WO2016031755A1 - Electricity-generation control system, control device, electricity-generation control method, and program - Google Patents
Electricity-generation control system, control device, electricity-generation control method, and program Download PDFInfo
- Publication number
- WO2016031755A1 WO2016031755A1 PCT/JP2015/073681 JP2015073681W WO2016031755A1 WO 2016031755 A1 WO2016031755 A1 WO 2016031755A1 JP 2015073681 W JP2015073681 W JP 2015073681W WO 2016031755 A1 WO2016031755 A1 WO 2016031755A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control information
- power
- control
- pcs
- state
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/12—Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
Definitions
- the present invention is based on a Japanese patent application: Japanese Patent Application No. 2014-169987 (filed on August 25, 2014), and the entire contents of this application are incorporated in the present specification by reference.
- the present invention relates to a power generation control system, a control device, a power generation control method, and a program, and in particular, a control device that controls a power conditioner (PCS: Power Conditioning System), a power generation control system including the control device, a power generation control method, and Regarding the program.
- PCS Power Conditioning System
- the total power generation amount which is the sum of power generation by other methods such as thermal power, hydropower, and nuclear power, and power generation facilities by power generation facilities other than power companies exceeds the power demand.
- surplus power is generated.
- surplus power is likely to occur during periods of low power demand, such as nights, weekends, and large holidays.
- a technique for suppressing the power generation amount of power generation equipment other than the power company is known.
- Patent Document 1 discloses a power generation system that effectively uses solar power generation by individually suppressing the output of each solar power generation in consideration of the total power generation amount of a plurality of solar power generations. ing.
- the PCS is a device that converts electric power generated in the power generation device from direct current to alternating current, and is installed on the assumption that a general business operator or a consumer generates power spontaneously. Therefore, there are a plurality of types of PCS depending on each application. For example, there is a PCS (simple PCS) that is operated by electric power generated by a managed solar cell, and a PCS (intelligent PCS) that is supplied with power from a commercial power source. In the case of the simple PCS, the power of the PCS including the power generation control unit is turned off when solar power generation is not performed.
- the intelligent PCS since the intelligent PCS does not generate power at night or the like, it can be considered that only the communication unit can communicate and the power generation control unit enters a sleep state. Furthermore, it can be considered when the memory function of the PCS or the power generation control unit is abnormal. Even if the state of the PCS is changing, the integrated control device of Patent Document 1 is configured to transmit control information to the PCS.
- PCS state operating state, stopped state, recovery from abnormality, etc.
- the control device includes control information acquisition means for acquiring control information for controlling the power output from the power conditioner from the host monitoring device, and the power conditioner outputs based on the control information.
- Communication means for transmitting the control information acquired by the control information acquisition means to the power conditioner when the power to be controlled is changed to a controllable state.
- the power generation control system includes a power conditioner capable of controlling the amount of power generation, a higher-level monitoring device that outputs control information for controlling the power output by the power conditioner, A control device that controls the power conditioner based on the control information input from the host monitoring device, the control device acquiring control information from the host monitoring device, and the power And a communication unit that transmits the control information acquired by the control information acquisition unit to the power conditioner when the conditioner is changed to a state in which the power output based on the control information can be controlled.
- the control device can detect when the PCS has changed to a state in which the output power can be controlled based on the control information, and can transmit the latest information to the PCS.
- PCS simple PCS
- PCS intelligent PCS
- the control device transmits the control information to the simple PCS, the control information may not be received on the simple PCS side.
- control device transmits the latest control information to the PCS when the PCS can receive the control information (when the PCS is turned on).
- FIG. 1 is a block diagram illustrating the configuration of a power generation control system 100 according to the first embodiment.
- the power generation control system 100 includes a control device 110, a higher-level monitoring device 20, and a PCS 130.
- the control device 110 includes a control information acquisition unit 11, a nonvolatile memory 12, a control unit 13, a communication unit 14, and a detection unit 15.
- the control information acquisition unit 11 acquires the suppression control rate as control information output from the higher-level monitoring device 20 described later, and outputs the suppression control rate to the control unit 13.
- the suppression control rate as the control information is a power generation rate [%] with respect to a power generation amount that can be generated by the PCS 130 described later.
- the suppression control rate is used as the control information.
- the control information is the suppression rate [%] with respect to the power generation amount that can be generated by the PCS 130, the suppression power value [W] that is suppressed by the PCS 130, and the PCS 130 that generates power.
- the power generation amount [W] to be performed may be used.
- the non-volatile memory 12 stores a suppression control rate as control information output from the higher-level monitoring device 20 described later.
- the control information includes a suppression control rate for controlling the PCS 130, weather information, sunrise and sunset times, and the like.
- the non-volatile memory 12 also stores PCS 130 status information received from the PCS 130.
- the state information is information indicating the state of the PCT 130.
- the state information may be information on whether the machine is in an operating state or a stopped state, a maximum power generation amount that can be generated, an instantaneous power generation amount, or the like.
- the control unit 13 controls the PCS 130 based on the status information of the PCS 130 received from the detection unit 15 described later. Furthermore, the control unit 13 performs data processing such as framing and header processing included in the communication processing when performing suppression control on the PCS 130.
- the communication unit 14 transmits control information stored in the nonvolatile memory to the PCS 130. In addition, the communication unit 14 receives information transmitted from the PCS 130.
- the communication unit 14 is a communication interface for the PCS 130, and converts the suppression information into a communication message conforming to the PCS 130.
- the communication unit 14 individually corresponds to the assumed protocol.
- As a communication medium an Ethernet (registered trademark) line, a coaxial cable, a control line such as RS-485 can be used.
- a management company supervisory manager
- there are various methods such as an optical cable and a mobile phone that are laid independently by the power company. is assumed.
- the detection unit 15 detects that the PCS 130 has changed to a state in which power can be controlled via the communication unit 14. In other words, the detection unit 15 detects that the PCS 130 is in a stopped state (a state where communication with the control device 110 is impossible, a state where power is not supplied to the PCS 130, a state where the PCS 130 cannot generate power, a PCS 130 is received by the volatile memory 31 The information that the PCS 130 has received in the volatile memory 31 from the operating state (a state in which communication with the control device 110 is possible, a state in which power is supplied to the PCS 130, a state in which the PCS 130 can generate power), and the like. ) Is detected. Further, the detection unit 15 may be able to detect whether the PCS 130 is in a stopped state or an operating state.
- the host monitoring device 20 is installed in an electric power company or the like, and sends a suppression control rate overlooking the entire power system to the control device 110. Specifically, the host monitoring device 20 sends a signal of the power generation rate of the PCS 130 as control information necessary for power system stabilization decided by the power company to the control device 110.
- the host monitoring device 20 is connected to the control device 110 using a private network such as an electric power company or other communication methods.
- the PCS 130 includes a communication unit 32, a volatile memory 31, and a power generation control unit 33. Further, the PCS 130 of this embodiment is operated by the power generated by the managed solar cell, and does not have a power source that can supply power independently.
- the volatile memory 31 stores control information acquired by the communication unit 32 described later, the state of the PCS 130, the instantaneous power generation amount of the PCS 130, and the like.
- the volatile memory 31 is a memory that cannot hold the stored information unless power is supplied, the volatile memory 31 stores the power when the power generated by the solar cell is lost and the PCS 130 is stopped. The control information is lost.
- the communication unit 32 receives control information from the communication unit 13, and transmits to the communication unit 13 an answerback indicating whether the setting of the PCS 130 and the setting of the control information is successful, the instantaneous power generation amount of the PCS 130, and the like.
- the communication unit 32 converts information related to the PCS 130 into a communication message that can be communicated with the communication unit 14 and executes communication.
- the power generation control unit 33 executes power generation control based on the control information stored in the volatile memory 31.
- FIG. 2 is a flowchart illustrating the control of the control device 110 according to the first embodiment. A control flow of the control device 110 according to the first embodiment will be described with reference to FIG.
- step S10 upon receiving an instruction from the control unit 13, the communication unit 14 transmits a signal for confirming the status of the PCS 130 to the PCS 130.
- the transmission of the signal for confirming the status to the PCS 130 by the communication unit 14 may be performed periodically, or may be transmitted in accordance with an instruction from the host monitoring device 20 or the control unit 13.
- step S ⁇ b> 20 the detection unit 15 determines whether the communication unit 14 has received an answer back indicating whether the communication unit 14 has successfully received a status confirmation signal from the PCS 130, and determines whether the PCS 130 is in a stopped state or an operating state. Judging. Specifically, if the communication unit 14 receives an answer back from the PCS 130 within a predetermined period after the communication unit 14 transmits a signal for confirming the situation, the detection unit 15 determines that the PCS 130 is operating. End the flow. If the communication unit 14 does not receive an answer back from the PCS 130 within a predetermined period after the communication unit 14 transmits a signal for confirming the situation, the detection unit 15 determines that the PCS 130 is in a stopped state, and the step Proceed to S30.
- step S30 the communication unit 14 repeatedly transmits a signal for confirming the status of the PCS 130 to the PCS 130 at predetermined intervals, and transmits a signal for confirming the status of the PCS 130 to the PCS 130 until there is an answer back. If there is an answer back from the PCS 130, the detection unit 15 determines that the PCS 130 has changed from the stopped state to the operating state, and proceeds to step S40.
- transmission may be repeated periodically, or transmission may be performed at different intervals based on instructions from the host monitoring device 20 or the control unit 13.
- step S40 the control unit 13 receives information from the detection unit 15 that the PCS 130 has shifted from the stopped state to the operating state. Thereafter, the control unit 13 instructs the communication unit 14 to transmit control information to the PCS 130. Upon receiving the instruction, the communication unit 14 transmits the control information stored in the nonvolatile memory 12 to the PCS 130, and ends the flow.
- the information sent from the host monitoring device 20 may be directly sent to the PCS 130.
- the latest control information can be reliably transmitted to the PCS when the PCS can control the power.
- the latest control information can be reliably transmitted to the PCS when the PCS can be received.
- the control information can be acquired when the stored control information disappears because the PCS power is turned off, the period during which the suppression control is not performed despite the suppression information is reduced. be able to.
- the solar power generation facility is assumed, the power generation state is unstable, for example, the solar power generation becomes incapable of generating power due to the shade.
- the power of the simple PCS is frequently turned on and off. Since the control information is sent when the power is turned on, the period during which the PCS is controlled regardless of the control information can be reduced even though the control device has the PCS control information.
- a confirmation signal is transmitted from the control device 110, and whether or not the PCS 230 can communicate is determined based on the presence or absence of an answerback.
- no answer back is used, and the PCS 230 notifies that communication is possible (power is turned on).
- the control device 210 does not need to send a confirmation signal to the PCS 230, and therefore can more easily determine whether the PCS 230 can receive control information.
- FIG. 3 is a block diagram illustrating the configuration of the power generation control system 200 according to the second embodiment.
- the power generation control system 200 includes a control device 210, a host monitoring device 20, and a PCS 230.
- the control device 210 includes a control information acquisition unit 11, a nonvolatile memory 12, a control unit 13, a communication unit 14, and a detection unit 15.
- the PCS 230 includes a communication unit 32, a volatile memory 31, a power generation control unit 33, and a detection unit 34.
- the detection unit 34 detects that the PCS 230 has changed to a state in which power can be controlled. In other words, the detection unit 34 indicates that the PCS 230 is in a stopped state (a state in which communication with the control device 210 is impossible, a state in which no power is supplied to the PCS 230, a state in which the PCS 230 cannot generate power, and a PCS 230 in the volatile memory 31).
- a stopped state a state in which communication with the control device 210 is impossible, a state in which no power is supplied to the PCS 230, a state in which the PCS 230 cannot generate power, and a PCS 230 in the volatile memory 31.
- the detection unit 34 may be able to detect whether the PCS 230 is in a stopped state or an operating state.
- FIG. 4 is a flowchart illustrating the control of the control device 210 according to the second embodiment. A control flow of the control device 210 according to the second embodiment will be described with reference to FIG.
- step S50 the communication unit 14 receives a signal indicating a change in the state of the PCS 230 detected by the detection unit 34 (a signal indicating that the PCS 230 has changed from the stopped state to the operating state) through the communication unit 32.
- the signal indicating the state change of the PCS 230 may be called an activation signal. If the communication part 14 receives the above-mentioned signal, it will progress to step S40.
- the signal indicating the state change of the PCS 230 may be configured such that the PCS 230 itself transmits a packet, or the detection means (the PCS 230 and the control unit 13 (or the communication unit 14) that can detect that the PCS is turned on is connected to the LAN cable.
- the control device 210 may be configured to connect and acquire startup information.
- the detection means described above may be wired or may be wirelessly connected.
- step S40 when a signal indicating a change in the state of the PCS 230 is received, the detection unit 15 determines that the PCS 230 has shifted from the stopped state to the operating state, and transmits information to the control unit 13. Upon receiving the information, the control unit 13 instructs the communication unit 14 to transmit the control information to the PCS 230. Upon receiving the instruction, the communication unit 14 transmits the control information stored in the nonvolatile memory 12 to the PCS 230, and ends the flow.
- the communication unit 14 of the control device 210 may perform an operation of transmitting a signal for confirming the situation to the PCS 230 and detecting a change in the state. That is, it is also possible to adopt a configuration that switches between the PCS state change detection method of the first embodiment and the PCS state change detection method of the second embodiment.
- FIG. 5 is a block diagram illustrating the configuration of a power generation control system 300 according to the third embodiment.
- the third embodiment will be described with reference to FIG. Note that description of the blocks described in the first embodiment (blocks described in FIG. 1) is omitted.
- the power generation control system 300 includes a control device 310, a host monitoring device 20, and n PCS 230-1 to PCS 230-n.
- the control device 310 includes a control information acquisition unit 11, a nonvolatile memory 12, a control unit 13, a communication unit 14, and a detection unit 15.
- the PCS 230-1 to PCS 230-n include communication units 32-1 to 32-n, power generation control units 33-1 to 33-n, detection units 34-1 to 34-n, and nonvolatile memory 35-1. To 35-n.
- the PCSs 230-1 to 230-n may be the same type of PCS or may be composed of a plurality of types of PCS.
- the PCS 230 when the PCSs 230-1 to 230-n and their internal configurations are not particularly distinguished, they are referred to as the PCS 230, the communication unit 32, the power generation control unit 33, the detection unit 34, and the nonvolatile memory 35.
- only one communication unit 14 exists. However, a plurality of communication units may be provided and connected to PCSs 230-1 to 230-n corresponding to the plurality of communication units.
- a communication unit may be provided for each predetermined group of the plurality of PCSs 230.
- the nonvolatile memory 35 stores the control information acquired by the control information acquisition unit 11 from the host monitoring device 20, the instantaneous power generation amounts of the PCS 230-1 to 230-n acquired via the communication unit 14, and the like.
- FIG. 6 is a flowchart illustrating the control of the control device 310 according to the third embodiment.
- a control flow of the control device 310 according to the third embodiment will be described with reference to FIG.
- step S40 and step S50 have been described in the second embodiment, description thereof will be omitted.
- step S50 when the communication unit 14 acquires an activation signal from any of the PCSs 230-1 to 230-n, the process proceeds to S60.
- step S60 the control unit 13 determines whether or not the detection unit 15 has acquired a plurality of activation signals from any of the PCSs 230-1 to 230-n from the communication unit 14. Specifically, the control unit 13 determines that a plurality of PCSs among the PCSs 230-1 to 230-n are activated at the same time when the activation signal is sent from the detection unit 15 a plurality of times within a predetermined period. Then, the process proceeds to step S70. The control unit 13 determines that only one of the PCSs 230-1 to 230-n has been activated when the activation signal is sent only once from the detection unit 15 within a predetermined period, and the step Proceed to S40.
- step S70 the control unit 13 acquires the priority order of the PCS that has acquired the plurality of activation signals from the nonvolatile memory 12, and proceeds to step S80.
- step S80 the control unit 13 instructs the communication unit 14 to transmit control information to the PCS 230 based on the acquired priority order.
- the communication unit 14 Upon receiving the instruction, transmits the control information stored in the nonvolatile memory 12 to the PCS 230, and ends the flow.
- the present invention can also be applied to a configuration including a plurality of PCSs 230.
- FIG. 7 is a flowchart illustrating the control of the control device 310 according to the fourth embodiment. A control flow of the control device 310 according to the fourth embodiment will be described with reference to FIG.
- step S100 the control unit 13 acquires the state of the PCS 230 stored in the nonvolatile memory 12. If the acquired state of the PCS 230 is in a stopped state, the process proceeds to step S110, and if it is in an operating state, the flow ends.
- the information stored in the nonvolatile memory 12 is acquired. However, the information may be sequentially acquired by the communication unit 14.
- step S110 the control unit 13 determines whether or not the communication unit 14 has received an activation signal from the PCS 230. If the activation signal is received, the process proceeds to step S120. If the activation signal is not received, step S110 is repeated until the activation signal is received, and whether or not the activation signal is received from the PCS 230 is determined. Check.
- step S120 the control unit 13 determines whether or not the previous control information transmitted to the PCS 230 matches the control information currently stored in the nonvolatile memory 12. If the control information does not match, the process proceeds to step S130. If the control information matches, the flow ends. Here, it is configured to determine whether or not the control information matches, but when the control information is transmitted to the PCS 230 within a predetermined period (for example, 5 minutes), the control information transmitted last time and the current The control information may be regarded as the same and the control information is not transmitted.
- a predetermined period for example, 5 minutes
- step S130 the control unit 13 instructs the communication unit 14 to transmit control information to the PCS 230.
- the communication unit 14 Upon receiving the instruction, the communication unit 14 transmits the control information stored in the nonvolatile memory 12 to the PCS 230, and proceeds to step S140.
- the configuration is such that the control information stored in the nonvolatile memory 12 is transmitted, the control information acquired from the host monitoring device 20 may be transmitted directly.
- step S140 the control unit 13 determines whether or not the PCS 230 responds to the fact that the communication unit 14 has transmitted control information to the PCS 230. If the communication unit 14 receives a response from the PCS 230 during a predetermined period, the process proceeds to step S150 because there is a response from the PCS 230, and the communication unit 14 does not receive a response from the PCS 230 during the predetermined period. If there is no response from the PCS 230, the process proceeds to step S160.
- step S150 the control unit 13 sets the state of the PCS 230 as the operating state, overwrites the state of the PCS 230 stored in the nonvolatile memory 12, and ends the flow.
- step S160 the control unit 13 sets the state of the PCS 230 to the stopped state, overwrites the state of the PCS 230 stored in the nonvolatile memory 12, and returns to step S100.
- the present invention is not limited to this configuration, and the volatile memory 31 and the nonvolatile memory 34 are out of order. It may be determined that the output power is changed to a state in which the output power can be controlled. In addition, it is detected that the communication unit 31 or the power generation control unit 32 has returned from a failure state to a normal state, and the PCS 230 determines that the power output based on the control information can be controlled. You may do it.
- solar power generation has been described as an example of renewable energy, but the application target of the present invention is not limited to this. That is, the power generation control system according to the present invention can be applied to other renewable energy (for example, wind power generation), a power storage system, and the like.
- the power control system according to the present invention is integrated with functions such as a power meter that automatically transmits power consumption to a power company through a communication function and an energy management system that manages power in the home at the home level. It is also possible to operate.
- the power generation control system according to the present invention can be applied to a grid operating company such as an electric power company, or a business operator that has a similar power grid. When solar cells are introduced rapidly, it may be possible to exceed the limit of power generation capacity in small-scale power systems such as remote islands. Therefore, the power generation control system according to the present invention can be widely used even in such a small-scale system.
- the embodiment can be changed and adjusted based on the basic technical idea of the present invention. Specifically, it can be appropriately performed within a range in which the embodiments can be combined and changed. That is, the present invention includes various variations and modifications that can be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
- the host monitoring device 20 transmits the suppression control rate as the control information, and the control information acquisition unit 11 receives the suppression control rate.
- the control information acquisition unit 11 requests the host monitoring device 20 to transmit a suppression control rate based on a predetermined time interval, schedule, etc., and the host monitoring device 20 sets the suppression control rate as control information.
- a transmission configuration can also be adopted.
- FIG. 8 is a sequence diagram illustrating an example of a suppression control rate acquisition process based on a schedule or the like. In the example of FIG. 8, the control device obtains the suppression control rate by requesting the higher-level monitoring device 20 to transmit the suppression control rate at a predetermined timing (S10-11 to S10-12) ( S10-13).
- the storage location of the control information in the PCS has been described as being a volatile memory.
- the storage location of the control information in the PCS may not be a volatile memory.
- the control information is stored in a non-volatile memory, or backed up to another auxiliary storage device. Even in such a case, when the power of the PCS has been turned off for a long period of time, the control information may become out of date and may not be suitable for the situation on the newer power system side.
- the control device of each embodiment described above since newer control information can be provided after the PCS is activated, it is possible to quickly resume preferable suppression control and the like.
- the host monitoring device of each of the above embodiments is a management device that receives connection information regarding the distribution path and power generation control information indicating the output power generation amount from the power system, and transmits a suppression control rate as control information to the control device. Also good.
- FIG. 9 is a diagram illustrating an example of such a management apparatus.
- the management device 20a in FIG. 9 calculates a suppression control rate to be instructed to the PCS 130 based on the connection information and the power generation control information received from the power system 300, and the control device calculates the calculated suppression control rate. Transmitting means 204 for transmitting to 110.
- the connection information is information indicating which distribution path in the distribution network the photovoltaic power generation apparatus is connected to, that is, the photovoltaic power generation apparatus that outputs power to the power system 900. Created from distribution automation system.
- a configuration in which the management device 20a transmits a suppression control rate to a plurality of control devices 110a to 110c can be employed.
- one PCS is connected to one control device.
- a configuration in which a plurality of PCSs are connected to one control device It may be.
- control devices 110, 210, and 310 shown in FIG. 11 are connected to the computer constituting the control device with hardware (CPU 1101, storage device 1102, communication device, etc.). ) Can be realized by a computer program that realizes each functional block described above. Further, in each of the embodiments described above, the control device has been described as storing and managing the control information and the state of the PCS 130 in the nonvolatile memory 12, but the control information and the PCS are stored in the auxiliary storage device 1350 shown in FIG. A configuration for storing and managing the state can also be adopted.
- Control information acquisition means for acquiring control information for controlling the power output by the power conditioner from the host monitoring device; Communication means for transmitting the control information acquired by the control information acquisition means to the power conditioner when the power conditioner has changed to a state in which the power output based on the control information can be controlled.
- a control device characterized by that.
- Appendix 2 The control device according to claim 1, wherein the communication unit transmits the control information acquired by the control information acquisition unit to the power conditioner when the power conditioner is powered on.
- the communication means transmits the control information acquired by the control information acquisition means to the power conditioner when a storage device included in the power conditioner is ready to store information.
- the control device according to appendix 1 or 2.
- the communication means transmits the signal for confirming the state of the power conditioner, and receives the response signal for the signal for confirming the state from the power conditioner, the control acquired by the control information acquisition means Sending information to the inverter;
- the control device according to any one of appendices 1 to 3, characterized in that: [Appendix 5]
- the communication means transmits the control information acquired by the control information acquisition means to the power conditioner when receiving a signal indicating that the power conditioner is powered from the power conditioner.
- the control device according to any one of appendices 1 to 3, characterized in that: [Appendix 6]
- the communication means does not transmit the control information when the communication means is transmitting control information to the power conditioner within a predetermined period.
- the control device according to any one of appendices 1 to 3, characterized in that: [Appendix 7] The communication means does not transmit the control information to the power conditioner when the control information transmitted last time matches the control information to be transmitted this time.
- the control device according to any one of the above.
- Power generation control system characterized by [Appendix 9]
- the power conditioner includes a volatile memory and uses power obtained by solar power generation as a power source.
- the power conditioner includes a nonvolatile memory and uses power obtained by solar power generation as a power source.
- the power generation control system according to appendix 8, wherein [Appendix 11] Processing to acquire control information for controlling the power output from the inverter from the host monitoring device, A process of transmitting the control information acquired by the control information acquisition means to the power conditioner when the power conditioner has changed to a state in which the power output based on the control information can be controlled; A power generation control program that causes a computer to execute.
- the power conditioner comprises a detection means for detecting that the power output based on the control information has changed to a state in which the power can be controlled.
- the communication unit transmits the control information acquired by the control information acquisition unit to the power conditioner when the detection unit detects that the power conditioner has changed to a state in which power can be controlled.
- the control device according to any one of appendices 1 to 7, characterized in that: [Appendix 14]
- the appendix 13 is characterized in that the detection means detects that the power conditioner has changed to a state in which the power output can be controlled based on control information when the power conditioner is turned on.
- Control device [Appendix 15]
- the detecting means detects that the power conditioner has changed to a state in which the power output from the power conditioner can be controlled based on the control information when the storage device included in the power conditioner is in a state where it can accumulate information.
- Item 14 The control device according to appendix 13.
- the communication means transmits a signal for confirming a state of the inverter;
- the control means detects that the power conditioner is turned on when receiving a signal for the transmission from the power conditioner.
- the control device according to any one of supplementary notes 13 to 15, wherein [Appendix 17]
- the detecting means detects that the power conditioner is turned on when the communication means receives a signal indicating that the power conditioner is turned on from the power conditioner.
- the control means compares the control information transmitted last time with the control information to be transmitted this time, and determines whether or not the control information transmitted last time and the control information to be transmitted this time match. And The communication means does not transmit the control information to the power conditioner when the control information transmitted last time matches the control information to be transmitted this time.
- the control device according to any one of the above.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Remote Monitoring And Control Of Power-Distribution Networks (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Inverter Devices (AREA)
Abstract
If the state of a PCS is unstable (i.e. the PCS could be in a stopped state or an operational state), there is the risk of being unable to transmit PCS control information. By keeping track of whether the PCS is in the stopped state or the operational state and transmitting control information when the PCS transitions from the stopped state to the operational state, said control information can be sent to the PCS reliably.
Description
[関連出願についての記載]
本発明は、日本国特許出願:特願2014-169987号(2014年 8月25日出願)に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は、発電制御システム、制御装置、発電制御方法およびプログラムに関し、特に、パワーコンディショナ(PCS:Power Conditioning System)を制御する制御装置、かかる制御装置を備えた発電制御システム、発電制御方法およびプログラムに関する。 [Description of related applications]
The present invention is based on a Japanese patent application: Japanese Patent Application No. 2014-169987 (filed on August 25, 2014), and the entire contents of this application are incorporated in the present specification by reference.
The present invention relates to a power generation control system, a control device, a power generation control method, and a program, and in particular, a control device that controls a power conditioner (PCS: Power Conditioning System), a power generation control system including the control device, a power generation control method, and Regarding the program.
本発明は、日本国特許出願:特願2014-169987号(2014年 8月25日出願)に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
本発明は、発電制御システム、制御装置、発電制御方法およびプログラムに関し、特に、パワーコンディショナ(PCS:Power Conditioning System)を制御する制御装置、かかる制御装置を備えた発電制御システム、発電制御方法およびプログラムに関する。 [Description of related applications]
The present invention is based on a Japanese patent application: Japanese Patent Application No. 2014-169987 (filed on August 25, 2014), and the entire contents of this application are incorporated in the present specification by reference.
The present invention relates to a power generation control system, a control device, a power generation control method, and a program, and in particular, a control device that controls a power conditioner (PCS: Power Conditioning System), a power generation control system including the control device, a power generation control method, and Regarding the program.
近年、再生可能エネルギーへの関心が高まってきている。発電システムは、電力会社以外の一般事業者や需要家などへの普及も進んでいる。
In recent years, interest in renewable energy has increased. Power generation systems are also spreading to general businesses and customers other than power companies.
電力会社以外の発電設備による発電量の増大に伴い、火力、水力、原子力などの他の方式による発電量と、電力会社以外の発電設備による発電量を足し合わせた総発電量が電力需要を上回り、余剰電力が発生する場合が生じている。特に、電力需要の少ない夜間、週末、大型連休中などの時期には、余剰電力が生じやすい。かかる余剰電力の発生を防ぐために、電力会社以外の発電設備の発電量を抑制する技術が知られている。
Along with the increase in power generation by power generation facilities other than power companies, the total power generation amount, which is the sum of power generation by other methods such as thermal power, hydropower, and nuclear power, and power generation facilities by power generation facilities other than power companies exceeds the power demand. In some cases, surplus power is generated. In particular, surplus power is likely to occur during periods of low power demand, such as nights, weekends, and large holidays. In order to prevent the generation of such surplus power, a technique for suppressing the power generation amount of power generation equipment other than the power company is known.
関連技術として、特許文献1には、複数の太陽光発電の総発電量を考慮しつつ、各太陽光発電の出力抑制を個別に行うことにより、太陽光発電を有効利用する発電システムが開示されている。
As a related technology, Patent Document 1 discloses a power generation system that effectively uses solar power generation by individually suppressing the output of each solar power generation in consideration of the total power generation amount of a plurality of solar power generations. ing.
なお、上記先行技術文献の開示を、本書に引用をもって繰り込むものとする。以下の分析は、本発明の観点からなされたものである。
PCSは、発電装置において発電された電力を直流から交流に変換する装置であり、一般事業者や需要家が自発的な発電を行うことを想定して設置されている。したがって、各用途に応じて、PCSは複数種類存在する。例えば、管理下の太陽電池によって発電された電力により稼働しているPCS(シンプルPCS)や、商用電源から電力供給を受けているPCS(インテリジェントPCS)などがある。シンプルPCSの場合には、太陽光発電がおこなわれていない場合には、発電制御部を含むPCSの電源が切れてしまう。また、インテリジェントPCSは、夜間などは発電がおこなわれないため、通信部のみ通信可能とし、発電制御部がスリープ状態となる場合が考えられる。さらに、PCSのメモリ機能や、発電制御部が異常となっている場合にも考えられる。PCSの状態が変化している場合であっても、特許文献1の統合制御装置は、PCSへ制御情報を送信する構成となっている。 The disclosure of the above prior art document is incorporated herein by reference. The following analysis has been made from the viewpoint of the present invention.
The PCS is a device that converts electric power generated in the power generation device from direct current to alternating current, and is installed on the assumption that a general business operator or a consumer generates power spontaneously. Therefore, there are a plurality of types of PCS depending on each application. For example, there is a PCS (simple PCS) that is operated by electric power generated by a managed solar cell, and a PCS (intelligent PCS) that is supplied with power from a commercial power source. In the case of the simple PCS, the power of the PCS including the power generation control unit is turned off when solar power generation is not performed. In addition, since the intelligent PCS does not generate power at night or the like, it can be considered that only the communication unit can communicate and the power generation control unit enters a sleep state. Furthermore, it can be considered when the memory function of the PCS or the power generation control unit is abnormal. Even if the state of the PCS is changing, the integrated control device ofPatent Document 1 is configured to transmit control information to the PCS.
PCSは、発電装置において発電された電力を直流から交流に変換する装置であり、一般事業者や需要家が自発的な発電を行うことを想定して設置されている。したがって、各用途に応じて、PCSは複数種類存在する。例えば、管理下の太陽電池によって発電された電力により稼働しているPCS(シンプルPCS)や、商用電源から電力供給を受けているPCS(インテリジェントPCS)などがある。シンプルPCSの場合には、太陽光発電がおこなわれていない場合には、発電制御部を含むPCSの電源が切れてしまう。また、インテリジェントPCSは、夜間などは発電がおこなわれないため、通信部のみ通信可能とし、発電制御部がスリープ状態となる場合が考えられる。さらに、PCSのメモリ機能や、発電制御部が異常となっている場合にも考えられる。PCSの状態が変化している場合であっても、特許文献1の統合制御装置は、PCSへ制御情報を送信する構成となっている。 The disclosure of the above prior art document is incorporated herein by reference. The following analysis has been made from the viewpoint of the present invention.
The PCS is a device that converts electric power generated in the power generation device from direct current to alternating current, and is installed on the assumption that a general business operator or a consumer generates power spontaneously. Therefore, there are a plurality of types of PCS depending on each application. For example, there is a PCS (simple PCS) that is operated by electric power generated by a managed solar cell, and a PCS (intelligent PCS) that is supplied with power from a commercial power source. In the case of the simple PCS, the power of the PCS including the power generation control unit is turned off when solar power generation is not performed. In addition, since the intelligent PCS does not generate power at night or the like, it can be considered that only the communication unit can communicate and the power generation control unit enters a sleep state. Furthermore, it can be considered when the memory function of the PCS or the power generation control unit is abnormal. Even if the state of the PCS is changing, the integrated control device of
よって、PCSの状態(稼働状態、停止状態、異常からの復帰など)を考慮した制御を実施できていなかった。
Therefore, control considering the PCS state (operating state, stopped state, recovery from abnormality, etc.) could not be performed.
本発明の第1の視点に係る制御装置は、パワーコンディショナで出力される電力を制御する制御情報を上位監視装置から取得する制御情報取得手段と、前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する通信手段と、を備える。
The control device according to the first aspect of the present invention includes control information acquisition means for acquiring control information for controlling the power output from the power conditioner from the host monitoring device, and the power conditioner outputs based on the control information. Communication means for transmitting the control information acquired by the control information acquisition means to the power conditioner when the power to be controlled is changed to a controllable state.
また、本発明の第2の視点に係る発電制御システムは、発電量を制御可能なパワーコンディショナと、前記パワーコンディショナで出力される電力を制御する制御情報を出力する上位監視装置と、前記上位監視装置から入力された制御情報に基づき、前記パワーコンディショナを制御する制御装置と、を備え、前記制御装置は、前記制御情報を前記上位監視装置から取得する制御情報取得手段と、前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する通信手段と、を有する。
The power generation control system according to the second aspect of the present invention includes a power conditioner capable of controlling the amount of power generation, a higher-level monitoring device that outputs control information for controlling the power output by the power conditioner, A control device that controls the power conditioner based on the control information input from the host monitoring device, the control device acquiring control information from the host monitoring device, and the power And a communication unit that transmits the control information acquired by the control information acquisition unit to the power conditioner when the conditioner is changed to a state in which the power output based on the control information can be controlled.
上記発明に係る制御装置は、PCSが制御情報に基づいて出力する電力を制御できる状態に変化したときを検知して、PCSへ最新情報を送信することができる。
The control device according to the present invention can detect when the PCS has changed to a state in which the output power can be controlled based on the control information, and can transmit the latest information to the PCS.
<第1の実施形態>
前述の通り、PCSは複数種類存在する。例えば、管理下の太陽電池によって発電された電力により稼働しているPCS(シンプルPCS)や、商用電源から電力供給を受けているPCS(インテリジェントPCS)などが存在する。ここで、太陽光を用いて太陽電池によって発電する場合には、日が陰った状態では発電が行われない。シンプルPCSは、発電がおこなわれない場合、その電源が切れてしまう。よって、制御装置は、シンプルPCSに制御情報を送信した場合に、シンプルPCS側で、制御情報を受け取れない場合が生じる。 <First Embodiment>
As described above, there are a plurality of types of PCS. For example, there is a PCS (simple PCS) that is operated by power generated by a managed solar cell, a PCS (intelligent PCS) that is supplied with power from a commercial power source, and the like. Here, when power is generated by solar cells using sunlight, power generation is not performed in the shaded state. The simple PCS is turned off when power generation is not performed. Therefore, when the control device transmits the control information to the simple PCS, the control information may not be received on the simple PCS side.
前述の通り、PCSは複数種類存在する。例えば、管理下の太陽電池によって発電された電力により稼働しているPCS(シンプルPCS)や、商用電源から電力供給を受けているPCS(インテリジェントPCS)などが存在する。ここで、太陽光を用いて太陽電池によって発電する場合には、日が陰った状態では発電が行われない。シンプルPCSは、発電がおこなわれない場合、その電源が切れてしまう。よって、制御装置は、シンプルPCSに制御情報を送信した場合に、シンプルPCS側で、制御情報を受け取れない場合が生じる。 <First Embodiment>
As described above, there are a plurality of types of PCS. For example, there is a PCS (simple PCS) that is operated by power generated by a managed solar cell, a PCS (intelligent PCS) that is supplied with power from a commercial power source, and the like. Here, when power is generated by solar cells using sunlight, power generation is not performed in the shaded state. The simple PCS is turned off when power generation is not performed. Therefore, when the control device transmits the control information to the simple PCS, the control information may not be received on the simple PCS side.
そこで、本実施形態に係る制御装置は、PCSが制御情報を受信できるとき(PCSの電源が入ったとき)に最新の制御情報をPCSに送信する。
Therefore, the control device according to the present embodiment transmits the latest control information to the PCS when the PCS can receive the control information (when the PCS is turned on).
(構成)
図1は、第1の実施形態に係る発電制御システム100の構成を例示するブロック図である。本実施形態では、太陽光発電装置に備えられたPCSを制御する実施形態を開示する。図1を参照すると、発電制御システム100は、制御装置110と、上位監視装置20と、PCS130とを含んで構成される。 (Constitution)
FIG. 1 is a block diagram illustrating the configuration of a powergeneration control system 100 according to the first embodiment. In the present embodiment, an embodiment for controlling the PCS provided in the solar power generation device is disclosed. Referring to FIG. 1, the power generation control system 100 includes a control device 110, a higher-level monitoring device 20, and a PCS 130.
図1は、第1の実施形態に係る発電制御システム100の構成を例示するブロック図である。本実施形態では、太陽光発電装置に備えられたPCSを制御する実施形態を開示する。図1を参照すると、発電制御システム100は、制御装置110と、上位監視装置20と、PCS130とを含んで構成される。 (Constitution)
FIG. 1 is a block diagram illustrating the configuration of a power
制御装置110は、制御情報取得部11と、不揮発性メモリ12、制御部13と、通信部14と、検知部15と、を備える。
The control device 110 includes a control information acquisition unit 11, a nonvolatile memory 12, a control unit 13, a communication unit 14, and a detection unit 15.
制御情報取得部11は、後述する上位監視装置20から出力された制御情報としての抑制制御率を取得し、抑制制御率を制御部13に出力する。ここで、制御情報としての抑制制御率は、後述するPCS130で発電可能な発電量に対する発電率[%]である。本実施形態では、制御情報として抑制制御率を使用したが、制御情報はPCS130で発電可能な発電量に対する抑制率[%]、PCS130にて抑制される抑制電力値[W]や、PCS130で発電されるべき発電量[W]であっても良い。
The control information acquisition unit 11 acquires the suppression control rate as control information output from the higher-level monitoring device 20 described later, and outputs the suppression control rate to the control unit 13. Here, the suppression control rate as the control information is a power generation rate [%] with respect to a power generation amount that can be generated by the PCS 130 described later. In this embodiment, the suppression control rate is used as the control information. However, the control information is the suppression rate [%] with respect to the power generation amount that can be generated by the PCS 130, the suppression power value [W] that is suppressed by the PCS 130, and the PCS 130 that generates power. The power generation amount [W] to be performed may be used.
不揮発性メモリ12は、後述する上位監視装置20から出力された制御情報としての抑制制御率を記憶する。ここで、制御情報は、PCS130を制御する抑制制御率や、天気の情報、日の出と日の入り時刻などである。また、不揮発性メモリ12は、PCS130から受信した、PCS130の状態情報も記憶する。状態情報は、PCT130の状態を示す情報である。状態情報は、稼働状態か停止状態かの情報や、発電可能な最大発電量、瞬時発電量などであってもよい。
The non-volatile memory 12 stores a suppression control rate as control information output from the higher-level monitoring device 20 described later. Here, the control information includes a suppression control rate for controlling the PCS 130, weather information, sunrise and sunset times, and the like. The non-volatile memory 12 also stores PCS 130 status information received from the PCS 130. The state information is information indicating the state of the PCT 130. The state information may be information on whether the machine is in an operating state or a stopped state, a maximum power generation amount that can be generated, an instantaneous power generation amount, or the like.
制御部13は、後述する検知部15から受け取ったPCS130の状態情報に基づいて、PCS130の制御を実行する。さらに、制御部13は、PCS130に対して抑制制御を行う際、通信処理に含まれるフレーミングやヘッダ処理などのデータ処理を行う。
The control unit 13 controls the PCS 130 based on the status information of the PCS 130 received from the detection unit 15 described later. Furthermore, the control unit 13 performs data processing such as framing and header processing included in the communication processing when performing suppression control on the PCS 130.
通信部14は、不揮発性メモリに格納されている制御情報をPCS130へ送信する。また、通信部14は、PCS130から送られてくる情報を受信する。通信部14は、PCS130に対する通信インタフェースであり、抑制情報をPCS130に即した通信電文への変換を行う。通信部14は、想定されるプロトコルについて個別に対応する。また、通信媒体として、イーサネット(Ethernet)(登録商標)回線や同軸ケーブル、RS-485などの制御回線を用いることができる。又、一方、電力系統管理を行う管理会社(上位管理者)が使用する上位監視装置20と制御装置110との通信方式として、電力会社が独自に敷設する光ケーブルや携帯電話などの様々な方式が想定される。
The communication unit 14 transmits control information stored in the nonvolatile memory to the PCS 130. In addition, the communication unit 14 receives information transmitted from the PCS 130. The communication unit 14 is a communication interface for the PCS 130, and converts the suppression information into a communication message conforming to the PCS 130. The communication unit 14 individually corresponds to the assumed protocol. As a communication medium, an Ethernet (registered trademark) line, a coaxial cable, a control line such as RS-485 can be used. On the other hand, as a communication method between the host monitoring device 20 and the control device 110 used by a management company (superior manager) that performs power system management, there are various methods such as an optical cable and a mobile phone that are laid independently by the power company. is assumed.
検知部15は、通信部14を介して、PCS130が電力を制御できる状態に変化したことを検知する。言い換えると、検知部15は、PCS130が停止状態(制御装置110と通信が不可能な状態、PCS130に電力が供給されていない状態、PCS130が発電不可能な状態、PCS130が揮発性メモリ31に受信した情報を書き込めない状態など)から、稼働状態(制御装置110と通信が可能な状態、PCS130に電力が供給されている状態、PCS130が発電可能な状態、PCS130が揮発性メモリ31に受信した情報を書き込める状態など)に変化したことを検知する。また、検知部15は、PCS130が停止状態なのか稼働状態なのかを検知できてもよい。
The detection unit 15 detects that the PCS 130 has changed to a state in which power can be controlled via the communication unit 14. In other words, the detection unit 15 detects that the PCS 130 is in a stopped state (a state where communication with the control device 110 is impossible, a state where power is not supplied to the PCS 130, a state where the PCS 130 cannot generate power, a PCS 130 is received by the volatile memory 31 The information that the PCS 130 has received in the volatile memory 31 from the operating state (a state in which communication with the control device 110 is possible, a state in which power is supplied to the PCS 130, a state in which the PCS 130 can generate power), and the like. ) Is detected. Further, the detection unit 15 may be able to detect whether the PCS 130 is in a stopped state or an operating state.
上位監視装置20は、電力会社などに設置されており、電力系統全体を俯瞰した抑制制御率を制御装置110に送出する。具体的には、上位監視装置20は、電力会社が取り決めた電力系統安定化に必要な制御情報としてのPCS130の発電率の信号を制御装置110に送出する。上位監視装置20は、電力会社などの自営ネットワークやその他通信方式を用いて制御装置110に接続される。
The host monitoring device 20 is installed in an electric power company or the like, and sends a suppression control rate overlooking the entire power system to the control device 110. Specifically, the host monitoring device 20 sends a signal of the power generation rate of the PCS 130 as control information necessary for power system stabilization decided by the power company to the control device 110. The host monitoring device 20 is connected to the control device 110 using a private network such as an electric power company or other communication methods.
PCS130は、通信部32と揮発性メモリ31と発電制御部33とを含んで構成される。また、本実施形態のPCS130は、管理下の太陽電池によって発電された電力により稼働し、独立して電力を供給可能な電源を有していない。
The PCS 130 includes a communication unit 32, a volatile memory 31, and a power generation control unit 33. Further, the PCS 130 of this embodiment is operated by the power generated by the managed solar cell, and does not have a power source that can supply power independently.
揮発性メモリ31は、後述する通信部32により取得された制御情報や、PCS130の状態、PCS130の瞬時発電量等を記憶する。ここで、揮発性メモリ31は、電源を供給しないと記憶している情報を保持できないメモリであるため、太陽電池によって発電された電力が無くなり、PCS130が停止状態になった場合には、記憶している制御情報が消えることとなる。
The volatile memory 31 stores control information acquired by the communication unit 32 described later, the state of the PCS 130, the instantaneous power generation amount of the PCS 130, and the like. Here, since the volatile memory 31 is a memory that cannot hold the stored information unless power is supplied, the volatile memory 31 stores the power when the power generated by the solar cell is lost and the PCS 130 is stopped. The control information is lost.
通信部32は、通信部13から制御情報を受信し、通信部13へPCS130の状態や制御情報の設定に成功したか否かを示すアンサーバック、PCS130の瞬時発電量等を送信する。通信部32は、PCS130に関する情報を通信部14と通信可能な通信電文への変換を行い、通信を実行する。
The communication unit 32 receives control information from the communication unit 13, and transmits to the communication unit 13 an answerback indicating whether the setting of the PCS 130 and the setting of the control information is successful, the instantaneous power generation amount of the PCS 130, and the like. The communication unit 32 converts information related to the PCS 130 into a communication message that can be communicated with the communication unit 14 and executes communication.
発電制御部33は、揮発性メモリ31に格納されている制御情報に基づいて、発電制御を実行する。
The power generation control unit 33 executes power generation control based on the control information stored in the volatile memory 31.
(制御フロー)
図2は、第1の実施形態に係る制御装置110の制御を例示するフロー図である。図2を用いて、第1の実施形態の制御装置110の制御フローを説明する。 (Control flow)
FIG. 2 is a flowchart illustrating the control of thecontrol device 110 according to the first embodiment. A control flow of the control device 110 according to the first embodiment will be described with reference to FIG.
図2は、第1の実施形態に係る制御装置110の制御を例示するフロー図である。図2を用いて、第1の実施形態の制御装置110の制御フローを説明する。 (Control flow)
FIG. 2 is a flowchart illustrating the control of the
ステップS10では、制御部13の指示を受けて、通信部14は、PCS130の状況確認を行う信号をPCS130に送信する。ここで、通信部14がPCS130へ状況確認を行う信号の送信は、周期的に行ってよいし、上位監視装置20や、制御部13からの指示に従って送るようにしても良い。
In step S10, upon receiving an instruction from the control unit 13, the communication unit 14 transmits a signal for confirming the status of the PCS 130 to the PCS 130. Here, the transmission of the signal for confirming the status to the PCS 130 by the communication unit 14 may be performed periodically, or may be transmitted in accordance with an instruction from the host monitoring device 20 or the control unit 13.
ステップS20では、検知部15は、通信部14がPCS130から状況確認を行う信号の受信に成功したか否かを示すアンサーバックを受信したか否かを判断し、PCS130が停止状態か稼動状態かを判断する。具体的には、通信部14が状況を確認する信号の送信後、所定期間内に通信部14がPCS130からのアンサーバックが受信された場合には、検知部15はPCS130が稼動状態と判断し、フローを終了する。また、通信部14が状況を確認する信号の送信後、所定期間内に通信部14がPCS130からのアンサーバックが受信されなかった場合には、検知部15はPCS130が停止状態と判断し、ステップS30へ進む。
In step S <b> 20, the detection unit 15 determines whether the communication unit 14 has received an answer back indicating whether the communication unit 14 has successfully received a status confirmation signal from the PCS 130, and determines whether the PCS 130 is in a stopped state or an operating state. Judging. Specifically, if the communication unit 14 receives an answer back from the PCS 130 within a predetermined period after the communication unit 14 transmits a signal for confirming the situation, the detection unit 15 determines that the PCS 130 is operating. End the flow. If the communication unit 14 does not receive an answer back from the PCS 130 within a predetermined period after the communication unit 14 transmits a signal for confirming the situation, the detection unit 15 determines that the PCS 130 is in a stopped state, and the step Proceed to S30.
ステップS30では、通信部14は、所定間隔でPCS130の状況確認を行う信号をPCS130に送信し、アンサーバックがあるまでPCS130の状況確認を行う信号をPCS130に送信することを繰り返す。PCS130からアンサーバックがあった場合に、検知部15はPCS130が停止状態から稼働状態へ変化したと判断し、ステップS40へ進む。ここで、所定間隔とは、周期的に送信を繰り返しても良いし、上位監視装置20や制御部13の指示に基づいて間隔を変えて送信するようにしても良い。
In step S30, the communication unit 14 repeatedly transmits a signal for confirming the status of the PCS 130 to the PCS 130 at predetermined intervals, and transmits a signal for confirming the status of the PCS 130 to the PCS 130 until there is an answer back. If there is an answer back from the PCS 130, the detection unit 15 determines that the PCS 130 has changed from the stopped state to the operating state, and proceeds to step S40. Here, with the predetermined interval, transmission may be repeated periodically, or transmission may be performed at different intervals based on instructions from the host monitoring device 20 or the control unit 13.
ステップS40では、制御部13は、検知部15からPCS130が停止状態から稼働状態へ移行した情報を受け取る。その後、制御部13は、通信部14へ制御情報をPCS130へ送信するように指示する。指示を受けた通信部14は、不揮発性メモリ12に格納されている制御情報をPCS130へ送信し、フローを終了する。ここで、上位監視装置20から送られてきた情報を直接PCS130へ送信するようにしても良い。
In step S40, the control unit 13 receives information from the detection unit 15 that the PCS 130 has shifted from the stopped state to the operating state. Thereafter, the control unit 13 instructs the communication unit 14 to transmit control information to the PCS 130. Upon receiving the instruction, the communication unit 14 transmits the control information stored in the nonvolatile memory 12 to the PCS 130, and ends the flow. Here, the information sent from the host monitoring device 20 may be directly sent to the PCS 130.
(作用効果)
上記制御を実施することにより、PCSが電力を制御できるときに、最新の制御情報を確実にPCSに送信することができる。例えば、PCSが受信できるときに最新の制御情報を確実にPCSに送信することができる。また、PCSの電源が落ちて、格納されていた制御情報が消滅してしまった場合に、制御情報を取得できるため、抑制情報があるにもかかわらず、抑制制御が行われない期間を低減することができる。また、太陽光発電設備を想定しているため、太陽光発電は日が陰ったりすることで発電ができない状態となるなど、発電状態が不安定である。シンプルPCS(管理下の太陽電池によって発電された電力により稼働しているPCS)を用いている場合、シンプルPCSの電源の入切が頻繁に起こるため、PCSの電源が切れている状態からPCSの電源が入った場合に、制御情報を送ることとしたため、制御装置にPCSの制御情報があるにもかかわらず、PCSが制御情報によらず制御される期間を減少させることができる。 (Function and effect)
By performing the above control, the latest control information can be reliably transmitted to the PCS when the PCS can control the power. For example, the latest control information can be reliably transmitted to the PCS when the PCS can be received. In addition, since the control information can be acquired when the stored control information disappears because the PCS power is turned off, the period during which the suppression control is not performed despite the suppression information is reduced. be able to. Moreover, since the solar power generation facility is assumed, the power generation state is unstable, for example, the solar power generation becomes incapable of generating power due to the shade. When using a simple PCS (PCS operating with the power generated by a managed solar cell), the power of the simple PCS is frequently turned on and off. Since the control information is sent when the power is turned on, the period during which the PCS is controlled regardless of the control information can be reduced even though the control device has the PCS control information.
上記制御を実施することにより、PCSが電力を制御できるときに、最新の制御情報を確実にPCSに送信することができる。例えば、PCSが受信できるときに最新の制御情報を確実にPCSに送信することができる。また、PCSの電源が落ちて、格納されていた制御情報が消滅してしまった場合に、制御情報を取得できるため、抑制情報があるにもかかわらず、抑制制御が行われない期間を低減することができる。また、太陽光発電設備を想定しているため、太陽光発電は日が陰ったりすることで発電ができない状態となるなど、発電状態が不安定である。シンプルPCS(管理下の太陽電池によって発電された電力により稼働しているPCS)を用いている場合、シンプルPCSの電源の入切が頻繁に起こるため、PCSの電源が切れている状態からPCSの電源が入った場合に、制御情報を送ることとしたため、制御装置にPCSの制御情報があるにもかかわらず、PCSが制御情報によらず制御される期間を減少させることができる。 (Function and effect)
By performing the above control, the latest control information can be reliably transmitted to the PCS when the PCS can control the power. For example, the latest control information can be reliably transmitted to the PCS when the PCS can be received. In addition, since the control information can be acquired when the stored control information disappears because the PCS power is turned off, the period during which the suppression control is not performed despite the suppression information is reduced. be able to. Moreover, since the solar power generation facility is assumed, the power generation state is unstable, for example, the solar power generation becomes incapable of generating power due to the shade. When using a simple PCS (PCS operating with the power generated by a managed solar cell), the power of the simple PCS is frequently turned on and off. Since the control information is sent when the power is turned on, the period during which the PCS is controlled regardless of the control information can be reduced even though the control device has the PCS control information.
<第2の実施形態>
(第2の実施形態の特徴)
第1の実施形態の構成は、制御装置110から確認信号を送信し、アンサーバックの有無により、PCS230の通信可能か否かを判断していた。対して、第2の実施形態では、アンサーバックは使わず、PCS230から通信が可能となった(電源が入った)ことを通知する構成である。前記構成とすることにより、制御装置210は、PCS230への確認信号の送付が不要となるため、より簡単にPCS230が制御情報を受け取れる状態か否かを判断することができる。 <Second Embodiment>
(Characteristics of the second embodiment)
In the configuration of the first embodiment, a confirmation signal is transmitted from thecontrol device 110, and whether or not the PCS 230 can communicate is determined based on the presence or absence of an answerback. On the other hand, in the second embodiment, no answer back is used, and the PCS 230 notifies that communication is possible (power is turned on). With the above configuration, the control device 210 does not need to send a confirmation signal to the PCS 230, and therefore can more easily determine whether the PCS 230 can receive control information.
(第2の実施形態の特徴)
第1の実施形態の構成は、制御装置110から確認信号を送信し、アンサーバックの有無により、PCS230の通信可能か否かを判断していた。対して、第2の実施形態では、アンサーバックは使わず、PCS230から通信が可能となった(電源が入った)ことを通知する構成である。前記構成とすることにより、制御装置210は、PCS230への確認信号の送付が不要となるため、より簡単にPCS230が制御情報を受け取れる状態か否かを判断することができる。 <Second Embodiment>
(Characteristics of the second embodiment)
In the configuration of the first embodiment, a confirmation signal is transmitted from the
(構成)
図3は、第2の実施形態に係る発電制御システム200の構成を例示するブロック図である。本実施形態では、太陽光発電装置に備えられたPCSを制御する実施形態を開示する。図3を参照すると、発電制御システム200は、制御装置210と、上位監視装置20と、PCS230とを含んで構成される。 (Constitution)
FIG. 3 is a block diagram illustrating the configuration of the powergeneration control system 200 according to the second embodiment. In the present embodiment, an embodiment for controlling the PCS provided in the solar power generation device is disclosed. Referring to FIG. 3, the power generation control system 200 includes a control device 210, a host monitoring device 20, and a PCS 230.
図3は、第2の実施形態に係る発電制御システム200の構成を例示するブロック図である。本実施形態では、太陽光発電装置に備えられたPCSを制御する実施形態を開示する。図3を参照すると、発電制御システム200は、制御装置210と、上位監視装置20と、PCS230とを含んで構成される。 (Constitution)
FIG. 3 is a block diagram illustrating the configuration of the power
制御装置210は、制御情報取得部11と、不揮発性メモリ12、制御部13と、通信部14と、検知部15と、を備える。
The control device 210 includes a control information acquisition unit 11, a nonvolatile memory 12, a control unit 13, a communication unit 14, and a detection unit 15.
PCS230は、通信部32と、揮発性メモリ31と、発電制御部33と、検知部34と、から構成される。
The PCS 230 includes a communication unit 32, a volatile memory 31, a power generation control unit 33, and a detection unit 34.
検知部34は、PCS230が電力を制御できる状態に変化したことを検知する。言い換えると、検知部34は、PCS230が、停止状態(制御装置210と通信が不可能な状態、PCS230に電力が供給されていない状態、PCS230が発電不可能な状態、PCS230が揮発性メモリ31に受信した情報を書き込めない状態など)から、稼働状態(制御装置210と通信が可能な状態、PCS230に電力が供給されている状態、PCS230が発電可能な状態、PCS230が揮発性メモリ31に受信した情報を書き込める状態など)に変化しことを検知する。また、検知部34は、PCS230が停止状態なのか稼働状態なのかを検知できても良い。
The detection unit 34 detects that the PCS 230 has changed to a state in which power can be controlled. In other words, the detection unit 34 indicates that the PCS 230 is in a stopped state (a state in which communication with the control device 210 is impossible, a state in which no power is supplied to the PCS 230, a state in which the PCS 230 cannot generate power, and a PCS 230 in the volatile memory 31). From the state in which the received information cannot be written, etc., from the operating state (a state in which communication with the control device 210 is possible, a state in which power is supplied to the PCS 230, a state in which the PCS 230 is capable of generating power, and the PCS 230 is received by the volatile memory 31 Detects changes to the state in which information can be written. Further, the detection unit 34 may be able to detect whether the PCS 230 is in a stopped state or an operating state.
(制御フロー)
図4は、第2の実施形態に係る制御装置210の制御を例示するフロー図である。図4を用いて、第2の実施形態の制御装置210の制御フローを説明する。 (Control flow)
FIG. 4 is a flowchart illustrating the control of thecontrol device 210 according to the second embodiment. A control flow of the control device 210 according to the second embodiment will be described with reference to FIG.
図4は、第2の実施形態に係る制御装置210の制御を例示するフロー図である。図4を用いて、第2の実施形態の制御装置210の制御フローを説明する。 (Control flow)
FIG. 4 is a flowchart illustrating the control of the
ステップS50では、通信部14は、検知部34が検知したPCS230の状態変化を示す信号(PCS230が停止状態から稼働状態へ変化したことを示す信号)を、通信部32を通して受信する。図4に示すように、PCS230の状態変化を示す信号は、起動信号と呼ばれても良い。通信部14が前述の信号を受信したらステップS40へ進む。前述のPCS230の状態変化を示す信号は、PCS230自体がパケットを送信する構成でも良いし、PCSの電源が入ったことを検知できる検知手段(PCS230と制御部13(または通信部14)をLANケーブルで接続し、起動情報を取得する構成)を制御装置210に構成しても良い。前述の検知手段は有線で接続する構成でも良いし、無線で接続する構成でも良い。
In step S50, the communication unit 14 receives a signal indicating a change in the state of the PCS 230 detected by the detection unit 34 (a signal indicating that the PCS 230 has changed from the stopped state to the operating state) through the communication unit 32. As shown in FIG. 4, the signal indicating the state change of the PCS 230 may be called an activation signal. If the communication part 14 receives the above-mentioned signal, it will progress to step S40. The signal indicating the state change of the PCS 230 may be configured such that the PCS 230 itself transmits a packet, or the detection means (the PCS 230 and the control unit 13 (or the communication unit 14) that can detect that the PCS is turned on is connected to the LAN cable. The control device 210 may be configured to connect and acquire startup information. The detection means described above may be wired or may be wirelessly connected.
ステップS40では、PCS230の状態変化を示す信号を受信した場合、検知部15は、PCS230が停止状態から稼働状態へ移行したと判断し、制御部13へ情報を送信する。情報を受けた制御部13は、通信部14が制御情報をPCS230に送信するように指示する。指示を受けた通信部14は、不揮発性メモリ12に格納されている制御情報をPCS230へ送信し、フローを終了する。
In step S40, when a signal indicating a change in the state of the PCS 230 is received, the detection unit 15 determines that the PCS 230 has shifted from the stopped state to the operating state, and transmits information to the control unit 13. Upon receiving the information, the control unit 13 instructs the communication unit 14 to transmit the control information to the PCS 230. Upon receiving the instruction, the communication unit 14 transmits the control information stored in the nonvolatile memory 12 to the PCS 230, and ends the flow.
(作用効果)
第1の実施形態と比較して、制御装置からPCSへ向けて送信する回数を低減できるため、PCSが電力を制御できる状態であるときに最新の制御情報を確実にPCSに送信しつつ、制御装置での消費電力を低減することができる。なお、本実施形態においても、第1の実施形態と同様に、制御装置210の通信部14がPCS230へ状況確認を行う信号の送信を行って状態の変化を検出する動作を行ってもよい。即ち、第1の実施形態のPCSの状態変化検知方法と、第2の実施形態のPCSの状態変化検知方法とを切替る構成も採用可能である。 (Function and effect)
Compared with the first embodiment, since the number of times of transmission from the control device to the PCS can be reduced, control is performed while reliably transmitting the latest control information to the PCS when the PCS is in a state where the power can be controlled. The power consumption in the apparatus can be reduced. Also in this embodiment, as in the first embodiment, thecommunication unit 14 of the control device 210 may perform an operation of transmitting a signal for confirming the situation to the PCS 230 and detecting a change in the state. That is, it is also possible to adopt a configuration that switches between the PCS state change detection method of the first embodiment and the PCS state change detection method of the second embodiment.
第1の実施形態と比較して、制御装置からPCSへ向けて送信する回数を低減できるため、PCSが電力を制御できる状態であるときに最新の制御情報を確実にPCSに送信しつつ、制御装置での消費電力を低減することができる。なお、本実施形態においても、第1の実施形態と同様に、制御装置210の通信部14がPCS230へ状況確認を行う信号の送信を行って状態の変化を検出する動作を行ってもよい。即ち、第1の実施形態のPCSの状態変化検知方法と、第2の実施形態のPCSの状態変化検知方法とを切替る構成も採用可能である。 (Function and effect)
Compared with the first embodiment, since the number of times of transmission from the control device to the PCS can be reduced, control is performed while reliably transmitting the latest control information to the PCS when the PCS is in a state where the power can be controlled. The power consumption in the apparatus can be reduced. Also in this embodiment, as in the first embodiment, the
<第3の実施形態>
(構成)
図5は、第3の実施形態に係る発電制御システム300の構成を例示するブロック図である。図5を用いて、第3の実施形態を説明する。尚、第1の実施形態で説明したブロック(図1で説明したブロック)ついては説明を省略する。 <Third Embodiment>
(Constitution)
FIG. 5 is a block diagram illustrating the configuration of a powergeneration control system 300 according to the third embodiment. The third embodiment will be described with reference to FIG. Note that description of the blocks described in the first embodiment (blocks described in FIG. 1) is omitted.
(構成)
図5は、第3の実施形態に係る発電制御システム300の構成を例示するブロック図である。図5を用いて、第3の実施形態を説明する。尚、第1の実施形態で説明したブロック(図1で説明したブロック)ついては説明を省略する。 <Third Embodiment>
(Constitution)
FIG. 5 is a block diagram illustrating the configuration of a power
図3を参照すると、発電制御システム300は、制御装置310と、上位監視装置20と、n台のPCS230-1~PCS230-nとを含んで構成される。
Referring to FIG. 3, the power generation control system 300 includes a control device 310, a host monitoring device 20, and n PCS 230-1 to PCS 230-n.
制御装置310は、制御情報取得部11と、不揮発性メモリ12、制御部13と、通信部14と、検知部15と、を備える。
The control device 310 includes a control information acquisition unit 11, a nonvolatile memory 12, a control unit 13, a communication unit 14, and a detection unit 15.
PCS230-1~PCS230-nは、それぞれ通信部32-1~32-nと、発電制御部33-1~33-nと、検知部34-1~34-nと、不揮発性メモリ35-1~35-nと、を備えた構成される。PCS230-1~230-nについては、同一種のPCSであっても良いし、複数種のPCSで構成されていても良い。以下、PCS230-1~230-n及びその内部構成を特に区別しない場合、PCS230、通信部32、発電制御部33、検知部34、不揮発性メモリ35と記す。尚、本実施形態では通信部14は、1つのみ存在する構成であるが、通信部を複数有し、複数の通信部に対応するPCS230-1~230-nに接続されていてもよいし、複数のPCS230の所定のグループごと通信部を設けるようにしても良い。
The PCS 230-1 to PCS 230-n include communication units 32-1 to 32-n, power generation control units 33-1 to 33-n, detection units 34-1 to 34-n, and nonvolatile memory 35-1. To 35-n. The PCSs 230-1 to 230-n may be the same type of PCS or may be composed of a plurality of types of PCS. Hereinafter, when the PCSs 230-1 to 230-n and their internal configurations are not particularly distinguished, they are referred to as the PCS 230, the communication unit 32, the power generation control unit 33, the detection unit 34, and the nonvolatile memory 35. In the present embodiment, only one communication unit 14 exists. However, a plurality of communication units may be provided and connected to PCSs 230-1 to 230-n corresponding to the plurality of communication units. A communication unit may be provided for each predetermined group of the plurality of PCSs 230.
不揮発性メモリ35は、制御情報取得部11が上位監視装置20から取得した制御情報、通信部14を介して取得したPCS230-1~230-nの瞬時発電量などを格納している。
The nonvolatile memory 35 stores the control information acquired by the control information acquisition unit 11 from the host monitoring device 20, the instantaneous power generation amounts of the PCS 230-1 to 230-n acquired via the communication unit 14, and the like.
(制御フロー)
図6は、第3の実施形態に係る制御装置310の制御を例示するフロー図である。図6を用いて、第3の実施形態の制御装置310の制御フローを説明する。尚、第2の実施形態においてステップS40及び、ステップS50については説明を行っているため、説明を割愛する。 (Control flow)
FIG. 6 is a flowchart illustrating the control of thecontrol device 310 according to the third embodiment. A control flow of the control device 310 according to the third embodiment will be described with reference to FIG. In addition, since step S40 and step S50 have been described in the second embodiment, description thereof will be omitted.
図6は、第3の実施形態に係る制御装置310の制御を例示するフロー図である。図6を用いて、第3の実施形態の制御装置310の制御フローを説明する。尚、第2の実施形態においてステップS40及び、ステップS50については説明を行っているため、説明を割愛する。 (Control flow)
FIG. 6 is a flowchart illustrating the control of the
ステップS50にて、通信部14が、PCS230-1~230-nのいずれかから起動信号を取得した場合に、S60へ進む。
In step S50, when the communication unit 14 acquires an activation signal from any of the PCSs 230-1 to 230-n, the process proceeds to S60.
ステップS60では、制御部13は、検知部15が通信部14からPCS230-1~230-nのいずれかから複数の起動信号を取得したか否かを判断する。具体的には、制御部13は、所定期間内に検知部15から起動信号が複数回送られてきた場合に、PCS230-1~230-nの内、複数のPCSが同時期に起動したと判断し、ステップS70へ進む。また、制御部13は、所定期間内に検知部15から1回のみ起動信号が送られてきた場合に、PCS230-1~230-nの内、1つのみPCSが起動したと判断し、ステップS40へ進む。
In step S60, the control unit 13 determines whether or not the detection unit 15 has acquired a plurality of activation signals from any of the PCSs 230-1 to 230-n from the communication unit 14. Specifically, the control unit 13 determines that a plurality of PCSs among the PCSs 230-1 to 230-n are activated at the same time when the activation signal is sent from the detection unit 15 a plurality of times within a predetermined period. Then, the process proceeds to step S70. The control unit 13 determines that only one of the PCSs 230-1 to 230-n has been activated when the activation signal is sent only once from the detection unit 15 within a predetermined period, and the step Proceed to S40.
ステップS70では、制御部13は、複数の起動信号を取得したPCSの優先順位を不揮発性メモリ12から取得し、ステップS80へ進む。
In step S70, the control unit 13 acquires the priority order of the PCS that has acquired the plurality of activation signals from the nonvolatile memory 12, and proceeds to step S80.
ステップS80では、制御部13は、取得した優先順位に基づいて通信部14が制御情報をPCS230に送信するように指示する。指示を受けた通信部14は、不揮発性メモリ12に格納されている制御情報をPCS230へ送信し、フローを終了する。以上のように、本発明は、複数台のPCS230を備える構成にも適用することが可能である。
In step S80, the control unit 13 instructs the communication unit 14 to transmit control information to the PCS 230 based on the acquired priority order. Upon receiving the instruction, the communication unit 14 transmits the control information stored in the nonvolatile memory 12 to the PCS 230, and ends the flow. As described above, the present invention can also be applied to a configuration including a plurality of PCSs 230.
<第4の実施形態>
(構成)
第4の実施形態に係る発電制御システム300の構成については、第2の実施形態と同様であるため、説明を省略する(図5参照)。 <Fourth Embodiment>
(Constitution)
About the structure of the electric powergeneration control system 300 which concerns on 4th Embodiment, since it is the same as that of 2nd Embodiment, description is abbreviate | omitted (refer FIG. 5).
(構成)
第4の実施形態に係る発電制御システム300の構成については、第2の実施形態と同様であるため、説明を省略する(図5参照)。 <Fourth Embodiment>
(Constitution)
About the structure of the electric power
(制御フロー)
図7は、第4の実施形態に係る制御装置310の制御を例示するフロー図である。図7を用いて、第4の実施形態の制御装置310の制御フローを説明する。 (Control flow)
FIG. 7 is a flowchart illustrating the control of thecontrol device 310 according to the fourth embodiment. A control flow of the control device 310 according to the fourth embodiment will be described with reference to FIG.
図7は、第4の実施形態に係る制御装置310の制御を例示するフロー図である。図7を用いて、第4の実施形態の制御装置310の制御フローを説明する。 (Control flow)
FIG. 7 is a flowchart illustrating the control of the
ステップS100では、制御部13は、不揮発性メモリ12に格納されているPCS230の状態を取得する。取得したPCS230の状態が、停止状態であれば、ステップS110へ進み、稼働状態であれば、フローを終了する。ここで、不揮発性メモリ12に格納されている情報を取得するような構成としたが、逐次、通信部14により取得するような構成としても良い。
In step S100, the control unit 13 acquires the state of the PCS 230 stored in the nonvolatile memory 12. If the acquired state of the PCS 230 is in a stopped state, the process proceeds to step S110, and if it is in an operating state, the flow ends. Here, the information stored in the nonvolatile memory 12 is acquired. However, the information may be sequentially acquired by the communication unit 14.
ステップS110では、制御部13は、通信部14がPCS230からの起動信号を受信したか否かを判断する。起動信号が、受信された場合には、ステップS120へ進み、起動信号が受信されない場合には、起動信号が受信されるまで、ステップS110を繰り返し、PCS230からの起動信号を受信したか否かを確認する。
In step S110, the control unit 13 determines whether or not the communication unit 14 has received an activation signal from the PCS 230. If the activation signal is received, the process proceeds to step S120. If the activation signal is not received, step S110 is repeated until the activation signal is received, and whether or not the activation signal is received from the PCS 230 is determined. Check.
ステップS120では、制御部13は、PCS230へ送信した前回の制御情報と現在、不揮発性メモリ12に格納されている制御情報とが一致しているか否かを判断する。制御情報が一致していない場合には、ステップS130へ進み、制御情報が一致している場合には、フローを終了する。ここで、制御情報が一致しているか否かを判断する構成としたが、所定期間内(例えば5分など)に制御情報をPCS230へ送信している場合に、前回送信した制御情報と現在の制御情報とは同一とみなして、制御情報を送信しない構成としても良い。
In step S120, the control unit 13 determines whether or not the previous control information transmitted to the PCS 230 matches the control information currently stored in the nonvolatile memory 12. If the control information does not match, the process proceeds to step S130. If the control information matches, the flow ends. Here, it is configured to determine whether or not the control information matches, but when the control information is transmitted to the PCS 230 within a predetermined period (for example, 5 minutes), the control information transmitted last time and the current The control information may be regarded as the same and the control information is not transmitted.
ステップS130では、制御部13は、通信部14が制御情報をPCS230に送信するように指示する。指示を受けた通信部14は、不揮発性メモリ12に格納されている制御情報をPCS230へ送信し、ステップS140へ進む。不揮発性メモリ12に格納されている制御情報を送信するような構成としたが、上位監視装置20から取得した制御情報を直接送信するようにしても良い。
In step S130, the control unit 13 instructs the communication unit 14 to transmit control information to the PCS 230. Upon receiving the instruction, the communication unit 14 transmits the control information stored in the nonvolatile memory 12 to the PCS 230, and proceeds to step S140. Although the configuration is such that the control information stored in the nonvolatile memory 12 is transmitted, the control information acquired from the host monitoring device 20 may be transmitted directly.
ステップS140では、制御部13は、通信部14がPCS230へ制御情報を送信したことに対してのPCS230の応答の有無を判断する。所定期間の間にPCS230からの応答を通信部14が受信した場合には、PCS230からの応答があったとしてステップS150へ進み、所定期間の間にPCS230からの応答を通信部14が受信しなかった場合には、PCS230からの応答がなかったとしてステップS160へ進む。
In step S140, the control unit 13 determines whether or not the PCS 230 responds to the fact that the communication unit 14 has transmitted control information to the PCS 230. If the communication unit 14 receives a response from the PCS 230 during a predetermined period, the process proceeds to step S150 because there is a response from the PCS 230, and the communication unit 14 does not receive a response from the PCS 230 during the predetermined period. If there is no response from the PCS 230, the process proceeds to step S160.
ステップS150では、制御部13は、PCS230の状態を稼動状態として、不揮発性メモリ12に格納されているPCS230の状態を上書きし、フローを終了する。
In step S150, the control unit 13 sets the state of the PCS 230 as the operating state, overwrites the state of the PCS 230 stored in the nonvolatile memory 12, and ends the flow.
ステップS160では、制御部13は、PCS230の状態を停止状態として、不揮発性メモリ12に格納されているPCS230の状態を上書きし、ステップステップS100へ戻る。
In step S160, the control unit 13 sets the state of the PCS 230 to the stopped state, overwrites the state of the PCS 230 stored in the nonvolatile memory 12, and returns to step S100.
(作用効果)
PCS230に不揮発性メモリ34を備える構成では、PCS230の電源が切られた状態であっても、受信した制御情報は失われないため、PCS230がすでに取得済みの制御情報を送信する必要がない。第4の実施形態の制御では、前回送信した制御情報と今回送信しようとしている制御情報が一致している場合に、制御情報を送らないこととしたため、無駄な通信を低減することができる。 (Function and effect)
In the configuration in which thenon-volatile memory 34 is provided in the PCS 230, the received control information is not lost even when the PCS 230 is turned off, and thus it is not necessary for the PCS 230 to transmit already acquired control information. In the control of the fourth embodiment, when the control information transmitted last time matches the control information to be transmitted this time, the control information is not sent, and therefore wasteful communication can be reduced.
PCS230に不揮発性メモリ34を備える構成では、PCS230の電源が切られた状態であっても、受信した制御情報は失われないため、PCS230がすでに取得済みの制御情報を送信する必要がない。第4の実施形態の制御では、前回送信した制御情報と今回送信しようとしている制御情報が一致している場合に、制御情報を送らないこととしたため、無駄な通信を低減することができる。 (Function and effect)
In the configuration in which the
上述した第1の実施形態から第4の実施形態までは、PCS230の電源が入ったこと(稼動状態となったこと)を検知して、PCS230が制御情報に基づいて出力する電力を制御できる状態に変化したと判断しているが、この構成に限定されるものではなく、揮発性メモリ31や不揮発性メモリ34が故障しており、故障から復帰したことを検知して、PCS230が制御情報に基づいて出力する電力を制御できる状態に変化したと判断してもよい。さらに付け加えると、通信部31や発電制御部32が故障している状態から、正常状態へ復帰したことを検知して、PCS230が制御情報に基づいて出力する電力を制御できる状態に変化したと判断しても良い。
From the first embodiment to the fourth embodiment described above, it is possible to detect that the power of the PCS 230 is turned on (becomes operating) and to control the power output by the PCS 230 based on the control information. However, the present invention is not limited to this configuration, and the volatile memory 31 and the nonvolatile memory 34 are out of order. It may be determined that the output power is changed to a state in which the output power can be controlled. In addition, it is detected that the communication unit 31 or the power generation control unit 32 has returned from a failure state to a normal state, and the PCS 230 determines that the power output based on the control information can be controlled. You may do it.
上記実施形態では、一例として、再生可能エネルギーとして太陽光発電について説明したが、本発明の適用対象はこれに限定されない。すなわち、本発明に係る発電制御システムは、他の再生可能エネルギー(例えば、風力発電)や蓄電システムなどにも適用することができる。
In the above embodiment, solar power generation has been described as an example of renewable energy, but the application target of the present invention is not limited to this. That is, the power generation control system according to the present invention can be applied to other renewable energy (for example, wind power generation), a power storage system, and the like.
さらに、本発明に係る電力制御システムは、家庭レベルにおいて、通信機能を通じて電力会社に電力消費量を自動的に送信する電力メータや、家庭内の電力を管理するエネルギーマネージメントシステムなどの機能と一体化して運用することも可能である。また、本発明に係る発電制御システムは、電力会社などの系統運営会社や、同様の電力系統を保有する事業者などにおいて適用することができる。太陽電池が急激に導入された場合、離島などの小規模電力系統などでは発電容量の限界を超えることも考えられる。したがって、本発明に係る発電制御システムは、このような小規模系統などにおいても広く活用することができる。
Furthermore, the power control system according to the present invention is integrated with functions such as a power meter that automatically transmits power consumption to a power company through a communication function and an energy management system that manages power in the home at the home level. It is also possible to operate. In addition, the power generation control system according to the present invention can be applied to a grid operating company such as an electric power company, or a business operator that has a similar power grid. When solar cells are introduced rapidly, it may be possible to exceed the limit of power generation capacity in small-scale power systems such as remote islands. Therefore, the power generation control system according to the present invention can be widely used even in such a small-scale system.
なお、本発明の基本的技術思想に基づいて、実施形態の変更・調整が可能である。具体的には、各実施形態を組み合わせるような変更が可能な範囲で適宜行うことができる。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得る各種変形、修正を含む。
The embodiment can be changed and adjusted based on the basic technical idea of the present invention. Specifically, it can be appropriately performed within a range in which the embodiments can be combined and changed. That is, the present invention includes various variations and modifications that can be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
例えば、上記した各実施形態では、上位監視装置20が制御情報としての抑制制御率を送信し、制御情報取得部11がこの抑制制御率を受信するものとして説明したが、制御徐情報の送信形態はこの形態に限られない。例えば、制御情報取得部11が予め定められた時間間隔やスケジュール等に基づいて、上位監視装置20に対して、抑制制御率の送信を要求し、上位監視装置20が制御情報として抑制制御率を送信する構成も採用可能である。図8は、スケジュール等に基づいた抑制制御率の取得処理の一例を示すシーケンス図である。図8の例では、制御装置が、上位監視装置20に対して、所定のタイミングで抑制制御率の送信を要求する(S10-11~S10-12)ことで抑制制御率を取得している(S10-13)。
For example, in each of the above-described embodiments, the host monitoring device 20 transmits the suppression control rate as the control information, and the control information acquisition unit 11 receives the suppression control rate. Is not limited to this form. For example, the control information acquisition unit 11 requests the host monitoring device 20 to transmit a suppression control rate based on a predetermined time interval, schedule, etc., and the host monitoring device 20 sets the suppression control rate as control information. A transmission configuration can also be adopted. FIG. 8 is a sequence diagram illustrating an example of a suppression control rate acquisition process based on a schedule or the like. In the example of FIG. 8, the control device obtains the suppression control rate by requesting the higher-level monitoring device 20 to transmit the suppression control rate at a predetermined timing (S10-11 to S10-12) ( S10-13).
上記した実施形態では、PCSにおける制御情報の格納先が揮発性メモリであるものとして説明したが、PCSにおける制御情報の格納先は揮発性メモリでなくてもよい。例えば、制御情報が不揮発性メモリに格納されたり、他の補助記憶装置にバックアップされる形態も含まれる。このような場合においても、PCSの電源が長期間オフになっている場合、制御情報は古くなり、より新しい電力系統側の状況にそぐわないものとなっている可能性がある。上記した各実施形態の制御装置によれば、PCSの起動後、より新しい制御情報を提供できるため、速やかに好ましい抑制制御等を再開させることが可能となる。
In the above-described embodiment, the storage location of the control information in the PCS has been described as being a volatile memory. However, the storage location of the control information in the PCS may not be a volatile memory. For example, the control information is stored in a non-volatile memory, or backed up to another auxiliary storage device. Even in such a case, when the power of the PCS has been turned off for a long period of time, the control information may become out of date and may not be suitable for the situation on the newer power system side. According to the control device of each embodiment described above, since newer control information can be provided after the PCS is activated, it is possible to quickly resume preferable suppression control and the like.
また、上記した各実施形態の上位監視装置は、電力系統から配電経路に関する接続情報や出力発電量を示す発電制御情報を受け取り、制御装置に制御情報として抑制制御率を送信する管理装置であってもよい。図9は、この様な管理装置の一例を示す図である。
Further, the host monitoring device of each of the above embodiments is a management device that receives connection information regarding the distribution path and power generation control information indicating the output power generation amount from the power system, and transmits a suppression control rate as control information to the control device. Also good. FIG. 9 is a diagram illustrating an example of such a management apparatus.
図9の管理装置20aは、電力系統300から受信した接続情報と発電制御情報とに基づいて、PCS130に指示すべき抑制制御率を算出する算出手段203と、前記算出した抑制制御率を制御装置110に送信する送信手段204と、を備える。ここで、接続情報とは、太陽光発電装置が配電網内のどの配電経路に接続されているか、即ち、電力系統900へ電力を出力する太陽光発電装置を示す情報であり、電力系統側の配電自動化システムより作成される。
The management device 20a in FIG. 9 calculates a suppression control rate to be instructed to the PCS 130 based on the connection information and the power generation control information received from the power system 300, and the control device calculates the calculated suppression control rate. Transmitting means 204 for transmitting to 110. Here, the connection information is information indicating which distribution path in the distribution network the photovoltaic power generation apparatus is connected to, that is, the photovoltaic power generation apparatus that outputs power to the power system 900. Created from distribution automation system.
また、図10に示すように、管理装置20aが複数台の制御装置110a~110cに対して抑制制御率を送信する構成も採用可能である。図10の例では、1台の制御装置に1台のPCSが接続されているが、第3の実施形態で説明したように、1台の制御装置に複数台のPCSが接続されている構成であってもよい。
Further, as shown in FIG. 10, a configuration in which the management device 20a transmits a suppression control rate to a plurality of control devices 110a to 110c can be employed. In the example of FIG. 10, one PCS is connected to one control device. However, as described in the third embodiment, a configuration in which a plurality of PCSs are connected to one control device. It may be.
なお、図1、図3、図5に示した制御装置110、210、310は、図11に示すように、制御装置を構成するコンピュータに、そのハードウェア(CPU1101、記憶装置1102、通信デバイス等)を用いて、上記した各機能ブロックを実現させるコンピュータプログラムにより実現することもできる。また、上記した各実施形態では、制御装置が不揮発性メモリ12にて制御情報やPCS130の状態を記憶、管理するものとして説明したが、図11に示す補助記憶装置1350に、制御情報やPCSの状態を記憶、管理する構成も採用できる。
1, 3, and 5, the control devices 110, 210, and 310 shown in FIG. 11 are connected to the computer constituting the control device with hardware (CPU 1101, storage device 1102, communication device, etc.). ) Can be realized by a computer program that realizes each functional block described above. Further, in each of the embodiments described above, the control device has been described as storing and managing the control information and the state of the PCS 130 in the nonvolatile memory 12, but the control information and the PCS are stored in the auxiliary storage device 1350 shown in FIG. A configuration for storing and managing the state can also be adopted.
[付記1]
パワーコンディショナで出力される電力を制御する制御情報を上位監視装置から取得する制御情報取得手段と、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する通信手段と、を備える、
ことを特徴とする制御装置。
[付記2]
前記通信手段は、前記パワーコンディショナの電源が入った場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する
ことを特徴とする付記1に記載の制御装置。
[付記3]
前記通信手段は、前記パワーコンディショナが備える記憶装置が情報を蓄積できる状態となった場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する
ことを特徴とする付記1又は2に記載の制御装置。
[付記4]
前記通信手段は、前記パワーコンディショナの状態を確認する信号を送信し、前記パワーコンディショナから前記状態を確認する信号に対する応答信号を受信した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする付記1乃至3いずれか一に記載の制御装置。
[付記5]
前記通信手段は、前記パワーコンディショナから前記パワーコンディショナの電源が入ったことを示す信号を受信した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする付記1乃至3いずれか一に記載の制御装置。
[付記6]
前記通信手段は、前記通信手段が所定期間内に前記パワーコンディショナへ制御情報を送信している場合に、前記制御情報を送信しない、
ことを特徴とする付記1乃至3いずれか一に記載の制御装置。
[付記7]
前記通信手段は、前回送信した前記制御情報と今回送信しようとしている前記制御情報とが一致している場合には、前記制御情報を前記パワーコンディショナへ送信しない
ことを特徴とする付記1乃至6いずれか一に記載の制御装置。
[付記8]
発電量を制御可能なパワーコンディショナと、
前記パワーコンディショナで出力される電力を制御する制御情報を出力する上位監視装置と、
前記上位監視装置から入力された制御情報に基づき、前記パワーコンディショナを制御する制御装置と、を備え、
前記制御装置は、
前記制御情報を前記上位監視装置から取得する制御情報取得手段と、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する通信手段と、を有する
ことを特徴とする発電制御システム。
[付記9]
前記パワーコンディショナは、揮発性メモリを備え、太陽光発電により得られた電力を電源としている、
ことを特徴とする付記8に記載の発電制御システム。
[付記10]
前記パワーコンディショナは、不揮発性メモリを備え、太陽光発電により得られた電力を電源としている、
ことを特徴とする付記8に記載の発電制御システム。
[付記11]
パワーコンディショナで出力される電力を制御する制御情報を上位監視装置から取得する処理、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する処理、
をコンピュータに実行させる発電制御プログラム。
[付記12]
パワーコンディショナで出力される電力を制御する制御情報を上位監視装置から取得し、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする発電制御方法。
[付記13]
さらに、前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化したことを検知する検知手段を備え、
前記通信手段は、前記検知手段により前記パワーコンディショナが電力を制御できる状態に変化したことを検知した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする付記1乃至7いずれか一に記載の制御装置。
[付記14]
前記検知手段は、前記パワーコンディショナの電源が入った場合に、前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化したことを検知する
ことを特徴とする付記13に記載の制御装置。
[付記15]
前記検知手段は、前記パワーコンディショナが備える記憶装置が情報を蓄積できる状態となった場合に、前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化したことを検知する
ことを特徴とする付記13に記載の制御装置。
[付記16]
前記通信手段は、前記パワーコンディショナの状態確認する信号を送信し、
前記制御手段は、前記パワーコンディショナからの前記送信に対する信号を受信した場合に、前記パワーコンディショナの電源が入ったことを検知する、
ことを特徴とする付記13乃至15いずれか一に記載の制御装置。
[付記17]
前記検知手段は、前記通信手段が前記パワーコンディショナから前記パワーコンディショナの電源が入ったことを示す信号を受信した場合に、前記パワーコンディショナの電源が入ったことを検知する、
を特徴とする付記13乃至15いずれか一に記載の制御装置。
[付記18]
前記制御手段は、前回送信した前記制御情報と今回送信しようとしている前記制御情報とを比較し、前回送信した前記制御情報と今回送信しようとしている前記制御情報とが一致しているか否かを判断し、
前記通信手段は、前回送信した前記制御情報と今回送信しようとしている前記制御情報とが一致している場合には、前記制御情報を前記パワーコンディショナへ送信しない
ことを特徴とする付記13乃至17いずれか一に記載の制御装置。 [Appendix 1]
Control information acquisition means for acquiring control information for controlling the power output by the power conditioner from the host monitoring device;
Communication means for transmitting the control information acquired by the control information acquisition means to the power conditioner when the power conditioner has changed to a state in which the power output based on the control information can be controlled.
A control device characterized by that.
[Appendix 2]
The control device according toclaim 1, wherein the communication unit transmits the control information acquired by the control information acquisition unit to the power conditioner when the power conditioner is powered on.
[Appendix 3]
The communication means transmits the control information acquired by the control information acquisition means to the power conditioner when a storage device included in the power conditioner is ready to store information. The control device according toappendix 1 or 2.
[Appendix 4]
The communication means transmits the signal for confirming the state of the power conditioner, and receives the response signal for the signal for confirming the state from the power conditioner, the control acquired by the control information acquisition means Sending information to the inverter;
The control device according to any one ofappendices 1 to 3, characterized in that:
[Appendix 5]
The communication means transmits the control information acquired by the control information acquisition means to the power conditioner when receiving a signal indicating that the power conditioner is powered from the power conditioner.
The control device according to any one ofappendices 1 to 3, characterized in that:
[Appendix 6]
The communication means does not transmit the control information when the communication means is transmitting control information to the power conditioner within a predetermined period.
The control device according to any one ofappendices 1 to 3, characterized in that:
[Appendix 7]
The communication means does not transmit the control information to the power conditioner when the control information transmitted last time matches the control information to be transmitted this time. The control device according to any one of the above.
[Appendix 8]
A power conditioner that can control the amount of power generation,
A host monitoring device that outputs control information for controlling the power output by the power conditioner;
A control device for controlling the power conditioner based on control information input from the host monitoring device, and
The controller is
Control information acquisition means for acquiring the control information from the host monitoring device;
Communication means for transmitting the control information acquired by the control information acquisition means to the power conditioner when the power conditioner is changed to a state in which the power output based on the control information can be controlled. Power generation control system characterized by
[Appendix 9]
The power conditioner includes a volatile memory and uses power obtained by solar power generation as a power source.
The power generation control system according to appendix 8, wherein
[Appendix 10]
The power conditioner includes a nonvolatile memory and uses power obtained by solar power generation as a power source.
The power generation control system according to appendix 8, wherein
[Appendix 11]
Processing to acquire control information for controlling the power output from the inverter from the host monitoring device,
A process of transmitting the control information acquired by the control information acquisition means to the power conditioner when the power conditioner has changed to a state in which the power output based on the control information can be controlled;
A power generation control program that causes a computer to execute.
[Appendix 12]
Obtain control information for controlling the power output by the inverter from the host monitoring device,
When the power conditioner changes to a state in which the power output based on the control information can be controlled, the control information acquired by the control information acquisition means is transmitted to the power conditioner.
A power generation control method characterized by the above.
[Appendix 13]
Furthermore, the power conditioner comprises a detection means for detecting that the power output based on the control information has changed to a state in which the power can be controlled.
The communication unit transmits the control information acquired by the control information acquisition unit to the power conditioner when the detection unit detects that the power conditioner has changed to a state in which power can be controlled.
The control device according to any one ofappendices 1 to 7, characterized in that:
[Appendix 14]
Theappendix 13 is characterized in that the detection means detects that the power conditioner has changed to a state in which the power output can be controlled based on control information when the power conditioner is turned on. Control device.
[Appendix 15]
The detecting means detects that the power conditioner has changed to a state in which the power output from the power conditioner can be controlled based on the control information when the storage device included in the power conditioner is in a state where it can accumulate information.Item 14. The control device according to appendix 13.
[Appendix 16]
The communication means transmits a signal for confirming a state of the inverter;
The control means detects that the power conditioner is turned on when receiving a signal for the transmission from the power conditioner.
The control device according to any one ofsupplementary notes 13 to 15, wherein
[Appendix 17]
The detecting means detects that the power conditioner is turned on when the communication means receives a signal indicating that the power conditioner is turned on from the power conditioner.
The control device according to any one ofsupplementary notes 13 to 15, characterized by:
[Appendix 18]
The control means compares the control information transmitted last time with the control information to be transmitted this time, and determines whether or not the control information transmitted last time and the control information to be transmitted this time match. And
The communication means does not transmit the control information to the power conditioner when the control information transmitted last time matches the control information to be transmitted this time. The control device according to any one of the above.
パワーコンディショナで出力される電力を制御する制御情報を上位監視装置から取得する制御情報取得手段と、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する通信手段と、を備える、
ことを特徴とする制御装置。
[付記2]
前記通信手段は、前記パワーコンディショナの電源が入った場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する
ことを特徴とする付記1に記載の制御装置。
[付記3]
前記通信手段は、前記パワーコンディショナが備える記憶装置が情報を蓄積できる状態となった場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する
ことを特徴とする付記1又は2に記載の制御装置。
[付記4]
前記通信手段は、前記パワーコンディショナの状態を確認する信号を送信し、前記パワーコンディショナから前記状態を確認する信号に対する応答信号を受信した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする付記1乃至3いずれか一に記載の制御装置。
[付記5]
前記通信手段は、前記パワーコンディショナから前記パワーコンディショナの電源が入ったことを示す信号を受信した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする付記1乃至3いずれか一に記載の制御装置。
[付記6]
前記通信手段は、前記通信手段が所定期間内に前記パワーコンディショナへ制御情報を送信している場合に、前記制御情報を送信しない、
ことを特徴とする付記1乃至3いずれか一に記載の制御装置。
[付記7]
前記通信手段は、前回送信した前記制御情報と今回送信しようとしている前記制御情報とが一致している場合には、前記制御情報を前記パワーコンディショナへ送信しない
ことを特徴とする付記1乃至6いずれか一に記載の制御装置。
[付記8]
発電量を制御可能なパワーコンディショナと、
前記パワーコンディショナで出力される電力を制御する制御情報を出力する上位監視装置と、
前記上位監視装置から入力された制御情報に基づき、前記パワーコンディショナを制御する制御装置と、を備え、
前記制御装置は、
前記制御情報を前記上位監視装置から取得する制御情報取得手段と、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する通信手段と、を有する
ことを特徴とする発電制御システム。
[付記9]
前記パワーコンディショナは、揮発性メモリを備え、太陽光発電により得られた電力を電源としている、
ことを特徴とする付記8に記載の発電制御システム。
[付記10]
前記パワーコンディショナは、不揮発性メモリを備え、太陽光発電により得られた電力を電源としている、
ことを特徴とする付記8に記載の発電制御システム。
[付記11]
パワーコンディショナで出力される電力を制御する制御情報を上位監視装置から取得する処理、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する処理、
をコンピュータに実行させる発電制御プログラム。
[付記12]
パワーコンディショナで出力される電力を制御する制御情報を上位監視装置から取得し、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする発電制御方法。
[付記13]
さらに、前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化したことを検知する検知手段を備え、
前記通信手段は、前記検知手段により前記パワーコンディショナが電力を制御できる状態に変化したことを検知した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする付記1乃至7いずれか一に記載の制御装置。
[付記14]
前記検知手段は、前記パワーコンディショナの電源が入った場合に、前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化したことを検知する
ことを特徴とする付記13に記載の制御装置。
[付記15]
前記検知手段は、前記パワーコンディショナが備える記憶装置が情報を蓄積できる状態となった場合に、前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化したことを検知する
ことを特徴とする付記13に記載の制御装置。
[付記16]
前記通信手段は、前記パワーコンディショナの状態確認する信号を送信し、
前記制御手段は、前記パワーコンディショナからの前記送信に対する信号を受信した場合に、前記パワーコンディショナの電源が入ったことを検知する、
ことを特徴とする付記13乃至15いずれか一に記載の制御装置。
[付記17]
前記検知手段は、前記通信手段が前記パワーコンディショナから前記パワーコンディショナの電源が入ったことを示す信号を受信した場合に、前記パワーコンディショナの電源が入ったことを検知する、
を特徴とする付記13乃至15いずれか一に記載の制御装置。
[付記18]
前記制御手段は、前回送信した前記制御情報と今回送信しようとしている前記制御情報とを比較し、前回送信した前記制御情報と今回送信しようとしている前記制御情報とが一致しているか否かを判断し、
前記通信手段は、前回送信した前記制御情報と今回送信しようとしている前記制御情報とが一致している場合には、前記制御情報を前記パワーコンディショナへ送信しない
ことを特徴とする付記13乃至17いずれか一に記載の制御装置。 [Appendix 1]
Control information acquisition means for acquiring control information for controlling the power output by the power conditioner from the host monitoring device;
Communication means for transmitting the control information acquired by the control information acquisition means to the power conditioner when the power conditioner has changed to a state in which the power output based on the control information can be controlled.
A control device characterized by that.
[Appendix 2]
The control device according to
[Appendix 3]
The communication means transmits the control information acquired by the control information acquisition means to the power conditioner when a storage device included in the power conditioner is ready to store information. The control device according to
[Appendix 4]
The communication means transmits the signal for confirming the state of the power conditioner, and receives the response signal for the signal for confirming the state from the power conditioner, the control acquired by the control information acquisition means Sending information to the inverter;
The control device according to any one of
[Appendix 5]
The communication means transmits the control information acquired by the control information acquisition means to the power conditioner when receiving a signal indicating that the power conditioner is powered from the power conditioner.
The control device according to any one of
[Appendix 6]
The communication means does not transmit the control information when the communication means is transmitting control information to the power conditioner within a predetermined period.
The control device according to any one of
[Appendix 7]
The communication means does not transmit the control information to the power conditioner when the control information transmitted last time matches the control information to be transmitted this time. The control device according to any one of the above.
[Appendix 8]
A power conditioner that can control the amount of power generation,
A host monitoring device that outputs control information for controlling the power output by the power conditioner;
A control device for controlling the power conditioner based on control information input from the host monitoring device, and
The controller is
Control information acquisition means for acquiring the control information from the host monitoring device;
Communication means for transmitting the control information acquired by the control information acquisition means to the power conditioner when the power conditioner is changed to a state in which the power output based on the control information can be controlled. Power generation control system characterized by
[Appendix 9]
The power conditioner includes a volatile memory and uses power obtained by solar power generation as a power source.
The power generation control system according to appendix 8, wherein
[Appendix 10]
The power conditioner includes a nonvolatile memory and uses power obtained by solar power generation as a power source.
The power generation control system according to appendix 8, wherein
[Appendix 11]
Processing to acquire control information for controlling the power output from the inverter from the host monitoring device,
A process of transmitting the control information acquired by the control information acquisition means to the power conditioner when the power conditioner has changed to a state in which the power output based on the control information can be controlled;
A power generation control program that causes a computer to execute.
[Appendix 12]
Obtain control information for controlling the power output by the inverter from the host monitoring device,
When the power conditioner changes to a state in which the power output based on the control information can be controlled, the control information acquired by the control information acquisition means is transmitted to the power conditioner.
A power generation control method characterized by the above.
[Appendix 13]
Furthermore, the power conditioner comprises a detection means for detecting that the power output based on the control information has changed to a state in which the power can be controlled.
The communication unit transmits the control information acquired by the control information acquisition unit to the power conditioner when the detection unit detects that the power conditioner has changed to a state in which power can be controlled.
The control device according to any one of
[Appendix 14]
The
[Appendix 15]
The detecting means detects that the power conditioner has changed to a state in which the power output from the power conditioner can be controlled based on the control information when the storage device included in the power conditioner is in a state where it can accumulate information.
[Appendix 16]
The communication means transmits a signal for confirming a state of the inverter;
The control means detects that the power conditioner is turned on when receiving a signal for the transmission from the power conditioner.
The control device according to any one of
[Appendix 17]
The detecting means detects that the power conditioner is turned on when the communication means receives a signal indicating that the power conditioner is turned on from the power conditioner.
The control device according to any one of
[Appendix 18]
The control means compares the control information transmitted last time with the control information to be transmitted this time, and determines whether or not the control information transmitted last time and the control information to be transmitted this time match. And
The communication means does not transmit the control information to the power conditioner when the control information transmitted last time matches the control information to be transmitted this time. The control device according to any one of the above.
11 制御情報取得部
12 不揮発性メモリ
13 制御部
14 通信部
20 上位監視装置
20a 管理装置
31 揮発性メモリ
32 通信部
33 発電制御部
34 不揮発性メモリ
100、200、300 発電制御システム
110、210、310 制御装置
130、230 PCS
203 算出手段
204 送信手段
900 電力系統
1101 制御部
1102 不揮発性メモリ
1310 通信デバイス
1311 入力デバイス
1312 出力デバイス
1320 CPU
1340 記憶装置 DESCRIPTION OFSYMBOLS 11 Control information acquisition part 12 Non-volatile memory 13 Control part 14 Communication part 20 Host monitoring apparatus 20a Management apparatus 31 Volatile memory 32 Communication part 33 Electric power generation control part 34 Non-volatile memory 100, 200, 300 Electric power generation control system 110, 210, 310 Control device 130, 230 PCS
203 Calculation means 204 Transmission means 900Power system 1101 Control unit 1102 Non-volatile memory 1310 Communication device 1311 Input device 1312 Output device 1320 CPU
1340 storage device
12 不揮発性メモリ
13 制御部
14 通信部
20 上位監視装置
20a 管理装置
31 揮発性メモリ
32 通信部
33 発電制御部
34 不揮発性メモリ
100、200、300 発電制御システム
110、210、310 制御装置
130、230 PCS
203 算出手段
204 送信手段
900 電力系統
1101 制御部
1102 不揮発性メモリ
1310 通信デバイス
1311 入力デバイス
1312 出力デバイス
1320 CPU
1340 記憶装置 DESCRIPTION OF
203 Calculation means 204 Transmission means 900
1340 storage device
Claims (12)
- パワーコンディショナで出力される電力を制御する制御情報を上位監視装置から取得する制御情報取得手段と、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する通信手段と、を備える、
ことを特徴とする制御装置。 Control information acquisition means for acquiring control information for controlling the power output by the power conditioner from the host monitoring device;
Communication means for transmitting the control information acquired by the control information acquisition means to the power conditioner when the power conditioner has changed to a state in which the power output based on the control information can be controlled.
A control device characterized by that. - 前記通信手段は、前記パワーコンディショナの状態を確認する信号を送信し、前記パワーコンディショナから前記状態を確認する信号に対する応答信号を受信した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする請求項1に記載の制御装置。 The communication means transmits the signal for confirming the state of the power conditioner, and receives the response signal for the signal for confirming the state from the power conditioner, the control acquired by the control information acquisition means Sending information to the inverter;
The control device according to claim 1. - 前記通信手段は、前記パワーコンディショナから前記パワーコンディショナの電源が入ったことを示す信号を受信した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする請求項1又は2に記載の制御装置。 The communication means transmits the control information acquired by the control information acquisition means to the power conditioner when receiving a signal indicating that the power conditioner is powered from the power conditioner.
The control device according to claim 1 or 2, wherein - 前記通信手段は、前記通信手段が所定期間内に前記パワーコンディショナへ制御情報を送信している場合に、前記制御情報を送信しない、
ことを特徴とする請求項1乃至3いずれか一に記載の制御装置。 The communication means does not transmit the control information when the communication means is transmitting control information to the power conditioner within a predetermined period.
The control device according to any one of claims 1 to 3, wherein - 前記通信手段は、前回送信した前記制御情報と今回送信しようとしている前記制御情報とが一致している場合には、前記制御情報を前記パワーコンディショナへ送信しない
ことを特徴とする請求項1乃至4いずれか一に記載の制御装置。 The communication means does not transmit the control information to the power conditioner when the control information transmitted last time coincides with the control information to be transmitted this time. 4. The control device according to any one of 4. - さらに、前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化したことを検知する検知手段を備え、
前記通信手段は、前記検知手段により前記パワーコンディショナが電力を制御できる状態に変化したことを検知した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする請求項1乃至5いずれか一に記載の制御装置。 Furthermore, the power conditioner comprises a detection means for detecting that the power output based on the control information has changed to a state in which the power can be controlled.
The communication unit transmits the control information acquired by the control information acquisition unit to the power conditioner when the detection unit detects that the power conditioner has changed to a state in which power can be controlled.
The control device according to claim 1, wherein the control device is a control device. - 前記パワーコンディショナは、太陽光発電により得られた電力を電源として動作し、
前記通信手段は、前記パワーコンディショナが停止状態から稼働状態になったときに、前記停止状態中に前記パワーコンディショナの揮発性メモリから消えてしまった制御情報に代わる制御情報を送信する、
ことを特徴とする請求項1乃至6いずれか一に記載の制御装置。 The power conditioner operates using power obtained by solar power generation as a power source,
The communication means transmits control information in place of control information that has disappeared from the volatile memory of the power conditioner during the stop state when the power conditioner has changed from a stop state to an operating state.
The control device according to claim 1, wherein the control device is a control device. - 発電量を制御可能なパワーコンディショナと、
前記パワーコンディショナで出力される電力を制御する制御情報を出力する上位監視装置と、
前記上位監視装置から入力された制御情報に基づき、前記パワーコンディショナを制御する制御装置と、を備え、
前記制御装置は、
前記制御情報を前記上位監視装置から取得する制御情報取得手段と、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する通信手段と、を有する
ことを特徴とする発電制御システム。 A power conditioner that can control the amount of power generation,
A host monitoring device that outputs control information for controlling the power output by the power conditioner;
A control device for controlling the power conditioner based on control information input from the host monitoring device, and
The controller is
Control information acquisition means for acquiring the control information from the host monitoring device;
Communication means for transmitting the control information acquired by the control information acquisition means to the power conditioner when the power conditioner is changed to a state in which the power output based on the control information can be controlled. Power generation control system characterized by - 前記パワーコンディショナは、揮発性メモリを備え、太陽光発電により得られた電力を電源としている、
ことを特徴とする請求項8に記載の発電制御システム。 The power conditioner includes a volatile memory and uses power obtained by solar power generation as a power source.
The power generation control system according to claim 8. - 前記制御装置は、前記パワーコンディショナが停止状態から稼働状態になったときに、前記停止状態中に前記揮発性メモリから消えてしまった制御情報に代わる制御情報を送信する、
ことを特徴とする請求項9に記載の発電制御システム。 The control device transmits control information in place of control information that has disappeared from the volatile memory during the stopped state when the inverter is in an operating state from the stopped state.
The power generation control system according to claim 9. - パワーコンディショナで出力される電力を制御する制御情報を上位監視装置から取得する処理、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する処理、
をコンピュータに実行させる発電制御プログラム。 Processing to acquire control information for controlling the power output from the inverter from the host monitoring device,
A process of transmitting the control information acquired by the control information acquisition means to the power conditioner when the power conditioner has changed to a state in which the power output based on the control information can be controlled;
A power generation control program that causes a computer to execute. - パワーコンディショナで出力される電力を制御する制御情報を上位監視装置から取得し、
前記パワーコンディショナが制御情報に基づいて出力する電力を制御できる状態に変化した場合に、前記制御情報取得手段で取得された前記制御情報を前記パワーコンディショナへ送信する、
ことを特徴とする発電制御方法。 Obtain control information for controlling the power output by the inverter from the host monitoring device,
When the power conditioner changes to a state in which the power output based on the control information can be controlled, the control information acquired by the control information acquisition means is transmitted to the power conditioner.
A power generation control method characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016545516A JP6409875B2 (en) | 2014-08-25 | 2015-08-24 | Power generation control system, control device, power generation control method and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014169987 | 2014-08-25 | ||
JP2014-169987 | 2014-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016031755A1 true WO2016031755A1 (en) | 2016-03-03 |
Family
ID=55399645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/073681 WO2016031755A1 (en) | 2014-08-25 | 2015-08-24 | Electricity-generation control system, control device, electricity-generation control method, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6409875B2 (en) |
WO (1) | WO2016031755A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016059210A (en) * | 2014-09-11 | 2016-04-21 | 日本電気株式会社 | Power generation control system, power generation controller, power generation control method, and program |
WO2017163412A1 (en) * | 2016-03-25 | 2017-09-28 | 日本電気株式会社 | Control device, power conditioner, control method and program |
JP2017212804A (en) * | 2016-05-25 | 2017-11-30 | 田淵電機株式会社 | Communication controller, management apparatus, communication control system, and communication control method and communication control program for communication controller |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7104473B2 (en) * | 2017-10-31 | 2022-07-21 | シャープ株式会社 | Energy management system, power conversion control device, and power conversion control method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5745658U (en) * | 1980-08-30 | 1982-03-13 | ||
WO2011129054A1 (en) * | 2010-04-12 | 2011-10-20 | 株式会社日立製作所 | Electric-power management system, electric-power management method, and section controller |
JP2012249500A (en) * | 2011-05-31 | 2012-12-13 | Nec Corp | Power system management system, and management method for power system |
JP2013207862A (en) * | 2012-03-27 | 2013-10-07 | Sharp Corp | Power generation system, and power conditioner and output suppression management device used therefor |
WO2013179358A1 (en) * | 2012-05-31 | 2013-12-05 | 三洋電機株式会社 | Controller, battery control unit, and power distribution system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57159344U (en) * | 1981-03-31 | 1982-10-06 | ||
JPS6170245U (en) * | 1984-10-12 | 1986-05-14 |
-
2015
- 2015-08-24 WO PCT/JP2015/073681 patent/WO2016031755A1/en active Application Filing
- 2015-08-24 JP JP2016545516A patent/JP6409875B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5745658U (en) * | 1980-08-30 | 1982-03-13 | ||
WO2011129054A1 (en) * | 2010-04-12 | 2011-10-20 | 株式会社日立製作所 | Electric-power management system, electric-power management method, and section controller |
JP2012249500A (en) * | 2011-05-31 | 2012-12-13 | Nec Corp | Power system management system, and management method for power system |
JP2013207862A (en) * | 2012-03-27 | 2013-10-07 | Sharp Corp | Power generation system, and power conditioner and output suppression management device used therefor |
WO2013179358A1 (en) * | 2012-05-31 | 2013-12-05 | 三洋電機株式会社 | Controller, battery control unit, and power distribution system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016059210A (en) * | 2014-09-11 | 2016-04-21 | 日本電気株式会社 | Power generation control system, power generation controller, power generation control method, and program |
WO2017163412A1 (en) * | 2016-03-25 | 2017-09-28 | 日本電気株式会社 | Control device, power conditioner, control method and program |
JPWO2017163412A1 (en) * | 2016-03-25 | 2019-01-31 | 日本電気株式会社 | Control device, power conditioner, control method and program |
JP2020036533A (en) * | 2016-03-25 | 2020-03-05 | 日本電気株式会社 | Control arrangement, power conditioner, control method and program |
JP2017212804A (en) * | 2016-05-25 | 2017-11-30 | 田淵電機株式会社 | Communication controller, management apparatus, communication control system, and communication control method and communication control program for communication controller |
Also Published As
Publication number | Publication date |
---|---|
JP6409875B2 (en) | 2018-10-24 |
JPWO2016031755A1 (en) | 2017-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6409875B2 (en) | Power generation control system, control device, power generation control method and program | |
JP6426234B2 (en) | POWER CONTROL DEVICE, POWER CONTROL METHOD, AND POWER CONTROL SYSTEM | |
JP6189949B2 (en) | Controlled apparatus, control apparatus, apparatus control method, and apparatus control system | |
WO2014051039A1 (en) | Management system, management method, and device | |
US11196294B2 (en) | Power management method, power management server, local control apparatus, and power management system | |
JP2020522978A (en) | Method and assembly for load management of electrical equipment | |
JP6581998B2 (en) | COMMUNICATION DEVICE, POWER MANAGEMENT DEVICE, AND POWER MANAGEMENT METHOD | |
JP5698060B2 (en) | Device control system, control device, and device control method | |
JP6119877B2 (en) | Control device, power generation control method, and control program | |
JP6090863B2 (en) | Power generation control system, power generation control device, power generation control method and program | |
US10754315B2 (en) | Management system and management method for transmitting a command including a code value for controlling an apparatus | |
JP2015092826A (en) | Communication method, electric apparatus, control device, and system | |
JP6194078B2 (en) | Control apparatus and control method | |
EP3818617B1 (en) | Systems and methods for providing network connection resiliency in power supply devices | |
JP5989158B2 (en) | Control apparatus and control method | |
JP6916149B2 (en) | Data complement server, data complement system and data complement method | |
JP6670790B2 (en) | Power supply control method, distributed power supply and control device | |
JP5898296B2 (en) | Control apparatus and control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15835439 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016545516 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15835439 Country of ref document: EP Kind code of ref document: A1 |