WO2016032013A1 - Method for sintering copper ink using laser - Google Patents

Method for sintering copper ink using laser Download PDF

Info

Publication number
WO2016032013A1
WO2016032013A1 PCT/KR2014/007888 KR2014007888W WO2016032013A1 WO 2016032013 A1 WO2016032013 A1 WO 2016032013A1 KR 2014007888 W KR2014007888 W KR 2014007888W WO 2016032013 A1 WO2016032013 A1 WO 2016032013A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
ink
laser beam
laser
sintering
Prior art date
Application number
PCT/KR2014/007888
Other languages
French (fr)
Korean (ko)
Inventor
강경태
유준호
강희석
황준영
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to PCT/KR2014/007888 priority Critical patent/WO2016032013A1/en
Publication of WO2016032013A1 publication Critical patent/WO2016032013A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern

Definitions

  • the present invention relates to a sintering method of a copper ink using a laser, and more particularly, to a sintering method of a copper ink using a laser to sinter by irradiating a laser beam to a copper ink applied to a substrate to form a printed pattern.
  • a method of forming a pattern in a PCB process is a method in which only necessary pattern parts are left on a substrate coated with copper, and unnecessary copper is removed through an etching process.
  • the inkjet spraying method is necessary for spraying a liquid containing a conductive material (currently using a large number of silver particles) along a part to form a pattern, and then leaving only the conductive material in the sprayed liquid.
  • the liquid containing the conductive material was removed or scattered (heated).
  • the technique mainly used to secure the reliability of the fine pattern uses a technique of forming the fine pattern of the circuit board by inkjet patterning.
  • the inkjet method can directly form a fine pattern on a substrate, like the conventional printing technique using lithography, the costly process of vacuum film formation, photolithography, etching, and resist stripping process can be omitted, and the circuit can be manufactured at low cost. There is an effect that can produce a substrate.
  • the diameter of a drop increases about 1.5 times when ink is ejected from the nozzle, and spreads several times when the droplet falls on an untreated substrate.
  • the width of the fine pattern (wiring) is a multiple of the injection nozzle.
  • the inkjet patterning technology adjusts the line width only by the jetting conditions of the ink jet nozzle
  • the implementation of the fine line width depends on the viscosity of the ink, the discharge amount, and the diameter of the ink jet nozzle, and the method for controlling the line width by adjusting the characteristics of the existing substrate In most cases, the substrate heating method was used.
  • the method of heating the substrate during spraying not only causes clogging of the nozzle during ink ejection, but also causes a coffee stain effect in a pattern shape.
  • the multi-angle substrate processing method has a main effect of reducing the contact angle, but in the step of forming a line by overlapping droplets and droplets with a small contact angle, it is difficult to avoid collision between one droplet and the next. Due to the difficulty in forming the line and the problem of uneven line shape.
  • the existing hydrophobic substrates for increasing the contact angle to reduce the line width had a problem in that when the droplets overlap with the droplets, the droplets and the droplets are not anchored to the substrate, and larger droplets are formed by the attraction force between the droplets, thereby not forming a line. .
  • the sprayed liquid is made by an oven, there is a problem that the temperature required for scattering the liquid deforms the substrate.
  • Republic of Korea Patent Publication No. 10-1058844 is coated on the surface of the substrate in the amorphous (Amorphouse) state of the phase (Amorphouse) phase change by a certain heat, and the light is collected on the nano phase change coating layer
  • the conductive pad is formed by printing a metal nanoparticle ink on the nanophase change coating layer and irradiating a laser beam to the metal nanoparticle ink, wherein the laser beam To be formed as it is irradiated using a pad lens that focuses more than a circuit pattern
  • the sintered copper may be oxidized or specific resistance may be greatly generated according to the conditions such as the intensity and scan speed of the laser beam, which may cause product defects. .
  • the present invention is to solve the above-described problems, by specifically limiting the intensity and scan speed of the laser beam irradiated on the nano-phase change coating layer (copper ink) applied to the substrate, that the oxidation occurs in the sintered copper It is an object of the present invention to provide a method of sintering a copper ink using a laser that can prevent and reduce a specific resistance.
  • a method of sintering a copper ink using a laser of the present invention includes: an ink coating step of forming a printing pattern by applying a copper ink containing copper to a substrate; And a sintering step of sintering the copper ink by irradiating a laser beam to the copper ink using a laser device, wherein the intensity of the laser beam is 100 W / cm 2 or more and is higher than the melting point of copper contained in the copper ink.
  • the laser device is characterized in that for moving the distance of the size of the laser beam irradiated to the substrate per unit time at a scan speed of 0.6mm / s ⁇ 5mm / s.
  • the laser device increases the scan speed of the laser device as the size of the laser beam increases while the intensity of the laser beam is the same, and increases the intensity and scan speed of the laser beam when the size of the laser beam is the same.
  • the specific resistance of the copper ink to be sintered is made small.
  • the copper ink is a powder (power) type of ink in which copper having a diameter of several tens of nm or less is dispersed in a solvent, and the intensity of the laser beam is 100 to 200 W / cm 2, and the scanning speed of the laser device is Is 0.6 to 2 mm / s.
  • the copper ink is made of a hybrid type in which a powder type and a precursor type are mixed, and the powder type is made of an ink in which copper having a diameter of several tens of nm or less is dispersed in a solvent.
  • the type is composed of an ink containing a copper precursor that changes to copper when a chemical reaction occurs when heat is applied, but when the copper ink is a hybrid type, the intensity of the laser beam is 190 ⁇ 300W / cm2, the scan of the laser device The speed is 1-4 mm / s.
  • the size of the laser beam irradiated to the substrate per unit time by the laser device is to have a size of 0.2 mm in the scanning direction.
  • 1 is a wavelength (absorbance) of the precursor (precursor) type copper ink, powder type copper ink, hybrid type copper ink according to an embodiment of the present invention
  • Figure 2a is a graph showing the specific resistance according to the laser beam sintering conditions of the powder type copper ink according to an embodiment of the present invention
  • Figure 2b is a graph showing the specific resistance according to the heat sintering time of the powder type copper ink according to an embodiment of the present invention
  • Figure 3a is a graph showing the specific resistance according to the laser beam sintering conditions of the hybrid type copper ink according to an embodiment of the present invention
  • Figure 3b is a graph showing the specific resistance according to the heat sintering time of the hybrid type copper ink according to an embodiment of the present invention
  • FIG. 4 is a photograph showing the sintered microstructure and the specific resistance of the copper ink according to the laser beam sintering and heat sintering of the hybrid type copper ink according to an embodiment of the present invention
  • Figure 5 is a graph showing the surface analysis results according to the sintering process conditions of the hybrid type copper ink according to an embodiment of the present invention.
  • the copper ink sintering method using the laser of the present invention comprises an ink coating step and a sintering step.
  • the ink application step is a step of forming a printed pattern by applying a copper ink containing copper to a substrate such as a printed circuit board.
  • the copper ink is in a liquid state, it is possible to form various printing patterns on the substrate according to the intention of the operator.
  • the copper ink is classified into a precursor type, a powder type, and a hybrid type, as shown in FIG. 1.
  • the precursor type copper ink is an ink containing a copper precursor that is converted into copper by a chemical reaction upon application of heat.
  • the powder-type copper ink is an ink in which copper having a diameter of several tens of nm or less is dispersed in a solvent.
  • the hybrid type copper ink is a solution ink in which the precursor type and the powder type are mixed.
  • the sintering step is a step of sintering the copper ink by irradiating a laser beam to the copper ink in a solution state using a laser device.
  • the intensity of the laser beam is 100W / cm 2 or more and lower than the melting point of the copper contained in the copper ink
  • the laser device 0.6mm / s the distance of the size of the laser beam irradiated to the substrate per unit time Move to a scan speed of ⁇ 5mm / s.
  • the size of the laser beam irradiated to the substrate per unit time by the laser device is to have a size of 0.2mm in the scan direction.
  • the laser device increases the scan speed of the laser device as the size of the laser beam increases, that is, in the scan direction, in the state where the laser beam intensity is the same.
  • the scan speed is 1 mm / s when the size of the laser beam is 2 mm.
  • Copper ink used in Example 1 is a powder-type copper ink manufactured by Dongjin Semicom Co., Ltd., the substrate is a glass wafer (sodalime), sintered in the air atmosphere, the laser beam equipment is a CW 532nm wavelength laser beam ( Coherent, verdi_V5) was used.
  • the size of the laser beam irradiated to the substrate is assumed to have the same size.
  • the size of the laser beam in the scanning direction is set to 0.2 mm.
  • FIG. 2A is a graph showing specific resistance when sintering copper ink using a laser beam
  • FIG. 2B is a graph showing specific resistance when sintering copper ink by applying heat.
  • the specific resistance increased at strength of 106W / cm 2 or more during sintering of copper ink with a laser device of a scan speed of 0.4mm / s.
  • the value of the specific resistance decreased as the intensity of the laser beam increased.
  • the minimum specific resistance 17 ⁇ cm according to the sintering of the copper ink was measured, which is 10 of the bulk copper resistivity of 1.68 ⁇ cm. That's about twice the value.
  • the intensity of the laser beam is increased when the size of the laser beam irradiated to the substrate is the same. It can be seen that the higher the scan rate, the smaller the resistivity of the sintered copper.
  • the laser beam has an intensity of 100-200 W / cm 2 and a scan speed of 0.6-2 mm / s.
  • Copper ink used in Example 2 is a hybrid type copper ink manufactured by Dongjin Semiconductor Co., Ltd., the substrate is a glass wafer (sodalime), sintered in the air atmosphere, the laser beam equipment is a CW 532nm wavelength laser beam ( Coherent, verdi_V5) was used.
  • the size of the laser beam irradiated to the substrate is assumed to have the same size.
  • the size of the laser beam in the scanning direction is set to 0.2 mm.
  • FIG. 3A is a graph showing specific resistance when sintering copper ink using a laser beam
  • FIG. 3B is a graph showing specific resistance when sintering copper ink by applying heat.
  • the specific resistance increased at strength of 190W / cm2 or more during sintering of copper ink with a laser device of a scanning speed of 0.6mm / s.
  • the value of the specific resistance gradually decreased as the intensity of the laser beam increased.
  • the minimum resistivity of 5.3 ⁇ cm according to the sintering of the copper ink was measured, which is 1.68 ⁇ cm, which is the bulk copper resistivity. About three times the value.
  • the intensity of the laser beam is 190 to 300 W / cm 2
  • the scanning speed is preferably 1 to 4 mm / s.
  • Figure 5 is a graph showing the surface analysis results according to the sintering process conditions of the hybrid type copper ink according to the present invention, the horizontal axis represents the diffraction angle, the vertical axis represents the intensity.
  • the sintering method of the copper ink using the laser of the present invention is not limited to the above-described embodiment, and can be carried out in various modifications within the allowable technical spirit of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention relates to a method for sintering a copper ink using a laser and, more specifically, to a method for sintering a copper ink using a laser that sinters a copper ink, which is applied to a substrate to form a printed pattern, by applying a laser beam to the copper ink. The method for sintering a copper ink using a laser, according to the present invention, comprises: an ink applying step for applying a copper ink, which contains copper, to a substrate to form a printed pattern; and a sintering step for sintering the copper ink by applying a laser beam to the copper ink through a laser device, wherein the laser beam has an intensity of 100W/cm2 or more and a temperature lower than the melting point of the copper contained in the copper ink, and the laser device moves a distance corresponding to the magnitude of the laser beam, which is applied to the substrate per unit time, at a scan speed of 0.6mm/s to 5mm/s.

Description

레이저를 이용한 구리잉크의 소결 방법Sintering Method of Copper Ink Using Laser
본 발명은 레이저를 이용한 구리잉크의 소결 방법에 관한 것으로서, 특히 기판에 도포되어 인쇄패턴을 형성하는 구리잉크에 레이저빔을 조사하여 소결시키는 레이저를 이용한 구리잉크의 소결 방법에 관한 것이다.The present invention relates to a sintering method of a copper ink using a laser, and more particularly, to a sintering method of a copper ink using a laser to sinter by irradiating a laser beam to a copper ink applied to a substrate to form a printed pattern.
일반적으로, PCB 공정에서 패턴을 형성하는 방식은 전면에 걸쳐 동이 입혀진 기판에서 필요한 패턴 부분만 남기고 불필요한 부분의 동은 에칭(etching)공정을 통해 없애는 방식이다.In general, a method of forming a pattern in a PCB process is a method in which only necessary pattern parts are left on a substrate coated with copper, and unnecessary copper is removed through an etching process.
반면에 잉크젯 분사 방식은 패턴을 형성하고자 하는 부분을 따라 전도성 물질(현재는 은(Ag) 입자를 많이 사용하고 있음)을 함유한 액체를 분사한 후 분사한 액체 중 전도성 물질만 남기고 분사를 위해서 필요했던 전도성 물질을 포함하고 있었던 액체는 없애는 즉, 비산시키는 방식(열을 가해주어 없애는 방식을 사용)을 사용한다.On the other hand, the inkjet spraying method is necessary for spraying a liquid containing a conductive material (currently using a large number of silver particles) along a part to form a pattern, and then leaving only the conductive material in the sprayed liquid. The liquid containing the conductive material was removed or scattered (heated).
산업기술의 발전으로 다양한 기능 구현과 소형화가 요구되어지는 추세에 따라 가볍고, 얇고, 강하며, 작은 크기의 PCB 기판이 요구되고 있으며, 이러한 요구사항을 확보하기 위하여 기본적으로 미세 패턴 구현이 따라야 하고, 미세하게 구현한 패턴의 신뢰성이 확보되어야 한다.As the development of industrial technology requires the implementation of various functions and miniaturization, light, thin, strong, and small size PCB boards are required.In order to secure these requirements, micro pattern implementation must be basically followed. The reliability of the finely implemented pattern should be secured.
따라서 현재 PCB 공정에서 공통적으로 요구되어지는 사항은 '경박단소'이다.Therefore, a common requirement in the current PCB process is 'light and thin short'.
미세 패턴의 신뢰성을 확보하기 위해 최근 주로 사용되는 기술은 회로기판의 미세패턴을 잉크젯 패터닝으로 형성시키는 기술을 사용한다.Recently, the technique mainly used to secure the reliability of the fine pattern uses a technique of forming the fine pattern of the circuit board by inkjet patterning.
잉크젯 방식은 미세패턴을 기판상에 직접 형성할 수 있기 때문에 종래의 리소그래피를 사용한 인쇄기술과 같이, 진공성막, 포토리소, 에칭, 레지스트 박리공정의 비용이 드는 공정을 생략할 수 있어 저렴한 가격으로 회로기판을 제작할 수 있는 효과가 있다.Since the inkjet method can directly form a fine pattern on a substrate, like the conventional printing technique using lithography, the costly process of vacuum film formation, photolithography, etching, and resist stripping process can be omitted, and the circuit can be manufactured at low cost. There is an effect that can produce a substrate.
잉크젯 패터닝 방식은 기판을 처리하지 않은 상태에서 잉크를 50㎛ 노즐에서 분사를 하면 잉크가 노즐에서 토출될 때 액적(drop)의 지름이 1.5배 정도 증가하며 무처리 기판에 액적이 떨어질 때 수배로 퍼지는 현상이 있어 미세패턴(배선)의 폭은 분사노즐의 수배가 되는 문제점이 있다.In the inkjet patterning method, when ink is ejected from a 50 μm nozzle without processing a substrate, the diameter of a drop increases about 1.5 times when ink is ejected from the nozzle, and spreads several times when the droplet falls on an untreated substrate. There is a problem that the width of the fine pattern (wiring) is a multiple of the injection nozzle.
또한, 잉크젯 패터닝 기술은 잉크젯 노즐의 분사조건만을 가지고 선폭을 조절하므로 잉크의 점성, 토출량, 잉크젯 노즐의 직경에 따라 미세 선폭 구현이 좌우되며, 기존 기판의 특성을 조절하여 선폭제어를 위한 방법으로는 분사시 기판가열 방법을 사용하는 것이 대부분이였다.In addition, since the inkjet patterning technology adjusts the line width only by the jetting conditions of the ink jet nozzle, the implementation of the fine line width depends on the viscosity of the ink, the discharge amount, and the diameter of the ink jet nozzle, and the method for controlling the line width by adjusting the characteristics of the existing substrate In most cases, the substrate heating method was used.
하지만, 분사 시 기판을 가열하는 방법은 잉크 토출 시 노즐의 막힘 현상을 유발할 뿐만 아니라 패턴형상의 coffee stain effect를 야기한다.However, the method of heating the substrate during spraying not only causes clogging of the nozzle during ink ejection, but also causes a coffee stain effect in a pattern shape.
또한, 단순히 기판을 소수성 처리만 하여 잉크의 접촉각을 높여 미세패턴을 형성하는 기술을 제안되고 있으나, 잉크의 특성에 따라 분사 직 후 기판에서의 인쇄된 액적의 뭉침 현상으로 패턴의 형상이 불규칙해지는 현상이 발생한다.In addition, a technique of forming a fine pattern by increasing the contact angle of ink simply by hydrophobic treatment of the substrate has been proposed, but the shape of the pattern becomes irregular due to the aggregation of printed droplets on the substrate immediately after spraying according to the characteristics of the ink. This happens.
또한, 다각도 기판 처리 방식은 접촉각을 작게 하는 효과가 주를 이루고 있으나 접촉각을 작게 한 상태에서 액적과 액적을 오버랩(overlap)시켜 라인을 형성하는 단계에서는 한 액적과 다음 액적의 충돌현상 회피의 어려움으로 인한 라인형성의 어려움과 균일하지 못한 라인 형상의 문제점을 내포하고 있다.In addition, the multi-angle substrate processing method has a main effect of reducing the contact angle, but in the step of forming a line by overlapping droplets and droplets with a small contact angle, it is difficult to avoid collision between one droplet and the next. Due to the difficulty in forming the line and the problem of uneven line shape.
그리고 접촉각을 증가시켜 선폭을 줄이기 위한 기존 소수성 처리 기판은 액적과 액적이 오버랩 될 때 액적과 액적이 기판에 anchor 되지 못하고 액적간의 인력에 의해 더 큰 액적이 형성될 뿐 라인을 형성하지 못하는 문제점이 있었다.In addition, the existing hydrophobic substrates for increasing the contact angle to reduce the line width had a problem in that when the droplets overlap with the droplets, the droplets and the droplets are not anchored to the substrate, and larger droplets are formed by the attraction force between the droplets, thereby not forming a line. .
특히, 분사된 액체를 비산은 오븐에 의해 이루어지고 있으나, 이 액체의 비산을 위해 필요한 온도가 기판을 변형시키는 문제점이 있다.In particular, although the sprayed liquid is made by an oven, there is a problem that the temperature required for scattering the liquid deforms the substrate.
이러한 문제점을 해결하기 위해, 대한민국 등록특허공보 제10-1058844호에는, 기판의면에 일정 열에 의해 상변화 되는 비정질(Amorphouse) 상태의 나노 상변화 물질을 코팅시키고, 상기 나노 상변화 코팅층에 집광된 레이저빔을 이용하여 일정온도 범위의 열을 가함에 따라 도전성 결정질(Crystalline)로 상변화 되어 형성하고자 하는 회로 패턴을 형성시키고, 상기 레이저빔에 의해 형성된 회로 패턴에 도전성 패드를 더 형성하여 상기 회로 패턴과 다른 도전성 물질과의 전기적 접속력을 향상시키며, 상기 도전성 패드는, 상기 나노 상변화 코팅층 상에 금속 나노입자 잉크를 인쇄하고, 상기 금속 나노입자 잉크에 레이저빔을 조사하여 형성시키되, 상기 레이저빔을 회로 패턴 형성시보다 크게 집광시키는 패드렌즈를 이용하여 조사됨에 따라 형성되도록 하는 레이저빔을 이용한 회로 제조방법이 나타나 있다.In order to solve this problem, Republic of Korea Patent Publication No. 10-1058844 is coated on the surface of the substrate in the amorphous (Amorphouse) state of the phase (Amorphouse) phase change by a certain heat, and the light is collected on the nano phase change coating layer Forming a circuit pattern to be formed by phase change into conductive crystalline (Crystalline) by applying heat of a predetermined temperature range using a laser beam, and further forming a conductive pad on the circuit pattern formed by the laser beam to form the circuit pattern To improve electrical connection with the other conductive material, and the conductive pad is formed by printing a metal nanoparticle ink on the nanophase change coating layer and irradiating a laser beam to the metal nanoparticle ink, wherein the laser beam To be formed as it is irradiated using a pad lens that focuses more than a circuit pattern The manufacturing method using the circuit shown jeobim.
위와 같이 레이저빔을 이용하여 나노 상변화 코팅층을 소결시킬 경우, 레이저빔의 강도 및 스캔속도 등의 조건에 따라 소결되는 구리가 산화되거나, 비저항이 크게 발생할 수 있어, 제품의 불량을 야기시킬 수 있다.When the nano-phase change coating layer is sintered using the laser beam as described above, the sintered copper may be oxidized or specific resistance may be greatly generated according to the conditions such as the intensity and scan speed of the laser beam, which may cause product defects. .
그러나, 종래의 레이저빔을 이용한 회로 제조방법에서는, 기판에 도포된 나노 상변화 코팅층에 조사되는 레이저빔의 강도 및 스캔속도를 구체적으로 어떻게 하여, 산화구리의 발생을 억제하고 비저항을 작게 할 것인가에 대한 구체적인 방법이 나타나 있지 않았다.However, in the conventional circuit fabrication method using a laser beam, how to specifically measure the intensity and scan speed of the laser beam irradiated to the nanophase change coating layer applied to the substrate to suppress the occurrence of copper oxide and reduce the specific resistance No specific method was shown.
본 발명은 전술한 문제점을 해결하기 위한 것으로써, 기판에 도포된 나노 상변화 코팅층(구리잉크)에 조사되는 레이저빔의 강도 및 스캔속도를 구체적으로 한정하여, 소결된 구리에서 산화가 발생되는 것을 방지하고, 비저항을 작게 할 수 있는 레이저를 이용한 구리잉크의 소결 방법을 제공하는데 그 목적이 있다.The present invention is to solve the above-described problems, by specifically limiting the intensity and scan speed of the laser beam irradiated on the nano-phase change coating layer (copper ink) applied to the substrate, that the oxidation occurs in the sintered copper It is an object of the present invention to provide a method of sintering a copper ink using a laser that can prevent and reduce a specific resistance.
상기 목적을 달성하기 위하여 본 발명의 레이저를 이용한 구리잉크의 소결 방법은, 구리가 함유된 구리잉크를 기판에 도포하여 인쇄패턴을 형성하는 잉크도포단계와; 레이저장치를 이용하여 상기 구리잉크에 레이저빔을 조사하여 상기 구리잉크를 소결시키는 소결단계를 포함하여 이루어지되, 상기 레이저빔의 강도는 100W/cm2 이상이고 상기 구리잉크에 함유된 구리의 녹는점보다 낮으며, 상기 레이저장치는 단위시간당 상기 기판에 조사된 레이저빔의 크기만큼의 거리를 0.6mm/s ~ 5mm/s의 스캔속도로 이동하는 것을 특징으로 한다.In order to achieve the above object, a method of sintering a copper ink using a laser of the present invention includes: an ink coating step of forming a printing pattern by applying a copper ink containing copper to a substrate; And a sintering step of sintering the copper ink by irradiating a laser beam to the copper ink using a laser device, wherein the intensity of the laser beam is 100 W / cm 2 or more and is higher than the melting point of copper contained in the copper ink. The laser device is characterized in that for moving the distance of the size of the laser beam irradiated to the substrate per unit time at a scan speed of 0.6mm / s ~ 5mm / s.
상기 레이저장치는 레이저빔의 강도가 동일한 상태에서 상기 레이저빔의 크기가 커질수록 상기 레이저장치의 스캔속도를 증가시키고, 상기 레이저빔의 크기가 동일한 경우에는 상기 레이저빔의 강도 및 스캔속도를 크게 하여 소결되는 구리잉크의 비저항을 작게 한다.The laser device increases the scan speed of the laser device as the size of the laser beam increases while the intensity of the laser beam is the same, and increases the intensity and scan speed of the laser beam when the size of the laser beam is the same. The specific resistance of the copper ink to be sintered is made small.
상기 구리잉크는 수 십 nm 크기 이하의 직경을 가지는 구리가 용매에 분산되어 있는 잉크인 파우더(power)타입으로 이루어지고, 상기 레이저빔의 강도는 100~200W/cm2이며, 상기 레이저장치의 스캔속도는 0.6~2mm/s이다.The copper ink is a powder (power) type of ink in which copper having a diameter of several tens of nm or less is dispersed in a solvent, and the intensity of the laser beam is 100 to 200 W / cm 2, and the scanning speed of the laser device is Is 0.6 to 2 mm / s.
또는, 상기 구리잉크는 파우더타입과 전구체(precursor)타입이 혼합된 하이브리드 타입으로 이루어지고, 상기 파우더타입은 수 십 nm 크기 이하의 직경을 가지는 구리가 용매에 분산되어 있는 잉크로 이루어지며, 상기 전구체타입은 열을 가하면 화학반응이 일어나 구리로 변화하는 구리 전구체가 함유된 잉크로 이루어지되, 상기 구리잉크가 하이브리드 타입인 경우, 상기 레이저빔의 강도는 190~300W/cm2이며, 상기 레이저장치의 스캔속도는 1~4mm/s이다.Alternatively, the copper ink is made of a hybrid type in which a powder type and a precursor type are mixed, and the powder type is made of an ink in which copper having a diameter of several tens of nm or less is dispersed in a solvent. The type is composed of an ink containing a copper precursor that changes to copper when a chemical reaction occurs when heat is applied, but when the copper ink is a hybrid type, the intensity of the laser beam is 190 ~ 300W / cm2, the scan of the laser device The speed is 1-4 mm / s.
상기 레이저장치에 의해 단위시간당 상기 기판에 조사된 상기 레이저빔의 크기는 스캔방향으로 0.2mm의 크기를 갖도록 한다.The size of the laser beam irradiated to the substrate per unit time by the laser device is to have a size of 0.2 mm in the scanning direction.
이상에서 설명한 바와 같은 본 발명의 레이저를 이용한 구리잉크의 소결 방법에 따르면 다음과 같은 효과가 있다.According to the sintering method of the copper ink using the laser of the present invention as described above has the following effects.
기판에 도포된 구리잉크에 조사되는 레이저빔의 강도 및 스캔속도를 구체적으로 한정함으로써, 소결된 구리에서 산화가 발생되는 것을 방지할 수 있고, 비저항 값을 작게 할 수 있다.By specifically limiting the intensity and scan speed of the laser beam irradiated to the copper ink applied to the substrate, it is possible to prevent the occurrence of oxidation in the sintered copper and to reduce the specific resistance value.
도 1은 본 발명의 실시예와 관련된 전구체(precursor)타입 구리잉크, 파우더타입 구리잉크, 하이브리드타입 구리잉크의 파장별 흡광도,1 is a wavelength (absorbance) of the precursor (precursor) type copper ink, powder type copper ink, hybrid type copper ink according to an embodiment of the present invention,
도 2a는 본 발명의 실시예에 따른 파우더타입 구리잉크의 레이저빔 소결조건에 따른 비저항을 나타낸 그래프, Figure 2a is a graph showing the specific resistance according to the laser beam sintering conditions of the powder type copper ink according to an embodiment of the present invention,
도 2b는 본 발명의 실시예에 따른 파우더타입 구리잉크의 열소결 시간에 따른 비저항을 나타낸 그래프,Figure 2b is a graph showing the specific resistance according to the heat sintering time of the powder type copper ink according to an embodiment of the present invention,
도 3a는 본 발명의 실시예에 따른 하이브리드타입 구리잉크의 레이저빔 소결조건에 따른 비저항을 나타낸 그래프, Figure 3a is a graph showing the specific resistance according to the laser beam sintering conditions of the hybrid type copper ink according to an embodiment of the present invention,
도 3b는 본 발명의 실시예에 따른 하이브리드타입 구리잉크의 열소결 시간에 따른 비저항을 나타낸 그래프,Figure 3b is a graph showing the specific resistance according to the heat sintering time of the hybrid type copper ink according to an embodiment of the present invention,
도 4는 본 발명의 실시예에 따른 하이브리드타입 구리잉크의 레이저빔소결과 열소결에 따른 구리잉크의 소결된 미세조직과 비저항을 나타낸 사진,4 is a photograph showing the sintered microstructure and the specific resistance of the copper ink according to the laser beam sintering and heat sintering of the hybrid type copper ink according to an embodiment of the present invention,
도 5는 본 발명의 실시예에 따른 하이브리드타입 구리잉크의 소결공정조건에 따른 표면 분석 결과를 나타낸 그래프.Figure 5 is a graph showing the surface analysis results according to the sintering process conditions of the hybrid type copper ink according to an embodiment of the present invention.
본 발명의 레이저를 이용한 구리잉크의 소결 방법은, 잉크도포단계와 소결단계로 이루어진다.The copper ink sintering method using the laser of the present invention comprises an ink coating step and a sintering step.
상기 잉크도포단계는 인쇄회로기판 등과 같은 기판에 구리가 함유된 구리잉크를 도포하여 인쇄패턴을 형성하는 단계이다.The ink application step is a step of forming a printed pattern by applying a copper ink containing copper to a substrate such as a printed circuit board.
이때, 상기 구리잉크는 액체상태이기 때문에 작업자의 의도에 따라 상기 기판에 다양한 인쇄패턴을 형성할 수 있게 된다.At this time, since the copper ink is in a liquid state, it is possible to form various printing patterns on the substrate according to the intention of the operator.
이러한 상기 구리잉크는 도 1에 도시된 바와 같이, 전구체(precursor)타입과, 파우더(power)타입과, 하이브리드타입으로 구분된다.The copper ink is classified into a precursor type, a powder type, and a hybrid type, as shown in FIG. 1.
상기 전구체타입의 구리잉크는, 열을 가하면 화학반응이 일어나 구리로 변화하는 구리 전구체가 함유된 잉크이다.The precursor type copper ink is an ink containing a copper precursor that is converted into copper by a chemical reaction upon application of heat.
상기 파우더타입의 구리잉크는, 수 십 nm 크기 이하의 직경을 가지는 구리가 용매에 분산되어 있는 잉크이다.The powder-type copper ink is an ink in which copper having a diameter of several tens of nm or less is dispersed in a solvent.
상기 하이브리드타입의 구리잉크는, 상기 전구체타입과 파우더타입이 혼합되어 있는 용액 상태의 잉크이다.The hybrid type copper ink is a solution ink in which the precursor type and the powder type are mixed.
상기 소결단계는 용액상태의 상기 구리잉크에 레이저장치를 이용하여 레이저빔을 조사함으로써 상기 구리잉크를 소결시키는 단계이다.The sintering step is a step of sintering the copper ink by irradiating a laser beam to the copper ink in a solution state using a laser device.
이때, 상기 레이저빔의 강도는 100W/cm2 이상이고 상기 구리잉크에 함유된 구리의 녹는점보다 낮으며, 상기 레이저장치는 단위시간당 상기 기판에 조사된 레이저빔의 크기만큼의 거리를 0.6mm/s ~ 5mm/s의 스캔속도로 이동하도록 한다.In this case, the intensity of the laser beam is 100W / cm 2 or more and lower than the melting point of the copper contained in the copper ink, the laser device 0.6mm / s the distance of the size of the laser beam irradiated to the substrate per unit time Move to a scan speed of ~ 5mm / s.
이때, 상기 레이저장치에 의해 단위시간당 상기 기판에 조사된 상기 레이저빔의 크기는 스캔방향으로 0.2mm의 크기를 갖도록 한다.At this time, the size of the laser beam irradiated to the substrate per unit time by the laser device is to have a size of 0.2mm in the scan direction.
그리고, 상기 레이저장치는 레이저빔의 강도가 동일한 상태에서 상기 레이저빔의 크기 즉 스캔방향으로의 크기가 커질수록 상기 레이저장치의 스캔속도를 증가시키도록 한다.The laser device increases the scan speed of the laser device as the size of the laser beam increases, that is, in the scan direction, in the state where the laser beam intensity is the same.
예를 들어, 레이저빔의 강도가 동일한 경우, 상기 레이저빔의 크기가 1mm이고 스캔속도가 1mm/s라고 하면, 레이저빔의 크기가 2mm일 때에는 스캔속도가 2mm/s가 된다.For example, if the laser beams have the same intensity, assuming that the size of the laser beam is 1 mm and the scan speed is 1 mm / s, the scan speed is 2 mm / s when the size of the laser beam is 2 mm.
이하에서는, 위와 같은 본 발명에 대한 구체적인 실험 실시예를 가지고 설명한다.Hereinafter, it will be described with a specific experimental example for the present invention as described above.
[ 실시예1 ]Example 1
실시예1에서 사용한 구리잉크는 (주)동진쎄미컴에 제조한 파우더타입의 구리잉크이고, 상기 기판은 글라스 웨이퍼(sodalime)이며, Air 분위기에서 소결하였고, 레이저빔장비는 CW 532nm파장 레이저빔(Coherent사, verdi_V5)를 사용하였다.Copper ink used in Example 1 is a powder-type copper ink manufactured by Dongjin Semicom Co., Ltd., the substrate is a glass wafer (sodalime), sintered in the air atmosphere, the laser beam equipment is a CW 532nm wavelength laser beam ( Coherent, verdi_V5) was used.
이때, 상기 기판에 조사된 레이저빔의 크기는 동일한 크기를 갖는 것을 전제로 한다.At this time, the size of the laser beam irradiated to the substrate is assumed to have the same size.
본 실시예에서는 스캔방향으로의 레이저빔의 크기를 0.2mm로 하였다.In this embodiment, the size of the laser beam in the scanning direction is set to 0.2 mm.
도 2a는 레이저빔을 이용하여 구리잉크를 소결하였을 때의 비저항을 나타낸 그래프이고, 도 2b는 열을 가하여 구리잉크를 소결하였을 때의 비저항을 나타낸 그래프이다.2A is a graph showing specific resistance when sintering copper ink using a laser beam, and FIG. 2B is a graph showing specific resistance when sintering copper ink by applying heat.
도 2a에 도시된 바와 같이, 0.4mm/s의 스캔속도의 레이저장치로 구리잉크의 소결시 106W/cm2 이상의 강도에서 비저항이 증가하는 경향을 보였다.As shown in Figure 2a, the specific resistance increased at strength of 106W / cm 2 or more during sintering of copper ink with a laser device of a scan speed of 0.4mm / s.
그리고, 레이저장치의 스캔속도를 0.6mm/s 이상으로 하여 구리잉크를 소결할 경우에는 레이저빔의 강도가 증가함에 따라 비저항의 값이 감소하였다.In the case of sintering copper ink with the scan speed of the laser device of 0.6 mm / s or more, the value of the specific resistance decreased as the intensity of the laser beam increased.
특히, 레이저장치의 스캔속도를 1mm/s로 하고, 레이저장치의 강도를 183W/cm2으로 할 경우, 구리잉크의 소결에 따른 최소 비저항 17μΩ㎝이 측정되었으며, 이는 벌크구리 비저항인 1.68μΩ㎝의 10배 정도의 값이다.In particular, when the scanning speed of the laser device was 1mm / s and the intensity of the laser device was 183W / cm2, the minimum specific resistance 17μΩcm according to the sintering of the copper ink was measured, which is 10 of the bulk copper resistivity of 1.68μΩcm. That's about twice the value.
한편 도 2b에 도시된 바와 같이, 레이저빔이 아닌 다른 방법으로 구리잉크에 열을 가하여 소결하는 방법의 경우에는, 250℃이상에서는 시간이 지남에 따라 비저항이 증가하는 경향을 보였다.On the other hand, as shown in Figure 2b, in the case of the method of sintering by heating the copper ink by a method other than a laser beam, the specific resistance tended to increase with time over 250 ℃.
또한, 도 2a에 나타나 있는 레이저빔을 이용한 소결에 따른 비저항과 도 2b에 나타나 있는 열을 이용한 소결에 따른 비저항을 비교하여 보면, 기판에 조사되는 레이저빔의 크기가 동일한 경우에 레이저빔의 강도가 높고 스캔속도가 증가할수록 소결된 구리의 비저항이 더 작아짐을 알 수 있다.In addition, when comparing the specific resistance of the sintering using the laser beam shown in FIG. 2A and the specific resistance of the sintering using heat shown in FIG. 2B, the intensity of the laser beam is increased when the size of the laser beam irradiated to the substrate is the same. It can be seen that the higher the scan rate, the smaller the resistivity of the sintered copper.
이러한 실험예로부터 상기 레이저빔의 강도는 100~200W/cm2이며, 스캔속도는 0.6~2mm/s임이 바람직하다.In this experimental example, the laser beam has an intensity of 100-200 W / cm 2 and a scan speed of 0.6-2 mm / s.
[ 실시예2 ]Example 2
실시예2에서 사용한 구리잉크는 (주)동진쎄미컴에 제조한 하이브리드타입의 구리잉크이고, 상기 기판은 글라스 웨이퍼(sodalime)이며, Air 분위기에서 소결하였고, 레이저빔장비는 CW 532nm파장 레이저빔(Coherent사, verdi_V5)를 사용하였다.Copper ink used in Example 2 is a hybrid type copper ink manufactured by Dongjin Semiconductor Co., Ltd., the substrate is a glass wafer (sodalime), sintered in the air atmosphere, the laser beam equipment is a CW 532nm wavelength laser beam ( Coherent, verdi_V5) was used.
이때, 상기 기판에 조사된 레이저빔의 크기는 동일한 크기를 갖는 것을 전제로 한다.At this time, the size of the laser beam irradiated to the substrate is assumed to have the same size.
본 실시예에서는 스캔방향으로의 레이저빔의 크기를 0.2mm로 하였다.In this embodiment, the size of the laser beam in the scanning direction is set to 0.2 mm.
도 3a는 레이저빔을 이용하여 구리잉크를 소결하였을 때의 비저항을 나타낸 그래프이고, 도 3b는 열을 가하여 구리잉크를 소결하였을 때의 비저항을 나타낸 그래프이다.3A is a graph showing specific resistance when sintering copper ink using a laser beam, and FIG. 3B is a graph showing specific resistance when sintering copper ink by applying heat.
도 3a에 도시된 바와 같이, 0.6mm/s의 스캔속도의 레이저장치로 구리잉크의 소결시 190W/cm2 이상의 강도에서 비저항이 증가하는 경향을 보였다.As shown in Figure 3a, the specific resistance increased at strength of 190W / cm2 or more during sintering of copper ink with a laser device of a scanning speed of 0.6mm / s.
그리고, 레이저장치의 스캔속도를 1.0mm/s 이상으로 하여 구리잉크를 소결할 경우에는 레이저빔의 강도가 증가함에 따라 비저항의 값이 점점 감소하였다.In the case of sintering the copper ink with the scanning speed of the laser device of 1.0 mm / s or more, the value of the specific resistance gradually decreased as the intensity of the laser beam increased.
특히, 레이저장치의 스캔속도를 3mm/s로 하고, 레이저빔의 강도를 252W/cm2으로 할 경우, 구리잉크의 소결에 따른 최소 비저항 5.3μΩ㎝이 측정되었으며, 이는 벌크구리 비저항인 1.68μΩ㎝의 약 3배 정도의 값이다.In particular, when the scanning speed of the laser device is 3mm / s and the intensity of the laser beam is 252W / cm2, the minimum resistivity of 5.3 μΩcm according to the sintering of the copper ink was measured, which is 1.68 μΩcm, which is the bulk copper resistivity. About three times the value.
한편 도 3b에 도시된 바와 같이, 레이저빔이 아닌 다른 방법으로 구리잉크에 열을 가하여 소결하는 방법의 경우에는, 250℃이상에서는 시간이 지남에 따라 비저항이 증가하는 경향을 보였다.On the other hand, as shown in Figure 3b, in the case of the method of sintering by heating the copper ink by a method other than a laser beam, the specific resistance tended to increase over time at 250 ℃.
또한, 도 2a에 나타나 있는 레이저빔을 이용한 소결에 따른 비저항과 도 2b에 나타나 있는 열을 이용한 소결에 따른 비저항을 비교하여 보면, 기판에 조사되는 레이저빔의 크기가 동일한 경우에 레이저빔의 강도가 높고 스캔속도가 증가할수록 소결된 구리의 비저항이 더 작아짐을 알 수 있다.In addition, when comparing the specific resistance of the sintering using the laser beam shown in FIG. 2A and the specific resistance of the sintering using heat shown in FIG. 2B, when the laser beam irradiated onto the substrate has the same size, It can be seen that the higher the scan rate, the smaller the resistivity of the sintered copper.
이러한 실험예로부터 상기 레이저빔의 강도는 190~300W/cm2이며, 스캔속도는 1~4mm/s임이 바람직하다.In this experimental example, the intensity of the laser beam is 190 to 300 W / cm 2, and the scanning speed is preferably 1 to 4 mm / s.
그리고, 도 4에 도시된 바와 같이 레이저빔 소결의 경우에는, 강도 및 스캔속도가 증가할수록 비저항값이 점점 작아지면서 구리입자의 소결이 잘 이루어짐을 볼 수 있다.And, as shown in Figure 4, in the case of laser beam sintering, it can be seen that the sintering of the copper particles is made well as the specific resistance value gradually decreases as the intensity and scan speed increase.
이에 반해, 열소결의 경우에는, 가해지는 열의 온도가 증가하고 시간이 지남에 따라 구리입자의 소결이 더 진행되어 보이나, 비저항은 더 커지는 점을 볼 수 있다.On the other hand, in the case of heat sintering, as the temperature of the applied heat increases and as time passes, the sintering of the copper particles proceeds further, but it can be seen that the specific resistance becomes larger.
또한, 도 5는 본 발명에 따른 하이브리드타입 구리잉크의 소결공정조건에 따른 표면 분석 결과를 나타낸 그래프로써, 그래프의 가로축은 회절각도를 나타내고, 세로축은 강도를 나타낸다.In addition, Figure 5 is a graph showing the surface analysis results according to the sintering process conditions of the hybrid type copper ink according to the present invention, the horizontal axis represents the diffraction angle, the vertical axis represents the intensity.
도 5에서 (a)로 표시된 레이저빔의 강도 252W/cm2, 스캔속도 4mm/s로 하이브리드 타입의 구리잉크에 레이저빔을 조사하여 소결한 경우에는, 구리(Cu) 피크만 확인되었고, 비저항은 7.07μΩ㎝로 나타났다.In the case of sintering by irradiating a laser beam to a hybrid type copper ink at an intensity of 252 W / cm 2 and a scanning speed of 4 mm / s of the laser beam indicated by (a) in FIG. 5, only a copper (Cu) peak was observed and the specific resistance was 7.07. appeared in μΩcm.
그리고, 도 5에서 (b)로 표시된 레이저빔의 강도 190W/cm2, 스캔속도 1.0mm/s로 하이브리드 타입의 구리잉크에 레이저빔을 조사하여 소결한 경우에도, 구리(Cu) 피크만 확인되었고, 비저항은 7.1μΩ㎝로 나타났다.In addition, even when the laser beam was sintered by irradiating a laser beam to a hybrid type copper ink at an intensity of 190 W / cm 2 and a scanning speed of 1.0 mm / s as shown in FIG. 5B, only copper (Cu) peaks were confirmed. The resistivity was found to be 7.1 μΩcm.
이에 반해, 도 5에서 (c)로 표시된 레이저빔의 강도 190W/cm2, 스캔속도 0.6mm/s로 하이브리드 타입의 구리잉크에 레이저빔을 조사하여 소결한 경우와, (d)로 표시된 열소결방법으로 하이브리드 타입의 구리잉크를 소결한 경우에는, 산화구리(Cu2O)가 나타남을 확인할 수 있다.On the contrary, when the laser beam is sintered by irradiating a laser beam to the hybrid type copper ink at an intensity of 190 W / cm 2 and a scanning speed of 0.6 mm / s, the laser beam indicated by (c) in FIG. 5 and the heat sintering method indicated by (d) In the case of sintering a hybrid type copper ink, it can be seen that copper oxide (Cu 2 O) appears.
위와 같은 도 5로부터, Air분위기에서 레이저빔을 이용하여 하이브리드 타입의 구리잉크를 소결할 경우에, 레이저빔의 강도를 190~300W/cm2로 하고 스캔속도를 1~4mm/s하면 구리가 산화되지 않고 소결됨을 알 수 있다.5, when sintering a hybrid type copper ink using a laser beam in an air atmosphere, copper is not oxidized when the intensity of the laser beam is 190 to 300 W / cm 2 and the scan speed is 1 to 4 mm / s. It can be seen that without sintering.
이와 달리, 레이저빔의 강도 또는 스캔속도를 낮추거나, 열소결을 하게 되면 산화구리가 발생됨을 알 수 있다.In contrast, it can be seen that copper oxide is generated when the intensity or scan speed of the laser beam is lowered or when the heat is sintered.
위와 같은 실험을 통해, 기판에 조사된 레이저빔의 크기가 동일한 경우에, 구리잉크에 가해지는 상기 레이저빔의 강도 및 스캔속도를 크게 하면, 소결되는 구리잉크의 비저항이 작아짐을 알 수 있었다.Through the above experiments, in the case where the size of the laser beam irradiated to the substrate is the same, it can be seen that if the intensity and scan speed of the laser beam applied to the copper ink is increased, the specific resistance of the sintered copper ink is reduced.
본 발명인 레이저를 이용한 구리잉크의 소결 방법은 전술한 실시예에 국한하지 않고, 본 발명의 기술 사상이 허용되는 범위 내에서 다양하게 변형하여 실시할 수 있다.The sintering method of the copper ink using the laser of the present invention is not limited to the above-described embodiment, and can be carried out in various modifications within the allowable technical spirit of the present invention.
구리잉크에 레이저빔을 조사하여 소결시킴으로써, 미세패턴이 형성된 회로기판을 용이하게 제작할 수 있다.By sintering by irradiating a copper ink with a laser beam, a circuit board with a fine pattern can be easily manufactured.

Claims (5)

  1. 구리가 함유된 구리잉크를 기판에 도포하여 인쇄패턴을 형성하는 잉크도포단계와;An ink coating step of applying a copper ink containing copper to a substrate to form a printing pattern;
    레이저장치를 이용하여 상기 구리잉크에 레이저빔을 조사하여 상기 구리잉크를 소결시키는 소결단계를 포함하여 이루어지되,It comprises a sintering step of sintering the copper ink by irradiating a laser beam to the copper ink using a laser device,
    상기 레이저빔의 강도는 100W/cm2 이상이고 상기 구리잉크에 함유된 구리의 녹는점보다 낮으며,The intensity of the laser beam is 100W / cm 2 or more and lower than the melting point of the copper contained in the copper ink,
    상기 레이저장치는 단위시간당 상기 기판에 조사된 레이저빔의 크기만큼의 거리를 0.6mm/s ~ 5mm/s의 스캔속도로 이동하는 것을 특징으로 하는 레이저를 이용한 구리잉크의 소결 방법.The laser device is a method of sintering copper ink using a laser, characterized in that for moving the distance of the size of the laser beam irradiated to the substrate per unit time at a scanning speed of 0.6mm / s ~ 5mm / s.
  2. 청구항1에 있어서,The method according to claim 1,
    상기 레이저장치는 레이저빔의 강도가 동일한 상태에서 상기 레이저빔의 크기가 커질수록 상기 레이저장치의 스캔속도를 증가시키고,The laser device increases the scan speed of the laser device as the size of the laser beam increases while the intensity of the laser beam is the same.
    상기 레이저빔의 크기가 동일한 경우에는 상기 레이저빔의 강도 및 스캔속도를 크게 하여 소결되는 구리잉크의 비저항을 작게 하는 것을 특징으로 하는 레이저를 이용한 구리잉크의 소결 방법. When the size of the laser beam is the same, the laser ink sintering method using a laser, characterized in that to reduce the specific resistance of the sintered copper ink by increasing the intensity and scan speed of the laser beam.
  3. 청구항1 또는 청구항2에 있어서,The method according to claim 1 or 2,
    상기 구리잉크는 수 십 nm 크기 이하의 직경을 가지는 구리가 용매에 분산되어 있는 잉크인 파우더(power)타입으로 이루어지고,The copper ink is made of powder (power), which is an ink in which copper having a diameter of several tens of nm or less is dispersed in a solvent,
    상기 레이저빔의 강도는 100~200W/cm2이며, 상기 레이저장치의 스캔속도는 0.6~2mm/s인 것을 특징으로 하는 레이저를 이용한 구리잉크의 소결 방법. The intensity of the laser beam is 100 ~ 200W / cm2, the scanning speed of the laser device is 0.6 ~ 2mm / s method of sintering copper ink using a laser.
  4. 청구항1 또는 청구항2에 있어서,The method according to claim 1 or 2,
    상기 구리잉크는 파우더타입과 전구체(precursor)타입이 혼합된 하이브리드 타입으로 이루어지고,The copper ink is made of a hybrid type of powder and precursor (precursor) type,
    상기 파우더타입은 수 십 nm 크기 이하의 직경을 가지는 구리가 용매에 분산되어 있는 잉크로 이루어지며,The powder type is made of an ink in which copper having a diameter of several tens of nm or less is dispersed in a solvent,
    상기 전구체타입은 열을 가하면 화학반응이 일어나 구리로 변화하는 구리 전구체가 함유된 잉크로 이루어지되,The precursor type is made of an ink containing a copper precursor that is converted to copper when a chemical reaction occurs by applying heat,
    상기 구리잉크가 하이브리드 타입인 경우, 상기 레이저빔의 강도는 190~300W/cm2이며, 상기 레이저장치의 스캔속도는 1~4mm/s인 것을 특징으로 하는 레이저를 이용한 구리잉크의 소결 방법. When the copper ink is a hybrid type, the intensity of the laser beam is 190 ~ 300W / cm2, the scanning speed of the laser device is 1 ~ 4mm / s sintering method of the copper ink using a laser.
  5. 청구항1에 있어서,The method according to claim 1,
    상기 레이저장치에 의해 단위시간당 상기 기판에 조사된 상기 레이저빔의 크기는 스캔방향으로 0.2mm의 크기를 갖는 것을 특징으로 하는 레이저를 이용한 구리잉크의 소결 방법.The size of the laser beam irradiated to the substrate per unit time by the laser device has a size of 0.2mm in the scanning direction.
PCT/KR2014/007888 2014-08-25 2014-08-25 Method for sintering copper ink using laser WO2016032013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/007888 WO2016032013A1 (en) 2014-08-25 2014-08-25 Method for sintering copper ink using laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2014/007888 WO2016032013A1 (en) 2014-08-25 2014-08-25 Method for sintering copper ink using laser

Publications (1)

Publication Number Publication Date
WO2016032013A1 true WO2016032013A1 (en) 2016-03-03

Family

ID=55399893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007888 WO2016032013A1 (en) 2014-08-25 2014-08-25 Method for sintering copper ink using laser

Country Status (1)

Country Link
WO (1) WO2016032013A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100080120A (en) * 2008-12-31 2010-07-08 한국생산기술연구원 Sintering method of printed circuit by laser writing
KR101058844B1 (en) * 2008-12-31 2011-08-24 한국생산기술연구원 Circuit manufacturing method using laser
KR20120041055A (en) * 2010-10-20 2012-04-30 한국과학기술원 Method and apparatus for manufacturing of fine copper wiring using laser
KR20120132424A (en) * 2011-05-27 2012-12-05 한양대학교 산학협력단 Light sintering method of conductive Cu nano ink
KR20130023732A (en) * 2011-08-29 2013-03-08 한국과학기술원 Apparatus and method for nanoscale laser sintering of metal nanoparticles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100080120A (en) * 2008-12-31 2010-07-08 한국생산기술연구원 Sintering method of printed circuit by laser writing
KR101058844B1 (en) * 2008-12-31 2011-08-24 한국생산기술연구원 Circuit manufacturing method using laser
KR20120041055A (en) * 2010-10-20 2012-04-30 한국과학기술원 Method and apparatus for manufacturing of fine copper wiring using laser
KR20120132424A (en) * 2011-05-27 2012-12-05 한양대학교 산학협력단 Light sintering method of conductive Cu nano ink
KR20130023732A (en) * 2011-08-29 2013-03-08 한국과학기술원 Apparatus and method for nanoscale laser sintering of metal nanoparticles

Similar Documents

Publication Publication Date Title
US7618704B2 (en) Spin-printing of electronic and display components
KR100653251B1 (en) Mathod for Manufacturing Wiring Board Using Ag-Pd Alloy Nanoparticles
JP4355436B2 (en) Method for forming wiring pattern, method for manufacturing circuit board, and method for manufacturing translucent body having light-shielding pattern formed thereon
KR100864268B1 (en) Electron attachment assisted formation of electrical conductors
US20060160373A1 (en) Processes for planarizing substrates and encapsulating printable electronic features
KR20150138332A (en) Copper-fine-particle dispersion liquid, conductive-film formation method, and circuit board
WO2007140480A2 (en) Printed resistors and processes for forming same
KR100882023B1 (en) Patterning method using surface energy control
US20160249461A1 (en) Protective coating for printed conductive pattern on patterned nanowire transparent conductors
KR101067276B1 (en) Method for Forming Micro-Pattern by Near-Field Electro-Spinning Technique
WO2018199644A1 (en) Silver ink for 3d printing and 3d printing method using same
CN114745875B (en) High-precision multilayer circuit board and 3D printing preparation method thereof
JP5662985B2 (en) Conductive pattern-forming substrate, circuit board and method for producing them
WO2016032013A1 (en) Method for sintering copper ink using laser
KR100984256B1 (en) Control method of the overlay accuracy using by self-aligned gravure printing
KR100666226B1 (en) Patterning method of microelectronic circuit and a fabricating apparatus thereof, and a printed circuit board using the method
KR101058845B1 (en) Pattern Forming Method Using Inkjet Printing
KR20100090225A (en) Method of forming conductive pattern and substrate having conductive pattern manufactured by the same method
KR101494216B1 (en) sintering method of copper ink using laser
JP4280025B2 (en) Method for forming fine pattern
KR101748105B1 (en) Method for forming wiring line
KR20100080123A (en) Circuit fabrication by direct laser writing
Felba et al. Materials and technology for conductive microstructures
JP4507893B2 (en) Wiring board
KR100663266B1 (en) Method for producing fine wiring and conductive board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900659

Country of ref document: EP

Kind code of ref document: A1