WO2016033327A1 - E. coli-based production of beta-lactamase - Google Patents

E. coli-based production of beta-lactamase Download PDF

Info

Publication number
WO2016033327A1
WO2016033327A1 PCT/US2015/047187 US2015047187W WO2016033327A1 WO 2016033327 A1 WO2016033327 A1 WO 2016033327A1 US 2015047187 W US2015047187 W US 2015047187W WO 2016033327 A1 WO2016033327 A1 WO 2016033327A1
Authority
WO
WIPO (PCT)
Prior art keywords
beta
lactamase
grams
seq
lactamase polypeptide
Prior art date
Application number
PCT/US2015/047187
Other languages
French (fr)
Inventor
Andrew BRISTOL
Michael Kaleko
Original Assignee
Synthetic Biologics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Synthetic Biologics, Inc. filed Critical Synthetic Biologics, Inc.
Priority to CA2958755A priority Critical patent/CA2958755C/en
Priority to AU2015308897A priority patent/AU2015308897B2/en
Priority to US15/506,342 priority patent/US11034966B2/en
Priority to EP15836229.3A priority patent/EP3186379B1/en
Priority to CN201580042206.3A priority patent/CN106574273B/en
Priority to JP2017507851A priority patent/JP6803328B2/en
Publication of WO2016033327A1 publication Critical patent/WO2016033327A1/en
Priority to US17/314,583 priority patent/US11542510B2/en
Priority to US18/060,797 priority patent/US20230279409A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/78Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • C12N9/86Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in cyclic amides, e.g. penicillinase (3.5.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y305/00Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5)
    • C12Y305/02Hydrolases acting on carbon-nitrogen bonds, other than peptide bonds (3.5) in cyclic amides (3.5.2)
    • C12Y305/02006Beta-lactamase (3.5.2.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/75Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to, in part, improved methods for the production of beta-lactamases using Escherichia coli (E. coli) cells.
  • High yield production of beta-lactamase is achieved using methods of the invention.
  • Beta-lactam antibiotics are characterized by a beta-lactam ring in their molecular structure.
  • the integrity of the beta-lactam ring is essential for the biological activity, which results in the inactivation of a set of transpeptidases that catalyze the final cross-linking reactions of peptidoglycan synthesis.
  • Members of the beta-lactam antibiotics family include penicillins, cephalosporins, clavams (or oxapenams), cephamycins and carbapenems.
  • Beta-lactamases are bacterial defensive enzymes that hydrolyze beta-lactam antibiotics. Gram-negative bacteria produce beta-lactamases to achieve resistance to beta-lactam antibiotics. Particularly, beta-lactamases are able to efficiently catalyze the irreversible hydrolysis of the amide bond of the beta-lactam ring resulting in biologically inactive product(s).
  • Humans may be considered to be a "superorganism” which is a conglomerate of mammalian and microbial cells, with the latter estimated to outnumber the former by ten to one.
  • This microbial component, and its microbial genetic repertoire, the microbiome is roughly 100-times greater than that of the human host. Strikingly, despite this enormous diversity of foreign organisms, the human immune system generally maintains a state of synergy. This is particularly true of the distal Gl tract, which houses up to 1000 distinct bacterial species and an estimated excess of 1 x10 14 microorganisms, and appears to be central in defining human host health status. Loss of the careful balance in the microbiome, especially in the Gl tract, can lead to various diseases.
  • Antibiotic medical treatments which are needed to treat certain aspects of disease, can induce disruption in the microbiome, including in the Gl tract, and lead to further disease.
  • certain parentally administered beta-lactams like ampicillin, ceftriaxone, cefoperazone, and piperacillin are, in part, eliminated via biliary excretion into the proximal part of the small intestine (duodenum).
  • Residual unabsorbed beta-lactams in the intestinal tract may cause an undesirable effect on the ecological balance of normal intestinal microbiota resulting in, for example, Clostridium difficile infection (CDI), antibiotic-associated diarrhea, overgrowth of pathogenic bacteria such as vancomycin resistant enterococci (VRE), extended-spectrum beta-lactamase producing Gram- negative bacilli (ESBL), and fungi, and selection of antibiotic-resistance strains among both normal intestinal microbiota and potential pathogen bacteria.
  • CDI Clostridium difficile infection
  • VRE vancomycin resistant enterococci
  • ESBL extended-spectrum beta-lactamase producing Gram- negative bacilli
  • fungi selection of antibiotic-resistance strains among both normal intestinal microbiota and potential pathogen bacteria.
  • One approach for avoiding or rebalancing the ecological balance of normal intestinal microbiota is the therapeutic use of beta-lactamases, for example, by inactivating excreted or unabsorbed antibiotics in the Gl tract, thereby maintaining a normal intestinal microbiota and preventing its overgrowth with potentially pathogenic microorganisms.
  • the present invention provides an improved method for the production of a beta-lactamase polypeptide in Escherichia coii (E. coii) cells.
  • the method includes providing a host £ coii cell transformed with a vector comprising a sequence encoding the beta-lactamase polypeptide.
  • the £ coii cell is cultured to induce expression of the beta-lactamase in the cytoplasm. Soluble fractions are subsequently prepared from the £. coii cell to recover the beta-lactase polypeptide.
  • the methods of the invention allows for production of beta-lactamases at a high yield.
  • the method yields at least 10 grams of the beta-lactamase polypeptide per liter of culture. In another embodiment, the method yields at least 15 grams of the beta-lactamase polypeptide per liter of culture.
  • the £ coii cell may be selected from BL21 (DE3) or W3110.
  • the beta-lactamase polypeptide is predominantly expressed in the cytoplasm of the £ coii cell.
  • expression of the polypeptide is induced by adding isopropylthiogalactoside (IPTG) to the culture.
  • the disclosed method may be utilized to produce beta-lactamases and derivatives thereof.
  • the beta-lactamase polypeptide comprises a sequence having at least 60% identity with P1A.
  • the beta-lactamase polypeptide comprises a sequence having at least 60% identity with P2A.
  • the beta-lactamase polypeptide comprises a sequence having at least 60% identity with P3A.
  • the beta-lactamase polypeptide comprises a sequence having at least 60% identity with P4A.
  • the present methods are used to produce beta-lactamases useful for microbiome-protecting therapy.
  • Fig. 1 shows a multi-fermenter computer system (MFCS) CLD977 fermentation plot of batch age (hours) vs. airflow (AIRFL (l/min), second line from top), temperature (TEMP (°C), top line), stirring rate (STIRR (RPM), second line from the bottom), pH (third line), and percent oxygen (PO2, bottom line).
  • MFCS multi-fermenter computer system
  • Fig. 2 shows a MFCS CLD990 fermentation plot of batch age (hours) vs. airflow (AIRFL (l/min), second line from top), temperature (TEMP (°C), top line), stirring rate (STIRR (RPM), second line from the bottom), pH (third line), and percent oxygen (PO2, bottom line).
  • Fig. 3 shows a MFCS fermentation exit gas analysis plot of batch age (hours) vs. CLD977 (3/13C039) and CLD990 (4/13C040) oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER) (mM/l/hr). Labeled from left to right, the first line corresponds to CLD977 OUR, the second line corresponds to CLD977 CER, the third line corresponds to CLD990 OUR and the fourth line corresponds to CLD990 CER.
  • OUR oxygen uptake rate
  • CER carbon dioxide evolution rate
  • Fig. 4 shows a biomass plot for CLD977 (3/13C039) and CLD990 (4/13C040) of batch time (hours) vs. OD 60 o and dry cell weight (DCW (g/L)).
  • CLD977 OD600 and DCW lines correspond to the top line and second from bottom line, respectively.
  • CLD990 OD 6 oo and DCW lines correspond to the second from top line and bottom line, respectively.
  • Fig. 5 shows bacterial gram stains for CLD977 and CLD990 at the end of batch phase and after fermentation is complete (final sample).
  • Fig. 6 shows SDS PAGE analysis of CLD977 (3/13C039) time course samples from pre-induction to the end of fermentation compared to control standards.
  • Fig. 7 shows SDS PAGE analysis of CLD990 (4/13C040) time course samples from pre-induction to the end of fermentation compared to control standards.
  • Fig. 8 shows SDS PAGE analysis of sonicated samples from CLD977 (3/13C039) and CLD990 (4/13C040) compared to control standards.
  • CLD977 and CLD990 yielded mostly soluble protein. Only faint product bands are seen for the insoluble fraction.
  • Fig. 9 shows a standard curve of Time (sec) vs. Absorbance for Controls 1 and 2 as well as reference standard dilutions of 0.6, 0.8, 1.0, 1.5, 2.0, and 4 mg/L. Controls 1 and 2 were preset dilutions of 1.0 ⁇ g/mL ran as duplicates.
  • Fig. 11 shows a standard curve of Time (sec) vs. Absorbance for CLD981 (3/13C037 (also referred to as 37)) at 12 hours, 24 hours, 48 hours, as well as the periplasmic osmotic shock fraction (OS2).
  • OS2 is the second buffer fraction prepared from an E. coli pellet and represents the periplasmic space fraction.
  • Fig. 12 shows a standard end point curve of Time (sec) vs. Absorbance for CLD981 (3/13C037) OS1 samples.
  • Fig. 13 shows a standard curve of Time (sec) vs. Absorbance for CLD982 (4/13C038 (also referred to as 38)) 12h, 24h, 48h, and OS1 and OS2 48h post induction.
  • Fig. 14 shows a standard curve of Time (sec) vs. Absorbance for Control 1 and 2 (combined into control standard) as well as reference standard material dilutions of 0.6, 0.8, 1.0, 1.5, 2.0, and 4 mg/L.
  • Fig. 16 shows a standard curve of Time (sec) vs. Absorbance for CLD981 (37) and CLD982 (38) OS1 and OS2 48h post induction.
  • Table 3 is a summary of assay plate 2 activity and titer results for CLD981 and CLD982 OS1 and OS2 along with controls 1 and 2.
  • Fig. 17 shows a standard curve of Time (sec) vs. Absorbance for Control 1 and 2 (combined as control standard) as well as reference standard material dilutions of 0.6, 0.8, 1.0, 1.5, 2.0, and 4 mg/L.
  • the present invention is based, in part, on the surprising discovery that a beta-lactamase polypeptide can be overproduced in high yields in £ coli cells. Specifically, high yield production is achieved by expressing the polypeptide in the cytoplasm of £ coli cells and subsequently recovering the polypeptide from soluble fractions prepared from the cells.
  • beta-lactamases such as the beta-lactamase from Bacillus licheniformis
  • beta-lactamase from Bacillus licheniformis is found to be completely absent in the cytoplasm. Id.
  • beta-lactamases from £ coli cells has generally been inefficient leading to an overall yield on the scale of milligrams of the enzyme per liter of culture. See, for example, Shaw ei a/., Protein Expr Purif. (1991), 2(2-3): 151-157. Given that the beta-lactamses are from Bacillus licheniformis, it is expected that production of these enzymes in Bacillus strains may provide a higher yield. However, studies shown herein demonstrate that even when produced in Bacillus subtilis cells, the yield of beta-lactamases is low. Accordingly, it is surprising that the present invention achieves an overall yield of beta-lactamases on the scale of grams per liter of culture.
  • the present invention provides an improved method for the production of a beta-lactamase polypeptide in Escherichia coli (E. coli) cells.
  • the method includes providing a host £ coli cell transformed with a vector comprising a sequence encoding the beta-lactamase polypeptide.
  • the £ coli cell is cultured to induce expression of the beta-lactamase in the cytoplasm. Soluble fractions are subsequently prepared from the £ coli cell for recovery of the beta-lactase polypeptide.
  • the present invention allows for high-yield production of a beta-lactamase polypeptide in £ coli cells.
  • methods of the present invention provides a yield of at least about 1 gram, about 2 grams, about 3 grams, about 4 grams, about 5 grams, about 6 grams, about 7 grams, about 8 grams, about 9 grams, about 10 grams, about 11 grams, about 12 grams, about 13 grams, about 14 grams, about 15 grams, about 16 grams, about 17 grams, about 18 grams, about 19 grams, about 20 grams, about 22 grams, about 24 grams, about 26 grams, about 28 grams, about 30 grams, about 35 grams, about 40 grams, about 45 grams, or about 50 grams of the beta-lactamase polypeptide per liter of culture.
  • At least about 10 grams of the beta- lactase polypeptide per liter of culture is recovered. In another embodiment, about at least 15 grams of the beta- lactase polypeptide per liter of culture is recovered. In a further embodiment, at least about 18 grams of the beta- lactase polypeptide per liter of culture is recovered.
  • the present methods provide one or more of greater yield and improved purity as compared to a 6ac/7/us-based expression system such as, for example, those described in US Patent No. 7,319,030, the entire contents of which are hereby incorporated by reference.
  • the present methods provide one or more of greater yield and improved purity as compared to a method for producing a desired polypeptide product using a non-sporulating Bacillus subtilis strain, in which a deletion region of at least 150 nucleotides has been deleted from its sigG gene, the method involving transforming the strain with a polynucleotide construct encoding a recombinant polypeptide, expressing the polynucleotide construct, and recovering the recombinant polypeptide.
  • the method comprises deleting at least part of either of the two functional regions of the sigG gene (i.e. the regions which code for amino acids 67 to 80 or 229 to 248).
  • the present methods provide about a 5-fold, or about a 7.5-fold, or about a 10-fold, or about a 15-fold improvement in yield in E. coli versus a 6ac/7/us-based expression system such as, for example, those described in US Patent No. 7,319,030.
  • E. coli cell can be used with the present invention.
  • Illustrative E. coli cells include, but are not limited to, BL21 (DES), W3110, DH5a, HMS174, and derivatives thereof.
  • the E. coli cell is the BL21 (DES) strain.
  • the E. coli cell is W3110 strain.
  • the genotype of W3110 is E coli K12 F-, ⁇ - , IN (rrnD-rrnE)l , rph-1. It is a Gram negative, rod-shaped, facultative anaerobe, and its genealogy is well described (Bachmann, BJ 1972. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol.Rev. 36(4):525-57). There have been no modifications of this strain prior to transformation with the B3214 plasmid.
  • the present invention is used to produce beta-lactamase polypeptides at a high yield.
  • the beta-lactamases polypeptide has the sequence of SEQ ID NO: 1 (Bacillus licheniformis PenP, i.e., P1A) or is derived by one or more mutations of SEQ ID NO: 1.
  • SEQ ID NO: 1 Bacillus licheniformis PenP, i.e., P1A
  • SEQ ID NO: 1 Bacillus licheniformis PenP, i.e., P1A
  • SEQ ID NO: 1 Bacillus licheniformis PenP, i.e., P1A
  • SEQ ID NO: 3 the 263 amino acid sequence of the P1A enzyme (after removal of a 31 amino acid signal sequence and the QASKT (Gln-Ala-Ser-Lys-Thr) pentapeptide at the N terminus, see SEQ ID NO: 3).
  • mutations may be made to this sequence to generate beta-
  • the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 1.
  • SEQ ID NO: 1 may have a Met and/or Thr preceding the first residue of the sequence.
  • the Met may be cleaved.
  • mutations may be made to the sequence comprising the Met and/or Thr preceding the first residue to generate beta-lactamase derivatives.
  • SEQ ID NO: 3 the 299 amino acid sequence of the P1A enzyme before removal of a 31 amino acid signal sequence and the QASKT (Gln-Ala-Ser-Lys-Thr) pentapeptide at the N terminus as SEQ ID NO: 3:
  • the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 3.
  • beta-lactamase polypeptide may include additional upstream residues from the first residue of SEQ ID NO: 1 (see, e.g., JBC 258 (18): 11211 , 1983, the contents of which are hereby incorporated by reference- including the exo-large and exo-small versions of penP and penP1). Further, the beta-lactamase polypeptide may also include additional downstream residues from the last residue of SEQ ID NO: 1.
  • polynucleotide sequence of P1A (after removal of a 31 amino acid signal sequence and the QAKST pentapeptide at the N terminus) is provided as SEQ ID NO: 2. As described herein, mutations may be made to this sequence to generate the beta-lactamase derivatives (including, taking into account degeneracy of the genetic code).
  • the polynucleotide of the present invention has at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 2.
  • polynucleotide sequence of P1A before the removal of a 31 amino acid signal sequence and the QASKT pentapeptide at the N terminus as SEQ ID NO: 4.
  • mutations may be made to this sequence to generate beta-lactamase derivatives (including, taking into account degeneracy of the genetic code).
  • the polynucleotide of the present invention has at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 4.
  • mutagenesis of a beta-lactamase is performed to derive advantageous enzymes (e.g. those that can target a broad spectra of antibiotics).
  • beta- lactamases derivatives are obtained by site-directed mutagenesis, random mutagenesis, and/or directed evolution approaches.
  • mutation design is based on, inter alia, structural data (e.g. crystal structure data, homolog models, etc.) of the following: P1A crystal structure (Knox and Moews, J. Mol Biol., 220, 435 ⁇ 55 (1991)), CTX-M-44 (1 BZA (Ibuka ef al.
  • the present mutations are informed by analysis of structural data (e.g. crystal structure data, homolog models, efc.) of any one of the following beta-lactamases: P1A (see, e.g. US Patent No.
  • the beta-lactamase polypeptide produced by methods of the invention includes one or more (e.g. about 1 , or about 2, or about 3, or about 4, or about 5, or about 6, or about 7, or about 8, or about 9, or about 10, or about 15, or about 20, or about 30, or about 40, or about 50, or about 60, or about 70, or about
  • SEQ ID NO: 1 or SEQ ID NO: 3 (or about 60%, about 65%, about 70%, or about 75%, or about 80%, or about 85%, or about 90, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% identity to SEQ ID NO: 1 or SEQ ID NO: 3).
  • one or more amino acid of SEQ ID NO: 1 or SEQ ID NO: 3 is substituted with a naturally occurring amino acid, such as a hydrophilic amino acid (e.g.
  • a polar and positively charged hydrophilic amino acid such as arginine (R) or lysine (K); a polar and neutral of charge hydrophilic amino acid, such as asparagine (N), glutamine (Q), serine (S), threonine (T), proline (P), and cysteine (C), a polar and negatively charged hydrophilic amino acid, such as aspartate (D) or glutamate (E), or an aromatic, polar and positively charged hydrophilic amino acid, such as histidine (H)) or a hydrophobic amino acid (e.g.
  • a hydrophobic, aliphatic amino acid such as glycine (G), alanine (A), leucine (L), isoleucine (I), methionine (M), or valine (V)
  • a hydrophobic, aromatic amino acid such as phenylalanine (F), tryptophan (W), or tyrosine (Y) or a non-classical amino acid (e.g. selenocysteine, pyrrolysine, N-formylmethionine ⁇ -alanine, GABA and ⁇ -Aminolevulinic acid.
  • 4-Aminobenzoic acid PABA
  • D-isomers of the common amino acids 2,4-diaminobutyric acid, ⁇ -amino isobutyric acid, 4- aminobutyric acid, Abu, 2-amino butyric acid, ⁇ -Abu, ⁇ -Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosme, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, ⁇ -alanine, fluoro-amino acids, designer amino acids such as ⁇ methyl amino acids, C a -methyl amino acids, N a -methyl amino acids, and amino acid analogs in general).
  • PABA 4-Amin
  • inventive mutations include, but are not limited to one or more (e.g. about 1 , or about
  • SEQ ID NO: 1 or SEQ ID NO: 3 (or about 70%, or about 75%, or about 80%, or about 85%, or about 90, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% identity to SEQ ID NO: 1 or SEQ ID NO: 3): GlulAla; Glul Cys; GlulAsp; Glul Phe; GlulGly; Glul His; Glul lle;
  • GlulTyr Met2Ala; Met2Cys; Met2Asp; Met2Glu; Met2Phe; Met2Gly; Met2His; Met2lle; Metl Lys; Met2Leu;
  • Met2Asn Met2Pro; Met2Gln; Met2Arg; Met2Ser; Met2Thr; Met2Val; Met2Trp; Met2Tyr; Lys3Ala; Lys3Cys;
  • Lys3Asp Lys3Glu; Lys3Phe; Lys3Gly; Lys3His; Lys3lle; Lys3Leu; Lys3Met; Lys3Asn; Lys3Pro; Lys3Gln;
  • Lys3Arg Lys3Ser; Lys3Thr; Lys3Val; Lys3Trp; Lys3Tyr; Asp4Ala; Asp4Cys; Asp4Glu; Asp4Phe; Asp4Gly;
  • Phe6Ala Phe6Cys; Phe6Asp; Phe6Glu; Phe6Gly; Phe6His; Phe6lle; Phe6Lys; Phe6Leu; Phe6Met; Phe6Asn;
  • Phe6Pro Phe6Gln; Phe6Arg; Phe6Ser; Phe6Thr; Phe6Val; Phe6Trp; Phe6Tyr; Ala7Cys; Ala7Asp; Ala7Glu;
  • Leu9Ala Leu9Cys; Leu9Asp; Leu9Glu; Leu9Phe; Leu9Gly; Leu9His; Leu9lle; Leu9Lys; Leu9Met; Leu9Asn;
  • Glul OPhe Glul OGly; Glul OHis; Glul Olle; Glul OLys; Glul OLeu; Glul OMet; Glul OAsn; Glul OPro; Glul OGIn;
  • Glu11 Gly Glu11 His; Glu11 lle; Glu11 Lys; Glu11 Leu; Glu11 Met; Glu11Asn; Glu11 Pro; Glu11 Gln; Glu11Arg;
  • Gln12Gly Gln12His; Gln12lle; Gln12Lys; Gln12Leu; Gln12Met; Gln12Asn; Gln12Pro; Gln12Arg; Gln12Ser;
  • residues corresponds to SEQ ID NO: 1.
  • Ambler numbers Ambler et al., 1991 , A standard numbering scheme for the Class A ⁇ -lactamases, Biochem. J. 276:269-272, the contents of which are hereby incorporated by reference
  • residue 244 corresponds to Ambler 276.
  • the following conversions may be used:
  • percent identity may also be assessed with these conventional bioinformatic methods.
  • the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 1 or SEQ ID NO: 3
  • the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least 60% sequence identity with SEQ ID NO: 1 or SEQ ID NO: 3 and one or more of the following mutations of Ambler classification: a hydrophobic residue other than phenylalanine (F) at position 33; a hydrophobic residue other than glutamine (Q) at position 135; a hydrophilic residue other than glycine (G) at position 156; a hydrophobic residue other than alanine (A) at position 232; a hydrophilic residue other than alanine (A) at position 237; a hydrophobic or hydrophilic residue other than alanine (A) at position 238; a hydrophilic residue other than serine (S) at position 240; a hydrophobic residue other than threonine (T) at position 243; a hydrophobic residue other than arginine (R) at position 244; a hydrophilic residue other than serine (S)
  • a hydrophilic amino acid residue may include a polar and positively charged hydrophilic residue selected from arginine (R) and lysine (K), a polar and neutral of charge hydrophilic residue selected from asparagine (N), glutamine (Q), serine (S), threonine (T), proline (P), and cysteine (C), a polar and negatively charged hydrophilic residue selected from aspartate (D) and glutamate (E), or an aromatic, polar and positively charged hydrophilic including histidine (H).
  • a hydrophobic amino acid residue may include a hydrophobic, aliphatic amino acid selected from glycine (G), alanine (A), leucine (L), isoleucine (I), methionine (M), or valine (V) or a hydrophobic, aromatic amino acid selected from phenylalanine (F), tryptophan (W), or tyrosine (Y).
  • G glycine
  • A alanine
  • L leucine
  • I isoleucine
  • M methionine
  • V valine
  • a hydrophobic, aromatic amino acid selected from phenylalanine (F), tryptophan (W), or tyrosine (Y).
  • Mutations may be made to the gene sequence of a beta-lactamase (e.g. SEQ ID NOs: 2 and 4) by reference to the genetic code, including taking into account codon degeneracy.
  • the beta-lactamase polypeptide produced by methods of the invention comprises one or more of the following mutations at positions of Ambler classification: F33Y, Q135M, G156R, A232G, A237S, A238G or T, S240P or D, T243I, R244T, S266N, D276N or R or K.
  • the beta-lactamases and/or pharmaceutical compositions comprise Q135M.
  • the beta-lactamases and/or pharmaceutical compositions comprise G156R and A238T.
  • the beta-lactamases and/or pharmaceutical compositions comprise F33Y and D276N.
  • the beta-lactamases and/or pharmaceutical compositions comprise F33Y, S240P, and D276N. In one embodiment, the beta- lactamases and/or pharmaceutical compositions comprise F33Y, A238T, and D276N. In another embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, and S240D. In a further embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, S240D, and R244T. In another embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, S240D, and D276R.
  • the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, S240D, and D276K. In one embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, S240D, and Q135M. In one embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A238T. In one embodiment, the beta- lactamases and/or pharmaceutical compositions comprise T243I, S266N, and D276N. In one embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, S240D, and D276N.
  • the beta-lactamase polypeptide produced by methods of the invention comprises one or more of the following mutations:
  • the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 60% sequence identity with one or more of the mutants provided in the table directly above.
  • the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 60% sequence identity with SEQ ID NO: 1 or SEQ ID NO: 3 and the following of Ambler classification: a residue other than aspartate (D) at position 276.
  • the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 90%, or 95%, or 97%, or 99% sequence identity with SEQ ID NO: 1 and a hydrophilic amino acid residue other than aspartic acid (D) at a position corresponding to position 276 according to Ambler classification, wherein: the hydrophilic amino acid residue is asparagine (N) and the beta-lactamase hydrolyzes ceftriaxone substantially more efficiently than a beta-lactamase of SEQ ID NO: 1 that has an aspartic acid (D) at a position corresponding to position 276 according to Ambler classification.
  • the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 90%, or 95%, or 97%, or 99% sequence identity with SEQ ID NO: 1 and a hydrophilic amino acid residue other than aspartic acid (D) at a position corresponding to position 276 according to Ambler classification, wherein: the hydrophilic amino acid residue is arginine (R) and the beta-lactamase hydrolyzes ceftriaxone substantially more efficiently than a beta-lactamase of SEQ ID NO: 1 that has an aspartic acid (D) at a position corresponding to position 276 according to Ambler classification.
  • the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 90%, or 95%, or 97%, or 99%, or 100% sequence identity with SEQ ID NO: 5, i.e. P3A:
  • the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 5.
  • An illustrative polynucleotide of the invention is SEQ ID NO: 6, which is the full nucleotide sequence of P3A:
  • the polynucleotide of the present invention has at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 6.
  • the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 60% sequence identity with SEQ ID NO: 1 or SEQ ID NO: 3 and the following of Ambler classification: a hydrophobic residue other than alanine (A) at position 232; a hydrophilic residue other than alanine (A) at position 237; a hydrophobic residue other than alanine (A) at position 238; a hydrophilic residue other than serine (S) at position 240; and a hydrophilic residue other than aspartate (D) at position 276.
  • the hydrophobic residue other than alanine (A) at position 232 is glycine (G).
  • the hydrophilic residue other than alanine (A) at position 237 is serine (S). In some embodiments, the hydrophobic residue other than alanine (A) at position 238 is glycine (G). In some embodiments, the hydrophilic residue other than serine (S) at position 240 is aspartate (D). In some embodiments, the other than aspartate (D) at position 276 is asparagine (N). In some embodiments, the beta-lactamase and/or pharmaceutical composition comprises one or more of A232G, A237S, A238G, S240D, and D276N.
  • the beta-lactamase and/or pharmaceutical composition comprises all of A232G, A237S, A238G, S240D, and D276N, the sequence of which is SEQ ID NO: 7, i.e. P4A.
  • the beta- lactamase and/or pharmaceutical composition comprises an amino acid sequence having at least 90%, or 95%, or 97%, or 99%, or 100% sequence identity with SEQ ID NO: 7.
  • the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 7.
  • the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 8.
  • the beta-lactamase and/or pharmaceutical composition comprises an amino acid sequence having at least 90%, or 95%, or 97%, or 99%, or 100% sequence identity with SEQ ID NO: 8.
  • An illustrative polynucleotide of the invention is SEQ ID NO: 9, which is the full nucleotide sequence of A232G, A237S, A238G, S240D, and D276N mutant, Hind III site (AAGCTT-in bold) and additional K and T amino acids.
  • SEQ ID NO: 9 is the full nucleotide sequence of A232G, A237S, A238G, S240D, and D276N mutant, Hind III site (AAGCTT-in bold) and additional K and T amino acids.
  • the underlined portion of SEQ ID NO: 9 is omitted.
  • the leader and additional nucleotides (Hind III site and K and T amino acids— for the addition of the amino acid sequence QASKT) are underlined.
  • the polynucleotide of the present invention has at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 9 (with or without the underlined portion).
  • the beta-lactamases polypeptide has the sequence of SEQ ID NO: 10 (i.e., P2A) or is derived by one or more mutations of SEQ ID NO: 10:
  • the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 10.
  • the beta-lactamase and/or pharmaceutical composition comprises an amino acid sequence having at least 90%, or 95%, or 97%, or 99%, or 100% sequence identity with SEQ ID NO: 10.
  • beta-lactamases including P1A, P2A, P3A, and P4A and derivatives thereof are described for example, in WO 2011/148041 and PCT/US2015/026457, the entire contents of which are hereby incorporated by reference.
  • the invention provides for polynucleotides encoding a beta-lactamase polypeptide, including, for example, vectors, comprising such polynucleotides.
  • Such polynucleotides may further comprise, in addition to sequences encoding the beta-lactamases of the invention, one or more expression control elements.
  • the polynucleotide may comprise one or more promoters or transcriptional enhancers, ribosomal binding sites, transcription termination signals, and polyadenylation signals, as expression control elements.
  • the polynucleotide includes expression control elements that direct expression of the beta- lactamase in the cytoplasm.
  • the polynucleotide may be inserted within a suitable vector, which is utilized to transform a suitable host cell such as an E. coli cell for expression.
  • the vector may be any self-replicating DNA molecule that can transfer a DNA between host cells, including, for example, a plasmid cloning vector.
  • the vector can remain episomal or become chromosomally integrated, as long as the insert encoding the therapeutic agent can be transcribed.
  • Vectors can be constructed by standard recombinant DNA technology.
  • Vectors can be, for example, plasmids, phages, cosmids, phagemids, viruses, or any other types known in the art, which are used for replication and expression in prokaryotic or eukaryotic cells (e.g. an adenovirus; a retrovirus; a lentivirus; an scAAV; pGEX vector; pET vector; and pHT vector).
  • exemplary vectors that may be used include, for example, the pAVEO11 vector. Preparations of the pAVEO11 vector is described in EP Patent No. 0502637, EP Patent No. 2386642, and US Patent No. 6,537,779, the entire contents of which are hereby incorporated by reference.
  • a wide variety of components known in the art may be included in such vectors, including a wide variety of transcription signals, such as promoters and other sequences that regulate the binding of RNA polymerase onto the promoter.
  • Any promoter known to be effective in £ co// cells in which the vector will be expressed can be used to initiate expression of the therapeutic agent.
  • the promoter is effective for directing expression of the beta-lactamase polypeptide in the cytoplasm. Suitable promoters may be inducible or constitutive.
  • Suitable promoters include, for example, the pET system (INVITROGEN), lac promoter, tac, trc, T7, T7A3 promoter, PhoA, Phage lambda pR, lambda pL promoter (see, e.g. J Ind Microbiol Biotechnoi (2012) 39:383-399; Curr Opin Biotech 2001 , 12: 195, the contents of which are hereby incorporated by reference), Pspac, PgroES, Pgsi, Plux and amyQ promoter and/or amyQ signal peptide from Bacillus amyloliquefaciens (by way of non-limiting example Gen Bank ID No. J01542.1 , the contents of which are hereby incorporated by reference).
  • the promoter may be inducible (e.g. via IPTG, metabolites, temperature).
  • the cytoplasmic expression of the beta-lactamase polypeptide is driven by the IPTG inducible Lacl promoter.
  • cytoplasmic expression of the beta-lactamase polypeptide is induced by adding IPTG to the bacterial culture.
  • the transformed E. coli cell is grown for a time under conditions sufficient to produce cytoplasmic expression of the beta-lactamase polypeptide.
  • Any type of media that will support growth and reproduction of £ coli cell in cultures is useful for practicing the method of the invention.
  • the £. coli cell is typically lysed using osmotic shock, sonication or other standard means, and the expressed beta-lactamase polypeptide is isolated from the soluble fraction.
  • Any protein purification method may be employed for this purpose, such as dialysis, gel filtration, ion exchange chromatography, affinity chromatography, electrophoresis, or a combination of steps.
  • the beta-lactamases produced by methods of the invention possess functional characteristics that make them desirable for a variety of uses, including therapeutic uses.
  • Methods of characterizing beta-lactamases are known in the art (e.g. nitrocefin assay as described by O'Callaghan, ef a/. Antimicrob. Agents Chemother, 1 :283-288; the various methods of Viswanatha ef al. Methods Mol Med. 2008;142:239-60).
  • the beta-lactamases produced by methods of the invention hydrolyze one or more of penicillins and cephalosporins.
  • penicillins include, for example, Amoxicillin (e.g. NOVAMOX, AMOXIL); Ampicillin (e.g. PRINCIPEN); Azlocillin; Carbenicillin (e.g. GEOCILLIN); Cloxacillin (e.g. TEGOPEN); Dicloxacillin (e.g. DYNAPEN); Flucloxacillin (e.g. FLOXAPEN); Mezlocillin (e.g. MEZLIN); Methicillin (e.g. STAPHCILLIN); Nafcillin (e.g.
  • cephalosporins include, for example, a first generation cephalosporin (e.g. Cefadroxil (e.g. DURICEF); Cefazolin (e.g. ANCEF); Ceftolozane, Cefalotin/Cefalothin (e.g.
  • KEFLIN KEFLIN
  • Cefalexin e.g. KEFLEX
  • a second generation cephalosporin e.g. Cefaclor (e.g. DISTACLOR); Cefamandole (e.g. MANDOL); Cefoxitin (e.g. MEFOXIN); Cefprozil (e.g. CEFZIL); Cefuroxime (e.g. CEFTIN, ZINNAT)
  • a third generation cephalosporin e.g. Cefixime (e.g. SUPRAX); Cefdinir (e.g. OMNICEF, CEFDIEL); Cefditoren (e.g. SPECTRACEF); Cefoperazone (e.g.
  • CEFOBID Cefotaxime
  • Cefpodoxime e.g. VANTIN
  • Ceftazidime e.g. FORTAZ
  • Ceftibuten e.g. CEDAX
  • Ceftizoxime e.g. CEFIZOX
  • Ceftriaxone e.g. ROCEPHIN
  • a fourth generation cephalosporin e.g. Cefepime (e.g. MAXIPIME)
  • a fifth generation cephalosporin e.g. Ceftaroline fosamil (e.g. TEFLARO); Ceftobiprole (e.g. ZEFTERA)
  • Ceftaroline fosamil e.g. TEFLARO
  • Ceftobiprole e.g. ZEFTERA
  • cephalosporins include, for example, cefoperazone, ceftriaxone or cefazolin.
  • inventive beta-lactamases have improved catalytic efficiency against cephalosporins as compared to SEQ ID NO: 1.
  • the beta-lactamases possess desirable enzyme kinetic characteristics.
  • the beta-lactamases possess a low KM for at least one cephalosporin, including, for example, a K M of less than about 500 ⁇ , or about 100 ⁇ , or about 10 ⁇ , or about 1 ⁇ , or about 0.1 ⁇ (100 nM), or about 0.01 ⁇ (10 nM), or about 1 nM.
  • the beta-lactamases possess a low KM for at least one penicillin, including, for example, a KM of less than about 500 ⁇ , or about 100 ⁇ , or about 10 ⁇ , or about 1 ⁇ , or about 0.1 ⁇ (100 nM), or about 0.01 ⁇ (10 nM), or about 1 nM.
  • the inventive beta-lactamases possess a high V ma x for at least one cephalosporin, including, for example, V max which is greater than about 100 s-1 , or about 1000 s-1 , or about 10000 s-1 , or about 100000 s-1 , or about 1000000 s-1.
  • the inventive beta-lactamases possess a high V max for at least one penicillin, including, for example, V max which is greater than about 100 s-1 , or about 1000 s-1 , or about 10000 s-1 , or about 100000 s-1 , or about 1000000 s-1.
  • the inventive beta- lactamases possess catalytic efficiency is greater than about 10 6 M "1 s -1 for at least one cephalosporin.
  • the inventive beta-lactamases possess catalytic efficiency is greater than about 10 6 M "1 s -1 for at least one penicillin.
  • the inventive beta-lactamases possess the desirable enzyme kinetic characteristics for at least one of either or both of cephalosporins and penicillins.
  • the inventive beta-lactamases are stable and/or active in the Gl tract, e.g. in one or more of the mouth, esophagus, stomach, duodenum, small intestine, duodenum, jejunum, ileum, large intestine, colon transversum, colon descendens, colon ascendens, colon sigmoidenum, cecum, and rectum.
  • the beta-lactamase is stable in the large intestine, optionally selected from one or more of colon transversum, colon descendens, colon ascendens, colon sigmoidenum and cecum.
  • the beta-lactamase is stable in the small intestine, optionally selected from one or more of duodenum, jejunum, and ileum. In some embodiments, the beta-lactamase is resistant to proteases in the Gl tract, including for example, the small intestine. In some embodiments, the beta-lactamase is substantially active at a pH of about 6.0 to about 7.5, e.g.
  • the beta- lactamases of the present invention are resistant to one or more beta-lactamase inhibitors, optionally selected from avibactam, tazobactam, sulbactam, and clavulanic acid.
  • stable refers to an enzyme that has a long enough half-life and maintains enough activity for therapeutic effectiveness.
  • P1A-protein was produced by Bacillus subtilis RS310 production strain in approximately 10,000 liter fed-batch fermentation.
  • the Bacillus subtilis RS310 strain was asporogenic, tryptophan auxotrophic and secreted P1A- protein into the culture broth.
  • cell culturing of the P1A-protein comprised two inoculum (1 %) expansion stages in shake flasks (WCB vial -> 100 mL -> 2 x 1200 mL) followed by a seed fermentation stage (220 L, 2.5 %).
  • the main fed-batch fermentation was conducted in approximately 10,000 L working volume.
  • the main fermentation was started as batch fermentation with an initial volume of 9,000 L of growth medium.
  • P1A-protein containing broth After fermentation the cells were removed from P1A-protein containing broth by continuous centrifugation followed by microfiltration. P1A containing filtrate was concentrated by ultrafiltration and P1A concentrate was further diafiltered, conditioned and passed through a disposable anion exchange filter cartridge in flow-through mode after which the filtrate was further diafiltered to remove NaCI. This prepared the solution for the following two stage P1A-protein crystallisation including; crystallisation, crystal harvesting, washing and dissolution. Finally, after the second crystallisation step, P1A-protein crystals were suspended in water and dissolved and final concentration of P1A-protein solution was adjusted. The protein solution was filtered (0.2 urn) to reduce bioburden and finally dispensed into sterile plastic containers, frozen and stored at -70°C.
  • P3A was used throughout this study for testing ⁇ -lactamase expression.
  • the gene sequence for directing the intracellular expression of P3A is SEQ ID NO: 6.
  • the P3A gene was cloned into the pAVEwayTM intercellular (cytoplasmic) construct, pAVE011 , and the plasmid was verified with PCR and DNA sequencing.
  • the designed P3A expression construct provided a relatively homogeneous N-terminus with the N-terminal methionine removed about 95% of the time.
  • the construct was transformed in the following £ coli strains: CLD977 (W3110 E. coli host) and CLD990 (BL21 £ coli host).
  • CLD977 W3110 E. coli host
  • CLD990 BL21 £ coli host
  • the P3A gene was cloned into the pAVEwayTM periplasmic construct, pAVE029 + gene 1 or gene 7 (gene 1 and gene 7 are different secretion leaders). Again, the plasmid was verified with PCR and DNA sequencing.
  • the construct was transformed in the following E. coli strains: CLD981 (gene 1 leader, W3110 E. coli host) and CLD982 (gene 7 leader, BL21 £. coli host).
  • CLD981 gene 1 leader
  • CLD982 gene 7 leader, BL21 £. coli host
  • P3A was expressed and characterized as further described in Examples 2 and 3, respectively.
  • Duplicate fermentations were performed using intracellular expression strains CLD977 and CLD990, and periplasmic strains CLD981 and CLD982. Specifically, the fermentation analysis was carried out in 3 stages: Shake flask (SF) seed stage, Fermenter stage, and SDS-PAGE analysis stage. To carry out the SF seed stage, RCB vials were inoculated into duplicate shake flasks with standard media and incubated at 37°C, 200 rpm for approximately 10 hours. Next, purity and OD 6 oo of the samples was determined (summarized in Table 1). Finally, the E. coli material was transferred from SF to a fermentation vessel.
  • SF Shake flask
  • Fig. 1 a multi-fermenter computer system (MFCS) plot of CLD977 fermentation
  • MFCS multi-fermenter computer system
  • MFCS plot of exit gas analysis of oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER) for CLD977 and CLD990 fermentation is shown in Fig. 3. Similar profiles were observed for both strains with the delay seen on the CLD990 strain due to an observed longer batch phase. Profile at the end of CLD977 fermentation, without wishing to be bound by theory, was probably related to a reduced airflow in the vessel (exit filter blocked).
  • Biomass profiles for both strains were similar up to 12 hours post induction although the CLD990 strain was delayed due to the extended batch phase (see Fig. 4). This delay, without wishing to be bound by theory, may have been due to the lower SF OD 6 oo or a reduced initial growth rate.
  • the CENTA method employs a chromogenic cephalosporin that is readily hydrolyzed by ⁇ -lactamases and allows for kinetic studies and detection of the enzymes in crude extracts and chromatographic fractions (Bebrone, C. ef a/., (2001) Antimicrobial Agents and Chemotherapy, 45 (6) 1868-1871). This method is also useful since CENTA can be prepared from the commercially available drug, cephalothin.
  • ⁇ - lactamase sample activity was monitored using a FFDB plate reader in the presence of a CENTA working solution. First, ⁇ -lactamase samples were diluted to 1 mg/l (Bradford assays were used to determine the concentration). Then, 50 ⁇ .
  • Assay plate 1 corresponded to: CLD981 12h, 24h, 48h, osmotic shock buffer 1 (OS1 ) 24h, and osmotic shock buffer 2 (OS2) 24h post induction, as well as CLD982 12h, 24h, 48h, OS1 24h, and OS2 24h post induction.
  • Assay plate 2 corresponded to: CLD981 OS1 48h and OS2 48h post induction, as well as CLD982 OS1 48h and OS2 48h post induction.
  • Assay plate 3 corresponded to CLD977 and CLD990 for both the second to last and last time point post induction (sonication) as well as the last time point post induction (Bug buster).
  • OS1 contains 20% sucrose. Following preparation of the OS1 fraction, the cell pellet went on to preparation of OS2, which contains MgSC .
  • Fig. 1 1 shows a standard curve of Time (sec) vs. Absorbance for CLD981 (3/13C037) 12h, 24h, 48h, and OS2 48h post induction.
  • Fig. 12 shows a standard end point curve of Time (sec) vs. Absorbance for CLD981 OS1 samples.
  • Fig. 13 shows a standard curve of Time (sec) vs. Absorbance for CLD982 (4/13C038) 12h, 24h, 48h, and OS1 and OS2 48h post induction.
  • Table 2 shows a summary of assay plate 1 activity and titre results for CLD981 and CLD982 (secretion strains 37 and 38, respectively) along with controls 1 and 2.
  • Fig. 14 shows a standard curve of Time
  • Fig. 17 shows a standard curve of Time (sec) vs. Absorbance for Control 1 and 2 (combined as control standard) as well as reference standard material dilutions of 0.6, 0.8, 1.0, 1.5, 2.0, and 4 mg/L.
  • Fig. 19 shows a standard curve of Time (sec) vs.
  • Tables 2 - 4 specifically show CLD981 , CLD982, CLD977, and CLD990 end point OD, activity concentration (mg/L), assay dilution, concentration x dilution (g/L), whole cell weight (WCW (g/L)), periplasmic dilution factor, g/L P1A activity WB titre, estimated g/L P1A WB by SDS PAGE, SDS PAGE P, and SDS PAGE soluble (if applicable) compared to control 1 and 2.
  • OQ concentration concentration X git. Pt A actw v SBS PAGE
  • cGMP manufacturing of P3A was undertaken.
  • the initial 750-liter cGMP production run used the pAVEwayTM platform (FUJIFILM Diosynth Biotechnologies UK). Yields were 5.5 kilograms of >95% pure SYN- 004 active pharmaceutical ingredient (API) drug substance.
  • the GMP manufacturing process was initiated after a successful evaluation that produced high yielding cell lines that exhibited consistent biological activity of P3A (SYN-004).
  • P3A (SYN-004) expression titers were improved by greater than about 15-fold (14 grams of P3A (SYN-004) per liter of E.
  • the term "about” when used in connection with a referenced numeric indication means the referenced numeric indication plus or minus up to 10% of that referenced numeric indication.
  • the language “about 50” covers the range of 45 to 55.
  • an “effective amount,” when used in connection with medical uses is an amount that is effective for providing a measurable treatment, prevention, or reduction in the rate of pathogenesis of a disease of interest.
  • compositional percentages are by weight of the total composition, unless otherwise specified.
  • the word "include,” and its variants is intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that may also be useful in the compositions and methods of this technology.
  • the terms “can” and “may” and their variants are intended to be non- limiting, such that recitation that an embodiment can or may comprise certain elements or features does not exclude other embodiments of the present technology that do not contain those elements or features.
  • the words "preferred” and “preferably” refer to embodiments of the technology that afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the technology.
  • compositions described herein needed for achieving a therapeutic effect may be determined empirically in accordance with conventional procedures for the particular purpose.
  • therapeutic agents e.g. inventive ⁇ -lactamases and/or pharmaceutical compositions (and/or additional agents) for therapeutic purposes
  • the therapeutic agents are given at a pharmacologically effective dose.
  • a “pharmacologically effective amount,” “pharmacologically effective dose,” “therapeutically effective amount,” or “effective amount” refers to an amount sufficient to produce the desired physiological effect or amount capable of achieving the desired result, particularly for treating the disorder or disease.
  • An effective amount as used herein would include an amount sufficient to, for example, delay the development of a symptom of the disorder or disease, alter the course of a symptom of the disorder or disease (e.g., slow the progression of a symptom of the disease), reduce or eliminate one or more symptoms or manifestations of the disorder or disease, and reverse a symptom of a disorder or disease.
  • administration of therapeutic agents to a patient suffering from a Gl tract disorder e.g. CDI
  • Therapeutic benefit also includes halting or slowing the progression of the underlying disease or disorder, regardless of whether improvement is realized.
  • Effective amounts, toxicity, and therapeutic efficacy can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to about 50% of the population) and the ED50 (the dose therapeutically effective in about 50% of the population).
  • the dosage can vary depending upon the dosage form employed and the route of administration utilized.
  • the dose ratio between toxic and therapeutic effects is the therapeutic index and can be expressed as the ratio LD50/ED50.
  • compositions and methods that exhibit large therapeutic indices are preferred.
  • a therapeutically effective dose can be estimated initially from in vitro assays, including, for example, cell culture assays.
  • a dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 as determined in cell culture, or in an appropriate animal model.
  • Levels of the described compositions in plasma can be measured, for example, by high performance liquid chromatography.
  • the effects of any particular dosage can be monitored by a suitable bioassay. The dosage can be determined by a physician and adjusted, as necessary, to suit observed effects of the treatment.
  • the effect will result in a quantifiable change of at least about 10%, at least about 20%, at least about 30%, at least about 50%, at least about 70%, or at least about 90%. In some embodiments, the effect will result in a quantifiable change of about 10%, about 20%, about 30%, about 50%, about 70%, or even about 90% or more. In certain embodiments, the effect will result in a quantifiable change of two-fold, or three- fold, or four-fold, or five-fold, or ten-fold. Therapeutic benefit also includes halting or slowing the progression of the underlying disease or disorder or reduction in toxicity, regardless of whether improvement is realized.

Abstract

The invention relates to, in part, improved methods for the production of beta-lactamase using Escherichia coli (E. coli) cells. High yield production of beta-lactamase is achieved using methods of the invention.

Description

E. COLI-BASED PRODUCTION OF BETA- LACTAMASE
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Patent Application No. 62/043,360, filed August 28, 2014, the entire contents of which are herein incorporated by reference.
FIELD OF THE INVENTION
The invention relates to, in part, improved methods for the production of beta-lactamases using Escherichia coli (E. coli) cells. High yield production of beta-lactamase, including those suitable for pharmaceutical formulations, is achieved using methods of the invention.
DESCRIPTION OF THE TEXT FILE SUBMITTED ELECTRONICALLY
The contents of the text file submitted electronically herewith are incorporated herein by reference in their entirety: A computer readable format copy of the Sequence Listing (filename: SYN-005PC-SequenceListing.txt; date recorded: August 20, 2015; file size: 19 KB).
BACKGROUND
Beta-lactam antibiotics are characterized by a beta-lactam ring in their molecular structure. The integrity of the beta-lactam ring is essential for the biological activity, which results in the inactivation of a set of transpeptidases that catalyze the final cross-linking reactions of peptidoglycan synthesis. Members of the beta-lactam antibiotics family include penicillins, cephalosporins, clavams (or oxapenams), cephamycins and carbapenems.
Beta-lactamases are bacterial defensive enzymes that hydrolyze beta-lactam antibiotics. Gram-negative bacteria produce beta-lactamases to achieve resistance to beta-lactam antibiotics. Particularly, beta-lactamases are able to efficiently catalyze the irreversible hydrolysis of the amide bond of the beta-lactam ring resulting in biologically inactive product(s).
Humans may be considered to be a "superorganism" which is a conglomerate of mammalian and microbial cells, with the latter estimated to outnumber the former by ten to one. This microbial component, and its microbial genetic repertoire, the microbiome, is roughly 100-times greater than that of the human host. Strikingly, despite this enormous diversity of foreign organisms, the human immune system generally maintains a state of synergy. This is particularly true of the distal Gl tract, which houses up to 1000 distinct bacterial species and an estimated excess of 1 x1014 microorganisms, and appears to be central in defining human host health status. Loss of the careful balance in the microbiome, especially in the Gl tract, can lead to various diseases. Antibiotic medical treatments, which are needed to treat certain aspects of disease, can induce disruption in the microbiome, including in the Gl tract, and lead to further disease. For instance, certain parentally administered beta-lactams like ampicillin, ceftriaxone, cefoperazone, and piperacillin are, in part, eliminated via biliary excretion into the proximal part of the small intestine (duodenum). Residual unabsorbed beta-lactams in the intestinal tract may cause an undesirable effect on the ecological balance of normal intestinal microbiota resulting in, for example, Clostridium difficile infection (CDI), antibiotic-associated diarrhea, overgrowth of pathogenic bacteria such as vancomycin resistant enterococci (VRE), extended-spectrum beta-lactamase producing Gram- negative bacilli (ESBL), and fungi, and selection of antibiotic-resistance strains among both normal intestinal microbiota and potential pathogen bacteria.
One approach for avoiding or rebalancing the ecological balance of normal intestinal microbiota is the therapeutic use of beta-lactamases, for example, by inactivating excreted or unabsorbed antibiotics in the Gl tract, thereby maintaining a normal intestinal microbiota and preventing its overgrowth with potentially pathogenic microorganisms.
Accordingly, there is remains a need for efficient methods of producing beta-lactamases at a commercial scale for use in therapeutic intervention.
SUMMARY OF THE INVENTION
The present invention provides an improved method for the production of a beta-lactamase polypeptide in Escherichia coii (E. coii) cells. The method includes providing a host £ coii cell transformed with a vector comprising a sequence encoding the beta-lactamase polypeptide. The £ coii cell is cultured to induce expression of the beta-lactamase in the cytoplasm. Soluble fractions are subsequently prepared from the £. coii cell to recover the beta-lactase polypeptide.
The methods of the invention allows for production of beta-lactamases at a high yield. In an embodiment, the method yields at least 10 grams of the beta-lactamase polypeptide per liter of culture. In another embodiment, the method yields at least 15 grams of the beta-lactamase polypeptide per liter of culture.
Various strains of £ coii cells may be employed for the instant invention. For example, the £ coii cell may be selected from BL21 (DE3) or W3110. The beta-lactamase polypeptide is predominantly expressed in the cytoplasm of the £ coii cell. In certain embodiments, expression of the polypeptide is induced by adding isopropylthiogalactoside (IPTG) to the culture.
The disclosed method may be utilized to produce beta-lactamases and derivatives thereof. In one embodiment, the beta-lactamase polypeptide comprises a sequence having at least 60% identity with P1A. In another embodiment, the beta-lactamase polypeptide comprises a sequence having at least 60% identity with P2A. In yet another embodiment, the beta-lactamase polypeptide comprises a sequence having at least 60% identity with P3A. In a further embodiment, the beta-lactamase polypeptide comprises a sequence having at least 60% identity with P4A. In various embodiments, the present methods are used to produce beta-lactamases useful for microbiome-protecting therapy.
BRIEF DESCRIPTION OF THE FIGURES
Fig. 1 shows a multi-fermenter computer system (MFCS) CLD977 fermentation plot of batch age (hours) vs. airflow (AIRFL (l/min), second line from top), temperature (TEMP (°C), top line), stirring rate (STIRR (RPM), second line from the bottom), pH (third line), and percent oxygen (PO2, bottom line).
Fig. 2 shows a MFCS CLD990 fermentation plot of batch age (hours) vs. airflow (AIRFL (l/min), second line from top), temperature (TEMP (°C), top line), stirring rate (STIRR (RPM), second line from the bottom), pH (third line), and percent oxygen (PO2, bottom line).
Fig. 3 shows a MFCS fermentation exit gas analysis plot of batch age (hours) vs. CLD977 (3/13C039) and CLD990 (4/13C040) oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER) (mM/l/hr). Labeled from left to right, the first line corresponds to CLD977 OUR, the second line corresponds to CLD977 CER, the third line corresponds to CLD990 OUR and the fourth line corresponds to CLD990 CER.
Fig. 4 shows a biomass plot for CLD977 (3/13C039) and CLD990 (4/13C040) of batch time (hours) vs. OD60o and dry cell weight (DCW (g/L)). CLD977 OD600 and DCW lines correspond to the top line and second from bottom line, respectively. CLD990 OD6oo and DCW lines correspond to the second from top line and bottom line, respectively.
Fig. 5 shows bacterial gram stains for CLD977 and CLD990 at the end of batch phase and after fermentation is complete (final sample).
Fig. 6 shows SDS PAGE analysis of CLD977 (3/13C039) time course samples from pre-induction to the end of fermentation compared to control standards.
Fig. 7 shows SDS PAGE analysis of CLD990 (4/13C040) time course samples from pre-induction to the end of fermentation compared to control standards.
Fig. 8 shows SDS PAGE analysis of sonicated samples from CLD977 (3/13C039) and CLD990 (4/13C040) compared to control standards. CLD977 and CLD990 yielded mostly soluble protein. Only faint product bands are seen for the insoluble fraction.
Fig. 9 shows a standard curve of Time (sec) vs. Absorbance for Controls 1 and 2 as well as reference standard dilutions of 0.6, 0.8, 1.0, 1.5, 2.0, and 4 mg/L. Controls 1 and 2 were preset dilutions of 1.0 μg/mL ran as duplicates. Fig. 10 shows a standard end point curve of Standard Concentration (mg/L) vs. End Point Absorbance. Standard absorbance was measured at time = 60 sec minus standard absorbance at time = 0 sec. Specifically, enzymatic reaction was measured at time = 60 sec. The absorbance was measured at time = 0 sec which was then subtracted from the 60 sec measurement. Several dilutions of the reference standard were tested to generate a standard curve.
Fig. 11 shows a standard curve of Time (sec) vs. Absorbance for CLD981 (3/13C037 (also referred to as 37)) at 12 hours, 24 hours, 48 hours, as well as the periplasmic osmotic shock fraction (OS2). Specifically, OS2 is the second buffer fraction prepared from an E. coli pellet and represents the periplasmic space fraction.
Fig. 12 shows a standard end point curve of Time (sec) vs. Absorbance for CLD981 (3/13C037) OS1 samples.
Fig. 13 shows a standard curve of Time (sec) vs. Absorbance for CLD982 (4/13C038 (also referred to as 38)) 12h, 24h, 48h, and OS1 and OS2 48h post induction.
Fig. 14 shows a standard curve of Time (sec) vs. Absorbance for Control 1 and 2 (combined into control standard) as well as reference standard material dilutions of 0.6, 0.8, 1.0, 1.5, 2.0, and 4 mg/L.
Fig. 15 shows a standard end point curve of Standard Concentration (mg/L) vs. End Point Absorbance. Standard absorbance was measured at time = 60 sec minus standard absorbance at time = 0 sec.
Fig. 16 shows a standard curve of Time (sec) vs. Absorbance for CLD981 (37) and CLD982 (38) OS1 and OS2 48h post induction. Table 3 is a summary of assay plate 2 activity and titer results for CLD981 and CLD982 OS1 and OS2 along with controls 1 and 2.
Fig. 17 shows a standard curve of Time (sec) vs. Absorbance for Control 1 and 2 (combined as control standard) as well as reference standard material dilutions of 0.6, 0.8, 1.0, 1.5, 2.0, and 4 mg/L.
Fig. 18 shows a standard end point curve of Standard Concentration (mg/L) vs. End Point Absorbance. Standard absorbance was measured at time = 60 sec minus standard absorbance at time = 0 sec.
Fig. 19 shows a standard curve of Time (sec) vs. Absorbance for CLD977 (39) and CLD 990 (40) for both the second to last and last time point post induction (unlabeled = sonication) as well as the last time point post induction (Bug buster).
DETAILED DESCRIPTION
The present invention is based, in part, on the surprising discovery that a beta-lactamase polypeptide can be overproduced in high yields in £ coli cells. Specifically, high yield production is achieved by expressing the polypeptide in the cytoplasm of £ coli cells and subsequently recovering the polypeptide from soluble fractions prepared from the cells. Prior to the present invention, it was well established that beta-lactamases, such as the beta-lactamase from Bacillus licheniformis, are mostly found in the cell envelope and periplasmic fractions of £ coli cells. See Mezes, ei a/., J Biol Chem (1983), 258(18): 11211-11218. Particularly, beta-lactamase from Bacillus licheniformis is found to be completely absent in the cytoplasm. Id.
Further still, production of beta-lactamases from £ coli cells has generally been inefficient leading to an overall yield on the scale of milligrams of the enzyme per liter of culture. See, for example, Shaw ei a/., Protein Expr Purif. (1991), 2(2-3): 151-157. Given that the beta-lactamses are from Bacillus licheniformis, it is expected that production of these enzymes in Bacillus strains may provide a higher yield. However, studies shown herein demonstrate that even when produced in Bacillus subtilis cells, the yield of beta-lactamases is low. Accordingly, it is surprising that the present invention achieves an overall yield of beta-lactamases on the scale of grams per liter of culture.
Accordingly, the present invention provides an improved method for the production of a beta-lactamase polypeptide in Escherichia coli (E. coli) cells. The method includes providing a host £ coli cell transformed with a vector comprising a sequence encoding the beta-lactamase polypeptide. The £ coli cell is cultured to induce expression of the beta-lactamase in the cytoplasm. Soluble fractions are subsequently prepared from the £ coli cell for recovery of the beta-lactase polypeptide.
The present invention allows for high-yield production of a beta-lactamase polypeptide in £ coli cells. In various embodiments, methods of the present invention provides a yield of at least about 1 gram, about 2 grams, about 3 grams, about 4 grams, about 5 grams, about 6 grams, about 7 grams, about 8 grams, about 9 grams, about 10 grams, about 11 grams, about 12 grams, about 13 grams, about 14 grams, about 15 grams, about 16 grams, about 17 grams, about 18 grams, about 19 grams, about 20 grams, about 22 grams, about 24 grams, about 26 grams, about 28 grams, about 30 grams, about 35 grams, about 40 grams, about 45 grams, or about 50 grams of the beta-lactamase polypeptide per liter of culture. In one embodiment, at least about 10 grams of the beta- lactase polypeptide per liter of culture is recovered. In another embodiment, about at least 15 grams of the beta- lactase polypeptide per liter of culture is recovered. In a further embodiment, at least about 18 grams of the beta- lactase polypeptide per liter of culture is recovered.
In various embodiments, the present methods provide one or more of greater yield and improved purity as compared to a 6ac/7/us-based expression system such as, for example, those described in US Patent No. 7,319,030, the entire contents of which are hereby incorporated by reference. In various embodiments, the present methods provide one or more of greater yield and improved purity as compared to a method for producing a desired polypeptide product using a non-sporulating Bacillus subtilis strain, in which a deletion region of at least 150 nucleotides has been deleted from its sigG gene, the method involving transforming the strain with a polynucleotide construct encoding a recombinant polypeptide, expressing the polynucleotide construct, and recovering the recombinant polypeptide. In some embodiments the method comprises deleting at least part of either of the two functional regions of the sigG gene (i.e. the regions which code for amino acids 67 to 80 or 229 to 248).
In various embodiments, the present methods provide about a 5-fold, or about a 7.5-fold, or about a 10-fold, or about a 15-fold improvement in yield in E. coli versus a 6ac/7/us-based expression system such as, for example, those described in US Patent No. 7,319,030.
Various E. coli cell can be used with the present invention. Illustrative E. coli cells include, but are not limited to, BL21 (DES), W3110, DH5a, HMS174, and derivatives thereof. In one embodiment, the E. coli cell is the BL21 (DES) strain. In another embodiment, the E. coli cell is W3110 strain. The genotype of W3110 is E coli K12 F-, λ- , IN (rrnD-rrnE)l , rph-1. It is a Gram negative, rod-shaped, facultative anaerobe, and its genealogy is well described (Bachmann, BJ 1972. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol.Rev. 36(4):525-57). There have been no modifications of this strain prior to transformation with the B3214 plasmid.
The present invention is used to produce beta-lactamase polypeptides at a high yield. In various aspects, the beta-lactamases polypeptide has the sequence of SEQ ID NO: 1 (Bacillus licheniformis PenP, i.e., P1A) or is derived by one or more mutations of SEQ ID NO: 1. Provided herein is the 263 amino acid sequence of the P1A enzyme (after removal of a 31 amino acid signal sequence and the QASKT (Gln-Ala-Ser-Lys-Thr) pentapeptide at the N terminus, see SEQ ID NO: 3). As described herein, mutations may be made to this sequence to generate beta-lactamase derivatives that may be produced by methods of the invention.
SEQ ID NO: 1
EMKDDFAKLEEQFDAKLGIFALDTGTNRTVAYRPDERFAFASTIKALTVGVLLQQKSIEDLNQR
ITYTRDDLVNYNPITEKHVDTGMTLKELADASLRYSDNAAQNLILKQIGGPESLKKELRKIGDEV
TNPERFEPELNEVNPGETQDTSTARALVTSLRAFALEDKLPSEKRELLIDWMKRNTTGDALIR
AGVPDGWEVADKTGAASYGTRNDIAIIWPPKGDPWLAVLSSRDKKDAKYDDKLIAEATKWM
KALNMNGK.
In some embodiments, the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 1.
In some embodiments, SEQ ID NO: 1 may have a Met and/or Thr preceding the first residue of the sequence. In various embodiments, the Met may be cleaved. As described herein, mutations may be made to the sequence comprising the Met and/or Thr preceding the first residue to generate beta-lactamase derivatives. Also provided herein is the 299 amino acid sequence of the P1A enzyme before removal of a 31 amino acid signal sequence and the QASKT (Gln-Ala-Ser-Lys-Thr) pentapeptide at the N terminus as SEQ ID NO: 3:
SEQ ID NO: 3
MIQKRKRTVSFRLVLMCTLLFVSLPITKTSAQASKTEMKDDFAKLEEQFDAKLGIFALDTGTN RTVAYRPDERFAFASTIKALTVGVLLQQKSIEDLNQRITYTRDDLVNYNPITEKHVDTGMTLK ELADASLRYSDNAAQNLILKQIGGPESLKKELRKIGDEVTNPERFEPELNEVNPGETQDTST ARALVTSLRAFALEDKLPSEKRELLIDWMKRNTTGDALIRAGVPDGWEVADKTGAASYGTR NDIAIIWPPKGDPWLAVLSSRDKKDAKYDDKLIAEATKVVMKALNMNGK
In some embodiments, the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 3.
Further, the beta-lactamase polypeptide may include additional upstream residues from the first residue of SEQ ID NO: 1 (see, e.g., JBC 258 (18): 11211 , 1983, the contents of which are hereby incorporated by reference- including the exo-large and exo-small versions of penP and penP1). Further, the beta-lactamase polypeptide may also include additional downstream residues from the last residue of SEQ ID NO: 1.
The polynucleotide sequence of P1A (after removal of a 31 amino acid signal sequence and the QAKST pentapeptide at the N terminus) is provided as SEQ ID NO: 2. As described herein, mutations may be made to this sequence to generate the beta-lactamase derivatives (including, taking into account degeneracy of the genetic code).
SEQ ID NO: 2
gagatgaaagatgattttgcaaaacttgaggaacaatttgatgcaaaactcgggatctttgcattggatacaggtacaaaccggacg gtagcgtatcggccggatgagcgttttgcttttgcttcgacgattaaggctttaactgtaggcgtgcttttgcaacagaaatcaatagaag atctgaaccagagaataacatatacacgtgatgatcttgtaaactacaacccgattacggaaaagcacgttgatacgggaatgacg ctcaaagagcttgcggatgcttcgcttcgatatagtgacaatgcggcacagaatctcattcttaaacaaattggcggacctgaaagttt gaaaaaggaactgaggaagattggtgatgaggttacaaatcccgaacgattcgaaccagagttaaatgaagtgaatccgggtga aactcaggataccagtacagcaagagcacttgtcacaagccttcgagcctttgctcttgaagataaacttccaagtgaaaaacgcg agcttttaatcgattggatgaaacgaaataccactggagacgccttaatccgtgccggtgtgccggacggttgggaagtggctgata aaactggagcggcatcatatggaacccggaatgacattgccatcatttggccgccaaaaggagatcctgtcgttcttgcagtattatc cagcagggataaaaaggacgccaagtatgatgataaacttattgcagaggcaacaaaggtggtaatgaaagccttaaacatgaa cggcaaataa
In some embodiments, the polynucleotide of the present invention has at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 2.
Also provided is the polynucleotide sequence of P1A before the removal of a 31 amino acid signal sequence and the QASKT pentapeptide at the N terminus as SEQ ID NO: 4. As described herein, mutations may be made to this sequence to generate beta-lactamase derivatives (including, taking into account degeneracy of the genetic code).
SEQ ID NO: 4
atgattcaaaaacgaaagcggacagtttcgttcagacttgtgcttatgtgcacgctgttatttgtcagtttgccgattacaaaaacatcag cgcaagcttccaagacggagatgaaagatgattttgcaaaacttgaggaacaatttgatgcaaaactcgggatctttgcattggatac aggtacaaaccggacggtagcgtatcggccggatgagcgttttgcttttgcttcgacgattaaggctttaactgtaggcgtgcttttgca acagaaatcaatagaagatctgaaccagagaataacatatacacgtgatgatcttgtaaactacaacccgattacggaaaagcac gttgatacgggaatgacgctcaaagagcttgcggatgcttcgcttcgatatagtgacaatgcggcacagaatctcattcttaaacaaa ttggcggacctgaaagtttgaaaaaggaactgaggaagattggtgatgaggttacaaatcccgaacgattcgaaccagagttaaat gaagtgaatccgggtgaaactcaggataccagtacagcaagagcacttgtcacaagccttcgagcctttgctcttgaagataaactt ccaagtgaaaaacgcgagcttttaatcgattggatgaaacgaaataccactggagacgccttaatccgtgccggtgtgccggacgg ttgggaagtggctgataaaactggagcggcatcatatggaacccggaatgacattgccatcatttggccgccaaaaggagatcctg tcgttcttgcagtattatccagcagggataaaaaggacgccaagtatgatgat
aaacttattgcagaggcaacaaaggtggtaatgaaagccttaaacatgaacggcaaataa
In some embodiments, the polynucleotide of the present invention has at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 4.
In some embodiments, mutagenesis of a beta-lactamase (e.g. a class A beta-lactamase) is performed to derive advantageous enzymes (e.g. those that can target a broad spectra of antibiotics). In some embodiments, beta- lactamases derivatives are obtained by site-directed mutagenesis, random mutagenesis, and/or directed evolution approaches. In some embodiments, mutation design is based on, inter alia, structural data (e.g. crystal structure data, homolog models, etc.) of the following: P1A crystal structure (Knox and Moews, J. Mol Biol., 220, 435^55 (1991)), CTX-M-44 (1 BZA (Ibuka ef al. Journal of Molecular Biology Volume 285, Issue 5 2079-2087 (1999), 1 IYS (Ibuka et al. Biochemistry, 2003, 42 (36): 10634-43), 1 IYO, 1 IYP and 1 IYQ (Shimamura et al. 2002 J. Biol. Chem. 277:46601-08), Proteus vulgaris K1 (1 HZO, Nugaka ef al. J Mol Biol. 2002 Mar 15;317(1 ): 109-17) and Proteus penneri HugA (Liassine ef a/. Antimicrob Agents Chemother. 2002 Jan;46(1):216-9. 2002), and reviewed in Bonnet, Antimicrob. Agents Chemother 48(1): 1-14 (2004) (for CTM-X), the contents of all of these documents are hereby incorporated by reference in their entirety). In some embodiments, the present mutations are informed by analysis of structural data (e.g. crystal structure data, homolog models, efc.) of any one of the following beta-lactamases: P1A (see, e.g. US Patent No. 5,607,671 , the contents of which are hereby incorporated by reference), P2A (see, e.g., WO 2007/147945, the contents of which are hereby incorporated by reference), P3A (see, e.g., WO 2011/148041 , the contents of which are hereby incorporated by reference), CTX- M-3, CTX-M-4, CTX-M-5, CTX-M-9, CTX-M-10, CTX-M-14, CTX-M-15, CTX-M-16, CTX-M-18, CTX-M-19, CTX- M-25, CTX-M-26, CTX-M-27, CTX-M-32, CTX-M-44, CTX-M-45, and CTX-M-54. Such information is available to one skilled in the art at known databases, for example, Swiss-Prot Protein Sequence Data Bank, NCBI, and PDB.
In some embodiments, the beta-lactamase polypeptide produced by methods of the invention includes one or more (e.g. about 1 , or about 2, or about 3, or about 4, or about 5, or about 6, or about 7, or about 8, or about 9, or about 10, or about 15, or about 20, or about 30, or about 40, or about 50, or about 60, or about 70, or about
80, or about 90, or about 100, or about 110, or about 120, or about 130, or about 140, or about 150) mutations relative to SEQ ID NO: 1 or SEQ ID NO: 3 or a sequence with at least 30, 35, 40, 50, 51 , 52, 53, 54, 55, 56, 57,
58, 59, 60, 61 , 62, 63, 64, 65, 66, 67, 68, 69, 70, 71 , 72, 73, 74, 75, 76, 77, 78, 79, 80, 81 , 82, 83, 84, 85, 86, 87,
88, 89, 90, 91 , 92, 93, 94, 95, 96, 97, 98, 99, 99.5, 99.8, 99.9% identity to SEQ ID NO: 1 or SEQ ID NO: 3 (or about 60%, about 65%, about 70%, or about 75%, or about 80%, or about 85%, or about 90, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% identity to SEQ ID NO: 1 or SEQ ID NO: 3). In various embodiments, one or more amino acid of SEQ ID NO: 1 or SEQ ID NO: 3 is substituted with a naturally occurring amino acid, such as a hydrophilic amino acid (e.g. a polar and positively charged hydrophilic amino acid, such as arginine (R) or lysine (K); a polar and neutral of charge hydrophilic amino acid, such as asparagine (N), glutamine (Q), serine (S), threonine (T), proline (P), and cysteine (C), a polar and negatively charged hydrophilic amino acid, such as aspartate (D) or glutamate (E), or an aromatic, polar and positively charged hydrophilic amino acid, such as histidine (H)) or a hydrophobic amino acid (e.g. a hydrophobic, aliphatic amino acid such as glycine (G), alanine (A), leucine (L), isoleucine (I), methionine (M), or valine (V), a hydrophobic, aromatic amino acid, such as phenylalanine (F), tryptophan (W), or tyrosine (Y) or a non-classical amino acid (e.g. selenocysteine, pyrrolysine, N-formylmethionine β-alanine, GABA and δ-Aminolevulinic acid. 4-Aminobenzoic acid (PABA), D-isomers of the common amino acids, 2,4-diaminobutyric acid, α-amino isobutyric acid, 4- aminobutyric acid, Abu, 2-amino butyric acid, γ-Abu, ε-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosme, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, β-alanine, fluoro-amino acids, designer amino acids such as β methyl amino acids, C a -methyl amino acids, N a -methyl amino acids, and amino acid analogs in general).
In illustrative embodiments, inventive mutations include, but are not limited to one or more (e.g. about 1 , or about
2, or about 3, or about 4, or about 5, or about 6, or about 7, or about 8, or about 9, or about 10, or about 15, or about 20, or about 30, or about 40, or about 50, or about 60, or about 70, or about 80, or about 90, or about 100, or about 110, or about 120, or about 130, or about 140, or about 150) of the following mutations to SEQ ID NO: 1 or SEQ ID NO: 3 or a sequence with at least 30, 35, 40, 50, 51 , 52, 53, 54, 55, 56, 57, 58, 59, 60, 61 , 62, 63, 64,
65, 66, 67, 68, 69, 70, 71 , 72, 73, 74, 75, 76, 77, 78, 79, 80, 81 , 82, 83, 84, 85, 86, 87, 88, 89, 90, 91 , 92, 93, 94,
95, 96, 97, 98, 99, 99.5, 99.8, 99.9% identity to SEQ ID NO: 1 or SEQ ID NO: 3 (or about 70%, or about 75%, or about 80%, or about 85%, or about 90, or about 95%, or about 96%, or about 97%, or about 98%, or about 99% identity to SEQ ID NO: 1 or SEQ ID NO: 3): GlulAla; Glul Cys; GlulAsp; Glul Phe; GlulGly; Glul His; Glul lle;
Metl Lys; Glul Leu; Glul Met; GlulAsn; Glul Pro; Glul GIn; GlulArg; Glul Ser; GlulThr; Glu al; GlulTrp;
GlulTyr; Met2Ala; Met2Cys; Met2Asp; Met2Glu; Met2Phe; Met2Gly; Met2His; Met2lle; Metl Lys; Met2Leu;
Met2Asn; Met2Pro; Met2Gln; Met2Arg; Met2Ser; Met2Thr; Met2Val; Met2Trp; Met2Tyr; Lys3Ala; Lys3Cys;
Lys3Asp; Lys3Glu; Lys3Phe; Lys3Gly; Lys3His; Lys3lle; Lys3Leu; Lys3Met; Lys3Asn; Lys3Pro; Lys3Gln;
Lys3Arg; Lys3Ser; Lys3Thr; Lys3Val; Lys3Trp; Lys3Tyr; Asp4Ala; Asp4Cys; Asp4Glu; Asp4Phe; Asp4Gly;
Asp4His; Asp4lle; Asp4Lys; Asp4Leu; Asp4Met; Asp4Asn; Asp4Pro; Asp4Gln; Asp4Arg; Asp4Ser; Asp4Thr;
Asp4Val; Asp4Trp; Asp4Tyr; Asp5Ala; Asp5Cys; Asp5Glu; Asp5Phe; Asp5Gly; Asp5His; Asp5lle; Asp5Lys;
Asp5Leu; Asp5Met; Asp5Asn; Asp5Pro; Asp5Gln; Asp5Arg; Asp5Ser; Asp5Thr; Asp5Val; Asp5Trp; Asp5Tyr;
Phe6Ala; Phe6Cys; Phe6Asp; Phe6Glu; Phe6Gly; Phe6His; Phe6lle; Phe6Lys; Phe6Leu; Phe6Met; Phe6Asn;
Phe6Pro; Phe6Gln; Phe6Arg; Phe6Ser; Phe6Thr; Phe6Val; Phe6Trp; Phe6Tyr; Ala7Cys; Ala7Asp; Ala7Glu;
Ala7Phe; Ala7Gly; Ala7His; Ala7lle; Ala7Lys; Ala7Leu; Ala7Met; Ala7Asn; Ala7Pro; Ala7Gln; Ala7Arg; Ala7Ser;
Ala7Thr; Ala7Val; Ala7Trp; Ala7Tyr; Lys8Ala; Lys8Cys; Lys8Asp; Lys8Glu; Lys8Phe; Lys8Gly; Lys8His; Lys8lle;
Lys8Leu; Lys8Met; Lys8Asn; Lys8Pro; Lys8Gln; Lys8Arg; Lys8Ser; Lys8Thr; Lys8Val; Lys8Trp; Lys8Tyr;
Leu9Ala; Leu9Cys; Leu9Asp; Leu9Glu; Leu9Phe; Leu9Gly; Leu9His; Leu9lle; Leu9Lys; Leu9Met; Leu9Asn;
Leu9Pro; Leu9Gln; Leu9Arg; Leu9Ser; Leu9Thr; Leu9Val; Leu9Trp; Leu9Tyr; Glul OAIa; Glul OCys; Glul OAsp;
Glul OPhe; Glul OGly; Glul OHis; Glul Olle; Glul OLys; Glul OLeu; Glul OMet; Glul OAsn; Glul OPro; Glul OGIn;
Glul OArg; Glul OSer; Glul OThr; Glul OVal; Glul OTrp; Glul OTyr; Glu11Ala; Glu11 Cys; Glu11Asp; Glu11 Phe;
Glu11 Gly; Glu11 His; Glu11 lle; Glu11 Lys; Glu11 Leu; Glu11 Met; Glu11Asn; Glu11 Pro; Glu11 Gln; Glu11Arg;
Glu11 Ser; Glu11Thr; Glu11Val; Glu11Trp; Glu11Tyr; Gln12Ala; Gln12Cys; Gln12Asp; Gln12Glu; Gln12Phe;
Gln12Gly; Gln12His; Gln12lle; Gln12Lys; Gln12Leu; Gln12Met; Gln12Asn; Gln12Pro; Gln12Arg; Gln12Ser;
Gln12Thr; Gln12Val; Gln12Trp; Gln12Tyr; Phe13Ala; Phe13Cys; Phe13Asp; Phe13Glu; Phe13Gly; Phe13His;
Phe13lle; Phe13Lys; Phe13Leu; Phe13Met; Phe13Asn; Phe13Pro; Phe13Gln; Phe13Arg; Phe13Ser; Phe13Thr; Phe13Val; Phe13Trp; Phe13Tyr; Asp14Ala; Asp14Cys; Asp14Glu; Asp14Phe; Asp14Gly; Asp14His; Asp14lle; Asp14Lys; Asp14Leu; Asp14Met; Asp14Asn; Asp14Pro; Asp14Gln; Asp14Arg; Asp14Ser; Asp14Thr; Asp14Val; Asp14Trp; Asp14Tyr; Ala15Cys; Ala15Asp; Ala15Glu; Ala15Phe; Ala15Gly; Ala15His; Ala15lle; Ala15Lys; Ala15Leu; Ala15Met; Ala15Asn; Ala15Pro; Ala15Gln; Ala15Arg; Ala15Ser; Ala15Thr; Ala15Val; Ala15Trp; Ala15Tyr; Lys16Ala; Lys16Cys; Lys16Asp; Lys16Glu; Lys16Phe; Lys16Gly; Lys16His; Lys16lle; Lys16Leu; Lys16Met; Lys16Asn; Lys16Pro; Lys16Gln; Lys16Arg; Lys16Ser; Lys16Thr; Lys16Val; Lys16Trp; Lys16Tyr; Leu17Ala; Leu17Cys; Leu17Asp; Leu17Glu; Leu17Phe; Leu17Gly; Leu17His; Leu17lle; Leu17Lys; Leu17Met; Leu17Asn; Leu17Pro; Leu17Gln; Leu17Arg; Leu17Ser; Leu17Thr; Leu17Val; Leu17Trp; Leu17Tyr; Gly18Ala; Gly18Cys; Gly18Asp; Gly18Glu; Gly18Phe; Gly18His; Gly18lle; Gly18Lys; Gly18Leu; Gly18Met; Gly18Asn; Gly18Pro; Gly18Gln; Gly18Arg; Gly18Ser; Gly18Thr; Gly18Val; Gly18Trp; Gly18Tyr; He19Ala; He19Cys; He19Asp; He19Glu; He19Phe; He19Gly; He19His; He19Lys; He19Leu; He19Met; He19Asn; He19Pro; He19Gln; He19Arg; He19Ser; He19Thr; He19Val; He19Trp; He19Tyr; Phe20Ala; Phe20Cys; Phe20Asp; Phe20Glu; Phe20Gly; Phe20His; Phe20lle; Phe20Lys; Phe20Leu; Phe20Met; Phe20Asn; Phe20Pro; Phe20Gln; Phe20Arg; Phe20Ser; Phe20Thr; Phe20Val; Phe20Trp; Phe20Tyr; Ala21Cys; Ala21Asp; Ala21Glu; Ala21 Phe; Ala21Gly; Ala21 His; Ala21lle; Ala21Lys; Ala21Leu; Ala21 Met; Ala21Asn; Ala21 Pro; Ala21Gln; Ala21Arg; Ala21Ser; Ala21Thr; Ala21Val; Ala21Trp; Ala21Tyr; Leu22Ala; Leu22Cys; Leu22Asp; Leu22Glu; Leu22Phe; Leu22Gly; Leu22His; Leu22lle; Leu22Lys; Leu22Met; Leu22Asn; Leu22Pro; Leu22Gln; Leu22Arg; Leu22Ser; Leu22Thr; Leu22Val; Leu22Trp; Leu22Tyr; Asp23Ala; Asp23Cys; Asp23Glu; Asp23Phe; Asp23Gly; Asp23His; Asp23lle; Asp23Lys; Asp23Leu; Asp23Met; Asp23Asn; Asp23Pro; Asp23Gln; Asp23Arg; Asp23Ser; Asp23Thr; Asp23Val; Asp23Trp; Asp23Tyr; Thr24Ala; Thr24Cys; Thr24Asp; Thr24Glu; Thr24Phe; Thr24Gly; Thr24His; Thr24lle; Thr24Lys; Thr24Leu; Thr24Met; Thr24Asn; Thr24Pro; Thr24Gln; Thr24Arg; Thr24Ser; Thr24Val; Thr24Trp; Thr24Tyr; Gly25Ala; Gly25Cys; Gly25Asp; Gly25Glu; Gly25Phe; Gly25His; Gly25lle; Gly25Lys; Gly25Leu; Gly25Met; Gly25Asn; Gly25Pro; Gly25Gln; Gly25Arg; Gly25Ser; Gly25Thr; Gly25Val; Gly25Trp; Gly25Tyr; Thr26Ala; Thr26Cys; Thr26Asp; Thr26Glu; Thr26Phe; Thr26Gly; Thr26His; Thr26lle; Thr26Lys; Thr26Leu; Thr26Met; Thr26Asn; Thr26Pro; Thr26Gln; Thr26Arg; Thr26Ser; Thr26Val; Thr26Trp; Thr26Tyr; Asn27Ala; Asn27Cys; Asn27Asp; Asn27Glu; Asn27Phe; Asn27Gly; Asn27His; Asn27lle; Asn27Lys; Asn27Leu; Asn27Met; Asn27Pro; Asn27Gln; Asn27Arg; Asn27Ser; Asn27Thr; Asn27Val; Asn27Trp; Asn27Tyr; Arg28Ala; Arg28Cys; Arg28Asp; Arg28Glu; Arg28Phe; Arg28Gly; Arg28His; Arg28lle; Arg28Lys; Arg28Leu; Arg28Met; Arg28Asn; Arg28Pro; Arg28Gln; Arg28Ser; Arg28Thr; Arg28Val; Arg28Trp; Arg28Tyr; Thr29Ala; Thr29Cys; Thr29Asp; Thr29Glu; Thr29Phe; Thr29Gly; Thr29His; Thr29lle; Thr29Lys; Thr29Leu; Thr29Met; Thr29Asn; Thr29Pro; Thr29Gln; Thr29Arg; Thr29Ser; Thr29Val; Thr29Trp; Thr29Tyr; Val30Ala; Val30Cys; Val30Asp; Val30Glu; Val30Phe; Val30Gly; Val30His; Val30lle; Val30Lys; Val30Leu; Val30Met; Val30Asn; Val30Pro; Val30Gln; Val30Arg; Val30Ser; Val30Thr; Val30Trp; Val30Tyr; Ala31Ala; Ala31Cys; Ala31Asp; Ala31Glu; Ala31 Phe; Ala31Gly; Ala31 His; Ala31 lle; Ala31Lys; Ala31Leu; Ala31 Met; Ala31Asn; Ala31 Pro; Ala31Gln; Ala31Arg; Ala31Ser; Ala31Thr; Ala31Val; Ala31Trp; Ala31Tyr; Tyr32Ala; Tyr32Cys; Tyr32Asp; Tyr32Glu; Tyr32Phe; Tyr32Gly; Tyr32His; Tyr32lle; Tyr32Lys; Tyr32Leu; Tyr32Met; Tyr32Asn; Tyr32Pro; Tyr32Gln; Tyr32Arg; Tyr32Ser; Tyr32Thr; Tyr32Val; Tyr32Trp; Arg33Ala; Arg33Cys; Arg33Asp; Arg33Glu; Arg33Phe; Arg33Gly; Arg33His; Arg33lle; Arg33Lys; Arg33Leu; Arg33Met; Arg33Asn; Arg33Pro; Arg33Gln; Arg33Ser; Arg33Thr; Arg33Val; Arg33Trp; Arg33Tyr; Pro34Ala; Pro34Cys; Pro34Asp; Pro34Glu; Pro34Phe; Pro34Gly; Pro34His; Pro34lle; Pro34Lys; Pro34Leu; Pro34Met; Pro34Asn; Pro34Gln; Pro34Arg; Pro34Ser; Pro34Thr; Pro34Val; Pro34Trp; Pro34Tyr; Asp35Ala; Asp35Cys; Asp35Glu; Asp35Phe; Asp35Gly; Asp35His; Asp35lle; Asp35Lys; Asp35Leu; Asp35Met; Asp35Asn; Asp35Pro; Asp35Gln; Asp35Arg; Asp35Ser; Asp35Thr; Asp35Val; Asp35Trp; Asp35Tyr; Glu36Ala; Glu36Cys; Glu36Asp; Glu36Phe; Glu36Gly; Glu36His; Glu36lle; Glu36Lys; Glu36Leu; Glu36Met; Glu36Asn; Glu36Pro; Glu36Gln; Glu36Arg; Glu36Ser; Glu36Thr; Glu36Val; Glu36Trp; Glu36Tyr; Arg37Ala; Arg37Cys; Arg37Asp; Arg37Glu; Arg37Phe; Arg37Gly; Arg37His; Arg37lle; Arg37Lys; Arg37Leu; Arg37Met; Arg37Asn; Arg37Pro; Arg37Gln; Arg37Ser; Arg37Thr; Arg37Val; Arg37Trp; Arg37Tyr; Phe38Ala; Phe38Cys; Phe38Asp; Phe38Glu; Phe38Gly; Phe38His; Phe38lle; Phe38Lys; Phe38Leu; Phe38Met; Phe38Asn; Phe38Pro; Phe38Gln; Phe38Arg; Phe38Ser; Phe38Thr; Phe38Val; Phe38Trp; Phe38Tyr; Ala39Cys; Ala39Asp; Ala39Glu; Ala39Phe; Ala39Gly; Ala39His; Ala39lle; Ala39Lys; Ala39Leu; Ala39Met; Ala39Asn; Ala39Pro; Ala39Gln; Ala39Arg; Ala39Ser; Ala39Thr; Ala39Val; Ala39Trp; Ala39Tyr; Phe40Ala; Phe40Cys; Phe40Asp; Phe40Glu; Phe40Gly; Phe40His; Phe40lle; Phe40Lys; Phe40Leu; Phe40Met; Phe40Asn; Phe40Pro; Phe40Gln; Phe40Arg; Phe40Ser; Phe40Thr; Phe40Val; Phe40Trp; Phe40Tyr; Ala41 Cys; Ala41Asp; Ala41 Glu; Ala41 Phe; Ala41 Gly; Ala41 His; Ala41 lle; Ala41 Lys; Ala41 Leu; Ala41 Met; Ala41Asn; Ala41 Pro; Ala41 Gln; Ala41Arg; Ala41 Ser; Ala41 Thr; Ala41Val; Ala41Trp; Ala41 Tyr; Ser42Ala; Ser42Cys; Ser42Asp; Ser42Glu; Ser42Phe; Ser42Gly; Ser42His; Ser42lle; Ser42Lys; Ser42Leu; Ser42Met; Ser42Asn; Ser42Pro; Ser42Gln; Ser42Arg; Ser42Thr; Ser42Val; Ser42Trp; Ser42Tyr; Thr43Ala; Thr43Cys; Thr43Asp; Thr43Glu; Thr43Phe; Thr43Gly; Thr43His; Thr43lle; Thr43Lys; Thr43Leu; Thr43Met; Thr43Asn; Thr43Pro; Thr43Gln; Thr43Arg; Thr43Ser; Thr43Val; Thr43Trp; Thr43Tyr; He44Ala; He44Cys; He44Asp; He44Glu; He44Phe; He44Gly; He44His; He44Lys; He44Leu; He44Met; He44Asn; He44Pro; He44Gln; He44Arg; He44Ser; He44Thr; He44Val; He44Trp; He44Tyr; Lys45Ala; Lys45Cys; Lys45Asp; Lys45Glu; Lys45Phe; Lys45Gly; Lys45His; Lys45lle; Lys45Leu; Lys45Met; Lys45Asn; Lys45Pro; Lys45Gln; Lys45Arg; Lys45Ser; Lys45Thr; Lys45Val; Lys45Trp; Lys45Tyr; Ala46Cys; Ala46Asp; Ala46Glu; Ala46Phe; Ala46Gly; Ala46His; Ala46lle; Ala46Lys; Ala46Leu; Ala46Met; Ala46Asn; Ala46Pro; Ala46Gln; Ala46Arg; Ala46Ser; Ala46Thr; Ala46Val; Ala46Trp; Ala46Tyr; Leu47Ala; Leu47Cys; Leu47Asp; Leu47Glu; Leu47Phe; Leu47Gly; Leu47His; Leu47lle; Leu47Lys; Leu47Met; Leu47Asn; Leu47Pro; Leu47Gln; Leu47Arg; Leu47Ser; Leu47Thr; Leu47Val; Leu47Trp; Leu47Tyr; Thr48Ala; Thr48Cys; Thr48Asp; Thr48Glu; Thr48Phe; Thr48Gly; Thr48His; Thr48lle; Thr48Lys; Thr48Leu; Thr48Met; Thr48Asn; Thr48Pro; Thr48Gln; Thr48Arg; Thr48Ser; Thr48Val; Thr48Trp; Thr48Tyr; Val49Ala; Val49Cys; Val49Asp; Val49Glu; Val49Phe; Val49Gly; Val49His; Val49lle; Val49Lys; Val49Leu; Val49Met; Val49Asn; Val49Pro; Val49Gln; Val49Arg; Val49Ser; Val49Thr; Val49Trp; Val49Tyr; Gly50Ala; GlySOCys; GlySOAsp; Gly50Glu; Gly50Phe; Gly50His; Gly50lle; GlySOLys; Gly50Leu; GlySOMet; Gly50Asn; GlySOPro; Gly50Gln; GlySOArg; Gly50Ser; Gly50Thr; Gly50Val; Gly50Trp; GlySOTyr; Val51Ala; Val51 Cys; Val51Asp; Val51 Glu; Val51 Phe; Val51 Gly; Val51 His; Val51 lle; Val51 Lys; Val51 Leu; Val51 Met; Val51Asn; Val51 Pro; Val51 Gln; ValSIArg; Val51 Ser; Val51 Thr; Val51 Trp; Val51Tyr; Leu52Ala; Leu52Cys; Leu52Asp; Leu52Glu; Leu52Phe; Leu52Gly; Leu52His; Leu52lle; Leu52Lys; Leu52Met; Leu52Asn; Leu52Pro; Leu52Gln; Leu52Arg; Leu52Ser; Leu52Thr; Leu52Val; Leu52Trp; Leu52Tyr; Leu53Ala; Leu53Cys; Leu53Asp; Leu53Glu; Leu53Phe; Leu53Gly; Leu53His; Leu53lle; Leu53Lys; Leu53Met; Leu53Asn; Leu53Pro; Leu53Gln; Leu53Arg; Leu53Ser; Leu53Thr; Leu53Val; Leu53Trp; Leu53Tyr; Gln54Ala; Gln54Cys; Gln54Asp; Gln54Glu; Gln54Phe; Gln54Gly; Gln54His; Gln54lle; Gln54Lys; Gln54Leu; Gln54Met; Gln54Asn; Gln54Pro; Gln54Arg; Gln54Ser; Gln54Thr; Gln54Val; Gln54Trp; Gln54Tyr; Gln55Ala; Gln55Cys; Gln55Asp; Gln55Glu; Gln55Phe; Gln55Gly; Gln55His; Gln55lle; Gln55Lys; Gln55Leu; Gln55Met; Gln55Asn; Gln55Pro; Gln55Arg; Gln55Ser; Gln55Thr; Gln55Val; Gln55Trp; Gln55Tyr; Lys56Ala; Lys56Cys; Lys56Asp; Lys56Glu; Lys56Phe; Lys56Gly; Lys56His; Lys56lle; Lys56Leu; Lys56Met; Lys56Asn; Lys56Pro; Lys56Gln; Lys56Arg; Lys56Ser; Lys56Thr; Lys56Val; Lys56Trp; Lys56Tyr; Ser57Ala; Ser57Cys; Ser57Asp; Ser57Glu; Ser57Phe; Ser57Gly; Ser57His; Ser57lle; Ser57Lys; Ser57Leu; Ser57Met; Ser57Asn; Ser57Pro; Ser57Gln; Ser57Arg; Ser57Thr; Ser57Val; Ser57Trp; Ser57Tyr; He58Ala; He58Cys; He58Asp; He58Glu; He58Phe; He58Gly; He58His; He58Lys; He58Leu; He58Met; He58Asn; He58Pro; He58Gln; He58Arg; He58Ser; He58Thr; He58Val; He58Trp; He58Tyr; Glu59Ala; Glu59Cys; Glu59Asp; Glu59Phe; Glu59Gly; Glu59His; Glu59lle; Glu59Lys; Glu59Leu; Glu59Met; Glu59Asn; Glu59Pro; Glu59Gln; Glu59Arg; Glu59Ser; Glu59Thr; Glu59Val; Glu59Trp; Glu59Tyr; Asp60Ala; Asp60Cys; Asp60Glu; Asp60Phe; Asp60Gly; Asp60His; Asp60lle; Asp60Lys; Asp60Leu; Asp60Met; Asp60Asn; Asp60Pro; Asp60Gln; Asp60Arg; Asp60Ser; Asp60Thr; Asp60Val; Asp60Trp; Asp60Tyr; Leu61Ala; Leu61 Cys; Leu61Asp; Leu61 Glu; Leu61 Phe; Leu61 Gly; Leu61 His; Leu61 lle; Leu61 Lys; Leu61 Met; Leu61Asn; Leu61 Pro; Leu61 Gln; Leu61Arg; Leu61 Ser; Leu61 Thr; Leu61Val; Leu61Trp; Leu61Tyr; Asn62Ala; Asn62Cys; Asn62Asp; Asn62Glu; Asn62Phe; Asn62Gly; Asn62His; Asn62lle; Asn62Lys; Asn62Leu; Asn62Met; Asn62Pro; Asn62Gln; Asn62Arg; Asn62Ser; Asn62Thr; Asn62Val; Asn62Trp; Asn62Tyr; Gln63Ala; Gln63Cys; Gln63Asp; Gln63Glu; Gln63Phe; Gln63Gly; Gln63His; Gln63lle; Gln63Lys; Gln63Leu; Gln63Met; Gln63Asn; Gln63Pro; Gln63Arg; Gln63Ser; Gln63Thr; Gln63Val; Gln63Trp; Gln63Tyr; Arg64Ala; Arg64Cys; Arg64Asp; Arg64Glu; Arg64Phe; Arg64Gly; Arg64His; Arg64lle; Arg64Lys; Arg64Leu; Arg64Met; Arg64Asn; Arg64Pro; Arg64Gln; Arg64Ser; Arg64Thr; Arg64Val; Arg64Trp; Arg64Tyr; He65Ala; He65Cys; He65Asp; He65Glu; He65Phe; He65Gly; He65His; He65Lys; He65Leu; He65Met; He65Asn; He65Pro; He65Gln; He65Arg; He65Ser; He65Thr; He65Val; He65Trp; He65Tyr; Thr66Ala; Thr66Cys; Thr66Asp; Thr66Glu; Thr66Phe; Thr66Gly; Thr66His; Thr66lle; Thr66Lys; Thr66Leu; Thr66Met; Thr66Asn; Thr66Pro; Thr66Gln; Thr66Arg; Thr66Ser; Thr66Val; Thr66Trp; Thr66Tyr; Tyr67Ala; Tyr67Cys; Tyr67Asp; Tyr67Glu; Tyr67Phe; Tyr67Gly; Tyr67His; Tyr67lle; Tyr67Lys; Tyr67Leu; Tyr67Met; Tyr67Asn; Tyr67Pro; Tyr67Gln; Tyr67Arg; Tyr67Ser; Tyr67Thr; Tyr67Val; Tyr67Trp; Thr68Ala; Thr68Cys; Thr68Asp; Thr68Glu; Thr68Phe; Thr68Gly; Thr68His; Thr68lle; Thr68Lys; Thr68Leu; Thr68Met; Thr68Asn; Thr68Pro; Thr68Gln; Thr68Arg; Thr68Ser; Thr68Val; Thr68Trp; Thr68Tyr; Arg69Ala; Arg69Cys; Arg69Asp; Arg69Glu; Arg69Phe; Arg69Gly; Arg69His; Arg69lle; Arg69Lys; Arg69Leu; Arg69Met; Arg69Asn; Arg69Pro; Arg69Gln; Arg69Ser; Arg69Thr; Arg69Val; Arg69Trp; Arg69Tyr; Asp70Ala; Asp70Cys; Asp70Glu; Asp70Phe; Asp70Gly; Asp70His; Asp70lle; Asp70Lys; Asp70Leu; Asp70Met; Asp70Asn; Asp70Pro; Asp70Gln; Asp70Arg; Asp70Ser; Asp70Thr; Asp70Val; Asp70Trp; Asp70Tyr; Asp71Ala; Asp71 Cys; Asp71 Glu; Asp71 Phe; Asp71 Gly; Asp71 His; Asp71 He; Asp71 Lys; Asp71 Leu; Asp71 Met; Asp71Asn; Asp71 Pro; Asp71 Gln; Asp71Arg; Asp71 Ser; Asp71 Thr; Asp71Val; Asp71 Trp; Asp71 Tyr; Leu72Ala; Leu72Cys; Leu72Asp; Leu72Glu; Leu72Phe; Leu72Gly; Leu72His; Leu72lle; Leu72Lys; Leu72Met; Leu72Asn; Leu72Pro; Leu72Gln; Leu72Arg; Leu72Ser; Leu72Thr; Leu72Val; Leu72Trp; Leu72Tyr; Val73Ala; Val73Cys; Val73Asp; Val73Glu; Val73Phe; Val73Gly; Val73His; Val73lle; Val73Lys; Val73Leu; Val73Met; Val73Asn; Val73Pro; Val73Gln; Val73Arg; Val73Ser; Val73Thr; Val73Trp; Val73Tyr; Asn74Ala; Asn74Cys; Asn74Asp; Asn74Glu; Asn74Phe; Asn74Gly; Asn74His; Asn74lle; Asn74Lys; Asn74Leu; Asn74Met; Asn74Pro; Asn74Gln; Asn74Arg; Asn74Ser; Asn74Thr; Asn74Val; Asn74Trp; Asn74Tyr; Tyr75Ala; Tyr75Cys; Tyr75Asp; Tyr75Glu; Tyr75Phe; Tyr75Gly; Tyr75His; Tyr75lle; Tyr75Lys; Tyr75Leu; Tyr75Met; Tyr75Asn; Tyr75Pro; Tyr75Gln; Tyr75Arg; Tyr75Ser; Tyr75Thr; Tyr75Val; Tyr75Trp; Asn76Ala; Asn76Cys; Asn76Asp; Asn76Glu; Asn76Phe; Asn76Gly; Asn76His; Asn76lle; Asn76Lys; Asn76Leu; Asn76Met; Asn76Pro; Asn76Gln; Asn76Arg; Asn76Ser; Asn76Thr; Asn76Val; Asn76Trp; Asn76Tyr; Pro77Ala; Pro77Cys; Pro77Asp; Pro77Glu; Pro77Phe; Pro77Gly; Pro77His; Pro77lle; Pro77Lys; Pro77Leu; Pro77Met; Pro77Asn; Pro77Gln; Pro77Arg; Pro77Ser; Pro77Thr; Pro77Val; Pro77Trp; Pro77Tyr; He78Ala; He78Cys; He78Asp; He78Glu; He78Phe; He78Gly; He78His; He78Lys; He78Leu; He78Met; He78Asn; He78Pro; He78Gln; He78Arg; He78Ser; He78Thr; He78Val; He78Trp; He78Tyr; Thr79Ala; Thr79Cys; Thr79Asp; Thr79Glu; Thr79Phe; Thr79Gly; Thr79His; Thr79lle; Thr79Lys; Thr79Leu; Thr79Met; Thr79Asn; Thr79Pro; Thr79Gln; Thr79Arg; Thr79Ser; Thr79Val; Thr79Trp; Thr79Tyr; Glu80Ala; Glu80Cys; Glu80Asp; Glu80Phe; Glu80Gly; Glu80His; Glu80lle; Glu80Lys; Glu80Leu; Glu80Met; Glu80Asn; Glu80Pro; Glu80Gln; Glu80Arg; Glu80Ser; Glu80Thr; Glu80Val; Glu80Trp; Glu80Tyr; Lys81Ala; Lys81 Cys; Lys81Asp; Lys81 Glu; Lys81 Phe; Lys81 Gly; Lys81 His; Lys81 lle; Lys81 Leu; Lys81 Met; Lys81Asn; Lys81 Pro; Lys81 Gln; Lys81Arg; Lys81 Ser; Lys81 Thr; Lys81Val; Lys81Trp; Lys81 Tyr; His82Ala; His82Cys; His82Asp; His82Glu; His82Phe; His82Gly; His82lle; His82Lys; His82Leu; His82Met; His82Asn; His82Pro; His82Gln; His82Arg; His82Ser; His82Thr; His82Val; His82Trp; His82Tyr; Val83Ala; Val83Cys; Val83Asp; Val83Glu; Val83Phe; Val83Gly; Val83His; Val83lle; Val83Lys; Val83Leu; Val83Met; Val83Asn; Val83Pro; Val83Gln; Val83Arg; Val83Ser; Val83Thr; Val83Trp; Val83Tyr; Asp84Ala; Asp84Cys; Asp84Glu; Asp84Phe; Asp84Gly; Asp84His; Asp84lle; Asp84Lys; Asp84Leu; Asp84Met; Asp84Asn; Asp84Pro; Asp84Gln; Asp84Arg; Asp84Ser; Asp84Thr; Asp84Val; Asp84Trp; Asp84Tyr; Thr85Ala; Thr85Cys; Thr85Asp; Thr85Glu; Thr85Phe; Thr85Gly; Thr85His; Thr85lle; Thr85Lys; Thr85Leu; Thr85Met; Thr85Asn; Thr85Pro; Thr85Gln; Thr85Arg; Thr85Ser; Thr85Val; Thr85Trp; Thr85Tyr; Gly86Ala; Gly86Cys; Gly86Asp; Gly86Glu; Gly86Phe; Gly86His; Gly86lle; Gly86Lys; Gly86Leu; Gly86Met; Gly86Asn; Gly86Pro; Gly86Gln; Gly86Arg; Gly86Ser; Gly86Thr; Gly86Val; Gly86Trp; Gly86Tyr; Met87Ala; Met87Cys; Met87Asp; Met87Glu; Met87Phe; Met87Gly; Met87His; Met87lle; Met87Lys; Met87Leu; Met87Asn; Met87Pro; Met87Gln; Met87Arg; Met87Ser; Met87Thr; Met87Val; Met87Trp; Met87Tyr; Thr88Ala; Thr88Cys; Thr88Asp; Thr88Glu; Thr88Phe; Thr88Gly; Thr88His; Thr88lle; Thr88Lys; Thr88Leu; Thr88Met; Thr88Asn; Thr88Pro; Thr88Gln; Thr88Arg; Thr88Ser; Thr88Val; Thr88Trp; Thr88Tyr; Leu89Ala; Leu89Cys; Leu89Asp; Leu89Glu; Leu89Phe; Leu89Gly; Leu89His; Leu89lle; Leu89Lys; Leu89Met; Leu89Asn; Leu89Pro; Leu89Gln; Leu89Arg; Leu89Ser; Leu89Thr; Leu89Val; Leu89Trp; Leu89Tyr; Lys90Ala; Lys90Cys; Lys90Asp; Lys90Glu; Lys90Phe; Lys90Gly; Lys90His; Lys90lle; Lys90Leu; Lys90Met; Lys90Asn; Lys90Pro; Lys90Gln; Lys90Arg; Lys90Ser; Lys90Thr; Lys90Val; Lys90Trp; Lys90Tyr; Glu91Ala; Glu91 Cys; Glu91Asp; Glu91 Phe; Glu91 Gly; Glu91 His; Glu91 lie; Glu91 Lys; Glu91 Leu; Glu91 Met; Glu91Asn; Glu91 Pro; Glu91 Gln; Glu91Arg; Glu91 Ser; Glu91Thr; Glu91Val; Glu91Trp; Glu91Tyr; Leu92Ala; Leu92Cys; Leu92Asp; Leu92Glu; Leu92Phe; Leu92Gly; Leu92His; Leu92lle; Leu92Lys; Leu92Met; Leu92Asn; Leu92Pro; Leu92Gln; Leu92Arg; Leu92Ser; Leu92Thr; Leu92Val; Leu92Trp; Leu92Tyr; Ala93Cys; Ala93Asp; Ala93Glu; Ala93Phe; Ala93Gly; Ala93His; Ala93lle; Ala93Lys; Ala93Leu; Ala93Met; Ala93Asn; Ala93Pro; Ala93Gln; Ala93Arg; Ala93Ser; Ala93Thr; Ala93Val; Ala93Trp; Ala93Tyr; Asp94Ala; Asp94Cys; Asp94Glu; Asp94Phe; Asp94Gly; Asp94His; Asp94lle; Asp94Lys; Asp94Leu; Asp94Met; Asp94Asn; Asp94Pro; Asp94Gln; Asp94Arg; Asp94Ser; Asp94Thr; Asp94Val; Asp94Trp; Asp94Tyr; Ala95Cys; Ala95Asp; Ala95Glu; Ala95Phe; Ala95Gly; Ala95His; Ala95lle; Ala95Lys; Ala95Leu; Ala95Met; Ala95Asn; Ala95Pro; Ala95Gln; Ala95Arg; Ala95Ser; Ala95Thr; Ala95Val; Ala95Trp; Ala95Tyr; Ser96Ala; Ser96Cys; Ser96Asp; Ser96Glu; Ser96Phe; Ser96Gly; Ser96His; Ser96lle; Ser96Lys; Ser96Leu; Ser96Met; Ser96Asn; Ser96Pro; Ser96Gln; Ser96Arg; Ser96Thr; Ser96Val; Ser96Trp; Ser96Tyr; Leu97Ala; Leu97Cys; Leu97Asp; Leu97Glu; Leu97Phe; Leu97Gly; Leu97His; Leu97lle; Leu97Lys; Leu97Met; Leu97Asn; Leu97Pro; Leu97Gln; Leu97Arg; Leu97Ser; Leu97Thr; Leu97Val; Leu97Trp; Leu97Tyr; Arg98Ala; Arg98Cys; Arg98Asp; Arg98Glu; Arg98Phe; Arg98Gly; Arg98His; Arg98lle; Arg98Lys; Arg98Leu; Arg98Met; Arg98Asn; Arg98Pro; Arg98Gln; Arg98Ser; Arg98Thr; Arg98Val; Arg98Trp; Arg98Tyr; Tyr99Ala; Tyr99Cys; Tyr99Asp; Tyr99Glu; Tyr99Phe; Tyr99Gly; Tyr99His; Tyr99lle; Tyr99Lys; Tyr99Leu; Tyr99Met; Tyr99Asn; Tyr99Pro; Tyr99Gln; Tyr99Arg; Tyr99Ser; Tyr99Thr; Tyr99Val; Tyr99Trp; Serl OOAIa; Serl OOCys; Serl OOAsp; SerlOOGIu; SerlOOPhe; Serl OOGly; SerlOOHis; Serl OOIIe; Serl OOLys; Serl OOLeu; SerlOOMet; Serl OOAsn; Serl OOPro; SerlOOGIn; Serl OOArg; Serl OOThr; Serl OOVal; Serl OOTrp; Serl OOTyr; Asp101Ala; Asp101 Cys; Asp101 Glu; Asp101 Phe; Asp101 Gly; Asp101 His; Asp101 lie; Asp101 Lys; Asp101 Leu; Asp101 Met; Asp101Asn; Asp101 Pro; Asp101 Gln; Asp101Arg; Asp101 Ser; Asp101Thr; Asp101Val; Asp101Trp; Asp101Tyr; Asn102Ala; Asn102Cys; Asn102Asp; Asn102Glu; Asn102Phe; Asn102Gly; Asn102His; Asn102lle; Asn102Lys; Asn102Leu; Asn102Met; Asn102Pro; Asn102Gln; Asn102Arg; Asn102Ser; Asn102Thr; Asn102Val; Asn102Trp; Asn102Tyr; Ala103Cys; Ala103Asp; Ala103Glu; Ala103Phe; Ala103Gly; Ala103His; Ala103lle; Ala103Lys; Ala103Leu; Ala103Met; Ala103Asn; Ala103Pro; Ala103Gln; Ala103Arg; Ala103Ser; Ala103Thr; Ala103Val; Ala103Trp; Ala103Tyr; Ala104Cys; Ala104Asp; Ala104Glu; Ala104Phe; Ala104Gly; Ala104His; Ala104lle; Ala104Lys; Ala104Leu; Ala104Met; Ala104Asn; Ala104Pro; Ala104Gln; Ala104Arg; Ala104Ser; Ala104Thr; Ala104Val; Ala104Trp; Ala104Tyr; Gln105Ala; Gln105Cys; Gln105Asp; Gln105Glu; Gln105Phe; Gln105Gly; Gln105His; Gln105lle; Gln105Lys; Gln105Leu; Gln105Met; Gln105Asn; Gln105Pro; Gln105Arg; Gln105Ser; Gln105Thr; Gln105Val; Gln105Trp; Gln105Tyr; Asn106Ala; Asn106Cys; Asn106Asp; Asn106Glu; Asn106Phe; Asn106Gly; Asn106His; Asn106lle; Asn106Lys; Asn106Leu; Asn106Met; Asn106Pro; Asn106Gln; Asn106Arg; Asn106Ser; Asn106Thr; Asn106Val; Asn106Trp; Asn106Tyr; Leu107Ala; Leu107Cys; Leu107Asp; Leu107Glu; Leu107Phe; Leu107Gly; Leu107His; Leu107lle; Leu107Lys; Leu107Met; Leu107Asn; Leu107Pro; Leu107Gln; Leu107Arg; Leu107Ser; Leu107Thr; Leu107Val; Leu107Trp; Leu107Tyr; He108Ala; He108Cys; He108Asp; He108Glu; He108Phe; He108Gly; He108His; He108Lys; He108Leu; He108Met; He108Asn; He108Pro; He108Gln; He108Arg; He108Ser; He108Thr; He108Val; He108Trp; He108Tyr; Leu109Ala; Leu109Cys; Leu109Asp; Leu109Glu; Leu109Phe; Leu109Gly; Leu109His; Leu109lle; Leu109Lys; Leu109Met; Leu109Asn; Leu109Pro; Leu109Gln; Leu109Arg; Leu109Ser; Leu109Thr; Leu109Val; Leu109Trp; Leu109Tyr; Lys110Ala; Lys110Cys; Lys110Asp; Lys110Glu; Lys110Phe; Lys110Gly; Lys110His; Lys110lle; Lys110Leu; Lys110Met; Lys110Asn; Lys110Pro; Lys110Gln; Lys110Arg; Lys110Ser; Lys110Thr; Lys110Val; Lys110Trp; Lys110Tyr; Gln111Ala; Gln111Cys; Gln111Asp; Gln111Glu; Gln111Phe; Gln111Gly; Gln111His; Gln111lle; Gln111Lys; Gln111Leu; Gln111Met; Gln111Asn; Gln111Pro; Gln111Arg; Gln111Ser; Gln111Thr; Gln111Val; Gln111Trp; Gln111Tyr; He112Ala; He112Cys; He112Asp; He112Glu; He112Phe; He112Gly; He112His; He112Lys; He112Leu; He112Met; He112Asn; He112Pro; He112Gln; He112Arg; He112Ser; He112Thr; He112Val; He112Trp; He112Tyr; Gly113Ala; Gly113Cys; Gly113Asp; Gly113Glu; Gly113Phe; Gly113His; Gly113lle; Gly113Lys; Gly113Leu; Gly113Met; Gly113Asn; Gly113Pro; Gly113Gln; Gly113Arg; Gly113Ser; Gly113Thr; Gly113Val; Gly113Trp; Gly113Tyr; Gly114Ala; Gly114Cys; Gly114Asp; Gly114Glu; Gly114Phe; Gly114His; Gly114lle; Gly114Lys; Gly114Leu; Gly114Met; Gly114Asn; Gly114Pro; Gly114Gln; Gly114Arg; Gly114Ser; Gly114Thr; Gly114Val; Gly114Trp; Gly114Tyr; Pro115Ala; Pro115Cys; Pro115Asp; Pro115Glu; Pro115Phe; Pro115Gly; Pro115His; Pro115lle; Pro115Lys; Pro115Leu; Pro115Met; Pro115Asn; Pro115Gln; Pro115Arg; Pro115Ser; Pro115Thr; Pro115Val; Pro115Trp; Pro115Tyr; Glu116Ala; Glu116Cys; Glu116Asp; Glu116Phe; Glu116Gly; Glu116His; Glu116lle; Glu116Lys; Glu116Leu; Glu116Met; Glu116Asn; Glu116Pro; Glu116Gln; Glu116Arg; Glu116Ser; Glu116Thr; Glu116Val; Glu116Trp; Glu116Tyr; Ser117Ala; Ser117Cys; Ser117Asp; Ser117Glu; Ser117Phe; Ser117Gly; Ser117His; Ser117lle; Ser117Lys; Ser117Leu; Ser117Met; Ser117Asn; Ser117Pro; Ser117Gln; Ser117Arg; Ser117Thr; Ser117Val; Ser117Trp; Ser117Tyr; Leu118Ala; Leu118Cys; Leu118Asp; Leu118Glu; Leu118Phe; Leu118Gly; Leu118His; Leu118lle; Leu118Lys; Leu118Met; Leu118Asn; Leu118Pro; Leu118Gln; Leu118Arg; Leu118Ser; Leu118Thr; Leu118Val; Leu118Trp; Leu118Tyr; Lys119Ala; Lys119Cys; Lys119Asp; Lys119Glu; Lys119Phe; Lys119Gly; Lys119His; Lys119lle; Lys119Leu; Lys119Met; Lys119Asn; Lys119Pro; Lys119Gln; Lys119Arg; Lys119Ser; Lys119Thr; Lys119Val; Lys119Trp; Lys119Tyr; Lys120Ala; Lys120Cys; Lys120Asp; Lys120Glu; Lys120Phe; Lys120Gly; Lys120His; Lys120lle; Lys120Leu; Lys120Met; Lys120Asn; Lys120Pro; Lys120Gln; Lys120Arg; Lys120Ser; Lys120Thr; Lys120Val; Lys120Trp; Lys120Tyr; Glu121Ala; Glu121Cys; Glu121Asp; Glu121Phe; Glu121Gly; Glu121His; Glu121lle; Glu121Lys; Glu121Leu; Glu121Met; Glu121Asn; Glu121Pro; Glu121Gln; Glu121Arg; Glu121Ser; Glu121Thr; Glu121Val; Glu121Trp; Glu121Tyr; Leu122Ala; Leu122Cys; Leu122Asp; Leu122Glu; Leu122Phe; Leu122Gly; Leu122His; Leu122lle; Leu122Lys; Leu122Met; Leu122Asn; Leu122Pro; Leu122Gln; Leu122Arg; Leu122Ser; Leu122Thr; Leu122Val; Leu122Trp; Leu122Tyr; Arg123Ala; Arg123Cys; Arg123Asp; Arg123Glu; Arg123Phe; Arg123Gly; Arg123His; Arg123lle; Arg123Lys; Arg123Leu; Arg123Met; Arg123Asn; Arg123Pro; Arg123Gln; Arg123Ser; Arg123Thr; Arg123Val; Arg123Trp; Arg123Tyr; Lys124Ala; Lys124Cys; Lys124Asp; Lys124Glu; Lys124Phe; Lys124Gly; Lys124His; Lys124lle; Lys124Leu; Lys124Met; Lys124Asn; Lys124Pro; Lys124Gln; Lys124Arg; Lys124Ser; Lys124Thr; Lys124Val; Lys124Trp; Lys124Tyr; He125Ala; He125Cys; He125Asp; He125Glu; He125Phe; He125Gly; He125His; He125Lys; He125Leu; He125Met; He125Asn; He125Pro; He125Gln; He125Arg; He125Ser; He125Thr; He125Val; He125Trp; He125Tyr; Gly126Ala; Gly126Cys; Gly126Asp; Gly126Glu; Gly126Phe; Gly126His; Gly126lle; Gly126Lys; Gly126Leu; Gly126Met; Gly126Asn; Gly126Pro; Gly126Gln; Gly126Arg; Gly126Ser; Gly126Thr; Gly126Val; Gly126Trp; Gly126Tyr; Asp127Ala; Asp127Cys; Asp127Glu; Asp127Phe; Asp127Gly; Asp127His; Asp127lle; Asp127Lys; Asp127Leu; Asp127Met; Asp127Asn; Asp127Pro; Asp127Gln; Asp127Arg; Asp127Ser; Asp127Thr; Asp127Val; Asp127Trp; Asp127Tyr; Glu128Ala; Glu128Cys; Glu128Asp; Glu128Phe; Glu128Gly; Glu128His; Glu128lle; Glu128Lys; Glu128Leu; Glu128Met; Glu128Asn; Glu128Pro; Glu128Gln; Glu128Arg; Glu128Ser; Glu128Thr; Glu128Val; Glu128Trp; Glu128Tyr; Val129Ala; Val129Cys; Val129Asp; Val129Glu; Val129Phe; Val129Gly; Val129His; Val129lle; Val129Lys; Val129Leu; Val129Met; Val129Asn; Val129Pro; Val129Gln; Val129Arg; Val129Ser; Val129Thr; Val129Trp; Val129Tyr; Thr130Ala; Thr130Cys; Thr130Asp; Thr130Glu; Thr130Phe; Thr130Gly; Thr130His; Thr130lle; Thr130Lys; Thr130Leu; Thr130Met; Thr130Asn; Thr130Pro; Thr130Gln; Thr130Arg; Thr130Ser; Thr130Val; Thr130Trp; Thr130Tyr; Asn131Ala; Asn131 Cys; Asn131Asp; Asn131Glu; Asn131 Phe; Asn131 Gly; Asn131 His; Asn131 lle; Asn131Lys; Asn131 Leu; Asn131 Met; Asn131 Pro; Asn131Gln; Asn131Arg; Asn131 Ser; Asn131Thr; Asn131Val; Asn131Trp; Asn131Tyr; Pro132Ala; Pro132Cys; Pro132Asp; Pro132Glu; Pro132Phe; Pro132Gly; Pro132His; Pro132lle; Pro132Lys; Pro132Leu; Pro132Met; Pro132Asn; Pro132Gln; Pro132Arg; Pro132Ser; Pro132Thr; Pro132Val; Pro132Trp; Pro132Tyr; Glu133Ala; Glu133Cys; Glu133Asp; Glu133Phe; Glu133Gly; Glu133His; Glu133lle; Glu133Lys; Glu133Leu; Glu133Met; Glu133Asn; Glu133Pro; Glu133Gln; Glu133Arg; Glu133Ser; Glu133Thr; Glu133Val; Glu133Trp; Glu133Tyr; Arg134Ala; Arg134Cys; Arg134Asp; Arg134Glu; Arg134Phe; Arg134Gly; Arg134His; Arg134lle; Arg134Lys; Arg134Leu; Arg134Met; Arg134Asn; Arg134Pro; Arg134Gln; Arg134Ser; Arg134Thr; Arg134Val; Arg134Trp; Arg134Tyr; Phe135Ala; Phe135Cys; Phe135Asp; Phe135Glu; Phe135Gly; Phe135His; Phe135lle; Phe135Lys; Phe135Leu; Phe135Met; Phe135Asn; Phe135Pro; Phe135Gln; Phe135Arg; Phe135Ser; Phe135Thr; Phe135Val; Phe135Trp; Phe135Tyr; Glu136Ala; Glu136Cys; Glu136Asp; Glu136Phe; Glu136Gly; Glu136His; Glu136lle; Glu136Lys; Glu136Leu; Glu136Met; Glu136Asn; Glu136Pro; Glu136Gln; Glu136Arg; Glu136Ser; Glu136Thr; Glu136Val; Glu136Trp; Glu136Tyr; Pro137Ala; Pro137Cys; Pro137Asp; Pro137Glu; Pro137Phe; Pro137Gly; Pro137His; Pro137lle; Pro137Lys; Pro137Leu; Pro137Met; Pro137Asn; Pro137Gln; Pro137Arg; Pro137Ser; Pro137Thr; Pro137Val; Pro137Trp; Pro137Tyr; Glu138Ala; Glu138Cys; Glu138Asp; Glu138Phe; Glu138Gly; Glu138His; Glu138lle; Glu138Lys; Glu138Leu; Glu138Met; Glu138Asn; Glu138Pro; Glu138Gln; Glu138Arg; Glu138Ser; Glu138Thr; Glu138Val; Glu138Trp; Glu138Tyr; Leu139Ala; Leu139Cys; Leu139Asp; Leu139Glu; Leu139Phe; Leu139Gly; Leu139His; Leu139lle; Leu139Lys; Leu139Met; Leu139Asn; Leu139Pro; Leu139Gln; Leu139Arg; Leu139Ser; Leu139Thr; Leu139Val; Leu139Trp; Leu139Tyr; Asn140Ala; Asn140Cys; Asn140Asp; Asn140Glu; Asn140Phe; Asn140Gly; Asn140His; Asn140lle; Asn140Lys; Asn140Leu; Asn140Met; Asn140Pro; Asn140Gln; Asn140Arg; Asn140Ser; Asn140Thr; Asn140Val; Asn140Trp; Asn140Tyr; Glu141Ala; Glu141Cys; Glu141Asp; Glu141 Phe; Glu141 Gly; Glu141 His; Glu141 lle; Glu141 Lys; Glu141 Leu; Glu141 Met; Glu141Asn; Glu141 Pro; Glu141 Gln; Glu141Arg; Glu141 Ser; Glu141Thr; Glu141Val; Glu141Trp; Glu141Tyr; Val142Ala; Val142Cys; Val142Asp; Val142Glu; Val142Phe; Val142Gly; Val142His; Val142lle; Val142Lys; Val142Leu; Val142Met; Val142Asn; Val 142Pro; Val142Gln; Val142Arg; Val142Ser; Val 142Thr; Val142Trp; Val142Tyr; Asn143Ala; Asn143Cys; Asn143Asp; Asn143Glu; Asn143Phe; Asn143Gly; Asn143His; Asn143lle; Asn143Lys; Asn143Leu; Asn143Met; Asn143Pro; Asn143Gln; Asn143Arg; Asn143Ser; Asn143Thr; Asn143Val; Asn143Trp; Asn143Tyr; Pro144Ala; Pro144Cys; Pro144Asp; Pro144Glu; Pro144Phe; Pro144Gly; Pro144His; Pro144lle; Pro144Lys; Pro144Leu; Pro144Met; Pro144Asn; Pro144Gln; Pro144Arg; Pro144Ser; Pro144Thr; Pro144Val; Pro144Trp; Pro144Tyr; Gly145Ala; Gly145Cys; Gly145Asp; Gly145Glu; Gly145Phe; Gly145His; Gly145lle; Gly145Lys; Gly145Leu; Gly145Met; Gly145Asn; Gly145Pro; Gly145Gln; Gly145Arg; Gly145Ser; Gly145Thr; Gly145Val; Gly145Trp; Gly145Tyr; Glu146Ala; Glu146Cys; Glu146Asp; Glu146Phe; Glu146Gly; Glu146His; Glu146lle; Glu146Lys; Glu146Leu; Glu146Met; Glu146Asn; Glu146Pro; Glu146Gln; Glu146Arg; Glu146Ser; Glu146Thr; Glu146Val; Glu146Trp; Glu146Tyr; Thr147Ala; Thr147Cys; Thr147Asp; Thr147Glu; Thr147Phe; Thr147Gly; Thr147His; Thr147lle; Thr147Lys; Thr147Leu; Thr147Met; Thr147Asn; Thr147Pro; Thr147Gln; Thr147Arg; Thr147Ser; Thr147Val; Thr147Trp; Thr147Tyr; Gln148Ala; Gln148Cys; Gln148Asp; Gln148Glu; Gln148Phe; Gln148Gly; Gln148His; Gln148lle; Gln148Lys; Gln148Leu; Gln148Met; Gln148Asn; Gln148Pro; Gln148Arg; Gln148Ser; Gln148Thr; Gln148Val; Gln148Trp; Gln148Tyr; Asp149Ala; Asp149Cys; Asp149Glu; Asp149Phe; Asp149Gly; Asp149His; Asp149lle; Asp149Lys; Asp149Leu; Asp149Met; Asp149Asn; Asp149Pro; Asp149Gln; Asp149Arg; Asp149Ser; Asp149Thr; Asp149Val; Asp149Trp; Asp149Tyr; Thr150Ala; Thr150Cys; Thr150Asp; Thr150Glu; Thr150Phe; Thr150Gly; Thr150His; Thr150lle; Thr150Lys; Thr150Leu; Thr150Met; Thr150Asn; Thr150Pro; Thr150Gln; Thr150Arg; Thr150Ser; Thr150Val; Thr150Trp; Thr150Tyr; Ser151Ala; Ser151 Cys; Ser151Asp; Ser151 Glu; Ser151 Phe; Ser151 Gly; Ser151 His; Ser151 lle; Ser151 Lys; Ser151 Leu; Ser151 Met; Ser151Asn; Ser151 Pro; Ser151 Gln; Ser151Arg; Ser151 Thr; Ser151Val; Ser151 Trp; Ser151Tyr; Thr152Ala; Thr152Cys; Thr152Asp; Thr152Glu; Thr152Phe; Thr152Gly; Thr152His; Thr152lle; Thr152Lys; Thr152Leu; Thr152Met; Thr152Asn; Thr152Pro; Thr152Gln; Thr152Arg; Thr152Ser; Thr152Val; Thr152Trp; Thr152Tyr; Ala153Cys; Ala153Asp; Ala153Glu; Ala153Phe; Ala153Gly; Ala153His; Ala153lle; Ala153Lys; Ala153Leu; Ala153Met; Ala153Asn; Ala153Pro; Ala153Gln; Ala153Arg; Ala153Ser; Ala153Thr; Ala153Val; Ala153Trp; Ala153Tyr; Arg154Ala; Arg154Cys; Arg154Asp; Arg154Glu; Arg154Phe; Arg154Gly; Arg154His; Arg154lle; Arg154Lys; Arg154Leu; Arg154Met; Arg154Asn; Arg154Pro; Arg154Gln; Arg154Ser; Arg154Thr; Arg154Val; Arg154Trp; Arg154Tyr; Ala155Cys; Ala155Asp; Ala155Glu; Ala155Phe; Ala155Gly; Ala155His; Ala155lle; Ala155Lys; Ala155Leu; Ala155Met; Ala155Asn; Ala155Pro; Ala155Gln; Ala155Arg; Ala155Ser; Ala155Thr; Ala155Val; Ala155Trp; Ala155Tyr; Leu156Ala; Leu156Cys; Leu156Asp; Leu156Glu; Leu156Phe; Leu156Gly; Leu156His; Leu156lle; Leu156Lys; Leu156Met; Leu156Asn; Leu156Pro; Leu156Gln; Leu156Arg; Leu156Ser; Leu156Thr; Leu156Val; Leu156Trp; Leu156Tyr; Val157Ala; Val157Cys; Val 157Asp; Val157Glu; Val157Phe; Val 157Gly; Val 157His; Val 157lle; Val157Lys; Val157Leu; Val 157Met; Val 157Asn; Val157Pro; Val157Gln; Val157Arg; Val157Ser; Val157Thr; Val157Trp; Val157Tyr; Thr158Ala; Thr158Cys; Thr158Asp; Thr158Glu; Thr158Phe; Thr158Gly; Thr158His; Thr158lle; Thr158Lys; Thr158Leu; Thr158Met; Thr158Asn; Thr158Pro; Thr158Gln; Thr158Arg; Thr158Ser; Thr158Val; Thr158Trp; Thr158Tyr; Ser159Ala; Ser159Cys; Ser159Asp; Ser159Glu; Ser159Phe; Ser159Gly; Ser159His; Ser159lle; Ser159Lys; Ser159Leu; Ser159Met; Ser159Asn; Ser159Pro; Ser159Gln; Ser159Arg; Ser159Thr; Ser159Val; Ser159Trp; Ser159Tyr; Leu160Ala; Leu160Cys; Leu160Asp; Leu160Glu; Leu160Phe; Leu160Gly; Leu160His; Leu160lle; Leu160Lys; Leu160Met; Leu160Asn; Leu160Pro; Leu160Gln; Leu160Arg; Leu160Ser; Leu160Thr; Leu160Val; Leu160Trp; Leu160Tyr; Arg161Ala; Arg161 Cys; Arg161Asp; Arg161 Glu; Arg161 Phe; Arg161Gly; Arg161 His; Arg161 lle; Arg161 Lys; Arg161 Leu; Arg161 Met; Arg161Asn; Arg161 Pro; Arg161 Gln; Arg161 Ser; Arg161Thr; Arg161Val; Arg161Trp; Arg161Tyr; Ala162Cys; Ala162Asp; Ala162Glu; Ala162Phe; Ala162Gly; Ala162His; Ala162lle; Ala162Lys; Ala162Leu; Ala162Met; Ala162Asn; Ala162Pro; Ala162Gln; Ala162Arg; Ala162Ser; Ala162Thr; Ala162Val; Ala162Trp; Ala162Tyr; Phe163Ala; Phe163Cys; Phe163Asp; Phe163Glu; Phe163Gly; Phe163His; Phe163lle; Phe163Lys; Phe163Leu; Phe163Met; Phe163Asn; Phe163Pro; Phe163Gln; Phe163Arg; Phe163Ser; Phe163Thr; Phe163Val; Phe163Trp; Phe163Tyr; Ala164Cys; Ala164Asp; Ala164Glu; Ala164Phe; Ala164Gly; Ala164His; Ala164lle; Ala164Lys; Ala164Leu; Ala164Met; Ala164Asn; Ala164Pro; Ala164Gln; Ala164Arg; Ala164Ser; Ala164Thr; Ala164Val; Ala164Trp; Ala164Tyr; Leu165Ala; Leu165Cys; Leu165Asp; Leu165Glu; Leu165Phe; Leu165Gly; Leu165His; Leu165lle; Leu165Lys; Leu165Met; Leu165Asn; Leu165Pro; Leu165Gln; Leu165Arg; Leu165Ser; Leu165Thr; Leu165Val; Leu165Trp; Leu165Tyr; Glu166Ala; Glu166Cys; Glu166Asp; Glu166Phe; Glu166Gly; Glu166His; Glu166lle; Glu166Lys; Glu166Leu; Glu166Met; Glu166Asn; Glu166Pro; Glu166Gln; Glu166Arg; Glu166Ser; Glu166Thr; Glu166Val; Glu166Trp; Glu166Tyr; Asp167Ala; Asp167Cys; Asp167Glu; Asp167Phe; Asp167Gly; Asp167His; Asp167lle; Asp167Lys; Asp167Leu; Asp167Met; Asp167Asn; Asp167Pro; Asp167Gln; Asp167Arg; Asp167Ser; Asp167Thr; Asp167Val; Asp167Trp; Asp167Tyr; Lys168Ala; Lys168Cys; Lys168Asp; Lys168Glu; Lys168Phe; Lys168Gly; Lys168His; Lys168lle; Lys168Leu; Lys168Met; Lys168Asn; Lys168Pro; Lys168Gln; Lys168Arg; Lys168Ser; Lys168Thr; Lys168Val; Lys168Trp; Lys168Tyr; Leu169Ala; Leu169Cys; Leu169Asp; Leu169Glu; Leu169Phe; Leu169Gly; Leu169His; Leu169lle; Leu169Lys; Leu169Met; Leu169Asn; Leu169Pro; Leu169Gln; Leu169Arg; Leu169Ser; Leu169Thr; Leu169Val; Leu169Trp; Leu169Tyr; Pro170Ala; Pro170Cys; Pro170Asp; Pro170Glu; Pro170Phe; Pro170Gly; Pro170His; Pro170lle; Pro170Lys; Pro170Leu; Pro170Met; Pro170Asn; Pro170Gln; Pro170Arg; Pro170Ser; Pro170Thr; Pro170Val; Pro170Trp; Pro170Tyr; Ser171Ala; Ser171 Cys; Ser171Asp; Ser171 Glu; Ser171 Phe; Ser171 Gly; Ser171 His; Ser171 lle; Ser171 Lys; Ser171Leu; Ser171 Met; Ser171Asn; Ser171 Pro; Ser171 Gln; Ser171Arg; Ser171Thr; Ser171Val; Ser171Trp; Ser171Tyr; Glu172Ala; Glu172Cys; Glu172Asp; Glu172Phe; Glu172Gly; Glu172His; Glu172lle; Glu172Lys; Glu172Leu; Glu172Met; Glu172Asn; Glu172Pro; Glu172Gln; Glu172Arg; Glu172Ser; Glu172Thr; Glu172Val; Glu172Trp; Glu172Tyr; Lys173Ala; Lys173Cys; Lys173Asp; Lys173Glu; Lys173Phe; Lys173Gly; Lys173His; Lys173lle; Lys173Leu; Lys173Met; Lys173Asn; Lys173Pro; Lys173Gln; Lys173Arg; Lys173Ser; Lys173Thr; Lys173Val; Lys173Trp; Lys173Tyr; Arg174Ala; Arg174Cys; Arg174Asp; Arg174Glu; Arg174Phe; Arg174Gly; Arg174His; Arg174lle; Arg174Lys; Arg174Leu; Arg174Met; Arg174Asn; Arg174Pro; Arg174Gln; Arg174Ser; Arg174Thr; Arg174Val; Arg174Trp; Arg174Tyr; Glu175Ala; Glu175Cys; Glu175Asp; Glu175Phe; Glu175Gly; Glu175His; Glu175lle; Glu175Lys; Glu175Leu; Glu175Met; Glu175Asn; Glu175Pro; Glu175Gln; Glu175Arg; Glu175Ser; Glu175Thr; Glu175Val; Glu175Trp; Glu175Tyr; Leu176Ala; Leu176Cys; Leu176Asp; Leu176Glu; Leu176Phe; Leu176Gly; Leu176His; Leu176lle; Leu176Lys; Leu176Met; Leu176Asn; Leu176Pro; Leu176Gln; Leu176Arg; Leu176Ser; Leu176Thr; Leu176Val; Leu176Trp; Leu176Tyr; Leu177Ala; Leu177Cys; Leu177Asp; Leu177Glu; Leu177Phe; Leu177Gly; Leu177His; Leu177lle; Leu177Lys; Leu177Met; Leu177Asn; Leu177Pro; Leu177Gln; Leu177Arg; Leu177Ser; Leu177Thr; Leu177Val; Leu177Trp; Leu177Tyr; He178Ala; He178Cys; He178Asp; He178Glu; He178Phe; He178Gly; He178His; He178Lys; He178Leu; He178Met; He178Asn; He178Pro; He178Gln; He178Arg; He178Ser; He178Thr; He178Val; He178Trp; He178Tyr; Asp179Ala; Asp179Cys; Asp179Glu; Asp179Phe; Asp179Gly; Asp179His; Asp179lle; Asp179Lys; Asp179Leu; Asp179Met; Asp179Asn; Asp179Pro; Asp179Gln; Asp179Arg; Asp179Ser; Asp179Thr; Asp179Val; Asp179Trp; Asp179Tyr; Trp180Ala; Trp180Cys; Trp180Asp; Trp180Glu; Trp180Phe; Trp180Gly; Trp180His; Trp180lle; Trp180Lys; Trp180Leu; Trp180Met; Trp180Asn; Trp180Pro; Trp180Gln; Trp180Arg; Trp180Ser; Trp180Thr; Trp180Val; Trp180Tyr; Met181Ala; Met181 Cys; Met181Asp; Met181 Glu; Met181 Phe; Met181 Gly; Met181 His; Met181 lle; Met181 Lys; Met181 Leu; Met181Asn; Met181 Pro; Met181 Gln; Met181Arg; Met181 Ser; Met181 Thr; Met181Val; Met181 Trp; Met181 Tyr; Lys182Ala; Lys182Cys; Lys182Asp; Lys182Glu; Lys182Phe; Lys182Gly; Lys182His; Lys182lle; Lys182Leu; Lys182Met; Lys182Asn; Lys182Pro; Lys182Gln; Lys182Arg; Lys182Ser; Lys182Thr; Lys182Val; Lys182Trp; Lys182Tyr; Arg183Ala; Arg183Cys; Arg183Asp; Arg183Glu; Arg183Phe; Arg183Gly; Arg183His; Arg183lle; Arg183Lys; Arg183Leu; Arg183Met; Arg183Asn; Arg183Pro; Arg183Gln; Arg183Ser; Arg183Thr; Arg183Val; Arg183Trp; Arg183Tyr; Asn184Ala; Asn184Cys; Asn184Asp; Asn184Glu; Asn184Phe; Asn184Gly; Asn184His; Asn184lle; Asn184Lys; Asn184Leu; Asn184Met; Asn184Pro; Asn184Gln; Asn184Arg; Asn184Ser; Asn184Thr; Asn184Val; Asn184Trp; Asn184Tyr; Thr185Ala; Thr185Cys; Thr185Asp; Thr185Glu; Thr185Phe; Thr185Gly; Thr185His; Thr185lle; Thr185Lys; Thr185Leu; Thr185Met; Thr185Asn; Thr185Pro; Thr185Gln; Thr185Arg; Thr185Ser; Thr185Val; Thr185Trp; Thr185Tyr; Thr186Ala; Thr186Cys; Thr186Asp; Thr186Glu; Thr186Phe; Thr186Gly; Thr186His; Thr186lle; Thr186Lys; Thr186Leu; Thr186Met; Thr186Asn; Thr186Pro; Thr186Gln; Thr186Arg; Thr186Ser; Thr186Val; Thr186Trp; Thr186Tyr; Gly187Ala; Gly187Cys; Gly187Asp; Gly187Glu; Gly187Phe; Gly187His; Gly187lle; Gly187Lys; Gly187Leu; Gly187Met; Gly187Asn; Gly187Pro; Gly187Gln; Gly187Arg; Gly187Ser; Gly187Thr; Gly187Val; Gly187Trp; Gly187Tyr; Asp188Ala; Asp188Cys; Asp188Glu; Asp188Phe; Asp188Gly; Asp188His; Asp188lle; Asp188Lys; Asp188Leu; Asp188Met; Asp188Asn; Asp188Pro; Asp188Gln; Asp188Arg; Asp188Ser; Asp188Thr; Asp188Val; Asp188Trp; Asp188Tyr; Ala189Cys; Ala189Asp; Ala189Glu; Ala189Phe; Ala189Gly; Ala189His; Ala189lle; Ala189Lys; Ala189Leu; Ala189Met; Ala189Asn; Ala189Pro; Ala189Gln; Ala189Arg; Ala189Ser; Ala189Thr; Ala189Val; Ala189Trp; Ala189Tyr; Leu190Ala; Leu190Cys; Leu190Asp; Leu190Glu; Leu190Phe; Leu190Gly; Leu190His; Leu190lle; Leu190Lys; Leu190Met; Leu190Asn; Leu190Pro; Leu190Gln; Leu190Arg; Leu190Ser; Leu190Thr; Leu190Val; Leu190Trp; Leu190Tyr; He191Ala; He191 Cys; He191Asp; He191 Glu; He191 Phe; He191 Gly; He191 His; He191 Lys; He191 Leu; He191 Met; He191Asn; He191 Pro; He191 Gln; He191Arg; He191 Ser; He191 Thr; He191Val; He191 Trp; He191Tyr; Arg192Ala; Arg192Cys; Arg192Asp; Arg192Glu; Arg192Phe; Arg192Gly; Arg192His; Arg192lle; Arg192Lys; Arg192Leu; Arg192Met; Arg192Asn; Arg192Pro; Arg192Gln; Arg192Ser; Arg192Thr; Arg192Val; Arg192Trp; Arg192Tyr; Ala193Cys; Ala193Asp; Ala193Glu; Ala193Phe; Ala193Gly; Ala193His; Ala193lle; Ala193Lys; Ala193Leu; Ala193Met; Ala193Asn; Ala193Pro; Ala193Gln; Ala193Arg; Ala193Ser; Ala193Thr; Ala193Val; Ala193Trp; Ala193Tyr; Gly194Ala; Gly194Cys; Gly194Asp; Gly194Glu; Gly194Phe; Gly194His; Gly194lle; Gly194Lys; Gly194Leu; Gly194Met; Gly194Asn; Gly194Pro; Gly194Gln; Gly194Arg; Gly194Ser; Gly194Thr; Gly194Val; Gly194Trp; Gly194Tyr; Val 195Ala; Val 195Cys; Val195Asp; Val 195Glu; Val 195Phe; Val195Gly; Val195His; Val195lle; Val195Lys; Val 195Leu; Val195Met; Val195Asn; Val 195Pro; Val 195Gln; Val195Arg; Val195Ser; Val 195Thr; Val 195Trp; Val195Tyr; Pro196Ala; Pro196Cys; Pro196Asp; Pro196Glu; Pro196Phe; Pro196Gly; Pro196His; Pro196lle; Pro196Lys; Pro196Leu; Pro196Met; Pro196Asn; Pro196Gln; Pro196Arg; Pro196Ser; Pro196Thr; Pro196Val; Pro196Trp; Pro196Tyr; Asp197Ala; Asp197Cys; Asp197Glu; Asp197Phe; Asp197Gly; Asp197His; Asp197lle; Asp197Lys; Asp197Leu; Asp197Met; Asp197Asn; Asp197Pro; Asp197Gln; Asp197Arg; Asp197Ser; Asp197Thr; Asp197Val; Asp197Trp; Asp197Tyr; Gly198Ala; Gly198Cys; Gly198Asp; Gly198Glu; Gly198Phe; Gly198His; Gly198lle; Gly198Lys; Gly198Leu; Gly198Met; Gly198Asn; Gly198Pro; Gly198Gln; Gly198Arg; Gly198Ser; Gly198Thr; Gly198Val; Gly198Trp; Gly198Tyr; Trp199Ala; Trp199Cys; Trp199Asp; Trp199Glu; Trp199Phe; Trp199Gly; Trp199His; Trp199lle; Trp199Lys; Trp199Leu; Trp199Met; Trp199Asn; Trp199Pro; Trp199Gln; Trp199Arg; Trp199Ser; Trp199Thr; Trp199Val; Trp199Tyr; Glu200Ala; Glu200Cys; Glu200Asp; Glu200Phe; Glu200Gly; Glu200His; Glu200lle; Glu200Lys; Glu200Leu; Glu200Met; Glu200Asn; Glu200Pro; Glu200Gln; Glu200Arg; Glu200Ser; Glu200Thr; Glu200Val; Glu200Trp; Glu200Tyr; Val201Ala; Val201 Cys; Val201Asp; Val201 Glu; Val201 Phe; Val201 Gly; Val201 His; Val201 lle; Val201 Lys; Val201 Leu; Val201 Met; Val201Asn; Val201 Pro; Val201 Gln; Val201Arg; Val201 Ser; Val201Thr; Val201 Trp; Val201Tyr; Ala202Cys; Ala202Asp; Ala202Glu; Ala202Phe; Ala202Gly; Ala202His; Ala202lle; Ala202Lys; Ala202Leu; Ala202Met; Ala202Asn; Ala202Pro; Ala202Gln; Ala202Arg; Ala202Ser; Ala202Thr; Ala202Val; Ala202Trp; Ala202Tyr; Asp203Ala; Asp203Cys; Asp203Glu; Asp203Phe; Asp203Gly; Asp203His; Asp203lle; Asp203Lys; Asp203Leu; Asp203Met; Asp203Asn; Asp203Pro; Asp203Gln; Asp203Arg; Asp203Ser; Asp203Thr; Asp203Val; Asp203Trp; Asp203Tyr; Lys204Ala; Lys204Cys; Lys204Asp; Lys204Glu; Lys204Phe; Lys204Gly; Lys204His; Lys204lle; Lys204Leu; Lys204Met; Lys204Asn; Lys204Pro; Lys204Gln; Lys204Arg; Lys204Ser; Lys204Thr; Lys204Val; Lys204Trp; Lys204Tyr; Thr205Ala; Thr205Cys; Thr205Asp; Thr205Glu; Thr205Phe; Thr205Gly; Thr205His; Thr205lle; Thr205Lys; Thr205Leu; Thr205Met; Thr205Asn; Thr205Pro; Thr205Gln; Thr205Arg; Thr205Ser; Thr205Val; Thr205Trp; Thr205Tyr; Gly206Ala; Gly206Cys; Gly206Asp; Gly206Glu; Gly206Phe; Gly206His; Gly206lle; Gly206Lys; Gly206Leu; Gly206Met; Gly206Asn; Gly206Pro; Gly206Gln; Gly206Arg; Gly206Ser; Gly206Thr; Gly206Val; Gly206Trp; Gly206Tyr; Ala207Cys; Ala207Asp; Ala207Glu; Ala207Phe; Ala207Gly; Ala207His; Ala207lle; Ala207Lys; Ala207Leu; Ala207Met; Ala207Asn; Ala207Pro; Ala207Gln; Ala207Arg; Ala207Ser; Ala207Thr; Ala207Val; Ala207Trp; Ala207Tyr; Ala208Cys; Ala208Asp; Ala208Glu; Ala208Phe; Ala208Gly; Ala208His; Ala208lle; Ala208Lys; Ala208Leu; Ala208Met; Ala208Asn; Ala208Pro; Ala208Gln; Ala208Arg; Ala208Ser; Ala208Thr; Ala208Val; Ala208Trp; Ala208Tyr; Ser209Ala; Ser209Cys; Ser209Asp; Ser209Glu; Ser209Phe; Ser209Gly; Ser209His; Ser209lle; Ser209Lys; Ser209Leu; Ser209Met; Ser209Asn; Ser209Pro; Ser209Gln; Ser209Arg; Ser209Thr; Ser209Val; Ser209Trp; Ser209Tyr; Tyr210Ala; Tyr210Cys; Tyr210Asp; Tyr210Glu; Tyr210Phe; Tyr210Gly; Tyr210His; Tyr210lle; Tyr210Lys; Tyr210Leu; Tyr210Met; Tyr210Asn; Tyr210Pro; Tyr210Gln; Tyr210Arg; Tyr210Ser; Tyr210Thr; Tyr210Val; Tyr210Trp; Gly21 1Ala; Gly21 1 Cys; Gly21 1Asp; Gly21 1 Glu; Gly21 1 Phe; Gly21 1 His; Gly21 1 lie; Gly21 1 Lys; Gly21 1 Leu; Gly21 1 Met; Gly21 1Asn; Gly21 1 Pro; Gly21 1 Gln; Gly21 1Arg; Gly211 Ser; Gly21 1Thr; Gly21 1Val; Gly21 1 Trp; Gly21 1 Tyr; Thr212Ala; Thr212Cys; Thr212Asp; Thr212Glu; Thr212Phe; Thr212Gly; Thr212His; Thr212lle; Thr212Lys; Thr212Leu; Thr212Met; Thr212Asn; Thr212Pro; Thr212Gln; Thr212Arg; Thr212Ser; Thr212Val; Thr212Trp; Thr212Tyr; Arg213Ala; Arg213Cys; Arg213Asp; Arg213Glu; Arg213Phe; Arg213Gly; Arg213His; Arg213lle; Arg213Lys; Arg213Leu; Arg213Met; Arg213Asn; Arg213Pro; Arg213Gln; Arg213Ser; Arg213Thr; Arg213Val; Arg213Trp; Arg213Tyr; Asn214Ala; Asn214Cys; Asn214Asp; Asn214Glu; Asn214Phe; Asn214Gly; Asn214His; Asn214lle; Asn214Lys; Asn214Leu; Asn214Met; Asn214Pro; Asn214Gln; Asn214Arg; Asn214Ser; Asn214Thr; Asn214Val; Asn214Trp; Asn214Tyr; Asp215Ala; Asp215Cys; Asp215Glu; Asp215Phe; Asp215Gly; Asp215His; Asp215lle; Asp215Lys; Asp215Leu; Asp215Met; Asp215Asn; Asp215Pro; Asp215Gln; Asp215Arg; Asp215Ser; Asp215Thr; Asp215Val; Asp215Trp; Asp215Tyr; He216Ala; He216Cys; He216Asp; He216Glu; He216Phe; He216Gly; He216His; He216Lys; He216Leu; He216Met; He216Asn; He216Pro; He216Gln; He216Arg; He216Ser; He216Thr; He216Val; He216Trp; He216Tyr; Ala217Cys; Ala217Asp; Ala217Glu; Ala217Phe; Ala217Gly; Ala217His; Ala217lle; Ala217Lys; Ala217Leu; Ala217Met; Ala217Asn; Ala217Pro; Ala217Gln; Ala217Arg; Ala217Ser; Ala217Thr; Ala217Val; Ala217Trp; Ala217Tyr; He218Ala; He218Cys; He218Asp; He218Glu; He218Phe; He218Gly; He218His; He218Lys; He218Leu; He218Met; He218Asn; He218Pro; He218Gln; He218Arg; He218Ser; He218Thr; He218Val; He218Trp; He218Tyr; He219Ala; He219Cys; He219Asp; He219Glu; He219Phe; He219Gly; He219His; He219Lys; He219Leu; He219Met; He219Asn; He219Pro; He219Gln; He219Arg; He219Ser; He219Thr; He219Val; He219Trp; He219Tyr; Trp220Ala; Trp220Cys; Trp220Asp; Trp220Glu; Trp220Phe; Trp220Gly; Trp220His; Trp220lle; Trp220Lys; Trp220Leu; Trp220Met; Trp220Asn; Trp220Pro; Trp220Gln; Trp220Arg; Trp220Ser; Trp220Thr; Trp220Val; Trp220Tyr; Pro221Ala; Pro221 Cys; Pro221Asp; Pro221 Glu; Pro221 Phe; Pro221 Gly; Pro221 His; Pro221 lle; Pro221 Lys; Pro221 Leu; Pro221 Met; Pro221Asn; Pro221 Gln; Pro221Arg; Pro221 Ser; Pro221 Thr; Pro221Val; Pro221 Trp; Pro221Tyr; Pro222Ala; Pro222Cys; Pro222Asp; Pro222Glu; Pro222Phe; Pro222Gly; Pro222His; Pro222lle; Pro222Lys; Pro222Leu; Pro222Met; Pro222Asn; Pro222Gln; Pro222Arg; Pro222Ser; Pro222Thr; Pro222Val; Pro222Trp; Pro222Tyr; Lys223Ala; Lys223Cys; Lys223Asp; Lys223Glu; Lys223Phe; Lys223Gly; Lys223His; Lys223lle; Lys223Leu; Lys223Met; Lys223Asn; Lys223Pro; Lys223Gln; Lys223Arg; Lys223Ser; Lys223Thr; Lys223Val; Lys223Trp; Lys223Tyr; Gly224Ala; Gly224Cys; Gly224Asp; Gly224Glu; Gly224Phe; Gly224His; Gly224lle; Gly224Lys; Gly224Leu; Gly224Met; Gly224Asn; Gly224Pro; Gly224Gln; Gly224Arg; Gly224Ser; Gly224Thr; Gly224Val; Gly224Trp; Gly224Tyr; Asp225Ala; Asp225Cys; Asp225Glu; Asp225Phe; Asp225Gly; Asp225His; Asp225lle; Asp225Lys; Asp225Leu; Asp225Met; Asp225Asn; Asp225Pro; Asp225Gln; Asp225Arg; Asp225Ser; Asp225Thr; Asp225Val; Asp225Trp; Asp225Tyr; Pro226Ala; Pro226Cys; Pro226Asp; Pro226Glu; Pro226Phe; Pro226Gly; Pro226His; Pro226lle; Pro226Lys; Pro226Leu; Pro226Met; Pro226Asn; Pro226Gln; Pro226Arg; Pro226Ser; Pro226Thr; Pro226Val; Pro226Trp; Pro226Tyr; Val227Ala; Val227Cys; Val227Asp; Val227Glu; Val227Phe; Val227Gly; Val227His; Val227lle; Val227Lys; Val227Leu; Val227Met; Val227Asn; Val227Pro; Val227Gln; Val227Arg; Val227Ser; Val227Thr; Val227Trp; Val227Tyr; Val228Ala; Val228Cys; Val228Asp; Val228Glu; Val228Phe; Val228Gly; Val228His; Val228lle; Val228Lys; Val228Leu; Val228Met; Val228Asn; Val228Pro; Val228Gln; Val228Arg; Val228Ser; Val228Thr; Val228Trp; Val228Tyr; Leu229Ala; Leu229Cys; Leu229Asp; Leu229Glu; Leu229Phe; Leu229Gly; Leu229His; Leu229lle; Leu229Lys; Leu229Met; Leu229Asn; Leu229Pro; Leu229Gln; Leu229Arg; Leu229Ser; Leu229Thr; Leu229Val; Leu229Trp; Leu229Tyr; Ala230Cys; Ala230Asp; Ala230Glu; Ala230Phe; Ala230Gly; Ala230His; Ala230lle; Ala230Lys; Ala230Leu; Ala230Met; Ala230Asn; Ala230Pro; Ala230Gln; Ala230Arg; Ala230Ser; Ala230Thr; Ala230Val; Ala230Trp; Ala230Tyr; Val231Ala; Val231 Cys; Val231Asp; Val231 Glu; Val231 Phe; Val231 Gly; Val231 His; Val231 lle; Val231 Lys; Val231 Leu; Val231 Met; Val231Asn; Val231 Pro; Val231 Gln; Val231Arg; Val231 Ser; Val231Thr; Val231Trp; Val231Tyr; Leu232Ala; Leu232Cys; Leu232Asp; Leu232Glu; Leu232Phe; Leu232Gly; Leu232His; Leu232lle; Leu232Lys; Leu232Met; Leu232Asn; Leu232Pro; Leu232Gln; Leu232Arg; Leu232Ser; Leu232Thr; Leu232Val; Leu232Trp; Leu232Tyr; Ser233Ala; Ser233Cys; Ser233Asp; Ser233Glu; Ser233Phe; Ser233Gly; Ser233His; Ser233lle; Ser233Lys; Ser233Leu; Ser233Met; Ser233Asn; Ser233Pro; Ser233Gln; Ser233Arg; Ser233Thr; Ser233Val; Ser233Trp; Ser233Tyr; Ser234Ala; Ser234Cys; Ser234Asp; Ser234Glu; Ser234Phe; Ser234Gly; Ser234His; Ser234lle; Ser234Lys; Ser234Leu; Ser234Met; Ser234Asn; Ser234Pro; Ser234Gln; Ser234Arg; Ser234Thr; Ser234Val; Ser234Trp; Ser234Tyr; Arg235Ala; Arg235Cys; Arg235Asp; Arg235Glu; Arg235Phe; Arg235Gly; Arg235His; Arg235lle; Arg235Lys; Arg235Leu; Arg235Met; Arg235Asn; Arg235Pro; Arg235Gln; Arg235Ser; Arg235Thr; Arg235Val; Arg235Trp; Arg235Tyr; Asp236Ala; Asp236Cys; Asp236Glu; Asp236Phe; Asp236Gly; Asp236His; Asp236lle; Asp236Lys; Asp236Leu; Asp236Met; Asp236Asn; Asp236Pro; Asp236Gln; Asp236Arg; Asp236Ser; Asp236Thr; Asp236Val; Asp236Trp; Asp236Tyr; Lys237Ala; Lys237Cys; Lys237Asp; Lys237Glu; Lys237Phe; Lys237Gly; Lys237His; Lys237lle; Lys237Leu; Lys237Met; Lys237Asn; Lys237Pro; Lys237Gln; Lys237Arg; Lys237Ser; Lys237Thr; Lys237Val; Lys237Trp; Lys237Tyr; Lys238Ala; Lys238Cys; Lys238Asp; Lys238Glu; Lys238Phe; Lys238Gly; Lys238His; Lys238lle; Lys238Leu; Lys238Met; Lys238Asn; Lys238Pro; Lys238Gln; Lys238Arg; Lys238Ser; Lys238Thr; Lys238Val; Lys238Trp; Lys238Tyr; Asp239Ala; Asp239Cys; Asp239Glu; Asp239Phe; Asp239Gly; Asp239His; Asp239lle; Asp239Lys; Asp239Leu; Asp239Met; Asp239Asn; Asp239Pro; Asp239Gln; Asp239Arg; Asp239Ser; Asp239Thr; Asp239Val; Asp239Trp; Asp239Tyr; Ala240Cys; Ala240Asp; Ala240Glu; Ala240Phe; Ala240Gly; Ala240His; Ala240lle; Ala240Lys; Ala240Leu; Ala240Met; Ala240Asn; Ala240Pro; Ala240Gln; Ala240Arg; Ala240Ser; Ala240Thr; Ala240Val; Ala240Trp; Ala240Tyr; Lys241Ala; Lys241 Cys; Lys241Asp; Lys241Glu; Lys241 Phe; Lys241 Gly; Lys241 His; Lys241 lle; Lys241 Leu; Lys241 Met; Lys241Asn; Lys241 Pro; Lys241Gln; Lys241Arg; Lys241 Ser; Lys241Thr; Lys241Val; Lys241Trp; Lys241Tyr; Tyr242Ala; Tyr242Cys; Tyr242Asp; Tyr242Glu; Tyr242Phe; Tyr242Gly; Tyr242His; Tyr242lle; Tyr242Lys; Tyr242Leu; Tyr242Met; Tyr242Asn; Tyr242Pro; Tyr242Gln; Tyr242Arg; Tyr242Ser; Tyr242Thr; Tyr242Val; Tyr242Trp; Asp243Ala; Asp243Cys; Asp243Glu; Asp243Phe; Asp243Gly; Asp243His; Asp243lle; Asp243Lys; Asp243Leu; Asp243Met; Asp243Asn; Asp243Pro; Asp243Gln; Asp243Arg; Asp243Ser; Asp243Thr; Asp243Val; Asp243Trp; Asp243Tyr; Asp244Ala; Asp244Cys; Asp244Glu; Asp244Phe; Asp244Gly; Asp244His; Asp244lle; Asp244Lys; Asp244Leu; Asp244Met; Asp244Asn; Asp244Pro; Asp244Gln; Asp244Arg; Asp244Ser; Asp244Thr; Asp244Val; Asp244Trp; Asp244Tyr; Lys245Ala; Lys245Cys; Lys245Asp; Lys245Glu; Lys245Phe; Lys245Gly; Lys245His; Lys245lle; Lys245Leu; Lys245Met; Lys245Asn; Lys245Pro; Lys245Gln; Lys245Arg; Lys245Ser; Lys245Thr; Lys245Val; Lys245Trp; Lys245Tyr; Leu246Ala; Leu246Cys; Leu246Asp; Leu246Glu; Leu246Phe; Leu246Gly; Leu246His; Leu246lle; Leu246Lys; Leu246Met; Leu246Asn; Leu246Pro; Leu246Gln; Leu246Arg; Leu246Ser; Leu246Thr; Leu246Val; Leu246Trp; Leu246Tyr; He247Ala; He247Cys; He247Asp; He247Glu; He247Phe; He247Gly; He247His; He247Lys; He247Leu; He247Met; He247Asn; He247Pro; He247Gln; He247Arg; He247Ser; He247Thr; He247Val; He247Trp; He247Tyr; Ala248Cys; Ala248Asp; Ala248Glu; Ala248Phe; Ala248Gly; Ala248His; Ala248lle; Ala248Lys; Ala248Leu; Ala248Met; Ala248Asn; Ala248Pro; Ala248Gln; Ala248Arg; Ala248Ser; Ala248Thr; Ala248Val; Ala248Trp; Ala248Tyr; Glu249Ala; Glu249Cys; Glu249Asp; Glu249Phe; Glu249Gly; Glu249His; Glu249lle; Glu249Lys; Glu249Leu; Glu249Met; Glu249Asn; Glu249Pro; Glu249Gln; Glu249Arg; Glu249Ser; Glu249Thr; Glu249Val; Glu249Trp; Glu249Tyr; Ala250Cys; Ala250Asp; Ala250Glu; Ala250Phe; Ala250Gly; Ala250His; Ala250lle; Ala250Lys; Ala250Leu; Ala250Met; Ala250Asn; Ala250Pro; Ala250Gln; Ala250Arg; Ala250Ser; Ala250Thr; Ala250Val; Ala250Trp; Ala250Tyr; Thr251Ala; Thr251 Cys; Thr251Asp; Thr251 Glu; Thr251 Phe; Thr251 Gly; Thr251 His; Thr251 lle; Thr251 Lys; Thr251 Leu; Thr251 Met; Thr251Asn; Thr251 Pro; Thr251 Gln; Thr251Arg; Thr251 Ser; Thr251Val; Thr251Trp; Thr251Tyr; Lys252Ala; Lys252Cys; Lys252Asp; Lys252Glu; Lys252Phe; Lys252Gly; Lys252His; Lys252lle; Lys252Leu; Lys252Met; Lys252Asn; Lys252Pro; Lys252Gln; Lys252Arg; Lys252Ser; Lys252Thr; Lys252Val; Lys252Trp; Lys252Tyr; Val253Ala; Val253Cys; Val253Asp; Val253Glu; Val253Phe; Val253Gly; Val253His; Val253lle; Val253Lys; Val253Leu; Val253Met; Val253Asn; Val253Pro; Val253Gln; Val253Arg; Val253Ser; Val253Thr; Val253Trp; Val253Tyr; Val254Ala; Val254Cys; Val254Asp; Val254Glu; Val254Phe; Val254Gly; Val254His; Val254lle; Val254Lys; Val254Leu; Val254Met; Val254Asn; Val254Pro; Val254Gln; Val254Arg; Val254Ser; Val254Thr; Val254Trp; Val254Tyr; Met255Ala; Met255Cys; Met255Asp; Met255Glu; Met255Phe; Met255Gly; Met255His; Met255lle; Met255Lys; Met255Leu; Met255Asn; Met255Pro; Met255Gln; Met255Arg; Met255Ser; Met255Thr; Met255Val; Met255Trp; Met255Tyr; Lys256Ala; Lys256Cys; Lys256Asp; Lys256Glu; Lys256Phe; Lys256Gly; Lys256His; Lys256lle; Lys256Leu; Lys256Met; Lys256Asn; Lys256Pro; Lys256Gln; Lys256Arg; Lys256Ser; Lys256Thr; Lys256Val; Lys256Trp; Lys256Tyr; Ala257Cys; Ala257Asp; Ala257Glu; Ala257Phe; Ala257Gly; Ala257His; Ala257lle; Ala257Lys; Ala257Leu; Ala257Met; Ala257Asn; Ala257Pro; Ala257Gln; Ala257Arg; Ala257Ser; Ala257Thr; Ala257Val; Ala257Trp; Ala257Tyr; Leu258Ala; Leu258Cys; Leu258Asp; Leu258Glu; Leu258Phe; Leu258Gly; Leu258His; Leu258lle; Leu258Lys; Leu258Met; Leu258Asn; Leu258Pro; Leu258Gln; Leu258Arg; Leu258Ser; Leu258Thr; Leu258Val; Leu258Trp; Leu258Tyr; Asn259Ala; Asn259Cys; Asn259Asp; Asn259Glu; Asn259Phe; Asn259Gly; Asn259His; Asn259lle; Asn259Lys; Asn259Leu; Asn259Met; Asn259Pro; Asn259Gln; Asn259Arg; Asn259Ser; Asn259Thr; Asn259Val; Asn259Trp; Asn259Tyr; Met260Ala; Met260Cys; Met260Asp; Met260Glu; Met260Phe; Met260Gly; Met260His; Met260lle; Met260Lys; Met260Leu; Met260Asn; Met260Pro; Met260Gln; Met260Arg; Met260Ser; Met260Thr; Met260Val; Met260Trp; Met260Tyr; Asn261Ala; Asn261 Cys; Asn261Asp; Asn261 Glu; Asn261 Phe; Asn261 Gly; Asn261 His; Asn261 lle; Asn261 Lys; Asn261Leu; Asn261 Met; Asn261 Pro; Asn261 Gln; Asn261Arg; Asn261Ser; Asn261Thr; Asn261Val; Asn261Trp; Asn261Tyr; Gly262Ala; Gly262Cys; Gly262Asp; Gly262Glu; Gly262Phe; Gly262His; Gly262lle; Gly262Lys; Gly262Leu; Gly262Met; Gly262Asn; Gly262Pro; Gly262Gln; Gly262Arg; Gly262Ser; Gly262Thr; Gly262Val; Gly262Trp; Gly262Tyr; Lys263Ala; Lys263Cys; Lys263Asp; Lys263Glu; Lys263Phe; Lys263Gly; Lys263His; Lys263lle; Lys263Leu; Lys263Met; Lys263Asn; Lys263Pro; Lys263Gln; Lys263Arg; Lys263Ser; Lys263Thr; Lys263Val; Lys263Trp; Lys263Tyr; Met 264Ala; Met 264Cys; Met 264Asp; Met 264Glu; Met 264Phe; Met 264Gly; Met 264His; Met 264lle; Met 264Lys; Met 264Leu; Met 264Asn; Met 264Pro; Met 264Gln; Met 264Arg; Met 264Ser; Met 264Thr; Met 264Val; Met 264Trp; Met 264Tyr; Asn 265Ala; Asn 265Cys; Asn 265Asp; Asn 265Glu; Asn 265Phe; Asn 265Gly; Asn 265His; Asn 265lle; Asn 265Lys; Asn 265Leu; Asn 265Met; Asn 265Pro; Asn 265Gln; Asn 265Arg; Asn 265Ser; Asn 265Thr; Asn 265Val; Asn 265Trp; Asn 265Tyr; Gly 266Ala; Gly 266Cys; Gly 266Asp; Gly 266Glu; Gly 266Phe; Gly 266His; Gly 266lle; Gly 266Lys; Gly 266Leu; Gly 266Met; Gly 266Asn; Gly 266Pro; Gly 266Gln; Gly 266Arg; Gly 266Ser; Gly 266Thr; Gly 266Val; Gly 266Trp; Gly 266Tyr; Lys267Ala; Lys267Cys; Lys267Asp; Lys267Glu; Lys267Phe; Lys267Gly; Lys267His; Lys267lle; Lys267Leu; Lys267Met; Lys267Asn; Lys267Pro; Lys267Gln; Lys267Arg; Lys267Ser; Lys267Thr; Lys267Val; Lys267Trp; and Lys267Tyr. In some embodiments, SEQ ID NO: 1 may have a Met and/or Thr preceeding the first residue of the sequence. These residues may be similarly mutated as above.
In all of these mutants, the numbering of residues corresponds to SEQ ID NO: 1. These residue numbers may be converted to Ambler numbers (Ambler et al., 1991 , A standard numbering scheme for the Class A β-lactamases, Biochem. J. 276:269-272, the contents of which are hereby incorporated by reference) through use of any conventional bioinformatic method, for example by using BLAST (Basic Local Alignment Search Tools) or FASTA (FAST-AM). For example, residue 244 corresponds to Ambler 276. For example, the following conversions may be used:
Figure imgf000026_0001
Ambler Classification No. SEQ ID NO: 1 Residue
R244 R213
S266 S234
D276 D244
Furthermore, percent identity may also be assessed with these conventional bioinformatic methods.
In one aspect, the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 1 or SEQ ID NO: 3 and one or more of the following mutations of Ambler classification: F33X, Q135X, G156X, A232X, A237X, A238X, S240X, T243X, R244X, S266X, and D276X, wherein X is any naturally-occurring amino acid. In some embodiments, X is a naturally occurring hydrophilic or hydrophobic amino acid residue or a non- classical amino acid.
In another aspect, the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least 60% sequence identity with SEQ ID NO: 1 or SEQ ID NO: 3 and one or more of the following mutations of Ambler classification: a hydrophobic residue other than phenylalanine (F) at position 33; a hydrophobic residue other than glutamine (Q) at position 135; a hydrophilic residue other than glycine (G) at position 156; a hydrophobic residue other than alanine (A) at position 232; a hydrophilic residue other than alanine (A) at position 237; a hydrophobic or hydrophilic residue other than alanine (A) at position 238; a hydrophilic residue other than serine (S) at position 240; a hydrophobic residue other than threonine (T) at position 243; a hydrophobic residue other than arginine (R) at position 244; a hydrophilic residue other than serine (S) at position 266; and a hydrophilic residue other than aspartate (D) at position 276.
As used throughout, a hydrophilic amino acid residue may include a polar and positively charged hydrophilic residue selected from arginine (R) and lysine (K), a polar and neutral of charge hydrophilic residue selected from asparagine (N), glutamine (Q), serine (S), threonine (T), proline (P), and cysteine (C), a polar and negatively charged hydrophilic residue selected from aspartate (D) and glutamate (E), or an aromatic, polar and positively charged hydrophilic including histidine (H). As used throughout, a hydrophobic amino acid residue may include a hydrophobic, aliphatic amino acid selected from glycine (G), alanine (A), leucine (L), isoleucine (I), methionine (M), or valine (V) or a hydrophobic, aromatic amino acid selected from phenylalanine (F), tryptophan (W), or tyrosine (Y).
Mutations may be made to the gene sequence of a beta-lactamase (e.g. SEQ ID NOs: 2 and 4) by reference to the genetic code, including taking into account codon degeneracy.
In some embodiments, the beta-lactamase polypeptide produced by methods of the invention comprises one or more of the following mutations at positions of Ambler classification: F33Y, Q135M, G156R, A232G, A237S, A238G or T, S240P or D, T243I, R244T, S266N, D276N or R or K. In one embodiment, the beta-lactamases and/or pharmaceutical compositions comprise Q135M. In another embodiment, the beta-lactamases and/or pharmaceutical compositions comprise G156R and A238T. In another embodiment, the beta-lactamases and/or pharmaceutical compositions comprise F33Y and D276N. In still another embodiment, the beta-lactamases and/or pharmaceutical compositions comprise F33Y, S240P, and D276N. In one embodiment, the beta- lactamases and/or pharmaceutical compositions comprise F33Y, A238T, and D276N. In another embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, and S240D. In a further embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, S240D, and R244T. In another embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, S240D, and D276R. In one embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, S240D, and D276K. In one embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, S240D, and Q135M. In one embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A238T. In one embodiment, the beta- lactamases and/or pharmaceutical compositions comprise T243I, S266N, and D276N. In one embodiment, the beta-lactamases and/or pharmaceutical compositions comprise A232G, A237S, A238G, S240D, and D276N.
In various embodiments, the beta-lactamase polypeptide produced by methods of the invention comprises one or more of the following mutations:
Figure imgf000028_0001
G156R A238T IS235
F33Y D276N IS158
F33Y S240P D276N IS230 (or IS181)
F33Y A238T D276N IS232 (or IS180)
I72S Q135M T160F (Block 1 mutants) IS227
A232G A237S A238G S240D (Block 2 mutants) IS191
A232G A237S A238G S240D R244T IS229
A232G A237S A238G S240D D276R IS219
A232G A237S A238G S240D D276K IS221
A232G A237S A238G S240D Q135M IS224
A238T IS233
T243I S266N D276N IS234 (or IS176)
A232G A237S A238G S240D D276N IS288 (or P4A)
In various embodiments, the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 60% sequence identity with one or more of the mutants provided in the table directly above.
In illustrative embodiments, the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 60% sequence identity with SEQ ID NO: 1 or SEQ ID NO: 3 and the following of Ambler classification: a residue other than aspartate (D) at position 276.
In illustrative embodiments, the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 90%, or 95%, or 97%, or 99% sequence identity with SEQ ID NO: 1 and a hydrophilic amino acid residue other than aspartic acid (D) at a position corresponding to position 276 according to Ambler classification, wherein: the hydrophilic amino acid residue is asparagine (N) and the beta-lactamase hydrolyzes ceftriaxone substantially more efficiently than a beta-lactamase of SEQ ID NO: 1 that has an aspartic acid (D) at a position corresponding to position 276 according to Ambler classification.
In illustrative embodiments, the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 90%, or 95%, or 97%, or 99% sequence identity with SEQ ID NO: 1 and a hydrophilic amino acid residue other than aspartic acid (D) at a position corresponding to position 276 according to Ambler classification, wherein: the hydrophilic amino acid residue is arginine (R) and the beta-lactamase hydrolyzes ceftriaxone substantially more efficiently than a beta-lactamase of SEQ ID NO: 1 that has an aspartic acid (D) at a position corresponding to position 276 according to Ambler classification.
In some embodiments, the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 90%, or 95%, or 97%, or 99%, or 100% sequence identity with SEQ ID NO: 5, i.e. P3A:
SEQ ID NO: 5
TEMKDDFAKLEEQFDAKLGIFALDTGTNRTVAYRPDERFAFASTIKALTVGVLLQQKSIEDLNQ
RITYTRDDLVNYNPITEKHVDTGMTLKELADASLRYSDNAAQNLILKQIGGPESLKKELRKIGDE
VTNPERFEPELNEVNPGETQDTSTARALVTSLRAFALEDKLPSEKRELLIDWMKRNTTGDALI
RAGVPDGWEVADKTGAASYGTRNDIAIIWPPKGDPWLAVLSSRDKKDAKYDNKLIAEATKW
MKALNMNGK.
In some embodiments, the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 5.
An illustrative polynucleotide of the invention is SEQ ID NO: 6, which is the full nucleotide sequence of P3A:
SEQ ID NO: 6:
atgactgagatgaaagatgattttgcgaagctggaagaacagtttgacgcaaaattgggcattttcgcgttggacacgg
gtacgaatcgtacggttgcctaccgtccggacgagcgcttcgccttcgcgagcacgatcaaagccctgaccgtcggcg
tgctgctccagcaaaagagcatcgaggacctgaaccagcgcattacctacacccgtgatgatctggtgaactataatc
cgatcaccgagaaacacgttgataccggtatgaccctgaaagaactggcagatgcaagcctgcgctacagcgataa
cgcggctcagaatctgattctgaagcaaatcggtggtccggagagcttgaagaaagaactgcgtaaaatcggcgatg
aagtcactaatccggagcgttttgagccggagctgaacgaagtgaatccgggtgaaacgcaagacacgagcaccg
cgcgtgcgcttgtcacctccctgcgcgctttcgcactggaagataagctgccgtcggagaaacgcgagctgctgatcg
actggatgaagcgcaatacgaccggcgacgcgctgattcgtgcgggcgttccggacggttgggaagtggctgacaa
gaccggtgcggcgagctacggcacccgtaacgatatcgcgatcatttggccacctaaaggtgacccggtcgtgctgg
ccgtactgagcagccgtgacaagaaagacgcaaagtatgataacaagctgattgcagaggcgaccaaagttgttat
gaaggcactgaacatgaatggtaag
In some embodiments, the polynucleotide of the present invention has at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 6.
In illustrative embodiments, the beta-lactamases and/or pharmaceutical compositions comprise an amino acid sequence having at least 60% sequence identity with SEQ ID NO: 1 or SEQ ID NO: 3 and the following of Ambler classification: a hydrophobic residue other than alanine (A) at position 232; a hydrophilic residue other than alanine (A) at position 237; a hydrophobic residue other than alanine (A) at position 238; a hydrophilic residue other than serine (S) at position 240; and a hydrophilic residue other than aspartate (D) at position 276. In some embodiments, the hydrophobic residue other than alanine (A) at position 232 is glycine (G). In some embodiments, the hydrophilic residue other than alanine (A) at position 237 is serine (S). In some embodiments, the hydrophobic residue other than alanine (A) at position 238 is glycine (G). In some embodiments, the hydrophilic residue other than serine (S) at position 240 is aspartate (D). In some embodiments, the other than aspartate (D) at position 276 is asparagine (N). In some embodiments, the beta-lactamase and/or pharmaceutical composition comprises one or more of A232G, A237S, A238G, S240D, and D276N. In some embodiments, the beta-lactamase and/or pharmaceutical composition comprises all of A232G, A237S, A238G, S240D, and D276N, the sequence of which is SEQ ID NO: 7, i.e. P4A. In some embodiments, the beta- lactamase and/or pharmaceutical composition comprises an amino acid sequence having at least 90%, or 95%, or 97%, or 99%, or 100% sequence identity with SEQ ID NO: 7.
SEQ ID NO: 7
EMKDDFAKLEEQFDAKLGIFALDTGTNRTVAYRPDERFAFASTIKALTVGVL
LQQKSIEDLNQRITTRDDLVNYNPITEKHVDTGMTLKELADASLRYSDNAAQ
NLILKQIGGPESLKKELRKIGDEVTNPERFEPELNEVNPGETQDTSTARALV
TSLRAFALEDKLPSEKRELLIDWMKRNTTGDALIRAGVPDGWEVGDKTGS
GDYGTRNDIAIIWPPKGDPWLAVLSSRDKKDAKYDNKLIAEATKWMKALN
MNGK
In some embodiments, the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 7. SEQ ID NO: 8, is derived from SEQ ID NO: 7, and further includes the signal and the addition of the QASKT amino acids (the coding region is underlined):
MIQKRKRTVSFRLVLMCTLLFVSLPITKTSAQASKTEMKDDFAKLEEQFDAKLG
IFALDTGTNRTVAYRPDERFAFASTIKALTVGVLLQQKSIEDLNQRITYTRDDLV
NYNPITEKHVDTGMTLKELADASLRYSDNAAQNLILKQIGGPESLKKELRKIGD
EVTNPERFEPELNEVNPGETQDTSTARALVTSLRAFALEDKLPSEKRELLIDW
MKRNTTGDALIRAGVPDGWEVGDKTGSGDYGTRNDIAIIWPPKGDPWLAVL
SSRDKKDAKYDNKLIAEATKWMKALNMNGK
In some embodiments, the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 8.
In some embodiments, the beta-lactamase and/or pharmaceutical composition comprises an amino acid sequence having at least 90%, or 95%, or 97%, or 99%, or 100% sequence identity with SEQ ID NO: 8.
An illustrative polynucleotide of the invention is SEQ ID NO: 9, which is the full nucleotide sequence of A232G, A237S, A238G, S240D, and D276N mutant, Hind III site (AAGCTT-in bold) and additional K and T amino acids. In some embodiments, the underlined portion of SEQ ID NO: 9, is omitted. The leader and additional nucleotides (Hind III site and K and T amino acids— for the addition of the amino acid sequence QASKT) are underlined.
atqattcaaaaacqaaaqcqqacaqtttcqttcaqacttqtqcttatqtqcacqctqttatttqtcaqtttqccq attacaaaaacatcaqcqcaaqcttccaaqacqqaqatqaaaqatqattttqcaaaacttqaqqaaca atttgatgcaaaactcgggatctttgcattggatacaggtacaaaccggacggtagcgtatcggccggatg agcgttttgcttttgcttcgacgattaaggctttaactgtaggcgtgcttttgcaacagaaatcaatagaagatc tgaaccagagaataacatatacacgtgatgatcttgtaaactacaacccgattacggaaaagcacgttga tacgggaatgacgctcaaagagcttgcggatgcttcgcttcgatatagtgacaatgcggcacagaatctc attcttaaacaaattggcggacctgaaagtttgaaaaaggaactgaggaagattggtgatgaggttacaa atcccgaacgattcgaaccagagttaaatgaagtgaatccgggtgaaactcaggataccagtacagca agagcacttgtcacaagccttcgagcctttgctcttgaagataaacttccaagtgaaaaacgcgagctttta atcgattggatgaaacgaaataccactggagacgccttaatccgtgccggtgtgccggacggttgggaa gtgggtgataaaactggaagcggagattatggaacccggaatgacattgccatcatttggccgccaaaa ggagatcctgtcgttcttgcagtattatccagcagggataaaaaggacgccaagtatgataataaacttatt gcagaggcaacaaaggtggtaatgaaagccttaaacatgaacggcaaataa
In some embodiments, the polynucleotide of the present invention has at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 9 (with or without the underlined portion).
In various aspects, the beta-lactamases polypeptide has the sequence of SEQ ID NO: 10 (i.e., P2A) or is derived by one or more mutations of SEQ ID NO: 10:
ETGTISISQLNKNVWVHTELGYFNGEAVPSNGLVLNTSKGLVLVDSSWDNK
LTKELIEMVEKKFQKRVTDVIITHAHADRIGGITALKERGIKAHSTALTAELAK
NSGYEEPLGDLQTITSLKFGNTKVETFYPGKGHTEDNIWWLPQYQILAGG
CLVKSAEAKDLGNVADAYVNEWSTSIENVLKRYGNINSWPGHGEVGDKG
LLLHTLDLLK.
In some embodiments, the beta-lactamase polypeptide produced by methods of the invention comprises an amino acid sequence having at least about 60% (e.g. about 60%, or about 61 %, or about 62%, or about 63%, or about 64%, or about 65%, or about 66%, or about 67%, or about 68%, or about 69%, or about 70%, or about 71 %, or about 72%, or about 73%, or about 74%, or about 75%, or about 76%, or about 77%, or about 78%, or about 79%, or about 80%, or about 81 %, or about 82%, or about 83%, or about 84%, or about 85%, or about 86%, or about 87%, or about 88%, or about 89%, or about 90%, or about 91 %, or about 92%, or about 93%, or about 94%, or about 95%, or about 96%, or about 97%, or about 98%, or about 99%) sequence identity with SEQ ID NO: 10.
In some embodiments, the beta-lactamase and/or pharmaceutical composition comprises an amino acid sequence having at least 90%, or 95%, or 97%, or 99%, or 100% sequence identity with SEQ ID NO: 10.
Additional sequences of beta-lactamases including P1A, P2A, P3A, and P4A and derivatives thereof are described for example, in WO 2011/148041 and PCT/US2015/026457, the entire contents of which are hereby incorporated by reference.
The invention provides for polynucleotides encoding a beta-lactamase polypeptide, including, for example, vectors, comprising such polynucleotides. Such polynucleotides may further comprise, in addition to sequences encoding the beta-lactamases of the invention, one or more expression control elements. For example, the polynucleotide, may comprise one or more promoters or transcriptional enhancers, ribosomal binding sites, transcription termination signals, and polyadenylation signals, as expression control elements. In an embodiment, the polynucleotide includes expression control elements that direct expression of the beta- lactamase in the cytoplasm.
The polynucleotide may be inserted within a suitable vector, which is utilized to transform a suitable host cell such as an E. coli cell for expression. The vector may be any self-replicating DNA molecule that can transfer a DNA between host cells, including, for example, a plasmid cloning vector. In some embodiments, the vector can remain episomal or become chromosomally integrated, as long as the insert encoding the therapeutic agent can be transcribed. Vectors can be constructed by standard recombinant DNA technology. Vectors can be, for example, plasmids, phages, cosmids, phagemids, viruses, or any other types known in the art, which are used for replication and expression in prokaryotic or eukaryotic cells (e.g. an adenovirus; a retrovirus; a lentivirus; an scAAV; pGEX vector; pET vector; and pHT vector). Exemplary vectors that may be used include, for example, the pAVEO11 vector. Preparations of the pAVEO11 vector is described in EP Patent No. 0502637, EP Patent No. 2386642, and US Patent No. 6,537,779, the entire contents of which are hereby incorporated by reference. It will be appreciated by one of skill in the art that a wide variety of components known in the art (such as expression control elements) may be included in such vectors, including a wide variety of transcription signals, such as promoters and other sequences that regulate the binding of RNA polymerase onto the promoter. Any promoter known to be effective in £ co// cells in which the vector will be expressed can be used to initiate expression of the therapeutic agent. In one embodiment, the promoter is effective for directing expression of the beta-lactamase polypeptide in the cytoplasm. Suitable promoters may be inducible or constitutive. Examples of suitable promoters include, for example, the pET system (INVITROGEN), lac promoter, tac, trc, T7, T7A3 promoter, PhoA, Phage lambda pR, lambda pL promoter (see, e.g. J Ind Microbiol Biotechnoi (2012) 39:383-399; Curr Opin Biotech 2001 , 12: 195, the contents of which are hereby incorporated by reference), Pspac, PgroES, Pgsi, Plux and amyQ promoter and/or amyQ signal peptide from Bacillus amyloliquefaciens (by way of non-limiting example Gen Bank ID No. J01542.1 , the contents of which are hereby incorporated by reference). The promoter may be inducible (e.g. via IPTG, metabolites, temperature). In one embodiment, the cytoplasmic expression of the beta-lactamase polypeptide is driven by the IPTG inducible Lacl promoter. In one embodiment, cytoplasmic expression of the beta-lactamase polypeptide is induced by adding IPTG to the bacterial culture.
In various embodiments, the transformed E. coli cell is grown for a time under conditions sufficient to produce cytoplasmic expression of the beta-lactamase polypeptide. Any type of media that will support growth and reproduction of £ coli cell in cultures is useful for practicing the method of the invention. After growth of the cultures, the £. coli cell is typically lysed using osmotic shock, sonication or other standard means, and the expressed beta-lactamase polypeptide is isolated from the soluble fraction. Any protein purification method may be employed for this purpose, such as dialysis, gel filtration, ion exchange chromatography, affinity chromatography, electrophoresis, or a combination of steps.
In various embodiments, the beta-lactamases produced by methods of the invention possess functional characteristics that make them desirable for a variety of uses, including therapeutic uses. Methods of characterizing beta-lactamases are known in the art (e.g. nitrocefin assay as described by O'Callaghan, ef a/. Antimicrob. Agents Chemother, 1 :283-288; the various methods of Viswanatha ef al. Methods Mol Med. 2008;142:239-60).
In one embodiment, the beta-lactamases produced by methods of the invention hydrolyze one or more of penicillins and cephalosporins. As used throughout, penicillins include, for example, Amoxicillin (e.g. NOVAMOX, AMOXIL); Ampicillin (e.g. PRINCIPEN); Azlocillin; Carbenicillin (e.g. GEOCILLIN); Cloxacillin (e.g. TEGOPEN); Dicloxacillin (e.g. DYNAPEN); Flucloxacillin (e.g. FLOXAPEN); Mezlocillin (e.g. MEZLIN); Methicillin (e.g. STAPHCILLIN); Nafcillin (e.g. UNIPEN); Oxacillin (e.g. PROSTAPHLIN); Penicillin G (e.g. PENTIDS or PFIZERPEN); Penicillin V (e.g. VEETIDS (PEN-VEE-K)); Piperacillin (e.g. PIPRACIL); Temocillin (e.g. NEGABAN); and Ticarcillin (e.g. TICAR). As used throughout, cephalosporins include, for example, a first generation cephalosporin (e.g. Cefadroxil (e.g. DURICEF); Cefazolin (e.g. ANCEF); Ceftolozane, Cefalotin/Cefalothin (e.g. KEFLIN); Cefalexin (e.g. KEFLEX); a second generation cephalosporin (e.g. Cefaclor (e.g. DISTACLOR); Cefamandole (e.g. MANDOL); Cefoxitin (e.g. MEFOXIN); Cefprozil (e.g. CEFZIL); Cefuroxime (e.g. CEFTIN, ZINNAT)); a third generation cephalosporin (e.g. Cefixime (e.g. SUPRAX); Cefdinir (e.g. OMNICEF, CEFDIEL); Cefditoren (e.g. SPECTRACEF); Cefoperazone (e.g. CEFOBID); Cefotaxime (e.g. CLAFORAN); Cefpodoxime (e.g. VANTIN); Ceftazidime (e.g. FORTAZ); Ceftibuten (e.g. CEDAX) Ceftizoxime (e.g. CEFIZOX); and Ceftriaxone (e.g. ROCEPHIN)); a fourth generation cephalosporin (e.g. Cefepime (e.g. MAXIPIME)); or a fifth generation cephalosporin (e.g. Ceftaroline fosamil (e.g. TEFLARO); Ceftobiprole (e.g. ZEFTERA)). In a specific embodiment, cephalosporins include, for example, cefoperazone, ceftriaxone or cefazolin. In a specific embodiment, the inventive beta-lactamases have improved catalytic efficiency against cephalosporins as compared to SEQ ID NO: 1.
In various embodiments, the beta-lactamases possess desirable enzyme kinetic characteristics. For example, in some embodiments, the beta-lactamases possess a low KM for at least one cephalosporin, including, for example, a KM of less than about 500 μΜ, or about 100 μΜ, or about 10 μΜ, or about 1 μΜ, or about 0.1 μΜ (100 nM), or about 0.01 μΜ (10 nM), or about 1 nM. For example, in some embodiments, the beta-lactamases possess a low KM for at least one penicillin, including, for example, a KM of less than about 500 μΜ, or about 100 μΜ, or about 10 μΜ, or about 1 μΜ, or about 0.1 μΜ (100 nM), or about 0.01 μΜ (10 nM), or about 1 nM. In various embodiments, the inventive beta-lactamases possess a high Vmax for at least one cephalosporin, including, for example, Vmax which is greater than about 100 s-1 , or about 1000 s-1 , or about 10000 s-1 , or about 100000 s-1 , or about 1000000 s-1. In various embodiments, the inventive beta-lactamases possess a high Vmax for at least one penicillin, including, for example, Vmax which is greater than about 100 s-1 , or about 1000 s-1 , or about 10000 s-1 , or about 100000 s-1 , or about 1000000 s-1. In various embodiments, the inventive beta- lactamases possess catalytic efficiency is greater than about 106 M"1 s-1 for at least one cephalosporin. In various embodiments, the inventive beta-lactamases possess catalytic efficiency is greater than about 106 M"1 s-1 for at least one penicillin. In various embodiments, the inventive beta-lactamases possess the desirable enzyme kinetic characteristics for at least one of either or both of cephalosporins and penicillins.
In various embodiments, the inventive beta-lactamases are stable and/or active in the Gl tract, e.g. in one or more of the mouth, esophagus, stomach, duodenum, small intestine, duodenum, jejunum, ileum, large intestine, colon transversum, colon descendens, colon ascendens, colon sigmoidenum, cecum, and rectum. In a specific embodiment, the beta-lactamase is stable in the large intestine, optionally selected from one or more of colon transversum, colon descendens, colon ascendens, colon sigmoidenum and cecum. In a specific embodiment, the beta-lactamase is stable in the small intestine, optionally selected from one or more of duodenum, jejunum, and ileum. In some embodiments, the beta-lactamase is resistant to proteases in the Gl tract, including for example, the small intestine. In some embodiments, the beta-lactamase is substantially active at a pH of about 6.0 to about 7.5, e.g. about 6.0, or about 6.1 , or about 6.2, or about 6.3, or about 6.4, or about 6.5, or about 6.6, or about 6.7, or about 6.8, or about 6.9, or about 7.0, or about 7.1 , or about 7.2, or about 7.3, or about 7.4, or about 7.5 (including, for example, via formulation, as described herein). In various embodiments, the beta- lactamases of the present invention are resistant to one or more beta-lactamase inhibitors, optionally selected from avibactam, tazobactam, sulbactam, and clavulanic acid. In some embodiments, stable refers to an enzyme that has a long enough half-life and maintains enough activity for therapeutic effectiveness.
This invention is further illustrated by the following non-limiting examples.
EXAMPLES
Example 1: Production of Beta-Lactamases in Bacillus Strains
P1A-protein was produced by Bacillus subtilis RS310 production strain in approximately 10,000 liter fed-batch fermentation. The Bacillus subtilis RS310 strain was asporogenic, tryptophan auxotrophic and secreted P1A- protein into the culture broth. Specifi callly, cell culturing of the P1A-protein comprised two inoculum (1 %) expansion stages in shake flasks (WCB vial -> 100 mL -> 2 x 1200 mL) followed by a seed fermentation stage (220 L, 2.5 %). The main fed-batch fermentation was conducted in approximately 10,000 L working volume. The main fermentation was started as batch fermentation with an initial volume of 9,000 L of growth medium. After about 9 hours when most of glucose in the growth medium was consumed, feeding with a feed solution (approx. 1500 - 2000 L) containing glucose and phosphate was started. In order to keep glucose at adequate levels (0.5 - 5 mg/mL) during the feeding phase, predefined feeding profile was used, which may be adjusted during the process based on glucose measurements. The P1A protein was constitutively produced and secreted extracellularly into the culture broth.
During fermentation the critical operational parameters were monitored and controlled including glucose concentration, pH (7 ± 0.2), dissolved oxygen level (10 - 20 %), temperature (37 ± 1°C) and foam level. Stirring rate was controlled starting with gentle mixing and increasing to a maximum of 138 -145 rpm. Air flow into the vessel was adjusted to 0.5-1 vvm. Progression of fermentation was monitored by P1A content (enzyme activity measurement) and cell density measurements (OD 600 nm). The main fermentation achieved a P1A titer of about 1-1.2 mg/mL (by HPLC) typically after 16-22 hours. The final cell density was typically approximately OD 50 (d.w. 16-17 g/L). After completion of cultivation, the content of fermenter was cooled down to 11 ± 3 °C.
After fermentation the cells were removed from P1A-protein containing broth by continuous centrifugation followed by microfiltration. P1A containing filtrate was concentrated by ultrafiltration and P1A concentrate was further diafiltered, conditioned and passed through a disposable anion exchange filter cartridge in flow-through mode after which the filtrate was further diafiltered to remove NaCI. This prepared the solution for the following two stage P1A-protein crystallisation including; crystallisation, crystal harvesting, washing and dissolution. Finally, after the second crystallisation step, P1A-protein crystals were suspended in water and dissolved and final concentration of P1A-protein solution was adjusted. The protein solution was filtered (0.2 urn) to reduce bioburden and finally dispensed into sterile plastic containers, frozen and stored at -70°C.
Example 2: Intracellular Gene Design for the Expression of P3A β-Lactamase
The purpose of this study was to improve β-lactamase expression. To do so, the pAVEway™ advance protein expression system was employed in £ coli. P3A was used throughout this study for testing β-lactamase expression. The gene sequence for directing the intracellular expression of P3A is SEQ ID NO: 6.
The P3A gene was cloned into the pAVEway™ intercellular (cytoplasmic) construct, pAVE011 , and the plasmid was verified with PCR and DNA sequencing. The designed P3A expression construct provided a relatively homogeneous N-terminus with the N-terminal methionine removed about 95% of the time.
Following construction of the intercellular expression plasmid, the construct was transformed in the following £ coli strains: CLD977 (W3110 E. coli host) and CLD990 (BL21 £ coli host). After construction of the β-lactamase intracellular expression strains, P3A was expressed and characterized as further described in Examples 2 and 3, respectively.
Additionally, the P3A gene was cloned into the pAVEway™ periplasmic construct, pAVE029 + gene 1 or gene 7 (gene 1 and gene 7 are different secretion leaders). Again, the plasmid was verified with PCR and DNA sequencing.
Following construction of the periplasmic expression plasmid, the construct was transformed in the following E. coli strains: CLD981 (gene 1 leader, W3110 E. coli host) and CLD982 (gene 7 leader, BL21 £. coli host). After construction of the periplasmic β-lactamase expression strains, P3A was expressed and characterized as further described in Examples 2 and 3, respectively.
Example 3: P3A β-lactamase Fermentation
Duplicate fermentations were performed using intracellular expression strains CLD977 and CLD990, and periplasmic strains CLD981 and CLD982. Specifically, the fermentation analysis was carried out in 3 stages: Shake flask (SF) seed stage, Fermenter stage, and SDS-PAGE analysis stage. To carry out the SF seed stage, RCB vials were inoculated into duplicate shake flasks with standard media and incubated at 37°C, 200 rpm for approximately 10 hours. Next, purity and OD6oo of the samples was determined (summarized in Table 1). Finally, the E. coli material was transferred from SF to a fermentation vessel.
Table 1. Results from the shake flask seed stage for intracellular strains CLD977 and CLD990. SF1 and SF2 correspond to duplicate reactions for CLD977 and CLD990, respectively.
Figure imgf000038_0001
The fermenter stage was conducted using the standard pAVEway™ intracellular protocol. Specifically, cultures were induced using 0.5 mM IPTG when ODeoo = 50 ± 5. After induction, fermentation continued for an additional 12 hours before shutdown. Purity of the samples was confirmed at both pre-induction and shutdown.
For CLD977, the fermentation control parameter steps were: i) Oxygen supplementation at 7.33 hours; ii) End of batch phase at 9.46 hours when feed started; iii) Induction at 10.27 hours when OD6oo = 50.1 ; iv) Fermentation continued for a further 12 hours before shutdown.
As shown in Fig. 1 (a multi-fermenter computer system (MFCS) plot of CLD977 fermentation), at approximately 20 hours, the airflow began to fail, which was suspected to be due to pressure in the vessel. Also, shown in Fig. 1 , p02 fell below 20% at approximately 21 hours and 1.5 hours prior to shut down.
For CLD990, the fermentation control parameter steps were: i) Oxygen supplementation at 10.95 hours; ii) End of batch phase at 12.27 hours when feed started; iii) Induction at 13.14 hours when OD600 = 50.1 ; iv)
Fermentation continued for a further 12 hours before shutdown. A MFCS plot of CLD990 fermentation is shown in Fig. 2.
A MFCS plot of exit gas analysis of oxygen uptake rate (OUR) and carbon dioxide evolution rate (CER) for CLD977 and CLD990 fermentation is shown in Fig. 3. Similar profiles were observed for both strains with the delay seen on the CLD990 strain due to an observed longer batch phase. Profile at the end of CLD977 fermentation, without wishing to be bound by theory, was probably related to a reduced airflow in the vessel (exit filter blocked).
Biomass profiles for both strains were similar up to 12 hours post induction although the CLD990 strain was delayed due to the extended batch phase (see Fig. 4). This delay, without wishing to be bound by theory, may have been due to the lower SF OD6oo or a reduced initial growth rate.
Gram staining was also performed for CLD977 and CLD990 at the end of batch phase and after fermentation was complete (see Fig. 5). Results indicate that the culture was pure and homogenous at the end of the culturing.
Following fermentation, selected time course samples from pre-induction to the end of fermentation were analyzed using SDS-PAGE (see Fig. 6 - 8) after samples were lysed, spun down, and resuspended.
As evidenced by the SDS-PAGE results, protein product levels in both strains were in excess of 10 g/L (see Fig. 6 and 7): CLD977 SDS PAGE indicated 12.1 - 14.0 g/L whereas CLD990 SDS PAGE indicated 13.2 - 13.7 g/L. Additionally, the CLD977 and CLD990 total protein products (after sonication) were mostly soluble (see Fig. 8). Compared to previous systems used to express β-lactamase (that yielded about 0.5 to 1 g/L), the methods of the present invention utilizing intracellular expression of β-lactamase in E. coli strains proved to be far superior. Contrary to prior studies which show periplasmic β-lactamase expression, attempts to express β-lactamase in the periplasmic domain were unsuccessful and led to biologically inactive β-lactamase (see Example 3).
Example 4: β-lactamase Activity of Fermentation Samples by the CENTA Method
P3A β-lactamase activity of the previously described fermentation samples (see Example 2) was analyzed using the CENTA method, which is described below. Throughout this method, different standards were used and are referred to as: Reference material (32 mg/mL); Standard curve: Reference standard material diluted x1000 (standards used were 0.6 mg/l, 0.8 mg/l, 1.0 mg/l, 1.5 mg/l, 2.0 mg/l and 4.0 mg/l made up from the x1000 stock); Control standard: Reference standard diluted to 1 mg/l and ran as a control; 1 mM CENTA stock solution: 25 mg CENTA lactamase substrate dissolved in 50 ml of 50 mM Sodium dihydrogen phosphate (stored at -20°C); and CENTA working solution: 3.34 ml of CENTA stock solution dissolved in 25 ml of Sodium dihydrogen phosphate.
The CENTA method employs a chromogenic cephalosporin that is readily hydrolyzed by β-lactamases and allows for kinetic studies and detection of the enzymes in crude extracts and chromatographic fractions (Bebrone, C. ef a/., (2001) Antimicrobial Agents and Chemotherapy, 45 (6) 1868-1871). This method is also useful since CENTA can be prepared from the commercially available drug, cephalothin. For this study, β- lactamase sample activity was monitored using a FFDB plate reader in the presence of a CENTA working solution. First, β-lactamase samples were diluted to 1 mg/l (Bradford assays were used to determine the concentration). Then, 50 μί. of each sample was loaded onto the plate and incubated for 20 min. at 25°C. Finally, 200 \ii of the CENTA working solution was added to each sample and the sample was read as follows: Plate reader settings: Temperature of measurement = 25°C; Shaking = slow; Time of shaking = 2 seconds; Time of measurement = 60 seconds; Number of readings = Every 3 seconds; and Wavelength = 405 nm.
The hydrolysis of CENTA was monitored by continuously recording the absorbance variation at 405 nm (appearance of the expulsed chromophore). Results from this assay are presented in Figs. 9 - 19 and summarized in Tables 2 - 4.
The CENTA experiments were split into 3 assay plates. Assay plate 1 corresponded to: CLD981 12h, 24h, 48h, osmotic shock buffer 1 (OS1 ) 24h, and osmotic shock buffer 2 (OS2) 24h post induction, as well as CLD982 12h, 24h, 48h, OS1 24h, and OS2 24h post induction. Assay plate 2 corresponded to: CLD981 OS1 48h and OS2 48h post induction, as well as CLD982 OS1 48h and OS2 48h post induction. Assay plate 3 corresponded to CLD977 and CLD990 for both the second to last and last time point post induction (sonication) as well as the last time point post induction (Bug buster). OS1 contains 20% sucrose. Following preparation of the OS1 fraction, the cell pellet went on to preparation of OS2, which contains MgSC .
Results for assay plate 1 results are shown in Figs. 9 - 13 and Table 2. Specifically, Fig. 9 shows a standard curve of Time (sec) vs. Absorbance for Controls 1 and 2 (combined into control standard) as well as reference standard material dilutions of 0.6, 0.8, 1.0, 1.5, 2.0, and 4 mg/L. Controls 1 and 2 were preset dilutions of 1.0 μg/mL ran as duplicates. Fig. 10 shows a standard end point curve of Standard Concentration (mg/L) vs. End Point Absorbance. Standard absorbance was measured at time = 60 sec minus standard absorbance at time = 0 sec. Specifically, endpoint analysis was carried out in which a reaction was measured at t = 0 and at the end of a specified time interval, and the t = 0 absorbance value was subtracted. For analysis of beta-lactamase, the reaction was measured at time = 60 sec. The absorbance was measured at time = 0 sec which was then subtracted from the 60 sec measurement. Several dilutions of the reference standard were tested to generate a standard curve. Fig. 1 1 shows a standard curve of Time (sec) vs. Absorbance for CLD981 (3/13C037) 12h, 24h, 48h, and OS2 48h post induction. Fig. 12 shows a standard end point curve of Time (sec) vs. Absorbance for CLD981 OS1 samples. Fig. 13 shows a standard curve of Time (sec) vs. Absorbance for CLD982 (4/13C038) 12h, 24h, 48h, and OS1 and OS2 48h post induction. Table 2 shows a summary of assay plate 1 activity and titre results for CLD981 and CLD982 (secretion strains 37 and 38, respectively) along with controls 1 and 2.
Assay plate 2 results are shown in Fig. 14 - 16 and Table 3. Specifically, Fig. 14 shows a standard curve of Time
(sec) vs. Absorbance for Control 1 and 2 (combined into control standard) as well as reference standard material dilutions of 0.6, 0.8, 1.0, 1.5, 2.0, and 4 mg/L. Fig. 15 shows a standard end point curve of Standard
Concentration (mg/L) vs. End Point Absorbance. Standard absorbance was measured at time = 60 sec minus standard absorbance at time = 0 sec. Fig. 16 shows a standard curve of Time (sec) vs. Absorbance for CLD981 (37) and CLD982 (38) OS1 and 0S2 48h post induction. Table 3 shows a summary of assay plate 2 activity and titre results for CLD981 and CLD982 OS1 and OS2 along with controls 1 and 2.
Assay plate 3 results are shown in Fig. 17 - 19 and Table 4. Specifically, Fig. 17 shows a standard curve of Time (sec) vs. Absorbance for Control 1 and 2 (combined as control standard) as well as reference standard material dilutions of 0.6, 0.8, 1.0, 1.5, 2.0, and 4 mg/L. Fig. 18 shows a standard end point curve of Standard Concentration (mg/L) vs. End Point Absorbance. Standard absorbance was measured at time = 60 sec minus standard absorbance at time = 0 sec. Fig. 19 shows a standard curve of Time (sec) vs. Absorbance for CLD977 and CLD 990 (intracellular strains 39 and 40, respectively) for both the second to last and last time point post induction (unlabelled = sonication) as well as the last time point post induction (Bug buster). Table 4 shows a summary of assay plate 3 activity and titre results for CLD977 and CLD990 along with controls 1 and 2.
Tables 2 - 4 specifically show CLD981 , CLD982, CLD977, and CLD990 end point OD, activity concentration (mg/L), assay dilution, concentration x dilution (g/L), whole cell weight (WCW (g/L)), periplasmic dilution factor, g/L P1A activity WB titre, estimated g/L P1A WB by SDS PAGE, SDS PAGE P, and SDS PAGE soluble (if applicable) compared to control 1 and 2.
Table 2. Results from the CENTA method for the periplasmic strains CLD981 (37) and CLD982 (38) at different time points compared to controls 1 and 2.
Figure imgf000041_0001
Table 3. Results from the CENTA method for the periplasmic strains CLD981 (37) and CLD982 (38) at different time points compared to controls 1 and 2. ftetfsiiy
End point Assay e>'LP1 A activity 1 SBS PASE i OE> concentration
iJifatKJB tgitf dilution factor WBtitte CliL VVB
S7- 140S1 3.C42S 0.2S45 417 0.12 0.71 δ.17 &.5S
37- OS2 5.S27S 0 - 2Ϊ.5 1738 8.23 0.71 0.32 1.3
38-1 OS1 0.1SS0 I.03S3 2:38 1 44 ! SS 0.4
S8-140S2 •3.1150 1.1034 12:55 1.3B 1: .44· oss
Assay coni si 1 ::·.: : ·¾ O.S730 32333 3 4
Assay eo tm<! 2 •3.11 5 ^ ¾ 'g^ .32055 31.33
Table 4. Results from the CENTA method for the intracellular strains CLD977 (39) and CLD990 (40) at different time points compared to controls 1 and 2.
End point Activity Assay Activity
OQ concentration concentration X : git. Pt A actw v SBS PAGE
Btfte •SBS PAGE P j soluble dBtiiiorj is
6.1SS0 1.0705 i 20330 41.35 i 41.05 j 11.4 10.9
3SMJ i Sc. nicafcan) £i 1875 1.8583 ; 25000 4S.43 i 4S.48 j 14.5 12.1
40-7 i So nicaiion) 5 1835 1.81S3 I 25000 45.42 4542 11.5 1.3
40-4<Ecnka†!em 3.1SS5 1.S4S7 ; 27780 δΐ,ϊϊ j S1.3S i 13.2 1¾.7
.35-8 <B«s busts) 3.1020 1.0015 i 2S 00 45,53 j 4S.03 ; 14.0 12.1
40-8 (Bus taster* •3.1770 1.7 S5 i 27780 48.68 : 48.68 ; 13.2' 1!3.7
Assay contrai 1 •3.1080 00057 i 32000 31:.8S
Assay confcoi 2 •3.1045 O.S7« j 32000 31. IS
As seen above, for the intracellular strains, there was a marginally greater activity in strain CLD990 compared to strain CLD977. For the periplasmic strains, the best secretion fraction for CLD981 (gene 1 leader) was 0S2 fraction at 1.3 g/L (by SDS-PAGE), whereas the best secretion fraction for CLD982 (gene 7 leader) was SN fraction at -1.0 g/L (which included the non-processed form). Finally, for intracellular strains, it was observed that applying either Bug buster or sonication produced similar activity and SDS-PAGE results for these preparations.
Overall, intracellular activity and SDS PAGE results were more than 10x greater compared to secretion (periplasmic) fractions. This was a surprising result as typically, expressed proteins are collected from the periplasm. Additionally, the intracellular expression yielded β-lactamase in the soluble fraction as opposed to inclusion bodies. Example 5: La e Scale P3A (SYN-004) Production
cGMP manufacturing of P3A (SYN-004) was undertaken. The initial 750-liter cGMP production run used the pAVEway™ platform (FUJIFILM Diosynth Biotechnologies UK). Yields were 5.5 kilograms of >95% pure SYN- 004 active pharmaceutical ingredient (API) drug substance. The GMP manufacturing process was initiated after a successful evaluation that produced high yielding cell lines that exhibited consistent biological activity of P3A (SYN-004). P3A (SYN-004) expression titers were improved by greater than about 15-fold (14 grams of P3A (SYN-004) per liter of E. coli culture broth), compared to the Bacillus platform previously employed for SYN-004's first-generation predecessor (roughly 1 gram of P1A per liter of Bacillus subtillis culture broth, see Example 1). A single chromatography column purification process reproducibly yielded 40-50% P3A (SYN-004) drug substance recovery at purity levels greater than 95%, another marked manufacturing improvement over the previous purification process.
DEFINITIONS
The following definitions are used in connection with the invention disclosed herein. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of skill in the art to which this invention belongs.
As used herein, "a," "an," or "the" can mean one or more than one.
Further, the term "about" when used in connection with a referenced numeric indication means the referenced numeric indication plus or minus up to 10% of that referenced numeric indication. For example, the language "about 50" covers the range of 45 to 55.
An "effective amount," when used in connection with medical uses is an amount that is effective for providing a measurable treatment, prevention, or reduction in the rate of pathogenesis of a disease of interest.
As referred to herein, all compositional percentages are by weight of the total composition, unless otherwise specified. As used herein, the word "include," and its variants, is intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that may also be useful in the compositions and methods of this technology. Similarly, the terms "can" and "may" and their variants are intended to be non- limiting, such that recitation that an embodiment can or may comprise certain elements or features does not exclude other embodiments of the present technology that do not contain those elements or features.
Although the open-ended term "comprising," as a synonym of terms such as including, containing, or having, is used herein to describe and claim the invention, the present invention, or embodiments thereof, may alternatively be described using alternative terms such as "consisting of or "consisting essentially of."
As used herein, the words "preferred" and "preferably" refer to embodiments of the technology that afford certain benefits, under certain circumstances. However, other embodiments may also be preferred, under the same or other circumstances. Furthermore, the recitation of one or more preferred embodiments does not imply that other embodiments are not useful, and is not intended to exclude other embodiments from the scope of the technology.
The amount of compositions described herein needed for achieving a therapeutic effect may be determined empirically in accordance with conventional procedures for the particular purpose. Generally, for administering therapeutic agents (e.g. inventive β-lactamases and/or pharmaceutical compositions (and/or additional agents) for therapeutic purposes, the therapeutic agents are given at a pharmacologically effective dose. A "pharmacologically effective amount," "pharmacologically effective dose," "therapeutically effective amount," or "effective amount" refers to an amount sufficient to produce the desired physiological effect or amount capable of achieving the desired result, particularly for treating the disorder or disease. An effective amount as used herein would include an amount sufficient to, for example, delay the development of a symptom of the disorder or disease, alter the course of a symptom of the disorder or disease (e.g., slow the progression of a symptom of the disease), reduce or eliminate one or more symptoms or manifestations of the disorder or disease, and reverse a symptom of a disorder or disease. For example, administration of therapeutic agents to a patient suffering from a Gl tract disorder (e.g. CDI) provides a therapeutic benefit not only when the underlying condition is eradicated or ameliorated, but also when the patient reports a decrease in the severity or duration of the symptoms associated with the disease. Therapeutic benefit also includes halting or slowing the progression of the underlying disease or disorder, regardless of whether improvement is realized.
Effective amounts, toxicity, and therapeutic efficacy can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to about 50% of the population) and the ED50 (the dose therapeutically effective in about 50% of the population). The dosage can vary depending upon the dosage form employed and the route of administration utilized. The dose ratio between toxic and therapeutic effects is the therapeutic index and can be expressed as the ratio LD50/ED50. In some embodiments, compositions and methods that exhibit large therapeutic indices are preferred. A therapeutically effective dose can be estimated initially from in vitro assays, including, for example, cell culture assays. Also, a dose can be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 as determined in cell culture, or in an appropriate animal model. Levels of the described compositions in plasma can be measured, for example, by high performance liquid chromatography. The effects of any particular dosage can be monitored by a suitable bioassay. The dosage can be determined by a physician and adjusted, as necessary, to suit observed effects of the treatment.
In certain embodiments, the effect will result in a quantifiable change of at least about 10%, at least about 20%, at least about 30%, at least about 50%, at least about 70%, or at least about 90%. In some embodiments, the effect will result in a quantifiable change of about 10%, about 20%, about 30%, about 50%, about 70%, or even about 90% or more. In certain embodiments, the effect will result in a quantifiable change of two-fold, or three- fold, or four-fold, or five-fold, or ten-fold. Therapeutic benefit also includes halting or slowing the progression of the underlying disease or disorder or reduction in toxicity, regardless of whether improvement is realized.
EQUIVALENTS
While the invention has been described in connection with specific embodiments thereof, it will be understood that it is capable of further modifications and this application is intended to cover any variations, uses, or adaptations of the invention following, in general, the principles of the invention and including such departures from the present disclosure as come within known or customary practice within the art to which the invention pertains and as may be applied to the essential features herein set forth and as follows in the scope of the appended claims.
Those skilled in the art will recognize, or be able to ascertain, using no more than routine experimentation, numerous equivalents to the specific embodiments described specifically herein. Such equivalents are intended to be encompassed in the scope of the following claims.
INCORPORATION BY REFERENCE
All patents and publications referenced herein are hereby incorporated by reference in their entireties.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention.
As used herein, all headings are simply for organization and are not intended to limit the disclosure in any manner. The content of any individual section may be equally applicable to all sections.

Claims

CLAIMS What is claimed is:
1. A method for the production of a beta-lactamase polypeptide in Escherichia coli (E. coli), comprising:
(a) providing a host £ coli cell transformed with a vector comprising a sequence encoding the beta- lactamase polypeptide;
(b) culturing the £ coli cell to induce expression of the beta-lactamase polypeptide in the cytoplasm; and
(c) recovering the beta-lactamase polypeptide from a soluble fraction prepared from the £ coli cell.
2. The method claim 1 , wherein the method yields at least about 5 grams, about 6 grams, about 7 grams, about 8 grams, about 9 grams, or about 10 grams, or about 15 grams of the beta-lactamase polypeptide per liter of culture.
3. The method of claim 1 , wherein the method yields at least about 10 grams of the beta-lactamase polypeptide per liter of culture.
4. The method of claim 1 , wherein the method yields at least about 15 grams of the beta-lactamase polypeptide per liter of culture.
5. The method of any one of the above claims, wherein the £. coli cell is selected from BL21 (DE3) or W3110.
6. The method of any one of the above claims, wherein expression of the beta-lactamase polypeptide in the cytoplasm is induced by adding isopropylthiogalactoside (IPTG) to the culture.
7. The method of any one of the above claims, wherein the beta-lactamase polypeptide comprises an amino acid sequence having at least 60% identity with P1 A.
8. The method of any one of the above claims, wherein the beta-lactamase polypeptide comprises an amino acid sequence having at least 60% identity with P2A.
9. The method of any one of the above claims, wherein the beta-lactamase polypeptide comprises an amino acid sequence having at least 60% identity with P3A.
10. The method of any one of the above claims, wherein the beta-lactamase polypeptide comprises an amino acid sequence having at least 60% identity with P4A.
11. The method of any of the above claims, wherein the beta-lactamase polypeptide comprises an amino acid sequence having at least about 60%, or at least about 65%, or at least about 70%, or at least about 75%, or at least about 80%, or at least about 85%, or at least about 90%, or at least about 95%, or at least about 96%, or at least about 97%, or at least about 98%, or at least about 99%, or at least about 100% identity with one of P1A, P2A, P3A and P4A.
12. The method of claim 4, wherein the beta-lactamase polypeptide comprises an amino acid sequence of SEQ ID NO: 5 (P3A).
13. The method of claim 4, wherein the beta-lactamase polypeptide comprises an amino acid sequence of SEQ ID NO: 10 (P2A).
14. The method of any of the above claims, wherein the purity of the beta-lactamase polypeptide is greater than at least about 95%, or about 96%, or about 97%, or about 98%, or about 99%.
15. The method of any of the above claims, wherein the production comprises the use of an expression vector comprising palindromic DNA looping.
16. The method of any of the above claims, wherein the production comprises the use of an expression vector suitable for tightly controlled gene expression.
17. The method of any of the above claims, wherein the production comprises a single chromatography column step.
18. The method of claim 17, wherein the purification process yields about 35%, about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, or about 75% beta-lactamase.
19. A method for the production of a beta-lactamase polypeptide in Escherichia coli (E. coli), comprising:
(a) providing a host E. coli cell transformed with a vector comprising a sequence encoding the beta- lactamase polypeptide;
(b) culturing the E. coli cell to induce expression of the beta-lactamase polypeptide in the cytoplasm; and
(c) recovering the beta-lactamase polypeptide from a soluble fraction prepared from the E. coli cell; wherein:
the beta-lactamase polypeptide comprises an amino sequence of SEQ ID NO: 5 (P3A) and the method yields at least about 15 grams of the P3A beta-lactamase polypeptide per liter of culture.
PCT/US2015/047187 2014-08-28 2015-08-27 E. coli-based production of beta-lactamase WO2016033327A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CA2958755A CA2958755C (en) 2014-08-28 2015-08-27 E. coli-based production of beta-lactamase
AU2015308897A AU2015308897B2 (en) 2014-08-28 2015-08-27 E. coli-based production of beta-lactamase
US15/506,342 US11034966B2 (en) 2014-08-28 2015-08-27 E. coli-based production of beta-lactamase
EP15836229.3A EP3186379B1 (en) 2014-08-28 2015-08-27 E. coli-based production of beta-lactamase
CN201580042206.3A CN106574273B (en) 2014-08-28 2015-08-27 Coli-based production of beta-lactamases
JP2017507851A JP6803328B2 (en) 2014-08-28 2015-08-27 E. coli-based beta-lactamase production
US17/314,583 US11542510B2 (en) 2014-08-28 2021-05-07 E. coli-based production of beta-lactamase
US18/060,797 US20230279409A1 (en) 2014-08-28 2022-12-01 E. coli-based production of beta-lactamase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462043360P 2014-08-28 2014-08-28
US62/043,360 2014-08-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/506,342 A-371-Of-International US11034966B2 (en) 2014-08-28 2015-08-27 E. coli-based production of beta-lactamase
US17/314,583 Continuation US11542510B2 (en) 2014-08-28 2021-05-07 E. coli-based production of beta-lactamase

Publications (1)

Publication Number Publication Date
WO2016033327A1 true WO2016033327A1 (en) 2016-03-03

Family

ID=55400575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/047187 WO2016033327A1 (en) 2014-08-28 2015-08-27 E. coli-based production of beta-lactamase

Country Status (7)

Country Link
US (3) US11034966B2 (en)
EP (1) EP3186379B1 (en)
JP (1) JP6803328B2 (en)
CN (1) CN106574273B (en)
AU (1) AU2015308897B2 (en)
CA (1) CA2958755C (en)
WO (1) WO2016033327A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877307B (en) * 2021-01-27 2023-10-31 洛阳华荣生物技术有限公司 Amino acid dehydrogenase mutant and application thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962055A (en) 1983-03-08 1990-10-09 Rikagaku Kenkyusho Plasmid, method for construction of the same, microorganisms carrying the plasmid and method for cultivation of the microorganism
EP0502637A2 (en) 1991-02-26 1992-09-09 Zeneca Limited Vector
US5190874A (en) 1984-12-28 1993-03-02 Rikagaku Kenkyusho Method for producing penicillinase and xylanase
US5607671A (en) 1992-01-17 1997-03-04 Heino; Pekka U. Medical use, a medical method and a pharmaceutical preparation
US6180367B1 (en) * 1998-10-28 2001-01-30 Genentech, Inc. Process for bacterial production of polypeptides
US6537779B1 (en) 1997-07-25 2003-03-25 Zeneca Limited T7 promoter-based expression system
WO2007147945A1 (en) 2006-06-21 2007-12-27 Ipsat Therapies Oy Modified beta-lactamase and method for its preparation
US7319030B2 (en) 2001-11-06 2008-01-15 Ipsat Therapies Oy Non-sporulating Bacillus subtilis having parts of the gene encoding sigma G deleted
US7811786B1 (en) 2004-05-06 2010-10-12 Daewoong Co., Ltd. Preparation method for the production of active and soluble proteins in prokaryotes and polycistronic vectors therefor
EP2386642A2 (en) 2006-02-03 2011-11-16 Fujifilm Diosynth Biotechnologies Uk Limited Expression system
WO2011148041A1 (en) 2010-05-24 2011-12-01 Prevab R Llc Modified beta-lactamases and methods and uses related thereto
WO2017011077A1 (en) 2015-07-16 2017-01-19 Empire Technology Development Llc Distance determination between rfid tags

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL89987C (en) 1954-05-29
US2941995A (en) 1957-08-02 1960-06-21 Beecham Res Lab Recovery of solid 6-aminopenicillanic acid
US2982696A (en) 1959-05-01 1961-05-02 Schenley Ind Inc Ion-exchange procedures for the purification of penicillinase
US3070511A (en) 1960-02-10 1962-12-25 Lepetit Spa Process for preparing 6-aminopenicillanic acid
US3150059A (en) 1962-12-26 1964-09-22 Lilly Co Eli Penicillin deacylation via actinoplanaceae fermentation
US3239394A (en) 1964-06-15 1966-03-08 Merck & Co Inc Process for producing 7-amino-cephalosporanic acid
US3499909A (en) 1966-05-18 1970-03-10 Koninklijke Gist Spiritus Process for production of 6-aminopenicillanic acid
US3488729A (en) 1966-08-22 1970-01-06 Lilly Co Eli Cephalothin ester
GB1241844A (en) 1968-08-23 1971-08-04 Beecham Group Ltd Penicillins
GB1463513A (en) 1974-08-13 1977-02-02 Beecham Group Ltd Enzymes
FI59265C (en) 1974-08-13 1981-07-10 Beecham Group Ltd FOERFARANDE FOER FRAMSTAELLNING AV 6-AMINOPENICILLANSYRA
GB2199582A (en) 1987-01-07 1988-07-13 Bayer Ag Analogues of pancreatic secretory trypsin inhibitor
FR2613624B1 (en) 1987-04-10 1990-11-23 Roussy Inst Gustave ORAL ADMINISTRATIVE PHARMACEUTICAL COMPOSITION FOR REDUCING THE EFFECTS OF B-LACTAMINES
CA2007083A1 (en) 1989-01-09 1990-07-09 Nobuhiko Katunuma Pharmaceutical use of trypstatin
CS275231B2 (en) 1989-09-29 1992-02-19 Ustav Makormolekularni Chemie Medicine bottle
WO1997003185A1 (en) 1995-07-07 1997-01-30 Novo Nordisk A/S Production of proteins using bacillus incapable of sporulation
US7585674B2 (en) 2001-05-29 2009-09-08 Kao Corporation Host microorganisms
FR2843302B1 (en) 2002-08-09 2004-10-22 Centre Nat Rech Scient GALENIC FORM FOR COLLECTIVE DELIVERY OF ACTIVE PRINCIPLES
EP1564286A1 (en) 2004-02-11 2005-08-17 Université de Liège Hybrid proteins of beta-lactamase class A
BRPI0610683B8 (en) 2005-05-18 2021-05-25 Hopitaux Paris Assist Publique colonic application of absorbents
JP5048668B2 (en) 2005-07-15 2012-10-17 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ Extracellular production method of target protein by simultaneous expression of OmpF and target protein
FI119678B (en) * 2006-11-28 2009-02-13 Ipsat Therapies Oy Use of beta-lactamase
US20100292185A1 (en) * 2009-05-12 2010-11-18 Burns Christopher J Beta-lactamase inhibitors
US20150361107A1 (en) * 2014-06-11 2015-12-17 VenatoRx Pharmaceuticals, Inc. Orally bioavailable beta-lactamase inhibitors
KR102467968B1 (en) 2014-10-08 2022-11-16 신세틱 바이오로직스, 인코퍼레이티드 Beta-lactamase formulations and uses thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4962055A (en) 1983-03-08 1990-10-09 Rikagaku Kenkyusho Plasmid, method for construction of the same, microorganisms carrying the plasmid and method for cultivation of the microorganism
US5190874A (en) 1984-12-28 1993-03-02 Rikagaku Kenkyusho Method for producing penicillinase and xylanase
EP0502637A2 (en) 1991-02-26 1992-09-09 Zeneca Limited Vector
US5607671A (en) 1992-01-17 1997-03-04 Heino; Pekka U. Medical use, a medical method and a pharmaceutical preparation
US6537779B1 (en) 1997-07-25 2003-03-25 Zeneca Limited T7 promoter-based expression system
US6180367B1 (en) * 1998-10-28 2001-01-30 Genentech, Inc. Process for bacterial production of polypeptides
US7319030B2 (en) 2001-11-06 2008-01-15 Ipsat Therapies Oy Non-sporulating Bacillus subtilis having parts of the gene encoding sigma G deleted
US7811786B1 (en) 2004-05-06 2010-10-12 Daewoong Co., Ltd. Preparation method for the production of active and soluble proteins in prokaryotes and polycistronic vectors therefor
EP2386642A2 (en) 2006-02-03 2011-11-16 Fujifilm Diosynth Biotechnologies Uk Limited Expression system
US20090181004A1 (en) * 2006-06-21 2009-07-16 Ipsat Therapies Oy Modified beta-lactamase and method for its preparation
WO2007147945A1 (en) 2006-06-21 2007-12-27 Ipsat Therapies Oy Modified beta-lactamase and method for its preparation
WO2011148041A1 (en) 2010-05-24 2011-12-01 Prevab R Llc Modified beta-lactamases and methods and uses related thereto
WO2017011077A1 (en) 2015-07-16 2017-01-19 Empire Technology Development Llc Distance determination between rfid tags

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
1 HZO, NUGAKA ET AL., J MOL BIOL., vol. 317, no. 1, 15 March 2002 (2002-03-15), pages 109 - 17
AMBLER ET AL.: "A standard numbering scheme for the Class A β-iactamases", BIOCHEM. J., vol. 276, 1991, pages 269 - 272
BACHMANN, BJ: "Pedigrees of some mutant strains of Escherichia coli K-12", BACTERIOL.REV., vol. 36, no. 4, 1972, pages 525 - 57
BEBRONE, C. ET AL., ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 45, no. 6, 2001, pages 1868 - 1871
BONNET, ANTIMICROB. AGENTS CHEMOTHER, vol. 48, no. 1, 2004, pages 1 - 14
CURR OPIN BIOTECH, vol. 12, 2001, pages 195
IBUKA ET AL., BIOCHEMISTRY, vol. 42, no. 36, 2003, pages 10634 - 43
IBUKA ET AL., JOURNAL OF MOLECULAR BIOLOGY, vol. 285, no. 5, 1999, pages 2079 - 2087
J IND MICROBIOL BIOTECHNOL, vol. 39, 2012, pages 383 - 399
JBC, vol. 258, no. 18, 1983, pages 11211
KNOXMOEWS, J. MOL BIOL., vol. 220, 1991, pages 435 - 455
LIASSINE ET AL., ANTIMICROB AGENTS CHEMOTHER., vol. 46, no. 1, January 2002 (2002-01-01), pages 216 - 9
MATERON, ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 47, no. 6, 2003, pages 2040 - 2042
MEZES ET AL., J BIOL CHEM, vol. 258, no. 18, 1983, pages 11211 - 11218
O'CALLAGHAN ET AL., ANTIMICROB. AGENTS CHEMOTHER, vol. 1, pages 283 - 288
PERILLI E, FEMS MICROBIOLOGY LETTERS, vol. 241, no. 2, 2004, pages 229 - 232
SHAW ET AL., PROTEIN EXPR PURIF., vol. 2, no. 2-3, 1991, pages 151 - 157
SHAW ET AL., PROTEIN EXPRESSION AND PURIFICATION, vol. 2, no. 2-3, 1991, pages 151 - 157
SHIMAMURA ET AL., J. BIOL. CHEM., vol. 277, pages 46601 - 08
VISWANATHA ET AL., METHODS MOL MED., vol. 142, 2008, pages 239 - 60

Also Published As

Publication number Publication date
US11034966B2 (en) 2021-06-15
CA2958755C (en) 2023-02-28
EP3186379A4 (en) 2018-03-07
JP6803328B2 (en) 2021-01-06
JP2017529833A (en) 2017-10-12
US20210332373A1 (en) 2021-10-28
US20180030458A1 (en) 2018-02-01
US20230279409A1 (en) 2023-09-07
CN106574273A (en) 2017-04-19
CN106574273B (en) 2021-07-02
EP3186379A1 (en) 2017-07-05
AU2015308897B2 (en) 2021-03-04
CA2958755A1 (en) 2016-03-03
US11542510B2 (en) 2023-01-03
AU2015308897A1 (en) 2017-02-02
EP3186379B1 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP5827681B2 (en) Modified β-lactamase and methods and uses related thereto
RU2678124C2 (en) Beta-lactamases with improved properties for therapy
Premkumar et al. An unusual halotolerant α-type carbonic anhydrase from the alga Dunaliella salina functionally expressed in Escherichia coli
US20230279409A1 (en) E. coli-based production of beta-lactamase
WO2014203133A1 (en) Bacterial hyaluronidase and process for its production
WO2009024327A2 (en) New proteins for use in human and animal staphylococcus infections
KR20210089699A (en) E. coli strains with oxidative cytoplasm
KR101634078B1 (en) Process for producing protein capable of forming inclusion body
JP7223015B2 (en) beta-lactamase mutant
KR100714116B1 (en) Production of insulin with pancreatic procarboxypeptidase B
JP2019511926A (en) Beta-lactamase mutant
US8980614B2 (en) Staphylococcus haemolyticus prophage φSH2 endolysin is lytic for Staphylococcus aureus
Ryu et al. Identification, crystallization and preliminary X-ray diffraction analysis of esterase A from Caulobacter crescentus CB15, a family VIII lipolytic enzyme
US20210340586A1 (en) Methods of Producing Full-Length Antibodies Using E. coli
RU2509154C1 (en) RECOMBINANT pHisTevTSIB0821 PLASMID; Escherichia coli Rosetta(DE3)/pHisTevTSIB0821 STRAIN TRANSFORMED BY ABOVE SAID PLASMID, AND METHOD FOR OBTAINING RECOMBINANT TSIB_0821 PROLIDASE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836229

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015308897

Country of ref document: AU

Date of ref document: 20150827

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017507851

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2958755

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015836229

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015836229

Country of ref document: EP