WO2016031811A1 - Method for generating tire model, device for generating tire model, simulation method for tire, and non-transitory computer-readable medium - Google Patents

Method for generating tire model, device for generating tire model, simulation method for tire, and non-transitory computer-readable medium Download PDF

Info

Publication number
WO2016031811A1
WO2016031811A1 PCT/JP2015/073847 JP2015073847W WO2016031811A1 WO 2016031811 A1 WO2016031811 A1 WO 2016031811A1 JP 2015073847 W JP2015073847 W JP 2015073847W WO 2016031811 A1 WO2016031811 A1 WO 2016031811A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire model
tire
model
base
created
Prior art date
Application number
PCT/JP2015/073847
Other languages
French (fr)
Japanese (ja)
Inventor
直哉 古渡
正隆 小石
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Priority to JP2016545543A priority Critical patent/JP6601401B2/en
Publication of WO2016031811A1 publication Critical patent/WO2016031811A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Definitions

  • the present invention relates to a tire model creation method for creating a tire model, a tire model creation device, a tire simulation method, and a non-transitory computer-readable medium.
  • the optimal shape design method used suitably for tire design is known (patent document 1).
  • a plurality of base cross-sectional shapes of the product shape are made deformed shapes of the natural vibration mode of the product shape, and a plurality of sample product shapes are generated by linearly combining the base cross-sectional shapes based on the experimental design method. Then, the evaluation value of the product performance of the generated sample product shape is obtained, and the optimum product shape with the evaluation value being the optimum value is extracted based on the evaluation value of the product performance.
  • the base cross-sectional shape is limited because the deformation shape in the natural vibration mode of the tire cross-sectional shape is the base cross-sectional shape of the tire cross-sectional shape.
  • the optimum product shape of the tire extracted using the base cross-sectional shape is also limited to the range of the combined shape obtained by combining the deformed shapes in the natural vibration mode. For this reason, the optimum product shape of the tire obtained by the above-described optimum shape design method cannot always sufficiently improve the tire performance.
  • the reference tire cross-sectional shape that is the basis of the base cross-sectional shape is also different, so that the tire cross-sectional shape cannot have consistent characteristics regardless of the tire size.
  • the created tire cross-sectional shape is not limited to the combined shape combining the deformed shapes in the natural vibration mode, and the tire cross-sectional shape is efficiently created. It is an object to provide a tire model creation method, a tire model creation device, a tire simulation method using the tire model creation method, and a computer-readable medium.
  • the tire model creation method of the present technology is a method of creating a tire model of a pneumatic tire from a reference tire model using a computer.
  • the method is A first step of creating a plurality of templates representing a distribution of a change amount for changing an outer shape from a reference tire model by a computer; A second step of creating the reference tire model by the computer; A third step of creating a base tire model having an outer shape in which an outer shape of the reference tire model is changed by the computer using the reference tire model and one of the templates; A base tire model having a different external shape from a base tire model that has already been created using a template that represents a distribution of the amount of change different from the distribution of the amount of change already used to create the base tire model.
  • a reference tire model group in which at least one of a tire outer shape, a tire size, and a tire structure is different is created, and one of the reference model groups is the reference model, Further, the plurality of synthetic tire models are created by repeating the third step and the fourth step according to the number of the templates, using the template for each of the created reference tire model groups. It is preferable to do.
  • the computer acquires an outer contour line of the reference tire model or a carcass line of the reference tire model, and uses the outer contour line or the carcass line.
  • the base tire model is created by changing the template.
  • the reference tire model is a set of elements formed by a plurality of nodes and a plurality of sides connecting the plurality of nodes.
  • the computer associates both ends of at least a part of the distribution of the change amount of the template with nodes on the contour line or the carcass line. Therefore, the region of the template is enlarged or reduced in accordance with the distance on the outer shape contour line between the nodes or the distance on the carcass line, and the outer shape of the reference tire model is obtained from the distribution of the enlarged and reduced regions.
  • the base tire model is created by determining the amount of movement of each node on the contour line or the carcass line and changing the shape of the outer contour line or the carcass line. At this time, it is preferable that the region of the template is enlarged or reduced so that the region corresponds to at least one range of a tread portion, a side portion, and a bead portion of the reference tire model.
  • the reference tire model is a model that can be subjected to calculation of shape deformation analysis by the computer.
  • the computer performs the outline shape contour line of the reference tire model or the Preferably, the base tire model is created by deforming the shape of the reference tire model by applying a forced displacement corresponding to the movement amount to each node on the carcass line and performing the shape deformation analysis. .
  • the computer creates a composite vector by weighting and adding a plurality of tire base vectors representing a difference between each of the plurality of base tire models and the shape of the reference tire model, and the composite
  • the synthetic tire model is created by deforming the reference tire model based on a vector.
  • the number of ends of the cord material and the inclination angle of the cord material set in the synthetic tire model are calculated from the number of ends of the cord material and the inclination angle of the cord material set in the reference tire model. It is preferable to change according to the deformation shape from the tire model.
  • the simulation method calculates a physical quantity of tire characteristics of the synthetic tire model by performing a simulation reproducing the behavior of the tire using the synthetic tire model created by the tire model creation method.
  • Still another aspect of the present technology is a tire simulation method.
  • the simulation method by using the synthetic tire model created by the tire model creation method, by performing a simulation to reproduce the behavior of the tire, to calculate the physical quantity of the tire characteristics of the synthetic tire model, A weighting coefficient used when weighting and adding the tire base vector is a design variable, the physical quantity calculated by the simulation is an objective function, and the design variable is set so that the objective function satisfies a preset condition.
  • a step of changing the value by using the synthetic tire model created by the tire model creation method, by performing a simulation to reproduce the behavior of the tire, to calculate the physical quantity of the tire characteristics of the synthetic tire model.
  • a weighting coefficient used when weighting and adding the tire base vector is a design variable
  • the physical quantity calculated by the simulation is an objective function
  • the design variable is set so that the objective function satisfies a preset condition.
  • the computer visualizes and displays the relationship between the physical quantity and the feature value representing the weighting coefficient value or the shape of the synthetic tire model.
  • Still another embodiment of the present technology is a tire model creation device that creates a tire model of a pneumatic tire.
  • the tire model creation device A reference tire model creation unit configured to create a reference tire model;
  • a template creation unit configured to create a plurality of templates representing a distribution of a change amount for changing the outer shape from the reference tire model;
  • a base tire model creation unit configured to create a base tire model having an outer shape in which an outer shape of the reference tire model is changed using one of the reference tire model and the template;
  • a control unit configured to control the base tire model creation unit so as to create at least one base tire model having a different external shape from the already created base tire model
  • a composite tire model creation unit configured to create a plurality of composite tire models having a different external shape from the external shape of the reference tire model by combining a plurality of created base tire models And comprising.
  • Yet another aspect of the present technology is a non-transitory computer-readable medium that records a program that executes a method of creating a tire model of a pneumatic tire from a reference tire model using a computer.
  • the method Let the computer create multiple templates that represent the distribution of the amount of change to change the outer shape from the reference tire model, Causing the computer to create the reference tire model; Using the one of the reference tire model and the template, the computer creates a base tire model having an outer shape in which the outer shape of the reference tire model is changed, A base tire model having a different external shape from the base tire model that has already been created by using a template that represents a distribution of the amount of change different from the distribution of the amount of change already used to create the base tire model, among the templates. To repeatedly create And causing the computer to create a plurality of synthetic tire models having an outer shape different from the outer shape of the reference tire model by combining the plurality of created base tire models.
  • the tire cross-sectional shape to be created is not limited to the combined shape that combines the deformed shapes in the natural vibration mode.
  • the tire cross-sectional shape can be created efficiently.
  • the optimum tire cross-sectional shape that sufficiently improves the tire performance is obtained from the simulation result. Can be obtained.
  • FIG. 1 It is a figure explaining the flow of the simulation method of the tire containing the tire model creation method of this embodiment. It is a block block diagram of the simulation apparatus which performs the preparation method of the tire model of this embodiment, and the simulation method of a tire. It is sectional drawing of an example of the reference
  • (A)-(c) is a figure which shows the example of the template used by this embodiment. It is a figure explaining the method of producing a base tire model by changing the external shape outline of the standard tire model created in this embodiment.
  • (A)-(e) is a figure explaining the expansion and contraction of a partial area
  • FIG. 1 is a diagram illustrating a flow of a tire model creation method and a tire simulation method according to the present embodiment.
  • the computer creates a plurality of templates representing the distribution of the amount of change for changing the outer shape from the reference tire model (step S1). Further, the computer creates a reference tire model modeled by the finite element method or the like (step S2).
  • the reference tire model is a tire model having a tire cross-sectional shape that is a basis of the synthetic tire model, and is a tire model before the outer shape is changed by the tire model creation method and the tire simulation method of the present embodiment.
  • the computer creates a base tire model having an outer shape in which the outer shape of the reference tire model is changed using one of the reference tire model and the template (step S3). Further, the computer determines whether or not N (N is a natural number) base tire models have been created (step S4).
  • step S3 the computer uses a template representing a variation distribution different from the variation distribution already used to create the base tire model, and the base tire has a different outer shape from the base tire model already created.
  • At least one model is created (step S3).
  • N base tire models are created in the determination of step S4
  • the computer combines a plurality of the created base tire models to generate a plurality of synthetic tire models having an outer shape different from the outer shape of the reference tire model ( M: M is a natural number) (step S5).
  • M M is a natural number
  • the computer calculates a simulation that reproduces the behavior of the tire for calculating the tire characteristics (step S6). Thereby, the physical quantity of the tire characteristic of the synthetic tire model is calculated.
  • the computer determines whether or not the simulation calculation has been performed M times by replacing the synthetic tire model (step S7). The computer repeats the simulation calculation by replacing the synthetic tire model until the simulation calculation is performed M times. Finally, the computer optimizes the tire cross-sectional shape using the physical quantity of the tire characteristics of the synthetic tire model (step S8).
  • the tire cross-sectional shape of the synthetic tire model to be created is not limited to the combined shape combining the deformed shapes in the natural vibration mode, and the tire cross-sectional shape can be efficiently created based on the template. it can.
  • FIG. 2 is a block diagram of a simulation apparatus that executes the tire model creation method and the tire simulation method. A part of the simulation apparatus shown in FIG. 2 is also a tire model creation apparatus that creates a tire model.
  • the simulation apparatus 10 is configured by a computer, and includes a computer main body 12, a printer 14, a display 16, and a mouse / keyboard 18.
  • a printer 14, a display 16, and a mouse / keyboard 18 are connected to the computer main body 12.
  • the computer main body 12 includes a storage unit 20 including a RAM, a ROM, a heart disk, and the like, a CPU 22, and an analysis processing unit 24.
  • the analysis processing unit 24 includes a reference tire model creation unit 26, a template creation unit 28, a base tire model creation unit 30, a synthetic tire model creation unit 32, a control / management unit 34, a simulation calculation unit 36, and a determination unit 38.
  • the reference tire model creation unit 26, template creation unit 28, base tire model creation unit 30, synthetic tire model creation unit 32, control / management unit 34, simulation calculation unit 36, and determination unit 38 are stored in the storage unit 20.
  • This is a module formed by calling a program and executing the program by the CPU 22. That is, the analysis processing unit 24 is a software module in which the CPU 22 controls the substantial operation of the analysis processing unit 24.
  • the reference tire model creation unit 26 performs a step S2 shown in FIG. 1 and creates a reference tire model including a finite element model that reproduces a reference tire for creating a synthetic tire model.
  • the template creation unit 28 creates a plurality of templates that represent the distribution of the amount of change for changing the outer shape from the reference tire model in the part that executes step S1 shown in FIG.
  • the base tire model creation unit 30 is a part that executes step S3 shown in FIG. 1, and creates a base tire model having an outer shape that changes the outer shape of the reference tire model by using one of the reference tire model and the template. To do.
  • the base tire model creation unit 30 creates a plurality (N) of base tire models. At this time, at least one or more base tire models are created using a template representing a distribution of change amounts different from the distribution of change amounts already used for creating the base tire model. As a result, the base tire model that is created has a different external shape from the base tire model that has already been created.
  • the synthetic tire model creation unit 32 executes step S5 shown in FIG. 1 and creates a plurality of synthetic tire models having an outer shape different from the outer shape of the reference tire model by combining the plurality of created base tire models. To do.
  • the external shapes of the created synthetic tire models are different from each other.
  • the control / management unit 34 is a part that manages the operations of the reference model creation unit 26, the template creation unit 28, the base tire model creation unit 30, the synthetic tire model creation unit 32, the simulation calculation unit 36, and the determination unit 38.
  • the control / management unit 34 controls the base tire model creation unit 30 to repeat the creation of the base tire model.
  • the base tire model creation unit 30 is controlled to create one or more.
  • the simulation calculation unit 36 is a part that executes Step S6 shown in FIG. 1, and uses the created synthetic tire model to perform a simulation calculation that reproduces the behavior of the tire, whereby the physical quantity of the tire characteristics of the synthetic tire model is calculated. Is calculated.
  • the determination unit 38 is a part that executes step S8 shown in FIG. 1, and uses a weighting coefficient used when creating a synthetic tire model by combining a base tire model as a design variable, and a physical quantity calculated by simulation as an objective function.
  • the synthetic tire model having the optimum tire cross-sectional shape is extracted by changing the value of the design variable so that the objective function satisfies the set condition.
  • the determination unit 38 optimizes the tire cross-sectional shape so that the objective function satisfies a preset condition.
  • the template creation unit 28 creates a plurality of templates representing the distribution of change amounts for changing the outer shape from the reference tire model (step S1).
  • the reference tire model will be described later.
  • FIG. 3 is a cross-sectional view of an example of a reference tire model.
  • the template is information representing position information from the reference point and a change amount of each position.
  • the template is expressed by a function or linearly interpolated by dividing into a section.
  • 4A to 4C are diagrams showing examples of templates. 4A to 4C, the horizontal axis represents the position from the reference point, and the vertical axis represents the amount of change.
  • the distribution of the change amount can be freely created by operator settings. The distribution shown in FIG.
  • the created template is stored in the storage unit 20.
  • FIG. 3 is a cross-sectional view of an example of the reference tire model 40 to be created.
  • the reference tire model 40 is a model obtained by dividing a model of a pneumatic tire to be analyzed (whether or not it actually exists) by a finite number of small elements.
  • the reference tire model 40 is an aggregate of elements constituted by a plurality of nodes and a plurality of sides connecting the plurality of nodes.
  • the reference tire model 40 may be a three-dimensional model or a two-dimensional axisymmetric tire model.
  • the two-dimensional axisymmetric model is a model in which a two-dimensional cross-sectional shape is transferred in the tire circumferential direction and the same cross-sectional shape is continuous in the tire circumferential direction.
  • a tetrahedral to hexahedral solid element for reproducing a rubber member a membrane element for reproducing a cord reinforcing layer including a cord material, a shell element, and the like are used as each element.
  • the two-dimensional axisymmetric model for example, a triangular or quadrilateral solid element for reproducing a rubber member, a membrane element for reproducing a cord reinforcing layer including a cord material, a shell element, or the like is used as each element.
  • the reference tire model 40 created in this way at least the node number of each element, the coordinate value of the node, and the element shape are set, and these pieces of information are stored in the storage unit 20. Note that either the template creation or the reference tire model 40 creation may be performed first.
  • the base tire model creation unit 30 calls the reference tire model 40 and one of the templates from the storage unit 20, and uses them to select a base tire model having an outer shape that is a change in the outer shape of the reference tire model 40.
  • Create step S3.
  • the base tire model creation unit 30 acquires the outer shape contour line of the reference tire model 40 or the carcass line of the reference tire model 40 from the reference tire model 40, and the acquired outer shape contour line or carcass line is obtained. It is preferable to create the base tire model 42 by changing it using a template called from the storage unit 20. Thereby, even if a groove is provided in the tread portion of the reference tire model 40, the tire cross-sectional shape of the base tire model can be easily created.
  • FIG. 5 is a diagram for explaining a method of creating the base tire model 42 by changing the outer shape contour line of the reference tire model 40.
  • the outer shape contour line is a contour shape of a portion of the surface of the tread portion, the side portion, and the bead portion that does not include a locally recessed portion such as a groove provided in the tread portion.
  • an outline contour line 41 is shown on the reference tire model 40.
  • an outline contour line 43 of the base tire model 42 is also shown.
  • the reference tire model 40 and the base tire model 42 are displayed with only nodes.
  • the outer contour line is deformed by moving the nodes on the outer contour line of the reference tire model 40 according to the distribution of the amount of change in the template.
  • the base tire model creation unit 30 determines the distribution of the change amount of the template as a movement amount that the node should move, and uses this movement amount to move the node to deform the outer contour line. Do. Thereby, the base tire model 42 can be created.
  • the moving direction of the node is preferably a normal direction with respect to the curve of the outer contour line, but may be a preset direction.
  • the moving direction of the node located in the tread portion is the tire radial direction.
  • the moving direction of the node located on the side portion is the tire width direction.
  • the base tire model creation unit 30 can create the base tire model 42 by performing shape deformation analysis of the reference tire model 40, for example. Specifically, the base tire model creation unit 30 assigns a material constant to each element of the reference tire model 40 and creates a model that can be subjected to shape deformation analysis by a computer. The material constant given to each element may not be the material constant of the actual tire constituent member. Thereafter, a forcible displacement corresponding to the movement amount of the node is given to each node on the outer shape contour line 41 in accordance with the distribution of the change amount of the template, and the shape deformation analysis of the reference tire model 40 is performed. In this shape deformation analysis, the base tire model 42 is created by deforming the shape of the reference tire model 40.
  • the above example is an example of deforming the outer contour line, but the carcass line can be deformed by the above method instead of the outer contour line.
  • the base tire model 42 may be created by the following method.
  • the base tire model creation unit 30 determines the amount of movement of the nodes by matching the nodes on the outer shape contour line of the reference tire model 40 with the distribution of the change amount of the template, and moves the nodes using the amount of movement to adjust the outer shape.
  • a contour line 43 is created, and all the nodes other than the nodes on the outer shape contour line 43 of the reference tire model 40 are moved in accordance with this. Since the base tire model 42 and the reference tire model 40 have the same constituent elements and differ only in the positions of the nodes, the base tire model creation unit 30 can easily create the base tire model 42 from the reference tire model 40. .
  • the above example is an example of deforming the outer contour line, but the carcass line can be deformed by the above method instead of the outer contour line.
  • the method for creating the base tire model 42 is not particularly limited, and the base tire model creation unit 30 may create the base tire model 42 by a known method from the deformed outer shape contour line or the carcass line. .
  • the distribution range of the change amount of the created template (the range from the point S to the point E shown in FIGS. 4A to 4C) is the contour line or carcass of the reference tire model 40 to be deformed. It may not always match the line range. For this reason, the nodes at both ends of the distribution range of the change amount of the template (points S and E shown in FIGS. 4A to 4C) are nodes that form both ends of the range to be deformed of the reference tire model. And the length of the template variation distribution range (the distance from point S to point E shown in FIGS. 4 (a) to 4 (c)) is to be deformed by the reference tire model 40. It is preferable to change the distribution of the amount of change by enlarging / reducing a partial region of the template so that it matches the peripheral length of the outer shape contour line or carcass line of the range.
  • the base tire model creating unit 30 deforms the shape from the reference tire model 40 to create the base tire model 42, a part of the outer shape such as the tread portion, the side portion, or the bead portion of the tire is selectively used as the reference tire.
  • a base tire model 42 deformed from the outer shape of the model 40 is to be created.
  • the template change is made so that the distribution range of the specific change amount determined by the template corresponds to only the portion to be selectively deformed, for example, only to the tread portion or only to the side portion. It is preferable to divide the amount distribution range, and to enlarge or reduce the change amount portion for each divided section.
  • the base tire model creation unit 30 makes the outer shape contour between the nodes to correspond both ends of at least a part of the distribution of the variation of the template to the nodes on the outer shape contour line or the carcass line.
  • the partial area of the template is enlarged or reduced in accordance with the distance on the line or the distance on the carcass line, and each node on the outer shape contour line of the reference tire model or the carcass line is obtained from the distribution of the enlarged and reduced partial areas. It is preferable to create a base tire model by determining the amount of movement to be moved and deforming the shape of the outer contour line or the carcass line.
  • FIGS. 6A to 6E are diagrams for explaining the expansion / contraction of a partial region in the above-described template variation amount distribution range, the reference tire model 40, and the base tire model 42.
  • FIG. In the reference tire model 40 and the base tire model 42 in the figure, the nodes and elements are not shown.
  • FIG. 6A shows an example of a template.
  • One point PA of the ends of the distribution range to be expanded or contracted in the template is located at the node P1 located on the contour line on the tire equator line of the reference tire model 40 shown in FIGS.
  • the other point PB of the two ends of the distribution range to be scaled in the template corresponds to the node P2 at the end of the tread portion shown in FIGS.
  • the base tire model creation unit 30 expands and contracts so that the other point PC of both ends corresponds to the node P3 at the end of the tread portion shown in FIGS. 6 (b) and 6 (d).
  • the distance LA between the point PA and the point PB coincides with the peripheral length (distance on the contour line) L12 between the node P1 and the node P2
  • the distance LB between the point PB and the point PC is The range of the distance LA and the range of the distance LB are enlarged or reduced in accordance with the peripheral length L12 and the peripheral length L23 so as to coincide with the peripheral length (distance on the contour line) L23 between the node P2 and the node P3.
  • the region of the template is expanded or contracted so that the region to be expanded or contracted in the template corresponds to at least one range of the tread portion, the side portion, and the bead portion of the reference tire model 40.
  • the portion whose outer shape is to be changed is set by dividing each of the tread portion, the side portion, and the bead portion into one unit element and combining these unit elements.
  • the side portion is positioned on the outer side in the tire radial direction (tread portion side) with respect to the tire maximum width position, and on the inner side in the tire radial direction (bead portion side) with respect to the tire maximum width position.
  • the outer shape is changed to be divided into a range of the tread portion and a range of the side portion and the bead portion.
  • the carcass line of the reference tire model 40 can be used instead of the outer shape contour line of the reference tire model 40.
  • the reference tire model 40 shown in FIG. 6 (b) and the reference tire model 40 shown in FIG. 6 (d) have different tire sizes, and the reference tire model shown in FIG. 6 (d) has a wider tread width.
  • the base tire model creation unit 30 performs expansion / contraction by dividing the region of the variation distribution of one template, and the contour distribution line is changed from the distribution of the variation variation.
  • the selected part for example, the side part has the same shape as shown in FIGS. 6C and 6D, even if the tire size is different.
  • a deformed base tire model 42 can be created. Accordingly, the base tire model creation unit 30 can create a base tire model having a consistent tire cross-sectional shape regardless of the tire size.
  • the base tire model creation unit 30 creates a base tire model 42 for each of the plurality of templates created in this way, and stores the base tire model 42 in the storage unit 20.
  • the base tire model 42 has the same elements and the same nodes as the reference tire model 40, but is different from the reference tire model 40 in the position coordinates of the nodes.
  • the synthetic tire model creation unit 32 calls the plurality of base tire models 42 stored in the storage unit 20 and creates a plurality of synthetic tire models (step S5).
  • FIG. 7 is a diagram illustrating an example of creating a synthetic tire model. Specifically, the synthetic tire model creation unit 32 obtains a tire base vector representing a difference between the shapes of the base tire model 42 and the reference tire model 40 for each of a plurality (N) of base tire models 42. 7, tire base vectors 1, 2,..., N in the base tire models 1, 2,.
  • the tire base vector is, for example, a plurality of vectors whose components are differential coordinate values obtained by subtracting the position coordinates of the corresponding nodes of the reference tire model 40 (nodes having the same node number) from the position coordinates of each node of the base tire model 42. It is a gathering of. Further, the composite tire model creation unit 32 creates a composite vector for each node by multiplying the obtained plurality of tire base vectors by weighting coefficients ⁇ 1 to ⁇ N and adding them. The composite tire model creation unit 32 creates a composite tire model by giving this composite vector to each node of the reference tire model 40 as a displacement vector.
  • the synthetic tire model creation unit 32 creates a synthetic tire model by linear addition, that is, weighted addition, of tire base vectors of a plurality of base tire models 42.
  • set values are used for the weighting coefficients ⁇ 1 to ⁇ N.
  • the values may be set by changing the level according to an experimental design such as the Monte Carlo method, the Latin hypersquare method, or the quasi-random number method.
  • the value may be set by changing the level using an orthogonal table.
  • the values of the weighting factors ⁇ 1 to ⁇ N are determined by the control / management unit 34. It is preferable that the sum of the values of the weighting coefficients ⁇ 1 to ⁇ N is always set to 1.
  • the synthetic tire model creating unit 32 sets the number of cord material ends and the inclination angle of the cord material (for example, in the direction in which the cord material extends with respect to the tire circumferential direction). It is preferable to change the inclination angle) from the number of ends of the cord material set in the reference tire model 40 and the inclination angle of the cord material according to the deformed shape from the reference tire model 40.
  • the number of ends of the cord material is the number of cord materials per unit length of the cord material in a direction orthogonal to the extending direction of the cord material.
  • the reason for changing the number of ends of the cord material and the inclination angle of the cord material is as follows.
  • cord materials having the same number of ends and the same inclination angle are commonly used regardless of whether the tires have different cross-sectional shapes.
  • the tire cross-sectional shape changes in an actual tire, the number of ends of the cord material and the inclination angle change according to the change in the tire cross-sectional shape.
  • the belt layer is changed to reduce the inclination angle with respect to the tire circumferential direction.
  • Such changes are preferably changed depending on the location. That is, it is preferable to change the number of ends and the inclination angle so as to have a distribution.
  • the synthetic tire model creation unit 32 creates a synthetic tire model by linearly adding the tire base vectors for each base tire model 42.
  • the composite tire model creation unit 32 creates a position coordinate value that is position information of each node for each base tire model 42. It is also preferable to create a synthetic tire model by multiplying and adding weighting coefficients ⁇ 1 to ⁇ N. Even in this case, it is preferable that the sum of the values of the weighting coefficients ⁇ 1 to ⁇ N is always set to 1. Information on a plurality of synthetic tire models created in this way is stored in the storage unit 20.
  • one reference tire model is created, but the reference tire model creation unit 26 creates a reference tire model group in which at least one of the tire outer shape, the tire size, and the tire structure is different. May be.
  • the reference tire model creation unit 26 uses each of the created templates for each of the created reference tire model groups, according to the number of templates, repeatedly creating a base tire and determining whether N base tire models have been created. It is preferable to create a plurality of synthetic tire models. That is, it is preferable to create a plurality of synthetic tire models by using a template for each of the reference tire models having at least one of the tire outer shape, the tire size, and the tire structure.
  • the control / management unit 34 changes the values of the weighting coefficients ⁇ 1 to ⁇ N used for the above-described weighted addition.
  • the values of the weighting factors ⁇ 1 to ⁇ N may be changed continuously within a predetermined domain or may be changed discretely.
  • the control / management unit 34 assigns a level to the weighting coefficients ⁇ 1 to ⁇ N according to a known experimental design method, and assigns this value to each of the synthetic tire models 46, so that a plurality (M Pieces: M is a natural number).
  • the simulation calculation unit 36 uses the plurality of (M times) synthetic tire models created by the synthetic tire model creation unit 32 to perform a simulation calculation that reproduces the behavior of the tire to obtain tire characteristics (step S6).
  • the simulation calculation is performed for each created synthetic tire model. Therefore, the simulation calculation is performed by the number of synthetic tire models created.
  • the simulation calculation unit 36 calculates a physical quantity of the tire characteristic of the synthetic tire model by performing a simulation for obtaining the tire characteristic.
  • Tire characteristics include, for example, tire rolling resistance, tread wear life, tread uneven wear, vibration ride performance, tire noise, belt durability, tire lateral spring constant (lateral stiffness) or longitudinal spring constant (longitudinal stiffness). ) Etc.
  • the simulation calculation unit 36 is a physical quantity of tire characteristics set in advance by an input operation device such as the mouse / keyboard 18, such as a natural frequency, a longitudinal spring constant, a lateral spring constant, a longitudinal spring constant, a rolling resistance, and an interlaminar shear between belts.
  • a physical quantity such as a strain, a predicted wear value, or a contact pressure value when the tire contacts the ground is calculated by numerical calculation. These specific calculations are well-known methods and will not be described.
  • the physical quantity of the tire characteristic that is the calculation result is stored in the storage unit 20.
  • the determining unit 38 optimizes the tire cross-sectional shape based on the calculation result of the tire characteristics obtained by the simulation calculating unit 36 for each created synthetic tire model (step S8). Specifically, the determination unit 38 determines the design space of the tire cross-sectional shape by a response surface function using a surface approximation function.
  • This response surface function uses the weighting coefficient as a design variable. That is, the response surface function is a physical characteristic of tire characteristics expressed using a curved surface approximation function with the weighting coefficients ⁇ 1 to ⁇ N as design variables. For example, by defining six weighting factors, one tire cross-sectional shape is determined, and one physical quantity is obtained by a curved surface approximation function.
  • examples of the curved surface approximation function include Chebyshev's orthogonal polynomial, n-order polynomial, radial basis function method (RBF), Kriging method, and the like.
  • the determination unit 38 searches for an optimized tire cross-sectional shape based on the determined response surface function using, for example, an expressive method such as a multi-purpose genetic algorithm or a mathematical programming method such as a gradient method.
  • the determination unit 38 uses the weighting coefficients ⁇ 1 to ⁇ N as design variables, the physical quantity of tire characteristics as an objective function, and changes the value of the design variable so as to satisfy the set condition, thereby the objective function Is searched for the tire cross-sectional shape of the synthetic tire model having the physical quantity of the synthetic tire model that satisfies a preset condition.
  • the preset condition is, for example, a range having an upper limit and a lower limit of a physical quantity representing tire characteristics, a minimum value of physical quantities representing tire characteristics, or a maximum value of physical quantities representing tire characteristics.
  • the determination unit 38 performs the simulation calculation for obtaining the tire characteristics using a plurality of synthetic tire models, thereby finding an optimized tire cross-sectional shape in which the physical quantity of the tire characteristics satisfies a preset condition. . Since the determination unit 38 changes the values of the weighting factors ⁇ 1 to ⁇ N to determine the optimum tire cross-sectional shape, it extracts the values of the weighting factors ⁇ 1 to ⁇ N that satisfy the condition of the physical quantity of the tire characteristics. Thus, the optimized tire cross-sectional shape can be easily determined.
  • the obtained information on the optimized tire cross-sectional shape is output to the output device 20, and is also sent to a CAD system or the like that creates a tire vulcanization mold (not shown).
  • the obtained optimized tire cross-sectional shape is stored in the storage unit 20 as information on the tire cross-sectional shape at the time of tire deflation or as information on the cross-sectional shape of the in-mold tire, and further, a hard disk, a recording medium, etc. (not shown) To be recorded.
  • the synthetic tire model creation unit 32 creates a plurality of synthetic tire models used for simulation calculation at once using the weighting coefficients ⁇ 1 to ⁇ N determined by the control / management unit 34.
  • the optimized tire cross-sectional shape may be extracted using an evolutionary calculation method such as a multi-purpose genetic algorithm. That is, in the present embodiment, an evolutionary calculation method such as a multi-purpose genetic algorithm is used so as to satisfy the condition in which the physical quantity of the tire characteristic is set according to the physical quantity of the tire characteristic obtained using the synthetic tire model.
  • the optimized tire cross-sectional shape may be extracted while sequentially creating a synthetic tire model having a tire cross-sectional shape improved by use.
  • the determination unit 34 extracts the optimized tire cross-sectional shape and a plurality of composites created at one time. It is also preferable to provide both a method of determining a response surface function from a physical quantity of tire characteristics of a tire model and extracting an optimized tire cross-sectional shape.
  • the simulation apparatus 10 may be configured so that the operator selects one of the two methods in advance.
  • the extracted optimized tire cross-sectional shape is not limited to one. For example, when there are a plurality of objective functions (physical quantities of tire characteristics), all or part of the Pareto solution may be extracted.
  • the determination unit 38 can extract the optimized tire cross-sectional shape, but it is preferable to display the search process for the optimized tire cross-sectional shape on the display 16. That is, the determination unit 38 visualizes the relationship between the weighting coefficients ⁇ 1 to ⁇ N or the characteristic amount characterizing the tire cross-sectional shape obtained when finding the optimized tire cross-sectional shape and the physical quantity of the tire characteristic, and displays the screen. It is preferable to display. For example, a scatter diagram, graph, self-organizing map, or decision tree is displayed on the screen.
  • the feature amount includes the position information of the point having the maximum tire width, the position information of the division position of the sector mold and the side mold (for example, the end portion in the tire cross-sectional width direction on the tire outer peripheral surface in the arrangement region of the tread rubber). Position information), tire outer diameter, or radius of curvature of the tread center portion is preferably included. In this way, visualization makes the relationship between the physical quantity of tire characteristics and the values of the weighting coefficients ⁇ 1 to ⁇ N or the above-mentioned feature quantity clear, and can be useful information for tire development.
  • This embodiment also includes a non-transitory computer readable medium that records a program that executes a method of creating a tire model of a pneumatic tire from a reference tire model using a computer.
  • the method Let the computer create a plurality of templates representing the distribution of the amount of change for changing the outer shape from the reference tire model 40, Let the computer create the reference tire model 40, Using the reference tire model 40 and one of the templates, the computer creates a base tire model 42 having an outer shape in which the outer shape of the reference tire model 40 is changed, Using the template representing the variation distribution different from the variation distribution already used for creating the base tire model 42 among the templates, the base having a different external shape from the base tire model 42 already created. Causing the tire model 42 to be repeatedly created, And causing the computer to create a plurality of synthetic tire models having an outer shape different from the outer shape of the reference tire model 40 by combining the plurality of created base tire models 42.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

Multiple templates are generated from a generated reference tire model in the present invention when generating a tire model of a pneumatic tire, each template representing a change amount distribution for changing the outer profile of the tire. A base tire model is generated using the reference tire model and one of the templates, said base tire model having an outer profile formed by changing the outer profile of the reference tire model. Furthermore, when repeating the generation of base tire model, at least one more base tire model is generated using, among the templates, a template which represents a change amount distribution different from the change amount distribution already used for generating the base tire model. Multiple composite tire models are generated by combining the generated multiple base tire models.

Description

タイヤモデルの作成方法、タイヤモデルの作成装置、タイヤのシミュレーション方法、及び非一時的なコンピュータが読み取り可能な媒体Tire model creation method, tire model creation device, tire simulation method, and non-transitory computer-readable medium
 本発明は、タイヤモデルを作成するタイヤモデルの作成方法、タイヤモデルの作成装置、タイヤのシミュレーション方法、及び非一時的なコンピュータが読み取り可能な媒体に関する。 The present invention relates to a tire model creation method for creating a tire model, a tire model creation device, a tire simulation method, and a non-transitory computer-readable medium.
 今日、コンピュータ等による数値計算の高速処理の向上により、最適な製品性能を発揮する最適形状の製品を探索するために、数値計算による最適設計手法が種々提案されている。これにより、効率よく製品の最適設計を行うことができるといわれている。しかし、構造体であるタイヤは、タイヤ断面の形状の規定方法の複雑さに起因して上記最適設計手法が十分に活かされ難いといった問題があった。 Today, various optimum design methods based on numerical calculations have been proposed in order to search for products with optimal shapes that exhibit optimal product performance by improving high-speed numerical calculation using computers. Thereby, it is said that the optimal design of a product can be performed efficiently. However, the tire as a structure has a problem that the optimum design technique is not sufficiently utilized due to the complexity of the method for defining the shape of the tire cross section.
 これに対して、タイヤ設計に好適に用いられる最適形状設計方法が知られている(特許文献1)。
 この最適形状設計方法では、製品形状の複数の基底断面形状を製品形状の固有振動モードの変形形状とし、この基底断面形状を実験計画法に基づき線型的に組み合わせて複数のサンプル製品形状を生成し、この生成されたサンプル製品形状の製品性能の評価値を求め、この製品性能の評価値に基づき、評価値が最適値となる最適製品形状を抽出する。
On the other hand, the optimal shape design method used suitably for tire design is known (patent document 1).
In this optimum shape design method, a plurality of base cross-sectional shapes of the product shape are made deformed shapes of the natural vibration mode of the product shape, and a plurality of sample product shapes are generated by linearly combining the base cross-sectional shapes based on the experimental design method. Then, the evaluation value of the product performance of the generated sample product shape is obtained, and the optimum product shape with the evaluation value being the optimum value is extracted based on the evaluation value of the product performance.
特開2002-15010号公報Japanese Patent Laid-Open No. 2002-15010
 上述の公知の最適形状設計方法をタイヤ断面形状に適用する場合、タイヤ断面形状の固有振動モードにおける変形形状をタイヤ断面形状の基底断面形状とするため、基底断面形状は限定されている。このため、基底断面形状を用いて抽出されるタイヤの最適製品形状も、固有振動モードにおける変形形状を組み合わせた組み合わせ形状の範囲内に限定される。このため、上記最適形状設計方法で得られるタイヤの最適製品形状は、必ずしも十分にタイヤ性能を向上させることができなかった。
 また、上述の最適形状設計方法では、タイヤサイズが異なると基底断面形状の基となる基準のタイヤ断面形状も異なるため、タイヤサイズに係らず一貫した特徴をタイヤ断面形状に持たせることができない。
When the above-described known optimum shape design method is applied to the tire cross-sectional shape, the base cross-sectional shape is limited because the deformation shape in the natural vibration mode of the tire cross-sectional shape is the base cross-sectional shape of the tire cross-sectional shape. For this reason, the optimum product shape of the tire extracted using the base cross-sectional shape is also limited to the range of the combined shape obtained by combining the deformed shapes in the natural vibration mode. For this reason, the optimum product shape of the tire obtained by the above-described optimum shape design method cannot always sufficiently improve the tire performance.
Further, in the above-described optimum shape design method, if the tire size is different, the reference tire cross-sectional shape that is the basis of the base cross-sectional shape is also different, so that the tire cross-sectional shape cannot have consistent characteristics regardless of the tire size.
 そこで、本発明は、空気入りタイヤのタイヤモデルを作成するとき、作成されるタイヤ断面形状が、固有振動モードにおける変形形状を組み合わせた組み合わせ形状に限定されず、タイヤ断面形状を効率よく作成することができるタイヤモデルの作成方法、タイヤモデルの作成装置、タイヤモデルの作成方法を用いたタイヤのシミュレーション方法、及びコンピュータが読み取り可能な媒体を提供することを目的とする。 Therefore, in the present invention, when creating a tire model of a pneumatic tire, the created tire cross-sectional shape is not limited to the combined shape combining the deformed shapes in the natural vibration mode, and the tire cross-sectional shape is efficiently created. It is an object to provide a tire model creation method, a tire model creation device, a tire simulation method using the tire model creation method, and a computer-readable medium.
 本技術のタイヤモデルの作成方法は、コンピュータを用いて基準タイヤモデルから空気入りタイヤのタイヤモデルを作成する方法である。当該方法は、
 コンピュータにより、基準タイヤモデルから外形形状を変化させるための変化量の分布を表すテンプレートを複数作成する第1のステップと、
 前記コンピュータにより、前記基準タイヤモデルを作成する第2のステップと、
 前記コンピュータにより、前記基準タイヤモデルと前記テンプレートの1つを用いて、前記基準タイヤモデルの外形形状が変化した外形形状を有する基底タイヤモデルを作成する第3のステップと、
 前記コンピュータにより、前記テンプレートのうち、基底タイヤモデルの作成にすでに用いた変化量の分布と異なる変化量の分布を表すテンプレートを用いて、すでに作成された基底タイヤモデルと外形形状が異なる基底タイヤモデルを少なくとも1つ以上作成する第4のステップと、
 前記コンピュータにより、前記第3のステップ及び前記第4のステップで作成した複数の基底タイヤモデルを組み合わせて、前記基準タイヤモデルの外形形状と異なる外形形状を有し、外形形状がお互いに異なる複数の合成タイヤモデルを作成する第5のステップと、を備える。
The tire model creation method of the present technology is a method of creating a tire model of a pneumatic tire from a reference tire model using a computer. The method is
A first step of creating a plurality of templates representing a distribution of a change amount for changing an outer shape from a reference tire model by a computer;
A second step of creating the reference tire model by the computer;
A third step of creating a base tire model having an outer shape in which an outer shape of the reference tire model is changed by the computer using the reference tire model and one of the templates;
A base tire model having a different external shape from a base tire model that has already been created using a template that represents a distribution of the amount of change different from the distribution of the amount of change already used to create the base tire model. A fourth step of creating at least one of
By combining the plurality of base tire models created in the third step and the fourth step by the computer, the plurality of base tire models have an outer shape different from the outer shape of the reference tire model, and the outer shapes are different from each other. And a fifth step of creating a synthetic tire model.
 前記第2のステップでは、タイヤ外形形状、タイヤサイズ、及びタイヤ構造のうち少なくとも一つが異なる基準タイヤモデル群を作成し、前記基準モデル群の1つが前記基準モデルであり、
 さらに、作成した前記基準タイヤモデル群のそれぞれに、前記テンプレートを使用して、前記テンプレートの数に応じて、前記第3のステップ及び前記第4のステップを繰り返して前記複数の合成タイヤモデルを作成する、ことが好ましい。
In the second step, a reference tire model group in which at least one of a tire outer shape, a tire size, and a tire structure is different is created, and one of the reference model groups is the reference model,
Further, the plurality of synthetic tire models are created by repeating the third step and the fourth step according to the number of the templates, using the template for each of the created reference tire model groups. It is preferable to do.
 前記第3のステップ及び前記第4のステップでは、前記コンピュータは、前記基準タイヤモデルの外形形状輪郭ライン、あるいは、前記基準タイヤモデルのカーカスラインを取得し、前記外形形状輪郭ラインあるいは前記カーカスラインを、前記テンプレートを用いて変更することによって前記基底タイヤモデルを作成する、ことが好ましい。 In the third step and the fourth step, the computer acquires an outer contour line of the reference tire model or a carcass line of the reference tire model, and uses the outer contour line or the carcass line. Preferably, the base tire model is created by changing the template.
 前記基準タイヤモデルは、複数の節点と、前記複数の節点を結ぶ複数の辺によって構成された要素の集合体であり、
 前記第3のステップ及び前記第4のステップでは、前記コンピュータは、前記テンプレートの変化量の分布のうち少なくとも一部の領域の両端を、前記外形形状輪郭ラインあるいは前記カーカスライン上の節点に対応させるために、該節点間の前記外形形状輪郭ライン上の距離あるいは前記カーカスライン上の距離に合わせて前記テンプレートの前記領域を拡縮し、拡縮した前記領域の分布から、前記基準タイヤモデルの前記外形形状輪郭ラインあるいは前記カーカスライン上の各節点の移動すべき移動量を定めて、前記外形形状輪郭ラインあるいは前記カーカスラインの形状を変形させることにより、前記基底タイヤモデルを作成する、ことが好ましい。
 このとき、前記領域が、前記基準タイヤモデルのトレッド部、サイド部、及びビード部の少なくとも1つの範囲に対応するように、前記テンプレートの前記領域は拡縮される、ことが好ましい。
The reference tire model is a set of elements formed by a plurality of nodes and a plurality of sides connecting the plurality of nodes.
In the third step and the fourth step, the computer associates both ends of at least a part of the distribution of the change amount of the template with nodes on the contour line or the carcass line. Therefore, the region of the template is enlarged or reduced in accordance with the distance on the outer shape contour line between the nodes or the distance on the carcass line, and the outer shape of the reference tire model is obtained from the distribution of the enlarged and reduced regions. Preferably, the base tire model is created by determining the amount of movement of each node on the contour line or the carcass line and changing the shape of the outer contour line or the carcass line.
At this time, it is preferable that the region of the template is enlarged or reduced so that the region corresponds to at least one range of a tread portion, a side portion, and a bead portion of the reference tire model.
 前記基準タイヤモデルは、前記コンピュータにより形状変形解析の演算が可能なモデルであり、前記第3のステップ及び前記第4のステップでは、前記コンピュータが、前記基準タイヤモデルの前記外形形状輪郭ラインあるいは前記カーカスライン上の各節点に、前記移動量に相当する強制変位を与えて前記形状変形解析を行って、前記基準タイヤモデルの形状を変形させることによって、前記基底タイヤモデルを作成する、ことが好ましい。 The reference tire model is a model that can be subjected to calculation of shape deformation analysis by the computer. In the third step and the fourth step, the computer performs the outline shape contour line of the reference tire model or the Preferably, the base tire model is created by deforming the shape of the reference tire model by applying a forced displacement corresponding to the movement amount to each node on the carcass line and performing the shape deformation analysis. .
 前記第5のステップでは、前記コンピュータが、前記複数の基底タイヤモデルのそれぞれと前記基準タイヤモデルの形状との差を表す複数のタイヤ基底ベクトルを重み付け加算することにより合成ベクトルを作成し、前記合成ベクトルに基づいて、前記基準タイヤモデルを変形させることにより、前記合成タイヤモデルを作成する、ことが好ましい。 In the fifth step, the computer creates a composite vector by weighting and adding a plurality of tire base vectors representing a difference between each of the plurality of base tire models and the shape of the reference tire model, and the composite Preferably, the synthetic tire model is created by deforming the reference tire model based on a vector.
 前記合成タイヤモデルでは、前記合成タイヤモデルに設定されるコード材のエンド数及びコード材の傾斜角度を、前記基準タイヤモデルで設定されるコード材のエンド数及びコード材の傾斜角度から、前記基準タイヤモデルからの変形形状に応じて変更する、ことが好ましい。 In the synthetic tire model, the number of ends of the cord material and the inclination angle of the cord material set in the synthetic tire model are calculated from the number of ends of the cord material and the inclination angle of the cord material set in the reference tire model. It is preferable to change according to the deformation shape from the tire model.
 本技術の他の態様は、タイヤのシミュレーション方法である。当該シミュレーション方法は、前記タイヤモデルの作成方法により作成された前記合成タイヤモデルを用いて、タイヤの挙動を再現したシミュレーションを行うことにより、前記合成タイヤモデルのタイヤ特性の物理量を算出する。 Another aspect of the present technology is a tire simulation method. The simulation method calculates a physical quantity of tire characteristics of the synthetic tire model by performing a simulation reproducing the behavior of the tire using the synthetic tire model created by the tire model creation method.
 本技術のさらに他の態様も、タイヤのシミュレーション方法である。当該シミュレーション方法では、前記タイヤモデルの作成方法により作成された前記合成タイヤモデルを用いて、タイヤの挙動を再現したシミュレーションを行うことにより、前記合成タイヤモデルのタイヤ特性の物理量を算出し、さらに、前記タイヤ基底ベクトルを重み付け加算するときに用いる重み付け係数を設計変数とし、前記シミュレーションにより算出された前記物理量を目的関数とし、前記目的関数が、予め設定された条件を満足するように前記設計変数の値を変更するステップを備える。 Still another aspect of the present technology is a tire simulation method. In the simulation method, by using the synthetic tire model created by the tire model creation method, by performing a simulation to reproduce the behavior of the tire, to calculate the physical quantity of the tire characteristics of the synthetic tire model, A weighting coefficient used when weighting and adding the tire base vector is a design variable, the physical quantity calculated by the simulation is an objective function, and the design variable is set so that the objective function satisfies a preset condition. A step of changing the value.
 さらに、前記コンピュータは、前記重み付け係数の値、あるいは、前記合成タイヤモデルの形状を表す特徴量と、前記物理量との関係を可視化して画面表示する、ことが好ましい。 Furthermore, it is preferable that the computer visualizes and displays the relationship between the physical quantity and the feature value representing the weighting coefficient value or the shape of the synthetic tire model.
 本技術のさらに他の態様は、空気入りタイヤのタイヤモデルを作成するタイヤモデル作成装置である。当該タイヤモデル作成装置は、
 基準タイヤモデルを作成するように構成された基準タイヤモデル作成部と、
 前記基準タイヤモデルから外形形状を変化させるための変化量の分布を表すテンプレートを複数作成するように構成されたテンプレート作成部と、
 前記基準タイヤモデルと前記テンプレートの1つを用いて、前記基準タイヤモデルの外形形状が変化した外形形状を有する基底タイヤモデルを作成するように構成された基底タイヤモデル作成部と、
 前記基底タイヤモデルの作成を繰り返すように、前記基底タイヤモデル作成部を制御し、かつ、前記テンプレートのうち、基底タイヤモデルの作成にすでに用いた変化量の分布と異なる変化量の分布を表すテンプレートを用いて、すでに作成された基底タイヤモデルと外形形状が異なる基底タイヤモデルを少なくとも1つ以上作成するように、前記基底タイヤモデル作成部を制御するように構成された制御部と、
 作成した複数の基底タイヤモデルを組み合わせて、前記基準タイヤモデルの外形形状と異なる外形形状を有し、外形形状がお互いに異なる複数の合成タイヤモデルを作成するように構成された合成タイヤモデル作成部と、を備える。
Still another embodiment of the present technology is a tire model creation device that creates a tire model of a pneumatic tire. The tire model creation device
A reference tire model creation unit configured to create a reference tire model;
A template creation unit configured to create a plurality of templates representing a distribution of a change amount for changing the outer shape from the reference tire model;
A base tire model creation unit configured to create a base tire model having an outer shape in which an outer shape of the reference tire model is changed using one of the reference tire model and the template;
A template that controls the base tire model creation unit so as to repeat the creation of the base tire model, and represents a change amount distribution different from the change amount distribution already used for creating the base tire model among the templates. A control unit configured to control the base tire model creation unit so as to create at least one base tire model having a different external shape from the already created base tire model,
A composite tire model creation unit configured to create a plurality of composite tire models having a different external shape from the external shape of the reference tire model by combining a plurality of created base tire models And comprising.
 さらに、本技術のさらに他の態様は、コンピュータを用いて基準タイヤモデルから空気入りタイヤのタイヤモデルを作成する方法を実行するプログラムを記録する、非一時的なコンピュータが読み取り可能な媒体である。
 前記方法は、
 コンピュータに、基準タイヤモデルから外形形状を変化させるための変化量の分布を表すテンプレートを複数作成させ、
 前記コンピュータに、前記基準タイヤモデルを作成させ、
 前記コンピュータに、前記基準タイヤモデルと前記テンプレートの1つを用いて、前記基準タイヤモデルの外形形状が変化した外形形状を有する基底タイヤモデルを作成させ、
 前記コンピュータに、前記テンプレートのうち、基底タイヤモデルの作成にすでに用いた変化量の分布と異なる変化量の分布を表すテンプレートを用いて、すでに作成された基底タイヤモデルと外形形状が異なる基底タイヤモデルを作成させることを繰り返し実行させ、
 前記コンピュータに、作成した複数の基底タイヤモデルを組み合わせて、前記基準タイヤモデルの外形形状と異なる外形形状を有し、外形形状がお互いに異なる複数の合成タイヤモデルを作成させる、ことを含む。
Yet another aspect of the present technology is a non-transitory computer-readable medium that records a program that executes a method of creating a tire model of a pneumatic tire from a reference tire model using a computer.
The method
Let the computer create multiple templates that represent the distribution of the amount of change to change the outer shape from the reference tire model,
Causing the computer to create the reference tire model;
Using the one of the reference tire model and the template, the computer creates a base tire model having an outer shape in which the outer shape of the reference tire model is changed,
A base tire model having a different external shape from the base tire model that has already been created by using a template that represents a distribution of the amount of change different from the distribution of the amount of change already used to create the base tire model, among the templates. To repeatedly create
And causing the computer to create a plurality of synthetic tire models having an outer shape different from the outer shape of the reference tire model by combining the plurality of created base tire models.
 上述のタイヤモデルの作成方法、タイヤモデルの作成装置、及び非一時的なコンピュータが読み取り可能な媒体では、作成されるタイヤ断面形状が、固有振動モードにおける変形形状を組み合わせた組み合わせ形状に限定されず、タイヤ断面形状を効率よく作成することができる。また、上述のタイヤのシミュレーション方法では、上述のタイヤモデルの作成方法により作成される合成タイヤモデルを用いてシミュレーションを行うので、シミュレーションの結果から、十分にタイヤ性能を向上させた最適なタイヤ断面形状を得ることができる。 In the tire model creation method, tire model creation device, and non-transitory computer-readable medium described above, the tire cross-sectional shape to be created is not limited to the combined shape that combines the deformed shapes in the natural vibration mode. The tire cross-sectional shape can be created efficiently. In the tire simulation method described above, since the simulation is performed using the synthetic tire model created by the tire model creation method described above, the optimum tire cross-sectional shape that sufficiently improves the tire performance is obtained from the simulation result. Can be obtained.
本実施形態のタイヤモデル作成方法を含むタイヤのシミュレーション方法のフローを説明する図である。It is a figure explaining the flow of the simulation method of the tire containing the tire model creation method of this embodiment. 本実施形態のタイヤモデルの作成方法及びタイヤのシミュレーション方法を実行するシミュレーション装置のブロック構成図である。It is a block block diagram of the simulation apparatus which performs the preparation method of the tire model of this embodiment, and the simulation method of a tire. 本実施形態で作成される基準タイヤモデルの一例の断面図である。It is sectional drawing of an example of the reference | standard tire model created by this embodiment. (a)~(c)は、本実施形態で用いるテンプレートの例を示す図である。(A)-(c) is a figure which shows the example of the template used by this embodiment. 本実施形態で作成される基準タイヤモデルの外形形状輪郭ラインを変更することにより基底タイヤモデルを作成する方法を説明する図である。It is a figure explaining the method of producing a base tire model by changing the external shape outline of the standard tire model created in this embodiment. (a)~(e)は、本実施形態で用いるテンプレートの変化量の分布の一部の領域の拡縮と、基準タイヤモデル、及び基底タイヤモデルを説明する図である。(A)-(e) is a figure explaining the expansion and contraction of a partial area | region of the distribution of the variation | change_quantity of the template used by this embodiment, a reference | standard tire model, and a base tire model. 本実施形態で用いる合成タイヤモデルの作成の例を説明する図である。It is a figure explaining the example of preparation of the synthetic tire model used by this embodiment.
 以下、本実施形態のタイヤモデルの作成方法、タイヤモデルの作成装置、タイヤのシミュレーション方法、及びコンピュータが読み取り可能な媒体について、添付図面に示す実施形態に基いて説明する。 Hereinafter, a tire model creation method, a tire model creation device, a tire simulation method, and a computer-readable medium according to the present embodiment will be described based on the embodiments shown in the accompanying drawings.
(本実施形態のタイヤモデルの作成方法及びタイヤのシミュレーション方法)
 本実施形態のタイヤモデルの作成方法では、コンピュータにより実行される。
 本実施形態のタイヤモデルの作成方法は、本実施形態のシミュレーション方法の一部に用いられる。図1は、本実施形態のタイヤモデルの作成方法及びタイヤのシミュレーション方法のフローを説明する図である。
(Tire model creation method and tire simulation method of this embodiment)
In the tire model creating method of the present embodiment, it is executed by a computer.
The tire model creation method of this embodiment is used as part of the simulation method of this embodiment. FIG. 1 is a diagram illustrating a flow of a tire model creation method and a tire simulation method according to the present embodiment.
 まず、コンピュータが、基準タイヤモデルから外形形状を変化させるための変化量の分布を表すテンプレートを複数作成する(ステップS1)。さらに、コンピュータが、有限要素法等によりモデル化された基準タイヤモデルを作成する(ステップS2)。基準タイヤモデルとは、合成タイヤモデルの基となるタイヤ断面形状を有するタイヤモデルであり、本実施形態のタイヤモデルの作成方法及びタイヤのシミュレーション方法で外形形状を変化させる前のタイヤモデルである。
 この後、コンピュータが、基準タイヤモデルとテンプレートの1つを用いて、基準タイヤモデルの外形形状が変化した外形形状を有する基底タイヤモデルを作成する(ステップS3)。さらに、コンピュータは、基底タイヤモデルをN個(Nは自然数)作成したか否かを判定し(ステップS4)、作成した基底タイヤモデルがN個未満である場合、基底タイヤモデルの作成を繰り返す。このとき、コンピュータは、テンプレートのうち、基底タイヤモデルの作成にすでに用いた変化量の分布と異なる変化量の分布を表すテンプレートを用いて、すでに作成された基底タイヤモデルと外形形状が異なる基底タイヤモデルを少なくとも1つ以上作成する(ステップS3)。ステップS4の判定で、N個の基底タイヤモデルを作成した場合、コンピュータは、作成した複数の基底タイヤモデルを組み合わせて、基準タイヤモデルの外形形状と異なる外形形状を有する合成タイヤモデルを複数個(M個:Mは自然数)作成する(ステップS5)。以上が、本実施形態のタイヤモデルの作成方法である。
First, the computer creates a plurality of templates representing the distribution of the amount of change for changing the outer shape from the reference tire model (step S1). Further, the computer creates a reference tire model modeled by the finite element method or the like (step S2). The reference tire model is a tire model having a tire cross-sectional shape that is a basis of the synthetic tire model, and is a tire model before the outer shape is changed by the tire model creation method and the tire simulation method of the present embodiment.
Thereafter, the computer creates a base tire model having an outer shape in which the outer shape of the reference tire model is changed using one of the reference tire model and the template (step S3). Further, the computer determines whether or not N (N is a natural number) base tire models have been created (step S4). If the number of base tire models created is less than N, the base tire model creation is repeated. At this time, the computer uses a template representing a variation distribution different from the variation distribution already used to create the base tire model, and the base tire has a different outer shape from the base tire model already created. At least one model is created (step S3). When N base tire models are created in the determination of step S4, the computer combines a plurality of the created base tire models to generate a plurality of synthetic tire models having an outer shape different from the outer shape of the reference tire model ( M: M is a natural number) (step S5). The above is the tire model creation method of the present embodiment.
 さらに、この方法により作成された合成タイヤモデルを用いて、コンピュータは、タイヤ特性の算出のためのタイヤの挙動を再現したシミュレーションの計算を行う(ステップS6)。これにより、合成タイヤモデルのタイヤ特性の物理量が算出される。コンピュータは、合成タイヤモデルを代えてM回シミュレーション計算を行なったか否かを判定する(ステップS7)。コンピュータは、シミュレーション計算をM回行なうまで、合成タイヤモデルを代えてシミュレーション計算を繰り返す。
 最後に、コンピュータは、合成タイヤモデルのタイヤ特性の物理量を用いて、タイヤ断面形状の最適化を行なう(ステップS8)。
Furthermore, using the synthetic tire model created by this method, the computer calculates a simulation that reproduces the behavior of the tire for calculating the tire characteristics (step S6). Thereby, the physical quantity of the tire characteristic of the synthetic tire model is calculated. The computer determines whether or not the simulation calculation has been performed M times by replacing the synthetic tire model (step S7). The computer repeats the simulation calculation by replacing the synthetic tire model until the simulation calculation is performed M times.
Finally, the computer optimizes the tire cross-sectional shape using the physical quantity of the tire characteristics of the synthetic tire model (step S8).
 このように、基底タイヤモデルを作成するとき、変化量の分布が互いに異なる複数のテンプレートを用いて、外形形状がお互いに異なる複数の基底タイヤモデルを作成する。このため、従来のように、作成される合成タイヤモデルのタイヤ断面形状は、固有振動モードにおける変形形状を組み合わせた組み合わせ形状に限定されず、テンプレートに基づいてタイヤ断面形状を効率よく作成することができる。 Thus, when creating a base tire model, a plurality of base tire models having different outer shapes are created using a plurality of templates having different distributions of variation. For this reason, as conventionally, the tire cross-sectional shape of the synthetic tire model to be created is not limited to the combined shape combining the deformed shapes in the natural vibration mode, and the tire cross-sectional shape can be efficiently created based on the template. it can.
 図2は、上記タイヤモデルの作成方法及びタイヤのシミュレーション方法を実行するシミュレーション装置のブロック構成図である。図2に示すシミュレーション装置の一部は、タイヤモデルを作成するタイヤモデルの作成装置でもある。 FIG. 2 is a block diagram of a simulation apparatus that executes the tire model creation method and the tire simulation method. A part of the simulation apparatus shown in FIG. 2 is also a tire model creation apparatus that creates a tire model.
 シミュレーション装置10は、コンピュータで構成され、コンピュータ本体部12、プリンタ14、ディスプレイ16、及びマウス・キーボード18を備える。コンピュータ本体部12に、プリンタ14、ディスプレイ16、及びマウス・キーボード18が接続されている。コンピュータ本体部12は、RAM、ROM、及びハート゛ディスク等を含む記憶部20、CPU22、及び解析処理部24を備える。
 解析処理部24は、基準タイヤモデル作成部26、テンプレート作成部28、基底タイヤモデル作成部30、合成タイヤモデル作成部32、制御・管理部34、シミュレーション演算部36、及び決定部38を備える。基準タイヤモデル作成部26、テンプレート作成部28、基底タイヤモデル作成部30、合成タイヤモデル作成部32、制御・管理部34、シミュレーション演算部36、及び決定部38は、記憶部20に記憶されたプログラムを呼び出してCPU22でプログラムを実行することにより形成されるモジュールである。すなわち、解析処理部24は、解析処理部24の実質的な動作をCPU22が司るソフトウェアモジュールである。
The simulation apparatus 10 is configured by a computer, and includes a computer main body 12, a printer 14, a display 16, and a mouse / keyboard 18. A printer 14, a display 16, and a mouse / keyboard 18 are connected to the computer main body 12. The computer main body 12 includes a storage unit 20 including a RAM, a ROM, a heart disk, and the like, a CPU 22, and an analysis processing unit 24.
The analysis processing unit 24 includes a reference tire model creation unit 26, a template creation unit 28, a base tire model creation unit 30, a synthetic tire model creation unit 32, a control / management unit 34, a simulation calculation unit 36, and a determination unit 38. The reference tire model creation unit 26, template creation unit 28, base tire model creation unit 30, synthetic tire model creation unit 32, control / management unit 34, simulation calculation unit 36, and determination unit 38 are stored in the storage unit 20. This is a module formed by calling a program and executing the program by the CPU 22. That is, the analysis processing unit 24 is a software module in which the CPU 22 controls the substantial operation of the analysis processing unit 24.
 基準タイヤモデル作成部26は、図1に示すステップS2を実行する部分で、合成タイヤモデルを作成する上で基準とするタイヤを再現した有限要素モデルからなる基準タイヤモデルを作成する。 The reference tire model creation unit 26 performs a step S2 shown in FIG. 1 and creates a reference tire model including a finite element model that reproduces a reference tire for creating a synthetic tire model.
 テンプレート作成部28は、図1に示すステップS1を実行する部分で、基準タイヤモデルから外形形状を変化させるための変化量の分布を表すテンプレートを複数作成する。 The template creation unit 28 creates a plurality of templates that represent the distribution of the amount of change for changing the outer shape from the reference tire model in the part that executes step S1 shown in FIG.
 基底タイヤモデル作成部30は、図1に示すステップS3を実行する部分で、基準タイヤモデルとテンプレートの1つを用いて、基準タイヤモデルの外形形状が変化した外形形状を有する基底タイヤモデルを作成する。基底タイヤモデル作成部30は、基底タイヤモデルを、複数(N個)作成する。このとき、テンプレートのうち、基底タイヤモデルの作成にすでに用いた変化量の分布と異なる変化量の分布を表すテンプレートを用いて、基底タイヤモデルを少なくとも1つ以上作成する。これにより、作成される基底タイヤモデルは、すでに作成された基底タイヤモデルと外形形状が異なる。 The base tire model creation unit 30 is a part that executes step S3 shown in FIG. 1, and creates a base tire model having an outer shape that changes the outer shape of the reference tire model by using one of the reference tire model and the template. To do. The base tire model creation unit 30 creates a plurality (N) of base tire models. At this time, at least one or more base tire models are created using a template representing a distribution of change amounts different from the distribution of change amounts already used for creating the base tire model. As a result, the base tire model that is created has a different external shape from the base tire model that has already been created.
 合成タイヤモデル作成部32は、図1に示すステップS5を実行する部分で、作成した複数の基底タイヤモデルを組み合わせて、基準タイヤモデルの外形形状と異なる外形形状を有する合成タイヤモデルを複数個作成する。作成した複数の合成タイヤモデルの外形形状はお互いに異なる。 The synthetic tire model creation unit 32 executes step S5 shown in FIG. 1 and creates a plurality of synthetic tire models having an outer shape different from the outer shape of the reference tire model by combining the plurality of created base tire models. To do. The external shapes of the created synthetic tire models are different from each other.
 制御・管理部34は、基準モデル作成部26、テンプレート作成部28、基底タイヤモデル作成部30、合成タイヤモデル作成部32、シミュレーション演算部36、及び決定部38の動作を管理する部分である。制御・管理部34は、例えば、基底タイヤモデルの作成を繰り返すように、基底タイヤモデル作成部30を制御する。このとき、テンプレートのうち、基底タイヤモデルの作成にすでに用いた変化量の分布と異なる変化量の分布を表すテンプレートを用いて、すでに作成された基底タイヤモデルと外形形状が異なる基底タイヤモデルを少なくとも1つ以上作成するように、基底タイヤモデル作成部30を制御する。 The control / management unit 34 is a part that manages the operations of the reference model creation unit 26, the template creation unit 28, the base tire model creation unit 30, the synthetic tire model creation unit 32, the simulation calculation unit 36, and the determination unit 38. For example, the control / management unit 34 controls the base tire model creation unit 30 to repeat the creation of the base tire model. At this time, at least a base tire model having an outer shape different from that of the base tire model already created by using a template representing a distribution of change amount different from the distribution of the change amount already used for creating the base tire model. The base tire model creation unit 30 is controlled to create one or more.
 シミュレーション演算部36は、図1に示すステップS6を実行する部分であり、作成した合成タイヤモデルを用いて、タイヤの挙動を再現したシミュレーションの計算を行うことにより、合成タイヤモデルのタイヤ特性の物理量を算出する。 The simulation calculation unit 36 is a part that executes Step S6 shown in FIG. 1, and uses the created synthetic tire model to perform a simulation calculation that reproduces the behavior of the tire, whereby the physical quantity of the tire characteristics of the synthetic tire model is calculated. Is calculated.
 決定部38は、図1に示すステップS8を実行する部分であり、基底タイヤモデルを組み合わせて合成タイヤモデルを作成するときに用いる重み付け係数を設計変数とし、シミュレーションにより算出された物理量を目的関数とし、この目的関数が、設定された条件を満足するように設計変数の値を変更することにより、最適なタイヤ断面形状を有する合成タイヤモデルを抽出する。すなわち、決定部38は、目的関数が予め設定された条件を満足するようにタイヤ断面形状を最適化する。
 以下、より具体的に、タイヤモデルの作成方法及びシミュレーション方法、及びタイヤモデルの作成装置10の作用を詳細に説明する。
The determination unit 38 is a part that executes step S8 shown in FIG. 1, and uses a weighting coefficient used when creating a synthetic tire model by combining a base tire model as a design variable, and a physical quantity calculated by simulation as an objective function. The synthetic tire model having the optimum tire cross-sectional shape is extracted by changing the value of the design variable so that the objective function satisfies the set condition. In other words, the determination unit 38 optimizes the tire cross-sectional shape so that the objective function satisfies a preset condition.
Hereinafter, the operation of the tire model creation method and simulation method and the tire model creation apparatus 10 will be described in more detail.
 まず、テンプレート作成部28は、基準タイヤモデルから外形形状を変化させるための変化量の分布を表すテンプレートを複数作成する(ステップS1)。基準タイヤモデルについては、後述する。図3は、基準タイヤモデルの一例の断面図である。
 テンプレートは、基準点からの位置情報と各位置の変化量とを表した情報である。テンプレートは、関数で表現され、あるいは区間に区切って線形補間したものである。図4(a)~(c)は、テンプレートの例を示す図である。図4(a)~(c)に示すテンプレートのグラフの横軸は、基準点からの位置を、縦軸は変化量を表している。変化量の分布は、オペレータの設定により自由に作成することができる。図4(a)に示す分布は、変化量の分布範囲(図中の基準点である点Sから点Eまでの範囲)の中央領域で変化量が最も大きくなる分布であり、図4(b)に示す分布は、変化量の分布範囲の後半部分で変化量が最大する分布であり、図4(c)に示す分布は、変化量の分布範囲の前半部分で変化量が最大する分布である。作成されたテンプレートは、記憶部20に記憶される。
First, the template creation unit 28 creates a plurality of templates representing the distribution of change amounts for changing the outer shape from the reference tire model (step S1). The reference tire model will be described later. FIG. 3 is a cross-sectional view of an example of a reference tire model.
The template is information representing position information from the reference point and a change amount of each position. The template is expressed by a function or linearly interpolated by dividing into a section. 4A to 4C are diagrams showing examples of templates. 4A to 4C, the horizontal axis represents the position from the reference point, and the vertical axis represents the amount of change. The distribution of the change amount can be freely created by operator settings. The distribution shown in FIG. 4A is a distribution in which the amount of change is the largest in the central region of the change amount distribution range (the range from the reference point S to the point E in the figure). ) Is a distribution in which the change amount is maximum in the second half part of the change amount distribution range, and the distribution shown in FIG. 4C is a distribution in which the change amount is maximum in the first half part of the change amount distribution range. is there. The created template is stored in the storage unit 20.
 次に、基準タイヤモデル作成部26は、有限要素モデルである基準タイヤモデルを作成する(ステップS2)。図3は、作成される基準タイヤモデル40の一例の断面図である。基準タイヤモデル40は、解析しようとする空気入りタイヤ(実在するか否かは問わない。)のモデルを有限個かつ小さな要素で分割したモデルである。基準タイヤモデル40は、複数の節点と、複数の節点を結ぶ複数の辺によって構成された要素の集合体である。基準タイヤモデル40は、三次元モデルあるいは二次元軸対称タイヤモデルであってもよい。二次元軸対称モデルは、二次元の断面形状が、タイヤ周方向に転写され、同一の断面形状がタイヤ周方向に連続するようにモデル化されたものである。
 三次元モデルの場合、各要素として、例えば、ゴム部材を再現するための4~6面体ソリッド要素、コード材を含むコード補強層を再現するための膜要素、シェル要素などが用いられる。2次元軸対称モデルの場合、各要素として、例えばゴム部材を再現するための三角形あるいは四角形のソリッド要素、コード材を含むコード補強層を再現するための膜要素、シェル要素などが用いられる。
 このように作成された基準タイヤモデル40は、各要素の節点の番号、節点の座標値、要素形状が少なくとも設定されており、これらの情報が、記憶部20に記憶される。
 なお、テンプレートの作成と、基準タイヤモデル40の作成は、どちらを先に行なってもよい。
Next, the reference tire model creation unit 26 creates a reference tire model that is a finite element model (step S2). FIG. 3 is a cross-sectional view of an example of the reference tire model 40 to be created. The reference tire model 40 is a model obtained by dividing a model of a pneumatic tire to be analyzed (whether or not it actually exists) by a finite number of small elements. The reference tire model 40 is an aggregate of elements constituted by a plurality of nodes and a plurality of sides connecting the plurality of nodes. The reference tire model 40 may be a three-dimensional model or a two-dimensional axisymmetric tire model. The two-dimensional axisymmetric model is a model in which a two-dimensional cross-sectional shape is transferred in the tire circumferential direction and the same cross-sectional shape is continuous in the tire circumferential direction.
In the case of the three-dimensional model, for example, a tetrahedral to hexahedral solid element for reproducing a rubber member, a membrane element for reproducing a cord reinforcing layer including a cord material, a shell element, and the like are used as each element. In the case of the two-dimensional axisymmetric model, for example, a triangular or quadrilateral solid element for reproducing a rubber member, a membrane element for reproducing a cord reinforcing layer including a cord material, a shell element, or the like is used as each element.
In the reference tire model 40 created in this way, at least the node number of each element, the coordinate value of the node, and the element shape are set, and these pieces of information are stored in the storage unit 20.
Note that either the template creation or the reference tire model 40 creation may be performed first.
 次に、基底タイヤモデル作成部30は、基準タイヤモデル40とテンプレートの1つを記憶部20から呼び出し、これらを用いて、基準タイヤモデル40の外形形状が変化した外形形状を有する基底タイヤモデルを作成する(ステップS3)。このとき、基底タイヤモデル作成部30は、基準タイヤモデル40から基準タイヤモデル40の外形形状輪郭ライン、あるいは、基準タイヤモデル40のカーカスラインを取得し、取得した外形形状輪郭ラインあるいはカーカスラインを、記憶部20から呼び出したテンプレートを用いて変更することによって基底タイヤモデル42を作成することが好ましい。これにより、基準タイヤモデル40のトレッド部に溝が設けられていても、基底タイヤモデルのタイヤ断面形状を容易に作成することができる。 Next, the base tire model creation unit 30 calls the reference tire model 40 and one of the templates from the storage unit 20, and uses them to select a base tire model having an outer shape that is a change in the outer shape of the reference tire model 40. Create (step S3). At this time, the base tire model creation unit 30 acquires the outer shape contour line of the reference tire model 40 or the carcass line of the reference tire model 40 from the reference tire model 40, and the acquired outer shape contour line or carcass line is obtained. It is preferable to create the base tire model 42 by changing it using a template called from the storage unit 20. Thereby, even if a groove is provided in the tread portion of the reference tire model 40, the tire cross-sectional shape of the base tire model can be easily created.
 図5は、基準タイヤモデル40の外形形状輪郭ラインを変更することにより基底タイヤモデル42を作成する方法を説明する図である。外形形状輪郭ラインは、トレッド部、サイド部、及びビード部の表面のうち、トレッド部に設けられる溝のような局所的に凹んだ部分を含まない部分の輪郭形状である。図5では、基準タイヤモデル40の上に外形形状輪郭ライン41が示されている。また、基底タイヤモデル42の外形形状輪郭ライン43も示されている。なお、図5では、基準タイヤモデル40及び基底タイヤモデル42は、節点のみで表示されている。本実施形態では、基底タイヤモデル42を作成するとき、基準タイヤモデル40の外形形状輪郭ライン上の節点をテンプレートの変化量の分布に応じて移動させて外形形状輪郭ラインの変形が行なわれる。具体的には、基底タイヤモデル作成部30は、テンプレートの変化量の分布を、節点の移動すべき移動量として定め、この移動量を用いて節点を移動させることにより外形形状輪郭ラインの変形を行なう。これにより、基底タイヤモデル42を作成することができる。このとき、節点の移動方向は、外形形状輪郭ラインの曲線に対して法線方向であることが好ましいが、予め設定された方向であってもよい。例えば、トレッド部の変形を主に行なう場合、トレッド部に位置する節点の移動方向をタイヤ径方向にすることが好ましい。また、サイド部の変形を主に行なう場合、サイド部に位置する節点の移動方向をタイヤ幅方向にすることが好ましい。 FIG. 5 is a diagram for explaining a method of creating the base tire model 42 by changing the outer shape contour line of the reference tire model 40. The outer shape contour line is a contour shape of a portion of the surface of the tread portion, the side portion, and the bead portion that does not include a locally recessed portion such as a groove provided in the tread portion. In FIG. 5, an outline contour line 41 is shown on the reference tire model 40. In addition, an outline contour line 43 of the base tire model 42 is also shown. In FIG. 5, the reference tire model 40 and the base tire model 42 are displayed with only nodes. In the present embodiment, when creating the base tire model 42, the outer contour line is deformed by moving the nodes on the outer contour line of the reference tire model 40 according to the distribution of the amount of change in the template. Specifically, the base tire model creation unit 30 determines the distribution of the change amount of the template as a movement amount that the node should move, and uses this movement amount to move the node to deform the outer contour line. Do. Thereby, the base tire model 42 can be created. At this time, the moving direction of the node is preferably a normal direction with respect to the curve of the outer contour line, but may be a preset direction. For example, when the deformation of the tread portion is mainly performed, it is preferable that the moving direction of the node located in the tread portion is the tire radial direction. Further, when mainly deforming the side portion, it is preferable that the moving direction of the node located on the side portion is the tire width direction.
 基底タイヤモデル作成部30は、例えば、基準タイヤモデル40の形状変形解析をおこなうことにより、基底タイヤモデル42を作成することができる。具体的には、基底タイヤモデル作成部30は、基準タイヤモデル40の各要素に材料定数を付与し、コンピュータにより形状変形解析の演算が可能なモデルをつくる。各要素に付与する材料定数は、実際のタイヤ構成部材の材料定数でなくてもよい。この後、外形形状輪郭ライン41上の各節点に、テンプレートの変化量の分布にしたがって節点の移動量に相当する強制変位を与えて、基準タイヤモデル40の形状変形解析を行なう。この形状変形解析で、基準タイヤモデル40の形状を変形させることによって、基底タイヤモデル42を作成する。上記例は、外形形状輪郭ラインを変形させる例であるが、外形形状輪郭ラインに代えてカーカスラインを、上記方法で変形させることもできる。 The base tire model creation unit 30 can create the base tire model 42 by performing shape deformation analysis of the reference tire model 40, for example. Specifically, the base tire model creation unit 30 assigns a material constant to each element of the reference tire model 40 and creates a model that can be subjected to shape deformation analysis by a computer. The material constant given to each element may not be the material constant of the actual tire constituent member. Thereafter, a forcible displacement corresponding to the movement amount of the node is given to each node on the outer shape contour line 41 in accordance with the distribution of the change amount of the template, and the shape deformation analysis of the reference tire model 40 is performed. In this shape deformation analysis, the base tire model 42 is created by deforming the shape of the reference tire model 40. The above example is an example of deforming the outer contour line, but the carcass line can be deformed by the above method instead of the outer contour line.
 また、基底タイヤモデル42の作成は、以下の方法で行なってもよい。基底タイヤモデル作成部30は、基準タイヤモデル40の外形形状輪郭ライン上の節点をテンプレートの変化量の分布に合わせて節点の移動量を定め、この移動量を用いて節点を移動して外形形状輪郭ライン43を作成し、これに合わせて基準タイヤモデル40の外形形状輪郭ライン43上の節点以外の全節点を移動させる。基底タイヤモデル42と基準タイヤモデル40の構成要素は同じであり、節点の位置だけが異なるので、基底タイヤモデル作成部30は、基準タイヤモデル40から基底タイヤモデル42を容易に作成することができる。上記例は、外形形状輪郭ラインを変形させる例であるが、外形形状輪郭ラインに代えてカーカスラインを、上記方法で変形させることもできる。
 また、基底タイヤモデル42を作成する方法は、特に制限されず、基底タイヤモデル作成部30は、変形した外形形状輪郭ラインやカーカスラインから公知の方法で、基底タイヤモデル42を作成してもよい。
The base tire model 42 may be created by the following method. The base tire model creation unit 30 determines the amount of movement of the nodes by matching the nodes on the outer shape contour line of the reference tire model 40 with the distribution of the change amount of the template, and moves the nodes using the amount of movement to adjust the outer shape. A contour line 43 is created, and all the nodes other than the nodes on the outer shape contour line 43 of the reference tire model 40 are moved in accordance with this. Since the base tire model 42 and the reference tire model 40 have the same constituent elements and differ only in the positions of the nodes, the base tire model creation unit 30 can easily create the base tire model 42 from the reference tire model 40. . The above example is an example of deforming the outer contour line, but the carcass line can be deformed by the above method instead of the outer contour line.
The method for creating the base tire model 42 is not particularly limited, and the base tire model creation unit 30 may create the base tire model 42 by a known method from the deformed outer shape contour line or the carcass line. .
 作成されたテンプレートの変化量の分布範囲(図4(a)~(c)に示す点Sから点Eまでの範囲)は、基準タイヤモデル40の、変形させようとする外形形状輪郭ラインあるいはカーカスラインの範囲と必ずしも一致しない場合がある。このため、テンプレートの変化量の分布範囲の両端の点(図4(a)~(c)に示す点S、点E)が、基準タイヤモデルの、変形させようとする範囲の両端をなす節点に一致し、かつ、テンプレートの変化量の分布の範囲の長さ(図4(a)~(c)に示す点S~点Eの距離)が、基準タイヤモデル40の、変形させようとする範囲の、外形形状輪郭ラインあるいはカーカスラインのペリフェリ長に一致するように、テンプレートの一部の領域を拡縮して変化量の分布を変更するとよい。 The distribution range of the change amount of the created template (the range from the point S to the point E shown in FIGS. 4A to 4C) is the contour line or carcass of the reference tire model 40 to be deformed. It may not always match the line range. For this reason, the nodes at both ends of the distribution range of the change amount of the template (points S and E shown in FIGS. 4A to 4C) are nodes that form both ends of the range to be deformed of the reference tire model. And the length of the template variation distribution range (the distance from point S to point E shown in FIGS. 4 (a) to 4 (c)) is to be deformed by the reference tire model 40. It is preferable to change the distribution of the amount of change by enlarging / reducing a partial region of the template so that it matches the peripheral length of the outer shape contour line or carcass line of the range.
 基底タイヤモデル作成部30で基準タイヤモデル40から形状を変形させて基底タイヤモデル42を作成するとき、タイヤのトレッド部、サイド部、あるいはビード部等の外形形状の一部が選択的に基準タイヤモデル40の外形形状から変形した基底タイヤモデル42を作成しようとする場合もある。このため、テンプレートの定めた特定の変化量の分布範囲が、選択的に変形させたい部分だけに対応するように、例えばトレッド部だけに、あるいはサイド部だけに、対応するように、テンプレートの変化量の分布範囲を区分けし、区分けした区間毎に変化量の部分の拡縮を行なうことが好ましい。すなわち、基底タイヤモデル作成部30は、テンプレートの変化量の分布のうち少なくとも一部の領域の両端を、外形形状輪郭ラインあるいはカーカスライン上の節点に対応させるために、この節点間の外形形状輪郭ライン上の距離あるいはカーカスライン上の距離に合わせてテンプレートの前記一部の領域を拡縮し、拡縮した前記一部の領域の分布から、基準タイヤモデルの外形形状輪郭ラインあるいはカーカスライン上の各節点の移動すべき移動量を定めて、外形形状輪郭ラインあるいはカーカスラインの形状を変形させることにより、基底タイヤモデルを作成することが好ましい。 When the base tire model creating unit 30 deforms the shape from the reference tire model 40 to create the base tire model 42, a part of the outer shape such as the tread portion, the side portion, or the bead portion of the tire is selectively used as the reference tire. There is a case where a base tire model 42 deformed from the outer shape of the model 40 is to be created. For this reason, the template change is made so that the distribution range of the specific change amount determined by the template corresponds to only the portion to be selectively deformed, for example, only to the tread portion or only to the side portion. It is preferable to divide the amount distribution range, and to enlarge or reduce the change amount portion for each divided section. In other words, the base tire model creation unit 30 makes the outer shape contour between the nodes to correspond both ends of at least a part of the distribution of the variation of the template to the nodes on the outer shape contour line or the carcass line. The partial area of the template is enlarged or reduced in accordance with the distance on the line or the distance on the carcass line, and each node on the outer shape contour line of the reference tire model or the carcass line is obtained from the distribution of the enlarged and reduced partial areas. It is preferable to create a base tire model by determining the amount of movement to be moved and deforming the shape of the outer contour line or the carcass line.
 図6(a)~(e)は、上述したテンプレートの変化量の分布範囲中の一部の領域の拡縮と、基準タイヤモデル40、及び基底タイヤモデル42を説明する図である。図中の基準タイヤモデル40、及び基底タイヤモデル42は、節点及び要素の表示を省略している。
 図6(a)はテンプレートの一例を示している。テンプレート中の、拡縮しようとする分布範囲の両端のうち一方の点PAが、図6(b)、(d)に示す基準タイヤモデル40のタイヤ赤道線上で外形形状輪郭ライン上に位置する節点P1に対応し、テンプレート中の拡縮しようとする分布範囲の両端のうち他方の点PBが、図6(b)、(d)に示すトレッド部の端の節点P2に対応し、テンプレート中の分布の両端のうち他方の点PCが、図6(b)、(d)に示すトレッド部の端の節点P3に対応するように、基底タイヤモデル作成部30は拡縮する。その際、さらに、点PAと点PBの間の距離LAが、節点P1と節点P2間のペリフェリ長(輪郭ライン上の距離)L12に一致し、点PBと点PCの間の距離LBが、節点P2と節点P3間のペリフェリ長(輪郭ライン上の距離)L23に一致するように、ペリフェリ長L12及びペリフェリ長L23に合わせて距離LAの範囲及び距離LBの範囲を拡縮する。
 このように、テンプレート中の拡縮しようとする領域が、基準タイヤモデル40のトレッド部、サイド部、及びビード部の少なくとも1つの範囲に対応するように、テンプレートの前記領域は拡縮されることが好ましい。すなわち、外形形状を変化させようとする部分は、トレッド部、サイド部、及びビード部のそれぞれを1単位要素に分けて、この単位要素を組み合わせて設定することが好ましい。さらに、サイド部は、タイヤ最大幅位置に対してタイヤ径方向外側(トレッド部の側)に位置する上サイド部と、タイヤ最大幅位置に対してタイヤ径方向内側(ビード部の側)に位置する下サイド部とに細分化して、それぞれを1単位要素にすることもできる。図6(a),(b),(d)に示す例では、トレッド部の範囲と、サイド部及びビード部の範囲に分けて、外形形状を変化させている。また、基準タイヤモデル40の外形形状輪郭ラインの代わりに、基準タイヤモデル40のカーカスラインを用いることもできる。
 図6(b)に示す基準タイヤモデル40と、図6(d)に示す基準タイヤモデル40は、タイヤサイズが異なり、図6(d)に示す基準タイヤモデルの方が、トレッド幅は広い。このように、異なるタイヤサイズであっても、基底タイヤモデル作成部30は、1つのテンプレートの変化量の分布の領域を区切って拡縮を行ない、拡縮した変化量の分布から外形形状輪郭ライン上の節点の移動量を定め、この移動量を用いることにより、図6(c)、(d)に示すように、タイヤサイズが異なっていても、選択した部分、例えばサイド部が同じような形状に変形した基底タイヤモデル42を作成することができる。したがって、基底タイヤモデル作成部30は、タイヤサイズに係らず一貫したタイヤ断面形状の特徴を持った基底タイヤモデルを作成することができる。
 基底タイヤモデル作成部30は、このようにして作成された複数のテンプレート毎に、基底タイヤモデル42を作成し、記憶部20に記憶する。基底タイヤモデル42は、基準タイヤモデル40と同じ要素と同じ節点を有するが、基準タイヤモデル40とは節点の位置座標が異なるモデルである。
FIGS. 6A to 6E are diagrams for explaining the expansion / contraction of a partial region in the above-described template variation amount distribution range, the reference tire model 40, and the base tire model 42. FIG. In the reference tire model 40 and the base tire model 42 in the figure, the nodes and elements are not shown.
FIG. 6A shows an example of a template. One point PA of the ends of the distribution range to be expanded or contracted in the template is located at the node P1 located on the contour line on the tire equator line of the reference tire model 40 shown in FIGS. The other point PB of the two ends of the distribution range to be scaled in the template corresponds to the node P2 at the end of the tread portion shown in FIGS. 6B and 6D, and the distribution of the distribution in the template The base tire model creation unit 30 expands and contracts so that the other point PC of both ends corresponds to the node P3 at the end of the tread portion shown in FIGS. 6 (b) and 6 (d). At that time, furthermore, the distance LA between the point PA and the point PB coincides with the peripheral length (distance on the contour line) L12 between the node P1 and the node P2, and the distance LB between the point PB and the point PC is The range of the distance LA and the range of the distance LB are enlarged or reduced in accordance with the peripheral length L12 and the peripheral length L23 so as to coincide with the peripheral length (distance on the contour line) L23 between the node P2 and the node P3.
As described above, it is preferable that the region of the template is expanded or contracted so that the region to be expanded or contracted in the template corresponds to at least one range of the tread portion, the side portion, and the bead portion of the reference tire model 40. . In other words, it is preferable that the portion whose outer shape is to be changed is set by dividing each of the tread portion, the side portion, and the bead portion into one unit element and combining these unit elements. Further, the side portion is positioned on the outer side in the tire radial direction (tread portion side) with respect to the tire maximum width position, and on the inner side in the tire radial direction (bead portion side) with respect to the tire maximum width position. It can be subdivided into lower side parts to be made into one unit element. In the example shown in FIGS. 6A, 6 </ b> B, and 6 </ b> D, the outer shape is changed to be divided into a range of the tread portion and a range of the side portion and the bead portion. In addition, the carcass line of the reference tire model 40 can be used instead of the outer shape contour line of the reference tire model 40.
The reference tire model 40 shown in FIG. 6 (b) and the reference tire model 40 shown in FIG. 6 (d) have different tire sizes, and the reference tire model shown in FIG. 6 (d) has a wider tread width. In this way, even if the tire sizes are different, the base tire model creation unit 30 performs expansion / contraction by dividing the region of the variation distribution of one template, and the contour distribution line is changed from the distribution of the variation variation. By determining the amount of movement of the node and using this amount of movement, the selected part, for example, the side part has the same shape as shown in FIGS. 6C and 6D, even if the tire size is different. A deformed base tire model 42 can be created. Accordingly, the base tire model creation unit 30 can create a base tire model having a consistent tire cross-sectional shape regardless of the tire size.
The base tire model creation unit 30 creates a base tire model 42 for each of the plurality of templates created in this way, and stores the base tire model 42 in the storage unit 20. The base tire model 42 has the same elements and the same nodes as the reference tire model 40, but is different from the reference tire model 40 in the position coordinates of the nodes.
 合成タイヤモデル作成部32は、記憶部20に記憶された複数の基底タイヤモデル42を呼び出して、複数の合成タイヤモデルを作成する(ステップS5)。図7は、合成タイヤモデルの作成の例を説明する図である。具体的には、合成タイヤモデル作成部32は、複数(N個)の基底タイヤモデル42毎に、基底タイヤモデル42と基準タイヤモデル40の形状との差を表すタイヤ基底ベクトルを求める。図7では、基底タイヤモデル1、2、・・・、Nにおけるタイヤ基底ベクトル1、2、・・・、Nが示されている。タイヤ基底ベクトルは、例えば、基底タイヤモデル42の各節点の位置座標から基準タイヤモデル40の対応する節点(同じ節点番号を有する節点)の位置座標を差し引いた差分座標値を成分に持つ複数のベクトルの集まりである。さらに、合成タイヤモデル作成部32は、求めた複数のタイヤ基底ベクトルに重み付け係数α~αを掛け算して加算することにより、各節点毎の合成ベクトルを作成する。合成タイヤモデル作成部32は、この合成ベクトルを、変位ベクトルとして基準タイヤモデル40の各節点に与えることにより、合成タイヤモデルを作成する。すなわち、合成タイヤモデル作成部32は、複数の基底タイヤモデル42のタイヤ基底ベクトルを線形加算、すなわち重み付け加算することにより、合成タイヤモデルを作成することが好ましい。このとき、重み付け係数α~αは、設定された値が用いられる。重み付け係数α~αの値を設定するとき、例えば、モンテカルロ法やラテン超方格法、準乱数法などの実験計画に従って水準を振って値を設定してもよいし、実験計画法における直交表を用いて水準を振って値を設定してもよい。重み付け係数α~αの値は、制御・管理部34よって定められる。なお、重み付け係数α~αの値の総和が常に1となるように設定されていることが好ましい。 The synthetic tire model creation unit 32 calls the plurality of base tire models 42 stored in the storage unit 20 and creates a plurality of synthetic tire models (step S5). FIG. 7 is a diagram illustrating an example of creating a synthetic tire model. Specifically, the synthetic tire model creation unit 32 obtains a tire base vector representing a difference between the shapes of the base tire model 42 and the reference tire model 40 for each of a plurality (N) of base tire models 42. 7, tire base vectors 1, 2,..., N in the base tire models 1, 2,. The tire base vector is, for example, a plurality of vectors whose components are differential coordinate values obtained by subtracting the position coordinates of the corresponding nodes of the reference tire model 40 (nodes having the same node number) from the position coordinates of each node of the base tire model 42. It is a gathering of. Further, the composite tire model creation unit 32 creates a composite vector for each node by multiplying the obtained plurality of tire base vectors by weighting coefficients α 1 to α N and adding them. The composite tire model creation unit 32 creates a composite tire model by giving this composite vector to each node of the reference tire model 40 as a displacement vector. That is, it is preferable that the synthetic tire model creation unit 32 creates a synthetic tire model by linear addition, that is, weighted addition, of tire base vectors of a plurality of base tire models 42. At this time, set values are used for the weighting coefficients α 1 to α N. When setting the values of the weighting coefficients α 1 to α N , for example, the values may be set by changing the level according to an experimental design such as the Monte Carlo method, the Latin hypersquare method, or the quasi-random number method. The value may be set by changing the level using an orthogonal table. The values of the weighting factors α 1 to α N are determined by the control / management unit 34. It is preferable that the sum of the values of the weighting coefficients α 1 to α N is always set to 1.
 合成タイヤモデルを作製するとき、合成タイヤモデル作成部32は、合成タイヤモデルに設定されるコード材のエンド数及びコード材の傾斜角度(例えばタイヤ周方向に対してコード材が延在する方向の傾斜角度)を、基準タイヤモデル40で設定されるコード材のエンド数及びコード材の傾斜角度から、基準タイヤモデル40からの変形形状に応じて変更することが好ましい。コード材のエンド数は、コード材の延在方向と直交する方向における、コード材の単位長さ当たりのコード材の本数である。これにより、後述するシミュレーション計算から算出されるタイヤ特性の物理量を、実際のタイヤのタイヤ特性の物理量に近づけることができる。
 このようにコード材のエンド数及びコード材の傾斜角度を変更するのは以下の理由による。タイヤ製造工程の段階でグリーンタイヤを作製するとき、異なるタイヤ断面形状にするか否かに係らず、同じエンド数及び同じ傾斜角度のコード材を共通して用いる。このため、タイヤ断面形状が変化する場合、実際のタイヤでは、タイヤ断面形状の変化に応じてコード材のエンド数及び傾斜角度が変化する。このような変化を再現するために、コード材のエンド数及びコード材の傾斜角度を、基準タイヤモデル40からの変形形状に応じて変更させることが好ましい。例えば、タイヤ外径を大きくする場合、ベルト層においてタイヤ周方向に対する傾斜角度を小さくする変更をする。このような変更は、場所によって変えることが好ましい。すなわち、エンド数及び傾斜角度が分布を持つように変更することが好ましい。
When producing the synthetic tire model, the synthetic tire model creating unit 32 sets the number of cord material ends and the inclination angle of the cord material (for example, in the direction in which the cord material extends with respect to the tire circumferential direction). It is preferable to change the inclination angle) from the number of ends of the cord material set in the reference tire model 40 and the inclination angle of the cord material according to the deformed shape from the reference tire model 40. The number of ends of the cord material is the number of cord materials per unit length of the cord material in a direction orthogonal to the extending direction of the cord material. Thereby, the physical quantity of the tire characteristic calculated from the simulation calculation mentioned later can be brought close to the physical quantity of the actual tire characteristic of the tire.
The reason for changing the number of ends of the cord material and the inclination angle of the cord material is as follows. When green tires are manufactured at the stage of the tire manufacturing process, cord materials having the same number of ends and the same inclination angle are commonly used regardless of whether the tires have different cross-sectional shapes. For this reason, when the tire cross-sectional shape changes, in an actual tire, the number of ends of the cord material and the inclination angle change according to the change in the tire cross-sectional shape. In order to reproduce such a change, it is preferable to change the number of ends of the cord material and the inclination angle of the cord material according to the deformed shape from the reference tire model 40. For example, when increasing the tire outer diameter, the belt layer is changed to reduce the inclination angle with respect to the tire circumferential direction. Such changes are preferably changed depending on the location. That is, it is preferable to change the number of ends and the inclination angle so as to have a distribution.
 合成タイヤモデル作成部32では、基底タイヤモデル42毎のタイヤ基底ベクトルを線形加算することにより、合成タイヤモデルを作成するが、基底タイヤモデル42毎の各節点の位置情報である位置座標の値に重み付け係数α~αを乗算して加算することにより、合成タイヤモデルを作成することも好ましい。この場合においても、重み付け係数α~αの値の総和が常に1となるように設定されていることが好ましい。
 このようにして作成された複数の合成タイヤモデルの情報は、記憶部20に記憶される。
The synthetic tire model creation unit 32 creates a synthetic tire model by linearly adding the tire base vectors for each base tire model 42. The composite tire model creation unit 32 creates a position coordinate value that is position information of each node for each base tire model 42. It is also preferable to create a synthetic tire model by multiplying and adding weighting coefficients α 1 to α N. Even in this case, it is preferable that the sum of the values of the weighting coefficients α 1 to α N is always set to 1.
Information on a plurality of synthetic tire models created in this way is stored in the storage unit 20.
 なお、上述の実施形態では、基準タイヤモデルは1つ作成されるが、基準タイヤモデル作成部26は、タイヤ外形形状、タイヤサイズ、及びタイヤ構造のうち少なくとも一つが異なる基準タイヤモデル群を作成してもよい。このとき、作成した基準タイヤモデル群のそれぞれに、作成したテンプレートそれぞれを使用して、テンプレートの数に応じて、基底タイヤの作成、N個の基底タイヤモデルを作成したか否かの判断を繰り返して複数の合成タイヤモデルの作成を行なうことが好ましい。すなわち、タイヤ外形形状、タイヤサイズ、及びタイヤ構造のうち少なくとも一つが異なる基準タイヤモデルのそれぞれに対して、テンプレートを用いて複数の合成タイヤモデルを作成することが好ましい。これにより、タイヤ外形形状、タイヤサイズ、あるいはタイヤ構造の区別なく、共通したタイヤ断面形状の特徴(例えば、サイドウォール部が外側に飛び出している、トレッドショルダー部が丸くなっている、トレッド部のタイヤ断面形状の曲率半径が小さい等)を持った基底タイヤモデルを効率よく作成することができる。 In the above-described embodiment, one reference tire model is created, but the reference tire model creation unit 26 creates a reference tire model group in which at least one of the tire outer shape, the tire size, and the tire structure is different. May be. At this time, using each of the created templates for each of the created reference tire model groups, according to the number of templates, repeatedly creating a base tire and determining whether N base tire models have been created. It is preferable to create a plurality of synthetic tire models. That is, it is preferable to create a plurality of synthetic tire models by using a template for each of the reference tire models having at least one of the tire outer shape, the tire size, and the tire structure. This makes it possible to distinguish between the tire outer shape, tire size, or tire structure, and the characteristics of a common tire cross-sectional shape (for example, the sidewall portion protrudes outward, the tread shoulder portion is rounded, and the tread portion tire. It is possible to efficiently create a base tire model having a cross-sectional shape with a small radius of curvature.
 制御・管理部34は、合成タイヤモデル作成部32において複数の合成タイヤモデルを作成するとき、上述した重み付け加算に用いる重み付け係数α~αの値を変更する。重み付け係数α~αの値は、予め定めた定義域内を連続的に変化させてもよいし、離散的に変化させてもよい。制御・管理部34は、公知の実験計画法に従って、重み付け係数α~αについて水準を振り、この値を合成タイヤモデル46のそれぞれに割り付けることで、合成タイヤモデル作成部32に複数(M個:Mは自然数)の合成タイヤモデルを作成させる。 When the composite tire model creation unit 32 creates a plurality of composite tire models, the control / management unit 34 changes the values of the weighting coefficients α 1 to α N used for the above-described weighted addition. The values of the weighting factors α 1 to α N may be changed continuously within a predetermined domain or may be changed discretely. The control / management unit 34 assigns a level to the weighting coefficients α 1 to α N according to a known experimental design method, and assigns this value to each of the synthetic tire models 46, so that a plurality (M Pieces: M is a natural number).
 シミュレーション演算部36は、合成タイヤモデル作成部32で作成された複数(M回)の合成タイヤモデルを用いて、タイヤ特性を得るためのタイヤの挙動を再現したシミュレーション計算を行う(ステップS6)。シミュレーション計算は、作成された合成タイヤモデル毎に行なわれる。したがって、作成された合成タイヤモデルの数だけ、シミュレーション計算が行われる。シミュレーション演算部36は、このタイヤ特性を得るためのシミュレーションを行うことにより、合成タイヤモデルのタイヤ特性の物理量を算出する。タイヤ特性は、例えば、タイヤの転がり抵抗、トレッドの摩耗寿命、トレッドの偏摩耗、振動乗心地性能、タイヤ騒音、ベルトの耐久性能、タイヤの横バネ定数(横剛性)あるいは縦バネ定数(縦剛性)等を含む。 The simulation calculation unit 36 uses the plurality of (M times) synthetic tire models created by the synthetic tire model creation unit 32 to perform a simulation calculation that reproduces the behavior of the tire to obtain tire characteristics (step S6). The simulation calculation is performed for each created synthetic tire model. Therefore, the simulation calculation is performed by the number of synthetic tire models created. The simulation calculation unit 36 calculates a physical quantity of the tire characteristic of the synthetic tire model by performing a simulation for obtaining the tire characteristic. Tire characteristics include, for example, tire rolling resistance, tread wear life, tread uneven wear, vibration ride performance, tire noise, belt durability, tire lateral spring constant (lateral stiffness) or longitudinal spring constant (longitudinal stiffness). ) Etc.
 シミュレーション演算部36は、マウス・キーボード18等の入力操作デバイスにより予め設定されたタイヤ特性の物理量、例えば固有振動数、縦バネ定数、横バネ定数、前後バネ定数、転がり抵抗、ベルト間における層間剪断歪み、摩耗予測値、あるいは、タイヤが地面に接地したときの接地圧力の値等の物理量を数値計算によって算出する。これらの具体的な計算は、周知の方法であるので説明は省略される。算出結果であるタイヤ特性の物理量は、記憶部20に記憶される。 The simulation calculation unit 36 is a physical quantity of tire characteristics set in advance by an input operation device such as the mouse / keyboard 18, such as a natural frequency, a longitudinal spring constant, a lateral spring constant, a longitudinal spring constant, a rolling resistance, and an interlaminar shear between belts. A physical quantity such as a strain, a predicted wear value, or a contact pressure value when the tire contacts the ground is calculated by numerical calculation. These specific calculations are well-known methods and will not be described. The physical quantity of the tire characteristic that is the calculation result is stored in the storage unit 20.
 決定部38は、作成した合成タイヤモデル毎にシミュレーション演算部36で得られるタイヤ特性の算出結果に基づいて、タイヤ断面形状を最適化する(ステップS8)。具体的には、決定部38は、タイヤ断面形状の設計空間を、曲面近似関数を用いて応答曲面関数によって定める。この応答曲面関数は、上記重み付け係数を設計変数とする。すなわち、応答曲面関数は、重み付け係数α~αを設計変数として、タイヤ特性の物理量を、曲面近似関数を用いて表したものである。例えば、6つの重み付け係数を定めることにより、1つのタイヤ断面形状が定まり、曲面近似関数により1つの物理量が得られる。ここで、曲面近似関数は、チェビシェフの直交多項式やn次多項式、動径基底関数法(RBF)やクリギング法等による関数が挙げられる。そして、決定部38は、定められた応答曲面関数に基づき、例えば多目的遺伝的アルゴリズム等の発現的手法や、勾配法などの数理計画法を用いて最適化タイヤ断面形状の探索を行なう。すなわち、決定部38は、重み付け係数α~αを設計変数とし、タイヤ特性の物理量を目的関数とし、設定された条件を満足するように設計変数の値を変更することにより、上記目的関数が予め設定された条件を満足する合成タイヤモデルの物理量を有する合成タイヤモデルのタイヤ断面形状の探索を行う。予め設定された条件とは、例えば、タイヤ特性を表す物理量の上限及び下限を有する範囲、タイヤ特性を表す物理量の最小値、あるいはタイヤ特性を表す物理量の最大値等である。このように、決定部38は、複数の合成タイヤモデルを用いてタイヤ特性を得るためのシミュレーション計算を行うことにより、タイヤ特性の物理量が予め設定された条件を満足する最適化タイヤ断面形状を見出す。
 決定部38では、重み付け係数α~αの値を変更して最適なタイヤ断面形状を決定するので、タイヤ特性の物理量が条件を満足する重み付け係数α~αの値を抽出することにより、最適化タイヤ断面形状を容易に決定することができる。
The determining unit 38 optimizes the tire cross-sectional shape based on the calculation result of the tire characteristics obtained by the simulation calculating unit 36 for each created synthetic tire model (step S8). Specifically, the determination unit 38 determines the design space of the tire cross-sectional shape by a response surface function using a surface approximation function. This response surface function uses the weighting coefficient as a design variable. That is, the response surface function is a physical characteristic of tire characteristics expressed using a curved surface approximation function with the weighting coefficients α 1 to α N as design variables. For example, by defining six weighting factors, one tire cross-sectional shape is determined, and one physical quantity is obtained by a curved surface approximation function. Here, examples of the curved surface approximation function include Chebyshev's orthogonal polynomial, n-order polynomial, radial basis function method (RBF), Kriging method, and the like. Then, the determination unit 38 searches for an optimized tire cross-sectional shape based on the determined response surface function using, for example, an expressive method such as a multi-purpose genetic algorithm or a mathematical programming method such as a gradient method. That is, the determination unit 38 uses the weighting coefficients α 1 to α N as design variables, the physical quantity of tire characteristics as an objective function, and changes the value of the design variable so as to satisfy the set condition, thereby the objective function Is searched for the tire cross-sectional shape of the synthetic tire model having the physical quantity of the synthetic tire model that satisfies a preset condition. The preset condition is, for example, a range having an upper limit and a lower limit of a physical quantity representing tire characteristics, a minimum value of physical quantities representing tire characteristics, or a maximum value of physical quantities representing tire characteristics. As described above, the determination unit 38 performs the simulation calculation for obtaining the tire characteristics using a plurality of synthetic tire models, thereby finding an optimized tire cross-sectional shape in which the physical quantity of the tire characteristics satisfies a preset condition. .
Since the determination unit 38 changes the values of the weighting factors α 1 to α N to determine the optimum tire cross-sectional shape, it extracts the values of the weighting factors α 1 to α N that satisfy the condition of the physical quantity of the tire characteristics. Thus, the optimized tire cross-sectional shape can be easily determined.
 なお、得られた最適化タイヤ断面形状の情報は、出力装置20に出力される他、図示されないタイヤ加硫用金型を作成するCADシステム等に送られる。あるいは、得られた最適化タイヤ断面形状は、タイヤデフレート時のタイヤ断面形状の情報として、あるいは、インモールドタイヤ断面形状の情報として、記憶部20に記憶され、さらに、図示されないハードディスクや記録メディア等に記録される。 In addition, the obtained information on the optimized tire cross-sectional shape is output to the output device 20, and is also sent to a CAD system or the like that creates a tire vulcanization mold (not shown). Alternatively, the obtained optimized tire cross-sectional shape is stored in the storage unit 20 as information on the tire cross-sectional shape at the time of tire deflation or as information on the cross-sectional shape of the in-mold tire, and further, a hard disk, a recording medium, etc. (not shown) To be recorded.
 本実施形態では、合成タイヤモデル作成部32において、制御・管理部34で定めた重み付け係数α~αを用いて、シミュレーション計算に用いる複数の合成タイヤモデルを一度に作成したが、本実施形態では、多目的遺伝的アルゴリズム等の進化的計算手法を用いて最適化タイヤ断面形状を抽出してもよい。すなわち、本実施形態では、合成タイヤモデルを用いて求められたタイヤ特性の物理量に応じて、タイヤ特性の物理量が設定された条件を満足するように、多目的遺伝的アルゴリズム等の進化的計算手法を用いて改良したタイヤ断面形状を有する合成タイヤモデルを逐次作成しながら、最適化タイヤ断面形状を抽出してもよい。
 このように、合成タイヤモデル作成部32において改良したタイヤ断面形状を有する合成タイヤモデルを逐次作成しながら、決定部34が、最適化タイヤ断面形状を抽出する方法と、一度に作成した複数の合成タイヤモデルのタイヤ特性の物理量から応答曲面関数を定め、最適化タイヤ断面形状を抽出する方法の両方を備えることも好ましい。この場合、オペレータは、2つの方法のいずれかを予め選択するようにシミュレーション装置10は構成されるとよい。なお、抽出される最適化タイヤ断面形状はひとつに限定されない。例えば、目的関数(タイヤ特性の物理量)が複数あるときにはパレート解の全てもしくは一部が抽出されてもよい。
In this embodiment, the synthetic tire model creation unit 32 creates a plurality of synthetic tire models used for simulation calculation at once using the weighting coefficients α 1 to α N determined by the control / management unit 34. In the form, the optimized tire cross-sectional shape may be extracted using an evolutionary calculation method such as a multi-purpose genetic algorithm. That is, in the present embodiment, an evolutionary calculation method such as a multi-purpose genetic algorithm is used so as to satisfy the condition in which the physical quantity of the tire characteristic is set according to the physical quantity of the tire characteristic obtained using the synthetic tire model. The optimized tire cross-sectional shape may be extracted while sequentially creating a synthetic tire model having a tire cross-sectional shape improved by use.
In this way, while the synthetic tire model having the improved tire cross-sectional shape is sequentially created in the synthetic tire model creation unit 32, the determination unit 34 extracts the optimized tire cross-sectional shape and a plurality of composites created at one time. It is also preferable to provide both a method of determining a response surface function from a physical quantity of tire characteristics of a tire model and extracting an optimized tire cross-sectional shape. In this case, the simulation apparatus 10 may be configured so that the operator selects one of the two methods in advance. The extracted optimized tire cross-sectional shape is not limited to one. For example, when there are a plurality of objective functions (physical quantities of tire characteristics), all or part of the Pareto solution may be extracted.
 こうして、決定部38は、最適化タイヤ断面形状を抽出することができるが、最適化タイヤ断面形状の探索過程を、ディスプレイ16に画面表示することが好ましい。すなわち、決定部38は、重み付け係数α~αの値、あるいは最適化タイヤ断面形状を見出すときに得られるタイヤ断面形状を特徴付ける特徴量と、タイヤ特性の物理量との関係を可視化して画面表示することが好ましい。例えば、散布図、グラフ、自己組織化マップ、あるいは決定木が画面表示される。上記特徴量は、タイヤ最大幅を有する点の位置情報、セクターモールドとサイドモールドとの分割位置の位置情報(例えばトレッドゴムの配置領域のうちのタイヤ外周表面上のタイヤ断面幅方向の端部の位置情報)、タイヤ外径、あるいはトレッドセンター部の曲率半径を含むことが好ましい。
 このように可視化により、タイヤ特性の物理量と、重み付け係数α~αの値、あるいは上記特徴量との間の関係が明瞭になり、タイヤ開発の有益な情報となり得る。
Thus, the determination unit 38 can extract the optimized tire cross-sectional shape, but it is preferable to display the search process for the optimized tire cross-sectional shape on the display 16. That is, the determination unit 38 visualizes the relationship between the weighting coefficients α 1 to α N or the characteristic amount characterizing the tire cross-sectional shape obtained when finding the optimized tire cross-sectional shape and the physical quantity of the tire characteristic, and displays the screen. It is preferable to display. For example, a scatter diagram, graph, self-organizing map, or decision tree is displayed on the screen. The feature amount includes the position information of the point having the maximum tire width, the position information of the division position of the sector mold and the side mold (for example, the end portion in the tire cross-sectional width direction on the tire outer peripheral surface in the arrangement region of the tread rubber). Position information), tire outer diameter, or radius of curvature of the tread center portion is preferably included.
In this way, visualization makes the relationship between the physical quantity of tire characteristics and the values of the weighting coefficients α 1 to α N or the above-mentioned feature quantity clear, and can be useful information for tire development.
 本実施形態は、コンピュータを用いて基準タイヤモデルから空気入りタイヤのタイヤモデルを作成する方法を実行するプログラムを記録する、非一時的なコンピュータが読み取り可能な媒体も含む。
 この場合、前記方法は、
 コンピュータに、基準タイヤモデル40から外形形状を変化させるための変化量の分布を表すテンプレートを複数作成させ、
 コンピュータに、基準タイヤモデル40を作成させ、
 前記コンピュータに、基準タイヤモデル40と前記テンプレートの1つを用いて、前記基準タイヤモデル40の外形形状が変化した外形形状を有する基底タイヤモデル42を作成させ、
 前記コンピュータに、前記テンプレートのうち、基底タイヤモデル42の作成にすでに用いた変化量の分布と異なる変化量の分布を表すテンプレートを用いて、すでに作成された基底タイヤモデル42と外形形状が異なる基底タイヤモデル42を作成させることを繰り返し実行させ、
 前記コンピュータに、作成した複数の基底タイヤモデル42を組み合わせて、基準タイヤモデル40の外形形状と異なる外形形状を有し、外形形状がお互いに異なる複数の合成タイヤモデルを作成させる、ことを含む。
This embodiment also includes a non-transitory computer readable medium that records a program that executes a method of creating a tire model of a pneumatic tire from a reference tire model using a computer.
In this case, the method
Let the computer create a plurality of templates representing the distribution of the amount of change for changing the outer shape from the reference tire model 40,
Let the computer create the reference tire model 40,
Using the reference tire model 40 and one of the templates, the computer creates a base tire model 42 having an outer shape in which the outer shape of the reference tire model 40 is changed,
Using the template representing the variation distribution different from the variation distribution already used for creating the base tire model 42 among the templates, the base having a different external shape from the base tire model 42 already created. Causing the tire model 42 to be repeatedly created,
And causing the computer to create a plurality of synthetic tire models having an outer shape different from the outer shape of the reference tire model 40 by combining the plurality of created base tire models 42.
 以上、本発明のタイヤモデルの作成方法、タイヤモデルの作成装置、タイヤのシミュレーション方法、及び非一時的なコンピュータが読み取り可能な媒体について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。 The tire model creation method, tire model creation device, tire simulation method, and non-transitory computer-readable medium of the present invention have been described above in detail, but the present invention is not limited to the above-described embodiment. Of course, various improvements and modifications may be made without departing from the spirit of the present invention.
10 シミュレーション装置
12 コンピュータ本体部
14 プリンタ
16 ディスプレイ
18 マウス・キーボード
20 記憶部
22 CPU
24 解析処理部
26 基準タイヤモデル作成部
28 テンプレート作成部
30 基底タイヤモデル作成部
32 合成タイヤモデル作成部
34 制御・管理部
36 シミュレーション演算部
38 決定部
40 基準タイヤモデル
41,43 外形形状輪郭ライン
42 基底タイヤモデル
DESCRIPTION OF SYMBOLS 10 Simulation apparatus 12 Computer main body part 14 Printer 16 Display 18 Mouse keyboard 20 Memory | storage part 22 CPU
24 analysis processing unit 26 reference tire model creation unit 28 template creation unit 30 base tire model creation unit 32 synthetic tire model creation unit 34 control / management unit 36 simulation calculation unit 38 decision unit 40 reference tire models 41 and 43 outer shape contour line 42 Base tire model

Claims (13)

  1.  コンピュータを用いて基準タイヤモデルから空気入りタイヤのタイヤモデルを作成する方法であって、
     コンピュータにより、基準タイヤモデルから外形形状を変化させるための変化量の分布を表すテンプレートを複数作成する第1のステップと、
     前記コンピュータにより、前記基準タイヤモデルを作成する第2のステップと、
     前記コンピュータにより、前記基準タイヤモデルと前記テンプレートの1つを用いて、前記基準タイヤモデルの外形形状が変化した外形形状を有する基底タイヤモデルを作成する第3のステップと、
     前記コンピュータにより、前記テンプレートのうち、基底タイヤモデルの作成にすでに用いた変化量の分布と異なる変化量の分布を表すテンプレートを用いて、すでに作成された基底タイヤモデルと外形形状が異なる基底タイヤモデルを少なくとも1つ以上作成する第4のステップと、
     前記コンピュータにより、前記第3のステップ及び前記第4のステップで作成した複数の基底タイヤモデルを組み合わせて、前記基準タイヤモデルの外形形状と異なる外形形状を有し、外形形状がお互いに異なる複数の合成タイヤモデルを作成する第5のステップと、を備えることを特徴とするタイヤモデルの作成方法。
    A method of creating a tire model of a pneumatic tire from a reference tire model using a computer,
    A first step of creating a plurality of templates representing a distribution of a change amount for changing an outer shape from a reference tire model by a computer;
    A second step of creating the reference tire model by the computer;
    A third step of creating a base tire model having an outer shape in which an outer shape of the reference tire model is changed by the computer using the reference tire model and one of the templates;
    A base tire model having a different external shape from a base tire model that has already been created using a template that represents a distribution of the amount of change different from the distribution of the amount of change already used to create the base tire model. A fourth step of creating at least one of
    By combining the plurality of base tire models created in the third step and the fourth step by the computer, the plurality of base tire models have an outer shape different from the outer shape of the reference tire model, and the outer shapes are different from each other. A tire model creation method comprising: a fifth step of creating a synthetic tire model.
  2.  前記第2のステップでは、タイヤ外形形状、タイヤサイズ、及びタイヤ構造のうち少なくとも一つが異なる基準タイヤモデル群を作成し、前記基準モデル群の1つが前記基準モデルであり、
     さらに、作成した前記基準タイヤモデル群のそれぞれに、前記テンプレートを使用して、前記テンプレートの数に応じて、前記第3のステップ及び前記第4のステップを繰り返して前記複数の合成タイヤモデルを作成する、請求項1に記載のタイヤモデルの作成方法。
    In the second step, a reference tire model group in which at least one of a tire outer shape, a tire size, and a tire structure is different is created, and one of the reference model groups is the reference model,
    Further, the plurality of synthetic tire models are created by repeating the third step and the fourth step according to the number of the templates, using the template for each of the created reference tire model groups. The method for creating a tire model according to claim 1.
  3.  前記第3のステップ及び前記第4のステップでは、前記コンピュータは、前記基準タイヤモデルの外形形状輪郭ライン、あるいは、前記基準タイヤモデルのカーカスラインを取得し、前記外形形状輪郭ラインあるいは前記カーカスラインを、前記テンプレートを用いて変更することによって前記基底タイヤモデルを作成する、請求項1または2に記載のタイヤモデルの作成方法。 In the third step and the fourth step, the computer acquires an outer contour line of the reference tire model or a carcass line of the reference tire model, and uses the outer contour line or the carcass line. The tire model creation method according to claim 1, wherein the base tire model is created by changing the template.
  4.  前記基準タイヤモデルは、複数の節点と、前記複数の節点を結ぶ複数の辺によって構成された要素の集合体であり、
     前記第3のステップ及び前記第4のステップでは、前記コンピュータは、前記テンプレートの変化量の分布のうち少なくとも一部の領域の両端を、前記外形形状輪郭ラインあるいは前記カーカスライン上の節点に対応させるために、該節点間の前記外形形状輪郭ライン上の距離あるいは前記カーカスライン上の距離に合わせて前記テンプレートの前記領域を拡縮し、拡縮した前記領域の分布から、前記基準タイヤモデルの前記外形形状輪郭ラインあるいは前記カーカスライン上の各節点の移動すべき移動量を定めて、前記外形形状輪郭ラインあるいは前記カーカスラインの形状を変形させることにより、前記基底タイヤモデルを作成する、請求項3に記載のタイヤモデルの作成方法。
    The reference tire model is a set of elements formed by a plurality of nodes and a plurality of sides connecting the plurality of nodes.
    In the third step and the fourth step, the computer associates both ends of at least a part of the distribution of the change amount of the template with nodes on the contour line or the carcass line. Therefore, the region of the template is enlarged or reduced in accordance with the distance on the outer shape contour line between the nodes or the distance on the carcass line, and the outer shape of the reference tire model is obtained from the distribution of the enlarged and reduced regions. The base tire model is created by determining a moving amount of each node on the contour line or the carcass line to be moved and deforming the shape of the outer contour line or the carcass line. To create a new tire model.
  5.  前記領域が、前記基準タイヤモデルのトレッド部、サイド部、及びビード部の少なくとも1つの範囲に対応するように、前記テンプレートの前記領域は拡縮される、請求項4に記載のタイヤモデルの作成方法。 The tire model creation method according to claim 4, wherein the region of the template is enlarged or reduced so that the region corresponds to at least one range of a tread portion, a side portion, and a bead portion of the reference tire model. .
  6.  前記基準タイヤモデルは、前記コンピュータにより形状変形解析の演算が可能なモデルであり、前記第3のステップ及び前記第4のステップでは、前記コンピュータが、前記基準タイヤモデルの前記外形形状輪郭ラインあるいは前記カーカスライン上の各節点に、前記移動量に相当する強制変位を与えて前記形状変形解析を行って、前記基準タイヤモデルの形状を変形させることによって、前記基底タイヤモデルを作成する、請求項4または5に記載のタイヤモデルの作成方法。 The reference tire model is a model that can be subjected to calculation of shape deformation analysis by the computer. In the third step and the fourth step, the computer performs the outline shape contour line of the reference tire model or the 5. The base tire model is created by applying a forced displacement corresponding to the amount of movement to each node on a carcass line and performing the shape deformation analysis to deform the shape of the reference tire model. Or a method of creating a tire model according to 5.
  7.  前記第5のステップでは、前記コンピュータが、前記複数の基底タイヤモデルのそれぞれと前記基準タイヤモデルの形状との差を表す複数のタイヤ基底ベクトルを重み付け加算することにより合成ベクトルを作成し、前記合成ベクトルに基づいて、前記基準タイヤモデルを変形させることにより、前記合成タイヤモデルを作成する、請求項1~6のいずれか1項に記載のタイヤモデルの作成方法。 In the fifth step, the computer creates a composite vector by weighting and adding a plurality of tire base vectors representing a difference between each of the plurality of base tire models and the shape of the reference tire model, and the composite The tire model creation method according to any one of claims 1 to 6, wherein the synthetic tire model is created by deforming the reference tire model based on a vector.
  8.  前記合成タイヤモデルでは、前記合成タイヤモデルに設定されるコード材のエンド数及びコード材の傾斜角度を、前記基準タイヤモデルで設定されるコード材のエンド数及びコード材の傾斜角度から、前記基準タイヤモデルからの変形形状に応じて変更する、請求項1~7のいずれか1項に記載のタイヤモデルの作成方法。 In the synthetic tire model, the number of ends of the cord material and the inclination angle of the cord material set in the synthetic tire model are calculated from the number of ends of the cord material and the inclination angle of the cord material set in the reference tire model. The method for creating a tire model according to any one of claims 1 to 7, wherein the tire model is changed according to a deformed shape from the tire model.
  9.  請求項1~8のいずれか1項に記載されたタイヤモデルの作成方法により作成された前記合成タイヤモデルを用いて、タイヤの挙動を再現したシミュレーションを行うことにより、前記合成タイヤモデルのタイヤ特性の物理量を算出する、ことを特徴とするタイヤのシミュレーション方法。 A tire characteristic of the synthetic tire model is obtained by performing a simulation reproducing the behavior of the tire using the synthetic tire model created by the tire model creation method according to any one of claims 1 to 8. A method for simulating a tire, comprising calculating a physical quantity of the tire.
  10.  請求項7に記載されたタイヤモデルの作成方法により作成された前記合成タイヤモデルを用いて、タイヤの挙動を再現したシミュレーションを行うことにより、前記合成タイヤモデルのタイヤ特性の物理量を算出し、さらに、前記タイヤ基底ベクトルを重み付け加算するときに用いる重み付け係数を設計変数とし、前記シミュレーションにより算出された前記物理量を目的関数とし、前記目的関数が、予め設定された条件を満足するように前記設計変数の値を変更するステップを備える、ことを特徴とするタイヤのシミュレーション方法。 A physical quantity of tire characteristics of the synthetic tire model is calculated by performing a simulation reproducing the behavior of the tire using the synthetic tire model created by the tire model creating method according to claim 7, The weighting coefficient used when weighting and adding the tire base vector is a design variable, the physical quantity calculated by the simulation is an objective function, and the design variable is set so that the objective function satisfies a preset condition. A method for simulating a tire, comprising the step of changing the value of.
  11.  さらに、前記コンピュータは、前記重み付け係数の値、あるいは、前記合成タイヤモデルの形状を表す特徴量と、前記物理量との関係を可視化して画面表示する、請求項10に記載のタイヤのシミュレーション方法。 11. The tire simulation method according to claim 10, wherein the computer visualizes and displays the relationship between the weighting coefficient value or the feature quantity representing the shape of the synthetic tire model and the physical quantity on the screen.
  12.  コンピュータを用いて基準タイヤモデルから空気入りタイヤのタイヤモデルを作成する方法を実行するプログラムを記録する、非一時的なコンピュータが読み取り可能な媒体であって、
     前記方法は、
     コンピュータに、基準タイヤモデルから外形形状を変化させるための変化量の分布を表すテンプレートを複数作成させ、
     コンピュータに、前記基準タイヤモデルを作成させ、
     前記コンピュータに、前記基準タイヤモデルと前記テンプレートの1つを用いて、前記基準タイヤモデルの外形形状が変化した外形形状を有する基底タイヤモデルを作成させ、
     前記コンピュータに、前記テンプレートのうち、基底タイヤモデルの作成にすでに用いた変化量の分布と異なる変化量の分布を表すテンプレートを用いて、すでに作成された基底タイヤモデルと外形形状が異なる基底タイヤモデルを作成させることを繰り返し実行させ、
     前記コンピュータに、作成した複数の基底タイヤモデルを組み合わせて、前記基準タイヤモデルの外形形状と異なる外形形状を有し、外形形状がお互いに異なる複数の合成タイヤモデルを作成させる、ことを含む、媒体。
    A non-transitory computer readable medium for recording a program for executing a method for creating a tire model of a pneumatic tire from a reference tire model using a computer,
    The method
    Let the computer create multiple templates that represent the distribution of the amount of change to change the outer shape from the reference tire model,
    Let the computer create the reference tire model,
    Using the one of the reference tire model and the template, the computer creates a base tire model having an outer shape in which the outer shape of the reference tire model is changed,
    A base tire model having a different external shape from the base tire model that has already been created by using a template that represents a distribution of the amount of change different from the distribution of the amount of change already used to create the base tire model, among the templates. To repeatedly create
    Including causing the computer to create a plurality of synthetic tire models having an outer shape different from the outer shape of the reference tire model by combining the plurality of base tire models that have been created. .
  13.  空気入りタイヤのタイヤモデルを基準タイヤモデルから作成するタイヤモデル作成装置であって、
     基準タイヤモデルを作成するように構成された基準タイヤモデル作成部と、
     前記基準タイヤモデルから外形形状を変化させるための変化量の分布を表すテンプレートを複数作成するように構成されたテンプレート作成部と、
     前記基準タイヤモデルと前記テンプレートの1つを用いて、前記基準タイヤモデルの外形形状が変化した外形形状を有する基底タイヤモデルを作成するように構成された基底タイヤモデル作成部と、
     前記基底タイヤモデルの作成を繰り返すように、前記基底タイヤモデル作成部を制御し、かつ、前記テンプレートのうち、基底タイヤモデルの作成にすでに用いた変化量の分布と異なる変化量の分布を表すテンプレートを用いて、すでに作成された基底タイヤモデルと外形形状が異なる基底タイヤモデルを少なくとも1つ以上作成するように、前記基底タイヤモデル作成部を制御するように構成された制御部と、
     作成した複数の基底タイヤモデルを組み合わせて、前記基準タイヤモデルの外形形状と異なる外形形状を有し、外形形状がお互いに異なる複数の合成タイヤモデルを作成するように構成された合成タイヤモデル作成部と、を備えることを特徴とするタイヤモデルの作成装置。
    A tire model creation device for creating a tire model of a pneumatic tire from a reference tire model,
    A reference tire model creation unit configured to create a reference tire model;
    A template creation unit configured to create a plurality of templates representing a distribution of a change amount for changing the outer shape from the reference tire model;
    A base tire model creation unit configured to create a base tire model having an outer shape in which an outer shape of the reference tire model is changed using one of the reference tire model and the template;
    A template that controls the base tire model creation unit so as to repeat the creation of the base tire model, and represents a change amount distribution different from the change amount distribution already used for creating the base tire model among the templates. A control unit configured to control the base tire model creation unit so as to create at least one base tire model having a different external shape from the already created base tire model,
    A composite tire model creation unit configured to create a plurality of composite tire models having a different external shape from the external shape of the reference tire model by combining a plurality of created base tire models And a tire model creating apparatus.
PCT/JP2015/073847 2014-08-25 2015-08-25 Method for generating tire model, device for generating tire model, simulation method for tire, and non-transitory computer-readable medium WO2016031811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016545543A JP6601401B2 (en) 2014-08-25 2015-08-25 Tire model creation method, tire model creation device, tire simulation method, and non-transitory computer-readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-170161 2014-08-25
JP2014170161 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031811A1 true WO2016031811A1 (en) 2016-03-03

Family

ID=55399697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073847 WO2016031811A1 (en) 2014-08-25 2015-08-25 Method for generating tire model, device for generating tire model, simulation method for tire, and non-transitory computer-readable medium

Country Status (2)

Country Link
JP (1) JP6601401B2 (en)
WO (1) WO2016031811A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328527B2 (en) 2019-09-10 2023-08-17 横浜ゴム株式会社 Tire model creation method, tire shape optimization method, tire model creation device, tire shape optimization device, and program
JP7488760B2 (en) 2020-12-23 2024-05-22 Toyo Tire株式会社 TIRE MODEL CREATION METHOD, TIRE MODEL CREATION DEVICE, AND TIRE MODEL CREATION PROGRAM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293315A (en) * 2007-05-25 2008-12-04 Yokohama Rubber Co Ltd:The Data analysis program, data analysis device, design program for structure, and design device for structure
JP2009083664A (en) * 2007-09-28 2009-04-23 Yokohama Rubber Co Ltd:The Method for forming tire model
JP2014051164A (en) * 2012-09-06 2014-03-20 Yokohama Rubber Co Ltd:The Tire model creation method, tire sectional shape determination method, tire model creation device, and program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008293315A (en) * 2007-05-25 2008-12-04 Yokohama Rubber Co Ltd:The Data analysis program, data analysis device, design program for structure, and design device for structure
JP2009083664A (en) * 2007-09-28 2009-04-23 Yokohama Rubber Co Ltd:The Method for forming tire model
JP2014051164A (en) * 2012-09-06 2014-03-20 Yokohama Rubber Co Ltd:The Tire model creation method, tire sectional shape determination method, tire model creation device, and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7328527B2 (en) 2019-09-10 2023-08-17 横浜ゴム株式会社 Tire model creation method, tire shape optimization method, tire model creation device, tire shape optimization device, and program
JP7488760B2 (en) 2020-12-23 2024-05-22 Toyo Tire株式会社 TIRE MODEL CREATION METHOD, TIRE MODEL CREATION DEVICE, AND TIRE MODEL CREATION PROGRAM

Also Published As

Publication number Publication date
JP6601401B2 (en) 2019-11-06
JPWO2016031811A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
JP5829861B2 (en) Prediction method for tire wear energy and tire design method
JP5018116B2 (en) Tire design method and tire design apparatus
JP6586820B2 (en) Tire mold shape design method, tire mold shape design apparatus, and program
JP7205160B2 (en) TIRE MOLD SHAPE DESIGN METHOD, TIRE MOLD SHAPE DESIGN DEVICE, AND PROGRAM
JP2002015010A (en) Method for designing product form and pneumatic tire designed with it
JP2008293315A (en) Data analysis program, data analysis device, design program for structure, and design device for structure
JP2010191612A (en) Tire model formation method and tire simulation method
JP6281190B2 (en) Tire model creation method, tire cross-section shape determination method, tire model creation device, tire cross-section shape determination device, and program
JP4928086B2 (en) Tire performance prediction method and design method
JP6601401B2 (en) Tire model creation method, tire model creation device, tire simulation method, and non-transitory computer-readable medium
JP6065472B2 (en) Tire model creation method, tire cross-sectional shape determination method, tire model creation device, and program
WO1998029270A1 (en) Pneumatic tire designing method
JP2009269557A (en) Method for designing tire and program therefor
JP7328527B2 (en) Tire model creation method, tire shape optimization method, tire model creation device, tire shape optimization device, and program
JP6123159B2 (en) Structure sectional shape creation method, structure sectional shape determination method, structure manufacturing method, structure sectional shape determination device, and program
JP6631151B2 (en) Method and apparatus for creating optimum tire cross section
JP6661961B2 (en) Drawing method and processing device
JP2006018422A (en) Tire finite element modelling method
JP7315824B2 (en) Tire initial shape design method, tire initial shape design device, and program
JP6676928B2 (en) Tire model creation method, tire shape optimization method, tire model creation device, tire shape optimization device, and program
JP6010940B2 (en) Tire cross-sectional shape determining method, tire manufacturing method, tire cross-sectional shape determining device, and program
JP6010931B2 (en) Structure sectional shape creation method, structure sectional shape determination method, structure manufacturing method, structure sectional shape determination device, and program
JP5539058B2 (en) Tire performance simulation method and tire performance simulation program
JP2012181600A (en) Tire model creation method, tire model creation device, tire model creation program, and tire performance analysis method
WO2024053455A1 (en) Tire model creation method, tire model creation device, and tire model creation program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836721

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545543

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836721

Country of ref document: EP

Kind code of ref document: A1