WO2016033778A1 - 定时传输方法和设备 - Google Patents

定时传输方法和设备 Download PDF

Info

Publication number
WO2016033778A1
WO2016033778A1 PCT/CN2014/085931 CN2014085931W WO2016033778A1 WO 2016033778 A1 WO2016033778 A1 WO 2016033778A1 CN 2014085931 W CN2014085931 W CN 2014085931W WO 2016033778 A1 WO2016033778 A1 WO 2016033778A1
Authority
WO
WIPO (PCT)
Prior art keywords
prach
network side
side device
transmission mode
sending
Prior art date
Application number
PCT/CN2014/085931
Other languages
English (en)
French (fr)
Inventor
黄雯雯
赵悦莹
王宗杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480009921.2A priority Critical patent/CN105580482A/zh
Priority to PCT/CN2014/085931 priority patent/WO2016033778A1/zh
Publication of WO2016033778A1 publication Critical patent/WO2016033778A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the embodiments of the present invention relate to the field of communications technologies, and in particular, to a timing transmission method and device.
  • the current wireless communication system is mainly designed for human-to-human (H2H) communication, and it has high requirements for mobility and delay.
  • H2H human-to-human
  • MTC Machine Type Communications
  • M2M Machine-To-Machine
  • the MTC device when the MTC device and the network side device need to transmit information, the MTC device initiates a random access process, that is, the MTC device passes the physical random access channel (English: Physical Random Access Channel, referred to as : (PRACH) sends one or more preambles (English: Preamble) with a length of 4096 chips to the network side device.
  • the network side device detects the preamble and passes the acquisition indication channel (English: Acquisition Indication Channel, AICH).
  • AICH Acquisition Indication Channel
  • the MTC device starts to send a message of 10ms or 20ms (English: message) through the PRACH.
  • the elimination includes data messages and control messages.
  • the coverage of the network side device is wider, and some MTC devices are far away from the network side device.
  • the preamble and AI transmitted between these MTC devices and the network side device may fail to receive, so it is required Improve the coverage of network-side devices.
  • the embodiment of the invention provides a timing transmission method and device, which are used to improve the coverage capability of the network side device and realize the timing of the AI transmission.
  • the first aspect of the present invention provides a user equipment (English: User Equipment, UE for short), including:
  • a sending unit configured to send N first PRACH preambles to the network side device according to the repeated sending manner of the first PRACH preamble, where the N is an integer greater than or equal to 2;
  • a processing unit configured to determine, according to the sending, by the sending unit, the number of the first PRACH preamble, and the repeated sending manner of the first PRACH preamble, to receive the first PRACH sent by the network side device The time of the AI corresponding to the preamble;
  • the receiving unit is configured to receive, according to the time that the AI is received by the processing unit, the M AIs sent by the network side device according to the repeated sending manner of the AI, where the M is an integer greater than or equal to 2.
  • the processing unit is specifically configured to: send, according to the sending unit, the number of the first PRACH preamble and the repeated sending manner of the first PRACH preamble Determining, by the AICH transmission timing parameter indication, that the sending unit starts to send the N first PRACH preambles to start receiving the first time interval of the M AIs; the receiving unit is specifically configured to start sending the After the first PRACH preamble, the first time interval starts to receive the M AIs sent by the network side device according to the repeated transmission manner of the AI.
  • the processing unit is further configured to: when the receiving unit does not successfully receive the When the AI corresponding to the first PRACH preamble is sent by the network side device, the number of the first PRACH preamble is sent by the sending unit, the number of the AIs sent by the network side device, and the Determining a repeating transmission manner of the preamble, the repeated transmission manner of the AI, and the AICH transmission timing parameter indication, determining that the sending unit starts to send the N first PRACH preambles to start transmitting the N second PRACH preambles a minimum time interval of the code, the second PRACH preamble is a next different PRACH preamble of the first PRACH preamble; the sending unit is further configured to use the minimum time interval determined by the processing unit, Transmitting the second PRACH preamble, and transmitting the N second PRACH preambles to the network side device, where the sending unit starts to send the N first PRACH
  • the processing unit is further configured After receiving, by the receiving unit, the M AIs sent by the network side device according to the repeated sending manner of the AI, the number of the AIs sent by the network side device is at least And the repeating sending manner of the AI, determining a time for sending a PRACH message to the network side device; the sending unit is further configured to send the PRACH message to the network side device according to a time when the PRACH message is sent;
  • the PRACH message includes a data PRACH message and a control PRACH message.
  • the processing unit is configured to send, according to the network side device, the number of the AI, And the determining, by the processing unit, the number of the first PRACH preambles sent by the sending unit, and the sending by the network side device, the determining, by the processing unit, the time for sending the PRACH message to the network side device Determining, by the transmitting unit, starting to send the N first PRACHs, the number of AIs, the repeated transmission mode of the first PRACH preamble, the PRACH repeated transmission mode of the AI, and the AICH transmission timing parameter indication a preamble to a second time interval at which the PRACH message is started to be sent; the sending unit is configured to send the PRACH message to the network side device according to a time when the PRACH message is sent, where: the sending unit starts After the N first PRACH preambles are sent, the PRACH message is sent to the network side device at intervals of the second time interval.
  • the receiving unit is further configured to: when receiving the AI, receive the network side device according to After the M AIs sent by the repeating transmission mode of the AI, the Fractal Dedicated Physical Channel (English: Transmission Power Control, TPC) command sent by the network side device is received.
  • Fractal Dedicated Physical Channel (English: Transmission Power Control, TPC) command sent by the network side device is received.
  • F-DPCH Fractional Dedicated Physical Channel
  • the processing unit is configured to determine, according to the number of the AIs that the network side device sends the AI, and the repeated sending manner of the AI, the time for sending the PRACH message to the network side device, where the processing unit is configured to: Determining, according to the number of the AIs that the network side device sends, the repeated transmission manner of the AI, the third time interval that the sending unit starts receiving the M AIs to start sending the PRACH message;
  • the sending unit is configured to send the PRACH message to the network side device according to a time when the PRACH message is sent, where the sending unit is configured to: after starting to receive the M AIs, the third interval The time interval begins to send the PRACH message to the network side device.
  • the sending unit when the first PRACH preamble is repeated
  • the sending mode is the first repeated sending mode, the sending unit is configured to send the N first PRACH preambles to the network side device according to the repeated sending manner of the first PRACH preamble, where the sending unit is configured to: Transmitting the N first PRACH preambles to the network side device in the N consecutive access slots, where the first PRACH preamble is sent in each of the access slots; or,
  • the sending unit And sending, by the sending unit, the N first PRACH preambles to the network side device according to the repeated sending manner of the first PRACH preamble, when the repeating sending manner of the first PRACH preamble is the second repeating transmission mode.
  • the sending unit is configured to continuously send the N first PRACH preambles to the network side device.
  • the receiving unit when the AI is repeatedly sent The receiving unit is configured to receive, according to the time when the AI is received, the M AIs sent by the network side device according to the repeated sending manner of the AI, where the receiving unit is configured to: And receiving, according to the time when the AI is received, the M AIs sent by the network side device in the M consecutive access slots, where one AI is sent in each of the access slots ;or,
  • the receiving unit is configured to receive, according to the time when the AI is received, the network side device, according to the repeated sending manner of the AI.
  • the M AIs include: the receiving unit is configured to receive, according to the time when the AI is received, the M AIs continuously sent by the network side device.
  • the N is the number of the first PRACH preambles sent by the sending unit
  • the T1 is a first time interval that the sending unit starts sending the first PRACH preamble to start receiving the AI.
  • the X is the number of chips of the access slot
  • the Y is the number of chips occupied by the first PRACH preamble.
  • the N is the number of the first PRACH preambles sent by the sending unit, where the M is the number of the AIs sent by the network side device, and the Tmin is the sending unit starts.
  • the N is the number of the first PRACH preambles sent by the sending unit, where M is the number of the AIs sent by the network side device, and T2 is that the sending unit starts sending the N a first PRACH preamble to a second time interval of starting to send the PRACH message, where X is a number of chips of the access slot, and Y is a code occupied by the first PRACH preamble
  • the number of slices, the Z is the number of chips occupied by the AI.
  • the processing unit determines the location
  • the X is the number of chips occupied by the access slot
  • the M is the number of the AIs sent by the network side device
  • the T3 is that the sending unit starts receiving the M
  • the S is a symbol offset
  • the S is any integer from 0 to 9
  • the T is an uplink and downlink time difference
  • the T is 1024 codes.
  • the slice is the number of chips occupied by the AI.
  • the receiving unit is configured to receive an F-DPCH that is sent by the network side device and carries an uplink TPC command.
  • the receiving unit receives the F-DPCH that is sent by the network side device and carries L first uplink TPC commands, where the L is an integer greater than or equal to 2, and the L is the network side device. Sending the number of the first uplink TPC command;
  • the processing unit is further configured to combine the received L first uplink TPC commands to obtain a combined first uplink TPC command, and adjust to send the according to the merged first uplink TPC command.
  • the power of the PRACH message is further configured to combine the received L first uplink TPC commands to obtain a combined first uplink TPC command, and adjust to send the according to the merged first uplink TPC command. The power of the PRACH message.
  • the processing unit is configured to adjust a sending station according to the merged first uplink TPC command
  • the power of the PRACH message includes: the processing unit is configured to: when the receiving unit receives the last first uplink TPC command in the L first uplink TPC commands, and the time when the first uplink time slot starts When the difference is greater than the first preset value, the power of transmitting the PRACH message is adjusted from the first uplink time slot according to the merged first uplink TPC command; when the receiving unit receives the L number According to the merged first uplink TPC command, when the difference between the time of the last first uplink TPC command in the uplink TPC command and the time when the first uplink time slot starts is less than or equal to the first preset value Adjusting the power of sending the PRACH message from the second uplink time slot;
  • the first uplink time slot is an uplink time slot in which the sending unit starts to send an uplink pilot sequence after the receiving unit receives the last first uplink TPC command
  • the second uplink time slot is The next upstream time slot of the first upstream slot.
  • the receiving unit is configured to receive The F-DPCH that is sent by the network side device and carries the L first DPC commands, where the receiving unit is configured to receive, by the network side device, the consecutive L downlink time slots.
  • the PRACH control message carries a first downlink TPC command
  • the sending unit is configured to The network side device sends the PRACH control message, where the sending unit is configured to send a control message carrying the H first downlink TPC commands to the network side device on consecutive H uplink time slots, where The H is greater than or equal to 2, and one of the first downlink TPC commands is transmitted in each uplink time slot.
  • the embodiment of the present invention further provides a network side device, including:
  • a receiving unit configured to receive N first PRACH preambles sent by the user equipment UE according to the repeated sending manner of the first PRACH preamble, where the N is an integer greater than or equal to 2;
  • a sending unit configured to send, to the UE, M AIs corresponding to the first PRACH preamble according to the repeated sending manner of the AI.
  • the receiving unit when the repeated sending manner of the first PRACH preamble is the first repeated sending manner, the receiving unit is specifically configured to receive the UE in the N The N first PRACH preambles transmitted in consecutive access slots, wherein one of the first PRACH preambles is sent in each of the access slots; or
  • the receiving unit is configured to receive and receive the N first PRACH preambles continuously sent by the UE, when the repeated sending manner of the first PRACH preamble is the second repeated sending mode.
  • the sending The unit is specifically configured to send the M AIs to the UE in the M consecutive access slots, where one AI is sent in each of the access slots;
  • the transmitting unit is specifically configured to continuously send the M AIs to the UE when the repeated transmission mode of the M AIs is the second repeated transmission mode.
  • the receiving unit is further configured to: Sending, by the sending unit, M to the UE according to a repeated transmission manner of the AI After the AI corresponding to the first PRACH preamble, the PRACH message sent by the UE is received; where the PRACH message includes a data PRACH message and a control PRACH message.
  • the sending unit is further configured to send, to the UE, M and After the AI corresponding to the first PRACH preamble, the F-DPCH carrying the uplink TPC command is sent to the UE.
  • the sending unit is configured to send, to the UE, an F-DPCH that carries an uplink TPC command, including:
  • the sending unit is configured to send, to the UE, the F-DPCH that carries L first uplink TPC commands, where L is an integer greater than or equal to 2.
  • the sending unit is configured to send, to the UE, the F that carries L first uplink TPC commands a DPCH, comprising: the sending unit, configured to send, to the UE, the F-DPCHs carrying the L first uplink TPC commands on the consecutive L downlink time slots, where each downlink time slot Transmitting one of the first uplink TPC commands; or transmitting, to the UE, an F-DPCH that continuously carries the L first uplink TPC commands.
  • the method further includes: a processing unit;
  • the receiving unit is configured to receive the PRACH control message sent by the UE, where the receiving unit is configured to receive, by the UE, the H first uplink TPC commands that are sent by the UE in consecutive H uplink time slots. And a PRACH control message of the uplink pilot sequence, where the H is greater than or equal to 2, and each of the uplink time slots transmits one of the first downlink TPC command and one uplink pilot sequence;
  • the processing unit is configured to combine the H first downlink TPC commands received by the receiving unit to obtain a merged first downlink TPC command; and according to the merged first downlink TPC Command to adjust the power of transmitting the F-DPCH.
  • the processing unit is configured to adjust, send, according to the merged first downlink TPC command
  • the power of the F-DPCH includes: the processing unit is configured to: when the receiving unit receives the last first downlink TPC command in the H first downlink TPC commands, and the first downlink When the time difference between the start times of the time slots is greater than the second preset value, adjusting the power of transmitting the F-DPCH from the first downlink time slot; and receiving, by the receiving unit, the H first downlink TPCs Adjusting and transmitting the F from the second uplink time slot when the difference between the time of the last first downlink TPC command in the command and the time when the first downlink time slot starts is less than or equal to the second preset value a power of the DPCH, where the first downlink time slot is a next downlink time slot of a downlink time slot in which the receiving unit receives the last first downlink TPC command, and the second downlink time slot
  • an embodiment of the present invention provides a UE, including:
  • a transmitter configured to send N first PRACH preambles to the network side device according to the repeated sending manner of the first PRACH preamble, where the N is an integer greater than or equal to 2;
  • a processor configured to determine, according to the number of the first PRACH preamble, and the repeated transmission manner of the first PRACH preamble, to receive the first PRACH sent by the network side device The time of the AI corresponding to the preamble;
  • a receiver configured to receive, according to the time that the AI is received by the processor, the M AIs sent by the network side device according to the repeated sending manner of the AI, where the M is an integer greater than or equal to 2.
  • the processor is specifically configured to: send, according to the transmitter, the number of the first PRACH preamble, and the repeated sending manner of the first PRACH preamble And determining, by the AICH transmission timing parameter, a first time interval at which the transmitter starts transmitting the N first PRACH preambles to start receiving the M AIs;
  • the receiver is specifically configured to: after starting to send the first PRACH preamble, start receiving, by the first time interval, the M AIs sent by the network side device according to the repeated sending manner of the AI.
  • the processor is further configured to: when the receiver does not successfully receive the When the AI corresponding to the first PRACH preamble is sent by the network side device, the number of the first PRACH preamble sent by the transmitter, the number of the AI sent by the network side device, and the Determining a repeating transmission manner of the preamble, the repeated transmission manner of the AI, and the AICH transmission timing parameter indication, determining that the transmitter starts to send the N first PRACH preambles to start transmitting the N second PRACH preambles Minimum time interval of the code, the second PRACH preamble Is the next different PRACH preamble of the first PRACH preamble;
  • the transmitter is further configured to send the N second PRACH preambles to the network side device according to the minimum time interval determined by the processor and the repeated sending manner of the second PRACH preamble.
  • the time interval at which the transmitter starts transmitting the N first PRACH preambles to start transmitting the N second PRACH preambles is greater than or equal to the minimum time interval.
  • the processor is further used After the receiving, by the receiver, the M AIs sent by the network side device according to the repeated sending manner of the AI, the number of the AIs is sent according to at least the network side device. And the repeated sending manner of the AI, determining a time for sending the PRACH message to the network side device;
  • the transmitter is further configured to send the PRACH message to the network side device according to a time when the PRACH message is sent, where the PRACH message includes a data PRACH message and a control PRACH message.
  • the processor is configured to send, according to the network side device, the number of the AI, the AI And determining, by the network side device, the sending, by the network side device, the number of the first PRACH preambles sent by the transmitter, Determining, by the transmitter, starting to send the N first PRACH preambles, the number of AIs, the repeated transmission mode of the first PRACH preamble, the PRACH repeated transmission mode of the AI, and the AICH transmission timing parameter indication a second time interval to start transmitting the PRACH message;
  • the receiver is further configured to receive, according to a time when the AI is received, the network side device according to Receiving the network side device after the M AIs sent by the repeated transmission mode of the AI The F-DPCH that is sent to carry the uplink TPC command.
  • the network side device sends the number of the AI, the repeated transmission mode of the AI, and determines a third time interval that the transmitter starts receiving the M AIs to start sending the PRACH message.
  • the transmitter is configured to send the PRACH message to the network side device according to a time when the PRACH message is sent, where the transmitter is configured to: after starting to receive the M AIs, the third interval The time interval begins to send the PRACH message to the network side device.
  • the transmitter when the first PRACH preamble is repeated
  • the transmitter is configured to send the N first PRACH preambles to the network side device according to the repeated sending manner of the first PRACH preamble, where the transmitter is used by the transmitter. Transmitting the N first PRACH preambles to the network side device in the N consecutive access slots, where the first PRACH preamble is sent in each of the access slots; or,
  • the code includes: the transmitter is configured to continuously send the N first PRACH preambles to the network side device.
  • the receiver when the AI is repeatedly sent When the transmission mode is repeated, the receiver is configured to receive, according to the time when the AI is received, the M AIs sent by the network side device according to the repeated transmission manner of the AI, where the receiver is used by the receiver. And receiving, according to the time when the AI is received, the M AIs sent by the network side device in the M consecutive access slots, where one AI is sent in each of the access slots ;or,
  • the receiver is configured to receive, according to the time when the AI is received, the network side device, according to the repeated transmission manner of the AI.
  • M AIs including: the receiver is configured to receive according to the time when the AI is received Receiving the M AIs continuously sent by the network side device.
  • the N is the number of the first PRACH preambles sent by the transmitter, and the T1 is a first time interval that the transmitter starts to send the first PRACH preamble to start receiving the AI.
  • the X is the number of chips of the access slot, and the Y is the number of chips occupied by the first PRACH preamble.
  • the N is the number of the first PRACH preambles sent by the transmitter
  • the M is the number of the AIs sent by the network side device
  • the Tmin is the transmitter starting to send the a minimum time interval from the N first PRACH preambles to the start of sending the N second PRACH preambles
  • X is the number of chips of the access slot
  • the Y is one of the first The number of chips occupied by the PRACH preamble
  • Z is the number of chips occupied by the AI.
  • the N is the number of the first PRACH preambles sent by the transmitter
  • the M is the number of the AIs sent by the network side device
  • T2 is that the transmitter starts sending the N a first PRACH preamble to a second time interval of starting to send the PRACH message
  • X is a number of chips of the access slot
  • Y is a code occupied by the first PRACH preamble
  • the number of slices, the Z is the number of chips occupied by the AI.
  • the X is the number of chips occupied by the access slot
  • the M is the number of the AIs sent by the network side device
  • the T3 is that the transmitter starts receiving the M
  • the S is a symbol offset
  • the S is any integer from 0 to 9
  • the T is an uplink and downlink time difference
  • the T is 1024 codes.
  • the slice is the number of chips occupied by the AI.
  • the receiver is configured to receive an F-DPCH that is sent by the network side device and carries an uplink TPC command.
  • the receiver includes the F-DPCH that is sent by the network side device and carries L first uplink TPC commands, where the L is an integer greater than or equal to 2, and the L is the network side device. Sending the number of the first uplink TPC command;
  • the processor is further configured to combine the received L first uplink TPC commands to obtain a combined first uplink TPC command, and adjust to send the according to the merged first uplink TPC command.
  • the power of the PRACH message is further configured to combine the received L first uplink TPC commands to obtain a combined first uplink TPC command, and adjust to send the according to the merged first uplink TPC command. The power of the PRACH message.
  • the processor is configured to adjust, send, according to the merged first uplink TPC command
  • the power of the PRACH message includes: the processor is configured to: when the receiver receives the last one of the L first uplink TPC commands, the time difference between the time of the first uplink TPC command and the start time of the first uplink time slot is greater than The first preset value, according to the merged first uplink TPC command, adjusting the power of sending the PRACH message from the first uplink time slot; when the receiver receives the L first uplinks When the difference between the time of the last first uplink TPC command in the TPC command and the time when the first uplink time slot starts is less than or equal to the first preset value, according to the merged first uplink TPC command, The second uplink time slot starts to adjust the power of sending the PRACH message;
  • the first uplink time slot is an uplink time slot in which the transmitter starts to send an uplink pilot sequence after the receiver receives the last first uplink TPC command
  • the second uplink is The time slot is the next upstream time slot of the first upstream slot.
  • the receiver is configured to receive The F-DPCH that is sent by the network side device and carries the L first DPC commands, where the receiver is configured to receive the bearer that is sent by the network side device on the consecutive L downlink time slots.
  • the PRACH control message carries a first downlink TPC command
  • the transmitter is configured to The network side device sends the PRACH control message, where the transmitter is configured to send a control message carrying the H first downlink TPC commands to the network side device on consecutive H uplink time slots, where The H is greater than or equal to 2, and one of the first downlink TPC commands is transmitted in each uplink time slot.
  • the embodiment of the present invention further provides a network side device, including:
  • a receiver configured to receive N first PRACH preambles sent by the user equipment UE according to the repeated transmission manner of the first PRACH preamble, where the N is an integer greater than or equal to 2;
  • a transmitter configured to send, to the UE, M AIs corresponding to the first PRACH preamble according to the repeated transmission manner of the AI.
  • the receiver when the repeated sending manner of the first PRACH preamble is the first repeated sending manner, the receiver is specifically configured to receive the UE in the N The N first PRACH preambles transmitted in consecutive access slots, wherein one of the first PRACH preambles is sent in each of the access slots; or
  • the receiver is specifically configured to receive and receive the N first PRACH preambles continuously sent by the UE, when the repeating transmission mode of the first PRACH preamble is the second repeated transmission mode.
  • the transmitting The device is specifically configured to send the M AIs to the UE in the M consecutive access slots, where one AI is sent in each of the access slots;
  • the transmitter is specifically configured to continuously send the M AIs to the UE.
  • the receiver is further used to Receiving, by the transmitter, the M ACHs corresponding to the first PRACH preamble to the UE, and receiving the PRACH message sent by the UE, where the PRACH message includes the data PRACH Message and control PRACH messages.
  • the transmitter is further configured to send, to the UE, M and After the AI corresponding to the first PRACH preamble, the F-DPCH carrying the uplink TPC command is sent to the UE.
  • the transmitter is configured to send, to the UE, an F-DPCH that carries an uplink TPC command, including: The transmitter is configured to send, to the UE, the F-DPCH that carries L first uplink TPC commands, where L is an integer greater than or equal to 2.
  • the transmitter is configured to send, to the UE, the F that carries L first uplink TPC commands a DPCH, comprising: the transmitter, configured to send, to the UE, the F-DPCHs carrying the L first uplink TPC commands on the consecutive L downlink time slots, where each downlink time slot Transmitting one of the first uplink TPC commands; or transmitting, to the UE, an F-DPCH that continuously carries the L first uplink TPC commands.
  • the receiver is configured to receive the PRACH control message sent by the UE, where the receiver is configured to receive, by the UE, the H first uplink TPC commands sent by the consecutive H uplink time slots. And a PRACH control message of the uplink pilot sequence, where the H is greater than or equal to 2, and each of the uplink time slots transmits one of the first downlink TPC command and one uplink pilot sequence;
  • the processor is configured to combine the H first downlink TPC commands received by the receiver to obtain a merged first downlink TPC command; and according to the merged first downlink TPC Command to adjust the power of transmitting the F-DPCH.
  • the processor is configured to adjust to send the F according to the merged first downlink TPC command
  • the power of the DPCH the processor is configured to: when the receiver receives the last first downlink TPC command in the H first downlink TPC commands, and the time when the first downlink time slot starts When the difference is greater than the second preset value, adjusting the power of transmitting the F-DPCH from the first downlink time slot; when the receiver receives the last one of the H first downlink TPC commands
  • the power of transmitting the F-DPCH is adjusted from the second uplink time slot when the difference between the time of the downlink TPC command and the time when the first downlink time slot starts is less than or equal to the second preset value;
  • the first downlink time slot is a next downlink time slot of a downlink time slot in which the receiver receives the last first downlink TPC command, and the second downlink time slot is the first downlink time slot.
  • an embodiment of the present invention provides a timing transmission method, including:
  • the UE sends N first PRACH preambles to the network side device according to the repeated transmission manner of the first PRACH preamble, where the N is an integer greater than or equal to 2;
  • the UE determines, according to the number of the first PRACH preamble and the repeated transmission mode of the first PRACH preamble, that the UE receives the first PRACH preamble that is sent by the network side device.
  • the capture indicates the time of the AI;
  • the UE receives M AIs sent by the network side device according to the repeated transmission manner of the AI according to the time when the AI is received, where the M is an integer greater than or equal to 2.
  • the UE determines, according to the sending, by the UE, the number of the first PRACH preamble, and the repeated sending manner of the first PRACH preamble,
  • the time of the acquisition indication AI corresponding to the first PRACH preamble sent by the network side device includes: the number of the first PRACH preamble sent by the UE according to the UE, the first PRACH preamble Repetitive transmission mode and AICH transmission timing parameter indication, determining that the UE starts to send the N first PRACH preambles to the UE to start receiving the first time interval of the M AIs;
  • the UE Receiving, by the UE, the AI that is sent by the network side device according to the repeated sending manner of the AI according to the time of receiving the AI, where the UE includes, after starting to send the first PRACH preamble, the interval The first time interval begins to receive M AIs sent by the network side device according to the repeated transmission manner of the AI.
  • the UE when the UE does not successfully receive the When the AI corresponding to the PRACH preamble, the UE transmits the number of the first PRACH preamble, the number of the AIs sent by the network side device, the repeated transmission manner of the preamble, Determining the repeating transmission mode of the AI and the AICH transmission timing parameter indication, determining a minimum time interval at which the UE starts to send the N first PRACH preambles to the UE to start sending the N second PRACH preambles
  • the second PRACH preamble is the next different PRACH preamble of the first PRACH preamble;
  • the UE Transmitting, by the UE, the N second PRACH preambles to the network side device according to the minimum time interval and the repeated sending manner of the second PRACH preamble, where the UE starts to send the
  • the time interval between the N first PRACH preambles to the UE starting to send the N second PRACH preambles is greater than or equal to the minimum time interval.
  • the time of the AI, after receiving the M AIs sent by the network side device according to the repeated sending manner of the AI further includes:
  • the UE sends the PRACH message to the network side device according to the time when the PRACH message is sent, where the PRACH message includes a data PRACH message and a control PRACH message.
  • the UE sends the number of the AI and the AI repetition according to the network side device
  • the sending mode determines the time for sending the PRACH message to the network side device, including:
  • the number of the first PRACH preambles sent by the UE the number of the AIs sent by the network side device, the repeated transmission manner of the first PRACH preamble, and the PRACH repetition of the AI. Determining, by the sending mode and the AICH transmission timing parameter, a second time interval at which the UE starts to send the N first PRACH preambles to start sending the PRACH message by the UE;
  • the PRACH message includes: after the UE starts to send the N first PRACH preambles, the UE starts sending the PRACH message to the network side device by using the second time interval.
  • the UE receives, according to the time of receiving the AI, the network side device according to the repetition of the AI After the M AIs sent by the sending mode, the method further includes: the UE receiving an F-DPCH that is sent by the network side device and carrying an uplink TPC command; and the UE sending the AI according to at least the network side device And the method for transmitting the PRACH message to the network side device, where the method includes: sending, by the network device, the number of the AI and the repeated sending manner of the AI, Determining, by the UE, that receiving the M AIs to the third time interval that the UE starts to send the PRACH message;
  • the network side device sends the PRACH message.
  • the UE when the first PRACH preamble is repeated
  • the sending mode is the first repeated sending mode, the UE sends the N first PRACH preambles to the network side device according to the repeated sending manner of the first PRACH preamble, including: the UE is in the N consecutive Sending the N first PRACH preambles to the network side device, where the first PRACH preamble is sent in each of the access slots; or
  • the UE And sending, by the UE, the N first PRACH preambles to the network side device according to the repeated sending manner of the first PRACH preamble, where the repeating transmission mode of the first PRACH preamble is the second repeated transmission mode, including
  • the UE continuously transmits N pieces of the first PRACH preamble to the network side device.
  • the UE when the AI is repeatedly sent Receiving, by the UE, the M AIs sent by the network side device according to the repeated sending manner of the AI according to the time when the AI is received, the UE includes: according to the receiving the AI, the UE Receiving, by the network side device, the M AIs sent by the network side device in the M consecutive access slots, where one AI is sent in each of the access slots; or
  • the UE receives the M AIs sent by the network side device according to the repeated transmission manner of the AI according to the time when the AI is received.
  • the method includes: receiving, by the UE, the M AIs continuously sent by the network side device according to a time when the AI is received.
  • the N is the number of the first PRACH preambles sent by the UE
  • the T1 is a first time that the UE starts sending the first PRACH preamble to the UE to start receiving the AI.
  • the spacing is X, the number of chips of the access slot, and the Y is the number of chips occupied by the first PRACH preamble.
  • the repeated transmission mode of the first PRACH preamble is the first repeated transmission mode
  • the repeated transmission mode of the AI is the first repeated transmission mode
  • the repeated transmission mode of the first PRACH preamble is the second repeated transmission mode
  • the repeated transmission mode of the AI is the second repeated transmission mode
  • the AI transmission timing parameter indication is 0,
  • the repeated transmission mode of the first PRACH preamble is the second repeated transmission mode
  • the repeated transmission mode of the AI is the second repeated transmission mode
  • the N is the number of the first PRACH preambles sent by the UE
  • the M is the number of the AIs sent by the network side device
  • the Tmin is that the UE starts sending the N a first PRACH preamble to a minimum time interval at which the UE starts transmitting the N second PRACH preambles
  • X is a number of chips of the access slot
  • the Y is one of the The number of chips occupied by a PRACH preamble
  • Z is the number of chips occupied by the AI.
  • the repeated transmission mode of the first PRACH preamble is the first repeated transmission mode
  • the repeated transmission mode of the AI is the first repeated transmission mode
  • the repeated transmission mode of the first PRACH preamble is the second repeated transmission mode
  • the repeated transmission mode of the AI is the second repeated transmission mode
  • the repeated transmission mode of the first PRACH preamble is the second repeated transmission mode
  • the repeated transmission mode of the AI is the second repeated transmission mode
  • the N is the number of the first PRACH preambles sent by the UE
  • the M is the number of the AIs sent by the network side device
  • T2 is that the UE starts sending the N first a PRACH preamble to a second time interval in which the UE starts to send the PRACH message, where X is a number of chips of the access slot, and Y is occupied by one of the first PRACH preambles
  • the number of chips, the Z is the number of chips occupied by the AI.
  • the X is the number of chips occupied by the access slot
  • the M is the number of the AIs sent by the network side device
  • the T3 is that the UE starts receiving the M AIs.
  • the third time interval that the UE starts to send the PRACH message where S is a symbol offset, the S is any integer from 0 to 9, the T is an uplink and downlink time difference, and the T is 1024.
  • Chips; the Z is the number of chips occupied by the AI.
  • the UE that receives the F-DPCH that is sent by the network side device and that carries the uplink TPC command includes: The UE receives the F-DPCH that is sent by the network side device and carries L first uplink TPC commands, where the L is an integer greater than or equal to 2, and the L is sent by the network side device. The number of an upstream TPC command;
  • the method further includes: the UE combining the received L first uplink TPC commands to obtain a merged first uplink TPC command; and the UE adjusting according to the merged first uplink TPC command The power of the PRACH message is sent.
  • the UE adjusts and sends the PRACH message Power, including:
  • the UE When the difference between the time when the UE receives the last first uplink TPC command in the L first uplink TPC commands and the time when the first uplink time slot starts is greater than a first preset value, the UE is combined according to the The first uplink TPC command, the power of transmitting the PRACH message is adjusted from the first uplink time slot; and the time when the UE receives the last first uplink TPC command in the L first uplink TPC commands.
  • the UE adjusts the sending station from the second uplink time slot according to the merged first uplink TPC command. Describe the power of the PRACH message;
  • the first uplink time slot is an uplink time slot in which the uplink pilot sequence is sent after the UE receives the last first uplink TPC command
  • the second uplink time slot is the first uplink time slot.
  • the next upstream time slot is an uplink time slot in which the uplink pilot sequence is sent after the UE receives the last first uplink TPC command
  • the UE receives the network
  • the F-DPCH that is sent by the network side device to carry the L first uplink TPC commands includes:
  • the UE receives the F-DPCH that is continuously sent by the network side device and carries the L first uplink TPC commands.
  • the PRACH control message carries a first downlink TPC command
  • the UE sends the network side device Sending the PRACH control message includes:
  • the embodiment of the present invention further provides a timing transmission method, including:
  • the network side device receives N first PRACH preambles that are sent by the UE according to the repeated transmission manner of the first PRACH preamble, where the N is an integer greater than or equal to 2;
  • the network side device sends M AIs corresponding to the first PRACH preamble to the UE according to the repeated transmission manner of the AI.
  • the network side device when the repeated sending manner of the first PRACH preamble is the first repeated sending manner, the network side device receives the repeated sending of the UE according to the first PRACH preamble.
  • the N first first PRACH preambles are sent by the network side device, where the network side device receives the N first PRACH preambles sent by the UE in the N consecutive access slots, where each Transmitting one of the first PRACH preambles in the access slot; or
  • the network side device receives the N first PRACH preambles that are sent by the UE according to the repeated sending manner of the first PRACH preamble, and includes: The network side device receives the N first PRACH preambles continuously sent by the UE.
  • the network The side device when the repeated sending manner of the AI is the first repeated sending manner, the network The side device sends M and the first to the UE according to the repeated sending manner of the AI.
  • the AI corresponding to the PRACH preamble includes: the network side device sends the M AIs to the UE in the M consecutive access slots, where one sent in each of the access slots The AI; or,
  • the network side device When the repeated transmission mode of the M AIs is the second repetition transmission mode, the network side device sends M AIs corresponding to the first PRACH preamble to the UE according to the repeated transmission manner of the AI, including The network side device continuously transmits the M AIs to the UE.
  • the network side device according to the AI After the AI corresponding to the first PRACH preamble is sent to the UE, the method further includes:
  • the network side device receives a PRACH message sent by the UE, where the PRACH message includes a data PRACH message and a control PRACH message.
  • the network side device sends the M and the foregoing to the UE according to the repeated sending manner of the AI After the AI corresponding to the PRACH preamble, the method further includes:
  • the network side device sends an F-DPCH carrying an uplink TPC command to the UE.
  • the network side device sends, to the UE, an F-DPCH that carries an uplink TPC command, including:
  • the network side device sends, to the UE, the F-DPCH that carries L first uplink TPC commands, where L is an integer greater than or equal to 2.
  • the network side device sends, to the UE, the F- that carries L first uplink TPC commands DPCH, including:
  • the network side device sends, to the UE, an F-DPCH that continuously carries the L first uplink TPC commands.
  • Command and an uplink pilot sequence
  • the method further includes: the network side device combining the received H first downlink TPC commands to obtain a merged first downlink TPC command; and the network side device according to the merged A downlink TPC command adjusts the power of transmitting the F-DPCH.
  • the network side device adjusts and sends the F according to the merged first downlink TPC command -DPCH power, including:
  • the network side device adjusts the power of sending the F-DPCH from the first downlink time slot; when the network side device receives the last first downlink TPC command in the H first downlink TPC commands When the difference between the time and the start time of the first downlink time slot is less than or equal to the second preset value, the network side device adjusts the power of sending the F-DPCH from the second uplink time slot;
  • the first downlink time slot is a next downlink time slot of a downlink time slot in which the network side device receives the last first downlink TPC command
  • the second downlink time slot is the The next downlink time slot of a downlink time slot.
  • the UE sends a plurality of first PRACH preambles to the network side device according to the repeated transmission mode of the first PRACH preamble, and sends the first PRACH preamble according to the UE.
  • the number of times, the repeated transmission manner of the first PRACH preamble, determining the time for receiving the AI corresponding to the first PRACH preamble sent by the network side device, and receiving the time according to the time of receiving the AI The network side device sends the multiple AIs according to the repeated transmission manner of the AI, so that the coverage capability of the network side device can be improved, and the timing of the AI transmission is also implemented.
  • Embodiment 1 is a schematic structural diagram of Embodiment 1 of a UE according to the present invention.
  • Embodiment 2 is a schematic structural diagram of Embodiment 2 of a UE according to the present invention.
  • Embodiment 3 is a schematic structural diagram of Embodiment 1 of a network side device according to the present invention.
  • Embodiment 4 is a schematic structural diagram of Embodiment 2 of a network side device according to the present invention.
  • FIG. 5 is a flowchart of Embodiment 1 of a timing transmission method according to the present invention.
  • FIG. 6 is a first schematic diagram of a method for repeatedly transmitting a first PRACH preamble according to an embodiment of the present invention
  • FIG. 7 is a second schematic diagram of a method for repeatedly transmitting a first PRACH preamble according to an embodiment of the present invention.
  • FIG. 8 is a first schematic diagram of a method for repeatedly transmitting an AI according to an embodiment of the present disclosure
  • FIG. 9 is a second schematic diagram of a method for repeatedly transmitting an AI according to an embodiment of the present disclosure.
  • Embodiment 10 is a flowchart of Embodiment 2 of a timing transmission method of the present invention.
  • FIG. 11 is a flowchart of Embodiment 3 of the timing transmission method of the present invention.
  • FIG. 12 is a first schematic diagram of a timing relationship of a PRACH/AICH/DPCH/E-DCH according to an embodiment of the present invention.
  • FIG. 13 is a second schematic diagram of a timing relationship of a PRACH/AICH/DPCH/E-DCH according to an embodiment of the present invention.
  • FIG. 14 is a flowchart of Embodiment 4 of the timing transmission method of the present invention.
  • FIG. 15 is a first schematic diagram of a timing relationship of an uplink/downlink TPC command according to an embodiment of the present disclosure
  • FIG. 16 is a second schematic diagram of a timing relationship of an uplink/downlink TPC command according to an embodiment of the present disclosure
  • FIG. 17 is a third schematic diagram of a timing relationship of an uplink/downlink TPC command according to an embodiment of the present disclosure.
  • FIG. 18 is a fourth schematic diagram of a timing relationship of an uplink/downlink TPC command according to an embodiment of the present disclosure.
  • FIG. 19 is a fifth schematic diagram of timing relationship of uplink/downlink TPC commands according to an embodiment of the present invention.
  • FIG. 20 is a sixth schematic diagram of a timing relationship of an uplink/downlink TPC command according to an embodiment of the present disclosure
  • FIG. 21 is a seventh schematic diagram of a timing relationship of an uplink/downlink TPC command according to an embodiment of the present disclosure.
  • FIG. 22 is a schematic diagram of an eighth relationship of timing relationships of uplink/downlink TPC commands according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of Embodiment 1 of a UE according to the present invention.
  • the UE in this embodiment may include: a sending unit 11, a processing unit 12, and a receiving unit 13; wherein, the sending unit 11 is configured according to the first The method of repeating the PRACH preamble sends the N first PRACH preambles to the network side device, where the N is an integer greater than or equal to 2, and the processing unit 12 is configured to send the first PRACH preamble according to at least the sending unit 11.
  • the processing unit 12 is specifically configured to: according to the sending, by the sending unit 11, the number of the first PRACH preamble, the repeated sending manner of the first PRACH preamble, and the AICH transmission timing parameter indication, determining that the sending unit 11 starts Transmitting the N first PRACH preambles to the sending unit 11 to start receiving the first time interval of the M AIs; the receiving unit 13 is specifically configured to: after starting to send the first PRACH preamble, the interval A time interval begins to receive M AIs sent by the network side device according to the repeated transmission manner of the AI.
  • the processing unit 12 is further configured to: when the receiving unit 13 does not successfully receive the network side When the AI corresponding to the first PRACH preamble is sent by the device, the number of the first PRACH preamble is sent by the sending unit 11, the number of the AIs sent by the network side device, and the preamble a repeating transmission mode, the repeated transmission mode of the AI, and the AICH transmission timing parameter indication, determining a minimum time that the transmitting unit 11 starts transmitting the N first PRACH preambles to start transmitting the N second PRACH preambles
  • the second PRACH preamble is the next different PRACH preamble of the first PRACH preamble;
  • the sending unit 11 is further configured to send the N second PRACH preambles to the network side device according to the minimum time interval determined by the processing unit 12 and the repeated sending manner of the second PRACH preamble, where The sending unit 11 starts to send the N first PRACH preambles to start transmitting the N second PRACH preambles with a time interval greater than or equal to the minimum time interval.
  • the processing unit 12 is further configured to: after receiving, by the receiving unit 13 according to the time of receiving the AI, the M AIs sent by the network side device according to the repeated sending manner of the AI, at least according to the network side device Sending the number M of the AI, the repeated transmission mode of the AI, and determining the time for transmitting the PRACH message to the network side device; the sending unit 11 is further configured to send the PRACH message to the network side according to the time of sending the PRACH message.
  • the device sends the PRACH message, where the PRACH message includes a data PRACH message and a control PRACH message.
  • the processing unit 12 is configured to determine, according to the number of the AIs sent by the network side device, the repeated sending manner of the AI, the time for sending the PRACH message to the network side device, where the processing unit 12 includes: The number of the first PRACH preambles sent by the sending unit 11, the number of the AIs sent by the network side device, the repeated sending manner of the first PRACH preamble, and the repeated transmission of the PRACH of the AI a mode and the AICH transmission timing parameter indication, determining, by the sending unit 11, the sending of the N first PRACH preambles to a second time interval of starting to send the PRACH message;
  • the sending unit 11 is configured to send the PRACH message to the network side device according to the time when the PRACH message is sent, and the sending unit 11 is configured to: after the sending the first first PRACH preambles, send the second The time interval begins to send the PRACH message to the network side device.
  • the receiving unit 13 is further configured to: after receiving the M AIs sent by the network side device according to the repeated sending manner of the AI, according to the time of receiving the AI, receiving the network The F-DPCH that carries the uplink TPC command sent by the side device;
  • the processing unit 12 is configured to determine, according to the number of the AIs that the network side device sends the AI, and the repeated sending manner of the AI, the time for sending the PRACH message to the network side device, where the processing unit 12 is configured to use the
  • the network side device sends the number of the AI, the repeated transmission mode of the AI, and determines a third time interval that the sending unit 11 starts receiving the M AIs to start sending the PRACH message.
  • the sending unit 11 is configured to send the PRACH message to the network side device according to the time when the PRACH message is sent, where the sending unit 11 is configured to: after the beginning of receiving the M AIs, the third time interval And starting to send the PRACH message to the network side device.
  • the sending unit 11 when the repeated sending manner of the first PRACH preamble is the first repeated sending manner, the sending unit 11 is configured to send the N first to the network side device according to the repeated sending manner of the first PRACH preamble a PRACH preamble, the sending unit 11 is configured to send the N first PRACH preambles to the network side device in the N consecutive access slots, where each of the access times Transmitting one of the first PRACH preambles in the slot; or
  • the sending unit 11 is configured to send the N first PRACH preambles to the network side device according to the repeated sending manner of the first PRACH preamble, when the repeated sending manner of the first PRACH preamble is the second repeated sending mode.
  • the sending unit 11 is configured to continuously send N the first PRACH preambles to the network side device.
  • the receiving unit 13 is configured to receive, according to the time when the AI is received, the network side device, according to the repeated sending manner of the AI.
  • the M AIs include: the receiving unit 13 is configured to receive, according to the time when the AI is received, the M AIs sent by the network side device in the M consecutive access slots, where each Transmitting one of the AIs in the access slot; or
  • the receiving unit 13 is configured to receive, according to the time of receiving the AI, the M sent by the network side device according to the repeated transmission manner of the AI.
  • the AI includes: the receiving unit 13 is configured to receive the M AIs continuously sent by the network side device according to the time when the AI is received.
  • the N is the number of the first PRACH preambles sent by the sending unit 11, and the T1 is the first time interval that the sending unit 11 starts to send the first PRACH preamble to start receiving the AI.
  • X is the number of chips of the access slot, and Y is the number of chips occupied by one first PRACH preamble.
  • the repeated sending manner of the first PRACH preamble is the first repeated sending manner
  • the repeated sending manner of the AI is the first repeated sending manner
  • the AICH transmission timing parameter indicates 0, the processing unit
  • the processing unit 12 determines the location.
  • the processing unit 12 determines the location.
  • the processing unit 12 determines the location.
  • the N is the number of the first PRACH preambles sent by the sending unit 11
  • the M is the number of the AIs sent by the network side device
  • the Tmin is sent by the sending unit 11 a minimum time interval for sending the N first PRACH preambles to start transmitting the N second PRACH preambles
  • X is a number of chips of the access slot
  • the Y is one of the The number of chips occupied by the first PRACH preamble
  • Z is the number of chips occupied by the AI.
  • the repeated sending manner of the first PRACH preamble is the first repeated sending manner
  • the repeated sending manner of the AI is the first repeated sending manner
  • the AICH transmission timing parameter indicates 0, the processing unit
  • the processing unit 12 determines the location.
  • the processing unit 12 determines the location.
  • the processing unit 12 determines the location.
  • the N is the number of the first PRACH preambles sent by the sending unit 11
  • the M is the number of the AIs sent by the network side device
  • T2 is the sending unit 11 starts to send the N pieces.
  • a PRACH preamble to a second time interval of starting to send the PRACH message where X is the number of chips of the access slot, and Y is the number of chips occupied by one first PRACH preamble
  • the Z is the number of chips occupied by the AI.
  • the X is the number of chips occupied by the access slot
  • the M is the number of the AIs sent by the network side device
  • the T3 is that the sending unit 11 starts receiving the M AIs.
  • the S is a symbol offset
  • the S is any integer from 0 to 9
  • the T is an uplink and downlink time difference
  • the T is 1024 chips
  • the Z is the number of chips occupied by the AI.
  • the receiving unit 13 is configured to receive the F-DPCH that is sent by the network side device and that carries the uplink TPC command, where the receiving unit 13 receives the An L is an integer greater than or equal to 2, where the L is the number of the first uplink TPC commands sent by the network side device;
  • the processing unit 12 is further configured to: combine the received L first uplink TPC commands to obtain a combined first uplink TPC command; and adjust to send the PRACH according to the merged first uplink TPC command The power of the message.
  • the processing unit 12 is configured to adjust the power of sending the PRACH message according to the merged first uplink TPC command, where the processing unit 12 is configured to: when the receiving unit 13 receives the L first uplinks When the difference between the time of the last first uplink TPC command in the TPC command and the time when the first uplink time slot starts is greater than the first preset value, according to the merged first uplink TPC command, from the first uplink time The slot starts to adjust the power of sending the PRACH message; when the receiving unit 13 receives the difference between the time of the last first uplink TPC command in the L first uplink TPC commands and the start time of the first uplink time slot is less than or When the first preset value is equal to, the power of sending the PRACH message is adjusted from the second uplink time slot according to the merged first uplink TPC command;
  • the first uplink time slot is an uplink time slot in which the sending unit 11 starts transmitting the uplink pilot sequence after the receiving unit 13 receives the last first uplink TPC command
  • the second uplink time slot is the first time slot.
  • the next upstream time slot of an upstream slot is an upstream time slot in which the sending unit 11 starts transmitting the uplink pilot sequence after the receiving unit 13 receives the last first uplink TPC command
  • the receiving unit 13 is configured to receive, by the network side device, an F-DPCH that carries the L first DPC commands, where the receiving unit 13 is configured to receive the network side device in the continuous manner.
  • the PRACH control message carries a first downlink TPC command
  • the sending unit 11 is configured to send the PRACH control message to the network side device, where the sending unit 11 is configured to use the consecutive H uplink time slots.
  • Transmitting, by the network side device, the H first downlink TPCs The control message of the command, wherein the H is greater than or equal to 2, and one of the first downlink TPC commands is transmitted in each uplink time slot.
  • the above sending unit 11 may be a transmitter or a transceiver
  • the above receiving unit 13 may be a receiver or a transceiver
  • the sending unit 11 and the receiving unit 13 may be integrated to form a transceiver unit, corresponding to hardware implementation.
  • the above processing unit 12 may be embedded in or independent of the processor of the UE in hardware, or may be stored in the memory of the UE in software, so that the processor invokes the operations corresponding to the above modules.
  • the processor can be a central processing unit (English: Central Processing Unit, CPU for short), a microprocessor, a single chip microcomputer, and the like. Please refer to FIG. 2.
  • FIG. 2 Please refer to FIG. 2.
  • the UE in this embodiment includes a transmitter 21, a receiver 22, a memory 23, and a transmitter 21 and a receiver 22, respectively.
  • the UE may also include a common component such as an antenna, a baseband processing component, a medium-frequency radio processing component, and an input/output device.
  • the embodiment of the present invention does not impose any limitation here.
  • the memory 23 stores a set of program codes, and the processor 24 is configured to call the program code stored in the memory 23 for performing the operations performed by the UE in the following method embodiments of the present invention.
  • FIG. 1 and FIG. 2 may be used to perform the technical solution executed by the UE in the following method embodiments of the present invention, and the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a network side device according to the present invention.
  • the network side device in this embodiment may include: a receiving unit 31 and a sending unit 32.
  • the first PRACH preamble is repeatedly transmitted, and the N first PRACH preambles are sent, and the N is an integer greater than or equal to 2;
  • the sending unit 32 is configured to send the M to the UE according to the repeated transmission mode of the AI.
  • An AI corresponding to the first PRACH preamble is an integer structural diagram of Embodiment 1 of a network side device according to the present invention.
  • the network side device in this embodiment may include: a receiving unit 31 and a sending unit 32.
  • the first PRACH preamble is repeatedly transmitted, and the N first PRACH preambles are sent, and the N is an integer greater than or equal to 2;
  • the sending unit 32 is configured to send the M to the UE according to the repeated transmission mode of the AI.
  • the receiving unit 31 is specifically configured to receive, by the UE, the sent in the N consecutive access slots. Decoding N first PRACH preambles, wherein each of the access slots transmits one of the first PRACH preambles; or
  • the receiving unit 31 is configured to receive and receive the N first PRACH preambles continuously sent by the UE, when the repeated sending manner of the first PRACH preamble is the second repeated sending mode.
  • the sending unit 32 is specifically configured to send the M AIs to the UE in the M consecutive access slots, where one AI is sent in each of the access slots;
  • the sending unit 32 is specifically configured to continuously send the M AIs to the UE.
  • the receiving unit 31 is further configured to: after the sending unit 32 sends M AIs corresponding to the first PRACH preamble to the UE, according to the repeated sending manner of the AI, receive the PRACH message sent by the UE;
  • the PRACH message includes a data PRACH message and a control PRACH message.
  • the sending unit 32 is further configured to: after sending M AIs corresponding to the first PRACH preamble to the UE according to the repeated sending manner of the AI, send the F- carrying the uplink TPC command to the UE. DPCH.
  • the sending unit 32 is configured to send, to the UE, an F-DPCH that carries an uplink TPC command, where the sending unit 32 is configured to send, to the UE, the F-DPCH that carries L first uplink TPC commands.
  • the L is an integer greater than or equal to 2.
  • the sending unit 32 is configured to send, to the UE, the F-DPCH that carries the L first uplink TPC commands, where the sending unit 32 is configured to send the foregoing to the L downlink time slots. Transmitting, by the UE, an F-DPCH that carries the L first uplink TPC commands, where each of the downlink time slots transmits one of the first uplink TPC commands; or, sending, to the UE, consecutively carrying the L first The F-DPCH of the upstream TPC command.
  • the network side device of this embodiment further includes: a processing unit 33.
  • the receiving unit 31 is configured to receive the PRACH control message sent by the UE, where the receiving unit 31 is configured to receive the UE in a continuous H. a PRACH control message carrying H first-time downlink TPC commands and an uplink pilot sequence, where H is greater than or equal to 2, and each of the uplink time slots transmits one of the first a downlink TPC command and an uplink pilot sequence;
  • the processing unit 33 is configured to combine the H first downlink TPC commands received by the receiving unit 31, and obtain the merged first downlink TPC command; And the combined first downlink TPC command adjusts the power of sending the F-DPCH.
  • the processing unit 33 is configured to adjust, according to the merged first downlink TPC command, the power of sending the F-DPCH, where the processing unit 33 is configured to: when the receiving unit 31 receives the H The time of the last first downlink TPC command in the downlink TPC command and the first downlink When the time difference between the start times of the time slots is greater than the second preset value, the power of transmitting the F-DPCH is adjusted from the first downlink time slot; when the receiving unit 31 receives the H first downlink TPC commands When the difference between the time of the last first downlink TPC command and the time when the first downlink time slot starts is less than or equal to the second preset value, adjusting and transmitting the F- from the second uplink time slot The power of the DPCH, where the first downlink time slot is the next downlink time slot of the downlink time slot in which the receiving unit 31 receives the last first downlink TPC command, and the second downlink time slot is The next downlink time slot of the first downlink time slot.
  • the above receiving unit 31 may be a receiver or a transceiver
  • the above sending unit 32 may be a transmitter or a transceiver
  • the receiving unit 31 and the transmitting unit 32 may be integrated to form a transceiver unit, corresponding to hardware implementation.
  • the above processing unit 33 may be embedded in the hardware of the network side device in the form of hardware, or may be stored in the memory of the network side device in software, so that the processor calls to perform the operations corresponding to the above modules.
  • the processor can be a CPU, a microprocessor, a microcontroller, or the like. Referring to FIG. 4, FIG. 4 is a schematic structural diagram of Embodiment 2 of a network side device according to the present invention. As shown in FIG.
  • the network side device of this embodiment includes a receiver 41, a transmitter 42, a memory 43, and a receiver 41, respectively.
  • the transmitter 42, the processor 44 is connected to the memory 43.
  • the network side device may also include a common component such as an antenna, a baseband processing component, a medium RF processing component, and an input/output device, and the embodiment of the present invention does not impose any limitation herein.
  • the memory 43 stores a set of program codes, and the processor 44 is configured to call the program code stored in the memory 43 for performing the operations performed by the network side device in the following method embodiments of the present invention.
  • FIG. 3 and FIG. 4 can be used to perform the technical solution executed by the network side device in the following method embodiments of the present invention, and the implementation principle and technical effects are similar, and details are not described herein again. .
  • FIG. 5 is a flowchart of Embodiment 1 of a timing transmission method according to the present invention. As shown in FIG. 5, the method in this embodiment may include:
  • the UE sends N first PRACH preambles to the network side device according to the repeated transmission manner of the first PRACH preamble, where the N is an integer greater than or equal to 2.
  • the UE in this embodiment may be an MTC device, and the network side device may be, for example, a base station.
  • the UE may send N identical first PRACH preambles to the network side device according to the repeated transmission manner of the first PRACH preamble.
  • the N identical first PRACH preambles are carried on the PRACH.
  • the UE sends the N first PRACH preambles to the network side device according to the repeated transmission manner of the first PRACH preamble, including: Transmitting, by the UE, the N first PRACH preambles to the network side device in the N consecutive access slots, where each of the access slots sends one of the first PRACH preambles code.
  • the interval duration at which two adjacent first PRACH preambles start to be transmitted is one access slot duration.
  • the specific transmission manner of the N first PRACH preambles may be as shown in FIG. 6, and the time required for transmitting the N first PRACH preambles is N access slots.
  • the UE continuously transmits N pieces of the first PRACH preamble to the network side device.
  • the specific transmission manner of the N first PRACH preambles may be as shown in FIG. 7, and the time required to transmit the N first PRACH preambles is less than N access slots.
  • the method for repeatedly transmitting the first PRACH preamble in the embodiment of the present invention is not limited thereto.
  • the UE determines, according to the number of the first PRACH preamble and the repeated transmission mode of the first PRACH preamble, that the UE receives the first PRACH preamble sent by the network side device.
  • the time of the AI corresponding to the code is the time of the AI corresponding to the code.
  • the network side device after receiving the first PRACH preamble sent by the UE, the network side device sends the AI bearer to the UE in the AICH according to the first PRACH preamble, because the UE will use the same PRACH preamble in the prior art. Only once, the network side device receives the PRACH preamble and processes the AI, and then sends the AI to the UE. In the embodiment of the present invention, the UE sends the same PRACH preamble N times, and the network side device needs to receive N PRACH preambles and process the AI.
  • the AI is sent to the UE, and the time required for the UE to receive the AI AI is different from the time required to receive the N PDCCH preambles, so that the UE receives the AI in the prior art and receives the UE in the embodiment of the present invention.
  • the time of the AI is different. Therefore, the UE may determine, according to the number of the first PRACH preambles and the repeated transmission mode of the first PRACH preamble, that the UE receives the AI corresponding to the first PRACH preamble. time.
  • the UE receives M AIs sent by the network side device according to the repeated sending manner of the AI according to a time when the AI is received, where the M is an integer greater than or equal to 2.
  • the UE receives the network side device according to the determined time of receiving the AI. M identical AIs sent by the AI repeat transmission method.
  • the UE may improve the signal-to-noise ratio of the first PRACH preamble by transmitting multiple first PRACH preambles to the network side device.
  • the UE determines the time of receiving the AI and implements the AI on the basis that the UE sends multiple first PRACH preambles.
  • the timing of the transmission is to ensure that the time when the UE receives the AI is synchronized with the time when the network side device sends the AI, so that the UE can successfully receive the AI sent by the network side device, and the UE receives multiple AIs sent by the network side device, and improves the AI message.
  • the noise ratio further ensures that the UE can successfully receive the AI sent by the network side device, so that the UE can access the network side device further, that is, improve the coverage capability of the network side device.
  • the UE After the UE receives the AI, it indicates that the UE has successfully accessed the network side device, and then the UE may perform PRACH message transmission with the network side device.
  • the specific transmission mode of the M AIs can be as shown in FIG. 8, and the time required to transmit M AIs is M access slots.
  • the UE receives one AI in each access slot duration, and the interval length of the adjacent two AIs that the UE starts to receive is one access slot duration.
  • the UE receives the M AIs sent by the network side device according to the repeated transmission manner of the AI according to the time of receiving the AI, including The UE receives the M AIs continuously sent by the network side device according to the time when the AI is received.
  • the specific transmission mode of M AIs can be as shown in FIG. 9, and the time required to transmit M AIs is less than M access slots.
  • the UE continuously receives M AIs, and the interval duration of the adjacent two AIs that the UE starts to receive is one time length of the AI.
  • the repeated transmission manner of the AI in the embodiment of the present invention is not limited thereto.
  • the UE sends a plurality of first PRACH preambles to the network side device according to the repeated transmission mode of the first PRACH preamble, and sends the first PRACH preamble number according to the UE, the first The method for repeatedly transmitting the PRACH preamble, determining the time for receiving the AI corresponding to the first PRACH preamble sent by the network side device, and receiving the network side device according to the AI according to the time of receiving the AI
  • the plurality of AIs sent by the repeating transmission mode can improve the coverage capability of the PRACH, improve the coverage capability of the network side device, and implement the timing of the AI transmission.
  • the UE determines to receive the network according to at least the number of sending the first PRACH preamble and the repeated sending manner of the first PRACH preamble.
  • the time of the AI corresponding to the first PRACH preamble sent by the side device includes: the number of the first PRACH preamble sent by the UE according to the UE, and the repeated sending manner of the first PRACH preamble And determining, by the AICH transmission timing parameter indication, the first time interval that the UE starts to send the N first PRACH preambles to the UE to start receiving the M AIs; and according to a time when the UE receives the AI, Receiving the AI that the network side device sends M times according to the repeated sending manner of the AI, the following: after the UE starts to send the first PRACH preamble, start receiving the network side at intervals of the first time interval The M AIs sent by the device according to the repeated transmission manner of the AI.
  • the UE sends N first PRACH preambles to the network side device according to the repeated transmission manner of the first PRACH preamble, and the UE sends the first PRACH preamble number and the first PRACH preamble according to the UE.
  • Repetitive transmission mode and the AICH transmission timing parameter indication determining that the UE starts to send the first first PRACH preamble in the N first PRACH preambles to the UE to start receiving the M AIs The first time interval of the first AI, and then the UE starts to receive the first first PRACH preamble in the N first PRACH preambles, and starts receiving the M AIs sent by the network side device at the first time interval.
  • the first AI implements the timing relationship between the preamble and the AI on the premise of improving the coverage capability of the network side device. Since the PRACH preamble is carried in the PRACH, the AI is carried in the AICH, that is, the PRACH and the AICH are implemented. The timing relationship between.
  • the X*N chips represent the time required to send the N first PRACH preambles
  • the 2560 chips represent the time when the network side device processes the N first PRACH preambles and the transmission delay.
  • the X*N chips represent the time required to send the N first PRACH preambles
  • the 7680 chips represent the time when the network side device processes the N first PRACH preambles and the transmission delay.
  • the sending manner of the first PRACH preamble is the second repeated sending manner
  • the time, 5120 chips represent the time when the network side device processes the N first PRACH preambles and the transmission delay.
  • the T1 is a first time interval in which the UE starts sending the first PRACH preamble to the UE to start receiving the AI.
  • the X is the number of chips of the access slot, for example, X is 5120 chips.
  • the Y is the number of chips occupied by one of the first PRACH preambles, for example, Y is 4096 chips.
  • the length of time of one of the first PRACH preambles is the number of chips occupied by one of the first PRACH preambles.
  • the UE when the UE does not successfully receive the AI corresponding to the first PRACH preamble sent by the network side device, the UE sends the number of the first PRACH preamble according to the UE.
  • the network side device sends the number of the AI, the repeated transmission mode of the first PRACH preamble, the repeated transmission mode of the AI, and the AICH transmission timing parameter indication, and determines that the UE starts to send the a minimum time interval between the N first PRACH preambles to the UE starting to send the N second PRACH preambles, where the second PRACH preamble is a next different PRACH preamble of the first PRACH preamble Transmitting, by the UE, the N second PRACH preambles to the network side device according to the minimum time interval and the repeated transmission manner of the second PRACH preamble, where the UE starts to send the The time interval between the N first PRACH preambles to the UE starting to send the N second PRACH preambles is greater than or equal to the minimum time interval
  • the UE determines the location.
  • the UE starts to send the first second PRACH preamble of the N second PRACH preambles after transmitting the first first PRACH preamble and the interval is greater than or equal to the minimum time interval.
  • the repeated transmission mode of the first PRACH preamble is the first repeated transmission mode
  • the repeated transmission mode of the AI is the first repeated transmission mode
  • the AICH transmission timing parameter indication is 0,
  • the repeated transmission mode of the first PRACH preamble is the first repeated transmission mode
  • the repeated transmission mode of the AI is the first repeated transmission mode
  • the AICH transmission timing parameter indication is 1
  • the repeated transmission mode of the first PRACH preamble is the second repeated transmission mode
  • the repeated transmission mode of the AI is the second repeated transmission mode
  • the AI transmission timing parameter indication is 0,
  • the repeated transmission mode of the first PRACH preamble is the second repeated transmission mode
  • the repeated transmission mode of the AI is the second repeated transmission mode
  • the AI transmission timing parameter indication is 1
  • the N is the number of the first PRACH preambles sent by the UE
  • the M is the number of the AIs sent by the network side device
  • the Tmin is that the UE starts sending the N a first PRACH preamble to a minimum time interval at which the UE starts transmitting the N second PRACH preambles.
  • the X is the number of chips of the access slot, for example, X is 5120 chips.
  • the Y is the number of chips occupied by one of the first PRACH preambles, for example, Y is 4096 chips.
  • the Z is the number of chips occupied by the AI, for example, Z is 4096 chips.
  • FIG. 10 is a flowchart of Embodiment 2 of a timing transmission method according to the present invention. As shown in FIG. 10, the method in this embodiment may include:
  • the network side device receives N first PRACH preambles that are sent by the UE according to the repeated sending manner of the first PRACH preamble, where the N is an integer greater than or equal to 2.
  • the network side device receives N identical first PRACH preambles that are sent by the UE according to the repeated transmission manner of the first PRACH preamble.
  • the N identical first PRACH preambles are carried on the PRACH.
  • the network side device receives the N first PRACH preambles that are sent by the UE according to the repeated transmission manner of the first PRACH preamble, where the network side device receives the first repeated transmission mode of the first PRACH preamble, and includes: Receiving, by the network side device, the N first PRACH preambles sent by the UE in the N consecutive access slots, where each of the access slots sends one of the first PRACH preambles code.
  • the specific transmission manner of the N first PRACH preambles may be as shown in FIG. 6, and the time required for transmitting the N first PRACH preambles is N access slots.
  • the network side device receives the N first PRACH preambles that are sent by the UE according to the repeated transmission manner of the first PRACH preamble, and the method includes: The network side device receives the N first PRACH preambles continuously sent by the UE.
  • the specific transmission manner of the N first PRACH preambles may be as shown in FIG. 7, and the time required to transmit the N first PRACH preambles is less than N access slots.
  • the method for repeatedly transmitting the first PRACH preamble in the embodiment of the present invention is not limited thereto.
  • the network side device sends M AIs corresponding to the first PRACH preamble to the UE according to the repeated transmission mode of the AI.
  • the network side device after receiving the N first PRACH preambles sent by the UE, determines the AI corresponding to the first PRACH preamble, and then sends the M identical AIs to the UE according to the repeated transmission mode of the AI. .
  • the network side device can receive the first PRACH preamble of the first PRACH preamble, so that the network side device can successfully receive the first PRACH preamble sent by the UE, and the network side device sends the first PRACH preamble.
  • the UE sends multiple AIs, which can improve the signal-to-noise ratio of the AI, so that the UE can successfully receive the AI sent by the network side device.
  • After the UE receives the AI it indicates that the UE has successfully accessed the network side device, and the UE can perform PRACH message transmission with the network side device, so that the coverage capability of the network side device can be improved.
  • the network side device When the AI repeating transmission mode is the first repeated transmission mode, the network side device sends M AIs corresponding to the first PRACH preamble to the UE according to the repeated transmission mode of the AI, including: The network side device sends the M AIs to the UE in the M consecutive access slots, where one AI is sent in each of the access slots. M AI specific hair The sending mode can be as shown in FIG. 8, and the time required to transmit M AIs is N access slots.
  • the network side device When the repeated transmission mode of the M AIs is the second repetition transmission mode, the network side device sends M AIs corresponding to the first PRACH preamble to the UE according to the repeated transmission manner of the AI, including The network side device continuously transmits the M AIs to the UE.
  • the specific transmission mode of M AIs can be as shown in FIG. 9, and the time required to transmit M AIs is less than M access slots.
  • the repeated transmission manner of the AI in the embodiment of the present invention is not limited thereto.
  • the network side device receives, by the network side device, multiple first PRACH preambles that are sent according to the repeated transmission mode of the first PRACH preamble, and sends M and the UE to the UE according to the repeated transmission mode of the AI.
  • the AI corresponding to the first PRACH preamble can improve the coverage capability of the PRACH and improve the coverage capability of the network side device.
  • FIG. 11 is a flowchart of Embodiment 3 of a timing transmission method according to the present invention. As shown in FIG. 11, the method in this embodiment may include:
  • the UE sends N first PRACH preambles according to the repeated transmission manner of the first PRACH preamble.
  • the network side device receives N first PRACH preambles.
  • the UE determines, according to the number of the first PRACH preamble and the repeated transmission mode of the first PRACH preamble, that the UE receives the first PRACH preamble that is sent by the network side device. The time of the AI.
  • the network side device sends M AIs according to the repeated sending manner of the AI.
  • the UE receives the M AIs according to the determined time of receiving the AI.
  • the UE determines, according to the number of the AIs sent by the network side device and the repeated sending manner of the AI, the time for sending the PRACH message to the network side device.
  • the UE sends the PRACH message to the network side device according to a time when the PRACH message is sent.
  • the PRACH message includes a PRACH data message and a PRACH control message.
  • the PRACH message is a dedicated channel (English: Dedicated Channel, DCH for short), and the PRACH data message is a dedicated physical number.
  • the PRACH control message is a dedicated physical control channel (English: Dedicated Physical Control Channel, DPCCH for short);
  • the PRACH control message is a dedicated physical control channel (English: Dedicated Physical Control Channel, DPCCH for short);
  • the PRACH The message is an Enhanced Dedicated Control Channel (E-DCH)
  • the PRACH data message is an Enhanced Dedicated Physical Data Channel (English: Enhanced Dedicated Physical Data Channel, E-DPDCH).
  • the PRACH control message is a DPCCH and an Enhanced Dedicated Physical Control Channel (English: Enhanced Dedicated Physical Control Channel, E-DPCCH for short).
  • the UE after receiving the AI sent by the network side device, the UE sends a PRACH message to the network side device after the decoding is correct. Because the network side device sends the same AI only once, the UE receives an AI and processes it.
  • the PRACH message can be sent to the network side device.
  • the network side device sends the same AI M times, and the UE needs to receive the M AIs and then send the PRACH message to the network side device, because the UE receives an AI.
  • the time required to receive the M AIs is different, so the time for the UE to send the PRACH message in the prior art is different from the time when the UE sends the PRACH message in the embodiment of the present invention.
  • the UE can send the AI according to the network side device.
  • the method of repeating the transmission of the number M and the AI determines the time for transmitting the PRACH message to the network side device, and then sends the PRACH message to the network side device according to the determined time of sending the PRACH message.
  • the UE determines, according to the number of the AIs sent by the network side device, and the repeated sending manner of the AI, the time for sending the PRACH message to the network side device, including And the number of the first PRACH preambles sent by the UE, the number of the AIs sent by the network side device, the repeated transmission manner of the first PRACH preamble, and the repetition of the AI.
  • the AICH transmission timing parameter indication determining that the UE starts to send the N first PRACH preambles to a second time interval in which the UE starts to send the PRACH message; and the UE sends the PRACH according to the And sending the PRACH message to the network side device, where the UE starts sending the N first PRACH preambles, and then starts sending to the network side device at intervals of the second time interval.
  • the PRACH message determining that the UE starts to send the N first PRACH preambles to a second time interval in which the UE starts to send the PRACH message; and the UE sends the PRACH according to the And sending the PRACH message to the network side device, where the UE starts sending the N first PRACH preambles, and then starts sending to the network side device at intervals of the second time interval.
  • the UE may be configured according to the number of transmissions of the first PRACH preamble, the number M of transmissions of the AI, the repeated transmission manner of the first PRACH preamble, the repeated transmission mode of the AI, and the AICH transmission.
  • the timing parameter indicates that the UE starts to send the first first PRACH preamble in the N first PRACH preambles to the second time interval in which the UE starts to send the PRACH message, and then the UE starts to send the After the first first PRACH preamble of the N first PRACH preambles, the second time interval starts to send the PRACH message to the network side device.
  • the PRACH message is carried in the DCH or the E-DCH, so that the timing relationship between the PRACH and the DCH or the E-DCH can be implemented in the above manner, as shown in FIG.
  • the repeated transmission mode of the first PRACH preamble is the first repeated transmission mode
  • the repeated transmission mode of the AI is the first repeated transmission mode
  • the AICH transmission timing parameter indication is 0,
  • the repeated transmission mode of the first PRACH preamble is the first repeated transmission mode
  • the repeated transmission mode of the AI is the first repeated transmission mode
  • the AICH transmission timing parameter indication is 1
  • the repeated transmission mode of the first PRACH preamble is the second repeated transmission mode
  • the repeated transmission mode of the AI is the second repeated transmission mode
  • the AICH transmission timing parameter indication is 0,
  • the repeated transmission mode of the first PRACH preamble is the second repeated transmission mode
  • the repeated transmission mode of the AI is the second repeated transmission mode
  • the AICH transmission timing parameter indication is 1
  • the N is the number of the first PRACH preambles sent by the UE
  • the M is the number of the AIs sent by the network side device
  • T2 is that the UE starts sending the N first a PRACH preamble to a second time interval in which the UE starts transmitting the PRACH message.
  • Place X is the number of chips of the access slot, for example, X is 5120 chips.
  • the Y is the number of chips occupied by one of the first PRACH preambles, for example, Y is 4096 chips.
  • the Z is the number of chips occupied by the AI, for example, Z is 4096 chips.
  • the UE further includes: The UE receives the F-DPCH that is sent by the network side device and carries the uplink TPC command. The UE determines to the network side according to the number of the AI and the repeated transmission mode of the AI. The time when the device sends the PRACH message, the UE starts to receive the M AIs to the UE according to the number of the AIs sent by the network side device and the repeated sending manner of the AI. Sending, by the UE, the PRACH message to the network side device according to the time when the PRACH message is sent, after the UE starts to receive the M AIs, And the third time interval is started to start sending the PRACH message to the network side device.
  • the UE may determine, according to the number of transmissions of the AI, and the repeated transmission manner of the AI, that the UE starts to receive the first AI of the M AIs to the third time interval that the UE starts to send the PRACH message. Then, after starting to receive the first AI of the M AIs, the UE starts to send the PRACH message to the network side device at intervals of the third time interval. Since the AI is carried in the AICH, the PRACH message is carried in the DCH or the E-DCH, so that the timing relationship between the AICH and the DCH or the E-DCH can be implemented in the above manner, as shown in FIG.
  • the X is the number of chips occupied by the access slot
  • the M is the number of the AIs sent by the network side device
  • the T3 is that the UE starts receiving the M AIs.
  • the T is Uplink and downlink time difference, that is, the UE starts receiving the F-DFCF to the UE and starts to send the to the network side device
  • the time interval of the PRACH message, the T is 1024 chips;
  • the Z is the number of chips occupied by the AI, for example, Z is 4096 chips.
  • the network side device receives the PRACH message.
  • the network side device may receive the PRACH message sent by the UE.
  • the UE may determine to send the PRACH message to the network side device according to the number of the AI and the repeated sending manner of the AI.
  • the time of the PRACH message is sent to the network side device according to the time when the PRACH message is sent, and the timing of the PRACH message transmission is implemented.
  • FIG. 14 is a flowchart of Embodiment 4 of a timing transmission method according to the present invention. As shown in FIG. 14, the method in this embodiment may include:
  • the UE sends N first PRACH preambles according to the repeated transmission manner of the first PRACH preamble.
  • the network side device receives N first PRACH preambles.
  • the UE determines, according to the number of the first PRACH preamble and the repeated transmission manner of the first PRACH preamble, that the UE receives the first PRACH preamble sent by the network side device.
  • the time of the AI corresponding to the code is the time of the AI corresponding to the code.
  • the network side device sends M AIs according to the repeated sending manner of the AI.
  • the UE receives the M AIs according to the determined time of receiving the AI.
  • the network side device sends, to the UE, an F-DPCH that carries L first uplink TPC commands.
  • the UE determines, according to the number of the AIs that the network side device sends, the repeated sending manner of the AI, the third time that the UE starts receiving the M AIs to start the PRACH message sent by the UE. spacing.
  • the UE After starting to receive the M AIs, the UE starts to send the PRACH message at intervals of the third time interval.
  • the UE combines the received L first uplink TPC commands to obtain a merged first uplink TPC command, and adjusts and sends the PRACH message according to the merged first uplink TPC command. power.
  • the execution order of S406 and S407 is in no particular order.
  • the network side device sends an F-DPCH carrying L first uplink TPC commands to the UE, and correspondingly, the UE receives the F-DPCHs of the L first uplink TPC commands sent by the network side device, where the UE is receiving
  • S408 may be performed.
  • the UE After the UE receives the F-DPCH that is sent by the network side device and carries the L first uplink TPC commands, the received L first uplink TPC commands are combined to obtain the combined first uplink TPC command; And adjusting, according to the merged first uplink TPC command, the power of sending the PRACH message.
  • the first pre when the difference between the time when the UE receives the last first uplink TPC command in the L first uplink TPC commands and the time when the first uplink time slot starts is greater than a first preset value, the first pre When the value is, for example, 512 chips, the UE adjusts the power of sending the PRACH message from the first uplink time slot according to the merged first uplink TPC command, as shown in FIG.
  • the UE adjusts the power of sending the PRACH message from the second uplink time slot according to the merged first uplink TPC command, as shown in FIG. 16 , where the first uplink time slot is the UE receiving station.
  • the timing relationship between the first uplink TPC command and the UE adjusting the transmit power that is, the timing relationship in which the multiple first downlink TPC commands are valid, is implemented.
  • the network side device sends, to the UE, the F-DPCH that carries the L first uplink TPC commands on the consecutive L downlink time slots, where Transmitting one of the first uplink TPC commands in each downlink time slot; correspondingly, the UE receives the L first uplink TPCs that are sent by the network side device on the consecutive L downlink time slots The F-DPCH of the command, wherein one of the first uplink TPC commands is transmitted in each downlink time slot.
  • the network side device sends, to the UE, an F-DPCH that continuously carries the L first uplink TPC commands.
  • the UE receives the F-DPCH that is sent by the network side device and continuously carries the L first uplink TPC commands.
  • the PRACH control message carries a first downlink TPC command, where the UE is located
  • the network side device sends the PRACH control message, where the UE sends a control message carrying the H first downlink TPC commands to the network side device on the consecutive H uplink time slots, where H is greater than or equal to 2, and one of the first downlink TPC commands is transmitted in each uplink time slot.
  • the network side device Receiving, by the network side device, the PRACH control message sent by the UE, the network side device receiving, by the UE, the H first uplink TPC commands and uplinks sent by the UE in consecutive H uplink time slots a PRACH control message of the pilot sequence, where the H is greater than or equal to 2, and each of the uplink time slots transmits one of the first downlink TPC command, one uplink pilot sequence, and one transport format combination set.
  • Transport Format Combination Indicator referred to as: TFCI
  • the network side device combines the received H first downlink TPC commands to obtain the merged first downlink TPC command; the network side device is configured according to the merged first downlink The TPC command adjusts the power of transmitting the F-DPCH.
  • the network side device adjusts the power of sending the F-DPCH according to the merged first downlink TPC command, and includes: when the network side device receives the last of the H first downlink TPCs When the difference between the time of the first downlink TPC and the start of the first downlink time slot is greater than the second preset value, the network side device adjusts and sends the F-DPCH from the first downlink time slot.
  • the power refer to FIG.
  • the network side device when the network side device receives the last first downlink TPC in the H first downlink TPCs and the first downlink The time difference between the start of the time slot is less than or equal to the second preset value, and the network side device adjusts the power of sending the F-DPCH from the second uplink time slot; wherein the first downlink time slot The next downlink time slot of the downlink time slot in which the network side device receives the last first downlink TPC, and the second downlink time slot is the next downlink time of the first downlink time slot.
  • the gap can be referred to FIG. 16 and will not be shown here. Therefore, the timing relationship between the plurality of first uplink TPC commands and the network side device adjusting the transmission power, that is, the timing relationship in which the plurality of first uplink TPC commands are valid, is implemented.
  • the TPC command sent by the network side device to the UE is an uplink TPC command
  • the TPC command sent by the UE to the network side device is an uplink TPC command
  • the TPC command sent by the UE to the network side device is a downlink TPC command
  • the network side device The TPC command sent by the receiving UE is a downlink TPC command.
  • the DPCCH in the PRACH control message is taken as an example, and the DPCCH carries the downlink TPC command.
  • the network side device may be The same uplink TPC command sent to the UE is repeatedly sent multiple times, that is, the network side device sends L identical uplink TPC commands to the UE on consecutive L downlink time slots, and the uplink TPC command is carried in the F-DPCH.
  • the F-DPCH carries an uplink TPC command.
  • the DPCCH carries an uplink pilot sequence, a TFCI, and a downlink TPC command.
  • the UE combines the received L uplink TPC commands to obtain a combined uplink TPC command, and determines the time when the UE receives the Lth uplink TPC command and the first uplink time slot (ie, the UE receives the Lth uplink).
  • the difference between the start time of the uplink time slot in which the uplink pilot sequence is transmitted after the TPC command is started is greater than the first preset value (for example, 512 chips), and if it is greater than, the UE according to the merged downlink TPC command, from the first An uplink time slot begins to adjust the power of transmitting the PRACH message (ie, the PRACH control message and the PRACH data message); if less than or equal to, the UE is from the second uplink time slot according to the merged downlink TPC command (ie, the first uplink time slot) The next uplink time slot) begins to adjust the power of the transmitted PRACH message.
  • the first preset value for example, 512 chips
  • the UE measures the downlink signal to interference ratio (English: Signal to Interference Ratio, SIR) in the process of receiving the first uplink TPC command sent by the network side device to receive the Lth uplink TPC command.
  • SIR Signal to Interference Ratio
  • the measured downlink SIR generates a new downlink TPC command, and the UE may send the newly generated downlink TPC command in the first uplink time slot shown in FIG.
  • the UE may also send the newly generated downlink TPC command multiple times, that is, the UE sends H downlink TPC commands to the network side device on consecutive H uplink time slots.
  • the downlink TPC command is carried in the DPCCH.
  • the DPCCH carries a downlink TPC command, an uplink pilot sequence, and a TFCI.
  • the network side device combines the received H downlink TPC commands to obtain a combined downlink TPC command, and determines the time when the network side device receives the Hth downlink TPC command and the first downlink time slot (ie, the network).
  • the network side device if it is greater than, the network side device according to The merged downlink TPC command adjusts the power of transmitting the F-PDCH (that is, the uplink TPC command) from the first downlink time slot; if less than or equal to, the network side device follows the merged downlink TPC command from the second downlink.
  • the time slot ie, the next downlink time slot of the first downlink time slot
  • begins to adjust the power of transmitting the F-PDCH ie, the uplink TPC command).
  • the network side device measures the uplink SIR, and generates a new uplink TPC command according to the measured uplink SIR, where the network side device can The newly generated uplink TPC command is sent in the next downlink time slot of the downlink time slot in which the time of receiving the Hth uplink pilot sequence is received. Similarly, the network side device may repeatedly send the newly generated uplink TPC command multiple times.
  • the network side device may repeatedly send the same uplink TPC command sent to the UE multiple times, that is, the network side device continuously sends two to the UE.
  • the same uplink TPC command, and the uplink TPC command is carried in the F-DPCH.
  • the F-DPCH carries two uplink TPC commands.
  • the DPCCH carries an uplink pilot sequence, a TFCI, and a downlink TPC command.
  • the UE combines the received two uplink TPC commands to obtain a combined uplink TPC command, and determines the time when the UE receives the second uplink TPC command and the first uplink time slot (ie, the UE receives the second uplink).
  • the difference between the start time of the uplink time slot in which the uplink pilot sequence is transmitted after the TPC command is started is greater than the first preset value (for example, 512 chips), and if it is greater than, the UE according to the merged downlink TPC command, from the first An uplink time slot begins to adjust the power of transmitting the PRACH message (ie, the PRACH control message and the PRACH data message); if less than or equal to, the UE is from the second uplink time slot according to the merged downlink TPC command (ie, the first uplink time slot) The next uplink time slot) begins to adjust the power of the transmitted PRACH message.
  • the first preset value for example, 512 chips
  • the UE measures the downlink SIR, and generates a new downlink TPC command according to the measured downlink SIR, where the UE may
  • the first uplink time slot shown in FIG. 18 transmits the newly generated downlink TPC command.
  • the UE may also send the newly generated downlink TPC command multiple times, that is, the UE sends H downlink TPC commands to the network side device on consecutive H uplink time slots.
  • the downlink TPC command is carried in the DPCCH.
  • the DPCCH carries a downlink TPC command, an uplink pilot sequence, and a TFCI.
  • the network side device combines the received H downlink TPC commands to obtain a combined downlink TPC command, and determines the time when the network side device receives the Hth downlink TPC command and the first downlink time slot (ie, the network).
  • the downlink TPC command is used to adjust the power of transmitting the F-PDCH (that is, the uplink TPC command) from the first downlink time slot; if less than or equal to, the network side device according to the merged downlink TPC command, from the second downlink
  • the slot ie, the next downlink time slot of the first downlink time slot
  • the network side device when receiving the first uplink pilot sequence sent by the UE to receive the Hth uplink pilot sequence, measures the uplink SIR, and generates a new uplink TPC command according to the measured uplink SIR.
  • the side device may send the newly generated uplink TPC command in the next downlink time slot of the downlink time slot in which the time of receiving the Hth uplink pilot sequence is received.
  • the network side device may repeatedly send the newly generated uplink TPC command twice.
  • the network side device may repeatedly send the same uplink TPC command sent to the UE multiple times, that is, the network side device continuously sends four to the UE.
  • the same uplink TPC command, and the uplink TPC command is carried in the F-DPCH.
  • the F-DPCH carries four uplink TPC commands.
  • the DPCCH carries an uplink pilot sequence, a TFCI, and a downlink TPC command.
  • the UE combines the received four uplink TPC commands to obtain a combined uplink TPC command, and determines the time when the UE receives the fourth uplink TPC command and the first uplink time slot (ie, the UE receives the fourth uplink).
  • the difference between the start time of the uplink time slot in which the uplink pilot sequence is transmitted after the TPC command is started is greater than the first preset value (for example, 512 chips), and if it is greater than, the UE according to the merged downlink TPC command, from the first An uplink time slot begins to adjust the power of transmitting the PRACH message (ie, the PRACH control message and the PRACH data message); if less than or equal to, the UE is from the second uplink time slot according to the merged downlink TPC command (ie, the first uplink time slot) The next uplink time slot) begins to adjust the power of the transmitted PRACH message.
  • the first preset value for example, 512 chips
  • the UE measures the downlink SIR, and generates a new downlink TPC command according to the measured downlink SIR, where the UE may The newly generated downlink TPC command is transmitted in the previous uplink time slot of the first uplink time slot shown in FIG.
  • the UE may also send the newly generated downlink TPC command multiple times, that is, the UE sends H downlink TPC commands to the network side device on consecutive H uplink time slots.
  • downlink TPC The command is carried in the DPCCH.
  • the DPCCH carries a downlink TPC command, an uplink pilot sequence and a TFCI.
  • the network side device combines the received H downlink TPC commands to obtain a combined downlink TPC command, and determines the time when the network side device receives the Hth downlink TPC command and the first downlink time slot (ie, the network).
  • the network side device if it is greater than, the network side device according to The merged downlink TPC command adjusts the power of transmitting the F-PDCH (that is, the uplink TPC command) from the first downlink time slot; if less than or equal to, the network side device follows the merged downlink TPC command from the second downlink.
  • the time slot ie, the next downlink time slot of the first downlink time slot
  • begins to adjust the power of transmitting the F-PDCH ie, the uplink TPC command).
  • the network side device when receiving the first uplink pilot sequence sent by the UE to receive the Hth uplink pilot sequence, measures the uplink SIR, and generates a new uplink TPC command according to the measured uplink SIR.
  • the side device may send the newly generated uplink TPC command in the downlink time slot where the time of receiving the Hth uplink pilot sequence is as shown in FIG. 19; similarly, the network side device may repeatedly send the newly generated uplink TPC command four times.
  • the network side device may repeatedly send the same uplink TPC command sent to the UE multiple times, that is, the network side device continuously sends 8 to the UE.
  • the same uplink TPC command, and the uplink TPC command is carried in the F-DPCH.
  • the F-DPCH carries 8 uplink TPC commands.
  • the DPCCH carries an uplink pilot sequence, a TFCI, and a downlink TPC command.
  • the UE combines the received eight uplink TPC commands to obtain a combined uplink TPC command, and determines the time when the UE receives the eighth uplink TPC command and the first uplink time slot (ie, the UE receives the eighth uplink).
  • the difference between the start time of the uplink time slot in which the uplink pilot sequence is transmitted after the TPC command is started is greater than the first preset value (for example, 512 chips), and if it is greater than, the UE according to the merged downlink TPC command, from the first An uplink time slot begins to adjust the power of transmitting the PRACH message (ie, the PRACH control message and the PRACH data message); if less than or equal to, the UE is from the second uplink time slot according to the merged downlink TPC command (ie, the first uplink time slot) The next uplink time slot) begins to adjust the power of the transmitted PRACH message.
  • the first preset value for example, 512 chips
  • the UE During the process of receiving the first uplink TPC command sent by the network side device to receive the 8th uplink TPC command, the downlink SIR is measured, and a new downlink TPC command is generated according to the measured downlink SIR.
  • the UE may be shown in FIG.
  • the last uplink time slot of the first uplink time slot transmits the newly generated downlink TPC command.
  • the UE may also send the newly generated downlink TPC command multiple times, that is, the UE sends H downlink TPC commands to the network side device on consecutive H uplink time slots.
  • the downlink TPC command is carried in the DPCCH.
  • the DPCCH carries a downlink TPC command, an uplink pilot sequence, and a TFCI.
  • the network side device combines the received H downlink TPC commands to obtain a combined downlink TPC command, and determines the time when the network side device receives the Hth downlink TPC command and the first downlink time slot (ie, the network).
  • the network side device if it is greater than, the network side device according to The merged downlink TPC command adjusts the power of transmitting the F-PDCH (that is, the uplink TPC command) from the first downlink time slot; if less than or equal to, the network side device follows the merged downlink TPC command from the second downlink.
  • the time slot ie, the next downlink time slot of the first downlink time slot
  • begins to adjust the power of transmitting the F-PDCH ie, the uplink TPC command).
  • the network side device when receiving the first uplink pilot sequence sent by the UE to receive the Hth uplink pilot sequence, measures the uplink SIR, and generates a new uplink TPC command according to the measured uplink SIR.
  • the side device may send the newly generated uplink TPC command in the next downlink time slot of the downlink time slot in which the time of receiving the Hth uplink pilot sequence is received.
  • the network side device may repeatedly send the newly generated uplink TPC command 8 times.
  • the network side device may repeatedly send the same uplink TPC command sent to the UE multiple times, that is, the network side device continuously sends 16 to the UE.
  • the same uplink TPC command, and the uplink TPC command is carried in the F-DPCH.
  • the F-DPCH carries 16 uplink TPC commands.
  • the DPCCH carries an uplink pilot sequence, a TFCI, and a TPC command.
  • the UE combines the received 16 uplink TPC commands to obtain a combined uplink TPC command, and determines the time when the UE receives the 16th uplink TPC command and the first uplink time slot (ie, the UE receives the 16th uplink). The start time of the uplink time slot in which the uplink pilot sequence is transmitted after the TPC command is started) If the difference is greater than the first preset value (for example, 512 chips), if the value is greater than, the UE adjusts and sends the PRACH message (that is, the PRACH control message and the PRACH data message) from the first uplink time slot according to the merged downlink TPC command.
  • the first preset value for example, 512 chips
  • the UE adjusts the power of transmitting the PRACH message from the second uplink time slot (ie, the next uplink time slot of the first uplink time slot) according to the combined downlink TPC command.
  • FIG. 21 shows a case where the difference between the time when the UE receives the 16th uplink TPC command and the time when the first uplink time slot starts is greater than the first preset value.
  • the UE measures the downlink SIR, and generates a new downlink TPC command according to the measured downlink SIR, where the UE may The last uplink time slot of the first uplink time slot shown in FIG. 21 transmits the newly generated downlink TPC command.
  • the UE may also send the newly generated downlink TPC command multiple times, that is, the UE sends H downlink TPC commands to the network side device on consecutive H uplink time slots.
  • the downlink TPC command is carried in the DPCCH.
  • the DPCCH carries a downlink TPC command, an uplink pilot sequence, and a TFCI.
  • the network side device combines the received H downlink TPC commands to obtain a combined downlink TPC command, and determines the time when the network side device receives the Hth downlink TPC command and the first downlink time slot (ie, the network).
  • the network side device if it is greater than, the network side device according to The merged downlink TPC command adjusts the power of transmitting the F-PDCH (that is, the uplink TPC command) from the first downlink time slot; if less than or equal to, the network side device follows the merged downlink TPC command from the second downlink.
  • the time slot ie, the next downlink time slot of the first downlink time slot
  • begins to adjust the power of transmitting the F-PDCH ie, the uplink TPC command).
  • the network side device when receiving the first uplink pilot sequence sent by the UE to receive the Hth uplink pilot sequence, measures the uplink SIR, and generates a new uplink TPC command according to the measured uplink SIR.
  • the side device may send the newly generated uplink TPC command in the next downlink time slot of the downlink time slot where the time of receiving the Hth uplink pilot sequence is as shown in FIG. 21; similarly, the network side device may use the newly generated uplink TPC.
  • the command is sent 16 times.
  • the network side device may repeatedly send the same uplink TPC command sent to the UE multiple times, that is, the network side device sends the UE to the UE.
  • the same uplink TPC command is sent continuously, and the uplink TPC command is carried in the F-DPCH.
  • the F-DPCH carries 100 uplink TPC commands.
  • the DPCCH carries an uplink pilot sequence, a TFCI, and a TPC command.
  • the UE combines the received 100 uplink TPC commands to obtain a combined uplink TPC command, and determines the time when the UE receives the 100th uplink TPC command and the first uplink time slot (ie, the UE receives the 100th uplink).
  • the difference between the start time of the uplink time slot in which the uplink pilot sequence is transmitted after the TPC command is started is greater than the first preset value (for example, 512 chips), and if it is greater than, the UE according to the merged downlink TPC command, from the first An uplink time slot begins to adjust the power of transmitting the PRACH message (ie, the PRACH control message and the PRACH data message); if less than or equal to, the UE is from the second uplink time slot according to the merged downlink TPC command (ie, the first uplink time slot) The next uplink time slot) begins to adjust the power of the transmitted PRACH message.
  • the first preset value for example, 512 chips
  • the UE may measure the downlink SIR in the process of receiving the first uplink TPC command sent by the network side device to receive the 100th uplink TPC command, and generate a new downlink TPC command according to the measured downlink SIR, where the UE may The newly generated downlink TPC command is transmitted in the previous uplink time slot of the first uplink time slot shown in FIG.
  • the UE may also send the newly generated downlink TPC command multiple times, that is, the UE sends H downlink TPC commands to the network side device on consecutive H uplink time slots.
  • the downlink TPC command is carried in the DPCCH.
  • the DPCCH carries a downlink TPC command, an uplink pilot sequence, and a TFCI.
  • the network side device combines the received H downlink TPC commands to obtain a combined downlink TPC command, and determines the time when the network side device receives the Hth downlink TPC command and the first downlink time slot (ie, the network).
  • the network side device if it is greater than, the network side device according to The merged downlink TPC command adjusts the power of transmitting the F-PDCH (that is, the uplink TPC command) from the first downlink time slot; if less than or equal to, the network side device follows the merged downlink TPC command from the second downlink.
  • the time slot ie, the next downlink time slot of the first downlink time slot
  • begins to adjust the power of transmitting the F-PDCH ie, the uplink TPC command).
  • the network side device receives the first uplink pilot sequence sent by the UE to receive the Hth uplink pilot sequence.
  • the uplink SIR is measured, and a new uplink TPC command is generated according to the measured uplink SIR, and the network side device may be in the next downlink of the downlink time slot where the time of receiving the Hth uplink pilot sequence is as shown in FIG.
  • the time slot sends the newly generated uplink TPC command.
  • the network side device can repeatedly send the newly generated uplink TPC command 100 times.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明实施例提供一种定时传输方法和设备,其中,UE包括:发送单元,用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送N个第一PRACH前导码,所述N为大于或等于2的整数;处理单元,用于至少根据所述发送单元发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的捕获指示AI的时间;接收单元,用于根据所述处理单元确定的接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI,所述M为大于或等于2的整数。从而可以提高网络侧设备的覆盖能力,也实现了AI传输的定时。

Description

定时传输方法和设备 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种定时传输方法和设备。
背景技术
目前的无线通信系统主要是为人对人(H2H)之间的通信设计的,它对于移动性、时延等方面都有较高的要求。随着智能终端和无线网络通信的发展,很多不需要人参与的机器类型通信(英文:Machine Type Communications,简称:MTC)日益发展,从而出现了设备对设备(英文:Machine-To-Machine,简称:M2M)的无线通信系统,即成为日常生活中不可缺少的部分,这些不需要人参与的网络通信应用于例如遥测、远程信息处理、安全与监控、公共交通、工业应用、远程抄表、家庭应用、销售与支付等。
现有技术中,在M2M无线通信系统中,当MTC设备与网络侧设备需要传输信息时,MTC设备发起随机接入过程,即MTC设备通过物理随机接入信道(英文:Physical Random Access Channel,简称:PRACH)向网络侧设备发送一个或多个长为4096码片的前导码(英文:Preamble),网络侧设备检测到前导码就会通过捕获指示信道(英文:Acquisition Indication Channel,简称:AICH)向MTC设备发送捕获指示(英文:Acquisition Indication,简称:AI),MTC设备会监听AICH,只有检测到AI时,MTC设备开始通过PRACH发送的一个长为10ms或20ms的消息(英文:message)部分,该消包括数据消息和控制消息。
然而,M2M无线通信系统中,网络侧设备覆盖范围更广,有些MTC设备离网络侧设备的距离很远,这些MTC设备与网络侧设备相互间传输的前导码和AI可能会接收失败,因此需要提高网络侧设备的覆盖能力。
发明内容
本发明实施例提供一种定时传输方法和设备,用于提高网络侧设备的覆盖能力,实现了AI传输的定时。
第一方面,本发明实施例提供一种用户设备(英文:User Equipment,简称:UE),包括:
发送单元,用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送N个第一PRACH前导码,所述N为大于或等于2的整数;
处理单元,用于至少根据所述发送单元发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的AI的时间;
接收单元,用于根据所述处理单元确定的接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI,所述M为大于或等于2的整数。
在第一方面的第一种可能的实现方式中,所述处理单元具体用于,根据所述发送单元发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式和AICH传输定时参数指示,确定所述发送单元开始发送所述N个第一PRACH前导码至开始接收所述M个AI的第一时间间距;所述接收单元具体用于,在开始发送所述第一PRACH前导码后,间隔所述第一时间间距开始接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述处理单元还用于,当所述接收单元未成功接收到所述网络侧设备发送的与所述第一PRACH前导码对应的AI时,根据所述发送单元发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述前导码的重复发送方式、所述AI的重复发送方式和所述AICH传输定时参数指示,确定所述发送单元开始发送所述N个第一PRACH前导码至开始发送所述N个第二PRACH前导码的最小时间间距,所述第二PRACH前导码为所述第一PRACH前导码的下一个不同的PRACH前导码;所述发送单元还用于根据所述处理单元确定的所述最小时间间距、所述第二PRACH前导码的重复发送方式,增加功率向所述网络侧设备发送所述N个第二PRACH前导码,其中,所述发送单元开始发送所述N个第一PRACH前导码至开始发送所述N个第二PRACH前导码的时间间距大于或等于所述最小时间间距。
结合第一方面或或第一方面的第一种可能的实现方式或第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述处理单元还用于在所述接收单元根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI之后,至少根据所述网络侧设备发送所述AI的个数M、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间;所述发送单元还用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
结合第一方面的第三种可能的实现方式,在第一方面的第四种可能的实现方式中,所述处理单元用于至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:所述处理单元用于根据所述发送单元发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述第一PRACH前导码的重复发送方式、所述AI的PRACH重复发送方式和所述AICH传输定时参数指示,确定所述发送单元开始发送所述N个第一PRACH前导码至开始发送所述PRACH消息的第二时间间距;所述发送单元用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:所述发送单元在开始发送所述N个第一PRACH前导码后,间隔所述第二时间间距开始向所述网络侧设备发送所述PRACH消息。
结合第一方面的第三种可能的实现方式,在第一方面的第五种可能的实现方式中,所述接收单元还用于在根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI之后,接收所述网络侧设备发送的承载上行传输功率控制(英文:Transmission Power Control,简称:TPC)命令的碎形专用物理信道(英文:Fractional Dedicated Physical Channel,简称:F-DPCH);
所述处理单元用于至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:所述处理单元用于根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定所述发送单元开始接收所述M个AI至开始发送所述PRACH消息的第三时间间距;
所述发送单元用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:所述发送单元用于在开始接收所述M个AI后,间隔所述第三时间间距开始向所述网络侧设备发送所述PRACH消息。
结合第一方面或第一方面的第一种至第五种可能的实现方式中的任意一种,在第一方面的第六种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,所述发送单元用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述发送单元用于在所述N个连续的接入时隙中向所述网络侧设备发送所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,所述发送单元用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述发送单元用于向所述网络侧设备连续发送N个所述第一PRACH前导码。
结合第一方面或第一方面的第一种至第六种可能的实现方式中的任意一种,在第一方面的第七种可能的实现方式中,当所述AI的重复发送方式为第一重复发送方式时,所述接收单元用于根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述接收单元用于根据接收所述AI的时间,接收所述网络侧设备在所述M个连续的接入时隙中发送的所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
当所述M个AI的重复发送方式为第二重复发送方式时,所述接收单元用于根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述接收单元用于根据接收所述AI的时间,接收所述网络侧设备连续发送的所述M个AI。
结合第一方面的第六种可能的实现方式或第一方面的第七种可能的实现方式,在第一方面的第八种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AICH传输定时参数指示为0时,所述处理单元确定的所述第一时间间距为T1=(X*N+2560)个码片;或者,
当所述第一PRACH前导码的发送方式为第一重复发送方式、所述AICH 传输定时参数指示为1时,所述第一时间间距为T1=(X*N+7680)个码片;或者,
当所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为0,所述处理单元确定的所述第一时间间距为T1=(Y*N+5120)个码片;或者,
若所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为1时,所述处理单元确定的所述第一时间间距为T1=(Y*N+10240)个码片;或者,
其中,所述N为所述发送单元发送所述第一PRACH前导码的个数,所述T1为所述发送单元开始发送所述第一PRACH前导码至开始接收所述AI的第一时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数。
结合第一方面的第七种可能的实现方式,在第一方面的第九种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述处理单元确定的所述最小时间间距为Tmin=(X*N+X*M+X)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述处理单元确定的所述最小时间间距为Tmin=(X*N+X*M+X*2)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为0时,所述处理单元确定的所述最小时间间距为Tmin=(Y*N+Z*M+10240)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为1时,所述处理单元确定的所述最小时间间距为Tmin=(Y*N+Z*M+15360)个码片;
其中,所述N为所述发送单元发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,所述Tmin为所述发送单元开始 发送所述N个第一PRACH前导码至开始发送所述N个第二PRACH前导码的最小时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
结合第一方面的第七种可能的实现方式,在第一方面的第十种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述处理单元确定的所述第二时间间距为T2=(X*N+X*M+X)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述处理单元确定的所述第二时间间距为T2=(X*N+X*M+X*2)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为0时,所述处理单元确定的所述第二时间间距为T2=(Y*N+Z*M+10240)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为1时,所述处理单元确定的所述第二时间间距为T2=(Y*N+Z*M+15360)个码片;
其中,所述N为所述发送单元发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,T2为所述发送单元开始发送所述N个第一PRACH前导码至开始发送所述PRACH消息的第二时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
结合第一方面的第七种可能的实现方式,在第一方面的第十一种可能的实现方式中,当所述AI的重复发送方式为第一重复方式时,所述处理单元确定的所述第三时间间距为T3=(X*M+5120+256*S+T)个码片;或者,
当所述AI的重复发送方式为第二重复方式时,所述处理单元确定的所述第三时间间距为T3=(Z*M+5120+256*S+T)个码片;
其中,所述X为一个所述接入时隙占用的码片数,所述M为所述网络侧设备发送所述AI的个数,所述T3为所述发送单元开始接收所述M个AI至开始发送所述PRACH消息的第三时间间距,所述S为符号偏置,所述S为0至9中的任一整数,所述T为上下行时间差,所述T为1024个码片;所述Z为一个所述AI占用的码片数。
结合第一方面的第五种可能的实现方式,在第一方面的第十二种可能的实现方式中,所述接收单元用于接收所述网络侧设备发送的承载上行TPC命令的F-DPCH,包括:所述接收单元接收所述网络侧设备发送的承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数,所述L为所述网络侧设备发送所述第一上行TPC命令的个数;
所述处理单元还用于,将接收的所述L个第一上行TPC命令进行合并,获得合并后的第一上行TPC命令;以及根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率。
结合第一方面的第十二种可能的实现方式,在第一方面的第十三种可能的实现方式中,所述处理单元用于根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率,包括:所述处理单元用于,当所述接收单元接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值时,根据所述合并后的第一上行TPC命令,从所述第一上行时隙开始调整发送所述PRACH消息的功率;当所述接收单元接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与所述第一上行时隙开始的时间之差小于或等于所述第一预设值时,根据所述合并后的第一上行TPC命令,从第二上行时隙开始调整发送所述PRACH消息的功率;
其中,所述第一上行时隙为所述接收单元接收所述最后一个第一上行TPC命令之后所述发送单元开始发送上行导频序列所在的上行时隙,所述第二上行时隙为所述第一上行隙的下一个上行时隙。
结合第一方面的第十二种可能的实现方式或第一方面的第十三种可能的实现方式,在第一方面的第十四种可能的实现方式中,所述接收单元用于接收所述网络侧设备发送的承载L个所述第一上行TPC命令的F-DPCH,包括:所述接收单元用于接收所述网络侧设备在连续的所述L个下行时隙上发送的 承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,接收所述网络侧设备发送的连续承载所述L个第一上行TPC命令的F-DPCH。
结合第一方面的第三种可能的实现方式,在第一方面的第十五种可能的实现方式中,所述PRACH控制消息承载第一下行TPC命令,所述发送单元用于向所述网络侧设备发送所述PRACH控制消息,包括:所述发送单元用于在连续的H个上行时隙上向所述网络侧设备发送承载H个所述第一下行TPC命令的控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令。
第二方面,本发明实施例还提供一种网络侧设备,包括:
接收单元,用于接收用户设备UE根据第一PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,所述N为大于或等于2的整数;
发送单元,用于根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI。
在第二方面的第一种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,所述接收单元具体用于,接收所述UE在所述N个连续的接入时隙中发送的所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,所述接收单元具体用于,接收接收所述UE连续发送的所述N个第一PRACH前导码。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,当所述AI的重复发送方式为第一重复发送方式时,所述发送单元具体用于在所述M个连续的接入时隙中向所述UE发送所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
当所述M个AI的重复发送方式为第二重复发送方式时,所述发送单元具体用于向所述UE连续发送所述M个AI。
结合第二方面或第二方面的第一种可能的实现方式或第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述接收单元还用于在所述发送单元根据AI的重复发送方式,向所述UE发送M个与所述 第一PRACH前导码对应的AI之后,接收所述UE发送的PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
结合第二方面的第三种可能的实现方式,在第二方面的第四种可能的实现方式中,所述发送单元还用于在根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI之后,向所述UE发送承载上行TPC命令的F-DPCH。
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述发送单元用于向所述UE发送承载上行TPC命令的F-DPCH,包括:所述发送单元用于向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数。
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述发送单元用于向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,包括:所述发送单元用于在连续的所述L个下行时隙上向所述UE发送承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,向所述UE发送连续承载所述L个第一上行TPC命令的F-DPCH。
结合第二方面的第五种可能的实现方式或第二方面的第六种可能的实现方式,在第二方面的第七种可能的实现方式中,还包括:处理单元;
所述接收单元用于接收所述UE发送的PRACH控制消息,包括:所述接收单元用于接收所述UE在连续的H个上行时隙上发送的承载H个所述第一下行TPC命令和上行导频序列的PRACH控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令和一个上行导频序列;
所述处理单元,用于将所述接收单元接收的所述H个第一下行TPC命令进行合并,获取合并后的第一下行TPC命令;以及根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率。
结合第二方面的第七种可能的实现方式,在第二方面的第八种可能的实现方式中,所述处理单元用于根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率,包括:所述处理单元用于,当所述接收单元接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与第一下行 时隙开始的时间之差大于第二预设值时,从所述第一下行时隙开始调整发送所述F-DPCH的功率;当所述接收单元接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与所述第一下行时隙开始的时间之差小于或等于所述第二预设值时,从第二上行时隙开始调整发送所述F-DPCH的功率;其中,所述第一下行时隙为所述接收单元接收所述最后一个第一下行TPC命令的时间所在下行时隙的下一个下行时隙,所述第二下行时隙为所述第一下行时隙的下一个下行时隙。
第三方面,本发明实施例提供一种UE,包括:
发射机,用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送N个第一PRACH前导码,所述N为大于或等于2的整数;
处理器,用于至少根据所述发射机发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的AI的时间;
接收机,用于根据所述处理器确定的接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI,所述M为大于或等于2的整数。
在第三方面的第一种可能的实现方式中,所述处理器具体用于,根据所述发射机发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式和AICH传输定时参数指示,确定所述发射机开始发送所述N个第一PRACH前导码至开始接收所述M个AI的第一时间间距;
所述接收机具体用于,在开始发送所述第一PRACH前导码后,间隔所述第一时间间距开始接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述处理器还用于,当所述接收机未成功接收到所述网络侧设备发送的与所述第一PRACH前导码对应的AI时,根据所述发射机发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述前导码的重复发送方式、所述AI的重复发送方式和所述AICH传输定时参数指示,确定所述发射机开始发送所述N个第一PRACH前导码至开始发送所述N个第二PRACH前导码的最小时间间距,所述第二PRACH前导码 为所述第一PRACH前导码的下一个不同的PRACH前导码;
所述发射机还用于根据所述处理器确定的所述最小时间间距、所述第二PRACH前导码的重复发送方式,增加功率向所述网络侧设备发送所述N个第二PRACH前导码,其中,所述发射机开始发送所述N个第一PRACH前导码至开始发送所述N个第二PRACH前导码的时间间距大于或等于所述最小时间间距。
结合第三方面或或第三方面的第一种可能的实现方式或第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述处理器还用于在所述接收机根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI之后,至少根据所述网络侧设备发送所述AI的个数M、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间;
所述发射机还用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
结合第三方面的第三种可能的实现方式,在第三方面的第四种可能的实现方式中,所述处理器用于至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:所述处理器用于根据所述发射机发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述第一PRACH前导码的重复发送方式、所述AI的PRACH重复发送方式和所述AICH传输定时参数指示,确定所述发射机开始发送所述N个第一PRACH前导码至开始发送所述PRACH消息的第二时间间距;
所述发射机用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:所述发射机在开始发送所述N个第一PRACH前导码后,间隔所述第二时间间距开始向所述网络侧设备发送所述PRACH消息。
结合第三方面的第三种可能的实现方式,在第三方面的第五种可能的实现方式中,所述接收机还用于在根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI之后,接收所述网络侧设 备发送的承载上行TPC命令的F-DPCH;
所述处理器用于至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:所述处理器用于根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定所述发射机开始接收所述M个AI至开始发送所述PRACH消息的第三时间间距;
所述发射机用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:所述发射机用于在开始接收所述M个AI后,间隔所述第三时间间距开始向所述网络侧设备发送所述PRACH消息。
结合第三方面或第三方面的第一种至第五种可能的实现方式中的任意一种,在第三方面的第六种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,所述发射机用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述发射机用于在所述N个连续的接入时隙中向所述网络侧设备发送所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,所述发射机用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述发射机用于向所述网络侧设备连续发送N个所述第一PRACH前导码。
结合第三方面或第三方面的第一种至第六种可能的实现方式中的任意一种,在第三方面的第七种可能的实现方式中,当所述AI的重复发送方式为第一重复发送方式时,所述接收机用于根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述接收机用于根据接收所述AI的时间,接收所述网络侧设备在所述M个连续的接入时隙中发送的所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
当所述M个AI的重复发送方式为第二重复发送方式时,所述接收机用于根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述接收机用于根据接收所述AI的时间,接 收所述网络侧设备连续发送的所述M个AI。
结合第三方面的第六种可能的实现方式或第三方面的第七种可能的实现方式,在第三方面的第八种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AICH传输定时参数指示为0时,所述处理器确定的所述第一时间间距为T1=(X*N+2560)个码片;或者,
当所述第一PRACH前导码的发送方式为第一重复发送方式、所述AICH传输定时参数指示为1时,所述第一时间间距为T1=(X*N+7680)个码片;或者,
当所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为0,所述处理器确定的所述第一时间间距为T1=(Y*N+5120)个码片;或者,
若所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为1时,所述处理器确定的所述第一时间间距为T1=(Y*N+10240)个码片;或者,
其中,所述N为所述发射机发送所述第一PRACH前导码的个数,所述T1为所述发射机开始发送所述第一PRACH前导码至开始接收所述AI的第一时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数。
结合第三方面的第七种可能的实现方式,在第三方面的第九种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述处理器确定的所述最小时间间距为Tmin=(X*N+X*M+X)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述处理器确定的所述最小时间间距为Tmin=(X*N+X*M+X*2)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为0时,所述处理器确定的所述最小时间间距为Tmin=(Y*N+Z*M+10240)个码片; 或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为1时,所述处理器确定的所述最小时间间距为Tmin=(Y*N+Z*M+15360)个码片;
其中,所述N为所述发射机发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,所述Tmin为所述发射机开始发送所述N个第一PRACH前导码至开始发送所述N个第二PRACH前导码的最小时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
结合第三方面的第七种可能的实现方式,在第三方面的第十种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述处理器确定的所述第二时间间距为T2=(X*N+X*M+X)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述处理器确定的所述第二时间间距为T2=(X*N+X*M+X*2)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为0时,所述处理器确定的所述第二时间间距为T2=(Y*N+Z*M+10240)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为1时,所述处理器确定的所述第二时间间距为T2=(Y*N+Z*M+15360)个码片;
其中,所述N为所述发射机发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,T2为所述发射机开始发送所述N个第一PRACH前导码至开始发送所述PRACH消息的第二时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
结合第三方面的第七种可能的实现方式,在第三方面的第十一种可能的实现方式中,当所述AI的重复发送方式为第一重复方式时,所述处理器确定的所述第三时间间距为T3=(X*M+5120+256*S+T)个码片;或者,
当所述AI的重复发送方式为第二重复方式时,所述处理器确定的所述第三时间间距为T3=(Z*M+5120+256*S+T)个码片;
其中,所述X为一个所述接入时隙占用的码片数,所述M为所述网络侧设备发送所述AI的个数,所述T3为所述发射机开始接收所述M个AI至开始发送所述PRACH消息的第三时间间距,所述S为符号偏置,所述S为0至9中的任一整数,所述T为上下行时间差,所述T为1024个码片;所述Z为一个所述AI占用的码片数。
结合第三方面的第五种可能的实现方式,在第三方面的第十二种可能的实现方式中,所述接收机用于接收所述网络侧设备发送的承载上行TPC命令的F-DPCH,包括:所述接收机接收所述网络侧设备发送的承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数,所述L为所述网络侧设备发送所述第一上行TPC命令的个数;
所述处理器还用于,将接收的所述L个第一上行TPC命令进行合并,获得合并后的第一上行TPC命令;以及根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率。
结合第三方面的第十二种可能的实现方式,在第三方面的第十三种可能的实现方式中,所述处理器用于根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率,包括:所述处理器用于,当所述接收机接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值时,根据所述合并后的第一上行TPC命令,从所述第一上行时隙开始调整发送所述PRACH消息的功率;当所述接收机接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与所述第一上行时隙开始的时间之差小于或等于所述第一预设值时,根据所述合并后的第一上行TPC命令,从第二上行时隙开始调整发送所述PRACH消息的功率;
其中,所述第一上行时隙为所述接收机接收所述最后一个第一上行TPC命令之后所述发射机开始发送上行导频序列所在的上行时隙,所述第二上行 时隙为所述第一上行隙的下一个上行时隙。
结合第三方面的第十二种可能的实现方式或第三方面的第十三种可能的实现方式,在第三方面的第十四种可能的实现方式中,所述接收机用于接收所述网络侧设备发送的承载L个所述第一上行TPC命令的F-DPCH,包括:所述接收机用于接收所述网络侧设备在连续的所述L个下行时隙上发送的承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,接收所述网络侧设备发送的连续承载所述L个第一上行TPC命令的F-DPCH。
结合第三方面的第三种可能的实现方式,在第三方面的第十五种可能的实现方式中,所述PRACH控制消息承载第一下行TPC命令,所述发射机用于向所述网络侧设备发送所述PRACH控制消息,包括:所述发射机用于在连续的H个上行时隙上向所述网络侧设备发送承载H个所述第一下行TPC命令的控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令。
第四方面,本发明实施例还提供一种网络侧设备,包括:
接收机,用于接收用户设备UE根据第一PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,所述N为大于或等于2的整数;
发射机,用于根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI。
在第四方面的第一种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,所述接收机具体用于,接收所述UE在所述N个连续的接入时隙中发送的所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,所述接收机具体用于,接收接收所述UE连续发送的所述N个第一PRACH前导码。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,当所述AI的重复发送方式为第一重复发送方式时,所述发射机具体用于在所述M个连续的接入时隙中向所述UE发送所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
当所述M个AI的重复发送方式为第二重复发送方式时,所述发射机具体用于向所述UE连续发送所述M个AI。
结合第四方面或第四方面的第一种可能的实现方式或第四方面的第二种可能的实现方式,在第四方面的第三种可能的实现方式中,所述接收机还用于在所述发射机根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI之后,接收所述UE发送的PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
结合第四方面的第三种可能的实现方式,在第四方面的第四种可能的实现方式中,所述发射机还用于在根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI之后,向所述UE发送承载上行TPC命令的F-DPCH。
结合第四方面的第四种可能的实现方式,在第四方面的第五种可能的实现方式中,所述发射机用于向所述UE发送承载上行TPC命令的F-DPCH,包括:所述发射机用于向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数。
结合第四方面的第五种可能的实现方式,在第四方面的第六种可能的实现方式中,所述发射机用于向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,包括:所述发射机用于在连续的所述L个下行时隙上向所述UE发送承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,向所述UE发送连续承载所述L个第一上行TPC命令的F-DPCH。
结合第四方面的第五种可能的实现方式或第四方面的第六种可能的实现方式,在第四方面的第七种可能的实现方式中,还包括:处理器;
所述接收机用于接收所述UE发送的PRACH控制消息,包括:所述接收机用于接收所述UE在连续的H个上行时隙上发送的承载H个所述第一下行TPC命令和上行导频序列的PRACH控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令和一个上行导频序列;
所述处理器,用于将所述接收机接收的所述H个第一下行TPC命令进行合并,获取合并后的第一下行TPC命令;以及根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率。
结合第四方面的第七种可能的实现方式,在第四方面的第八种可能的实现方式中,所述处理器用于根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率,包括:所述处理器用于,当所述接收机接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与第一下行时隙开始的时间之差大于第二预设值时,从所述第一下行时隙开始调整发送所述F-DPCH的功率;当所述接收机接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与所述第一下行时隙开始的时间之差小于或等于所述第二预设值时,从第二上行时隙开始调整发送所述F-DPCH的功率;其中,所述第一下行时隙为所述接收机接收所述最后一个第一下行TPC命令的时间所在下行时隙的下一个下行时隙,所述第二下行时隙为所述第一下行时隙的下一个下行时隙。
第五方面,本发明实施例提供一种定时传输方法,包括:
UE根据第一PRACH前导码的重复发送方式,向网络侧设备发送N个第一PRACH前导码,所述N为大于或等于2的整数;
所述UE至少根据所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的捕获指示AI的时间;
所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI,所述M为大于或等于2的整数。
在第五方面的第一种可能的实现方式中,所述UE至少根据发送所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的捕获指示AI的时间,包括:所述UE根据所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式和AICH传输定时参数指示,确定所述UE开始发送所述N个第一PRACH前导码至所述UE开始接收所述M个AI的第一时间间距;
所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送M次的AI,包括:所述UE在开始发送所述第一PRACH前导码后,间隔所述第一时间间距开始接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI。
结合第五方面或第五方面的第一种可能的实现方式,在第五方面的第二种可能的实现方式中,当所述UE未成功接收到所述网络侧设备发送的与所述第一PRACH前导码对应的AI时,所述UE根据所述UE发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述前导码的重复发送方式、所述AI的重复发送方式和所述AICH传输定时参数指示,确定所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述N个第二PRACH前导码的最小时间间距,所述第二PRACH前导码为所述第一PRACH前导码的下一个不同的PRACH前导码;
所述UE根据所述最小时间间距、所述第二PRACH前导码的重复发送方式,增加功率向所述网络侧设备发送所述N个第二PRACH前导码,其中,所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述N个第二PRACH前导码的时间间距大于或等于所述最小时间间距。
结合第五方面或或第五方面的第一种可能的实现方式或第五方面的第二种可能的实现方式,在第五方面的第三种可能的实现方式中,所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI之后,还包括:
所述UE至少根据所述网络侧设备发送所述AI的个数M、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间;
所述UE根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
结合第五方面的第三种可能的实现方式,在第五方面的第四种可能的实现方式中,所述UE至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:
所述UE根据所述UE发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述第一PRACH前导码的重复发送方式、所述AI的PRACH重复发送方式和所述AICH传输定时参数指示,确定所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述PRACH消息的第二时间间距;
所述UE根据发送所述PRACH消息的时间,向所述网络侧设备发送所述 PRACH消息,包括:所述UE在开始发送所述N个第一PRACH前导码后,间隔所述第二时间间距开始向所述网络侧设备发送所述PRACH消息。
结合第五方面的第三种可能的实现方式,在第五方面的第五种可能的实现方式中,所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI之后,还包括:所述UE接收所述网络侧设备发送的承载上行TPC命令的F-DPCH;所述UE至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:所述UE根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定所述UE开始接收所述M个AI至所述UE开始发送所述PRACH消息的第三时间间距;
所述UE根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:所述UE在开始接收所述M个AI后,间隔所述第三时间间距开始向所述网络侧设备发送所述PRACH消息。
结合第五方面或第五方面的第一种至第五种可能的实现方式中的任意一种,在第五方面的第六种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,所述UE根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述UE在所述N个连续的接入时隙中向所述网络侧设备发送所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,所述UE根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述UE向所述网络侧设备连续发送N个所述第一PRACH前导码。
结合第五方面或第五方面的第一种至第六种可能的实现方式中的任意一种,在第五方面的第七种可能的实现方式中,当所述AI的重复发送方式为第一重复发送方式时,所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述UE根据接收所述AI的时间,接收所述网络侧设备在所述M个连续的接入时隙中发送的所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
当所述M个AI的重复发送方式为第二重复发送方式时,所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述UE根据接收所述AI的时间,接收所述网络侧设备连续发送的所述M个AI。
结合第五方面的第六种可能的实现方式或第五方面的第七种可能的实现方式,在第五方面的第八种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AICH传输定时参数指示为0时,所述第一时间间距为T1=(X*N+2560)个码片;或者,
当所述第一PRACH前导码的发送方式为第一重复发送方式、所述AICH传输定时参数指示为1时,所述第一时间间距为T1=(X*N+7680)个码片;或者,
当所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为0,所述第一时间间距为T1=(Y*N+5120)个码片;或者,
若所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为1时,所述第一时间间距为T1=(Y*N+10240)个码片;或者,
其中,所述N为所述UE发送所述第一PRACH前导码的个数,所述T1为所述UE开始发送所述第一PRACH前导码至所述UE开始接收所述AI的第一时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数。
结合第五方面的第七种可能的实现方式,在第五方面的第九种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述最小时间间距为Tmin=(X*N+X*M+X)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述最小时间间距为Tmin=(X*N+X*M+X*2)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为0时, 所述最小时间间距为Tmin=(Y*N+Z*M+10240)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为1时,所述最小时间间距为Tmin=(Y*N+Z*M+15360)个码片;
其中,所述N为所述UE发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,所述Tmin为所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述N个第二PRACH前导码的最小时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
结合第五方面的第七种可能的实现方式,在第五方面的第十种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述第二时间间距为T2=(X*N+X*M+X)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述第二时间间距为T2=(X*N+X*M+X*2)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为0时,所述第二时间间距为T2=(Y*N+Z*M+10240)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为1时,所述第二时间间距为T2=(Y*N+Z*M+15360)个码片;
其中,所述N为所述UE发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,T2为所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述PRACH消息的第二时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
结合第五方面的第七种可能的实现方式,在第五方面的第十一种可能的实现方式中,当所述AI的重复发送方式为第一重复方式时,所述第三时间间距为T3=(X*M+5120+256*S+T)个码片;或者,
当所述AI的重复发送方式为第二重复方式时,所述第三时间间距为T3=(Z*M+5120+256*S+T)个码片;
其中,所述X为一个所述接入时隙占用的码片数,所述M为所述网络侧设备发送所述AI的个数,所述T3为所述UE开始接收所述M个AI至所述UE开始发送所述PRACH消息的第三时间间距,所述S为符号偏置,所述S为0至9中的任一整数,所述T为上下行时间差,所述T为1024个码片;所述Z为一个所述AI占用的码片数。
结合第五方面的第五种可能的实现方式,在第五方面的第十二种可能的实现方式中,所述UE接收所述网络侧设备发送的承载上行TPC命令的F-DPCH,包括:所述UE接收所述网络侧设备发送的承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数,所述L为所述网络侧设备发送所述第一上行TPC命令的个数;
所述方法还包括:所述UE将接收的所述L个第一上行TPC命令进行合并,获得合并后的第一上行TPC命令;所述UE根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率。
结合第五方面的第十二种可能的实现方式,在第五方面的第十三种可能的实现方式中,所述UE根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率,包括:
当所述UE接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值时,所述UE根据所述合并后的第一上行TPC命令,从所述第一上行时隙开始调整发送所述PRACH消息的功率;当所述UE接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与所述第一上行时隙开始的时间之差小于或等于所述第一预设值时,所述UE根据所述合并后的第一上行TPC命令,从第二上行时隙开始调整发送所述PRACH消息的功率;
其中,所述第一上行时隙为所述UE接收所述最后一个第一上行TPC命令之后开始发送上行导频序列所在的上行时隙,所述第二上行时隙为所述第一上行隙的下一个上行时隙。
结合第五方面的第十二种可能的实现方式或第五方面的第十三种可能的实现方式,在第五方面的第十四种可能的实现方式中,所述UE接收所述网 络侧设备发送的承载L个所述第一上行TPC命令的F-DPCH,包括:
所述UE接收所述网络侧设备在连续的所述L个下行时隙上发送的承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,
所述UE接收所述网络侧设备发送的连续承载所述L个第一上行TPC命令的F-DPCH。
结合第五方面的第三种可能的实现方式,在第五方面的第十五种可能的实现方式中,所述PRACH控制消息承载第一下行TPC命令,所述UE向所述网络侧设备发送所述PRACH控制消息,包括:
所述UE在连续的H个上行时隙上向所述网络侧设备发送承载H个所述第一下行TPC命令的控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令。
第六方面,本发明实施例还提供一种定时传输方法,包括:
网络侧设备接收UE根据第一PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,所述N为大于或等于2的整数;
所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI。
在第六方面的第一种可能的实现方式中,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,所述网络侧设备接收UE根据第一PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,包括:所述网络侧设备接收所述UE在所述N个连续的接入时隙中发送的所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,所述网络侧设备接收UE根据第一PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,包括:所述网络侧设备接收所述UE连续发送的所述N个第一PRACH前导码。
结合第六方面或第六方面的第一种可能的实现方式,在第六方面的第二种可能的实现方式中,当所述AI的重复发送方式为第一重复发送方式时,所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一 PRACH前导码对应的AI,包括:所述网络侧设备在所述M个连续的接入时隙中向所述UE发送所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
当所述M个AI的重复发送方式为第二重复发送方式时,所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI,包括:所述网络侧设备向所述UE连续发送所述M个AI。
结合第六方面或第六方面的第一种可能的实现方式或第六方面的第二种可能的实现方式,在第六方面的第三种可能的实现方式中,所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI之后,还包括:
所述网络侧设备接收所述UE发送的PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
结合第六方面的第三种可能的实现方式,在第六方面的第四种可能的实现方式中,所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI之后,还包括:
所述网络侧设备向所述UE发送承载上行TPC命令的F-DPCH。
结合第六方面的第四种可能的实现方式,在第六方面的第五种可能的实现方式中,所述网络侧设备向所述UE发送承载上行TPC命令的F-DPCH,包括:
所述网络侧设备向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数。
结合第六方面的第五种可能的实现方式,在第六方面的第六种可能的实现方式中,所述网络侧设备向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,包括:
所述网络侧设备在连续的所述L个下行时隙上向所述UE发送承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,
所述网络侧设备向所述UE发送连续承载所述L个第一上行TPC命令的F-DPCH。
结合第六方面的第五种可能的实现方式或第六方面的第六种可能的实现 方式,在第六方面的第七种可能的实现方式中,所述网络侧设备接收所述UE发送的PRACH控制消息,包括:所述网络侧设备接收所述UE在连续的H个上行时隙上发送的承载H个所述第一下行TPC命令和上行导频序列的PRACH控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令和一个上行导频序列;
所述方法还包括:所述网络侧设备将接收的所述H个第一下行TPC命令进行合并,获取合并后的第一下行TPC命令;所述网络侧设备根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率。
结合第六方面的第七种可能的实现方式,在第六方面的第八种可能的实现方式中,所述网络侧设备根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率,包括:
当所述网络侧设备接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与第一下行时隙开始的时间之差大于第二预设值时,所述网络侧设备从所述第一下行时隙开始调整发送所述F-DPCH的功率;当所述网络侧设备接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与所述第一下行时隙开始的时间之差小于或等于所述第二预设值时,所述网络侧设备从第二上行时隙开始调整发送所述F-DPCH的功率;其中,所述第一下行时隙为所述网络侧设备接收所述最后一个第一下行TPC命令的时间所在下行时隙的下一个下行时隙,所述第二下行时隙为所述第一下行时隙的下一个下行时隙。
本发明实施例提供的定时传输方法和设备,通过UE根据第一PRACH前导码的重复发送方式,向网络侧设备发送多个第一PRACH前导码,根据所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的AI的时间,而且根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述多个AI,从而可以提高网络侧设备的覆盖能力,也实现了AI传输的定时。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实 施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明UE实施例一的结构示意图;
图2为本发明UE实施例二的结构示意图;
图3为本发明网络侧设备实施例一的结构示意图;
图4为本发明网络侧设备实施例二的结构示意图;
图5为本发明定时传输方法实施例一的流程图;
图6为本发明实施例提供的第一PRACH前导码的重复发送方式的第一种示意图;
图7为本发明实施例提供的第一PRACH前导码的重复发送方式的第二种示意图;
图8为本发明实施例提供的AI的重复发送方式的第一种示意图;
图9为本发明实施例提供的AI的重复发送方式的第二种示意图;
图10本发明定时传输方法实施例二的流程图;
图11本发明定时传输方法实施例三的流程图;
图12为本发明实施例提供的PRACH/AICH/DPCH/E-DCH的定时关系的第一种示意图;
图13为本发明实施例提供的PRACH/AICH/DPCH/E-DCH的定时关系的第二种示意图;
图14本发明定时传输方法实施例四的流程图;
图15为本发明实施例提供的上/下行TPC命令的定时关系的第一种示意图;
图16为本发明实施例提供的上/下行TPC命令的定时关系的第二种示意图;
图17为本发明实施例提供的上/下行TPC命令的定时关系的第三种示意图;
图18为本发明实施例提供的上/下行TPC命令的定时关系的第四种示意图;
图19为本发明实施例提供的上/下行TPC命令的定时关系的第五种示意 图;
图20为本发明实施例提供的上/下行TPC命令的定时关系的第六种示意图;
图21为本发明实施例提供的上/下行TPC命令的定时关系的第七种示意图;
图22为本发明实施例提供的上/下行TPC命令的定时关系的第八种示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明UE实施例一的结构示意图,如图1所示,本实施例的UE可以包括:发送单元11、处理单元12和接收单元13;其中,发送单元11,用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送N个第一PRACH前导码,所述N为大于或等于2的整数;处理单元12,用于至少根据发送单元11发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的AI的时间;接收单元13,用于根据处理单元12确定的接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,所述M为大于或等于2的整数。
可选地,处理单元12具体用于,根据发送单元11发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式和AICH传输定时参数指示,确定发送单元11开始发送所述N个第一PRACH前导码至发送单元11开始接收所述M个AI的第一时间间距;接收单元13具体用于,在开始发送所述第一PRACH前导码后,间隔所述第一时间间距开始接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI。
可选地,处理单元12还用于,当接收单元13未成功接收到所述网络侧 设备发送的与所述第一PRACH前导码对应的AI时,根据发送单元11发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述前导码的重复发送方式、所述AI的重复发送方式和所述AICH传输定时参数指示,确定发送单元11开始发送所述N个第一PRACH前导码至开始发送所述N个第二PRACH前导码的最小时间间距,所述第二PRACH前导码为所述第一PRACH前导码的下一个不同的PRACH前导码;
发送单元11还用于根据处理单元12确定的所述最小时间间距、所述第二PRACH前导码的重复发送方式,增加功率向所述网络侧设备发送所述N个第二PRACH前导码,其中,发送单元11开始发送所述N个第一PRACH前导码至开始发送所述N个第二PRACH前导码的时间间距大于或等于所述最小时间间距。
可选地,处理单元12还用于在接收单元13根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI之后,至少根据所述网络侧设备发送所述AI的个数M、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间;发送单元11还用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
可选地,处理单元12用于至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:处理单元12用于根据发送单元11发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述第一PRACH前导码的重复发送方式、所述AI的PRACH重复发送方式和所述AICH传输定时参数指示,确定发送单元11开始发送所述N个第一PRACH前导码至开始发送所述PRACH消息的第二时间间距;
发送单元11用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:发送单元11在开始发送所述N个第一PRACH前导码后,间隔所述第二时间间距开始向所述网络侧设备发送所述PRACH消息。
可选地,接收单元13还用于在根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI之后,接收所述网络 侧设备发送的承载上行TPC命令的F-DPCH;
处理单元12用于至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:处理单元12用于根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定发送单元11开始接收所述M个AI至开始发送所述PRACH消息的第三时间间距;
发送单元11用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:发送单元11用于在开始接收所述M个AI后,间隔所述第三时间间距开始向所述网络侧设备发送所述PRACH消息。
可选地,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,发送单元11用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:发送单元11用于在所述N个连续的接入时隙中向所述网络侧设备发送所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,发送单元11用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:发送单元11用于向所述网络侧设备连续发送N个所述第一PRACH前导码。
可选地,当所述AI的重复发送方式为第一重复发送方式时,接收单元13用于根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:接收单元13用于根据接收所述AI的时间,接收所述网络侧设备在所述M个连续的接入时隙中发送的所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
当所述M个AI的重复发送方式为第二重复发送方式时,接收单元13用于根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:接收单元13用于根据接收所述AI的时间,接收所述网络侧设备连续发送的所述M个AI。
可选地,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AICH传输定时参数指示为0时,处理单元12确定的所述第一时间间距为T1=(X*N+2560)个码片;或者,
当所述第一PRACH前导码的发送方式为第一重复发送方式、所述AICH传输定时参数指示为1时,处理单元12确定的所述第一时间间距为T1=(X*N+7680)个码片;或者,
当所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为0,处理单元12确定的所述第一时间间距为T1=(Y*N+5120)个码片;或者,
若所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为1时,处理单元12确定的所述第一时间间距为T1=(Y*N+10240)个码片;或者,
其中,所述N为发送单元11发送所述第一PRACH前导码的个数,所述T1为发送单元11开始发送所述第一PRACH前导码至开始接收所述AI的第一时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数。
可选地,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,处理单元12确定的所述最小时间间距为Tmin=(X*N+X*M+X)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,处理单元12确定的所述最小时间间距为Tmin=(X*N+X*M+X*2)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为0时,处理单元12确定的所述最小时间间距为Tmin=(Y*N+Z*M+10240)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为1时,处理单元12确定的所述最小时间间距为Tmin=(Y*N+Z*M+15360)个码片;
其中,所述N为发送单元11发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,所述Tmin为发送单元11开始发 送所述N个第一PRACH前导码至开始发送所述N个第二PRACH前导码的最小时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
可选地,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,处理单元12确定的所述第二时间间距为T2=(X*N+X*M+X)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,处理单元12确定的所述第二时间间距为T2=(X*N+X*M+X*2)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为0时,处理单元12确定的所述第二时间间距为T2=(Y*N+Z*M+10240)个码片;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为1时,处理单元12确定的所述第二时间间距为T2=(Y*N+Z*M+15360)个码片;
其中,所述N为发送单元11发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,T2为发送单元11开始发送所述N个第一PRACH前导码至开始发送所述PRACH消息的第二时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
可选地,当所述AI的重复发送方式为第一重复方式时,处理单元12确定的所述第三时间间距为T3=(X*M+5120+256*S+T)个码片;或者,
当所述AI的重复发送方式为第二重复方式时,处理单元12确定的所述第三时间间距为T3=(Z*M+5120+256*S+T)个码片;
其中,所述X为一个所述接入时隙占用的码片数,所述M为所述网络侧设备发送所述AI的个数,所述T3为发送单元11开始接收所述M个AI至开 始发送所述PRACH消息的第三时间间距,所述S为符号偏置,所述S为0至9中的任一整数,所述T为上下行时间差,所述T为1024个码片;所述Z为一个所述AI占用的码片数。
可选地,接收单元13用于接收所述网络侧设备发送的承载上行TPC命令的F-DPCH,包括:接收单元13接收所述网络侧设备发送的承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数,所述L为所述网络侧设备发送所述第一上行TPC命令的个数;
处理单元12还用于,将接收的所述L个第一上行TPC命令进行合并,获得合并后的第一上行TPC命令;以及根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率。
可选地,处理单元12用于根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率,包括:处理单元12用于,当接收单元13接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值时,根据所述合并后的第一上行TPC命令,从所述第一上行时隙开始调整发送所述PRACH消息的功率;当接收单元13接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与所述第一上行时隙开始的时间之差小于或等于所述第一预设值时,根据所述合并后的第一上行TPC命令,从第二上行时隙开始调整发送所述PRACH消息的功率;
其中,所述第一上行时隙为接收单元13接收所述最后一个第一上行TPC命令之后发送单元11开始发送上行导频序列所在的上行时隙,所述第二上行时隙为所述第一上行隙的下一个上行时隙。
可选地,接收单元13用于接收所述网络侧设备发送的承载L个所述第一上行TPC命令的F-DPCH,包括:接收单元13用于接收所述网络侧设备在连续的所述L个下行时隙上发送的承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,接收所述网络侧设备发送的连续承载所述L个第一上行TPC命令的F-DPCH。
可选地,所述PRACH控制消息承载第一下行TPC命令,发送单元11用于向所述网络侧设备发送所述PRACH控制消息,包括:发送单元11用于在连续的H个上行时隙上向所述网络侧设备发送承载H个所述第一下行TPC 命令的控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令。
在硬件实现上,以上发送单元11可以为发射机或收发机,以上接收单元13可以为接收机或收发机,且该发送单元11和接收单元13可以集成在一起构成收发单元,对应于硬件实现为收发机。以上处理单元12可以以硬件形式内嵌于或独立于UE的处理器中,也可以以软件形式存储于UE的存储器中,以便于处理器调用执行以上各个模块对应的操作。该处理器可以为中央处理单元(英文:Central Processing Unit,简称:CPU)、微处理器、单片机等。请参考图2,图2为本发明UE实施例二的结构示意图,如图2所示,本实施例的UE包括发射机21、接收机22、存储器23以及分别与发射机21、接收机22、和存储器23连接的处理器24。当然,UE还可以包括天线、基带处理部件、中射频处理部件、输入输出装置等通用部件,本发明实施例在此不做任何限制。其中,存储器23中存储一组程序代码,且处理器24用于调用存储器23中存储的程序代码,用于执行本发明下述方法实施例中UE所执行的操作。
需要说明的是,图1和图2所示的UE可以用于执行本发明下述方法实施例中UE所执行的技术方案,其实现原理和技术效果类似,此处不再赘述。
图3为本发明网络侧设备实施例一的结构示意图,如图3所示,本实施例的网络侧设备可以包括:接收单元31和发送单元32;其中,接收单元31,用于接收UE根据第一PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,所述N为大于或等于2的整数;发送单元32,用于根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI。
可选地,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,接收单元31具体用于,接收所述UE在所述N个连续的接入时隙中发送的所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,接收单元31具体用于,接收接收所述UE连续发送的所述N个第一PRACH前导码。
可选地,当所述AI的重复发送方式为第一重复发送方式时,发送单元 32具体用于在所述M个连续的接入时隙中向所述UE发送所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
当所述M个AI的重复发送方式为第二重复发送方式时,发送单元32具体用于向所述UE连续发送所述M个AI。
可选地,接收单元31还用于在发送单元32根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI之后,接收所述UE发送的PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
可选地,发送单元32还用于在根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI之后,向所述UE发送承载上行TPC命令的F-DPCH。
可选地,发送单元32用于向所述UE发送承载上行TPC命令的F-DPCH,包括:发送单元32用于向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数。
可选地,发送单元32用于向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,包括:发送单元32用于在连续的所述L个下行时隙上向所述UE发送承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,向所述UE发送连续承载所述L个第一上行TPC命令的F-DPCH。
可选地,本实施例的网络侧设备还包括:处理单元33;其中,接收单元31用于接收所述UE发送的PRACH控制消息,包括:接收单元31用于接收所述UE在连续的H个上行时隙上发送的承载H个所述第一下行TPC命令和上行导频序列的PRACH控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令和一个上行导频序列;处理单元33,用于将接收单元31接收的所述H个第一下行TPC命令进行合并,获取合并后的第一下行TPC命令;以及根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率。
可选地,处理单元33用于根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率,包括:处理单元33用于,当接收单元31接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与第一下行 时隙开始的时间之差大于第二预设值时,从所述第一下行时隙开始调整发送所述F-DPCH的功率;当接收单元31接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与所述第一下行时隙开始的时间之差小于或等于所述第二预设值时,从第二上行时隙开始调整发送所述F-DPCH的功率;其中,所述第一下行时隙为接收单元31接收所述最后一个第一下行TPC命令的时间所在下行时隙的下一个下行时隙,所述第二下行时隙为所述第一下行时隙的下一个下行时隙。
在硬件实现上,以上接收单元31可以为接收机或收发机,以上发送单元32可以为发射机或收发机,且该接收单元31和发送单元32可以集成在一起构成收发单元,对应于硬件实现为收发机。以上处理单元33可以以硬件形式内嵌于或独立于网络侧设备的处理器中,也可以以软件形式存储于网络侧设备的存储器中,以便于处理器调用执行以上各个模块对应的操作。该处理器可以为CPU、微处理器、单片机等。请参考图4,图4为本发明网络侧设备实施例二的结构示意图,如图4所示,本实施例的网络侧设备包括接收机41、发射机42、存储器43以及分别与接收机41、发射机42、和存储器43连接的处理器44。当然,网络侧设备还可以包括天线、基带处理部件、中射频处理部件、输入输出装置等通用部件,本发明实施例在此不做任何限制。其中,存储器43中存储一组程序代码,且处理器44用于调用存储器43中存储的程序代码,用于执行本发明下述方法实施例中网络侧设备所执行的操作。
需要说明的是,图3和图4所示的网络侧设备可以用于执行本发明下述方法实施例中网络侧设备所执行的技术方案,其实现原理和技术效果类似,此处不再赘述。
图5为本发明定时传输方法实施例一的流程图,如图5所示,本实施例的方法可以包括:
S101、UE根据第一PRACH前导码的重复发送方式,向网络侧设备发送N个第一PRACH前导码,所述N为大于或等于2的整数。
本实施例中的UE可以为MTC设备,网络侧设备例如可以为基站。UE可以根据第一PRACH前导码的重复发送方式,向网络侧设备发送N个相同的第一PRACH前导码。其中,N个相同的第一PRACH前导码是承载在PRACH上。
当第一PRACH前导码的重复发送方式为第一重复发送方式时,所述UE根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述UE在所述N个连续的接入时隙中向所述网络侧设备发送所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码。具体的,相邻两个所述第一PRACH前导码开始发送的间隔时长为一个接入时隙时长。N个第一PRACH前导码的具体发送方式可以如图6所示,发送N个第一PRACH前导码所需的时间为N个接入时隙。
当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,所述UE根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述UE向所述网络侧设备连续发送N个所述第一PRACH前导码。N个第一PRACH前导码的具体发送方式可以如图7所示,发送N个第一PRACH前导码所需时间少于N个接入时隙。
本发明实施例中的第一PRACH前导码的重复发送方式并不以此为限。
S102、所述UE至少根据所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的AI的时间。
本实施例中,网络侧设备在接收到UE发送的第一PRACH前导码后,会根据该第一PRACH前导码将AI承载在AICH中发送给UE,由于现有技术中UE将同一PRACH前导码只发送一次,网络侧设备接收一个PRACH前导码并处理后即可向UE发送AI;而本发明实施例中UE将同一PRACH前导码发送N次,网络侧设备需要接收N个PRACH前导码并处理后再向UE发送AI,由于网络侧设备接收一个PRACH前导码所需时间与接收N个PRACH前导码所需时间不同,所以使得现有技术中UE接收AI的时间与本发明实施例中UE接收AI的时间不同,因此,UE可以至少根据UE发送第一PRACH前导码的个数N、第一PRACH前导码的重复发送方式,确定UE接收网络侧设备发送与该第一PRACH前导码对应的AI的时间。
S103、所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI,所述M为大于或等于2的整数。
本实施例中,UE在上述确定的接收AI的时间上,接收网络侧设备根据 AI的重复发送方式发送的M个相同的AI。由于UE向网络侧设备发送多个第一PRACH前导码,可以提高第一PRACH前导码的信噪比,在UE发送多个第一PRACH前导码的基础上,UE确定接收AI的时间,实现AI传输的定时,以保证UE接收AI的时间与网络侧设备发送AI的时间同步,使得UE可以成功接收网络侧设备发送的AI,而且UE接收网络侧设备发送的多个AI,提高了AI的信噪比,进一步保证UE可以成功接收网络侧设备发送的AI,从而使得更远处得UE能够接入网络侧设备,即提高网络侧设备的覆盖能力。在UE接收到AI后,表示UE已经成功接入至网络侧设备,那么UE可以与网络侧设备进行PRACH消息传输。
当所述AI的重复发送方式为第一重复发送方式时,所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述UE根据接收所述AI的时间,接收所述网络侧设备在所述M个连续的接入时隙中发送的所述M个AI,其中,每个所述接入时隙中发送一个所述AI。M个AI的具体发送方式可以如图8所示,发送M个AI所需时间为M个接入时隙。相应地,UE在每一个接入时隙时长中接收一个AI,而且UE开始接收的相邻两个AI的间隔时长为一个接入时隙时长。
当所述AI的重复发送方式为第二重复发送方式时,所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述UE根据接收所述AI的时间,接收所述网络侧设备连续发送的所述M个AI。M个AI的具体发送方式可以如图9所示,发送M个AI所需时间少于M个接入时隙。相应地,UE连续接收M个AI,而且UE开始接收的相邻两个AI的间隔时长为一个所述AI的时间长度。
本发明实施例中的AI的重复发送方式并不以此为限。
本实施例,通过UE根据第一PRACH前导码的重复发送方式,向网络侧设备发送多个第一PRACH前导码,根据所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的AI的时间,而且根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述多个AI,从而可以提高PRACH的覆盖能力,也提高了网络侧设备的覆盖能力,也实现了AI传输的定时。
在本发明方法实施例一中,进一步地,所述UE至少根据发送所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的AI的时间,包括:所述UE根据所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式和AICH传输定时参数指示,确定所述UE开始发送所述N个第一PRACH前导码至所述UE开始接收所述M个AI的第一时间间距;所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送M次的AI,包括:所述UE在开始发送所述第一PRACH前导码后,间隔所述第一时间间距开始接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI。
具体地,UE根据第一PRACH前导码的重复发送方式,向网络侧设备发送N个第一PRACH前导码,UE根据UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式和所述AICH传输定时参数指示,确定所述UE开始发送所述N个第一PRACH前导码中的第一个第一PRACH前导码至所述UE开始接收所述M个AI中第一个AI的第一时间间距,然后UE在开始发送N个第一PRACH前导码中的第一个第一PRACH前导码后,间隔第一时间间距开始接收网络侧设备发送的M个AI中的第一个AI,在提高网络侧设备的覆盖能力的前提下,实现了前导码与AI的定时关系,由于PRACH前导码承载在PRACH中,AI承载在AICH中,也即实现了PRACH与AICH之间的定时关系。
可选的,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AICH传输定时参数指示(AICH_Transmission_Timing)为0时,所述第一时间间距为T1=(X*N+2560)个码片。其中,X*N个码片表示发送N个第一PRACH前导码所需时间,2560个码片表示网络侧设备处理N个第一PRACH前导码的时间以及传输时延。
可选的,当所述第一PRACH前导码的发送方式为第一重复发送方式、所述AICH传输定时参数指示为1时,所述第一时间间距为T1=(X*N+7680)个码片。其中,X*N个码片表示发送N个第一PRACH前导码所需时间,7680个码片表示网络侧设备处理N个第一PRACH前导码的时间以及传输时延。
可选的,当所述第一PRACH前导码的发送方式为第二重复发送方式、 所述AICH传输定时参数指示为0时,所述第一时间间距为T1=(Y*N+5120)个码片;其中,Y*N个码片表示发送N个第一PRACH前导码所需时间,5120个码片表示网络侧设备处理N个第一PRACH前导码的时间以及传输时延。
可选的,当所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为1时,所述第一时间间距为T1=(Y*N+10240)个码片;其中,Y*N个码片表示发送N个第一PRACH前导码所需时间,10240个码片表示网络侧设备处理N个第一PRACH前导码的时间以及传输时延。
其中,所述T1为所述UE开始发送所述第一PRACH前导码至所述UE开始接收所述AI的第一时间间距。所述X为一个所述接入时隙的码片数,例如X为5120个码片。所述Y为一个所述第一PRACH前导码占用的码片数,例如Y为4096个码片。一个所述第一PRACH前导码的时间长度即一个所述第一PRACH前导码占用的码片数。
可选地,当所述UE未成功接收到所述网络侧设备发送的与所述第一PRACH前导码对应的AI时,所述UE根据所述UE发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述第一PRACH前导码的重复发送方式、所述AI的重复发送方式和所述AICH传输定时参数指示,确定所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述N个第二PRACH前导码的最小时间间距,所述第二PRACH前导码为所述第一PRACH前导码的下一个不同的PRACH前导码;所述UE根据所述最小时间间距、所述第二PRACH前导码的重复发送方式,增加功率向所述网络侧设备发送所述N个第二PRACH前导码,其中,所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述N个第二PRACH前导码的时间间距大于或等于所述最小时间间距。
具体地,若UE未成功接收到网络侧设备发送的AI,例如UE未接收到网络侧设备发送的M个AI的中任一个AI,或者,UE接收到了AI但是未正确解码,则UE确定所述UE开始发送所述N个第一PRACH前导码中第一个第一PRACH前导码至所述UE开始发送所述N个第二PRACH前导码中第一个第二PRACH前导码的最小时间间距,然后UE从发送第一个第一PRACH前导码开始,间隔大于或等于上述最小时间间距的时间后,开始发送N个第二PRACH前导码中的第一个第二PRACH前导码。
可选的,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述最小时间间距为Tmin=(X*N+X*M+X)个码片;其中,X*N表示N个第一PRACH前导码传输所需时间,X*M表示M个AI传输所需时间。
可选的,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述最小时间间距为Tmin=(X*N+X*M+X*2)个码片;其中,X*N表示N个第一PRACH前导码传输所需时间,X*M表示M个AI传输所需时间。
可选地,当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为0时,所述最小时间间距为Tmin=(Y*N+Z*M+10240)个码片;其中,Y*N表示N个第一PRACH前导码传输所需时间,Z*M表示M个AI传输所需时间。
可选地,当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为1时,所述最小时间间距为Tmin=(Y*N+Z*M+15360)个码片;其中,Y*N表示N个第一PRACH前导码传输所需时间,Z*M表示M个AI传输所需时间。
其中,所述N为所述UE发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,所述Tmin为所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述N个第二PRACH前导码的最小时间间距。所述X为一个所述接入时隙的码片数,例如X为5120个码片。所述Y为一个所述第一PRACH前导码占用的码片数,例如Y为4096个码片。所述Z为一个所述AI占用的码片数,例如Z为4096个码片。
图10为本发明定时传输方法实施例二的流程图,如图10所示,本实施例的方法可以包括:
S201、网络侧设备接收UE根据第一PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,所述N为大于或等于2的整数。
本实施例中,网络侧设备接收UE根据第一PRACH前导码的重复发送方式,发送的N个相同的第一PRACH前导码。其中,N个相同的第一PRACH前导码是承载在PRACH上。
当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,网络侧设备接收UE根据第一PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,包括:所述网络侧设备接收所述UE在所述N个连续的接入时隙中发送的所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码。N个第一PRACH前导码的具体发送方式可以如图6所示,发送N个第一PRACH前导码所需的时间为N个接入时隙。
当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,网络侧设备接收UE根据第一PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,包括:所述网络侧设备接收所述UE连续发送的所述N个第一PRACH前导码。N个第一PRACH前导码的具体发送方式可以如图7所示,发送N个第一PRACH前导码所需时间少于N个接入时隙。
本发明实施例中的第一PRACH前导码的重复发送方式并不以此为限。
S202、所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI。
本实施例中,网络侧设备接收到UE发送的N个第一PRACH前导码后,确定与第一PRACH前导码对应的AI,然后根据AI的重复发送方式,向UE发送M个相同的该AI。由于网络侧设备接收UE发送的多个第一PRACH前导码,可以提高第一PRACH前导码的信噪比,从而使得网络侧设备可以成功接收到UE发送的第一PRACH前导码,网络侧设备向UE发送多个AI,可以提高AI的信噪比,从而使得UE可以成功接收到网络侧设备发送的AI。在UE接收到AI后,表示UE已经成功接入至网络侧设备,UE可以与网络侧设备进行PRACH消息传输,从而可以提高网络侧设备的覆盖能力。
当所述AI的重复发送方式为第一重复发送方式时,所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI,包括:所述网络侧设备在所述M个连续的接入时隙中向所述UE发送所述M个AI,其中,每个所述接入时隙中发送一个所述AI。M个AI的具体发 送方式可以如图8所示,发送M个AI所需时间为N个接入时隙。
当所述M个AI的重复发送方式为第二重复发送方式时,所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI,包括:所述网络侧设备向所述UE连续发送所述M个AI。M个AI的具体发送方式可以如图9所示,发送M个AI所需时间少于M个接入时隙。
本发明实施例中的AI的重复发送方式并不以此为限。
本实施例,通过网络侧设备接收所述UE根据第一PRACH前导码的重复发送方式,发送的多个第一PRACH前导码,以及根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI,从而可以提高PRACH的覆盖能力,也提高了网络侧设备的覆盖能力。
图11为本发明定时传输方法实施例三的流程图,如图11所示,本实施例的方法可以包括:
S301、UE根据第一PRACH前导码的重复发送方式,发送N个第一PRACH前导码。
S302、网络侧设备接收N个第一PRACH前导码。
S303、UE至少根据所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的AI的时间。
S304、所述网络侧设备根据AI的重复发送方式,发送M个AI。
S305、所述UE根据确定的接收AI的时间,接收所述M个AI。
本实施例中,S301-S305的具体实现过程可以参见本发明方法实施例一和二中的相关记载,此处不再赘述。
S306、所述UE至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间。
S307、所述UE根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息。
其中,所述PRACH消息包括PRACH数据消息和PRACH控制消息。可选地,若UE处于CELL_FACH状态,则所述PRACH消息为专用信道(英文:Dedicated Channel,简称:DCH),所述PRACH数据消息为专用物理数 据信道(英文:Dedicated Physical Data Channel,简称:DPDCH),所述PRACH控制消息为专用物理控制信道(英文:Dedicated Physical Control Channel,简称:DPCCH);若UE处于增强的CELL_FACH状态,则所述PRACH消息为增强专用控制信道(英文:Enhanced Dedicated Control Channel,简称:E-DCH),所述PRACH数据消息为增强专用物理数据信道(英文:Enhanced Dedicated Physical Data Channel,简称:E-DPDCH),所述PRACH控制消息为DPCCH和增强专用物理控制信道(英文:Enhanced Dedicated Physical Control Channel,简称:E-DPCCH)。
本实施例中,UE在接收网络侧设备发送的AI,解码正确后,会向网络侧设备发送PRACH消息,由于现有技术中网络侧设备将同一AI只发送一次,UE接收一个AI并处理后即可向网络侧设备发送PRACH消息;而本发明实施例中网络侧设备将同一AI发送M次,UE需要接收M个AI并处理后再向网络侧设备发送PRACH消息,由于UE接收一个AI所需时间与接收M个AI所需时间不同,所以使得现有技术中UE发送PRACH消息的时间与本发明实施例中UE发送PRACH消息的时间不同,因此,UE可以根据网络侧设备发送AI的个数M、AI的重复发送方式,确定向网络侧设备发送PRACH消息的时间,然后根据该确定的发送PRACH消息的时间,向网络侧设备发送PRACH消息。
在第一种可行的实现方式中,所述UE至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:所述UE根据所述UE发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述第一PRACH前导码的重复发送方式、所述AI的重复发送方式和所述AICH传输定时参数指示,确定所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述PRACH消息的第二时间间距;所述UE根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:所述UE在开始发送所述N个第一PRACH前导码后,间隔所述第二时间间距开始向所述网络侧设备发送所述PRACH消息。
具体地,UE可以根据第一PRACH前导码的发送个数N、AI的发送个数M、第一PRACH前导码的重复发送方式、AI的重复发送方式和AICH传输 定时参数指示,确定所述UE开始发送所述N个第一PRACH前导码中第一个第一PRACH前导码至所述UE开始发送所述PRACH消息的第二时间间距,然后UE在开始发送所述N个第一PRACH前导码中第一个第一PRACH前导码后,间隔所述第二时间间距开始向所述网络侧设备发送所述PRACH消息。由于第一PRACH前导码是承载在PRACH中,PRACH消息承载在DCH或E-DCH中,从而通过上述方式可以实现PRACH与DCH或E-DCH之间的定时关系,如图12所示。
可选地,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述第二时间间距为T2=(X*N+X*M+X)个码片;其中,X*N表示N个第一PRACH前导码传输所需时间,X*M表示M个AI传输所需时间。
可选地,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述第二时间间距为T2=(X*N+X*M+X*2)个码片;其中,X*N表示N个第一PRACH前导码传输所需时间,X*M表示M个AI传输所需时间。
可选地,当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为0时,所述第二时间间距为T2=(Y*N+Z*M+10240)个码片;其中,Y*N表示N个第一PRACH前导码传输所需时间,Z*M表示M个AI传输所需时间。
可选地,当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为1时,所述第二时间间距为T2=(Y*N+Z*M+15360)个码片;其中,Y*N表示N个第一PRACH前导码传输所需时间,Z*M表示M个AI传输所需时间。
其中,所述N为所述UE发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,T2为所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述PRACH消息的第二时间间距。所 述X为一个所述接入时隙的码片数,例如X为5120个码片。所述Y为一个所述第一PRACH前导码占用的码片数,例如Y为4096个码片。所述Z为一个所述AI占用的码片数,例如Z为4096个码片。
在第二种可行的实现方式中,所述UE至少根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI之后,还包括:所述UE接收所述网络侧设备发送的承载上行TPC命令的F-DPCH;所述UE至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:所述UE根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定所述UE开始接收所述M个AI至所述UE开始发送所述PRACH消息的第三时间间距;所述UE根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:所述UE在开始接收所述M个AI后,间隔所述第三时间间距开始向所述网络侧设备发送所述PRACH消息。
具体地,UE可以根据AI的发送个数M、AI的重复发送方式,确定所述UE开始接收所述M个AI中第一个AI至所述UE开始发送所述PRACH消息的第三时间间距,然后UE在开始接收所述M个AI中第一个AI后,间隔所述第三时间间距开始向所述网络侧设备发送所述PRACH消息。由于AI是承载在AICH中,PRACH消息承载在DCH或E-DCH中,从而通过上述方式可以实现AICH与DCH或E-DCH之间的定时关系,如图13所示。
可选地,当所述AI的重复发送方式为第一重复方式时,所述第三时间间距为T3=(X*M+5120+256*S+T)个码片;其中,X*M表示M个AI传输所需时间。
可选地,当所述AI的重复发送方式为第二重复方式时,所述第三时间间距为T3=(Z*M+5120+256*S+T)个码片;其中,Z*M表示M个AI传输所需时间。
其中,所述X为一个所述接入时隙占用的码片数,所述M为所述网络侧设备发送所述AI的个数,所述T3为所述UE开始接收所述M个AI至所述UE开始发送所述PRACH消息的第三时间间距,所述S为符号偏置,所述S为0至9中的任一整数,S的具体取值由高层配置,所述T为上下行时间差,即所述UE开始接收所述F-DFCF至所述UE开始向所述网络侧设备发送所述 PRACH消息的时间间距,所述T为1024个码片;所述Z为一个所述AI占用的码片数,例如Z为4096个码片。
S308、所述网络侧设备接收所述PRACH消息。
本实施例中,网络侧设备可以接收所述UE发送的所述PRACH消息。
本实施例,在UE接入至网络侧设备的覆盖后,UE可以根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,以及根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,实现了PRACH消息传输的定时。
图14为本发明定时传输方法实施例四的流程图,如图14所示,本实施例的方法可以包括:
S401、UE根据第一PRACH前导码的重复发送方式,发送N个第一PRACH前导码。
S402、网络侧设备接收N个第一PRACH前导码。
S403、所述UE至少根据所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的AI的时间。
S404、所述网络侧设备根据AI的重复发送方式,发送M个AI。
S405、所述UE根据确定的接收AI的时间,接收所述M个AI。
本实施例中,S401-S405的具体实现过程可以参见本发明方法实施例一和二中的相关记载,此处不再赘述。
S406、所述网络侧设备向所述UE发送承载L个第一上行TPC命令的F-DPCH。
S407、所述UE根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定所述UE开始接收所述M个AI至所述UE开始发送PRACH消息的第三时间间距。
S408、所述UE在开始接收所述M个AI后,间隔所述第三时间间距开始发送所述PRACH消息。
S409、所述UE将接收的所述L个第一上行TPC命令进行合并,获得合并后的第一上行TPC命令,并根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率。
本实施例中,S406与S407的执行顺序不分先后。所述网络侧设备向所述UE发送承载L个第一上行TPC命令的F-DPCH,相应地,UE接收网络侧设备发送的L个第一上行TPC命令的F-DPCH,其中,UE在接收网络侧设备发送的L个第一上行TPC命令的F-DPCH的过程中,可以执行S408。
在UE接收网络侧设备发送的承载L个第一上行TPC命令的F-DPCH之后,将接收的所述L个第一上行TPC命令进行合并,获得合并后的第一上行TPC命令;所述UE根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率。
可选的,当所述UE接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值,该第一预设值例如为512个码片时,所述UE根据所述合并后的第一上行TPC命令,从所述第一上行时隙开始调整发送所述PRACH消息的功率,如图15所示;当所述UE接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与所述第一上行时隙开始的时间之差小于或等于所述第一预设值时,所述UE根据所述合并后的第一上行TPC命令,从第二上行时隙开始调整发送所述PRACH消息的功率,如图16所示;其中,所述第一上行时隙为所述UE接收所述L个第一上行TPC命令中最后一个第一上行TPC命令之后开始发送上行导频序列所在的上行时隙,所述第二上行时隙为所述第一上行时隙的下一个上行时隙。从而实现UE接收多个第一上行TPC命令与UE调整发送功率的定时关系,即多个第一下行TPC命令生效的定时关系。
可选地,在一种可行的实现方式,所述网络侧设备在连续的所述L个下行时隙上向所述UE发送承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;相应地,所述UE接收所述网络侧设备在连续的所述L个下行时隙上发送的承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令。
在第二种可行的实现方式中,所述网络侧设备向所述UE发送连续承载所述L个第一上行TPC命令的F-DPCH。相应地,所述UE接收所述网络侧设备发送的连续承载所述L个第一上行TPC命令的F-DPCH。
可选地,所述PRACH控制消息承载第一下行TPC命令,所述UE向所 述网络侧设备发送所述PRACH控制消息,包括:所述UE在连续的H个上行时隙上向所述网络侧设备发送承载H个所述第一下行TPC命令的控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令。所述网络侧设备接收所述UE发送的PRACH控制消息,包括:所述网络侧设备接收所述UE在连续的H个上行时隙上发送的承载H个所述第一下行TPC命令和上行导频序列的PRACH控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令、一个上行导频序列和一个传输格式组合集合(英文:Transport Format Combination Indicator,简称:TFCI)。进一步地,所述网络侧设备将接收的所述H个第一下行TPC命令进行合并,获取合并后的第一下行TPC命令;所述网络侧设备根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率。其中,所述网络侧设备根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率,包括:当所述网络侧设备接收所述H个第一下行TPC中最后一个第一下行TPC的时间与第一下行时隙开始的时间之差大于第二预设值时,所述网络侧设备从所述第一下行时隙开始调整发送所述F-DPCH的功率,可以参考图15所示,此处不再图示;当所述网络侧设备接收所述H个第一下行TPC中最后一个第一下行TPC的时间与所述第一下行时隙开始的时间之差小于或等于所述第二预设值,所述网络侧设备从第二上行时隙开始调整发送所述F-DPCH的功率;其中,所述第一下行时隙为所述网络侧设备接收所述最后一个第一下行TPC的时间所在下行时隙的下一个下行时隙,所述第二下行时隙为所述第一下行时隙的下一个下行时隙,可以参考图16所示,此处不再图示。从而实现网络侧设备接收多个第一上行TPC命令与网络侧设备调整发送功率的定时关系,即多个第一上行TPC命令生效的定时关系。
下面采用几种具体的实现方式,对本发明实施例进行详细描述。需要说明的是,网络侧设备发送给UE的TPC命令为上行TPC命令,UE接收网络侧设备发送的TPC命令为上行TPC命令,UE向网络侧设备发送的TPC命令为下行TPC命令,网络侧设备接收UE发送的TPC命令为下行TPC命令。下面各实施方式中以PRACH控制消息中的DPCCH为例,该DPCCH承载下行TPC命令。
在第一种具体的实现方式中,如图17所示,本实施例中,网络侧设备可 以将发送给UE的同一个上行TPC命令重复发送多次,即网络侧设备在连续的L个下行时隙上向UE发送L个同一上行TPC命令,并且上行TPC命令是承载在F-DPCH中,在一个下行时隙中,F-DPCH中承载一个上行TPC命令。在一个上行时隙中,DPCCH承载一个上行导频序列、一个TFCI和一个下行TPC命令。而且,UE将接收到的L个上行TPC命令进行合并,获得一个合并后的上行TPC命令;并判断UE接收第L个上行TPC命令的时间与第一上行时隙(即UE接收第L个上行TPC命令之后开始发送上行导频序列所在的上行时隙)开始的时间之差是否大于第一预设值(例如512个码片),若大于,则UE根据合并后的下行TPC命令,从第一上行时隙开始调整发送PRACH消息(即PRACH控制消息和PRACH数据消息)的功率;若小于或等于,则UE根据合并后的下行TPC命令,从第二上行时隙(即第一上行时隙的下一个上行时隙)开始调整发送PRACH消息的功率。图17示出了UE接收第L个上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值的情况。可选地,UE在接收网络侧设备发送的第一个上行TPC命令到接收第L个上行TPC命令的过程中,会测量下行信号干扰比(英文:Signal to Interference Ratio,简称:SIR),根据测量的下行SIR生成新的下行TPC命令,UE可以在图17所示的第一上行时隙发送新生成的下行TPC命令。
可选地,UE也可以将新生成的下行TPC命令重复发送多次,即UE在连续的H个上行时隙上向网络侧设备发送H个下行TPC命令。并且下行TPC命令是承载在DPCCH中,在一个上行时隙中,DPCCH中承载一个下行TPC命令、一个上行导频序列和一个TFCI。而且,网络侧设备将接收到的H个下行TPC命令进行合并,获得一个合并后的下行TPC命令;并判断网络侧设备接收第H个下行TPC命令的时间与第一下行时隙(即网络侧设备接收第H个下行TPC命令的时间所在下行时隙的下一个下行时隙)开始的时间之差是否大于第二预设值(例如512个码片),若大于,则网络侧设备根据合并后的下行TPC命令,从第一下行时隙开始调整发送F-PDCH(即上行TPC命令)的功率;若小于或等于,则网络侧设备根据合并后的下行TPC命令,从第二下行时隙(即第一下行时隙的下一个下行时隙)开始调整发送F-PDCH(即上行TPC命令)的功率。图17示出了网络侧设备接收第H个下行TPC命令的时间与第一下行时隙开始的时间之差大于第二预设值的情况。可选地,网 络侧设备在接收UE发送的第一个上行导频序列到接收第H个上行导频序列的过程中,会测量上行SIR,根据测量的上行SIR生成新的上行TPC命令,网络侧设备可以在接收第H个上行导频序列的时间所在下行时隙的下一个下行时隙发送新生成的上行TPC命令;同样,网络侧设备可以将新生成的上行TPC命令重复发送多次。
在第二种具体的实现方式中,如图18所示,本实施例中,网络侧设备可以将发送给UE的同一个上行TPC命令重复发送多次,即网络侧设备向UE连续发送两个同一上行TPC命令,并且上行TPC命令是承载在F-DPCH中,在一个下行时隙中,F-DPCH中承载两个上行TPC命令。在一个上行时隙中,DPCCH承载一个上行导频序列、一个TFCI和一个下行TPC命令。而且,UE将接收到的两个上行TPC命令进行合并,获得一个合并后的上行TPC命令;并判断UE接收第2个上行TPC命令的时间与第一上行时隙(即UE接收第2个上行TPC命令之后开始发送上行导频序列所在的上行时隙)开始的时间之差是否大于第一预设值(例如512个码片),若大于,则UE根据合并后的下行TPC命令,从第一上行时隙开始调整发送PRACH消息(即PRACH控制消息和PRACH数据消息)的功率;若小于或等于,则UE根据合并后的下行TPC命令,从第二上行时隙(即第一上行时隙的下一个上行时隙)开始调整发送PRACH消息的功率。图18示出了UE接收第2个上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值的情况。可选地,UE在接收网络侧设备发送的第一个上行TPC命令到接收第2个上行TPC命令的过程中,会测量下行SIR,根据测量的下行SIR生成新的下行TPC命令,UE可以在图18所示的第一上行时隙发送新生成的下行TPC命令。
可选地,UE也可以将新生成的下行TPC命令重复发送多次,即UE以在连续的H个上行时隙上向网络侧设备发送H个下行TPC命令。并且下行TPC命令是承载在DPCCH中,在一个上行时隙中,DPCCH中承载一个下行TPC命令、一个上行导频序列和一个TFCI。而且,网络侧设备将接收到的H个下行TPC命令进行合并,获得一个合并后的下行TPC命令;并判断网络侧设备接收第H个下行TPC命令的时间与第一下行时隙(即网络侧设备接收第H个下行TPC命令的时间所在下行时隙的下一个下行时隙)开始的时间之差是否大于第二预设值(例如512个码片),若大于,则网络侧设备根据合并 后的下行TPC命令,从第一下行时隙开始调整发送F-PDCH(即上行TPC命令)的功率;若小于或等于,则网络侧设备根据合并后的下行TPC命令,从第二下行时隙(即第一下行时隙的下一个下行时隙)开始调整发送F-PDCH(即上行TPC命令)的功率。图18示出了网络侧设备接收第H个下行TPC命令的时间与第一下行时隙开始的时间之差大于第二预设值的情况。可选地,网络侧设备在接收UE发送的第一个上行导频序列到接收第H个上行导频序列的过程中,会测量上行SIR,根据测量的上行SIR生成新的上行TPC命令,网络侧设备可以在接收第H个上行导频序列的时间所在下行时隙的下一个下行时隙发送新生成的上行TPC命令;同样,网络侧设备可以将新生成的上行TPC命令重复发送两次。
在第三种具体的实现方式中,如图19所示,本实施例中,网络侧设备可以将发送给UE的同一个上行TPC命令重复发送多次,即网络侧设备向UE连续发送4个同一上行TPC命令,并且上行TPC命令是承载在F-DPCH中,在一个下行时隙中,F-DPCH中承载4个上行TPC命令。在一个上行时隙中,DPCCH承载一个上行导频序列、一个TFCI和一个下行TPC命令。而且,UE将接收到的4个上行TPC命令进行合并,获得一个合并后的上行TPC命令;并判断UE接收第4个上行TPC命令的时间与第一上行时隙(即UE接收第4个上行TPC命令之后开始发送上行导频序列所在的上行时隙)开始的时间之差是否大于第一预设值(例如512个码片),若大于,则UE根据合并后的下行TPC命令,从第一上行时隙开始调整发送PRACH消息(即PRACH控制消息和PRACH数据消息)的功率;若小于或等于,则UE根据合并后的下行TPC命令,从第二上行时隙(即第一上行时隙的下一个上行时隙)开始调整发送PRACH消息的功率。图19示出了UE接收第4个上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值的情况。可选地,UE在接收网络侧设备发送的第一个上行TPC命令到接收第4个上行TPC命令的过程中,会测量下行SIR,根据测量的下行SIR生成新的下行TPC命令,UE可以在图19所示的第一上行时隙的上一个上行时隙发送新生成的下行TPC命令。
可选地,UE也可以将新生成的下行TPC命令重复发送多次,即UE在连续的H个上行时隙上向网络侧设备发送H个下行TPC命令。并且下行TPC 命令是承载在DPCCH中,在一个上行时隙中,DPCCH中承载一个下行TPC命令、一个上行导频序列和一个TFCI。而且,网络侧设备将接收到的H个下行TPC命令进行合并,获得一个合并后的下行TPC命令;并判断网络侧设备接收第H个下行TPC命令的时间与第一下行时隙(即网络侧设备接收第H个下行TPC命令的时间所在下行时隙的下一个下行时隙)开始的时间之差是否大于第二预设值(例如512个码片),若大于,则网络侧设备根据合并后的下行TPC命令,从第一下行时隙开始调整发送F-PDCH(即上行TPC命令)的功率;若小于或等于,则网络侧设备根据合并后的下行TPC命令,从第二下行时隙(即第一下行时隙的下一个下行时隙)开始调整发送F-PDCH(即上行TPC命令)的功率。图19示出了网络侧设备接收第H个下行TPC命令的时间与第一下行时隙开始的时间之差大于第二预设值的情况。可选地,网络侧设备在接收UE发送的第一个上行导频序列到接收第H个上行导频序列的过程中,会测量上行SIR,根据测量的上行SIR生成新的上行TPC命令,网络侧设备可以在如图19所示的接收第H个上行导频序列的时间所在下行时隙发送新生成的上行TPC命令;同样,网络侧设备可以将新生成的上行TPC命令重复发送4次。
在第四种具体的实现方式中,如图20所示,本实施例中,网络侧设备可以将发送给UE的同一个上行TPC命令重复发送多次,即网络侧设备向UE连续发送8个同一上行TPC命令,并且上行TPC命令是承载在F-DPCH中,在一个下行时隙中,F-DPCH中承载8个上行TPC命令。在一个上行时隙中,DPCCH承载一个上行导频序列、一个TFCI和一个下行TPC命令。而且,UE将接收到的8个上行TPC命令进行合并,获得一个合并后的上行TPC命令;并判断UE接收第8个上行TPC命令的时间与第一上行时隙(即UE接收第8个上行TPC命令之后开始发送上行导频序列所在的上行时隙)开始的时间之差是否大于第一预设值(例如512个码片),若大于,则UE根据合并后的下行TPC命令,从第一上行时隙开始调整发送PRACH消息(即PRACH控制消息和PRACH数据消息)的功率;若小于或等于,则UE根据合并后的下行TPC命令,从第二上行时隙(即第一上行时隙的下一个上行时隙)开始调整发送PRACH消息的功率。图20示出了UE接收第8个上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值的情况。可选地,UE 在接收网络侧设备发送的第一个上行TPC命令到接收第8个上行TPC命令的过程中,会测量下行SIR,根据测量的下行SIR生成新的下行TPC命令,UE可以在图20所示的第一上行时隙的上一个上行时隙发送新生成的下行TPC命令。
可选地,UE也可以将新生成的下行TPC命令重复发送多次,即UE在连续的H个上行时隙上向网络侧设备发送H个下行TPC命令。并且下行TPC命令是承载在DPCCH中,在一个上行时隙中,DPCCH中承载一个下行TPC命令、一个上行导频序列和一个TFCI。而且,网络侧设备将接收到的H个下行TPC命令进行合并,获得一个合并后的下行TPC命令;并判断网络侧设备接收第H个下行TPC命令的时间与第一下行时隙(即网络侧设备接收第H个下行TPC命令的时间所在下行时隙的下一个下行时隙)开始的时间之差是否大于第二预设值(例如512个码片),若大于,则网络侧设备根据合并后的下行TPC命令,从第一下行时隙开始调整发送F-PDCH(即上行TPC命令)的功率;若小于或等于,则网络侧设备根据合并后的下行TPC命令,从第二下行时隙(即第一下行时隙的下一个下行时隙)开始调整发送F-PDCH(即上行TPC命令)的功率。图20示出了网络侧设备接收第H个下行TPC命令的时间与第一下行时隙开始的时间之差大于第二预设值的情况。可选地,网络侧设备在接收UE发送的第一个上行导频序列到接收第H个上行导频序列的过程中,会测量上行SIR,根据测量的上行SIR生成新的上行TPC命令,网络侧设备可以在接收第H个上行导频序列的时间所在下行时隙的下一个下行时隙发送新生成的上行TPC命令;同样,网络侧设备可以将新生成的上行TPC命令重复发送8次。
在第五种具体的实现方式中,如图21所示,本实施例中,网络侧设备可以将发送给UE的同一个上行TPC命令重复发送多次,即网络侧设备向UE连续发送16个同一上行TPC命令,并且上行TPC命令是承载在F-DPCH中,在两个下行时隙中,F-DPCH中承载16个上行TPC命令。在一个上行时隙中,DPCCH承载一个上行导频序列、一个TFCI和一个TPC命令。而且,UE将接收到的16个上行TPC命令进行合并,获得一个合并后的上行TPC命令;并判断UE接收第16个上行TPC命令的时间与第一上行时隙(即UE接收第16个上行TPC命令之后开始发送上行导频序列所在的上行时隙)开始的时间 之差是否大于第一预设值(例如512个码片),若大于,则UE根据合并后的下行TPC命令,从第一上行时隙开始调整发送PRACH消息(即PRACH控制消息和PRACH数据消息)的功率;若小于或等于,则UE根据合并后的下行TPC命令,从第二上行时隙(即第一上行时隙的下一个上行时隙)开始调整发送PRACH消息的功率。图21示出了UE接收第16个上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值的情况。可选地,UE在接收网络侧设备发送的第一个上行TPC命令到接收第16个上行TPC命令的过程中,会测量下行SIR,根据测量的下行SIR生成新的下行TPC命令,UE可以在图21所示的第一上行时隙的上一个上行时隙发送新生成的下行TPC命令。
可选地,UE也可以将新生成的下行TPC命令重复发送多次,即UE在连续的H个上行时隙上向网络侧设备发送H个下行TPC命令。并且下行TPC命令是承载在DPCCH中,在一个上行时隙中,DPCCH中承载一个下行TPC命令、一个上行导频序列和一个TFCI。而且,网络侧设备将接收到的H个下行TPC命令进行合并,获得一个合并后的下行TPC命令;并判断网络侧设备接收第H个下行TPC命令的时间与第一下行时隙(即网络侧设备接收第H个下行TPC命令的时间所在下行时隙的下一个下行时隙)开始的时间之差是否大于第二预设值(例如512个码片),若大于,则网络侧设备根据合并后的下行TPC命令,从第一下行时隙开始调整发送F-PDCH(即上行TPC命令)的功率;若小于或等于,则网络侧设备根据合并后的下行TPC命令,从第二下行时隙(即第一下行时隙的下一个下行时隙)开始调整发送F-PDCH(即上行TPC命令)的功率。图21示出了网络侧设备接收第H个下行TPC命令的时间与第一下行时隙开始的时间之差大于第二预设值的情况。可选地,网络侧设备在接收UE发送的第一个上行导频序列到接收第H个上行导频序列的过程中,会测量上行SIR,根据测量的上行SIR生成新的上行TPC命令,网络侧设备可以在如图21所示的接收第H个上行导频序列的时间所在下行时隙的下一个下行时隙发送新生成的上行TPC命令;同样,网络侧设备可以将新生成的上行TPC命令重复发送16次。
在第六种具体的实现方式中,如图22所示,本实施例中,网络侧设备可以将发送给UE的同一个上行TPC命令重复发送多次,即网络侧设备向UE 连续发送100个同一上行TPC命令,并且上行TPC命令是承载在F-DPCH中,在11个下行时隙中,F-DPCH中承载100个上行TPC命令。在一个上行时隙中,DPCCH承载一个上行导频序列、一个TFCI和一个TPC命令。而且,UE将接收到的100个上行TPC命令进行合并,获得一个合并后的上行TPC命令;并判断UE接收第100个上行TPC命令的时间与第一上行时隙(即UE接收第100个上行TPC命令之后开始发送上行导频序列所在的上行时隙)开始的时间之差是否大于第一预设值(例如512个码片),若大于,则UE根据合并后的下行TPC命令,从第一上行时隙开始调整发送PRACH消息(即PRACH控制消息和PRACH数据消息)的功率;若小于或等于,则UE根据合并后的下行TPC命令,从第二上行时隙(即第一上行时隙的下一个上行时隙)开始调整发送PRACH消息的功率。图22示出了UE接收第100个上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值的情况。可选地,UE在接收网络侧设备发送的第一个上行TPC命令到接收第100个上行TPC命令的过程中,会测量下行SIR,根据测量的下行SIR生成新的下行TPC命令,UE可以在图22所示的第一上行时隙的上一个上行时隙发送新生成的下行TPC命令。
可选地,UE也可以将新生成的下行TPC命令重复发送多次,即UE在连续的H个上行时隙上向网络侧设备发送H个下行TPC命令。并且下行TPC命令是承载在DPCCH中,在一个上行时隙中,DPCCH中承载一个下行TPC命令、一个上行导频序列和一个TFCI。而且,网络侧设备将接收到的H个下行TPC命令进行合并,获得一个合并后的下行TPC命令;并判断网络侧设备接收第H个下行TPC命令的时间与第一下行时隙(即网络侧设备接收第H个下行TPC命令的时间所在下行时隙的下一个下行时隙)开始的时间之差是否大于第二预设值(例如512个码片),若大于,则网络侧设备根据合并后的下行TPC命令,从第一下行时隙开始调整发送F-PDCH(即上行TPC命令)的功率;若小于或等于,则网络侧设备根据合并后的下行TPC命令,从第二下行时隙(即第一下行时隙的下一个下行时隙)开始调整发送F-PDCH(即上行TPC命令)的功率。图22示出了网络侧设备接收第H个下行TPC命令的时间与第一下行时隙开始的时间之差大于第二预设值的情况。可选地,网络侧设备在接收UE发送的第一个上行导频序列到接收第H个上行导频序列 的过程中,会测量上行SIR,根据测量的上行SIR生成新的上行TPC命令,网络侧设备可以在如图22所示的接收第H个上行导频序列的时间所在下行时隙的下一个下行时隙发送新生成的上行TPC命令;同样,网络侧设备可以将新生成的上行TPC命令重复发送100次。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (50)

  1. 一种用户设备UE,其特征在于,包括:
    发送单元,用于根据第一物理随机接入信道PRACH前导码的重复发送方式,向网络侧设备发送N个第一PRACH前导码,所述N为大于或等于2的整数;
    处理单元,用于至少根据所述发送单元发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的捕获指示AI的时间;
    接收单元,用于根据所述处理单元确定的接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI,所述M为大于或等于2的整数。
  2. 根据权利要求1所述的UE,其特征在于,所述处理单元具体用于,根据所述发送单元发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式和捕获指示信道AICH传输定时参数指示,确定所述发送单元开始发送所述N个第一PRACH前导码至开始接收所述M个AI的第一时间间距;
    所述接收单元具体用于,在开始发送所述第一PRACH前导码后,间隔所述第一时间间距开始接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI。
  3. 根据权利要求1或2所述的UE,其特征在于,所述处理单元还用于,当所述接收单元未成功接收到所述网络侧设备发送的与所述第一PRACH前导码对应的AI时,根据所述发送单元发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述前导码的重复发送方式、所述AI的重复发送方式和所述AICH传输定时参数指示,确定所述发送单元开始发送所述N个第一PRACH前导码至开始发送所述N个第二PRACH前导码的最小时间间距,所述第二PRACH前导码为所述第一PRACH前导码的下一个不同的PRACH前导码;
    所述发送单元还用于根据所述处理单元确定的所述最小时间间距、所述第二PRACH前导码的重复发送方式,增加功率向所述网络侧设备发送所述N个第二PRACH前导码,其中,所述发送单元开始发送所述N个第一PRACH 前导码至开始发送所述N个第二PRACH前导码的时间间距大于或等于所述最小时间间距。
  4. 根据权利要求1-3任意一项所述的UE,其特征在于,所述处理单元还用于在所述接收单元根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI之后,至少根据所述网络侧设备发送所述AI的个数M、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间;
    所述发送单元还用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
  5. 根据权利要求4所述的UE,其特征在于,所述处理单元用于至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:所述处理单元用于根据所述发送单元发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述第一PRACH前导码的重复发送方式、所述AI的PRACH重复发送方式和所述AICH传输定时参数指示,确定所述发送单元开始发送所述N个第一PRACH前导码至开始发送所述PRACH消息的第二时间间距;
    所述发送单元用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:所述发送单元在开始发送所述N个第一PRACH前导码后,间隔所述第二时间间距开始向所述网络侧设备发送所述PRACH消息。
  6. 根据权利要求4所述的UE,其特征在于,所述接收单元还用于在根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI之后,接收所述网络侧设备发送的承载上行传输功率控制TPC命令的碎形专用物理信道F-DPCH;
    所述处理单元用于至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:所述处理单元用于根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定所述发送单元开始接收所述M个AI至开始发送所述PRACH消息的第三时间间距;
    所述发送单元用于根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:所述发送单元用于在开始接收所述M个AI后,间隔所述第三时间间距开始向所述网络侧设备发送所述PRACH消息。
  7. 根据权利要求1-6任意一项所述的UE,其特征在于,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,所述发送单元用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述发送单元用于在所述N个连续的接入时隙中向所述网络侧设备发送所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,所述发送单元用于根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述发送单元用于向所述网络侧设备连续发送N个所述第一PRACH前导码。
  8. 根据权利要求1-7任意一项所述的UE,其特征在于,当所述AI的重复发送方式为第一重复发送方式时,所述接收单元用于根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述接收单元用于根据接收所述AI的时间,接收所述网络侧设备在所述M个连续的接入时隙中发送的所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
    当所述M个AI的重复发送方式为第二重复发送方式时,所述接收单元用于根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述接收单元用于根据接收所述AI的时间,接收所述网络侧设备连续发送的所述M个AI。
  9. 根据权利要求7或8所述的UE,其特征在于,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AICH传输定时参数指示为0时,所述处理单元确定的所述第一时间间距为T1=(X*N+2560)个码片;或者,
    当所述第一PRACH前导码的发送方式为第一重复发送方式、所述AICH传输定时参数指示为1时,所述第一时间间距为T1=(X*N+7680)个码片;或者,
    当所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为0,所述处理单元确定的所述第一时间间距为T1=(Y*N+5120)个码片;或者,
    若所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为1时,所述处理单元确定的所述第一时间间距为T1=(Y*N+10240)个码片;或者,
    其中,所述N为所述发送单元发送所述第一PRACH前导码的个数,所述T1为所述发送单元开始发送所述第一PRACH前导码至开始接收所述AI的第一时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数。
  10. 根据权利要求8所述的UE,其特征在于,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述处理单元确定的所述最小时间间距为Tmin=(X*N+X*M+X)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述处理单元确定的所述最小时间间距为Tmin=(X*N+X*M+X*2)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为0时,所述处理单元确定的所述最小时间间距为Tmin=(Y*N+Z*M+10240)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为1时,所述处理单元确定的所述最小时间间距为Tmin=(Y*N+Z*M+15360)个码片;
    其中,所述N为所述发送单元发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,所述Tmin为所述发送单元开始发送所述N个第一PRACH前导码至开始发送所述N个第二PRACH前导码的最小时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
  11. 根据权利要求8所述的UE,其特征在于,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述处理单元确定的所述第二时间间距为T2=(X*N+X*M+X)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述处理单元确定的所述第二时间间距为T2=(X*N+X*M+X*2)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为0时,所述处理单元确定的所述第二时间间距为T2=(Y*N+Z*M+10240)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为1时,所述处理单元确定的所述第二时间间距为T2=(Y*N+Z*M+15360)个码片;
    其中,所述N为所述发送单元发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,T2为所述发送单元开始发送所述N个第一PRACH前导码至开始发送所述PRACH消息的第二时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
  12. 根据权利要求8所述的UE,其特征在于,当所述AI的重复发送方式为第一重复方式时,所述处理单元确定的所述第三时间间距为T3=(X*M+5120+256*S+T)个码片;或者,
    当所述AI的重复发送方式为第二重复方式时,所述处理单元确定的所述第三时间间距为T3=(Z*M+5120+256*S+T)个码片;
    其中,所述X为一个所述接入时隙占用的码片数,所述M为所述网络侧设备发送所述AI的个数,所述T3为所述发送单元开始接收所述M个AI至开始发送所述PRACH消息的第三时间间距,所述S为符号偏置,所述S为0至9中的任一整数,所述T为上下行时间差,所述T为1024个码片;所述Z 为一个所述AI占用的码片数。
  13. 根据权利要求6所述的UE,其特征在于,所述接收单元用于接收所述网络侧设备发送的承载上行TPC命令的F-DPCH,包括:所述接收单元接收所述网络侧设备发送的承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数,所述L为所述网络侧设备发送所述第一上行TPC命令的个数;
    所述处理单元还用于,将接收的所述L个第一上行TPC命令进行合并,获得合并后的第一上行TPC命令;以及根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率。
  14. 根据权利要求13所述的UE,其特征在于,所述处理单元用于根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率,包括:所述处理单元用于,当所述接收单元接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值时,根据所述合并后的第一上行TPC命令,从所述第一上行时隙开始调整发送所述PRACH消息的功率;当所述接收单元接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与所述第一上行时隙开始的时间之差小于或等于所述第一预设值时,根据所述合并后的第一上行TPC命令,从第二上行时隙开始调整发送所述PRACH消息的功率;
    其中,所述第一上行时隙为所述接收单元接收所述最后一个第一上行TPC命令之后所述发送单元开始发送上行导频序列所在的上行时隙,所述第二上行时隙为所述第一上行隙的下一个上行时隙。
  15. 根据权利要求13或14所述的UE,其特征在于,所述接收单元用于接收所述网络侧设备发送的承载L个所述第一上行TPC命令的F-DPCH,包括:所述接收单元用于接收所述网络侧设备在连续的所述L个下行时隙上发送的承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,接收所述网络侧设备发送的连续承载所述L个第一上行TPC命令的F-DPCH。
  16. 根据权利要求4所述的UE,其特征在于,所述PRACH控制消息承载第一下行TPC命令,所述发送单元用于向所述网络侧设备发送所述PRACH控制消息,包括:所述发送单元用于在连续的H个上行时隙上向所述网络侧 设备发送承载H个所述第一下行TPC命令的控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令。
  17. 一种网络侧设备,其特征在于,包括:
    接收单元,用于接收用户设备UE根据第一物理随机接入信道PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,所述N为大于或等于2的整数;
    发送单元,用于根据捕获指示AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI。
  18. 根据权利要求17所述的网络侧设备,其特征在于,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,所述接收单元具体用于,接收所述UE在所述N个连续的接入时隙中发送的所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,所述接收单元具体用于,接收接收所述UE连续发送的所述N个第一PRACH前导码。
  19. 根据权利要求17或18所述的网络侧设备,其特征在于,当所述AI的重复发送方式为第一重复发送方式时,所述发送单元具体用于在所述M个连续的接入时隙中向所述UE发送所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
    当所述M个AI的重复发送方式为第二重复发送方式时,所述发送单元具体用于向所述UE连续发送所述M个AI。
  20. 根据权利要求17-19任意一项所述的网络侧设备,其特征在于,所述接收单元还用于在所述发送单元根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI之后,接收所述UE发送的PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
  21. 根据权利要求20所述的网络侧设备,其特征在于,所述发送单元还用于在根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI之后,向所述UE发送承载上行传输功率控制TPC命令的碎形专用物理信道F-DPCH。
  22. 根据权利要求21所述的网络侧设备,其特征在于,所述发送单元用 于向所述UE发送承载上行TPC命令的F-DPCH,包括:所述发送单元用于向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数。
  23. 根据权利要求22所述的网络侧设备,其特征在于,所述发送单元用于向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,包括:所述发送单元用于在连续的所述L个下行时隙上向所述UE发送承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,向所述UE发送连续承载所述L个第一上行TPC命令的F-DPCH。
  24. 根据权利要求22或23所述的网络侧设备,其特征在于,还包括:处理单元;
    所述接收单元用于接收所述UE发送的PRACH控制消息,包括:所述接收单元用于接收所述UE在连续的H个上行时隙上发送的承载H个所述第一下行TPC命令和上行导频序列的PRACH控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令和一个上行导频序列;
    所述处理单元,用于将所述接收单元接收的所述H个第一下行TPC命令进行合并,获取合并后的第一下行TPC命令;以及根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率。
  25. 根据权利要求24所述的网络侧设备,其特征在于,所述处理单元用于根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率,包括:所述处理单元用于,当所述接收单元接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与第一下行时隙开始的时间之差大于第二预设值时,从所述第一下行时隙开始调整发送所述F-DPCH的功率;当所述接收单元接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与所述第一下行时隙开始的时间之差小于或等于所述第二预设值时,从第二上行时隙开始调整发送所述F-DPCH的功率;其中,所述第一下行时隙为所述接收单元接收所述最后一个第一下行TPC命令的时间所在下行时隙的下一个下行时隙,所述第二下行时隙为所述第一下行时隙的下一个下行时隙。
  26. 一种定时传输方法,其特征在于,包括:
    用户设备UE根据第一物理随机接入信道PRACH前导码的重复发送方式,向网络侧设备发送N个第一PRACH前导码,所述N为大于或等于2的整数;
    所述UE至少根据所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的捕获指示AI的时间;
    所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI,所述M为大于或等于2的整数。
  27. 根据权利要求26所述的方法,其特征在于,
    所述UE至少根据发送所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式,确定接收所述网络侧设备发送的与所述第一PRACH前导码对应的捕获指示AI的时间,包括:所述UE根据所述UE发送所述第一PRACH前导码的个数、所述第一PRACH前导码的重复发送方式和捕获指示信道AICH传输定时参数指示,确定所述UE开始发送所述N个第一PRACH前导码至所述UE开始接收所述M个AI的第一时间间距;
    所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送M次的AI,包括:所述UE在开始发送所述第一PRACH前导码后,间隔所述第一时间间距开始接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI。
  28. 根据权利要求26或27所述的方法,其特征在于,
    当所述UE未成功接收到所述网络侧设备发送的与所述第一PRACH前导码对应的AI时,所述UE根据所述UE发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述前导码的重复发送方式、所述AI的重复发送方式和所述AICH传输定时参数指示,确定所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述N个第二PRACH前导码的最小时间间距,所述第二PRACH前导码为所述第一PRACH前导码的下一个不同的PRACH前导码;
    所述UE根据所述最小时间间距、所述第二PRACH前导码的重复发送方式,增加功率向所述网络侧设备发送所述N个第二PRACH前导码,其中, 所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述N个第二PRACH前导码的时间间距大于或等于所述最小时间间距。
  29. 根据权利要求26-28任意一项所述的方法,其特征在于,所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的M个AI之后,还包括:
    所述UE至少根据所述网络侧设备发送所述AI的个数M、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间;
    所述UE根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
  30. 根据权利要求29所述的方法,其特征在于,所述UE至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:所述UE根据所述UE发送所述第一PRACH前导码的个数、所述网络侧设备发送所述AI的个数、所述第一PRACH前导码的重复发送方式、所述AI的PRACH重复发送方式和所述AICH传输定时参数指示,确定所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述PRACH消息的第二时间间距;
    所述UE根据发送所述PRACH消息的时间,向所述网络侧设备发送所述PRACH消息,包括:所述UE在开始发送所述N个第一PRACH前导码后,间隔所述第二时间间距开始向所述网络侧设备发送所述PRACH消息。
  31. 根据权利要求29所述的方法,其特征在于,所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI之后,还包括:所述UE接收所述网络侧设备发送的承载上行传输功率控制TPC命令的碎形专用物理信道F-DPCH;
    所述UE至少根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定向所述网络侧设备发送PRACH消息的时间,包括:所述UE根据所述网络侧设备发送所述AI的个数、所述AI的重复发送方式,确定所述UE开始接收所述M个AI至所述UE开始发送所述PRACH消息的第三时间间距;
    所述UE根据发送所述PRACH消息的时间,向所述网络侧设备发送所述 PRACH消息,包括:所述UE在开始接收所述M个AI后,间隔所述第三时间间距开始向所述网络侧设备发送所述PRACH消息。
  32. 根据权利要求26-31任意一项所述的方法,其特征在于,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,所述UE根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述UE在所述N个连续的接入时隙中向所述网络侧设备发送所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,所述UE根据第一PRACH前导码的重复发送方式,向网络侧设备发送所述N个第一PRACH前导码,包括:所述UE向所述网络侧设备连续发送N个所述第一PRACH前导码。
  33. 根据权利要求26-32任意一项所述的方法,其特征在于,当所述AI的重复发送方式为第一重复发送方式时,所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述UE根据接收所述AI的时间,接收所述网络侧设备在所述M个连续的接入时隙中发送的所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
    当所述M个AI的重复发送方式为第二重复发送方式时,所述UE根据接收所述AI的时间,接收所述网络侧设备根据所述AI的重复发送方式发送的所述M个AI,包括:所述UE根据接收所述AI的时间,接收所述网络侧设备连续发送的所述M个AI。
  34. 根据权利要求32或33所述的方法,其特征在于,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AICH传输定时参数指示为0时,所述第一时间间距为T1=(X*N+2560)个码片;或者,
    当所述第一PRACH前导码的发送方式为第一重复发送方式、所述AICH传输定时参数指示为1时,所述第一时间间距为T1=(X*N+7680)个码片;或者,
    当所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为0,所述第一时间间距为T1=(Y*N+5120)个码片;或 者,
    若所述第一PRACH前导码的发送方式为第二重复发送方式、所述AICH传输定时参数指示为1时,所述第一时间间距为T1=(Y*N+10240)个码片;或者,
    其中,所述N为所述UE发送所述第一PRACH前导码的个数,所述T1为所述UE开始发送所述第一PRACH前导码至所述UE开始接收所述AI的第一时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数。
  35. 根据权利要求33所述的方法,其特征在于,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述最小时间间距为Tmin=(X*N+X*M+X)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述最小时间间距为Tmin=(X*N+X*M+X*2)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为0时,所述最小时间间距为Tmin=(Y*N+Z*M+10240)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AI传输定时参数指示为1时,所述最小时间间距为Tmin=(Y*N+Z*M+15360)个码片;
    其中,所述N为所述UE发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,所述Tmin为所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述N个第二PRACH前导码的最小时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
  36. 根据权利要求33所述的方法,其特征在于,当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为0时,所述第二时间间距为T2=(X*N+X*M+X)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第一重复发送方式、所述AI的重复发送方式为第一重复发送方式和所述AICH传输定时参数指示为1时,所述第二时间间距为T2=(X*N+X*M+X*2)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为0时,所述第二时间间距为T2=(Y*N+Z*M+10240)个码片;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式、所述AI的重复发送方式为第二重复发送方式和所述AICH传输定时参数指示为1时,所述第二时间间距为T2=(Y*N+Z*M+15360)个码片;
    其中,所述N为所述UE发送所述第一PRACH前导码的个数,所述M为所述网络侧设备发送所述AI的个数,T2为所述UE开始发送所述N个第一PRACH前导码至所述UE开始发送所述PRACH消息的第二时间间距,所述X为一个所述接入时隙的码片数,所述Y为一个所述第一PRACH前导码占用的码片数,所述Z为一个所述AI占用的码片数。
  37. 根据权利要求33所述的方法,其特征在于,当所述AI的重复发送方式为第一重复方式时,所述第三时间间距为T3=(X*M+5120+256*S+T)个码片;或者,
    当所述AI的重复发送方式为第二重复方式时,所述第三时间间距为T3=(Z*M+5120+256*S+T)个码片;
    其中,所述X为一个所述接入时隙占用的码片数,所述M为所述网络侧设备发送所述AI的个数,所述T3为所述UE开始接收所述M个AI至所述UE开始发送所述PRACH消息的第三时间间距,所述S为符号偏置,所述S为0至9中的任一整数,所述T为上下行时间差,所述T为1024个码片;所述Z为一个所述AI占用的码片数。
  38. 根据权利要求31所述的方法,其特征在于,所述UE接收所述网络侧设备发送的承载上行TPC命令的F-DPCH,包括:所述UE接收所述网络侧设备发送的承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数,所述L为所述网络侧设备发送所述第一上行TPC命令的个数;
    所述方法还包括:所述UE将接收的所述L个第一上行TPC命令进行合并,获得合并后的第一上行TPC命令;所述UE根据所述合并后的第一上行 TPC命令,调整发送所述PRACH消息的功率。
  39. 根据权利要求38所述的方法,其特征在于,所述UE根据所述合并后的第一上行TPC命令,调整发送所述PRACH消息的功率,包括:
    当所述UE接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与第一上行时隙开始的时间之差大于第一预设值时,所述UE根据所述合并后的第一上行TPC命令,从所述第一上行时隙开始调整发送所述PRACH消息的功率;当所述UE接收所述L个第一上行TPC命令中最后一个第一上行TPC命令的时间与所述第一上行时隙开始的时间之差小于或等于所述第一预设值时,所述UE根据所述合并后的第一上行TPC命令,从第二上行时隙开始调整发送所述PRACH消息的功率;
    其中,所述第一上行时隙为所述UE接收所述最后一个第一上行TPC命令之后开始发送上行导频序列所在的上行时隙,所述第二上行时隙为所述第一上行隙的下一个上行时隙。
  40. 根据权利要求38或39所述的方法,其特征在于,所述UE接收所述网络侧设备发送的承载L个所述第一上行TPC命令的F-DPCH,包括:
    所述UE接收所述网络侧设备在连续的所述L个下行时隙上发送的承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,
    所述UE接收所述网络侧设备发送的连续承载所述L个第一上行TPC命令的F-DPCH。
  41. 根据权利要求29所述的方法,其特征在于,所述PRACH控制消息承载第一下行TPC命令,所述UE向所述网络侧设备发送所述PRACH控制消息,包括:
    所述UE在连续的H个上行时隙上向所述网络侧设备发送承载H个所述第一下行TPC命令的控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令。
  42. 一种定时传输方法,其特征在于,包括:
    网络侧设备接收用户设备UE根据第一物理随机接入信道PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,所述N为大于或等于2的整数;
    所述网络侧设备根据捕获指示AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI。
  43. 根据权利要求42所述的方法,其特征在于,当所述第一PRACH前导码的重复发送方式为第一重复发送方式时,所述网络侧设备接收UE根据第一PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,包括:所述网络侧设备接收所述UE在所述N个连续的接入时隙中发送的所述N个第一PRACH前导码,其中,每个所述接入时隙中发送一个所述第一PRACH前导码;或者,
    当所述第一PRACH前导码的重复发送方式为第二重复发送方式时,所述网络侧设备接收UE根据第一PRACH前导码的重复发送方式,发送的N个第一PRACH前导码,包括:所述网络侧设备接收所述UE连续发送的所述N个第一PRACH前导码。
  44. 根据权利要求42或43所述的方法,其特征在于,当所述AI的重复发送方式为第一重复发送方式时,所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI,包括:所述网络侧设备在所述M个连续的接入时隙中向所述UE发送所述M个AI,其中,每个所述接入时隙中发送一个所述AI;或者,
    当所述M个AI的重复发送方式为第二重复发送方式时,所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI,包括:所述网络侧设备向所述UE连续发送所述M个AI。
  45. 根据权利要求42-44任意一项所述的方法,其特征在于,所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI之后,还包括:
    所述网络侧设备接收所述UE发送的PRACH消息;其中,所述PRACH消息包括数据PRACH消息和控制PRACH消息。
  46. 根据权利要求45所述的方法,其特征在于,所述网络侧设备根据AI的重复发送方式,向所述UE发送M个与所述第一PRACH前导码对应的AI之后,还包括:
    所述网络侧设备向所述UE发送承载上行传输功率控制TPC命令的碎形专用物理信道F-DPCH。
  47. 根据权利要求46所述的方法,其特征在于,所述网络侧设备向所述UE发送承载上行TPC命令的F-DPCH,包括:
    所述网络侧设备向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,所述L为大于或等于2的整数。
  48. 根据权利要求47所述的方法,其特征在于,所述网络侧设备向所述UE发送承载L个第一上行TPC命令的所述F-DPCH,包括:
    所述网络侧设备在连续的所述L个下行时隙上向所述UE发送承载所述L个第一上行TPC命令的F-DPCH,其中,每个下行时隙中传输一个所述第一上行TPC命令;或者,所述网络侧设备向所述UE发送连续承载所述L个第一上行TPC命令的F-DPCH。
  49. 根据权利要求47或48所述的方法,其特征在于,所述网络侧设备接收所述UE发送的PRACH控制消息,包括:所述网络侧设备接收所述UE在连续的H个上行时隙上发送的承载H个所述第一下行TPC命令和上行导频序列的PRACH控制消息,其中,所述H为大于或等于2,每个上行时隙中传输一个所述第一下行TPC命令和一个上行导频序列;
    所述方法还包括:所述网络侧设备将接收的所述H个第一下行TPC命令进行合并,获取合并后的第一下行TPC命令;所述网络侧设备根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率。
  50. 根据权利要求49所述的方法,其特征在于,所述网络侧设备根据所述合并后的第一下行TPC命令,调整发送所述F-DPCH的功率,包括:
    当所述网络侧设备接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与第一下行时隙开始的时间之差大于第二预设值时,所述网络侧设备从所述第一下行时隙开始调整发送所述F-DPCH的功率;当所述网络侧设备接收所述H个第一下行TPC命令中最后一个第一下行TPC命令的时间与所述第一下行时隙开始的时间之差小于或等于所述第二预设值时,所述网络侧设备从第二上行时隙开始调整发送所述F-DPCH的功率;其中,所述第一下行时隙为所述网络侧设备接收所述最后一个第一下行TPC命令的时间所在下行时隙的下一个下行时隙,所述第二下行时隙为所述第一下行时隙的下一个下行时隙。
PCT/CN2014/085931 2014-09-04 2014-09-04 定时传输方法和设备 WO2016033778A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480009921.2A CN105580482A (zh) 2014-09-04 2014-09-04 定时传输方法和设备
PCT/CN2014/085931 WO2016033778A1 (zh) 2014-09-04 2014-09-04 定时传输方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/085931 WO2016033778A1 (zh) 2014-09-04 2014-09-04 定时传输方法和设备

Publications (1)

Publication Number Publication Date
WO2016033778A1 true WO2016033778A1 (zh) 2016-03-10

Family

ID=55439025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085931 WO2016033778A1 (zh) 2014-09-04 2014-09-04 定时传输方法和设备

Country Status (2)

Country Link
CN (1) CN105580482A (zh)
WO (1) WO2016033778A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10420032B2 (en) 2015-01-30 2019-09-17 Huawei Technologies Co., Ltd. Preamble sequence sending method and apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109152008A (zh) * 2017-06-15 2019-01-04 华为技术有限公司 一种消息发送方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101822114A (zh) * 2007-08-01 2010-09-01 诺基亚西门子通信公司 资源分配
CN103202057A (zh) * 2010-11-08 2013-07-10 高通股份有限公司 用于无线接入网络过载控制的系统和方法
US20130208668A1 (en) * 2011-08-16 2013-08-15 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced Dedicated-Channel Signaling in a CELL_FACH State

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9906198D0 (en) * 1999-03-18 1999-05-12 Lucent Technologies Inc Improved random access channel
JP4244670B2 (ja) * 2003-03-19 2009-03-25 日本電気株式会社 移動通信システム、無線基地局装置及びその動作制御方法
US20070211671A1 (en) * 2006-03-09 2007-09-13 Interdigital Technology Corporation Method and apparatus for a flexible preamble and efficient transmission thereof
EP2101509A4 (en) * 2006-12-28 2012-08-29 Fujitsu Ltd WIRELESS COMMUNICATION SYSTEM, BASE STATION AND DIRECT ACCESS CHANNEL TRANSMISSION METHOD
CN102264149B (zh) * 2010-05-26 2014-08-13 中兴通讯股份有限公司 一种宽带码分多址系统终端随机接入方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101822114A (zh) * 2007-08-01 2010-09-01 诺基亚西门子通信公司 资源分配
CN103202057A (zh) * 2010-11-08 2013-07-10 高通股份有限公司 用于无线接入网络过载控制的系统和方法
US20130208668A1 (en) * 2011-08-16 2013-08-15 Telefonaktiebolaget Lm Ericsson (Publ) Enhanced Dedicated-Channel Signaling in a CELL_FACH State

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
3GPP TSG: "Phvsical Channels and Mapping of Transport Channels onto Physical Channels (FDD", 3GPP TS 25, 211 V11.5.0, 30 June 2014 (2014-06-30) *
ALCATEL -LUCENT ET AL.: "Node B TTI Indication for 2/10 ms TTI Concurrent Operations in CELLFACH", 3GPP TSGRAN WGI MEETING #67, R1-114038, 14 November 2011 (2011-11-14) *
ERICSSON: "Text Proposal for AICH", TSGRAN WORKING GROUP 1 MEETING #5, RL#5 (99) 645, 1 June 1999 (1999-06-01) *
QUALCOMM INC.: "Overload Control by Rejecting Access Attempts", 3GPP TSGRAN WG2 MEETING#72, R2-106685, 15 November 2010 (2010-11-15) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10420032B2 (en) 2015-01-30 2019-09-17 Huawei Technologies Co., Ltd. Preamble sequence sending method and apparatus

Also Published As

Publication number Publication date
CN105580482A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN104641716B (zh) 在随机接入过程期间在移动终端与基站之间通信的方法和设备
EP2543218B1 (en) System and method for timing and frequency synchronization by a femto access point
US10212573B2 (en) Coverage-deficient terminal connection procedures
US9420565B2 (en) Method and device for transmitting data in non-scheduled manner
JP2018511236A (ja) 物理ランダムアクセスチャネル送信のための繰返しレベルカバレージ拡張技法
CN112586052B (zh) 用于空闲模式传输的预配置专用资源
MX2010013885A (es) Metodo y aparato para control de potencia de primera transmision de datos en procedimiento de acceso aleatorio de sistema de comunicacion fdma.
AU2021203632B2 (en) Power control enhancement for random access
CN104184548A (zh) 随机接入序列传输方法和装置
EP2876964B1 (en) Access method, equipment, and system
US20210219350A1 (en) Random access method and communications apparatus
US9585173B2 (en) Communications system, communications method, mobile communications terminal, and base station
US20210289561A1 (en) Transmission method and apparatus
US20230122044A1 (en) Method and device for communicating with a selected transport block size
KR20190022643A (ko) 랜덤 액세스 프리앰블 전송 방법 및 기기
CN115699951A (zh) 无线通信的方法和终端设备
CN111919465A (zh) 用于早期传输数据的传输块大小选择
CN113228765B (zh) 用于唤醒信号的方法和装置
WO2016033778A1 (zh) 定时传输方法和设备
WO2016033989A1 (zh) 信息传输方法、用户侧设备及网络侧设备
CN117119589A (zh) 无线通信的方法、装置以及计算机可读程序存储介质
WO2022183406A1 (zh) 传输数据信道的方法、终端设备和网络设备
CN113747574A (zh) 数据传输方法及装置
CN111757526A (zh) 一种随机接入方法、终端及网络侧设备
WO2022247578A1 (zh) 一种数据传输方法及通信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480009921.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14901188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14901188

Country of ref document: EP

Kind code of ref document: A1