is not valid (S720: NO), the process proceeds to S620.
  • the vehicle tire outer diameter X is calculated by the following equation (1) using the speed vector calculated in S690 and S710 in S730. .
  • L is the vehicle tire outer diameter indicated by the tire parameter information stored in the storage unit 34.
  • v is the magnitude of the velocity vector calculated in S690.
  • va is the magnitude of the velocity vector calculated in S710.
  • the image processing apparatus 4 configured as described above detects the moving speed of the moving object (hereinafter referred to as the first moving speed) in the front top image and the back top image (S680, S690). Further, the image processing device 4 detects the moving speed of the moving object (hereinafter referred to as the second moving speed) in the intermediate top image (S700, S710). Then, the image processing device 4 calculates the vehicle tire outer diameter for update based on the first movement speed and the second movement speed (S730).
  • the image processing device 4 moves the moving speed (first moving speed) of the object that actually moves in the front top image and the rear top image, and the moving speed (the moving speed of the object that actually moves in the intermediate top image).
  • the tire parameter information can be updated so that the second movement speed matches.
  • the image processing apparatus 4 can smoothly connect the front top image and the rear top image to be actually combined with the intermediate top image, and can generate a display top view image with reduced discomfort.
  • the processes of S680 and S690 are the first movement speed detection unit in the present disclosure
  • the processes of S700 and S710 are the second movement speed detection unit in the present disclosure
  • the processes of S730 and S740 are the tire parameters in the present disclosure. It is an update unit.
  • this indication is not limited to the above-mentioned embodiment, and can take various forms, as long as it belongs to the technical scope of this indication.
  • the display top view image is displayed on the display screen of the display device 5 when the vehicle speed is equal to or lower than the low-speed traveling determination speed.
  • the display top view image is displayed regardless of the vehicle speed. You may make it do.
  • the tire parameter information indicates the tire outer diameter.
  • the tire parameter information is not limited to this as long as the tire outer diameter is information that can specify the tire outer diameter. It may be a value indicating the circumference or a correction value for correcting the outer diameter or circumference as a reference.
  • the outer diameter of the tire of the own vehicle based on the time difference between the imaging timing of the front top image which detected the measurement object, and the imaging timing of the back top image was shown.
  • the outer diameter of the tire of the host vehicle may be calculated using a luminance change pattern instead of the measurement object of the front top image and the rear top image.
  • a luminance change pattern PB1 in which the luminance changes along the traveling direction DM of the host vehicle is detected in the front top image.
  • the luminance change pattern PB1 is generated by, for example, a broken line white line WL (roadway center line) that divides a road lane. Thereafter, as shown in FIG.
  • the time difference front-rear time difference
  • An angle front / rear tire rotation angle
  • the vehicle tire outer diameter is calculated based on the front-rear travel distance and the front-rear tire rotation angle. Specifically, based on the front and rear running distance and the front and rear tire rotation angle, the distance traveled while the tire rotates 360 ° is calculated as the tire circumference, and the tire circumference is divided by ⁇ . The vehicle tire outer diameter.
  • the processing start condition may be that tire replacement is detected. Further, the processing start condition may be that the tire air pressure fluctuates. For example, when refueling is detected, it may be determined that the tire air pressure has increased. Further, the process start condition may be that a preset process start determination time elapses from the previous establishment of the process start condition. Further, the process start condition may be that the driver performs a process start operation that is set in advance to start the tire parameter update process (for example, operation of an operation button provided for calculating the tire outer diameter). .
  • the functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component.
  • at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment.
  • all the aspects included in the technical idea specified only by the wording described in the claims are embodiments of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Closed-Circuit Television Systems (AREA)
  • Image Processing (AREA)

Abstract

An image processing device for a vehicle, which generates a vehicle surroundings image of an overhead view of the surroundings of the vehicle as seen from above, the image processing device being provided with: a surroundings image acquisition unit (S30) that acquires a photographed front image and a photographed rear image from a front photographic device (11) and a rear photographic device (12); a calculation unit (S80) that calculates the moving distance of the vehicle using vehicle state information, including the information associated with the tire rotation angle of the vehicle, and parameter information associated with the tire outer diameter stored in a storage unit (34); a composite image creation unit (S100, S110, S120) that creates a vehicle surroundings image by using, as a history image, one past image of a region in the traveling direction of the vehicle among the photographed front image and photographed rear image, and compositing the history image with the other image on the basis of the moving distance; and a tire parameter updating unit (S250 to S360, S440, S480, S490) that updates the parameter information stored in the storage unit so as to reduce the deviation between the history image and the other image composited on the basis of the moving distance.

Description

車両用画像処理装置Image processing apparatus for vehicle 関連出願の相互参照Cross-reference of related applications
 本出願は、2014年9月2日に出願された日本出願番号2014-178098号と、2015年1月22日に出願された日本出願番号2015-010341号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2014-178098 filed on September 2, 2014 and Japanese Application No. 2015-010341 filed on January 22, 2015, the contents of which are described herein. Is used.
 本開示は、車両に設置された撮影装置により撮影された画像に対して処理を行う車両用画像処理装置に関する。 The present disclosure relates to an image processing apparatus for a vehicle that performs processing on an image captured by an imaging apparatus installed in a vehicle.
 従来、車両周辺の一部分を連続して撮影し、現時点で撮影した撮影画像と、現時点よりも前に撮影した画像とを、車両の上方から見下ろした画像に変換して繋ぎ合わせることにより、車両とその周囲全体を俯瞰した1枚のトップビュー画像を作成する技術が知られている(例えば、特許文献1を参照)。 Conventionally, a part of the vehicle periphery is continuously photographed, and the photographed image taken at the present time and the image photographed before the present time are converted into an image looking down from above the vehicle, and joined together. A technique for creating a single top-view image overlooking the entire periphery is known (see, for example, Patent Document 1).
特開2002-373327号公報JP 2002-373327 A
 上記特許文献1に記載の技術では、タイヤ交換などで車両のタイヤの外径が変化すると、1枚のトップビュー画像において、現時点で撮影した撮影画像と、現時点よりも前に撮影した履歴画像との境界付近でズレが生じてしまうおそれがある。 In the technique described in Patent Document 1, when the outer diameter of a tire of a vehicle changes due to tire replacement or the like, in one top view image, a captured image captured at the present time, a history image captured before the current time, There is a risk of misalignment near the boundary.
 本開示は、上記点に鑑みてなされたものであり、撮影画像に履歴画像を合成することによって作成される車両周辺画像であっても、撮影画像と履歴画像との繋がりをスムーズにすることで、違和感を低減させる車両用画像処理装置を提供することを目的とする。 The present disclosure has been made in view of the above points, and even if a vehicle peripheral image is created by synthesizing a history image with a captured image, by smoothly connecting the captured image and the history image. An object of the present invention is to provide a vehicular image processing device that reduces the sense of discomfort.
 本開示の一態様による車両用画像処理装置は、車両に設置された複数の撮影装置によって撮像される車両の周辺の画像から、当該車両の周囲を上方から俯瞰視した車両周辺画像を生成し、周辺画像取得部と、算出部と、合成画像作成部と、タイヤパラメータ更新部とを備える。 An image processing device for a vehicle according to an aspect of the present disclosure generates a vehicle peripheral image in which a periphery of the vehicle is viewed from above from an image of the periphery of the vehicle captured by a plurality of imaging devices installed in the vehicle, A peripheral image acquisition unit, a calculation unit, a composite image creation unit, and a tire parameter update unit are provided.
 周辺画像取得部は、車両の前方領域を連続して撮影する前方撮影装置、及び車両の後方領域を連続して撮影する後方撮影装置、のそれぞれから前方撮影画像及び後方撮影画像を取得する。 The peripheral image acquisition unit acquires a front captured image and a rear captured image from each of a front image capturing device that continuously images a front region of the vehicle and a rear image capturing device that continuously images a rear region of the vehicle.
 算出部は、車両のタイヤの回転角度に係る情報を含む車両状態情報、及び記憶部に記憶されたタイヤの外径に係るパラメータ情報、を用いて車両の移動距離を算出する。 The calculation unit calculates the travel distance of the vehicle using vehicle state information including information related to the rotation angle of the tire of the vehicle and parameter information related to the outer diameter of the tire stored in the storage unit.
 合成画像作成部は、前方撮影画像及び後方撮影画像のうちで車両の進行方向を写す一方の過去の画像を履歴画像として使用し、前方撮影画像及び後方撮影画像のうちの他方の画像に移動距離に基づいて履歴画像を合成することにより、車両周辺画像を作成する。 The composite image creating unit uses one past image that shows the traveling direction of the vehicle among the front photographed image and the rear photographed image as a history image, and moves to the other image of the front photographed image and the rear photographed image. A vehicle peripheral image is created by synthesizing history images based on the above.
 タイヤパラメータ更新部は、移動距離に基づいて合成された履歴画像と、他方の画像とのずれが低減されるように、記憶部に記憶されたパラメータ情報を更新する。 The tire parameter update unit updates the parameter information stored in the storage unit so that the deviation between the history image synthesized based on the moving distance and the other image is reduced.
 このように構成された本開示の車両用画像処理装置は、前方撮影画像及び後方撮影画像のうちで履歴画像に使用していない他方の画像と、算出部によって算出された移動距離に基づいて合成される履歴画像とのずれを低減するよう、パラメータ情報の更新を行なうことができる。故に、タイヤの外径が何らかの要因で変化した場合でも、車両用画像処理装置は、車両状態情報により特定されるタイヤ回転角度と、パラメータ情報とを用いて算出される移動距離が、車両の実際の移動距離と異なっているという事態の発生を抑制することができる。 The vehicular image processing device of the present disclosure configured as described above is synthesized based on the other image not used for the history image among the front captured image and the rear captured image, and the moving distance calculated by the calculation unit. The parameter information can be updated so as to reduce the deviation from the recorded history image. Therefore, even when the outer diameter of the tire changes for some reason, the vehicular image processing apparatus determines that the travel distance calculated by using the tire rotation angle specified by the vehicle state information and the parameter information is the actual distance of the vehicle. It is possible to suppress the occurrence of a situation in which the distance is different from the movement distance.
 このため、本開示の車両用画像処理装置は、撮影画像に履歴画像を合成することによって車両周辺画像を生成していても、撮影画像と履歴画像との繋がりをスムーズにすることができる。これにより、本開示の車両用画像処理装置は、違和感の低減された車両周辺画像の生成を実現できる。 For this reason, the vehicle image processing device of the present disclosure can smoothly connect the captured image and the history image even if the vehicle peripheral image is generated by synthesizing the history image with the captured image. Thereby, the vehicular image processing device according to the present disclosure can realize generation of a vehicle periphery image with reduced discomfort.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車両用表示システムの構成を示すブロック図であり、 図2は、周辺表示処理を示すフローチャートであり、 図3は、表示用トップビュー画像の構成を示す図であり、 図4は、第1実施形態のタイヤパラメータ更新処理を示すフローチャートであり、 図5は、タイヤ外径が大きくなった場合の表示用トップビュー画像を示す図であり、 図6は、タイヤ外径が小さくなった場合の表示用トップビュー画像を示す図であり、 図7は、第2実施形態のタイヤパラメータ更新処理を示すフローチャートであり、 図8は、後方表示領域と中間表示領域に計測用物体が表示されている表示用トップビュー画像を示す図であり、 図9は、第3実施形態のタイヤパラメータ更新処理を示すフローチャートであり、 図10は、移動物体の速度を算出する方法を説明するためのトップビュー画像を示す図であり、 図11Aは、前方表示用トップビュー画像において輝度変化パターンを示す図であり、 図11Bは、後方表示用トップビュー画像において輝度変化パターンを示す図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing
FIG. 1 is a block diagram showing a configuration of a vehicle display system, FIG. 2 is a flowchart showing the peripheral display process. FIG. 3 is a diagram showing a configuration of a display top view image. FIG. 4 is a flowchart showing the tire parameter update process of the first embodiment. FIG. 5 is a view showing a top-view image for display when the tire outer diameter is increased, FIG. 6 is a view showing a top-view image for display when the tire outer diameter is reduced, FIG. 7 is a flowchart showing the tire parameter update process of the second embodiment, FIG. 8 is a diagram showing a display top view image in which measurement objects are displayed in the rear display area and the intermediate display area. FIG. 9 is a flowchart showing the tire parameter update process of the third embodiment, FIG. 10 is a diagram showing a top view image for explaining a method of calculating the speed of a moving object. FIG. 11A is a diagram showing a luminance change pattern in the front view top-view image; FIG. 11B is a diagram showing a luminance change pattern in the rear display top view image.
 (第1実施形態)
 以下に本開示の第1実施形態を図面とともに説明する。
(First embodiment)
Hereinafter, a first embodiment of the present disclosure will be described with reference to the drawings.
 本実施形態の車両用表示システム1は、車両に搭載され、図1に示すように、車載カメラ群2と、センサ群3と、画像処理装置4と、表示装置5とを備える。画像処理装置4が、本開示における車両用画像処理装置である。 The vehicle display system 1 of this embodiment is mounted on a vehicle and includes an in-vehicle camera group 2, a sensor group 3, an image processing device 4, and a display device 5, as shown in FIG. The image processing device 4 is a vehicle image processing device according to the present disclosure.
 車載カメラ群2は、前方カメラ11および後方カメラ12から構成されている。前方カメラ11は、車両用表示システム1を搭載した車両(以下、自車両という)の前側に取り付けられており、自車両の前方の地上面を繰り返し撮影する。後方カメラ12は、自車両の後側に取り付けられており、自車両の後方の地上面を繰り返し撮影する。 The in-vehicle camera group 2 includes a front camera 11 and a rear camera 12. The front camera 11 is attached to the front side of a vehicle (hereinafter referred to as the host vehicle) on which the vehicle display system 1 is mounted, and repeatedly photographs the ground surface in front of the host vehicle. The rear camera 12 is attached to the rear side of the host vehicle, and repeatedly photographs the ground surface behind the host vehicle.
 センサ群3は、車速センサ21、ヨーレートセンサ22、シフトレバー位置センサ23および操舵角センサ24から構成されている。車速センサ21は、車軸の回転に応じて所定角度毎にローレベルからハイレベルに変化する車速信号を出力する。ヨーレートセンサ22は、自車両のヨーレートを検出し、その検出結果を示すヨーレート信号を出力する。シフトレバー位置センサ23は、車両のシフトレバーの位置を検出し、その検出結果を示すシフト位置信号を出力する。操舵角センサ24は、車両のハンドルの操舵角を検出し、その検出結果を示す操舵角信号を出力する。 The sensor group 3 includes a vehicle speed sensor 21, a yaw rate sensor 22, a shift lever position sensor 23, and a steering angle sensor 24. The vehicle speed sensor 21 outputs a vehicle speed signal that changes from a low level to a high level at every predetermined angle according to the rotation of the axle. The yaw rate sensor 22 detects the yaw rate of the host vehicle and outputs a yaw rate signal indicating the detection result. The shift lever position sensor 23 detects the position of the shift lever of the vehicle and outputs a shift position signal indicating the detection result. The steering angle sensor 24 detects the steering angle of the steering wheel of the vehicle, and outputs a steering angle signal indicating the detection result.
 画像処理装置4は、画像入力信号処理部31、入力信号処理部32、画像変換部33、記憶部34、制御部35および画像出力信号処理部36を備える。 The image processing apparatus 4 includes an image input signal processing unit 31, an input signal processing unit 32, an image conversion unit 33, a storage unit 34, a control unit 35, and an image output signal processing unit 36.
 画像入力信号処理部31は、前方カメラ11および後方カメラ12から撮影画像を入力するためのインタフェースである。 The image input signal processing unit 31 is an interface for inputting captured images from the front camera 11 and the rear camera 12.
 入力信号処理部32は、各種センサ21~24から信号を入力するためのインタフェースである。 The input signal processing unit 32 is an interface for inputting signals from the various sensors 21 to 24.
 画像変換部33は、画像入力信号処理部31を介して前方カメラ11および後方カメラ12から前方撮影画像及び後方撮影画像を取得し、撮影画像を座標変換することにより、車両の上方の視点から見た変換画像(以下、トップビュー画像という)を作成する。以下、前方カメラ11の撮影画像を座標変換することにより作成されたトップビュー画像を、前方トップ画像という。また、後方カメラ12の撮影画像を座標変換することにより作成されたトップビュー画像を、後方トップ画像という。また画像変換部33は、作成した前方トップ画像および後方トップ画像を制御部35へ出力する。 The image conversion unit 33 obtains a front photographed image and a rear photographed image from the front camera 11 and the rear camera 12 via the image input signal processing unit 31, and performs coordinate conversion of the photographed image, so that the image is viewed from the viewpoint above the vehicle. A converted image (hereinafter referred to as a top view image) is created. Hereinafter, a top view image created by performing coordinate conversion on a captured image of the front camera 11 is referred to as a front top image. In addition, a top view image created by coordinate-transforming a captured image of the rear camera 12 is referred to as a rear top image. The image conversion unit 33 outputs the created front top image and rear top image to the control unit 35.
 記憶部34は、各種データを記憶するための記憶装置であり、画像変換部33が作成した前方トップ画像および後方トップ画像と、自車両のタイヤの外径(以下、自車両タイヤ外径という)を示すタイヤパラメータ情報を記憶する。なお、自車両の4つのタイヤは全て同じ外径を有しているとして、タイヤパラメータ情報は、4つのタイヤそれぞれの外径ではなく、1つのタイヤの外径を示す。 The storage unit 34 is a storage device for storing various data. The front top image and the rear top image created by the image conversion unit 33, and the outer diameter of the tire of the host vehicle (hereinafter referred to as the host vehicle tire outer diameter). Is stored. Note that the tire parameter information indicates the outer diameter of one tire, not the outer diameter of each of the four tires, assuming that all four tires of the host vehicle have the same outer diameter.
 制御部35は、CPU41、ROM42およびRAM43等からなるマイクロコンピュータを中心に構成されている。そして制御部35は、ROM42に記憶されているプログラムに基づく処理をCPU41が実行することにより、画像処理装置4を制御する。 The control unit 35 is mainly configured by a microcomputer including a CPU 41, a ROM 42, a RAM 43, and the like. The control unit 35 controls the image processing apparatus 4 by the CPU 41 executing a process based on a program stored in the ROM 42.
 画像出力信号処理部36は、制御部35により画像処理された画像データを表示装置5へ出力するためのインタフェースである。 The image output signal processing unit 36 is an interface for outputting image data processed by the control unit 35 to the display device 5.
 表示装置5は、液晶ディスプレイ等の表示画面を有するカラー表示装置であり、画像処理装置4からの画像データの入力に応じて各種画像を表示画面に表示する。 The display device 5 is a color display device having a display screen such as a liquid crystal display, and displays various images on the display screen in response to input of image data from the image processing device 4.
 このように構成された車両用表示システム1において、画像処理装置4は、後述する周辺表示処理およびタイヤパラメータ更新処理を実行する。 In the vehicular display system 1 configured as described above, the image processing device 4 executes a peripheral display process and a tire parameter update process which will be described later.
 まず、画像処理装置4の制御部35が実行する周辺表示処理の手順を説明する。この周辺表示処理は、画像処理装置4の動作中において予め設定された実行周期毎に繰り返し実行される処理である。 First, the procedure of the peripheral display process executed by the control unit 35 of the image processing apparatus 4 will be described. This peripheral display process is a process that is repeatedly executed every preset execution cycle during the operation of the image processing apparatus 4.
 この周辺表示処理が実行されると、制御部35は、図2に示すように、まずS10にて、入力信号処理部32を介して車速センサ21、ヨーレートセンサ22およびシフトレバー位置センサ23からそれぞれ車速信号、ヨーレート信号およびシフト位置信号を取得する。そして、S10で取得した車速信号により特定される車速を示す車速情報と、S10で取得したヨーレート信号により特定されるヨーレートを示すヨーレート情報と、S10で取得したシフト位置信号により特定されるシフト位置情報を、記憶部34に設けられた車両情報記憶領域に記憶する。なお、上記車速情報が示す車速は、車速信号が入力する時間間隔に基づいて算出される。これにより、記憶部34の車両情報記憶領域には、複数の車速情報、ヨーレート情報およびシフト位置情報が時系列で記憶される。 When this peripheral display process is executed, the control unit 35, as shown in FIG. 2, first from the vehicle speed sensor 21, the yaw rate sensor 22, and the shift lever position sensor 23 via the input signal processing unit 32 in S10, respectively. A vehicle speed signal, a yaw rate signal, and a shift position signal are acquired. And the vehicle speed information which shows the vehicle speed specified by the vehicle speed signal acquired by S10, the yaw rate information which shows the yaw rate specified by the yaw rate signal acquired by S10, and the shift position information specified by the shift position signal acquired by S10 Is stored in a vehicle information storage area provided in the storage unit 34. The vehicle speed indicated by the vehicle speed information is calculated based on the time interval input by the vehicle speed signal. Thereby, a plurality of vehicle speed information, yaw rate information, and shift position information are stored in time series in the vehicle information storage area of the storage unit 34.
 次にS30にて、画像変換部33から前方トップ画像と後方トップ画像を取得する。さらにS40にて、S30で取得した前方トップ画像と後方トップ画像を、記憶部34に設けられた前後方トップ画像記憶領域に記憶する。これにより、記憶部34の前後方トップ画像記憶領域には、複数の前方トップ画像および後方トップ画像が時系列で記憶される。 Next, in S30, the front top image and the rear top image are acquired from the image conversion unit 33. Further, in S40, the front top image and the rear top image acquired in S30 are stored in the front / rear top image storage area provided in the storage unit 34. Accordingly, a plurality of front top images and rear top images are stored in time series in the front / rear top image storage area of the storage unit 34.
 その後S50にて、取得した車速信号に基づいて、自車両の走行速度が、低速で走行していることを示す予め設定された低速走行判定速度(本実施形態では、例えば30km/h)以下であるか否かを判断する。 Thereafter, in S50, based on the acquired vehicle speed signal, the traveling speed of the host vehicle is equal to or less than a preset low-speed traveling determination speed (in this embodiment, for example, 30 km / h) indicating that the vehicle is traveling at a low speed. Judge whether there is.
 ここで、自車両の走行速度が低速走行判定速度を超えている場合には(S50:NO)、S60にて、S30で取得した前方トップ画像と後方トップ画像を表示装置5へ出力し、周辺表示処理を一旦終了する。これにより、前方トップ画像と後方トップ画像が表示装置5の表示画面に表示される。 If the traveling speed of the host vehicle exceeds the low-speed traveling determination speed (S50: NO), the front top image and the rear top image acquired in S30 are output to the display device 5 in S60, The display process is temporarily terminated. Thereby, the front top image and the rear top image are displayed on the display screen of the display device 5.
 一方、自車両の走行速度が低速走行判定速度以下である場合には(S50:YES)、S70にて、取得したシフト位置信号に基づいて、自車両のシフト位置がP(パーキング)またはN(ニュートラル)であるか否かを判断する。ここで、シフト位置がPまたはNである場合には(S70:YES)、S60にて、S30で取得した前方トップ画像と後方トップ画像を示すデータを表示装置5へ出力し、周辺表示処理を一旦終了する。 On the other hand, when the traveling speed of the host vehicle is equal to or lower than the low-speed traveling determination speed (S50: YES), the shift position of the host vehicle is set to P (parking) or N (based on the acquired shift position signal in S70. It is determined whether it is neutral). If the shift position is P or N (S70: YES), the data indicating the front top image and the rear top image acquired in S30 is output to the display device 5 in S60, and the peripheral display processing is performed. Exit once.
 またS70にて、シフト位置がPとNのどちらでもない場合には(S70:NO)、S80にて、記憶部34に時系列で記憶されている複数の車速情報とヨーレート情報とシフト位置情報により特定される車速とヨーレートとシフト位置に基づいて、自車両の移動距離と移動方向を逐次算出する。なおS80では、記憶部34に時系列で記憶されている複数のヨーレート情報により特定されるヨーレートに基づいて左右の移動方向を算出する。また、記憶部34に時系列で記憶されている複数のシフト位置情報により特定されるシフト位置に基づいて、前後の移動方向を算出する。また、記憶部34に時系列で記憶されている複数の車速情報により特定される車速と、記憶部34に記憶されているタイヤパラメータ情報が示す自車両タイヤ外径とに基づいて、自車両の移動距離を算出する。 If the shift position is neither P nor N in S70 (S70: NO), a plurality of vehicle speed information, yaw rate information, and shift position information stored in time series in the storage unit 34 in S80. Based on the vehicle speed, yaw rate, and shift position specified by the above, the moving distance and moving direction of the host vehicle are sequentially calculated. In S80, the left and right moving directions are calculated based on the yaw rate specified by the plurality of pieces of yaw rate information stored in time series in the storage unit 34. Further, based on the shift positions specified by the plurality of shift position information stored in time series in the storage unit 34, the front and rear moving directions are calculated. Further, based on the vehicle speed specified by the plurality of vehicle speed information stored in the storage unit 34 in time series and the own vehicle tire outer diameter indicated by the tire parameter information stored in the storage unit 34, Calculate the travel distance.
 そしてS90にて、自車両のシフト位置がD(ドライブ)であるか否かを判断する。ここで、シフト位置がDである場合には(S90:YES)、S100にて、記憶部34に記憶されている前方トップ画像を用いて中間トップ画像を作成し、作成した中間トップ画像を、記憶部34に設けられた中間トップ画像記憶領域に記憶した後に、S120に移行する。中間トップ画像は、前方トップ画像が示す領域と後方トップ画像が示す領域との間に位置する領域(以下、中間領域という)におけるトップビュー画像である。なお、中間トップ画像は、本開示における履歴画像に相当する。 In S90, it is determined whether or not the shift position of the host vehicle is D (drive). If the shift position is D (S90: YES), an intermediate top image is created using the front top image stored in the storage unit 34 in S100, and the created intermediate top image is After storing in the intermediate top image storage area provided in the storage unit 34, the process proceeds to S120. The intermediate top image is a top view image in an area (hereinafter referred to as an intermediate area) located between the area indicated by the front top image and the area indicated by the rear top image. Note that the intermediate top image corresponds to a history image in the present disclosure.
 S100では、S80で算出した移動距離と移動方向に基づいて、上記の中間領域を撮影している前方トップ画像を記憶部34から抽出する。さらにS100では、抽出した前方トップ画像と上記の中間領域とのズレに応じて、抽出した前方トップ画像を平行移動させたり回転移動させたりする座標変換を行うことにより、中間トップ画像を作成する。なお、S100で抽出した前方トップ画像は、本開示における一方の画像に相当し、抽出した前方トップ画像によって本開示における履歴画像が作成される。 In S100, based on the movement distance and movement direction calculated in S80, the front top image capturing the intermediate region is extracted from the storage unit. Further, in S100, an intermediate top image is created by performing coordinate transformation in which the extracted front top image is translated or rotated in accordance with the difference between the extracted front top image and the above intermediate region. Note that the front top image extracted in S100 corresponds to one image in the present disclosure, and a history image in the present disclosure is created by the extracted front top image.
 一方、自車両のシフト位置がDでない場合には(S90:NO)、自車両のシフト位置がR(リバース)であると判断し、S110にて、記憶部34に記憶されている後方トップ画像を用いて、S100と同様の方法で、中間トップ画像を作成し、作成した中間トップ画像を、記憶部34に設けられた中間トップ画像記憶領域に記憶した後に、S120に移行する。なお、S110で抽出した後方トップ画像は、本開示における一方の画像に相当し、抽出した後方トップ画像によって本開示における履歴画像が作成される。 On the other hand, if the shift position of the host vehicle is not D (S90: NO), it is determined that the shift position of the host vehicle is R (reverse), and the top top image stored in the storage unit 34 is stored in S110. The intermediate top image is created by using the same method as in S100, and the created intermediate top image is stored in the intermediate top image storage area provided in the storage unit 34, and then the process proceeds to S120. Note that the rear top image extracted in S110 corresponds to one image in the present disclosure, and a history image in the present disclosure is created by the extracted rear top image.
 そしてS120に移行すると、表示装置5に表示するためのトップビュー画像(以下、表示用トップビュー画像という)を作成する。 Then, when the process proceeds to S120, a top view image (hereinafter referred to as a display top view image) to be displayed on the display device 5 is created.
 表示用トップビュー画像は、図3に示すように、前方表示領域R1と後方表示領域R2と中間表示領域R3が設定されている。前方表示領域R1は、自車両の前方のトップビュー画像を表示する領域である。後方表示領域R2は、自車両の後方のトップビュー画像を表示する領域である。中間表示領域R3は、自車両の前方と後方との間のトップビュー画像を表示する領域である。 As shown in FIG. 3, the display top view image includes a front display area R1, a rear display area R2, and an intermediate display area R3. The front display area R1 is an area for displaying a top view image in front of the host vehicle. The rear display area R2 is an area for displaying a top view image behind the host vehicle. The intermediate display area R3 is an area for displaying a top view image between the front and rear of the host vehicle.
 S120では、前方表示領域R1と後方表示領域R2にそれぞれ、S30で取得した前方トップ画像と後方トップ画像を割り当てるとともに、中間表示領域R3に、記憶部34の中間トップ画像記憶領域に記憶された最新の中間トップ画像を割り当てる。さらにS120では、中間表示領域R3に、自車両画像CGを配置する。これにより、表示用トップビュー画像の作成が完了する。 In S120, the front top image and the rear top image acquired in S30 are allocated to the front display region R1 and the rear display region R2, respectively, and the latest stored in the intermediate top image storage region of the storage unit 34 is stored in the intermediate display region R3. Assign an intermediate top image. Further, in S120, the host vehicle image CG is arranged in the intermediate display region R3. Thereby, the creation of the display top view image is completed.
 そしてS120の処理が終了すると、図2に示すように、S130にて、S120で作成した表示用トップビュー画像を示すデータを表示装置5へ出力し、周辺表示処理を一旦終了する。これにより、表示用トップビュー画像が表示装置5の表示画面に表示される。 Then, when the process of S120 is completed, as shown in FIG. 2, in S130, data indicating the display top view image created in S120 is output to the display device 5, and the peripheral display process is temporarily terminated. As a result, the display top view image is displayed on the display screen of the display device 5.
 次に、画像処理装置4の制御部35が実行するタイヤパラメータ更新処理の手順を説明する。このタイヤパラメータ更新処理は、画像処理装置4の起動直後に開始される処理である。 Next, the procedure of the tire parameter update process executed by the control unit 35 of the image processing apparatus 4 will be described. This tire parameter update process is a process that is started immediately after the image processing apparatus 4 is started.
 このタイヤパラメータ更新処理が実行されると、制御部35は、図4に示すように、まずS210にて、予め設定された処理開始条件が成立したか否かを判断する。本実施形態の処理開始条件は、前回の処理開始条件の成立から予め設定された処理開始判定距離を自車両が走行したことである。 When this tire parameter update process is executed, the control unit 35 first determines in S210 whether or not a preset process start condition is satisfied, as shown in FIG. The process start condition of the present embodiment is that the host vehicle has traveled a predetermined process start determination distance from the establishment of the previous process start condition.
 ここで、処理開始条件が成立していない場合には(S210:NO)、S210の処理を繰り返すことにより、処理開始条件が成立するまで待機する。 Here, when the process start condition is not satisfied (S210: NO), the process of S210 is repeated to wait until the process start condition is satisfied.
 一方、処理開始条件が成立した場合には(S210:YES)、S220にて、自車両の走行速度が予め設定された処理開始判定速度(本実施形態では、例えば40km/h)以下であるか否かを判断する。ここで、自車両の走行速度が処理開始判定速度を超えている場合には(S220:NO)、S220の処理を繰り返すことにより、走行速度が処理開始判定速度以下になるまで待機する。 On the other hand, if the process start condition is satisfied (S210: YES), whether or not the traveling speed of the host vehicle is equal to or lower than a preset process start determination speed (40 km / h in the present embodiment, for example) in S220. Judge whether or not. Here, if the traveling speed of the host vehicle exceeds the processing start determination speed (S220: NO), the process of S220 is repeated until the traveling speed becomes equal to or lower than the processing start determination speed.
 一方、自車両の走行速度が処理開始判定速度以下である場合には(S220:YES)、S230にて、操舵角センサ24からの操舵角信号に基づいて、自車両が直進しているか否かを判断する。具体的には、操舵角信号が示す操舵角が予め設定された直進判定角度範囲内(例えば、-3°~+3°)である場合に、自車両が直進していると判断する。 On the other hand, if the traveling speed of the host vehicle is equal to or lower than the processing start determination speed (S220: YES), whether or not the host vehicle is traveling straight based on the steering angle signal from the steering angle sensor 24 in S230. Judging. Specifically, when the steering angle indicated by the steering angle signal is within a preset straight traveling determination angle range (for example, −3 ° to + 3 °), it is determined that the host vehicle is traveling straight.
 ここで、自車両が直進していない場合には(S230:NO)、S230の処理を繰り返すことにより、自車両が直進している状態になるまで待機する。一方、自車両が直進している場合には(S230:YES)、S240にて、シフトレバー位置センサ23からのシフト位置信号に基づいて、自車両のシフト位置がR(リバース)であるか否かを判断する。 Here, when the host vehicle is not traveling straight (S230: NO), the process of S230 is repeated to wait until the host vehicle is traveling straight. On the other hand, if the host vehicle is traveling straight (S230: YES), whether or not the shift position of the host vehicle is R (reverse) based on the shift position signal from the shift lever position sensor 23 in S240. Determine whether.
 ここで、シフト位置がRでない場合には(S240:NO)、シフト位置がDであると判断し、S250にて、記憶部34に記憶されている最新の後方トップ画像を用いて、画像認識処理(例えばパターンマッチング)を行うことにより、後方トップ画像に写っている計測用物体を検出する。本実施形態の計測用物体は、例えば、パイロン、標識、路面印刷、マンホールおよびポールである。 If the shift position is not R (S240: NO), it is determined that the shift position is D, and image recognition is performed using the latest rear top image stored in the storage unit 34 in S250. By performing processing (for example, pattern matching), the measurement object shown in the rear top image is detected. The measurement object of the present embodiment is, for example, a pylon, a sign, a road surface printing, a manhole, and a pole.
 そしてS260にて、S250で計測用物体を検出したか否かを判断する。ここで、計測用物体を検出していない場合には(S260:NO)、S250に移行して、上述の処理を繰り返す。一方、計測用物体を検出した場合には(S260:YES)、S270にて、記憶部34に記憶されている前方トップ画像の中から、S250で検出した計測用物体と同じ計測用物体が写っている画像を抽出する。 In S260, it is determined whether or not the measurement object is detected in S250. Here, when the measurement object is not detected (S260: NO), the process proceeds to S250 and the above process is repeated. On the other hand, when a measurement object is detected (S260: YES), the same measurement object as the measurement object detected in S250 is captured from the front top image stored in the storage unit 34 in S270. Extract the image that is.
 そしてS280にて、S250で計測用物体を検出した後方トップ画像の撮影タイミングとS270で抽出した前方トップ画像の撮影タイミングとの間の時間差(以下、前後時間差という)を算出する。さらにS290にて、S250で計測用物体を検出した後方トップ画像内で計測用物体が写っている位置と、S270で抽出した前方トップ画像内で計測用物体が写っている位置とに基づいて、自車両が前後時間差内で走行した距離(以下、前後走行距離という)を算出し、S350に移行する。 In S280, a time difference (hereinafter referred to as a time difference between before and after) between the shooting timing of the rear top image where the measurement object is detected in S250 and the shooting timing of the front top image extracted in S270 is calculated. Further, in S290, based on the position where the measurement object appears in the rear top image where the measurement object is detected in S250 and the position where the measurement object appears in the front top image extracted in S270, The distance that the host vehicle has traveled within the time difference (hereinafter referred to as the front-rear travel distance) is calculated, and the process proceeds to S350.
 またS240にて、シフト位置がRである場合には(S240:YES)、S300にて、記憶部34に記憶されている最新の前方トップ画像を用いて、S250と同様にして画像認識処理を行うことにより、前方トップ画像に写っている計測用物体を検出する。 In S240, when the shift position is R (S240: YES), the image recognition process is performed in the same manner as S250 using the latest front top image stored in the storage unit 34 in S300. By doing so, the measurement object in the front top image is detected.
 そしてS310にて、S300で計測用物体を検出したか否かを判断する。ここで、計測用物体を検出していない場合には(S310:NO)、S300に移行して、上述の処理を繰り返す。一方、計測用物体を検出した場合には(S310:YES)、S320にて、記憶部34に記憶されている後方トップ画像の中から、S300で検出した計測用物体と同じ計測用物体が写っている画像を抽出する。 In S310, it is determined whether or not a measurement object is detected in S300. If no measurement object has been detected (S310: NO), the process proceeds to S300 and the above-described processing is repeated. On the other hand, when the measurement object is detected (S310: YES), the same measurement object as the measurement object detected in S300 is captured from the rear top image stored in the storage unit 34 in S320. Extract the image that is.
 そしてS330にて、S300で計測用物体を検出した前方トップ画像の撮影タイミングとS320で抽出した後方トップ画像の撮影タイミングとの間の時間差(前後時間差)を算出する。さらにS340にて、S300で計測用物体を検出した前方トップ画像内で計測用物体が写っている位置と、S320で抽出した後方トップ画像内で計測用物体が写っている位置とに基づいて、自車両が前後時間差内で走行した距離(前後走行距離)を算出し、S350に移行する。 In S330, a time difference (front-rear time difference) between the shooting timing of the front top image at which the measurement object is detected in S300 and the shooting timing of the rear top image extracted in S320 is calculated. Further, in S340, based on the position where the measurement object is reflected in the front top image where the measurement object is detected in S300 and the position where the measurement object is reflected in the rear top image extracted in S320, The distance traveled by the host vehicle within the time difference (front / rear travel distance) is calculated, and the process proceeds to S350.
 そしてS350に移行すると、まず、S280またはS330で算出した前後時間差と、車速信号とにより、前後時間差で自車両のタイヤが回転した角度(以下、前後タイヤ回転角度という)を算出する。なお、前後タイヤ回転角度は、前後時間差の期間中に車速信号が入力した回数に基づいて算出することができる。前後タイヤ回転角度は、360°を超えて算出可能である。さらにS350では、S290またはS340で算出した前後走行距離と、S350で算出した前後タイヤ回転角度とに基づいて、自車両タイヤ外径を算出する。具体的には、前後走行距離と前後タイヤ回転角度とに基づいて、タイヤが360°回転する間に走行する距離をタイヤの周長として算出し、このタイヤの周長をπで除算した値を、自車両タイヤ外径とする。 Then, when the process proceeds to S350, first, an angle (hereinafter referred to as a front and rear tire rotation angle) in which the tire of the host vehicle is rotated by the front and rear time difference is calculated from the front and rear time difference calculated in S280 or S330 and the vehicle speed signal. Note that the front and rear tire rotation angles can be calculated based on the number of times the vehicle speed signal is input during the time period difference. The front and rear tire rotation angles can be calculated beyond 360 °. Further, in S350, the vehicle tire outer diameter is calculated based on the front / rear travel distance calculated in S290 or S340 and the front / rear tire rotation angle calculated in S350. Specifically, based on the front and rear running distance and the front and rear tire rotation angle, the distance traveled while the tire rotates 360 ° is calculated as the tire circumference, and the tire circumference is divided by π. The vehicle tire outer diameter.
 そしてS360にて、記憶部34に記憶されているタイヤパラメータ情報の値を、S350で算出した値に更新し、タイヤパラメータ更新処理を終了する。 In S360, the value of the tire parameter information stored in the storage unit 34 is updated to the value calculated in S350, and the tire parameter update process is terminated.
 このように構成された画像処理装置4は、車両の前方領域を連続して撮影する前方カメラ11による撮影画像に対して車両の上方から俯瞰視する座標変換を行った前方トップ画像と、車両の後方領域を連続して撮影する後方カメラ12による撮影画像に対して車両の上方から俯瞰視する座標変換を行った後方トップ画像を取得する(S30)。 The image processing apparatus 4 configured as described above includes a front top image obtained by performing coordinate conversion for performing a bird's-eye view from above the vehicle on an image captured by the front camera 11 that continuously captures a front area of the vehicle, A rear top image obtained by performing coordinate transformation for bird's-eye view from above the vehicle on the captured image by the rear camera 12 that continuously captures the rear region is acquired (S30).
 また画像処理装置4は、車速情報、ヨーレート情報およびシフト位置情報と、記憶部34に記憶されたタイヤの外径に係るタイヤパラメータ情報とを用いて車両の移動距離を算出する(S80)。 Further, the image processing device 4 calculates the moving distance of the vehicle using the vehicle speed information, the yaw rate information, the shift position information, and the tire parameter information related to the outer diameter of the tire stored in the storage unit 34 (S80).
 また画像処理装置4は、車両が前進している場合には、記憶部34に記憶された過去の前方トップ画像を履歴画像として使用し、現時点で取得した後方トップ画像に移動距離に基づいて履歴画像を合成することにより、表示用トップビュー画像を作成する(S100,S120)。また画像処理装置4は、車両が後進している場合には、記憶部34に記憶された過去の後方トップ画像を履歴画像として使用し、現時点で取得した前方トップ画像に移動距離に基づいて履歴画像を合成することにより、表示用トップビュー画像を作成する(S110,S120)。 Further, when the vehicle is moving forward, the image processing device 4 uses the past front top image stored in the storage unit 34 as a history image, and records the history based on the movement distance in the rear top image acquired at the present time. A top view image for display is created by synthesizing the images (S100, S120). Further, when the vehicle is moving backward, the image processing device 4 uses the past rear top image stored in the storage unit 34 as a history image, and records the history based on the moving distance in the front top image acquired at the present time. A top-view image for display is created by combining the images (S110, S120).
 そして画像処理装置4は、移動距離に基づいて合成された履歴画像と、現時点で取得した前方トップ画像または後方トップ画像とのずれが低減されるように、記憶部34に記憶されたタイヤパラメータ情報を更新する(S250~S360)。 Then, the image processing device 4 stores the tire parameter information stored in the storage unit 34 so that the deviation between the history image synthesized based on the moving distance and the front top image or the rear top image acquired at the present time is reduced. Is updated (S250 to S360).
 このように画像処理装置4は、前方トップ画像と後方トップ画像のうちで履歴画像に使用していない他方の画像と、算出された移動距離に基づいて合成される履歴画像とのずれを低減するよう、タイヤパラメータ情報の更新を行なうことができる。故に、タイヤの外径が何らかの要因で変化した場合でも、画像処理装置4は、車速情報により特定されるタイヤ回転角度と、タイヤパラメータ情報とを用いて算出される移動距離が、車両の実際の移動距離と異なっているという事態の発生を抑制することができる。 In this way, the image processing device 4 reduces the deviation between the other image not used for the history image among the front top image and the rear top image, and the history image synthesized based on the calculated movement distance. Thus, the tire parameter information can be updated. Therefore, even when the outer diameter of the tire changes for some reason, the image processing apparatus 4 determines that the travel distance calculated using the tire rotation angle specified by the vehicle speed information and the tire parameter information is the actual vehicle distance. Occurrence of a situation that is different from the moving distance can be suppressed.
 このため、画像処理装置4は、撮影画像に履歴画像を合成することによって表示用トップビュー画像を生成していても、撮影画像と履歴画像との繋がりをスムーズにすることができる。これにより画像処理装置4は、違和感の低減された表示用トップビュー画像の生成を実現できる。 For this reason, the image processing apparatus 4 can smoothly connect the photographed image and the history image even when the top image for display is generated by synthesizing the history image with the photographed image. As a result, the image processing apparatus 4 can realize generation of a display top view image with reduced discomfort.
 例えば、実際の自車両タイヤ外径が、タイヤパラメータ情報が示す自車両タイヤ外径よりも大きい場合には、例えば図5に示すように、後方表示領域R2と中間表示領域R3との両方で同一のパイロンPL2,PL3が表示され、後方表示領域R2と中間表示領域R3との境界付近で、車両の進行方向DMに沿ってズレが生じてしまう。これは、自車両の実際の移動距離が、画像処理装置4が算出した移動距離よりも長くなり、これにより、自車両とパイロンとの距離に関して、画像処理装置4が認識している距離DC3よりも、実際の距離DC2のほうが長くなってしまうためである。 For example, when the actual vehicle tire outer diameter is larger than the vehicle tire outer diameter indicated by the tire parameter information, for example, as shown in FIG. 5, both the rear display region R2 and the intermediate display region R3 are the same. The pylons PL2 and PL3 are displayed, and a deviation occurs in the traveling direction DM of the vehicle near the boundary between the rear display area R2 and the intermediate display area R3. This is because the actual travel distance of the host vehicle is longer than the travel distance calculated by the image processing device 4, and thereby the distance DC3 recognized by the image processing device 4 with respect to the distance between the host vehicle and the pylon. This is because the actual distance DC2 becomes longer.
 逆に、実際の自車両タイヤ外径が、タイヤパラメータ情報が示す自車両タイヤ外径よりも小さい場合には、自車両の実際の移動距離が、画像処理装置4が算出した移動距離よりも短くなる。このため、例えば図6に示すように、自車両とパイロンとの距離に関して、画像処理装置4が認識している距離DC2A(図6のパイロンPL2Aは後方表示領域R2に表示されない)よりも、実際の距離DC2(図6のパイロンPL2は後方表示領域R2に表示される)のほうが短くなってしまう。これにより、後方表示領域R2と中間表示領域R3との境界付近で、車両の進行方向DMに沿ってズレが生じてしまう。 Conversely, when the actual vehicle tire outer diameter is smaller than the vehicle tire outer diameter indicated by the tire parameter information, the actual travel distance of the host vehicle is shorter than the travel distance calculated by the image processing device 4. Become. For this reason, for example, as shown in FIG. 6, the distance DC2A recognized by the image processing device 4 with respect to the distance between the host vehicle and the pylon (actually, the pylon PL2A in FIG. 6 is not displayed in the rear display region R2). The distance DC2 (the pylon PL2 in FIG. 6 is displayed in the rear display area R2) is shorter. As a result, deviation occurs along the traveling direction DM of the vehicle near the boundary between the rear display region R2 and the intermediate display region R3.
 また画像処理装置4は、複数の前方トップ画像および複数の後方トップ画像のそれぞれの中から、予め設定された計測用物体を検出する(S250~S270,S290~S310)。 Further, the image processing apparatus 4 detects a preset measurement object from each of the plurality of front top images and the plurality of rear top images (S250 to S270, S290 to S310).
 さらに画像処理装置4は、共通する計測用物体を写した前方トップ画像および後方トップ画像が撮影された時刻の時間差を計測し、さらに当該時間差内に車両が走行した走行距離を前方トップ画像および後方トップ画像に写る共通の計測用物体に基づいて計測する(S280,S290,S330,S340)。 Furthermore, the image processing device 4 measures the time difference between the times when the front top image and the rear top image in which the common measurement object is captured are taken, and further determines the travel distance traveled by the vehicle within the time difference. Measurement is performed based on a common measurement object appearing in the top image (S280, S290, S330, S340).
 そして画像処理装置4は、計測された時間差および走行距離、並びに当該時間差内に回転したタイヤ回転角度に基づいて、更新用の自車両タイヤ外径を算出する(S350)。 Then, the image processing device 4 calculates the vehicle tire outer diameter for update based on the measured time difference and travel distance and the tire rotation angle rotated within the time difference (S350).
 このため画像処理装置4は、表示用トップビュー画像を作成するために必要な車載カメラ群2を用いて、自車両タイヤ外径を計測することができる。すなわち画像処理装置4は、自車両タイヤ外径を計測するための計測装置を新たに追加する必要がなく、画像処理装置4の構成を簡略化することができる。また画像処理装置4は、前方カメラ11の撮影画像と後方カメラ12の撮影画像とを比較しているため、タイヤが複数回回転した結果に基づいて自車両タイヤ外径を計測することができ、タイヤ外径の変化に伴う周長の変化を精度良く検出することができる。 For this reason, the image processing apparatus 4 can measure the vehicle tire outer diameter using the in-vehicle camera group 2 necessary for creating the display top view image. That is, the image processing device 4 does not need to add a new measuring device for measuring the vehicle tire outer diameter, and can simplify the configuration of the image processing device 4. Moreover, since the image processing device 4 compares the photographed image of the front camera 11 and the photographed image of the rear camera 12, the vehicle tire outer diameter can be measured based on the result of rotating the tire a plurality of times. It is possible to accurately detect a change in the circumference along with a change in the tire outer diameter.
 また画像処理装置4は、車両が直進状態にあるか否かを判定し(S230)、直進中であると判定された場合に、タイヤパラメータ情報を更新する処理を行なう。これにより画像処理装置4は、直進時にのみ、タイヤパラメータ情報が示す値の算出を行うことになり、車両の左右方向のズレを実質無視してタイヤパラメータ情報の更新を行うことができ、タイヤパラメータ情報の正確性を向上させることができる。 Further, the image processing device 4 determines whether or not the vehicle is in a straight traveling state (S230), and performs a process of updating the tire parameter information when it is determined that the vehicle is traveling straight ahead. As a result, the image processing device 4 calculates the value indicated by the tire parameter information only when traveling straight ahead, and can update the tire parameter information while substantially ignoring the lateral displacement of the vehicle. The accuracy of information can be improved.
 また画像処理装置4は、車両の走行速度が予め設定された処理開始判定速度以下か否かを判定し(S220)、車両の走行速度が処理開始判定速度以下であると判定された場合に、タイヤパラメータ情報を更新する処理を行なう。これにより画像処理装置4は、低速時にのみ、タイヤパラメータ情報が示す値の算出を行うことになり、タイヤに生じるスリップの影響を低減することができ、タイヤパラメータ情報の正確性を確保し易くなる。 Further, the image processing device 4 determines whether or not the traveling speed of the vehicle is equal to or lower than a preset processing start determination speed (S220), and when it is determined that the traveling speed of the vehicle is equal to or lower than the processing start determination speed, Processing to update tire parameter information is performed. As a result, the image processing apparatus 4 calculates the value indicated by the tire parameter information only at a low speed, can reduce the influence of slip generated on the tire, and can easily ensure the accuracy of the tire parameter information. .
 以上説明した実施形態において、前方カメラ11と後方カメラ12は本開示における撮影装置、S30の処理は本開示における周辺画像取得部、S80の処理は本開示における算出部、S100,S110,S120の処理は本開示における合成画像作成部、S250~S360の処理は本開示におけるタイヤパラメータ更新部である。 In the embodiment described above, the front camera 11 and the rear camera 12 are the imaging devices in the present disclosure, the processing in S30 is the peripheral image acquisition unit in the present disclosure, the processing in S80 is the calculation unit in the present disclosure, and the processing in S100, S110, and S120. Is a composite image creation unit in the present disclosure, and the processes in S250 to S360 are a tire parameter update unit in the present disclosure.
 また、S250~S270,S290~S310の処理は本開示における計測用物体検出部、S280,S290,S330,S340の処理は本開示における計測部、S230の処理は本開示における直進判定部、S220の処理は本開示における車速判定部である。 The processing of S250 to S270 and S290 to S310 is the measurement object detection unit in the present disclosure, the processing of S280, S290, S330, and S340 is the measurement unit in the present disclosure, the processing of S230 is the straight traveling determination unit in the present disclosure, and the processing of S220. The process is a vehicle speed determination unit in the present disclosure.
 (第2実施形態)
 以下に本開示の第2実施形態を図面とともに説明する。なお第2実施形態では、第1実施形態と異なる部分を説明する。
(Second Embodiment)
Hereinafter, a second embodiment of the present disclosure will be described with reference to the drawings. In the second embodiment, parts different from the first embodiment will be described.
 第2実施形態の車両用表示システム1は、タイヤパラメータ更新処理が変更された点以外は第1実施形態と同じである。 The vehicle display system 1 of the second embodiment is the same as that of the first embodiment except that the tire parameter update process is changed.
 第2実施形態のタイヤパラメータ更新処理は、S270~S290,S320~S360の処理が省略されるとともに、S410~S490の処理が追加された点以外は第1実施形態と同じである。 The tire parameter update process of the second embodiment is the same as that of the first embodiment except that the processes of S270 to S290 and S320 to S360 are omitted and the processes of S410 to S490 are added.
 すなわち図7に示すように、計測用物体を検出した場合には(S260:YES)、S410にて、S80と同様にして、自車両の移動距離と移動方向を算出する。そしてS420にて、記憶部34に記憶されている前方トップ画像を用いて、後方表示領域R2と中間表示領域R3を示す位置比較用画像を作成し、作成した位置比較用画像を、記憶部34に設けられた位置比較用画像記憶領域に記憶した後に、S430に移行する。 That is, as shown in FIG. 7, when a measurement object is detected (S260: YES), the moving distance and moving direction of the host vehicle are calculated in S410 in the same manner as in S80. In S420, a position comparison image indicating the rear display region R2 and the intermediate display region R3 is created using the front top image stored in the storage unit 34, and the created position comparison image is stored in the storage unit 34. , The process proceeds to S430.
 S420では、S410で算出した移動距離と移動方向に基づいて、後方表示領域R2と中間表示領域R3を撮影している前方トップ画像を記憶部34から抽出する。さらにS420では、抽出した前方トップ画像と中間領域とのズレに応じて、抽出した前方トップ画像を平行移動させたり回転移動させたりする座標変換を行うことにより、位置比較用画像を作成する。 In S420, based on the movement distance and movement direction calculated in S410, the front top image capturing the rear display area R2 and the intermediate display area R3 is extracted from the storage unit 34. Further, in S420, a position comparison image is created by performing coordinate conversion in which the extracted front top image is translated or rotated in accordance with the difference between the extracted front top image and the intermediate region.
 次にS430にて、記憶部34の位置比較用画像記憶領域に記憶された最新の位置比較用画像を用いて、画像認識処理を行うことにより、位置比較用画像に写っている計測用物体を検出する。 Next, in S430, by performing an image recognition process using the latest position comparison image stored in the position comparison image storage area of the storage unit 34, the measurement object shown in the position comparison image is obtained. To detect.
 その後S440にて、自車両タイヤ外径を算出し、S490に移行する。具体的には、まず、S250で検出された後方トップ画像の計測用物体と、S430で検出された位置比較用画像の計測用物体との距離を用いて、自車両タイヤ外径の変化量を算出する。例えば図8に示すように、後方表示領域R2に表示されている計測用物体PL2と、中間表示領域R3に表示されている計測用物体PL3とが同一の計測用物体である場合には、計測用物体PL2と計測用物体PL3との距離DCを用いて、自車両タイヤ外径の変化量を算出する。そして、記憶部34に記憶されているタイヤパラメータ情報の値に対して、算出された変化量を加算または減算し、この加算値または減算値を、新たな自車両タイヤ外径とする。 Thereafter, in S440, the vehicle tire outer diameter is calculated, and the process proceeds to S490. Specifically, first, by using the distance between the measurement object of the rear top image detected in S250 and the measurement object of the position comparison image detected in S430, the change amount of the vehicle tire outer diameter is calculated. calculate. For example, as shown in FIG. 8, when the measurement object PL2 displayed in the rear display area R2 and the measurement object PL3 displayed in the intermediate display area R3 are the same measurement object, measurement is performed. The amount of change in the outer diameter of the vehicle tire is calculated using the distance DC between the object PL2 for measurement and the object PL3 for measurement. Then, the calculated change amount is added to or subtracted from the value of the tire parameter information stored in the storage unit 34, and this added value or subtracted value is set as a new own vehicle tire outer diameter.
 また図7に示すように、S310にて、計測用物体を検出した場合には(S310:YES)、S450にて、S80と同様にして、自車両の移動距離と移動方向を算出する。そしてS460にて、記憶部34に記憶されている後方トップ画像を用いて、前方表示領域R1と中間表示領域R3を示す位置比較用画像を作成し、作成した位置比較用画像を、記憶部34に設けられた位置比較用画像記憶領域に記憶した後に、S470に移行する。 As shown in FIG. 7, when a measurement object is detected in S310 (S310: YES), the moving distance and moving direction of the host vehicle are calculated in S450 in the same manner as in S80. In S460, using the rear top image stored in the storage unit 34, a position comparison image indicating the front display region R1 and the intermediate display region R3 is created, and the created position comparison image is stored in the storage unit 34. After the image is stored in the position comparison image storage area provided in step S470, the process proceeds to S470.
 S470では、S450で算出した移動距離と移動方向に基づいて、前方表示領域R1と中間表示領域R3を撮影している後方トップ画像を記憶部34から抽出する。さらにS470では、抽出した後方トップ画像と中間領域とのズレに応じて、抽出した後方トップ画像を平行移動させたり回転移動させたりする座標変換を行うことにより、位置比較用画像を作成する。 In S470, based on the movement distance and movement direction calculated in S450, the rear top image capturing the front display area R1 and the intermediate display area R3 is extracted from the storage unit 34. Further, in S470, a position comparison image is created by performing coordinate conversion in which the extracted rear top image is translated or rotated in accordance with the difference between the extracted rear top image and the intermediate region.
 次にS470にて、S430と同様にして、記憶部34の位置比較用画像記憶領域に記憶された最新の位置比較用画像を用いて、画像認識処理を行うことにより、位置比較用画像に写っている計測用物体を検出する。 Next, in S470, in the same manner as in S430, image recognition processing is performed using the latest position comparison image stored in the position comparison image storage area of the storage unit 34, so that the image is captured in the position comparison image. The measuring object is detected.
 その後S480にて、S300で検出された前方トップ画像の計測用物体と、S470で検出された位置比較用画像の計測用物体との距離を用いて、S440と同様にして、車両タイヤ外径を算出し、S490に移行する。 Thereafter, in S480, using the distance between the measurement object of the front top image detected in S300 and the measurement object of the position comparison image detected in S470, the vehicle tire outer diameter is determined in the same manner as in S440. Calculate and shift to S490.
 そしてS490に移行すると、記憶部34に記憶されているタイヤパラメータ情報の値を、S440またはS480で算出した値に更新し、タイヤパラメータ更新処理を終了する。 And if it transfers to S490, the value of the tire parameter information memorize | stored in the memory | storage part 34 will be updated to the value calculated by S440 or S480, and a tire parameter update process will be complete | finished.
 このように構成された画像処理装置4は、現時点で取得した前方トップ画像または後方トップ画像と、記憶部34に記憶された位置比較用画像のそれぞれの中から、予め設定された計測用物体を検出する(S250,S420,S300,S470)。そして画像処理装置4は、現時点で取得した前方トップ画像または後方トップ画像に写る計測用物体と位置比較用画像に写った計測用物体とのズレが低減されるように、タイヤパラメータ情報を更新する(S440,S480,S490)。 The image processing apparatus 4 configured as described above selects a measurement object set in advance from each of the front top image or the rear top image acquired at the present time and the position comparison image stored in the storage unit 34. It detects (S250, S420, S300, S470). Then, the image processing device 4 updates the tire parameter information so that the deviation between the measurement object shown in the front top image or the rear top image acquired at the present time and the measurement object shown in the position comparison image is reduced. (S440, S480, S490).
 このため画像処理装置4は、表示用トップビュー画像を作成するために必要な車載カメラ群2を用いて、自車両タイヤ外径を計測することができる。すなわち画像処理装置4は、自車両タイヤ外径を計測するための計測装置を新たに追加する必要がなく、画像処理装置4の構成を簡略化することができる。 For this reason, the image processing apparatus 4 can measure the vehicle tire outer diameter using the in-vehicle camera group 2 necessary for creating the display top view image. That is, the image processing device 4 does not need to add a new measuring device for measuring the vehicle tire outer diameter, and can simplify the configuration of the image processing device 4.
 以上説明した実施形態において、S250,S420,S300,S470の処理は本開示における計測用物体検出部、S440,S480,S490の処理は本開示におけるタイヤパラメータ更新部である。 In the embodiment described above, the processing of S250, S420, S300, and S470 is a measurement object detection unit in the present disclosure, and the processing of S440, S480, and S490 is a tire parameter update unit in the present disclosure.
 (第3実施形態)
 以下に本開示の第3実施形態を図面とともに説明する。なお第3実施形態では、第1実施形態と異なる部分を説明する。
(Third embodiment)
Hereinafter, a third embodiment of the present disclosure will be described with reference to the drawings. In the third embodiment, parts different from the first embodiment will be described.
 第3実施形態の車両用表示システム1は、タイヤパラメータ更新処理が変更された点以外は第1実施形態と同じである。 The vehicular display system 1 of the third embodiment is the same as that of the first embodiment except that the tire parameter update process is changed.
 第3実施形態のタイヤパラメータ更新処理は、画像処理装置4の動作中において予め設定された実行周期毎に繰り返し実行される処理である。 The tire parameter update process of the third embodiment is a process that is repeatedly executed at preset execution cycles during the operation of the image processing apparatus 4.
 このタイヤパラメータ更新処理が実行されると、制御部35は、図9に示すように、まずS610にて、予め設定された処理開始条件が成立したか否かを判断する。本実施形態の処理開始条件は、車室内に設けられたタイヤパラメータ更新ボタンが押し下げられることである。 When this tire parameter update process is executed, the control unit 35 first determines in S610 whether or not a preset process start condition is satisfied, as shown in FIG. The processing start condition of the present embodiment is that a tire parameter update button provided in the passenger compartment is pushed down.
 ここで、処理開始条件が成立していない場合には(S610:NO)、タイヤパラメータ更新処理を一旦終了する。一方、処理開始条件が成立した場合には(S610:YES)、S620にて、S70と同様にして、自車両のシフト位置がPまたはNであるか否かを判断する。ここで、シフト位置がPまたはNである場合には(S620:YES)、S620の処理を繰り返す。 Here, when the process start condition is not satisfied (S610: NO), the tire parameter update process is temporarily ended. On the other hand, if the processing start condition is satisfied (S610: YES), it is determined in S620 whether the shift position of the host vehicle is P or N in the same manner as S70. If the shift position is P or N (S620: YES), the process of S620 is repeated.
 またS620にて、シフト位置がPとNのどちらでもない場合には(S620:NO)、S630にて、S80と同様にして、自車両の移動距離を算出する。 If the shift position is neither P nor N at S620 (S620: NO), the travel distance of the host vehicle is calculated at S630 in the same manner as S80.
 そしてS640にて、S90と同様にして、自車両のシフト位置がDであるか否かを判断する。ここで、シフト位置がDである場合には(S640:YES)、S650にて、S100と同様にして、記憶部34に記憶されている前方トップ画像を用いて中間トップ画像を作成し、作成した中間トップ画像を、記憶部34に設けられた中間トップ画像記憶領域に記憶した後に、S670に移行する。 In S640, it is determined whether or not the shift position of the host vehicle is D in the same manner as S90. Here, when the shift position is D (S640: YES), an intermediate top image is created using the front top image stored in the storage unit 34 in S650 in the same manner as S100, and created. After storing the intermediate top image in the intermediate top image storage area provided in the storage unit 34, the process proceeds to S670.
 一方、自車両のシフト位置がDでない場合には(S640:NO)、自車両のシフト位置がRであると判断し、S660にて、S110と同様にして、記憶部34に記憶されている後方トップ画像を用いて、中間トップ画像を作成し、作成した中間トップ画像を中間トップ画像記憶領域に記憶した後に、S670に移行する。 On the other hand, if the shift position of the host vehicle is not D (S640: NO), it is determined that the shift position of the host vehicle is R, and is stored in the storage unit 34 in S660 similarly to S110. After the intermediate top image is created using the rear top image and the created intermediate top image is stored in the intermediate top image storage area, the process proceeds to S670.
 そしてS670に移行すると、取得した車速信号に基づいて、自車両が、現時点から予め設定された速度判定期間前までの間、一定の速度で走行しているか否かを判断する。ここで、自車両が一定の速度で走行していない場合には(S670:NO)、S620に移行する。 In S670, based on the acquired vehicle speed signal, it is determined whether or not the host vehicle is traveling at a constant speed from the present time to a preset speed determination period. If the host vehicle is not traveling at a constant speed (S670: NO), the process proceeds to S620.
 一方、自車両が一定の速度で走行している場合には(S670:YES)、S680にて、現時点から速度判定期間前までの間にS30で取得した複数の前方トップ画像と複数の後方トップ画像からオプティカルフローを検出する。 On the other hand, when the host vehicle is traveling at a constant speed (S670: YES), in S680, a plurality of front top images and a plurality of rear tops acquired in S30 between the current time and before the speed determination period. Optical flow is detected from the image.
 そしてS690にて、S680で検出したオプティカルフローを用いて、前方トップ画像と後方トップ画像に写る移動物体(図10の移動物体MO1,MO2,MO3,MO4,MO5を参照)の速度ベクトル(図10のベクトルV1,V2,V3,V4,V5を参照)を算出する。 Then, in S690, using the optical flow detected in S680, the velocity vector of the moving object (see moving objects MO1, MO2, MO3, MO4, and MO5 in FIG. 10) shown in the front top image and the rear top image (see FIG. 10). Vector V1, V2, V3, V4, V5).
 次にS700にて、現時点から速度判定期間前までの間にS650またはS660で作成した複数の中間トップ画像からオプティカルフローを検出する。 Next, in S700, an optical flow is detected from a plurality of intermediate top images created in S650 or S660 between the current time and before the speed determination period.
 そしてS710にて、S700で検出したオプティカルフローを用いて、中間トップ画像に写る移動物体(図10の移動物体MO6,MO7を参照)の速度ベクトル(図10のベクトルV6,V7を参照)を算出する。 In S710, the velocity vector (see vectors V6 and V7 in FIG. 10) of the moving object (see moving objects MO6 and MO7 in FIG. 10) in the intermediate top image is calculated using the optical flow detected in S700. To do.
 その後S720にて、S680とS700で検出したオプティカルフローで得られた速度ベクトルの数と方向に基づいて、S690とS710で算出された速度ベクトルが有効であるか否かを判断する。ここで、速度ベクトルが有効でない場合には(S720:NO)、S620に移行する。 Thereafter, in S720, based on the number and direction of the velocity vectors obtained in the optical flow detected in S680 and S700, it is determined whether or not the velocity vector calculated in S690 and S710 is valid. If the velocity vector is not valid (S720: NO), the process proceeds to S620.
 一方、速度ベクトルが有効である場合には(S720:YES)、S730にて、S690とS710で算出された速度ベクトルを用いて、下式(1)により、自車両タイヤ外径Xを算出する。なお、下式(1)において、Lは、記憶部34に記憶されているタイヤパラメータ情報が示す自車両タイヤ外径である。vは、S690で算出された速度ベクトルの大きさである。vaは、S710で算出された速度ベクトルの大きさである。 On the other hand, if the speed vector is valid (S720: YES), the vehicle tire outer diameter X is calculated by the following equation (1) using the speed vector calculated in S690 and S710 in S730. . In the following formula (1), L is the vehicle tire outer diameter indicated by the tire parameter information stored in the storage unit 34. v is the magnitude of the velocity vector calculated in S690. va is the magnitude of the velocity vector calculated in S710.
  X = L×v/va  ・・・(式1)
 そしてS740にて、記憶部34に記憶されているタイヤパラメータ情報の値を、S730で算出した自車両タイヤ外径Xの値に更新し、タイヤパラメータ更新処理を終了する。
X = L × v / va (Formula 1)
In S740, the value of the tire parameter information stored in the storage unit 34 is updated to the value of the vehicle tire outer diameter X calculated in S730, and the tire parameter update process is terminated.
 このように構成された画像処理装置4は、前方トップ画像と後方トップ画像の中で移動する物体の移動速度(以下、第1移動速度という)を検出する(S680,S690)。また画像処理装置4は、中間トップ画像の中で移動する物体の移動速度(以下、第2移動速度という)を検出する(S700,S710)。そして画像処理装置4は、第1移動速度と第2移動速度に基づいて、更新用の自車両タイヤ外径を算出する(S730)。 The image processing apparatus 4 configured as described above detects the moving speed of the moving object (hereinafter referred to as the first moving speed) in the front top image and the back top image (S680, S690). Further, the image processing device 4 detects the moving speed of the moving object (hereinafter referred to as the second moving speed) in the intermediate top image (S700, S710). Then, the image processing device 4 calculates the vehicle tire outer diameter for update based on the first movement speed and the second movement speed (S730).
 このため、画像処理装置4は、前方トップ画像と後方トップ画像の中で実際に移動する物体の移動速度(第1移動速度)と、中間トップ画像の中で実際に移動する物体の移動速度(第2移動速度)とが一致するようにタイヤパラメータ情報の更新を行なうことができる。 For this reason, the image processing device 4 moves the moving speed (first moving speed) of the object that actually moves in the front top image and the rear top image, and the moving speed (the moving speed of the object that actually moves in the intermediate top image). The tire parameter information can be updated so that the second movement speed matches.
 これにより画像処理装置4は、実際に合成する前方トップ画像および後方トップ画像と中間トップ画像との繋がりをスムーズにすることができ、違和感の低減された表示用トップビュー画像の生成を実現できる。 Thereby, the image processing apparatus 4 can smoothly connect the front top image and the rear top image to be actually combined with the intermediate top image, and can generate a display top view image with reduced discomfort.
 以上説明した実施形態において、S680,S690の処理は本開示における第1移動速度検出部、S700,S710の処理は本開示における第2移動速度検出部、S730,S740の処理は本開示におけるタイヤパラメータ更新部である。 In the embodiment described above, the processes of S680 and S690 are the first movement speed detection unit in the present disclosure, the processes of S700 and S710 are the second movement speed detection unit in the present disclosure, and the processes of S730 and S740 are the tire parameters in the present disclosure. It is an update unit.
 以上、本開示の一実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、本開示の技術的範囲に属する限り種々の形態を採ることができる。 As mentioned above, although one embodiment of this indication was explained, this indication is not limited to the above-mentioned embodiment, and can take various forms, as long as it belongs to the technical scope of this indication.
 (変形例1)
 例えば上記実施形態では、車速が低速走行判定速度以下の場合に、表示用トップビュー画像が表示装置5の表示画面に表示されるものを示したが、車速に関わらず表示用トップビュー画像を表示するようにしてもよい。
(Modification 1)
For example, in the above-described embodiment, the display top view image is displayed on the display screen of the display device 5 when the vehicle speed is equal to or lower than the low-speed traveling determination speed. However, the display top view image is displayed regardless of the vehicle speed. You may make it do.
 (変形例2)
 また上記実施形態では、タイヤパラメータ情報がタイヤ外径を示すものを示したが、タイヤパラメータ情報は、タイヤ外径を特定可能な情報であればこれに限定されるものではなく、例えば、タイヤの周長を示す値であってもよいし、基準としている外径または周長を補正するための補正値であってもよい。
(Modification 2)
In the above embodiment, the tire parameter information indicates the tire outer diameter. However, the tire parameter information is not limited to this as long as the tire outer diameter is information that can specify the tire outer diameter. It may be a value indicating the circumference or a correction value for correcting the outer diameter or circumference as a reference.
 (変形例3)
 また上記実施形態では、計測用物体を検出した前方トップ画像の撮影タイミングと後方トップ画像の撮影タイミングとの間の時間差に基づいて、自車両のタイヤの外径を算出するものを示した。しかし、前方トップ画像と後方トップ画像の計測用物体の代わりに輝度変化パターンを用いて、自車両のタイヤの外径を算出するようにしてもよい。例えば図11Aに示すように、前方トップ画像において自車両の進行方向DMに沿って輝度が変化する輝度変化パターンPB1を検出したとする。この輝度変化パターンPB1は、例えば、道路の車線を区画している例えば破線状の白線WL(車道中央線)により発生する。その後、図11Bに示すように、後方トップ画像において、輝度変化パターンPB1と同一の波形を有する輝度変化パターンPB2を検出した場合に、前方トップ画像の撮影時刻と後方トップ画像の撮影時刻との時間差と、自車両の車速とに基づいて、自車両のタイヤの外径を算出することができる。
(Modification 3)
Moreover, in the said embodiment, what calculated the outer diameter of the tire of the own vehicle based on the time difference between the imaging timing of the front top image which detected the measurement object, and the imaging timing of the back top image was shown. However, the outer diameter of the tire of the host vehicle may be calculated using a luminance change pattern instead of the measurement object of the front top image and the rear top image. For example, as shown in FIG. 11A, it is assumed that a luminance change pattern PB1 in which the luminance changes along the traveling direction DM of the host vehicle is detected in the front top image. The luminance change pattern PB1 is generated by, for example, a broken line white line WL (roadway center line) that divides a road lane. Thereafter, as shown in FIG. 11B, when a luminance change pattern PB2 having the same waveform as the luminance change pattern PB1 is detected in the rear top image, the time difference between the shooting time of the front top image and the shooting time of the rear top image. Based on the vehicle speed of the host vehicle, the outer diameter of the tire of the host vehicle can be calculated.
 具体的には、まず、輝度変化パターンPB1を検出した前方トップ画像の撮影タイミングと輝度変化パターンPB2を検出した後方トップ画像の撮影タイミングとの間の時間差(前後時間差)と、車速信号とにより、前後時間差で自車両のタイヤが回転した角度(前後タイヤ回転角度)を算出する。 Specifically, first, the time difference (front-rear time difference) between the shooting timing of the front top image that detects the luminance change pattern PB1 and the shooting timing of the rear top image that detects the luminance change pattern PB2, and the vehicle speed signal, An angle (front / rear tire rotation angle) by which the tire of the host vehicle is rotated by the time difference between the front and rear is calculated.
 さらに、前方トップ画像内で輝度変化パターンPB1が写っている位置と、後方トップ画像内で輝度変化パターンPB2が写っている位置とに基づいて、自車両が前後時間差内で走行した距離(前後走行距離)を算出する。そして、前後走行距離と前後タイヤ回転角度とに基づいて、自車両タイヤ外径を算出する。具体的には、前後走行距離と前後タイヤ回転角度とに基づいて、タイヤが360°回転する間に走行する距離をタイヤの周長として算出し、このタイヤの周長をπで除算した値を、自車両タイヤ外径とする。 Further, based on the position where the luminance change pattern PB1 is reflected in the front top image and the position where the luminance change pattern PB2 is reflected in the rear top image, the distance traveled by the host vehicle within the time difference (front and rear traveling). Distance). Then, the vehicle tire outer diameter is calculated based on the front-rear travel distance and the front-rear tire rotation angle. Specifically, based on the front and rear running distance and the front and rear tire rotation angle, the distance traveled while the tire rotates 360 ° is calculated as the tire circumference, and the tire circumference is divided by π. The vehicle tire outer diameter.
 (変形例4)
 また上記実施形態では、予め設定された処理開始判定距離を自車両が走行したことを処理開始条件としたものを示した。しかし、タイヤ交換を検出したことを処理開始条件としてもよい。また、タイヤの空気圧が変動したことを処理開始条件としてもよい。例えば、給油を検知した場合に、タイヤの空気圧が上昇したと判断するようにしてもよい。また、前回の処理開始条件の成立から予め設定された処理開始判定時間が経過することを処理開始条件としてもよい。また、タイヤパラメータ更新処理を開始させるために予め設定された処理開始操作(例えば、タイヤ外径の算出のために設けられた操作ボタンの操作)を運転者が行うことを処理開始条件としてもよい。
(Modification 4)
Moreover, in the said embodiment, what used as a process start condition that the own vehicle drive | worked the process start determination distance set beforehand was shown. However, the processing start condition may be that tire replacement is detected. Further, the processing start condition may be that the tire air pressure fluctuates. For example, when refueling is detected, it may be determined that the tire air pressure has increased. Further, the process start condition may be that a preset process start determination time elapses from the previous establishment of the process start condition. Further, the process start condition may be that the driver performs a process start operation that is set in advance to start the tire parameter update process (for example, operation of an operation button provided for calculating the tire outer diameter). .
 また、上記実施形態における1つの構成要素が有する機能を複数の構成要素として分散させたり、複数の構成要素が有する機能を1つの構成要素に統合させたりしてもよい。また、上記実施形態の構成の一部を省略してもよい。また、上記実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加または置換してもよい。なお、特許請求の範囲に記載した文言のみによって特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。 Also, the functions of one component in the above embodiment may be distributed as a plurality of components, or the functions of a plurality of components may be integrated into one component. Moreover, you may abbreviate | omit a part of structure of the said embodiment. Further, at least a part of the configuration of the above embodiment may be added to or replaced with the configuration of the other embodiment. In addition, all the aspects included in the technical idea specified only by the wording described in the claims are embodiments of the present disclosure.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範畴や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and structures. The present disclosure includes various modifications and modifications within the equivalent range. In addition, various combinations and forms, as well as other combinations and forms including only one element, more or less, are within the scope and spirit of the present disclosure.

Claims (7)

  1.  車両に設置された複数の撮影装置によって撮像される前記車両の周辺の画像から、当該車両の周囲を上方から俯瞰視した車両周辺画像を生成する車両用画像処理装置(4)であって、
     前記車両の前方領域を連続して撮影する前方撮影装置(11)、及び前記車両の後方領域を連続して撮影する後方撮影装置(12)、のそれぞれから前方撮影画像及び後方撮影画像を取得する周辺画像取得部(S30)と、
     前記車両のタイヤの回転角度に係る情報を含む車両状態情報、及び記憶部(34)に記憶された前記タイヤの外径に係るパラメータ情報、を用いて前記車両の移動距離を算出する算出部(S80)と、
     前記前方撮影画像及び前記後方撮影画像のうちで前記車両の進行方向を写す一方の過去の画像を履歴画像として使用し、前記前方撮影画像及び前記後方撮影画像のうちの他方の画像に前記移動距離に基づいて前記履歴画像を合成することにより、前記車両周辺画像を作成する合成画像作成部(S100,S110,S120)と、
     前記移動距離に基づいて合成された前記履歴画像と、前記他方の画像とのずれが低減されるように、前記記憶部に記憶された前記パラメータ情報を更新するタイヤパラメータ更新部(S250~S360,S440,S480,S490、S730,S740)とを備える
     車両用画像処理装置。
    An image processing device for a vehicle (4) that generates a vehicle peripheral image in which a periphery of the vehicle is viewed from above from a peripheral image captured by a plurality of photographing devices installed in the vehicle,
    A front photographed image and a rear photographed image are acquired from each of a front photographing device (11) for continuously photographing the front region of the vehicle and a rear photographing device (12) for continuously photographing the rear region of the vehicle. A peripheral image acquisition unit (S30);
    A calculation unit that calculates a moving distance of the vehicle using vehicle state information including information related to the rotation angle of the tire of the vehicle and parameter information related to the outer diameter of the tire stored in the storage unit (34). S80)
    One moving image of the front photographed image and the rear photographed image showing the traveling direction of the vehicle is used as a history image, and the moving distance is used as the other image of the front photographed image and the rear photographed image. A synthesized image creation unit (S100, S110, S120) for creating the vehicle peripheral image by synthesizing the history image based on
    A tire parameter updating unit (S250 to S360, which updates the parameter information stored in the storage unit so as to reduce a deviation between the history image synthesized based on the moving distance and the other image. S440, S480, S490, S730, S740).
  2.  前記周辺画像取得部によって繰り返し取得された複数の前記前方撮影画像及び複数の前記後方撮影画像のそれぞれの中から、予め設定された計測用物体を検出する計測用物体検出部(S250~S270,S290~S310)と、
     共通する前記計測用物体を写した前記前方撮影画像及び前記後方撮影画像が撮影された時刻の時間差を計測し、さらに当該時間差内に前記車両が走行した走行距離を前記前方撮影画像及び前記後方撮影画像に写る共通の前記計測用物体に基づいて計測する計測部(S280,S290,S330,S340)と、を備え、
     前記タイヤパラメータ更新部(S250~S360)は、前記計測部によって計測された前記時間差及び前記走行距離、並びに当該時間差内に回転した前記タイヤの回転角度に基づいて、更新用の前記パラメータ情報を算出する
     請求項1に記載の車両用画像処理装置。
    A measurement object detection unit (S250 to S270, S290) that detects a predetermined measurement object from each of the plurality of front photographed images and the plurality of rear photographed images that are repeatedly acquired by the peripheral image acquisition unit. To S310),
    The time difference between the times when the front photographed image and the rear photographed image in which the common measurement object is photographed is measured, and the travel distance traveled by the vehicle within the time difference is further measured. A measurement unit (S280, S290, S330, S340) for measuring based on the common measurement object shown in the image,
    The tire parameter update unit (S250 to S360) calculates the parameter information for update based on the time difference and the travel distance measured by the measurement unit, and the rotation angle of the tire rotated within the time difference. The vehicle image processing device according to claim 1.
  3.  前記周辺画像取得部によって繰り返し取得された前記他方の画像、及び前記記憶部に記憶された前記履歴画像のそれぞれの中から、予め設定された計測用物体を検出する計測用物体検出部(S250,S420,S300,S470)、を備え、
     前記タイヤパラメータ更新部(S440,S480,S490)は、前記他方の画像に写る前記計測用物体と前記履歴画像に写った前記計測用物体とのズレが低減されるように、前記パラメータ情報を更新する
     請求項1に記載の車両用画像処理装置。
    A measurement object detection unit (S250,) that detects a preset measurement object from each of the other image repeatedly acquired by the peripheral image acquisition unit and the history image stored in the storage unit. S420, S300, S470),
    The tire parameter update unit (S440, S480, S490) updates the parameter information so that a deviation between the measurement object shown in the other image and the measurement object shown in the history image is reduced. The vehicle image processing device according to claim 1.
  4.  前記記憶部は、前記他方の画像に写る範囲を撮影した前記履歴画像を格納する格納領域を含む
     請求項3に記載の車両用画像処理装置。
    The vehicular image processing apparatus according to claim 3, wherein the storage unit includes a storage area for storing the history image obtained by photographing a range shown in the other image.
  5.  前記車両が直進状態にあるか否かを判定する直進判定部(S230)を備え、
     前記タイヤパラメータ更新部は、前記直進判定部によって直進中であると判定された場合に、前記パラメータ情報を更新する処理を行なう
     請求項1から4のいずれか一項に記載の車両用画像処理装置。
    A straight traveling determination unit (S230) for determining whether or not the vehicle is in a straight traveling state;
    The vehicle image processing device according to any one of claims 1 to 4, wherein the tire parameter update unit performs a process of updating the parameter information when it is determined that the vehicle is traveling straight by the straight traveling determination unit. .
  6.  前記車両の走行速度が予め設定された判定速度以下か否かを判定する車速判定部(S220)を備え、
     前記タイヤパラメータ更新部は、前記車速判定部によって前記車両の走行速度が前記判定速度以下であると判定された場合に、前記パラメータ情報を更新する処理を行なう
     請求項1から5のいずれか一項に記載の車両用画像処理装置。
    A vehicle speed determination unit (S220) for determining whether the traveling speed of the vehicle is equal to or lower than a predetermined determination speed;
    The tire parameter update unit performs a process of updating the parameter information when the vehicle speed determination unit determines that the traveling speed of the vehicle is equal to or lower than the determination speed. The image processing apparatus for vehicles described in 2.
  7.  前記他方の画像の中で移動する物体の移動速度である第1移動速度を検出する第1移動速度検出部(S680,S690)と、
     前記履歴画像の中で移動する物体の移動速度である第2移動速度を検出する第2移動速度検出部(S700,S710)と、を備え、
     前記タイヤパラメータ更新部(S730,S740)は、前記第1移動速度と前記第2移動速度に基づいて、更新用の前記パラメータ情報を算出する
     請求項1に記載の車両用画像処理装置。

     
    A first movement speed detector (S680, S690) that detects a first movement speed that is a movement speed of an object that moves in the other image;
    A second movement speed detector (S700, S710) that detects a second movement speed that is a movement speed of an object moving in the history image,
    The vehicular image processing apparatus according to claim 1, wherein the tire parameter updating unit (S730, S740) calculates the parameter information for updating based on the first moving speed and the second moving speed.

PCT/JP2015/004133 2014-09-02 2015-08-19 Image processing device for vehicle WO2016035271A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015004011.0T DE112015004011B4 (en) 2014-09-02 2015-08-19 VEHICLE IMAGE PROCESSING DEVICE
CN201580045655.3A CN106604847B (en) 2014-09-02 2015-08-19 Image processor for vehicles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-178098 2014-09-02
JP2014178098 2014-09-02
JP2015010341A JP6327160B2 (en) 2014-09-02 2015-01-22 Image processing apparatus for vehicle
JP2015-010341 2015-01-22

Publications (1)

Publication Number Publication Date
WO2016035271A1 true WO2016035271A1 (en) 2016-03-10

Family

ID=55439360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004133 WO2016035271A1 (en) 2014-09-02 2015-08-19 Image processing device for vehicle

Country Status (1)

Country Link
WO (1) WO2016035271A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978361A (en) * 2020-07-08 2022-01-28 丰田自动车株式会社 Vehicle periphery monitoring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233079A (en) * 2009-03-27 2010-10-14 Aisin Aw Co Ltd Driving support device, driving support method, and driving support program
JP2010234856A (en) * 2009-03-30 2010-10-21 Alpine Electronics Inc On-vehicle display device
JP2011030140A (en) * 2009-07-29 2011-02-10 Hitachi Automotive Systems Ltd External world recognition device
JP2014068308A (en) * 2012-09-27 2014-04-17 Fujitsu Ten Ltd Image generation device, image display system, and image generation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010233079A (en) * 2009-03-27 2010-10-14 Aisin Aw Co Ltd Driving support device, driving support method, and driving support program
JP2010234856A (en) * 2009-03-30 2010-10-21 Alpine Electronics Inc On-vehicle display device
JP2011030140A (en) * 2009-07-29 2011-02-10 Hitachi Automotive Systems Ltd External world recognition device
JP2014068308A (en) * 2012-09-27 2014-04-17 Fujitsu Ten Ltd Image generation device, image display system, and image generation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113978361A (en) * 2020-07-08 2022-01-28 丰田自动车株式会社 Vehicle periphery monitoring device
CN113978361B (en) * 2020-07-08 2024-01-02 丰田自动车株式会社 Vehicle periphery monitoring device

Similar Documents

Publication Publication Date Title
JP6327160B2 (en) Image processing apparatus for vehicle
WO2016002163A1 (en) Image display device and image display method
WO2011010346A1 (en) Driving support device
JP2010184607A (en) Vehicle periphery displaying device
JP2018136695A (en) Parking support device
JP6586849B2 (en) Information display device and information display method
JP6471522B2 (en) Camera parameter adjustment device
CN110730735B (en) Parking assist method and parking assist apparatus
JP2008151507A (en) Apparatus and method for merge guidance
JP2013052754A (en) Parking support device
JP2020060899A (en) Calibration device for on-vehicle camera
JP5287344B2 (en) Parking assistance device and obstacle detection method
US9827906B2 (en) Image processing apparatus
JP2014195170A (en) Driving support device
WO2016035271A1 (en) Image processing device for vehicle
JP2021129157A (en) Image processing device and image processing method
JP6960827B2 (en) Road surface area detector
JP2011118485A (en) U-turn supporting device and method
WO2017122688A1 (en) Device for detecting abnormality of lens of onboard camera
JP2018152014A (en) Video display device for vehicle
JP7122211B2 (en) PARKING ASSIST DEVICE AND PARKING ASSIST METHOD
JP2009210499A (en) Tire diameter information correcting apparatus
JP2010148058A (en) Device and method for driving support
JP6404609B2 (en) Steering support control device
JP2019135620A (en) Traveling support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838027

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015004011

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838027

Country of ref document: EP

Kind code of ref document: A1