WO2016032138A1 - Method and apparatus for extracting lithium from coal ash - Google Patents

Method and apparatus for extracting lithium from coal ash Download PDF

Info

Publication number
WO2016032138A1
WO2016032138A1 PCT/KR2015/008023 KR2015008023W WO2016032138A1 WO 2016032138 A1 WO2016032138 A1 WO 2016032138A1 KR 2015008023 W KR2015008023 W KR 2015008023W WO 2016032138 A1 WO2016032138 A1 WO 2016032138A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
coal ash
extraction solvent
extraction
microwave
Prior art date
Application number
PCT/KR2015/008023
Other languages
French (fr)
Korean (ko)
Inventor
김재관
김형석
박석운
이현동
김성철
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to CN201580028031.0A priority Critical patent/CN106536767B/en
Publication of WO2016032138A1 publication Critical patent/WO2016032138A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method and apparatus for extracting lithium from coal ash, and more particularly, to a method and apparatus for extracting lithium contained in coal ash using an extraction solvent and microwave.
  • Lithium is a raw material for heat-resistant magnetic, heat-resistant glass, raw materials for pharmaceutical salts, headache drugs, anticancer drugs, heart drugs, and nausea treatment drugs, raw materials for molten salt, electrolytic additives for TV, tube additives for tube, electric welding rod, bleach sterilization, lithium ion battery, nuclear fusion Applications such as blankets for furnaces and rechargeable secondary batteries continue to increase.
  • Lithium extraction and recovery technology which is increasing in usage for this purpose, is mostly achieved through quarrying operations in lithium-containing ore gangs.
  • Lithium ore is a pegmatite deposit, and the main components of the pegmatite deposit are Amblygonite [(Li, Na) Al (PO 4 ) (F, OH)], Eucryptite [LiAlSiO 4 ] , Lepidolite [K (Li, Al) 3 (Si, Al) 4 O 10 (F, OH) 2 , Petalite [Li 2 O ⁇ Al 2 O 3 ⁇ 8SiO 2 , LiAlSi 4 O 10], sports dyumin (Spodumene) [Li 2 O ⁇ Al 2 O 3 ⁇ 4SiO 2, LiAlSi 2 O 6] consists of minerals, the recovery of lithium from pegmatite deposits is accompanied by a quarried in advance, transportation and storage operations In addition, processing techniques such as crushing, heavy liquids, screening
  • the mined deposit is made of ore, and then subjected to a pulverization process and a fine grinding process to purify various impurities and to increase the concentration of lithium, that is, floating screening process. Therefore, a large amount of lithium is disposed in the middle, so the lithium extraction rate is as low as 25%.
  • Pre-processed Spodumene ore fine powder exists in nature as ⁇ -Spodumene (Li 2 O ⁇ Al 2 O 3 ⁇ 8SiO 2 ), so ⁇ -Spodumene (Li 2 O ⁇ Al 2) is highly soluble in sulfuric acid. O 3 ⁇ 4 SiO 2 ) to be converted to ⁇ -spodumene and silica (Free Silica, SiO 2 ) when calcined at 1,100 °C.
  • Li 2 O in ⁇ -spodumene crystallizes into lithium sulfate (Li 2 SO 4 ).
  • lithium recovery and extraction from ore is a technique for recovering lithium from spodumene, which is most abundant in reserves.
  • the spodumene is converted from ⁇ -spodumene to ⁇ -spodumene by heating to 1,050-1,150 ° C.
  • ⁇ -spodumene is not readily soluble in acids, but ⁇ -spodumene is readily soluble in acids.
  • sulfuric acid is added to form a slurry, and then heated to about 200 to 250 ° C. Water is added to this slurry to form a Li 2 SO 4 solution, and then limestone is added to remove iron and aluminum, followed by filtration to remove calcium and magnesium by adding lime and soda ash.
  • Li 2 SO 4 Li 2 SO 4
  • Soda ash is added again and heated to 90 ⁇ 100 °C to precipitate lithium carbonate (Li 2 CO 3 ).
  • Na 2 SO 4 remaining in the recovered Li 2 CO 3 is washed and then evaporated to generate by-products.
  • the extraction rate is around 20-25%.
  • An object of the present invention is to provide a method and apparatus for extracting lithium by using coal ash, which is a waste generated in a thermal power plant, as a raw material.
  • the present invention skips the mining, grinding, fine powder, sorting, firing and roasting process to obtain a conventional lithium, and a method and apparatus for extracting lithium present in the coal ash in the form of margarite crystals of fine powder
  • the purpose is to provide.
  • an object of the present invention is to provide a method and apparatus for extracting lithium from coal ash having improved lithium extraction rate compared to the conventional lithium extraction method.
  • the present invention comprises the steps of reacting the coal ash and the extraction solvent; And irradiating the microwaves to obtain a solution containing lithium.
  • the fly ash is preferably that contains margarite (margarite) [Ca 0 .922 Li 0 .452 Al 2 Si 2 O 10 .02] crystal.
  • the extraction solvent preferably contains 0.1 to 2.0N sulfuric acid.
  • the extraction solvent preferably further comprises nitric acid or hydrochloric acid.
  • the reaction of the coal ash and the extraction solvent is preferably carried out at room temperature shaking conditions.
  • Irradiating the microwaves is preferably carried out at 60 to 90 °C hot water conditions.
  • the coal ash and the extraction solvent is preferably reacted at a high liquid ratio of 0.05 to 0.50 g / mL.
  • the present invention is a coal ash feed device (4); Extraction solvent supply device (1); And a microwave extraction device for reacting the coal ash and the extraction solvent supplied from the coal ash supply device 4 and the extraction solvent supply device 1, and irradiating microwaves to the reacted coal ash and extraction solvent to form a solution containing lithium.
  • an apparatus for extracting lithium from coal ash comprising (5).
  • an extraction solvent mixing device (3) for diluting the extraction solvent supplied from the extraction solvent supply device (1), and to supply the diluted extraction solvent to the microwave extraction device (5).
  • the lithium extraction process can be simplified and the lithium extraction rate can be significantly improved. .
  • FIG. 1 is a schematic view showing one embodiment of an apparatus for extracting lithium from coal ash of the present invention.
  • Fig. 2 is a schematic diagram showing one embodiment of the microwave extraction apparatus 5 used in the apparatus for extracting lithium from the coal ash of the present invention.
  • Fig. 3 is a schematic diagram showing one embodiment of a system for operating the microwave extraction apparatus 5 used in the apparatus for extracting lithium from the coal ash of the present invention.
  • Figure 5 is a photograph of the analysis of the components of coal ash obtained from domestic thermal power plants by scanning electron microscopy (SEM, scanning electron microscopy).
  • FIG. 7 is a graph showing a change in concentration of lithium according to the number of cycles of the present invention.
  • the present invention comprises the steps of reacting the coal ash and the extraction solvent; And irradiating microwaves to obtain a solution containing lithium, and a method for extracting lithium from coal ash and an apparatus using the same.
  • the fly ash is generated after combustion, etc. coal-fired power plant, is not particularly limited, and the coal ash is margarite (margarite) [Ca 0 .922 Li 0 .452 Al 2 Si 2 O 10 .02] determined It is preferable to include. May include specifically coal-fired at a high temperature of 1200 ⁇ 1400 °C etc. Mark plant of the coal ash after melt crystallization light [Ca 0 .922 Li 0 .452 Al 2 Si 2 O 10 .02] determined, the average of the fly ash The particle size may be a spherical body of 15-25 ⁇ m.
  • the coal ash particles may include a core representing a crystalline phase, a layer representing a glassy phase, and a surface layer, each of which may include lithium.
  • the core of the particle is a particle in which lithium is bonded to the margarite crystal, lithium is contained in the glassy material positioned between the core and the surface, and lithium is adsorbed on the surface. Can be.
  • the extraction solvent which is primarily reacted with the coal ash may use an acid.
  • sulfuric acid, hydrochloric acid, nitric acid and the like may be used, but it is more preferable to use sulfuric acid in that the lithium component can be easily converted to water-soluble lithium sulfide (Li 2 SO 4 ) than other components.
  • sulfuric acid is preferably used as the extraction solvent 0.1 to 2.0N sulfuric acid.
  • concentration of sulfuric acid is less than 0.1N as the extraction solvent, the content of lithium extracted from the primary reaction with coal ash may be low, and when the concentration exceeds 2.0N, impurities such as silica, alumina, calcium and magnesium as well as lithium may be There may be problems with extraction at the same time.
  • the extraction solvent supplied from the extraction solvent supply device 1 is transferred to the extraction solvent mixing device 3 which may be further provided before the extraction solvent supplied to the microwave extraction device 5, and the extraction solvent mixing device ( By reacting the water and the extraction solvent supplied from the water supply device 14 which may be further provided in 3), the concentration of the extraction solvent can be adjusted to a desired range. In addition, it is possible to reuse the water used in the process, and to recover the lithium remaining in the water, it is possible to minimize the amount of lithium discarded.
  • the extraction solvent mixing apparatus 3 may be supplied with nitric acid or hydrochloric acid as an additional extraction solvent to assist sulfuric acid from the extraction solvent auxiliary supply device 2, the kind of the additional extraction solvent is limited It is not.
  • the coal ash and the extraction solvent respectively supplied from the coal ash supply apparatus 4 and the extraction solvent supply apparatus 1 are conveyed to the microwave extraction apparatus 5, and react primarily, It is preferable to make it react on room temperature shaking conditions.
  • the room temperature conditions may be, for example, a temperature condition of 20 to 30 °C, even if heated outside the temperature range to 30 °C or more does not increase the extraction rate of lithium that is surface-adsorbed or bonded to the glassy coal ash There is a problem. Therefore, surface adsorption and most of the glassy bound lithium can be extracted at the room temperature.
  • the water supply device 14 for supplying water to adjust the concentration of the extraction solvent may supply water to the water washing device 13 which has undergone solid-liquid separation.
  • the solid-liquid ratio of the coal ash and the extraction solvent is preferably reacted at 0.05 to 0.50 g / mL. That is, the extraction ratio of lithium may be influenced by the ratio of the mass of coal ash and the volume of the extraction solvent, and when the solid-liquid ratio exceeds 0.50 g / mL, the contact surface area of the extraction solvent and the coal ash may be reduced. When the lithium extraction rate cannot be secured and the solid solution ratio is less than 0.05 g / mL, the economic efficiency may be reduced due to excessive use of the extraction solvent.
  • the coal ash and the extraction solvent are first reacted with each other, and then irradiated with microwaves to cause a secondary reaction. That is, it is preferable to use the microwave to extract lithium present in the surface layer and the glassy layer of the coal ash particles from the extracting solvent and to extract lithium present in the core of the particle.
  • the microwave is a kind of electromagnetic wave (300MHz ⁇ 300GHz) located between the far infrared and radio waves (high frequency) in the spectrum, because the heating method uses the friction force by the molecular rotation or rearrangement by the speed corresponding to the frequency of the electromagnetic wave. It is possible to increase the temperature faster than the thermal conductivity heating. In addition, the energy of microwaves has a low energy that does not damage chemical bonds and therefore does not alter or destroy the molecular structure.
  • the step of irradiating the microwave is preferably carried out in a 60 to 90 °C hot water bath conditions, when the temperature range is less than 60 °C, the secondary lithium extraction efficiency by the microwave is difficult to improve the lithium extraction rate, the temperature range If the temperature exceeds 90 °C, the amount and extraction rate of the extract due to the evaporation of water can be reduced, the temperature is increased above the boiling point, the pressure is applied to the extraction reactor, and the compression reactor must be configured additionally, the equipment is complicated Can be done.
  • the microwave by irradiating with the microwave, to obtain a solution containing lithium, it may be further provided with a circulating pipe 12 that can be circulated back to the extraction solvent mixing device (3), containing the circulated lithium
  • the solution is to increase the concentration of lithium contained in the solution while going through the step of extracting the lithium of the present invention, it is possible to concentrate the lithium.
  • the solution containing lithium nine or more times through the circulation pipe 12, as shown in FIG. 7, it is possible to obtain lithium concentrated at 200 ppm or more, and by controlling the number of cycles, The target lithium concentration can be determined.
  • the lithium-containing solution which is generated after irradiating microwaves in a secondary reaction, may be transferred to a crystallization reactor 8 capable of conducting a salt formation reaction, and may be transferred to the crystallization reactor 8.
  • the solution containing lithium may generate a lithium salt such as lithium carbonate (Li 2 CO 3 ) through a salt formation reaction with sodium carbonate (Na 2 CO 3 ) or the like.
  • the method of supplying the sodium carbonate or the like to the crystallization reaction device 8 for the salt formation reaction is not particularly limited, for example, sodium carbonate supply device (8-1) and the like connected to the crystallization reaction device (8) It may be further provided.
  • the lithium carbonate produced through the salt formation reaction can be selectively transferred to the extraction solvent mixing apparatus 3 or the dehydration / drying apparatus 10 and 11 after undergoing a high temperature separation process, and the extraction solvent mixing apparatus 3 When circulated to), it is possible to obtain an effect that can further concentrate the content of lithium.
  • Separation 15 may then be optionally transferred to extraction solvent mixing apparatus 3 or dehydration / drying apparatus 16, 17.
  • the extraction solvent is transferred to the mixing device (3), it is subjected to the lithium extraction process of the present invention again to be recycled, and when transported to the dehydration / drying device (16.17), the by-products to coal admixture for concrete admixtures, etc. Recyclable.
  • Coal ash supply apparatus 4 as shown in the schematic diagram shown in FIG. 1; Extraction solvent supply device (1); And a microwave extraction device for reacting the coal ash and the extraction solvent supplied from the coal ash supply device 4 and the extraction solvent supply device 1, and irradiating microwaves to the reacted coal ash and extraction solvent to form a solution containing lithium.
  • the apparatus which extracts lithium from the coal ash containing (5) was produced.
  • the microwave extraction apparatus 5 includes a microwave irradiation supply unit 5-3 for supplying microwaves into the microwave extraction apparatus 5. ; A reactor (5-5) made of Teflon, a material having a low permittivity, for the purpose of permeation of supplied microwaves; A microwave reflection stirrer (5-4) for reflecting some microwaves reflected from the upper and lower plates and transmitted through the reactor (5-5) of the microwave extraction device (5) back to the reactor (5-5); A reactor top plate (5-6) made of Teflon material having a low dielectric constant and excellent chemical resistance to prevent erosion from the extraction solvent reacting inside the reactor (5-5); Stainless steel stirring device (5-2) coated with Teflon on the outside for even mixing of the coal ash and extraction solvent and microwave reflection; A temperature sensor 5-10 shielding by coating Teflon on the outside of stainless steel for measuring microwave temperature to control microwave output; A vapor condenser 5-11 for preventing a change in moisture composition inside the reactor 5-5; An extraction solvent
  • the outer plates (5-13, 5-18) are made of aluminum oxide material with high microwave transmission resistance to block external leakage of microwaves
  • the reactor (5-5) is made of Teflon material with high microwave transmittance and
  • the supports 5-7 transmit microwaves, and ceramic bricks were used to increase the bearing capacity.
  • the part in contact with the extraction solvent was configured to use the Teflon having excellent chemical resistance and heat resistance and low dielectric constant to smoothly penetrate the microwave into the reactor 5-5 and prevent erosion of the reactor.
  • FIG. 3 is a diagram specifically showing an example of a system for extracting microwaves 5 including a microwave extracting apparatus 5.
  • a tuner 5-3-2 for minimizing a very small amount of microwaves reflected from the microwave extraction device 5 and matching microwaves and loads;
  • a coupler 5-3-3 which transmits a signal to the magnetron 5-3-6 and an output control device by measuring the intensity of the microwaves reflected and incident on the microwave extraction device 5;
  • a dummy load 5-3-8 which serves to absorb and remove the microwaves reflected from the microwave extraction device 5 to protect the magnetron 5-3-6;
  • a circulator 5-3-4 which serves to protect the magnetron 5-3-6 by directing the microwaves reflected from the microwave extraction device 5 back to the dummy rod so as not to return;
  • a temperature sensor 5-3-12 for measuring an increase in temperature through microwave i
  • the microwave extraction device 5 is 2.45GHz, 2kW, 220V, single phase, the volume of the reaction device is 2L, the diameter is 20cm, the stirring speed for the bath condition is adjusted to 100 ⁇ 500rpm
  • the thermometer used a thermocouple shielded by coating Teflon on the outside of stainless steel.
  • 97% industrial sulfuric acid (specific gravity 1.84 kg / L, molecular weight 98.08 g / mole) was used to prepare an extraction solvent that reacts primarily with coal ash.
  • the normal concentration of the industrial sulfuric acid is 36.34N, from which 0.1N (diluted with 1.75 mL sulfuric acid in 1L of water), 0.5N (diluted with 13.74mL sulfuric acid in 1L of water), 1N (diluted with 27.48mL sulfuric acid in 1L of water) , 2N (diluted with 54.96 mL sulfuric acid in 1L of water) was controlled to be prepared in the extraction solvent mixer (3), respectively.
  • the coal ash was reacted by transferring the prepared sulfuric acid with an extraction solvent to a microwave extraction device (5). At this time, as shown in Table 2, the coal ash was mixed and reacted with 0.05 to 0.50 g / mL of solid-liquid ratio (coal ash g / sulfuric acid extraction solvent mL) to 0.1-2.0N sulfuric acid. At this time, the reaction conditions were reacted for 3 hours at a stirring speed of 150rpm at 25 °C conditions as shown in Table 2.
  • the reaction product was microwaved in the microwave extraction device 5 to raise the temperature to 90 ° C. At this time, when the temperature exceeds 90 ° C, the power was cut off, and when the temperature was lowered below 90 ° C, the power was turned on. Was adjusted. The reaction was carried out for 30 minutes at a stirring speed of 100 rpm under the same temperature conditions.
  • the concentration of lithium extracted from the coal ash in the solution thus obtained was measured, and the extraction rate was calculated through a ratio with the concentration of the initial lithium of the coal ash and is shown in Table 3.
  • the roasted coal ash which has been roasted, was diluted with water, and lithium ions were dissolved from the diluted coal ash.
  • the leaching method was performed after the conventional high temperature roasting.
  • the reaction temperature was reacted at a high temperature of 200 ° C. or higher for 3 hours and leached under shaking conditions, the extraction rate was 46% or less.
  • Comparative Examples 13 to 24 were extraction processes in which coal ash was shaken at room temperature (25 ° C.) for 3 hours, and did not go through a microwave irradiation step. In Comparative Example 19, which showed the maximum lithium extraction rate, the yield was not good as 46%.
  • the concentration of sulfuric acid used for lithium extraction is 0.1N (Examples 1 to 3) when introducing a secondary extraction process at 90 ° C. for 30 minutes through microwave irradiation after the first shaking extraction process at room temperature for 3 hours (Examples 1 to 3), the extraction rate of lithium is 50-59%, 0.5 N (Examples 4-6) The extraction rate of lithium is 65-75%, 1.0 N (Examples 7-9) 73-96%, 2.0N (Examples 10- 12) The extraction rate is 68 ⁇ 89%. Therefore, in order to secure a lithium extraction rate of 50% or more, a reaction condition of irradiating with a first microwave at room temperature and a second microwave using sulfuric acid having a concentration of 0.1 N is essential. In order to secure an extraction rate of 65% or more, 0.5N to It is preferable to use sulfuric acid having a concentration of 2.0 N as the extraction solvent.
  • the solid-liquid ratio which is the ratio of coal ash and sulfuric acid as the extraction solvent, is excellent in the extraction ratio when 0.05 to 0.50 g / mL, and the highest extraction ratio is obtained when the 1.0N sulfuric acid and the solid-liquid ratio are 0.05g / mL. can do.
  • the circulation pipe 12 by further connecting the circulation pipe 12 to the device for extracting lithium from the coal ash, it is possible to concentrate the lithium by cyclically transferring a solution containing lithium to the reactor, as shown in Figure 7 Since the lithium can be concentrated to 200 ppm or more, which is a concentration for crystallizing lithium at least 9 times of recycling, it can be seen that it is preferable to circulate the solution containing lithium using the circulation pipe 12.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

The present invention relates to a method and an apparatus for extracting lithium from coal ash and, more specifically, to a method and an apparatus for extracting lithium, wherein the lithium is extracted from coal ash using an extraction solvent and microwaves, and thus the coal ash can be reutilized through a simplified process, and the extraction rate of lithium can be improved.

Description

석탄회로부터 리튬을 추출하는 방법 및 장치Method and apparatus for extracting lithium from coal ash
본 발명은 석탄회로부터 리튬을 추출하는 방법 및 장치에 관한 것으로, 보다 상세하게는 추출용매 및 마이크로파를 이용하여 석탄회에 포함되어 있는 리튬을 추출하는 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for extracting lithium from coal ash, and more particularly, to a method and apparatus for extracting lithium contained in coal ash using an extraction solvent and microwave.
리튬은 내열자기, 내열유리의 배합제, 의약품 염류의 원료, 두통약, 항암치료제, 심장약, 구토치료제 등 의약품 원료, 용융염 전해 첨가제, TV브라운관 첨가제, 전기용접봉, 표백살균용, 리튬이온 배터리, 핵융합로의 블라켓, 충전용 2차 전지 등 그 용도가 계속 증가하고 있다.Lithium is a raw material for heat-resistant magnetic, heat-resistant glass, raw materials for pharmaceutical salts, headache drugs, anticancer drugs, heart drugs, and nausea treatment drugs, raw materials for molten salt, electrolytic additives for TV, tube additives for tube, electric welding rod, bleach sterilization, lithium ion battery, nuclear fusion Applications such as blankets for furnaces and rechargeable secondary batteries continue to increase.
이와 같은 용도로 사용량이 증가하고 있는 리튬의 추출 및 회수기술은 대부분 리튬 함유 광석 갱에서 채석 작업을 통해 이루어진다. 리튬광은 페그마타이트 광상으로, 상기 페그마타이트 광상의 주요 구성성분은 앰블리고나이트(Amblygonite) [(Li,Na)Al(PO4)(F,OH)], 유크립타이트(Eucryptite) [LiAlSiO4], 레피도라이트(Lepidolite) [K(Li,Al)3(Si,Al)4O10(F,OH)2, 페타라이트(Petalite) [Li2O·Al2O3·8SiO2, LiAlSi4O10], 스포듀민(Spodumene) [Li2O·Al2O3·4SiO2, LiAlSi2O6] 광물들로 구성되며, 페그마타이트 광상으로부터 리튬의 회수는 사전에 채석, 운반 및 보관 작업이 수반되며, 처리 기술인 파쇄, 중액, 선별, 분쇄, 분급, 부유선별 등이 적용되어 리튬 광물의 품위를 높이기 위한 공정이 추가로 필요하다. 특히, 채석된 광상은 원석으로 이루어져 분쇄, 미분과정을 거친 후 다양한 불순물을 정제하고 리튬 농도를 높이기 위한 농축 과정, 즉 부유선별 과정을 거치게 된다. 따라서, 많은 양의 리튬이 중간이 폐기 처리되어 리튬 추출율은 25% 정도로 낮은 실정이다. Lithium extraction and recovery technology, which is increasing in usage for this purpose, is mostly achieved through quarrying operations in lithium-containing ore gangs. Lithium ore is a pegmatite deposit, and the main components of the pegmatite deposit are Amblygonite [(Li, Na) Al (PO 4 ) (F, OH)], Eucryptite [LiAlSiO 4 ] , Lepidolite [K (Li, Al) 3 (Si, Al) 4 O 10 (F, OH) 2 , Petalite [Li 2 O · Al 2 O 3 · 8SiO 2 , LiAlSi 4 O 10], sports dyumin (Spodumene) [Li 2 O · Al 2 O 3 · 4SiO 2, LiAlSi 2 O 6] consists of minerals, the recovery of lithium from pegmatite deposits is accompanied by a quarried in advance, transportation and storage operations In addition, processing techniques such as crushing, heavy liquids, screening, crushing, classification, flotation, etc. are applied to further enhance the quality of lithium minerals. In particular, the mined deposit is made of ore, and then subjected to a pulverization process and a fine grinding process to purify various impurities and to increase the concentration of lithium, that is, floating screening process. Therefore, a large amount of lithium is disposed in the middle, so the lithium extraction rate is as low as 25%.
또한, 채석(채광)작업에서, 대부분의 리튬은 페그마타이트 광상에서 Amblygonite, Lepidolite, Eucryptite, Petalite, Spodumene 등의 광맥을 얻는 과정으로 리튬 회수 및 추출공장은 도심인 반면 리튬탄광은 산악지역이어서, 운반/운송, 보관 공정이 동반된다. 리튬 추출공정에 선행하여 첨가되는 화학약품과 반응 표면적을 높이기 위한 분쇄, 미분 및 방해석 제거공정에도 많은 비용이 발생하며, 리튬을 회수 후 폐기물로 발생하는 맥석류 및 방해석 등의 재활용을 별도로 연구하고 있다.Also, in quarrying, most of the lithium is obtained from the pegmatite deposits in which minerals such as Amblygonite, Lepidolite, Eucryptite, Petalite and Spodumene are obtained. It is accompanied by transportation and storage process. In addition to the chemicals added prior to the lithium extraction process, crushing, pulverization, and calcite removal processes to increase the reaction surface area are incurred a lot of costs, and is separately studying the recycling of gangue and calcite such as waste generated after lithium recovery. .
사전 공정을 거친 스포듀민(Spodumene) 광석 미분말의 경우 자연상에서 α-Spodumene(Li2O·Al2O3·8SiO2)으로 존재하기 때문에 황산에 용해성이 높은 β-Spodumene(Li2O·Al2O3·4SiO2)으로 전환하기 위해 1,100℃에서 소성하면 β-스포듀민과 실리카(Free Silica, SiO2)로 변화한다.Pre-processed Spodumene ore fine powder exists in nature as α-Spodumene (Li 2 O · Al 2 O 3 · 8SiO 2 ), so β-Spodumene (Li 2 O · Al 2) is highly soluble in sulfuric acid. O 3 · 4 SiO 2 ) to be converted to β-spodumene and silica (Free Silica, SiO 2 ) when calcined at 1,100 ℃.
Li2O·Al2O3·8SiO2 → Li2O·Al2O3·4SiO2 + 4SiO2 Li 2 O · Al 2 O 3 · 8SiO 2 → Li 2 O · Al 2 O 3 · 4SiO 2 + 4SiO 2
β-스포듀민의 미분에 황산을 이론양보다 약간 많이 혼합하고 황산 배소로에서 약 250℃로 가열하면 β-스포듀민 중의 Li2O만이 황산리튬(Li2SO4)으로 결정화 된다.When sulfuric acid is mixed slightly with the theoretical amount of β-spodumene and heated to about 250 ° C. in a sulfuric acid roasting furnace, only Li 2 O in β-spodumene crystallizes into lithium sulfate (Li 2 SO 4 ).
Li2O·Al2O3·4SiO2 + H2SO4 → Li2SO4 + Al2O3·4SiO2 + H2O↑Li 2 OAl 2 O 3 4SiO 2 + H 2 SO 4 → Li 2 SO 4 + Al 2 O 3 4SiO 2 + H 2 O ↑
물과 섞어 황산리튬용액으로 한 후 과잉의 황산은 석회로 중화시켜 생긴 석고는 알루미나, 실리카와 같이 여과 제거한다. 이를 정액한 후 소다회의 포화용액과 반응시키면 탄산리튬이 침전된다.After mixing with water to make lithium sulfate solution, the excess sulfuric acid is neutralized with lime and the gypsum formed is filtered off like alumina and silica. After the semen is reacted with a saturated solution of soda ash, lithium carbonate precipitates.
Li2SO4 + Na2CO3 → Li2CO3↓ + Na2SO4 Li 2 SO 4 + Na 2 CO 3 → Li 2 CO 3 ↓ + Na 2 SO 4
이와 같이 광석으로부터 리튬 회수 및 추출공정은 매장량이 가장 풍부한 스포듀민으로부터 리튬을 회수하는 기술이다. 먼저 스포듀민을 1,050~1,150℃로 가열함으로서 α-스포듀민에서 β-스포듀민으로 전환시킨다. α-스포듀민은 산에 쉽게 용해되지 않지만, β-스포듀민은 산에 쉽게 녹기 때문이다. 가열된 정광을 냉각시킨 후 분쇄하여 황산을 가하여 슬러리를 만든 후 다시 약 200~250℃로 가열한다. 이 슬러리에 물을 가하여 Li2SO4 용액을 만든 후 석회석을 넣어 철과 알루미늄을 제거한 후 여과하여 석회와 소다회를 첨가하여 칼슘과 마그네슘을 제거한다. 그 후 황산으로 중화한 후 증발시켜 Li2SO4 를 200~250g/L까지 농축시킨다. 다시 소다회를 첨가하고 90~100℃로 가열하여 탄산리튬(Li2CO3)을 침전시킨다. 회수된 Li2CO3에 잔류하는 Na2SO4는 세정한 후 증발시켜 부산물로 발생한다. 상업공정의 경우 추출율이 20~25%정도이다.As such, lithium recovery and extraction from ore is a technique for recovering lithium from spodumene, which is most abundant in reserves. First, the spodumene is converted from α-spodumene to β-spodumene by heating to 1,050-1,150 ° C. α-spodumene is not readily soluble in acids, but β-spodumene is readily soluble in acids. After cooling the concentrated concentrate, it is pulverized, sulfuric acid is added to form a slurry, and then heated to about 200 to 250 ° C. Water is added to this slurry to form a Li 2 SO 4 solution, and then limestone is added to remove iron and aluminum, followed by filtration to remove calcium and magnesium by adding lime and soda ash. Thereafter, neutralized with sulfuric acid and evaporated to concentrate Li 2 SO 4 to 200-250 g / L. Soda ash is added again and heated to 90 ~ 100 ℃ to precipitate lithium carbonate (Li 2 CO 3 ). Na 2 SO 4 remaining in the recovered Li 2 CO 3 is washed and then evaporated to generate by-products. In commercial processes, the extraction rate is around 20-25%.
한편, 세계적으로 리튬 추출원으로써, 리튬 광석 다음으로 해수를 활용하고 있으며, 상기 해수에는 리튬이 170~200ppb정도의 농도로 존재하고 있다. 반면 석탄회에는 해수보다 1,000배 이상 높은 200~300ppm정도로 농축되어 있다. 그러나, 국내에서 연간 870만톤의 석탄회가 발생하고, 6000만톤의 매립회를 가지고 있지만, 이에 대한 활용은 부족한 실정이다.On the other hand, as a lithium extraction source worldwide, seawater is used next to lithium ore, and lithium is present in the seawater at a concentration of about 170 to 200 ppb. Coal ash, on the other hand, is concentrated at around 200-300 ppm, 1,000 times higher than seawater. However, although 870 million tons of coal ash is generated annually and 60 million tons of landfill ash is generated in Korea, its use is insufficient.
본 발명은 화력발전소 등에서 발생되는 폐기물인 석탄회를 원료로 하여, 리튬을 추출하는 방법 및 장치를 제공하는 것을 목적으로 한다. An object of the present invention is to provide a method and apparatus for extracting lithium by using coal ash, which is a waste generated in a thermal power plant, as a raw material.
또한, 본 발명은 종래의 리튬을 수득하기 위한 공정으로 채굴, 분쇄, 미분, 선별, 소성 및 로스팅 공정을 생략하고, 미립분말의 마가라이트 결정의 형태로 석탄회에 존재하는 리튬을 추출하는 방법 및 장치를 제공하는 것을 목적으로 한다.In addition, the present invention skips the mining, grinding, fine powder, sorting, firing and roasting process to obtain a conventional lithium, and a method and apparatus for extracting lithium present in the coal ash in the form of margarite crystals of fine powder The purpose is to provide.
또한, 본 발명은 종래의 리튬 추출 방법에 비하여 리튬 추출율이 개선된 석탄회로부터 리튬을 추출하는 방법 및 장치를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a method and apparatus for extracting lithium from coal ash having improved lithium extraction rate compared to the conventional lithium extraction method.
본 발명은 석탄회 및 추출용매를 반응시키는 단계; 및 마이크로파를 조사시켜 리튬이 포함된 용액을 수득하는 단계를 포함하는, 석탄회로부터 리튬을 추출하는 방법을 제공한다.The present invention comprises the steps of reacting the coal ash and the extraction solvent; And irradiating the microwaves to obtain a solution containing lithium.
상기 석탄회는 마가라이트(margarite)[Ca0 .922Li0 .452Al2Si2O10 .02]결정을 포함하고 있는 것이 바람직하다.The fly ash is preferably that contains margarite (margarite) [Ca 0 .922 Li 0 .452 Al 2 Si 2 O 10 .02] crystal.
상기 추출용매는 0.1 내지 2.0N 황산을 포함하는 것이 바람직하다. The extraction solvent preferably contains 0.1 to 2.0N sulfuric acid.
상기 추출용매는 질산 또는 염산을 추가로 포함하는 것이 바람직하다. The extraction solvent preferably further comprises nitric acid or hydrochloric acid.
상기 석탄회 및 추출용매를 반응시키는 단계는 실온 진탕 조건에서 반응시키는 것이 바람직하다. The reaction of the coal ash and the extraction solvent is preferably carried out at room temperature shaking conditions.
상기 마이크로파를 조사시키는 단계는 60 내지 90℃ 중탕 조건에서 수행되는 것이 바람직하다. Irradiating the microwaves is preferably carried out at 60 to 90 ℃ hot water conditions.
상기 석탄회 및 추출용매는 고액비 0.05 내지 0.50 g/mL 로 반응되는 것이 바람직하다. The coal ash and the extraction solvent is preferably reacted at a high liquid ratio of 0.05 to 0.50 g / mL.
상기 리튬이 포함된 용액에 염 생성 반응을 실시하여 리튬염을 생성시키는 단계를 더 포함하는 것이 바람직하다.It is preferable to further include the step of generating a lithium salt by performing a salt formation reaction to the solution containing lithium.
본 발명은 석탄회 공급장치(4); 추출용매 공급장치(1); 및 상기 석탄회 공급장치(4) 및 추출용매 공급장치(1)로부터 공급된 석탄회 및 추출용매를 반응시키고, 상기 반응된 석탄회 및 추출용매에 마이크로파를 조사시켜 리튬이 포함된 용액을 형성시키는 마이크로파 추출장치(5)를 포함하는, 석탄회로부터 리튬을 추출하는 장치를 제공한다.The present invention is a coal ash feed device (4); Extraction solvent supply device (1); And a microwave extraction device for reacting the coal ash and the extraction solvent supplied from the coal ash supply device 4 and the extraction solvent supply device 1, and irradiating microwaves to the reacted coal ash and extraction solvent to form a solution containing lithium. Provided is an apparatus for extracting lithium from coal ash, comprising (5).
상기 추출용매 공급장치(1)로부터 공급되는 추출용매를 희석시키고, 희석된 추출용매를 상기 마이크로파 추출장치(5)로 공급하는 추출용매 혼합장치(3)를 더 포함하는 것이 바람직하다. It is preferable to further include an extraction solvent mixing device (3) for diluting the extraction solvent supplied from the extraction solvent supply device (1), and to supply the diluted extraction solvent to the microwave extraction device (5).
상기 리튬이 포함된 용액을 상기 추출용매 혼합장치(3)로 순환시키는 순환배관(12)을 더 포함하는 것이 바람직하다. It is preferable to further include a circulation pipe 12 for circulating the solution containing lithium to the extraction solvent mixing device (3).
상기 리튬이 포함된 용액에 염 생성 반응을 실시하여 리튬염을 생성시키는 결정화 반응장치(8)를 더 포함하는 것이 바람직하다. It is preferable to further include a crystallization reaction apparatus 8 for generating a lithium salt by performing a salt formation reaction to the solution containing lithium.
본 발명에 의하면, 종래의 리튬을 추출하기 위하여 사용된 페그마타이트 광상 대신에, 리튬 추출원으로 화력발전소 등에서 버려지는 석탄회를 이용함으로써, 리튬 추출 공정의 간소화가 가능하고, 리튬 추출율을 현저히 향상시킬 수 있다.According to the present invention, instead of the pegmatite deposit used to extract conventional lithium, by using coal ash discarded in a thermal power plant or the like as a lithium extraction source, the lithium extraction process can be simplified and the lithium extraction rate can be significantly improved. .
또한, 대량으로 발생되어 폐기되는 석탄회를 재활용함으로써, 친환경적인 자원 활용이 가능하고, 경제적으로 비용을 절감할 수 있다.In addition, by recycling a large amount of coal ash generated and discarded, it is possible to use environmentally friendly resources, and can economically reduce costs.
또한, 추출되는 리튬의 추출율을 개선시킴으로써, 보다 효율적인 자원화가 가능하다.In addition, by improving the extraction rate of the extracted lithium, more efficient resourceization is possible.
또한, 리튬을 포함하는 용액의 재순환을 통해 리튬의 함량을 높이는 농축 공정이 가능하다.In addition, a concentration process for increasing the content of lithium through recycling of the solution containing lithium is possible.
도 1은 본 발명의 석탄회로부터 리튬을 추출하는 장치의 일 실시예를 나타내는 개략도이다.1 is a schematic view showing one embodiment of an apparatus for extracting lithium from coal ash of the present invention.
도 2는 본 발명의 석탄회로부터 리튬을 추출하는 장치에 사용되는 마이크로파 추출장치(5)의 일 실시예를 나타내는 개략도이다.Fig. 2 is a schematic diagram showing one embodiment of the microwave extraction apparatus 5 used in the apparatus for extracting lithium from the coal ash of the present invention.
도 3은 본 발명의 석탄회로부터 리튬을 추출하는 장치에 사용되는 마이크로파 추출장치(5)를 운영하는 시스템의 일 실시예를 나타내는 개략도이다.Fig. 3 is a schematic diagram showing one embodiment of a system for operating the microwave extraction apparatus 5 used in the apparatus for extracting lithium from the coal ash of the present invention.
도 4는 국내 화력발전소에서 수득한 석탄회를 X-선 회절 분석기 (XRD: X-ray diffractometer)로 분석한 결정구조 분석결과이다.4 is a crystal structure analysis result of the analysis of coal ash obtained from domestic thermal power plants by X-ray diffractometer (XRD: X-ray diffractometer).
도 5는 국내 화력발전소에서 수득한 석탄회의 성분을 주사전자현미경 (SEM, scanning electron microscopy)으로 분석한 사진이다.Figure 5 is a photograph of the analysis of the components of coal ash obtained from domestic thermal power plants by scanning electron microscopy (SEM, scanning electron microscopy).
도 6은 석탄회의 유리질 및 결정질 구조도이다.6 is a glassy and crystalline structure diagram of coal ash.
도 7은 본 발명의 순환 횟수에 따른 리튬의 농도변화를 나타내는 그래프이다.7 is a graph showing a change in concentration of lithium according to the number of cycles of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태를 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of the present invention. However, embodiments of the present invention may be modified in various other forms, and the scope of the present invention is not limited to the embodiments described below.
본 발명은 석탄회 및 추출용매를 반응시키는 단계; 및 마이크로파를 조사시켜 리튬이 포함된 용액을 수득하는 단계를 포함하는, 석탄회로부터 리튬을 추출하는 방법 및 이를 이용하는 장치를 제공한다. 이하, 본 발명을 첨부된 예시적인 도면을 들어 구체적으로 설명한다.The present invention comprises the steps of reacting the coal ash and the extraction solvent; And irradiating microwaves to obtain a solution containing lithium, and a method for extracting lithium from coal ash and an apparatus using the same. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
상기 석탄회는 석탄화력발전소 등에서 연소 후 발생되는 회(재)로, 특별히 제한되지 않지만, 상기 석탄회는 마가라이트 (margarite)[Ca0 .922Li0 .452Al2Si2O10 .02]결정을 포함하는 것이 바람직하다. 구체적으로 석탄화력발전소 등에서 1200~1400℃의 고온에서 용융 후 결정화된 석탄회 중 마가라이트[Ca0 .922Li0 .452Al2Si2O10 .02]결정을 포함할 수 있고, 상기 석탄회의 평균 입도는 15~25㎛의 구형체 일 수 있다. To time (re), the fly ash is generated after combustion, etc. coal-fired power plant, is not particularly limited, and the coal ash is margarite (margarite) [Ca 0 .922 Li 0 .452 Al 2 Si 2 O 10 .02] determined It is preferable to include. May include specifically coal-fired at a high temperature of 1200 ~ 1400 ℃ etc. Mark plant of the coal ash after melt crystallization light [Ca 0 .922 Li 0 .452 Al 2 Si 2 O 10 .02] determined, the average of the fly ash The particle size may be a spherical body of 15-25 μm.
상기 석탄회의 입자는 결정상을 나타내는 코어와, 유리질상을 나타내는 층 및 표면층을 포함할 수 있고, 각각은 리튬을 포함할 수 있다. 예를 들어, 도 6에 나타낸 바와 같이 상기 입자의 코어는 마가라이트 결정에 리튬이 결합되어 있고, 코어 및 표면 사이에 위치하는 유리질상에 리튬이 포함되어 있으며, 표면에 리튬이 흡착되어 있는 입자일 수 있다. The coal ash particles may include a core representing a crystalline phase, a layer representing a glassy phase, and a surface layer, each of which may include lithium. For example, as shown in FIG. 6, the core of the particle is a particle in which lithium is bonded to the margarite crystal, lithium is contained in the glassy material positioned between the core and the surface, and lithium is adsorbed on the surface. Can be.
상기 석탄회와 1차적으로 반응되는 추출용매는 산(acid)을 사용할 수 있다. 이때, 산으로는 황산, 염산, 질산 등을 사용할 수 있으나, 황산을 사용하는 것이 다른 성분 보다 리튬성분을 수용성 황화리튬(Li2SO4)으로 용이하게 전환 할 수 있다는 점에서 보다 바람직하다. 이때 상기 추출용매로서 황산은 0.1 내지 2.0N 황산을 사용하는 것이 바람직하다. 상기 추출용매로 황산의 농도가 0.1N 미만인 경우, 석탄회와 1차적인 반응으로부터 추출되는 리튬의 함량이 낮을 수 있으며, 2.0N 을 초과하는 경우, 리튬 뿐만 아니라 실리카, 알루미나, 칼슘 및 마그네슘 등 불순물들이 동시에 추출되는 문제가 있을 수 있다.The extraction solvent which is primarily reacted with the coal ash may use an acid. In this case, sulfuric acid, hydrochloric acid, nitric acid and the like may be used, but it is more preferable to use sulfuric acid in that the lithium component can be easily converted to water-soluble lithium sulfide (Li 2 SO 4 ) than other components. At this time, sulfuric acid is preferably used as the extraction solvent 0.1 to 2.0N sulfuric acid. When the concentration of sulfuric acid is less than 0.1N as the extraction solvent, the content of lithium extracted from the primary reaction with coal ash may be low, and when the concentration exceeds 2.0N, impurities such as silica, alumina, calcium and magnesium as well as lithium may be There may be problems with extraction at the same time.
석탄회로부터 리튬을 추출함에 있어서, 수분 공급장치(14), 2차 고액 분리장치(15), 탈수장치(10, 16), 탄산리튬 고체분리장치(9) 등과 연결되고, 추출용매를 혼합하는 혼합장치(3)를 추가적으로 구비할 수 있다. 즉, 추출용매 공급장치(1)로부터 공급되는 추출용매를, 마이크로파 추출장치(5)로 이송시키기 전에 추가로 구비될 수 있는 상기 추출용매 혼합장치(3)로 이송시키고, 상기 추출용매 혼합장치(3)에서 추가로 구비될 수 있는 수분 공급장치(14)로부터 공급되는 수분 및 상기 추출용매를 반응시켜, 추출용매의 농도를 원하는 범위로 조절이 가능하다. 또한, 공정에서 사용되는 수분의 재사용이 가능하고, 수분에 잔류하는 리튬을 회수하여, 버려지는 리튬의 양을 최소화 할 수 있다. In extracting lithium from the coal ash, it is connected to a water supply device 14, a secondary solid-liquid separator 15, a dehydration device (10, 16), a lithium carbonate solid separator (9), and the like to mix the extraction solvent The device 3 may additionally be provided. That is, the extraction solvent supplied from the extraction solvent supply device 1 is transferred to the extraction solvent mixing device 3 which may be further provided before the extraction solvent supplied to the microwave extraction device 5, and the extraction solvent mixing device ( By reacting the water and the extraction solvent supplied from the water supply device 14 which may be further provided in 3), the concentration of the extraction solvent can be adjusted to a desired range. In addition, it is possible to reuse the water used in the process, and to recover the lithium remaining in the water, it is possible to minimize the amount of lithium discarded.
또한, 상기 추출용매 혼합장치(3)는 추출용매 보조공급장치(2)로부터 황산을 보조하기 위하여, 추가적인 추출용매로 질산 또는 염산 등을 공급받을 수 있지만, 상기 추가적인 추출용매의 종류는 특별히 한정되는 것은 아니다.In addition, the extraction solvent mixing apparatus 3 may be supplied with nitric acid or hydrochloric acid as an additional extraction solvent to assist sulfuric acid from the extraction solvent auxiliary supply device 2, the kind of the additional extraction solvent is limited It is not.
석탄회 공급장치(4) 및 추출용매 공급장치(1)로부터 각각 공급되는 석탄회 및 추출용매는 마이크로파 추출장치(5)로 이송되어, 1차적으로 반응을 하는데, 실온 진탕 조건에서 반응 시키는 것이 바람직하다. 이때, 상기 실온 조건은 예를 들어 20 내지 30℃ 인 온도 조건일 수 있으며, 상기 온도 범위를 벗어나 30℃이상으로 가열하여도 표면 흡착되어 있거나 유리질상 석탄회에 결합되어 있는 리튬의 추출율이 증가되지 않는 문제점이 있다. 따라서, 상기 실온 조건에서 표면 흡착 및 유리질상 결합 리튬의 대부분이 추출이 가능하다. The coal ash and the extraction solvent respectively supplied from the coal ash supply apparatus 4 and the extraction solvent supply apparatus 1 are conveyed to the microwave extraction apparatus 5, and react primarily, It is preferable to make it react on room temperature shaking conditions. In this case, the room temperature conditions may be, for example, a temperature condition of 20 to 30 ℃, even if heated outside the temperature range to 30 ℃ or more does not increase the extraction rate of lithium that is surface-adsorbed or bonded to the glassy coal ash There is a problem. Therefore, surface adsorption and most of the glassy bound lithium can be extracted at the room temperature.
상기, 추출용매의 농도를 조절하기 위해 수분을 공급하는 수분 공급장치(14)는, 추출용매의 희석 이외에, 고액분리를 거친 잔류물의 수세장치(13)에 수분을 공급할 수도 있다.In addition to the dilution of the extraction solvent, the water supply device 14 for supplying water to adjust the concentration of the extraction solvent may supply water to the water washing device 13 which has undergone solid-liquid separation.
상기 마이크로파 추출장치(5)에서 실온 조건에서 1차적인 반응을 함에 있어서, 상기 석탄회 및 추출용매의 고액비는 0.05 내지 0.50 g/mL 로 반응되는 것이 좋다. 즉, 석탄회의 질량 및 추출용매의 부피의 비율에 따라 리튬의 추출율에 영향을 미칠 수 있으며, 상기 고액비가 0.50 g/mL를 초과하는 경우, 상기 추출용매와 석탄회의 접촉 표면적이 감소될 수 있어 우수한 리튬 추출율을 확보할 수 없고, 상기 고액비기 0.05 g/mL 미만인 경우, 추출용매의 과도한 사용으로 경제성이 떨어질 수 있다.In the first reaction at room temperature in the microwave extraction apparatus 5, the solid-liquid ratio of the coal ash and the extraction solvent is preferably reacted at 0.05 to 0.50 g / mL. That is, the extraction ratio of lithium may be influenced by the ratio of the mass of coal ash and the volume of the extraction solvent, and when the solid-liquid ratio exceeds 0.50 g / mL, the contact surface area of the extraction solvent and the coal ash may be reduced. When the lithium extraction rate cannot be secured and the solid solution ratio is less than 0.05 g / mL, the economic efficiency may be reduced due to excessive use of the extraction solvent.
상기 마이크로파 추출장치(5)에서 1차적으로 상기 석탄회 및 추출용매를 반응시킨 뒤, 마이크로파로 조사하여 2차적인 반응을 일으키는 것이 바람직하다. 즉, 상기 추출용매로부터 석탄회 입자의 표면층 및 유리질층에 존재하는 리튬을 1차적으로 추출하고, 입자의 코어에 존재하는 리튬을 2차적으로 추출하기 위하여, 상기 마이크로파를 이용하는 것이 바람직하다.In the microwave extraction device 5, the coal ash and the extraction solvent are first reacted with each other, and then irradiated with microwaves to cause a secondary reaction. That is, it is preferable to use the microwave to extract lithium present in the surface layer and the glassy layer of the coal ash particles from the extracting solvent and to extract lithium present in the core of the particle.
상기 마이크로파는 스펙트럼상 원적외선과 라디오파(고주파) 사이에 위치(300MHz~300GHz)하는 전자기파의 일종으로, 가열방식이 전자기파의 주파수에 해당하는 속도만큼의 분자회전 또는 재배치에 의한 마찰력을 이용하기 때문에 기존의 열전도식 가열보다 신속한 승온이 가능하다. 또한, 마이크로파의 에너지는 화학결합을 손상시키지 않는 낮은 에너지를 가지므로 분자구조를 변형시키거나 파괴하지 않는다.The microwave is a kind of electromagnetic wave (300MHz ~ 300GHz) located between the far infrared and radio waves (high frequency) in the spectrum, because the heating method uses the friction force by the molecular rotation or rearrangement by the speed corresponding to the frequency of the electromagnetic wave. It is possible to increase the temperature faster than the thermal conductivity heating. In addition, the energy of microwaves has a low energy that does not damage chemical bonds and therefore does not alter or destroy the molecular structure.
상기 마이크로파를 조사시키는 단계는 60 내지 90℃ 중탕 조건에서 수행되는 것이 바람직하고, 상기 온도 범위가 60℃ 미만인 경우, 마이크로파에 의한 2차적인 리튬 추출 효율이 낮아져 리튬 추출율이 개선되기 어려우며, 상기 온도 범위가 90℃를 초과하는 경우, 수분의 증발로 인한 추출액의 양 및 추출율이 감소될 수 있으며, 온도가 끓는점 이상으로 증가하게 되어 추출반응기에 압력이 걸려 압축반응기로 추가로 구성해야 하므로, 설비가 복잡해질 수 있다. The step of irradiating the microwave is preferably carried out in a 60 to 90 ℃ hot water bath conditions, when the temperature range is less than 60 ℃, the secondary lithium extraction efficiency by the microwave is difficult to improve the lithium extraction rate, the temperature range If the temperature exceeds 90 ℃, the amount and extraction rate of the extract due to the evaporation of water can be reduced, the temperature is increased above the boiling point, the pressure is applied to the extraction reactor, and the compression reactor must be configured additionally, the equipment is complicated Can be done.
또한, 상기 마이크로파로 조사시켜, 리튬이 포함된 용액을 수득한 뒤 이를 다시 추출용매 혼합장치(3)로 순환시킬 수 있는 순환배관(12)을 더 구비할 수 있으며, 이렇게 순환된 리튬이 포함된 용액은 본 발명의 리튬을 추출하는 단계를 다시 거치면서 용액 내에 포함되어 있는 리튬의 농도를 향상시켜, 리튬의 농축 공정이 가능하다. 예를 들어, 도 7에 나타낸 바와 같이 상기 순환배관(12)을 통해, 상기 리튬이 포함된 용액을 9회 이상 순환시킴으로써, 200ppm 이상으로 농축된 리튬을 수득할 수 있으며, 순환 횟수를 조절함으로써, 목표로 하는 리튬의 농도를 결정할 수 있다.In addition, by irradiating with the microwave, to obtain a solution containing lithium, it may be further provided with a circulating pipe 12 that can be circulated back to the extraction solvent mixing device (3), containing the circulated lithium The solution is to increase the concentration of lithium contained in the solution while going through the step of extracting the lithium of the present invention, it is possible to concentrate the lithium. For example, by circulating the solution containing lithium nine or more times through the circulation pipe 12, as shown in FIG. 7, it is possible to obtain lithium concentrated at 200 ppm or more, and by controlling the number of cycles, The target lithium concentration can be determined.
2차적인 반응으로 마이크로파를 조사시킨 뒤 발생되는, 상기 리튬이 포함된 용액은 염 생성 반응을 실시할 수 있는 결정화 반응장치(8)로 이송될 수 있으며, 상기 결정화 반응장치(8)로 이송된 리튬이 포함된 용액은 탄산나트륨(Na2CO3) 등과 염 생성 반응을 통하여, 탄산리튬(Li2CO3) 등 리튬염을 생성할 수 있다.The lithium-containing solution, which is generated after irradiating microwaves in a secondary reaction, may be transferred to a crystallization reactor 8 capable of conducting a salt formation reaction, and may be transferred to the crystallization reactor 8. The solution containing lithium may generate a lithium salt such as lithium carbonate (Li 2 CO 3 ) through a salt formation reaction with sodium carbonate (Na 2 CO 3 ) or the like.
이때, 상기 염 생성 반응을 위하여 상기 탄산나트륨 등을 상기 결정화 반응장치(8)에 공급하는 방법은 특별히 제한되지 않으며, 일 예로 상기 결정화 반응장치(8)에 연결되는 탄산나트륨 공급장치(8-1) 등을 추가로 구비할 수 있다. At this time, the method of supplying the sodium carbonate or the like to the crystallization reaction device 8 for the salt formation reaction is not particularly limited, for example, sodium carbonate supply device (8-1) and the like connected to the crystallization reaction device (8) It may be further provided.
나아가, 상기 염 생성 반응을 통해 생성된 탄산리튬은 고온 분리 과정을 거친 후 추출용매 혼합장치(3) 또는 탈수/건조 장치(10, 11)로 선택적 이송이 가능하며, 상기 추출용매 혼합장치(3)로 순환된 경우, 리튬의 함량을 더욱 농축시킬 수 있는 효과를 얻을 수 있다.Further, the lithium carbonate produced through the salt formation reaction can be selectively transferred to the extraction solvent mixing apparatus 3 or the dehydration / drying apparatus 10 and 11 after undergoing a high temperature separation process, and the extraction solvent mixing apparatus 3 When circulated to), it is possible to obtain an effect that can further concentrate the content of lithium.
한편, 상기 마이크로파 추출장치(5)에서 1차 고액 분리장치(6)를 거치고, 리튬이 포함된 용액 이외의 잔류물을 분리한 뒤, 상기 잔류물을 수세장치(13)를 거쳐 2차적으로 고액분리(15)하고, 이후 선택적으로 추출용매 혼합장치(3) 또는 탈수/건조 장치(16, 17)로 이송할 수 있다. 이때 추출용매 혼합장치(3)로 이송된 경우, 다시 본 발명의 리튬 추출 과정을 거치게 되어 재활용이 가능하며, 탈수/건조 장치(16. 17)로 이송되는 경우, 부산물은 콘크리트 혼화제용 석탄회 등으로 재활용이 가능하다.On the other hand, after passing through the primary solid-liquid separator (6) in the microwave extraction device (5), and separating residues other than the solution containing lithium, the residue is subjected to the second liquid through the washing device (13) Separation 15 may then be optionally transferred to extraction solvent mixing apparatus 3 or dehydration / drying apparatus 16, 17. In this case, when the extraction solvent is transferred to the mixing device (3), it is subjected to the lithium extraction process of the present invention again to be recycled, and when transported to the dehydration / drying device (16.17), the by-products to coal admixture for concrete admixtures, etc. Recyclable.
아래에서 실시예를 들어 본 발명을 더욱 상세히 설명하나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다.Hereinafter, the present invention will be described in more detail with reference to examples, but the embodiments according to the present invention can be modified in various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. do.
<< 실시예Example 1 내지 12> 1 to 12>
도 1에 나타낸 개략도와 같이, 석탄회 공급장치(4); 추출용매 공급장치(1); 및 상기 석탄회 공급장치(4) 및 추출용매 공급장치(1)로부터 공급된 석탄회 및 추출용매를 반응시키고, 상기 반응된 석탄회 및 추출용매에 마이크로파를 조사시켜 리튬이 포함된 용액을 형성시키는 마이크로파 추출장치(5)를 포함하는, 석탄회로부터 리튬을 추출하는 장치를 제작하였다.Coal ash supply apparatus 4 as shown in the schematic diagram shown in FIG. 1; Extraction solvent supply device (1); And a microwave extraction device for reacting the coal ash and the extraction solvent supplied from the coal ash supply device 4 and the extraction solvent supply device 1, and irradiating microwaves to the reacted coal ash and extraction solvent to form a solution containing lithium. The apparatus which extracts lithium from the coal ash containing (5) was produced.
도 2는 마이크로파 추출장치(5)의 일 예를 보다 구체적으로 나타낸 도면으로, 상기 마이크로파 추출장치(5)는, 마이크로파를 마이크로파 추출장치(5) 내부로 공급 하기 위한 마이크로파 조사 공급부(5-3); 공급되는 마이크로파의 투과를 목적으로 유전율(Permittivity)이 낮은 재질인 테프론 (Teflon)으로 이루어진 반응기(5-5); 상하부 판에서 반사되고 마이크로파 추출장치(5)의 반응기(5-5)를 투과한 일부 마이크로파를 다시 상기 반응기(5-5)로 반사시키기 위한 마이크로파 반사 교반기(5-4); 상기 반응기(5-5)의 내부에서 반응하는 추출용매로부터 침식을 방지하기 위해 낮은 유전율을 가지면서 내화학성이 뛰어난 테프론 재질의 반응기 상판(5-6); 석탄회 및 추출용매의 고른 혼합 및 마이크로파 반사를 위해서 외부에 테프론을 코팅한 스테인레스 재질의 교반장치(5-2); 혼합되는 물질의 온도를 측정하여 마이크로파 출력을 제어하는 스테인레스 스틸 외부에 테프론을 코팅하여 차폐한 온도센서(5-10); 반응기(5-5) 내부의 수분 조성 변화를 방지하기 위한 증기 응축기(5-11); 추출용매 공급장치(1)와 연결되어 추출용매를 마이크로파 추출장치(5)로 공급하는 추출용매 공급부(5-9); 석탄회 공급장치(4)와 연결되어 마이크로파 추출장치(5)로 석탄회를 공급하는 석탄회 공급부(5-8); 및 마이크로파의 누설을 방지하기 위한 누설 쵸크(5-14)를 포함하는 구성으로 제작하였다.2 is a view showing an example of the microwave extraction apparatus 5 in more detail. The microwave extraction apparatus 5 includes a microwave irradiation supply unit 5-3 for supplying microwaves into the microwave extraction apparatus 5. ; A reactor (5-5) made of Teflon, a material having a low permittivity, for the purpose of permeation of supplied microwaves; A microwave reflection stirrer (5-4) for reflecting some microwaves reflected from the upper and lower plates and transmitted through the reactor (5-5) of the microwave extraction device (5) back to the reactor (5-5); A reactor top plate (5-6) made of Teflon material having a low dielectric constant and excellent chemical resistance to prevent erosion from the extraction solvent reacting inside the reactor (5-5); Stainless steel stirring device (5-2) coated with Teflon on the outside for even mixing of the coal ash and extraction solvent and microwave reflection; A temperature sensor 5-10 shielding by coating Teflon on the outside of stainless steel for measuring microwave temperature to control microwave output; A vapor condenser 5-11 for preventing a change in moisture composition inside the reactor 5-5; An extraction solvent supply part 5-9 connected to the extraction solvent supply device 1 and supplying the extraction solvent to the microwave extraction device 5; A coal ash supply unit 5-8 connected to the coal ash supply device 4 and supplying coal ash to the microwave extraction device 5; And a leakage choke (5-14) for preventing the leakage of microwaves.
나아가, 외측판(5-13, 5-18)은 마이크로파 투과저항이 높은 산화알루미늄 재질로 구성하여 마이크로파의 외부 누설을 차단하고, 반응기(5-5)는 마이크로파 투과율이 높은 테프론 재질을 사용하고 외부 지지부(5-7)은 마이크로파를 투과하며, 지지력을 높이기 위해 세라믹 벽돌을 사용하였다. 또한, 추출용매와 접촉하는 부분은 내화학성 및 내열성이 뛰어나고 낮은 유전율을 갖는 테프론을 사용함으로써 반응기(5-5) 내부로 마이크로파가 원활히 침투하고 반응장치의 침식을 방지하도록 구성하였다. Furthermore, the outer plates (5-13, 5-18) are made of aluminum oxide material with high microwave transmission resistance to block external leakage of microwaves, and the reactor (5-5) is made of Teflon material with high microwave transmittance and The supports 5-7 transmit microwaves, and ceramic bricks were used to increase the bearing capacity. In addition, the part in contact with the extraction solvent was configured to use the Teflon having excellent chemical resistance and heat resistance and low dielectric constant to smoothly penetrate the microwave into the reactor 5-5 and prevent erosion of the reactor.
도 3은 마이크로파 추출장치(5)를 포함하는 마이크로파 추출장치(5) 시스템의 일 예를 구체적으로 나타내는 도면이다. 마이크로파 추출장치(5)에서 마이크로파를 원활히 조사하기 위한 시스템으로써, 마이크로파 추출장치(5)에 공급되는 마이크로파를 조사하는 출력공급장치의 역할을 하는 마그네트론(Magnetron)(5-3-6); 마이크로파 추출장치(5)에서 반사되는 극 미량의 마이크로파를 최소화하고 마이크로파와 로드(Load)를 매칭하는 역할을 하는 튜너(5-3-2); 마이크로파 추출장치(5)에 조사(입사) 및 반사되는 마이크로파 세기를 측정하여 상기 마그네트론(5-3-6)과 출력 제어장치에 신호를 전달하는 커플러(Coupler)(5-3-3); 마이크로파 추출장치(5)에서 반사되는 마이크로파를 흡수하여 제거하는 역할을 하여 마그네트론(5-3-6)을 보호하는 더미로드(Dummy Load)(5-3-8); 마이크로파 추출장치(5)에서 반사되는 마이크로파가 되돌아오지 않게 더미 로드로 유도함으로써 마그네트론(5-3-6)을 보호하는 역할을 하는 순환기(5-3-4); 반응기(5-5) 내부에 마이크로파 조사를 통해 온도가 증가하는 것을 측정하기 위한 온도 감지장치(5-3-12); 상기 온도 감지장치(5-3-12)와 연결되어 출력을 조절하는데 사용되는 온도 제어장치(5-3-10); 상기 온도 제어장치(5-3-10)에서 전달되는 신호에 따라 반응기(5-5) 내의 온도가 일정온도 이상에 도달 시 출력이 정지되거나 줄여서 일정온도를 유지하도록 하는 역할을 하는 출력 제어장치(5-3-9); 및 작업자의 환경에 영향을 미칠 수 있는 마이크로파 추출장치(5) 주변의 마이크로파 누설을 감지하는 마이크로파 감지기(5-3-11)를 포함하도록 마이크로파 추출장치(5) 시스템을 제작하였다. 이때, 마이크로파 출력의 경우 180W, 360W, 900W, 1260W, 1800W, 2000W까지 가변이 가능하도록 설계하였다. 3 is a diagram specifically showing an example of a system for extracting microwaves 5 including a microwave extracting apparatus 5. A system for smoothly irradiating microwaves in the microwave extracting apparatus 5, the magnetron 5-3-6 serving as an output supply apparatus for irradiating microwaves supplied to the microwave extracting apparatus 5; A tuner 5-3-2 for minimizing a very small amount of microwaves reflected from the microwave extraction device 5 and matching microwaves and loads; A coupler 5-3-3 which transmits a signal to the magnetron 5-3-6 and an output control device by measuring the intensity of the microwaves reflected and incident on the microwave extraction device 5; A dummy load 5-3-8 which serves to absorb and remove the microwaves reflected from the microwave extraction device 5 to protect the magnetron 5-3-6; A circulator 5-3-4, which serves to protect the magnetron 5-3-6 by directing the microwaves reflected from the microwave extraction device 5 back to the dummy rod so as not to return; A temperature sensor 5-3-12 for measuring an increase in temperature through microwave irradiation inside the reactor 5-5; A temperature control device 5-3-10 connected to the temperature detection device 5-3-12 and used to adjust an output; Output control device that serves to maintain a constant temperature by stopping or reducing the output when the temperature in the reactor (5-5) reaches a predetermined temperature or more according to the signal transmitted from the temperature control device (5-3-10) ( 5-3-9); And a microwave detector (5-3-11) for detecting microwave leakage around the microwave extraction device (5) which may affect the environment of the operator. In this case, the microwave output is designed to be variable up to 180W, 360W, 900W, 1260W, 1800W, 2000W.
실시예에 있어서, 상기 마이크로파 추출장치(5)는 2.45GHz, 2kW, 220V, 단상이며, 반응물을 반응시키는 장치의 용적은 2L, 직경은 20cm 이고, 중탕 조건을 위한 교반 속도는 100~500rpm로 조절되며, 온도계는 테프론을 스테인레스 스틸의 외측에 코팅하여 차폐한 열전대를 사용하였다. In the embodiment, the microwave extraction device 5 is 2.45GHz, 2kW, 220V, single phase, the volume of the reaction device is 2L, the diameter is 20cm, the stirring speed for the bath condition is adjusted to 100 ~ 500rpm The thermometer used a thermocouple shielded by coating Teflon on the outside of stainless steel.
1. 국내 화력발전소로부터 입수한 석탄회의 분석 결과1. Analysis result of coal ash obtained from domestic thermal power plant
국내 당진화력발전소에서 입수한 석탄회의 성분 분석 결과는 하기 표 1과 같이 실리카(SiO2) 및 알루미나(Al2O3)가 주요 성분이고, 희유금속 중에는 지르코늄(Zr)과 리튬(Li)이 높게 나타났다. 상기 석탄회에 포함된 리튬결정 구조에 대한 분석은 도 4 및 5에 나타낸 바와 같이, 마가라이트(Margarite)[Ca0.922Li0.452Al2Si2O10.02]결정을 포함하고 있음을 알 수 있다.As a result of analyzing the components of coal ash obtained from domestic Dangjin thermal power plant, silica (SiO 2 ) and alumina (Al 2 O 3 ) are the main components, and zirconium (Zr) and lithium (Li) are high among rare metals as shown in Table 1 below. appear. As shown in FIGS. 4 and 5, the analysis of the lithium crystal structure included in the coal ash includes margarite [Ca 0.922 Li 0.452 Al 2 Si 2 O 10.02 ] crystals.
[표 1]TABLE 1
Figure PCTKR2015008023-appb-I000001
Figure PCTKR2015008023-appb-I000001
2. 추출용매의 제조2. Preparation of Extraction Solvent
석탄회와 1차적으로 반응하는 추출용매를 제조하기 위하여, 97% 공업용 황산(비중 1.84kg/L, 분자량 98.08g/mole)을 이용하였다. 상기 공업용 황산의 노르말 농도는 36.34N이고, 이로부터 0.1N(물 1L에 2.75mL 황산으로 희석), 0.5N(물 1L에 13.74mL 황산으로 희석), 1N(물 1L에 27.48mL 황산으로 희석), 2N(물 1L에 54.96 mL 황산으로 희석)의 황산이 추출용매 혼합장치(3)에서 각각 제조되도록 제어하였다. 97% industrial sulfuric acid (specific gravity 1.84 kg / L, molecular weight 98.08 g / mole) was used to prepare an extraction solvent that reacts primarily with coal ash. The normal concentration of the industrial sulfuric acid is 36.34N, from which 0.1N (diluted with 1.75 mL sulfuric acid in 1L of water), 0.5N (diluted with 13.74mL sulfuric acid in 1L of water), 1N (diluted with 27.48mL sulfuric acid in 1L of water) , 2N (diluted with 54.96 mL sulfuric acid in 1L of water) was controlled to be prepared in the extraction solvent mixer (3), respectively.
3. 3. 석탄회Coal ash 및 추출용매 반응 후, 마이크로파 조사 And microwave irradiation after extraction solvent reaction
상기 석탄회를 상기 제조된 황산을 추출용매와 함께 마이크로파 추출장치(5)로 이송시켜 반응시켰다. 이때, 표 2에 나타낸 바와 같이, 0.1 내지 2.0N 농도의 황산에 상기 석탄회를 고액비(석탄회g/황산 추출용매mL) 0.05~0.50 g/mL로 혼합하여 반응하였다. 이때, 반응조건은 표 2에 나타낸 바와 같이 25℃ 조건에서 교반 속도 150rpm으로 3시간 동안 반응시켰다. The coal ash was reacted by transferring the prepared sulfuric acid with an extraction solvent to a microwave extraction device (5). At this time, as shown in Table 2, the coal ash was mixed and reacted with 0.05 to 0.50 g / mL of solid-liquid ratio (coal ash g / sulfuric acid extraction solvent mL) to 0.1-2.0N sulfuric acid. At this time, the reaction conditions were reacted for 3 hours at a stirring speed of 150rpm at 25 ℃ conditions as shown in Table 2.
이후, 상기 반응물을 마이크로파 추출장치(5)에서, 마이크로파로 조사시켜 온도를 90℃로 상승시켰고, 이때 온도가 90℃를 초과하는 경우 전원을 차단하고, 90℃ 미만으로 낮아지는 경우 전원을 켜서 온도를 조절하였다. 상기와 같은 온도 조건에서 교반 속도 100rpm으로 30분 동안 반응시켰다. Thereafter, the reaction product was microwaved in the microwave extraction device 5 to raise the temperature to 90 ° C. At this time, when the temperature exceeds 90 ° C, the power was cut off, and when the temperature was lowered below 90 ° C, the power was turned on. Was adjusted. The reaction was carried out for 30 minutes at a stirring speed of 100 rpm under the same temperature conditions.
이에 의해 얻어진 용액 내에 석탄회로부터 추출된 리튬의 농도를 측정하고, 상기 석탄회의 최초 리튬의 농도와의 비율을 통해 추출율을 계산하여 표 3에 나타내었다. The concentration of lithium extracted from the coal ash in the solution thus obtained was measured, and the extraction rate was calculated through a ratio with the concentration of the initial lithium of the coal ash and is shown in Table 3.
<< 비교예Comparative example 1 내지 12> 1 to 12>
석탄회로부터 리튬을 추출하기 위한 고온 로스팅 방식으로, 추출용매로 황산을 이용하고, 판매 중인 비티씨 메이슨 800 로스터(MASON-800, BTC)에서 200℃로 3시간 동안 가열하였다. In a high temperature roasting method for extracting lithium from the coal ash, sulfuric acid was used as the extraction solvent and heated to 200 ° C. for 3 hours in a commercial BTC Mason 800 roaster (MASON-800, BTC).
이후, 로스팅 과정을 마친 구운 석탄회를 물로 희석하고, 상기 희석된 석탄회로부터 리튬이온을 용해시켰다. Thereafter, the roasted coal ash, which has been roasted, was diluted with water, and lithium ions were dissolved from the diluted coal ash.
<< 비교예Comparative example 13 내지 24> 13 to 24>
상기 실시예 1 내지 12에서, 마이크로파로 조사 하는 것을 제외하고, 동일하게 수행하여, 비교예 13 내지 24를 통하여 리튬을 추출하였다. In Examples 1 to 12, except that irradiated with microwaves, the same was carried out, lithium was extracted through Comparative Examples 13 to 24.
[표 2]TABLE 2
Figure PCTKR2015008023-appb-I000002
Figure PCTKR2015008023-appb-I000002
[표 3]TABLE 3
Figure PCTKR2015008023-appb-I000003
Figure PCTKR2015008023-appb-I000003
상기 비교예 1 내지 12는 종래 고온 로스팅 후 침출 방식을 거치는 반응으로써, 반응 온도를 200℃이상의 고온으로 3시간 반응시키고 진탕조건으로 침출하였을 때, 추출율이 46%이하로 나타냈다.In Comparative Examples 1 to 12, the leaching method was performed after the conventional high temperature roasting. When the reaction temperature was reacted at a high temperature of 200 ° C. or higher for 3 hours and leached under shaking conditions, the extraction rate was 46% or less.
비교예 13 내지 24는 석탄회를 실온(25℃)에서 3시간 진탕한 추출공정으로, 마이크로파 조사단계를 거치지 않았으며, 최대 리튬 추출율을 나타낸 비교예 19의 경우 46%로 수율이 좋지 않았다. Comparative Examples 13 to 24 were extraction processes in which coal ash was shaken at room temperature (25 ° C.) for 3 hours, and did not go through a microwave irradiation step. In Comparative Example 19, which showed the maximum lithium extraction rate, the yield was not good as 46%.
이를 통해 석탄회에 포함되어 있는 마가라이트[Ca0 .922Li0 .452Al2Si2O10 .02] (Margarite)결정에 결합되어 있는 리튬을 높은 추출율로 추출하기 위해서는, 실온에서 추출용매를 이용한 1차적인 추출반응 이외에 2차적으로 마이크로파 조사방식에 의한 가열이 필요하다는 것을 확인 할 수 있다.This Mark contained in coal ash light [Ca 0 .922 Li 0 .452 Al 2 Si 2 O 10 .02] (Margarite) in order to extract the lithium in the crystal which is bonded to the high extraction rate, using an extraction solvent at room temperature In addition to the primary extraction reaction, it can be confirmed that the heating by the microwave irradiation method is required.
실온에서 3시간 1차 진탕 추출과정 후 마이크로파 조사를 통해 90℃, 30분간 2차 추출과정을 도입 시 리튬추출에 사용된 황산의 농도가 0.1N 일 경우(실시예 1~3) 리튬의 추출율은 50~59%, 0.5 N일 경우(실시예 4~6) 리튬의 추출율은 65~75%, 1.0N일 경우(실시예 7~9) 73~96%, 2.0N일 경우(실시예 10~12) 68~89%의 추출율을 보이고 있다. 따라서, 50% 이상의 리튬 추출율 확보를 위해서는 0.1N 의 농도를 갖는 황산을 이용하여, 1차 실온 진탕 과정 및 2차 마이크로파로 조사하는 반응조건이 필수적이며, 65% 이상의 추출율을 확보하기 위해서는 0.5N 내지 2.0N 의 농도를 갖는 황산을 추출용매로 이용하는 것이 바람직하다.If the concentration of sulfuric acid used for lithium extraction is 0.1N (Examples 1 to 3) when introducing a secondary extraction process at 90 ° C. for 30 minutes through microwave irradiation after the first shaking extraction process at room temperature for 3 hours (Examples 1 to 3), the extraction rate of lithium is 50-59%, 0.5 N (Examples 4-6) The extraction rate of lithium is 65-75%, 1.0 N (Examples 7-9) 73-96%, 2.0N (Examples 10- 12) The extraction rate is 68 ~ 89%. Therefore, in order to secure a lithium extraction rate of 50% or more, a reaction condition of irradiating with a first microwave at room temperature and a second microwave using sulfuric acid having a concentration of 0.1 N is essential. In order to secure an extraction rate of 65% or more, 0.5N to It is preferable to use sulfuric acid having a concentration of 2.0 N as the extraction solvent.
나아가, 석탄회 및 추출용매인 황산의 비율인 고액비는 0.05~0.50 g/mL일 경우 추출율이 우수함을 알 수 있으며, 1.0N 황산, 고액비 0.05g/mL 인 경우 가장 우수한 추출율을 나타내고 있음을 확인 할 수 있다. Furthermore, it can be seen that the solid-liquid ratio, which is the ratio of coal ash and sulfuric acid as the extraction solvent, is excellent in the extraction ratio when 0.05 to 0.50 g / mL, and the highest extraction ratio is obtained when the 1.0N sulfuric acid and the solid-liquid ratio are 0.05g / mL. can do.
나아가, 상기 석탄회로부터 리튬을 추출하는 장치에 순환배관(12)을 추가로 연결하여, 리튬을 포함하는 용액을 반응장치로 순환적으로 이송시켜 리튬을 농축시킬 수 있고, 이때 도 7에 나타낸 바와 같이 9회 이상의 재순환시 리튬을 결정화하기 위한 농도인 200ppm 이상으로 리튬을 농축시킬 수 있으므로, 순환배관(12)을 이용하여 리튬이 포함된 용액을 순환시키는 것이 바람직함을 알 수 있다. Further, by further connecting the circulation pipe 12 to the device for extracting lithium from the coal ash, it is possible to concentrate the lithium by cyclically transferring a solution containing lithium to the reactor, as shown in Figure 7 Since the lithium can be concentrated to 200 ppm or more, which is a concentration for crystallizing lithium at least 9 times of recycling, it can be seen that it is preferable to circulate the solution containing lithium using the circulation pipe 12.
상기에서 제시된 실시예는 예시적인 것으로 이 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상을 벗어나지 않는 범위에서 제시된 실시예에 대한 다양한 변형 및 수정 발명을 만들 수 있을 것이다. 이러한 변형 및 수정 발명에 의하여 본 발명의 범위는 제한되지 않는다.The embodiments presented above are exemplary and those skilled in the art may make various modifications and modifications to the embodiments presented without departing from the spirit of the present invention. Such modifications and variations are not intended to limit the scope of the invention.

Claims (12)

  1. 석탄회 및 추출용매를 반응시키는 단계; 및Reacting the coal ash and the extraction solvent; And
    마이크로파를 조사시켜 리튬이 포함된 용액을 수득하는 단계를 포함하는, 석탄회로부터 리튬을 추출하는 방법.Irradiating microwave to obtain a solution containing lithium.
  2. 청구항 1에 있어서, 상기 석탄회는 마가라이트[Ca0 .922Li0 .452Al2Si2O10 .02]결정을 포함하는 것을 특징으로 하는, 석탄회로부터 리튬을 추출하는 방법.The method according to claim 1, wherein the fly ash is characterized in that it comprises the margarite [Ca 0 .922 Li 0 .452 Al 2 Si 2 O 10 .02] crystal, lithium extraction from the fly ash.
  3. 청구항 1에 있어서, 상기 추출용매는 0.1 내지 2.0N 황산을 포함하는 것을 특징으로 하는, 석탄회로부터 리튬을 추출하는 방법.The method of claim 1, wherein the extraction solvent comprises 0.1 to 2.0 N sulfuric acid.
  4. 청구항 3에 있어서, 상기 추출용매는 질산 또는 염산을 추가로 포함하는 것을 특징으로 하는, 석탄회로부터 리튬을 추출하는 방법.The method of claim 3, wherein the extraction solvent further comprises nitric acid or hydrochloric acid.
  5. 청구항 1에 있어서, 상기 석탄회 및 추출용매를 반응시키는 단계는 실온 진탕 조건에서 반응시키는 것을 특징으로 하는, 석탄회로부터 리튬을 추출하는 방법.The method of claim 1, wherein the step of reacting the coal ash and the extraction solvent is characterized in that the reaction at room temperature shaking conditions.
  6. 청구항 1에 있어서, 상기 마이크로파를 조사시키는 단계는 60 내지 90℃ 중탕 조건에서 수행되는 것을 특징으로 하는, 석탄회로부터 리튬을 추출하는 방법.The method of extracting lithium from coal ash according to claim 1, wherein the step of irradiating the microwaves is performed at 60 to 90 ° C in a bath condition.
  7. 청구항 1에 있어서, 상기 석탄회 및 추출용매는 고액비 0.05 내지 0.50 g/mL 로 반응되는 것을 특징으로 하는, 석탄회로부터 리튬을 추출하는 방법.The method of extracting lithium from coal ash according to claim 1, wherein the coal ash and the extraction solvent are reacted at a solid-liquid ratio of 0.05 to 0.50 g / mL.
  8. 청구항 1에 있어서, 상기 리튬이 포함된 용액에 염 생성 반응을 실시하여 리튬염을 생성시키는 단계를 더 포함하는 것을 특징으로 하는, 석탄회로부터 리튬을 추출하는 방법.The method of claim 1, further comprising generating a lithium salt by performing a salt generating reaction on the lithium-containing solution.
  9. 석탄회 공급장치;Coal ash feeder;
    추출용매 공급장치; 및Extraction solvent supply apparatus; And
    상기 석탄회 공급장치 및 추출용매 공급장치로부터 공급된 석탄회 및 추출용매를 반응시키고, 상기 반응된 석탄회 및 추출용매에 마이크로파를 조사시켜 리튬이 포함된 용액을 형성시키는 마이크로파 추출장치를 포함하는, 석탄회로부터 리튬을 추출하는 장치.Lithium from coal ash comprising a microwave extraction device for reacting the coal ash and the extraction solvent supplied from the coal ash feed device and the extraction solvent supply device, and irradiated microwaves to the reacted coal ash and extract solvent to form a solution containing lithium Device to extract it.
  10. 청구항 9에 있어서, 상기 추출용매 공급장치로부터 공급되는 추출용매를 희석시키고, 희석된 추출용매를 상기 마이크로파 추출장치로 공급하는 추출용매 혼합장치를 더 포함하는 것을 특징으로 하는, 석탄회로부터 리튬을 추출하는 장치.10. The method of claim 9, further comprising an extraction solvent mixing device for diluting the extraction solvent supplied from the extraction solvent supply device and supplying the diluted extraction solvent to the microwave extraction device. Device.
  11. 청구항 10에 있어서, 상기 리튬이 포함된 용액을 상기 추출용매 혼합장치로 순환시키는 순환배관을 더 포함하는 것을 특징으로 하는, 석탄회로부터 리튬을 추출하는 장치.The apparatus of claim 10, further comprising a circulation pipe for circulating the solution containing lithium to the extraction solvent mixing device.
  12. 청구항 9에 있어서, 상기 리튬이 포함된 용액에 염 생성 반응을 실시하여 리튬염을 생성시키는 결정화 반응장치를 더 포함하는 것을 특징으로 하는, 석탄회로부터 리튬을 추출하는 장치.10. The apparatus of claim 9, further comprising a crystallization reaction device that generates a lithium salt by performing a salt formation reaction on the solution containing lithium.
PCT/KR2015/008023 2014-08-28 2015-07-31 Method and apparatus for extracting lithium from coal ash WO2016032138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580028031.0A CN106536767B (en) 2014-08-28 2015-07-31 The method and device of lithium is extracted from coal ash

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140113483A KR101603259B1 (en) 2014-08-28 2014-08-28 Method and apparatus for extracting lithium from coal ashes
KR10-2014-0113483 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016032138A1 true WO2016032138A1 (en) 2016-03-03

Family

ID=55399991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008023 WO2016032138A1 (en) 2014-08-28 2015-07-31 Method and apparatus for extracting lithium from coal ash

Country Status (3)

Country Link
KR (1) KR101603259B1 (en)
CN (1) CN106536767B (en)
WO (1) WO2016032138A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108265176A (en) * 2018-04-17 2018-07-10 中国科学院青海盐湖研究所 The method that lithium is extracted from flyash

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867620B (en) * 2017-04-12 2023-03-24 太原科技大学 Microwave desulfurization intelligent integrated experimental system for high-sulfur coal
CN107619952B (en) * 2017-09-15 2019-09-03 山东大学 A method of leaching lithium from flyash
KR102177039B1 (en) * 2018-09-11 2020-11-10 주식회사 포스코 Manufacturing method of lithium compound
KR102153185B1 (en) * 2018-11-28 2020-09-07 주식회사 포스코 Method and apparatus for manufacturing lithium sulfate solution from lithium bearing ore
KR102325755B1 (en) * 2019-12-20 2021-11-11 주식회사 포스코 Method of manufacturing lithium compound
KR102324165B1 (en) * 2020-04-21 2021-11-08 조선대학교산학협력단 Gold recovery method using microwave and magnetic-hydraulic screening
CN114959253A (en) * 2022-06-30 2022-08-30 广东邦普循环科技有限公司 Method for extracting lithium from lithium clay

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721467B2 (en) * 1993-02-25 1998-03-04 キヤノン株式会社 Lithium battery material recovery method
KR101116687B1 (en) * 2011-09-16 2012-02-22 한국서부발전 주식회사 A method for extracting lithium from coal ash
JP2012177178A (en) * 2011-02-28 2012-09-13 Hokkaido Univ Method and device for recovering metal
KR20140009048A (en) * 2012-07-13 2014-01-22 이상로 Method of recovering lithium from fly ashes or waste water derived from active material for lithium secondary battery by using electrochemisty process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101200305B (en) * 2007-07-26 2013-03-27 李文志 Coal ash roller type fine extractive technique
CN102515227B (en) * 2011-12-23 2014-04-30 西安航天科技工业公司 Method for extracting alumina from fly ash based on grinding and acid leaching technology
CN102923742B (en) * 2012-11-19 2014-07-09 河北工程大学 Method for comprehensively extracting aluminum and lithium from coal ash
CN102923743B (en) * 2012-11-19 2014-06-11 河北工程大学 Technical method for comprehensively extracting aluminum and lithium from coal ash through acid process
CN103101935B (en) * 2012-12-28 2014-08-20 中国神华能源股份有限公司 Method for preparing lithium carbonate from coal ash
CN103074498B (en) * 2012-12-31 2016-10-19 西部矿业股份有限公司 With microwave heating from the method for flyash Ore Leaching gallium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2721467B2 (en) * 1993-02-25 1998-03-04 キヤノン株式会社 Lithium battery material recovery method
JP2012177178A (en) * 2011-02-28 2012-09-13 Hokkaido Univ Method and device for recovering metal
KR101116687B1 (en) * 2011-09-16 2012-02-22 한국서부발전 주식회사 A method for extracting lithium from coal ash
KR20140009048A (en) * 2012-07-13 2014-01-22 이상로 Method of recovering lithium from fly ashes or waste water derived from active material for lithium secondary battery by using electrochemisty process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108265176A (en) * 2018-04-17 2018-07-10 中国科学院青海盐湖研究所 The method that lithium is extracted from flyash
CN108265176B (en) * 2018-04-17 2019-10-25 中国科学院青海盐湖研究所 The method of lithium is extracted from flyash

Also Published As

Publication number Publication date
CN106536767A (en) 2017-03-22
CN106536767A8 (en) 2017-06-30
CN106536767B (en) 2018-12-25
KR20160027348A (en) 2016-03-10
KR101603259B1 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
WO2016032138A1 (en) Method and apparatus for extracting lithium from coal ash
CN109127654B (en) Low-pollution secondary aluminum ash treatment method
Chou et al. Sintering of MSWI fly ash by microwave energy
WO2017078308A1 (en) Method for preparing synthetic zeolite using bottom ash in thermoelectric power plant
JPS60186422A (en) Vitrification of asbestos waste
WO2017069545A1 (en) Method for preparing synthetic zeolite using pumice
KR100920231B1 (en) Extraction method and apparatus of high pure alumina from fly ash using microwave
Balomenos et al. A novel red mud treatment process: process design and preliminary results
Zhang et al. Aluminum release from microwave-assisted reaction of coal fly ash with calcium carbonate
Lairaksa et al. Utilization of cathode ray tube waste: encapsulation of PbO-containing funnel glass in Portland cement clinker
JP5066697B2 (en) Recycling method for waste containing asbestos
KR20190134085A (en) Method of recycling chlorine bypass dust generated in cement manufacturing process
CN109909274B (en) Method for preparing mesoporous material by utilizing coal gangue and catalyst carrier prepared by utilizing coal gangue
Hu et al. Extraction of lead from waste CRT funnel glass by generating lead sulfide–An approach for electronic waste management
Lu et al. Lead extraction from Cathode Ray Tube (CRT) funnel glass: Reaction mechanisms in thermal reduction with addition of carbon (C)
Fursman Utilization of red mud residues from alumina production
CN106810069B (en) Vitrification formula and vitrification harmless treatment process for wet smelting slag
KR101325204B1 (en) Method of obtaining matte and slag from tailings
TW510830B (en) Method for treating hazardous material
WO2011030969A1 (en) Assembly for processing raw ore powder, and processing method of raw ore using same
Liu et al. Removal of F and Cl from zinc oxide fume from fuming furnace by microwave roasting
Romero et al. Leaching behaviour of a glassy slag and derived glass ceramics from arc plasma vitrification of hospital wastes
CN112939042A (en) Method and device for cooperatively treating and utilizing aluminum ash and silica fume
CN1195879C (en) Method of recovering metal from metal-containing sludge
JP2000016844A (en) Pyrolysis of dioxin and device therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836189

Country of ref document: EP

Kind code of ref document: A1