WO2016031734A1 - Intracorporeal power generation system - Google Patents

Intracorporeal power generation system Download PDF

Info

Publication number
WO2016031734A1
WO2016031734A1 PCT/JP2015/073617 JP2015073617W WO2016031734A1 WO 2016031734 A1 WO2016031734 A1 WO 2016031734A1 JP 2015073617 W JP2015073617 W JP 2015073617W WO 2016031734 A1 WO2016031734 A1 WO 2016031734A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
rotor
electrode
generation system
muscle
Prior art date
Application number
PCT/JP2015/073617
Other languages
French (fr)
Japanese (ja)
Inventor
亘 土方
玄太 佐原
進士 忠彦
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Priority to JP2016545504A priority Critical patent/JPWO2016031734A1/en
Publication of WO2016031734A1 publication Critical patent/WO2016031734A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/378Electrical supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/06Influence generators
    • H02N1/10Influence generators with non-conductive charge carrier

Definitions

  • the present invention relates to an in-vivo power generation system that serves as a power supply for power supply of an implantable medical device.
  • an implantable cardiac pacemaker hereinafter referred to as “pacemaker”
  • an implantable defibrillator hereinafter referred to as “ICD”.
  • In-vivo implantable medical devices such as artificial hearts are widely used.
  • pacemaker an implantable cardiac pacemaker
  • ICD implantable defibrillator
  • In-vivo implantable medical devices such as artificial hearts are widely used.
  • a primary battery such as a lithium battery. Power is being supplied.
  • the method of supplying power by connecting a cable directly from an external power source has a risk of causing infections and inflammation in the skin penetrating part, and suffers from various restrictions in daily life such as bathing.
  • the power supply by the primary battery requires a surgical operation for replacing the battery every few years, which is a burden both physically and economically for the patient.
  • Patent Document 1 As a method for supplying power to another in-vivo implantable medical device for solving such a problem, in Patent Document 1, the in-vivo implantable medical device is supplied with a secondary battery, and is remotely controlled from outside the body using electromagnetic induction. A charging system that performs non-contact power supply to a secondary battery serving as a power source of a medical device is disclosed.
  • Non-Patent Document 1 as an internal power generation system for implanting a piezoelectric power generation device using muscle contraction by electrical stimulation into a body, a laminated piezoelectric element is surgically incorporated between a bone and a muscle-tendon unit, A method of generating power using muscle twitching by electrical stimulation is disclosed.
  • Non-Patent Document 1 In the charging system using non-contact power feeding disclosed in Patent Document 1, although the frequency of battery replacement can be reduced, in order to continuously operate the implantable medical device, it is necessary to carry the charger, and the life for the patient. Issues remain in securing the degree of freedom.
  • the in-vivo power generation system disclosed in Non-Patent Document 1 theoretically enables continuous power supply, but generates several tens of microwatts of power necessary for driving the pacemaker. Since the use of other muscles is assumed, there remains a problem that the physical burden on the patient due to the use of the power generation system is large.
  • the present invention has been made in view of the above-mentioned problems, and has been made new and improved, which can continuously supply power to an implantable medical device more reliably while reducing the physical burden on the patient.
  • An object is to provide an in-vivo power generation system.
  • One aspect of the present invention is an in-vivo power generation system that is provided in a living body and generates electric power to be supplied to an in-vivo implantable medical device, and is provided so that a voltage can be applied to muscle tissue at a predetermined site in the living body.
  • a control unit that controls the voltage applied to the electrode.
  • the power generation mechanism can be driven using the contraction of the muscular tissue when a voltage is applied to the electrode and a stimulation current is applied to generate power in the body. Continuous power supply becomes possible.
  • a secondary battery that stores electric power generated by the power generation mechanism may be further provided.
  • the power generation mechanism includes a casing, a crank gear that is connected to the connection member and converts the substantially linear motion of the movable portion into a rotational motion, and the substantially linear motion of the crank gear.
  • a rotor that rotates in conjunction with the conversion into the rotational motion, a plurality of magnets or electrode members that are annularly provided on the outer edge side of one surface of the rotor so as to face the bottom surface of the casing, and a bottom surface side of the casing It is good also as providing the some coil or electromotive side electrode provided cyclically
  • the contraction of the muscular tissue when the stimulation current is applied by applying a voltage to the electrode is converted from a substantially linear motion to a rotational motion by the crank gear, and then a magnet or electrode member is annularly formed on the outer edge portion. Since the provided rotor is rotated at high speed via the gear member, it is possible to generate electric power by generating electromotive force by electromagnetic induction or electrostatic induction in the coil or electromotive side electrode facing the magnet or the electrode member.
  • the electrode member may be formed of an electret.
  • the power generation mechanism may have a multilayer structure in which a plurality of power generation units including the plurality of magnets and the coil, or the electrode member and the electromotive side electrode are provided.
  • a plurality of gear members that increase the rotational speed of the rotor in conjunction with the rotational motion converted by the crank gear may be further provided.
  • the power generation mechanism can be efficiently driven to generate power in the body by utilizing the contraction of the muscular tissue when a voltage is applied to the electrode and a stimulation current is applied.
  • a one-way clutch that transmits the rotational motion to the rotor only in one direction via one gear member of the plurality of gear members is provided on the rotation shaft of the rotor. It is good as well.
  • a weight that is movable through an elastic member that can expand and contract in the radial direction from the center of the rotor may be provided inside the rotor.
  • the inertia of the rotor is increased by moving the weight outward by centrifugal force in accordance with the increase in the rotation speed of the rotor, so that the increase in the rotation speed of the rotor can be moderated. For this reason, the muscle contraction energy accompanying the muscle contraction characteristic can be more reliably converted into the rotational energy of the rotor.
  • a fixing member that can prevent the electrode and the movable portion from being detached from the predetermined portion may be further provided.
  • the electrode and the movable part are not detached from the predetermined part, so that the straight line accompanying the movement of the movable part due to the contraction of the muscular tissue when the voltage is applied to the electrode and the stimulation current is applied The movement can be reliably transmitted to the crank gear provided in the power generation mechanism via the connecting member.
  • the movable part, the casing, and the fixed member may be made of a titanium metal.
  • the power generated in the body is directly fed to the in-vivo implantable medical device, thereby eliminating the need for periodic surgery or carrying an external device. For this reason, while reducing the physical burden on the patient, continuous power supply to the implantable medical device can be performed more reliably.
  • FIG. 1 is a block diagram showing a schematic configuration of an in-vivo power generation system according to an embodiment of the present invention.
  • FIG. 2 is a voltage waveform diagram applied to electrodes in the in-vivo power generation system according to the embodiment of the present invention.
  • FIG. 3 is an explanatory view showing a state in which the in-vivo power generation system according to the embodiment of the present invention is attached to a human body.
  • 4A and 4B are operation explanatory views of the in-vivo power generation system according to the embodiment of the present invention.
  • FIG. 5A is a plan view showing a schematic configuration of the power generation mechanism provided in the in-vivo power generation system according to the embodiment of the present invention
  • FIG. 5B is a cross-sectional view along AA in FIG.
  • FIG. 5A, and FIG. 5C is a cross-sectional view along BB in FIG. It is sectional drawing.
  • 6A and 6B are operation explanatory views of a modified example of the rotor provided in the power generation mechanism provided in the in-body power generation system according to the embodiment of the present invention.
  • 7A and 7B are operation explanatory views of the power generation mechanism provided in the in-vivo power generation system according to the embodiment of the present invention.
  • FIG. 8A is a perspective view of a power generation mechanism provided in the in-body power generation system of the present embodiment
  • FIG. 8B is a perspective view from one side of a rotor provided in the power generation mechanism provided in the in-body power generation system of the present embodiment.
  • FIG. 8C is a perspective view of the electromotive side electrode provided in the power generation mechanism provided in the in-body power generation system of the present embodiment.
  • 9A and 9B are operation explanatory views of the power generation mechanism provided in the in-vivo power generation system according to another embodiment of the present invention.
  • FIG. 10 is a graph showing a comparison result between the power generation mechanism provided in the in-body power generation system according to one embodiment of the present invention and the power generation mechanism provided in the in-body power generation system according to another embodiment.
  • FIG. 11 is an explanatory diagram of the configuration and operation of the power generation mechanism provided in the in-body power generation system according to still another embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of an in-vivo power generation system according to an embodiment of the present invention.
  • An in-vivo power generation system 100 is a muscle contraction of a muscular tissue 20 that becomes a part of skeletal muscle by electrical stimulation as a power source in place of a battery or external power supply of an implantable medical device 10 such as a pacemaker or ICD. It is the in-vivo power generation device provided in the living body using the. Specifically, the in-vivo power generation system 100 according to the present embodiment generates contraction of the muscular tissue 20 by electrical stimulation, and drives the power generation mechanism 104 using the contraction force and contraction displacement, thereby implanting the body. Power for supplying power to the device 10 is actively generated in a living body such as a human being or an animal.
  • the in-vivo power generation system 100 of the present embodiment includes a pair of electrodes 106, a movable portion 108, a wire 110 serving as a connection member, a fixed member 112, a power generation mechanism 104, and a rectifier circuit 114. And a secondary battery 116 and a control unit 118.
  • the electrode 106 has a function as a stimulation electrode that applies a voltage to the muscular tissue 20 at a predetermined site in the living body and flows a stimulation current of about 1 to 20 mA.
  • the electrode 106 composed of a pair of an anode and a cathode is provided at a predetermined interval at a site that contacts the muscle tissue 20 to be contracted by voltage application. That is, the electrode 106 is provided so that a voltage can be applied to the muscular tissue 20 at a predetermined site in the living body.
  • the electrode 106 is fixed by the fixing member 112 so as not to be separated from the predetermined site where it is installed together with the movable portion 108. Details of the fixing member 112 will be described later.
  • the movable portion 108 is provided in the vicinity of the electrode 106, and in accordance with contraction of the muscular tissue 20 due to application of a voltage to the electrode 106, a specific direction, specifically, a direction of the muscle fiber 20 running through the muscular tissue 20.
  • the movable portion 108 is provided so as to be movable in the direction of the muscle fiber 20 traveling along the muscle tissue 20 in accordance with the detection of the contraction of the muscle tissue 20 due to the application of a voltage to the electrode 106.
  • the movable portion 108 is connected to a crank gear 124 (see FIG. 5A) provided in the power generation mechanism 104 via a wire 110 serving as a string-like connection member. Details of the specific configuration, operation, attachment method, and the like of the movable unit 106 will be described later.
  • the power generation mechanism 104 has a function of generating an electromotive force as the movable unit 108 moves.
  • the power generation mechanism 104 is an electromagnetic induction generator that generates electromotive force by electromagnetic induction generated as the movable unit 108 moves.
  • the power generation mechanism 104 applies electrical stimulation to the muscular tissue 20
  • the movable unit 108 that moves along with detection of muscle contraction generated in the muscular tissue 20 causes the wire 110 to move.
  • the coil 136 is pulled to generate an electromotive force due to electromagnetic induction in the coil 136 (see FIG. 5B) provided in the power generation mechanism 104 connected to the wire 110. Details of the configuration and operation of the power generation mechanism 104 will be described later.
  • the power generated by the power generation mechanism 104 serving as an AC power supply is supplied to and stored in a secondary battery 116 such as a storage battery via a rectifier circuit 114 that converts AC power into DC power.
  • the electric power stored in the secondary battery 116 is used to supply power to the implantable medical device 10 and to generate a new electrical stimulus applied to the muscle tissue 20 via the electrode 106.
  • a secondary battery 116 such as a storage battery via a rectifier circuit 114 that converts AC power into DC power.
  • the electric power stored in the secondary battery 116 is used to supply power to the implantable medical device 10 and to generate a new electrical stimulus applied to the muscle tissue 20 via the electrode 106.
  • Voltage can be applied.
  • the inventor has made extensive studies in order to achieve the above-described object of the present invention. It was created by utilizing the fact that the electric energy generated by the power generation mechanism 104 by the movement of the movable body 108 accompanying the muscle contraction of the muscle is larger. Note that the rectifier circuit 114 and the secondary battery 116 may be provided integrally with the power generation mechanism 104 or may be provided separately.
  • the control unit 118 has a function of controlling the stimulation current applied to the muscular tissue 20 by adjusting the magnitude and interval of the voltage applied to the electrode 106. Specifically, the control unit 118 determines the magnitude and interval of the current applied to the electrode 106 when power supply to the implantable medical device 10 is necessary, or when the remaining battery level of the secondary battery 116 is low. Adjust.
  • a rectangular wave AC voltage as shown in FIG. 2 is applied to the electrode 106 as an electrical stimulus that promotes contraction of the muscle tissue 20.
  • the amplitude A1 of the applied voltage, the repetition period T2 that is the pulse interval of the continuous stimulation voltage, and the stimulation duration T3 that is the duration of the continuous pulse of the stimulation voltage are adjusted.
  • the interval of stimulation voltage (stimulation interval) that is the interval between the continuous pulse of the stimulation voltage and the next continuous pulse is adjusted.
  • the waveform of the stimulation voltage applied to the electrode 106 is not limited to the rectangular wave shown in FIG. 2, and may be an AC voltage having another pulse shape such as a sine wave, a triangular wave, or a sawtooth wave.
  • the control unit 118 controls the magnitude and interval of the stimulation voltage applied to the electrode 106 by the control unit 118.
  • the contraction frequency and contraction amount of the muscular tissue 20 change, and accordingly, the electromotive force generated in the power generation mechanism 104
  • the size of can be adjusted. That is, by adjusting the magnitude and interval of the voltage applied to the electrode 106 by the control unit 118, an electromotive force having a desired magnitude can be secured.
  • one pair that is, two electrodes 106 are provided.
  • two or more pairs of electrodes 106 are provided on the muscle tissue 20 to be contracted. It may be. That is, the electrodes 106 are uniformly installed on the muscle tissue 20 to be contracted so that there are a plurality of anodes and cathodes, and the number of electrodes 106 to be energized is selected by the control unit 118, thereby The amount of shrinkage of 20 can be adjusted. As a result, the amount of electromotive force in the power generation mechanism 104 can be adjusted.
  • FIG. 3 is an explanatory view showing a state where the in-vivo power generation system according to one embodiment of the present invention is attached to a human body
  • FIGS. 4A and 4B are operation explanatory views of the in-body power generation system according to one embodiment of the present invention. It is.
  • the in-vivo power generation system 100 has an in-vivo implantable medical device 10 that is placed under the chest, such as a cardiac pacemaker or ICD, as a power supply target. Attached to. Specifically, the in-body power generation system 100 is implanted as a muscular tissue 20 at a predetermined site in a living body on the clavicle side of the greater pectoral muscle as shown in FIG.
  • the plate-like movable portion 108 is separated from the separation portion 21.
  • the movable portion 108 is a plate-like member that extends in a direction perpendicular to the direction of muscle fiber travel of the muscle tissue 20 such as the great pectoral muscle, and is installed so as to be inserted into the separating portion 21. .
  • the movable portion 108 as the voltage is applied to the electrode 106, as shown in FIG.
  • contraction of the muscular tissue 20 in contact with the electrode 106 occurs, and the movable portion 108 is applied.
  • the movable portion 108 is provided in the vicinity of the electrode 106 and is configured to be movable in the muscle fiber traveling direction of the muscular tissue 20 in accordance with the detection of the contraction of the muscular tissue 20 by applying a voltage to the electrode 106. If it is, it is good also as a structure and installation method of another aspect.
  • the movable part 108 is fixed by a fixing member 112 for preventing separation from the attached site.
  • the fixing member 112 has a contraction muscle shell 112 a having a substantially U-shaped cross section, and the contraction muscle shell 112 a can move following the movement of the movable portion 108.
  • the bone connecting plate 112c for fixing the constrictor shell 112a and the ball joint 112b to the clavicle.
  • the constrictor muscle shell 112a covers the dissecting muscle on the clavicle side of the pectoralis major muscle from above, and then the constrictor muscle shell 112a is connected to the clavicle 22 via the ball joint 112b and the bone connecting plate 112c. .
  • the dissecting muscle on the side of the clavicle to which the movable part 108 is attached is covered from above. It is designed not to come off.
  • the contraction muscle shell 112a can follow the displacement of the greater pectoral muscles accompanying the movement of the upper limb, it is possible to generate power in the body without damaging the movement of the upper limb of the wearer of the in-body power generation system 100.
  • the size of the contractile muscle shell 112a is about 25 ⁇ 10 ⁇ 10 mm.
  • a pair of electrodes 106 connected via a conductive wire 105 is provided inside the contractile muscle shell 112a as shown in FIGS. 4A and 4B.
  • the electrode 106 is arranged in the vicinity of the movable part 108 in the disconnection muscle by covering the disconnection muscle on the clavicle side to which the movable part 108 is attached with the contraction muscle shell 112a from above.
  • the movable part 108 can be moved along with the muscle contraction caused by the stimulation current.
  • the electrode 106 and the movable portion 108 do not come off from a predetermined part. For this reason, the linear motion accompanying the movement of the movable part 108 due to the muscle contraction of the muscle tissue 20 when a voltage is applied to the electrode 106 can be reliably transmitted to the crank gear 124 (see FIG. 5A) provided in the power generation mechanism 104.
  • a movable portion 108 that comes into contact with one end face 21a of the separation portion 21 of the muscle tissue 20 is provided inside the contracting muscle shell 112a having the electrode 106 for applying a voltage, as shown in FIGS. 4A and 4B. It is connected to the wire 110 through the connecting portion 108a.
  • the wire 110 passes through the resin hose 111, the other end 110 a is connected to the power generation mechanism 104, transmits muscle contraction force, and the power generation mechanism 104 generates power.
  • the other end face 21b of the separation part 21 of the muscular tissue 20 is connected to the outside of the contraction muscle shell 112a.
  • the muscle on the stump 21b side can transmit the muscle contraction force to the clavicle via the contraction muscle shell 112a, the ball joint 112b, and the bone connection plate 112c, and can maintain the original function.
  • the power generation mechanism 104 is a power generator that can generate power by an electromagnetic induction method, and the generated power is an implantable medical device to be fed via an external output line 120 as shown in FIG. Supplied to the device 10.
  • the main body size of the power generation mechanism 104 is such a size that it does not become a burden on the patient when attached to the living body of the patient, and the outer dimensions are within 30 ⁇ 30 ⁇ 6 mm.
  • the movable portion 108 serving as a part that directly contacts the muscular tissue 20
  • the casing 122 serving as the main body of the mechanism 104, and the contraction muscle shell 112a, the ball joint 112b, and the bone connecting plate 112c serving as fixing members are made of a titanium-based metal.
  • an adverse event can be considered as inter-tissue adhesion due to fibrosis of the muscular tissue 20 after surgery.
  • the movable part 108, the casing 122, and the fixed member 112 have biocompatibility, corrosion resistance, and heat resistance in order to prevent the adhesion and reliably extract the muscle contraction and realize internal power generation.
  • the power generation mechanism 104 is an electromagnetic induction generator, there is a concern that electromagnetic waves may be generated to cause electromagnetic interference to the implantable medical device 10 or the living tissue that is a power supply destination.
  • the casing 122 of the power generation mechanism 104 is preferably formed of a titanium-based metal having extremely low electrical conductivity and thermal conductivity.
  • the “titanium-based metal” referred to here refers to titanium alone, titanium compounds such as titanium oxide, and titanium alloys containing titanium as a main component.
  • the in-vivo power generation system 100 As described above, by installing the in-vivo power generation system 100 according to the present embodiment in the living body, it is possible to perform in-body power generation using only a part of the skeletal muscle while preventing the contractility deterioration due to the fiberization around the muscle tissue 20. As such, muscles that are not involved in in-vivo power generation can retain their original functions.
  • by directly supplying power generated directly in the body to the medical device it is possible to continuously supply power to the implantable medical device 10. This eliminates the need for periodic surgery for battery replacement, does not require external equipment to be used for non-contact charging, and even if the internal power generation system 100 is attached to the body, such as bathing. Since there is no restriction, the quality of life of a patient who has such an internal power generation system 100 attached to the body is improved.
  • FIG. 5A is a plan view showing a schematic configuration of the power generation mechanism provided in the in-vivo power generation system according to the embodiment of the present invention
  • FIG. 5B is a cross-sectional view along AA in FIG. 5A
  • FIG. 5C is a cross-sectional view along BB in FIG. It is sectional drawing.
  • the power generation mechanism 104 provided in the in-vivo power generation system 100 is an electromagnetic induction generator that generates electromotive force by electromagnetic induction.
  • the power generation mechanism 104 is provided with a crank gear 124, a rotor 126, and a plurality of gear members 128, 130, and 132 in a substantially cylindrical casing 122.
  • a plurality of permanent magnets 134 are annularly provided at predetermined intervals on the outer edge side of the lower surface 126 a of the rotor 126 facing the bottom surface 122 b of the casing 122.
  • a plurality of rings are provided on the bottom surface 122 b of the casing 122 so that the coil 136 around which the conductive wire is wound faces these permanent magnets 134.
  • eight permanent magnets 134 are provided at equal intervals on the outer edge side of one surface 126a of the rotor 126, but the number of permanent magnets 134 is not limited to eight.
  • the crank gear 124 is a substantially fan-shaped plate member centering on a rotating shaft 124 a provided on the side wall of the casing 122, and a gear (not shown) is attached to the arc portion 124 b of the crank gear 124. Is provided. Further, the crank gear 124 is connected to one end 110a of the wire 110 serving as a connecting member to the movable portion 108. Therefore, when the movable portion 108 is moved and displaced, the crank gear 124 is moved via the wire 110. It is pulled in one direction and rotates around the rotation axis 124a. For this reason, the crank gear 124 has a function of converting a substantially linear motion accompanying the movement of the movable portion 108 into a rotational motion.
  • a torsion spring 125 is wound around the rotating shaft 124a as shown in FIG. 5A. Is provided.
  • the torsion spring 125 has one end 125 a fixed to the crank gear 124 and the other end 125 b supported and fixed to the side surface 122 c of the casing 122.
  • the torsion spring 125 it is possible to continuously convert from a substantially linear motion to a rotational motion using the displacement of the movable portion 108 due to muscle contraction. For this reason, the sustainability of the rotary motion of the rotor 126 provided with the permanent magnet 134 in an annular shape is improved, and the power generation in the power generation mechanism 104 is stabilized.
  • the rotor 126 is a substantially disk that rotates about a rotation shaft 138 provided substantially at the center of the casing 122 in conjunction with the conversion from the substantially linear motion to the rotational motion by the crank gear 124 via the gear members 128, 130, and 132. It is a rotor of shape.
  • a plurality of permanent magnets 134 are provided at predetermined intervals on the outer edge side of the one surface 126 a of the rotor 126 so as to face the bottom surface 122 b of the casing 122. For this reason, when the rotor 126 rotates, the magnetic flux passing through the inside of the coil 136 provided at the portion facing the permanent magnet 134 changes, and thus an electromotive force due to electromagnetic induction is generated in the coil 136.
  • the gear members 128, 130, and 132 have a function of increasing the rotational speed of the rotor 126 in conjunction with the rotational motion converted by the crank gear 124.
  • the pinion gear 128 that meshes with the arc portion 124 b of the crank gear 124
  • the first intermediate gear 130 that shares the rotation shaft 129 with the pinion gear 128, and the first It has three gear members of a second intermediate gear 132 that meshes with the intermediate gear 130 and shares the rotation shaft 138 with the rotor 126.
  • the rotational speed of the rotor 126 is increased in conjunction with the rotational motion converted by the crank gear 124. Be made.
  • the gear ratios of these gears are different, the ratio of the rotational speeds of the crank gear 124 and the pinion gear 128, the pinion gear 128 and the first intermediate gear 130, and the first intermediate gear 130 and the second intermediate gear 132.
  • the rotational speed of the rotor 126 is increased to 30 times the rotational speed of the rotational motion converted by the crank gear 124.
  • the gear ratios of the gears 124, 128, 130, and 132 are set as appropriate in order to set the rotational speed of the rotor 130 to a desired magnitude. Therefore, the rotational speeds of the gears 124, 128, 130, and 132 are determined. The ratio is not limited to the value described above.
  • the one-way clutch 140 that transmits the rotational movement of the rotor 126 in only one direction via the second intermediate gear 132 is provided on the rotating shaft 138 of the rotor 126 as shown in FIGS. 5B and 5C. Is provided.
  • a substantially linear motion due to the contraction of the muscular tissue 20 when a voltage is applied to the electrode 106 is converted by the crank gear 124. Can be accumulated in only one direction. For this reason, the high-speed rotation state of the rotor 126 can be maintained more reliably.
  • the power generation mechanism 104 detects contraction of the muscular tissue 20 that occurs when a voltage is applied to the electrode 106 and converts the substantially linear motion into a rotational motion by the crank gear 124.
  • the rotor 126 provided with the magnet 134 in an annular shape is rotated at high speed via the gear members 128, 130, and 132.
  • an electromotive force due to electromagnetic induction generated in the coil 136 facing the magnet 134 is generated. That is, by using the electromagnetic induction type power generation mechanism 104 as the internal power generator, it is possible to improve the power generation efficiency and reduce the amount of muscle used.
  • the configuration of the rotor 126 may be a configuration of a modified example described below.
  • 6A and 6B are operation explanatory views of a modified example of the rotor provided in the power generation mechanism provided in the in-body power generation system according to the embodiment of the present invention.
  • the rotor 226 is characterized in that a weight 228 that can move through a spring 227 that is an elastic member that can expand and contract in the radial direction from the center is provided inside the rotor 226.
  • a weight 228 that can move through a spring 227 that is an elastic member that can expand and contract in the radial direction from the center is provided inside the rotor 226.
  • four grooves 229 are formed radially from the center 226 a toward the outer edge 226 b inside the rotor 226, and springs are formed inside these grooves 229.
  • a weight 228 that is elastically movable in the radial direction via 227 is provided.
  • the rotor 226 By configuring the rotor 226 in such a configuration, when the rotation of the rotor 226 is started, the rotational speed of the rotor 226 is small, and the centrifugal force applied to the weight 228 is smaller than the elastic force of the spring 227.
  • the weights 228 are disposed at positions close to the center portion 226a. Thereafter, as the rotational motion of the rotor 226 is accelerated, the weight 228 is moved outward by centrifugal force, so that the inertia of the rotor 226 is increased and the inertia is maximized at the start of inertial rotation.
  • the weight 228 is displaced outward by centrifugal force, so that the inertia of the rotational motion of the rotor 226 increases, and the increase in the rotation speed of the rotor 226 can be moderated. .
  • This is in accordance with the characteristic that the increase in contraction speed becomes gentle in the latter half of the muscle contraction operation that occurs when the stimulation voltage is applied. From this, the muscle contraction energy accompanying the muscle contraction characteristic can be more reliably converted into the rotational energy of the rotor.
  • 7A and 7B are operation explanatory views of the power generation mechanism provided in the in-vivo power generation system according to the embodiment of the present invention.
  • the internal power generation system 100 uses the displacement of the movable portion 108 due to muscle contraction of the muscular tissue 20 that occurs when a stimulation current is applied by applying a voltage to the muscular tissue 20, and causes the permanent magnet 134 to move.
  • the rotor 126 provided in an annular shape is rotated.
  • an induced electromotive force generated by electromagnetic induction is extracted from the coil 136 facing the permanent magnet 134.
  • the crank gear 124 rotates counterclockwise from the position shown in FIG. 7A to the position shown in FIG. 7B.
  • the second intermediate gear 132 that meshes with the first intermediate gear 130 rotates counterclockwise. Since the second intermediate gear 132 has a gear ratio smaller than that of the first intermediate gear 130, the second intermediate gear 132 rotates at a rotational speed higher than that of the first intermediate gear 130. Thereafter, as shown in FIG. 7B, the counterclockwise rotational motion of the second intermediate gear 132 is transmitted to the rotor 126 sharing the rotation shaft 138 with the second intermediate gear 132 via the one-way clutch 140. For this reason, the rotor 126 rotates at a high speed at the same rotational speed as the second intermediate gear 132.
  • the wire 110, the crank gear 124, the pinion gear 128, the first intermediate gear 130, the second intermediate gear 132, and the one-way clutch 140 are used to move the movable portion 108 due to muscle contraction to the rotor 126. Power transmission accompanying displacement is executed. Further, after the muscle contraction is finished and the wire 110 is pulled, the rotor 126 and the second intermediate gear 132 are separated by the one-way clutch 140, so that the power transmission due to the displacement of the movable portion 108 in the reverse direction can be interrupted.
  • the wire 110, the crank gear 124, the pinion gear 128, the first intermediate gear 130, and the second intermediate gear can only be displaced in one direction due to muscle contraction of the muscle tissue 20 that occurs when a stimulation current is passed.
  • 132 and the one-way clutch 140 can be used for the rotational movement of the rotor 126. Further, by transmitting the rotational motion of the second intermediate gear 132 rotating at high speed to the rotor 126 via the one-way clutch 140, the power transmission of the rotational motion in only one direction can be accumulated. Rotational motion is maintained by inertia.
  • the material and shape of the rotor 126 are determined so that the inertia of the rotor 126 becomes an optimum value according to the in-body power generation system 100 of the present embodiment.
  • a material having as small an inertia as possible is selected in consideration of wear resistance and the like.
  • the rotor 126 and the first and second intermediate gears 130 and 132 are made of, for example, a light metal such as aluminum or a hard resin.
  • the power generation mechanism 104 rotationally moves the rotor 126 via the crank gear 124, the pinion gear 128, the first intermediate gear 130, the second intermediate gear 132, and the one-way clutch 140 by pulling the wire 110.
  • the electromotive force is generated by electromagnetic induction, but the power generation mechanism 104 may be configured in other manners.
  • a power transmission mechanism such as a cam transmits the power generated by pulling the wire 110 to a moving member on which a permanent magnet is mounted, and linearly reciprocates the coil 136 facing the permanent magnet by electromagnetic induction. Electric power may be generated.
  • the power generated in the body is directly supplied to the in-vivo implantable medical device 10, so that surgery for periodic battery replacement or non-contact type is possible. Eliminates the need to carry external equipment to supply power. For this reason, while reducing the physical burden on the patient, continuous power supply to the implantable medical device 10 is more reliably realized.
  • contraction of the muscular tissue 10 is generated by electrical stimulation, and the electromagnetic induction type power generation mechanism 104 is driven using the contraction force and contraction displacement to supply power for power supply to the in-vivo implantable medical device 10.
  • the rotor 126 provided in the power generation mechanism 104 is driven at a high speed of about 600 rpm even if the stroke of the movable unit 108 and the wire 110 is about 3 mm. By rotating, it is possible to secure a power of about several tens of ⁇ W necessary for driving the implantable medical device 10 such as a pacemaker or ICD.
  • FIG. 8A is a perspective view of a power generation mechanism provided in the in-body power generation system of the present embodiment
  • FIG. 8B is a perspective view from one side of a rotor provided in the power generation mechanism provided in the in-body power generation system of the present embodiment
  • FIG. 8C is a perspective view of the electromotive side electrode provided in the power generation mechanism provided in the in-body power generation system of the present embodiment.
  • FIG. 8A shows a state in which the top plate of the casing is removed in order to explain each component of the power generation mechanism.
  • the power generation mechanism 304 provided in the in-vivo power generation system is an electrostatic induction generator that generates an electromotive force by electrostatic induction.
  • the power generation mechanism 304 is connected to the wire 310 by pulling the wire 310 by the movable portion 108 (see FIG. 1) that moves along with muscle contraction when electrical stimulation is applied to the muscle tissue.
  • An electromotive force is generated by electrostatic induction in the electromotive side electrode 336 provided in the power generation mechanism 304.
  • the power generation mechanism 304 is provided with a crank gear 324, a rotor 326, and a rotation gear member 332 in a substantially cylindrical casing 322.
  • a plurality of electrode members 334 are annularly provided at predetermined intervals on the outer edge side of one surface 326a of the rotor 326 facing the bottom surface 322b of the casing 322.
  • a plurality of rings are provided on the bottom surface 322 b of the casing 322 so that the electromotive side electrode 336 faces these electrode members 334.
  • the electrode member 334 is composed of an electret made of a conductor such as copper or a charged body such as a fluororesin film.
  • a conductor such as copper
  • a voltage is applied to the electrode member 334 via a slip ring installed on the stator and a brush installed on the stator.
  • the crank gear 324 is a substantially fan-shaped plate member centering on a rotating shaft 324 a provided on the side wall side of the casing 322, and a gear 324 b 1 is provided on an arc portion 324 b of the crank gear 324. ing. Further, since the crank gear 324 is connected to one end 310a of the wire 310 serving as a connecting member to the movable portion 108, the crank gear 324 is moved via the wire 310 when the movable portion 108 is moved and displaced. It is pulled in one direction and rotates around the rotation shaft 324a. For this reason, the crank gear 324 has a function of converting a substantially linear motion accompanying the movement of the movable portion 108 into a rotational motion.
  • a torsion spring 325 is wound around the rotary shaft 324a. Is provided.
  • the torsion spring 325 has one end 325 a fixed to the crank gear 324 and the other end 325 b supported and fixed to the side surface 322 c of the casing 322.
  • the torsion spring 325 it is possible to continuously convert from a substantially linear motion to a rotational motion using the displacement of the movable portion 108 due to muscle contraction. For this reason, the sustainability of the rotational motion of the rotor 326 provided with the electrode member 334 in an annular shape is improved, and the power generation by the power generation mechanism 304 is stabilized.
  • the rotor 326 rotates in a substantially disk shape that rotates about a rotation shaft 338 provided at a substantially center of the casing 322 in conjunction with the conversion from the substantially linear motion to the rotational motion by the crank gear 324 via the rotation gear member 332. It is a child.
  • a plurality of electrode members 334 are provided at predetermined intervals on the outer edge side of the lower surface 326a of the rotor 326 so as to face the bottom surface 322b of the casing 322. For this reason, when the rotor 326 rotates, the capacitance between the electrode member 334 and the electromotive side electrode 336 changes, and an electric current flows through the electromotive side electrode 336 due to electrostatic induction, thereby generating an electromotive force. Occurs.
  • the rotating gear member 332 shares the rotor 326 and the rotating shaft 338 and has a function of transmitting the rotating motion converted by the crank gear 324 to the rotating shaft 338 of the rotor 326.
  • the rotating gear member 332 meshes with the gear 324b1 of the arc portion 324b of the crank gear 324, and the rotating motion converted by the crank gear 324 is applied to the rotating shaft 338 of the rotor 326. introduce.
  • the rotary motion converted by the crank gear 324 is transmitted to the rotary shaft 338 of the rotor 326 via the rotary gear member 332, but the gear ratio is different as in the first embodiment.
  • the rotational motion converted by the crank gear 324 may be transmitted via the rotating gear member 332 so as to rotate the rotating shaft 338 of the rotor 326 at a high speed.
  • the rotor 326 is attached to the rotation shaft 338 of the rotor 326 only in one direction via the rotation gear member 332.
  • a one-way clutch that transmits rotational motion may be provided to control the rotational direction of the rotor 326 in one direction.
  • the power generation mechanism 304 detects contraction of the muscular tissue 20 that occurs when a voltage is applied to the electrode 106 (see FIG. 1), and the crank gear 324 rotates the substantially linear motion. Then, the rotor 326 provided with the electrode member 334 in a ring shape is rotated at high speed via the rotating gear member 332. Thus, an electromotive force is generated in the electromotive side electrode 336 facing the electrode member 334 by electrostatic induction. That is, by using the electrostatic induction type power generation mechanism 304 as the internal power generator, it is possible to improve the power generation efficiency and reduce the amount of muscle used.
  • the power generation mechanism 304 rotates the rotor 326 via the crank gear 324 and the rotating gear member 332 by pulling the wire 310, and generates an electromotive force by electrostatic induction.
  • the configuration of the power generation mechanism 304 is possible in other modes.
  • a power transmission mechanism such as a cam transmits the power generated by pulling the wire 310 to the moving member on which the electrode member is mounted and linearly reciprocates the static electricity to the electromotive side electrode 336 facing the electrode member.
  • An electromotive force may be generated by electric induction.
  • 9A and 9B are operation explanatory views of the power generation mechanism provided in the in-vivo power generation system according to another embodiment of the present invention.
  • the power generation mechanism 304 is provided on one surface side of a rotor 326 that is a moving body that rotates and moves by muscle contraction force generated by applying a voltage to muscle tissue via an electrode.
  • a plurality of electrode members 334 made of a conductor such as copper are provided.
  • a moving body side power source 350 for applying a voltage in order to set the electrode member 334 made of a conductor such as copper to a high potential is provided.
  • a plurality of electromotive side electrodes 336 made of a conductor such as copper and generating electromotive force by electrostatic induction are provided at a position facing the electrode member 334, that is, the casing bottom surface 322b. These electromotive side electrodes 336 are connected to a secondary battery 316 serving as a charging circuit.
  • the power generation mechanism 304 When the power generation mechanism 304 is configured as described above, when the rotor 326 rotates and moves due to muscle contraction generated by applying a voltage to the muscle tissue via the electrode, the electrode member 334 and the electromotive side electrode 336 are interposed. , And a current flows through the electromotive side electrode 336 due to electrostatic induction to generate an electromotive force. In this way, contraction of muscle tissue is generated by electrical stimulation, and the electrostatic induction type power generation mechanism 304 is driven using the contraction force and contraction displacement to supply power to the implantable medical device 10. It will be possible to secure the power.
  • the electrostatic induction type power generation mechanism 404 of the present embodiment as a plurality of electrode members 434 provided on one surface side of the rotor 426, the electric polarization is held semipermanently and is surrounded by the surroundings. You may use what was formed with the electret which consists of charged bodies, such as a fluororesin film
  • a plurality of electromotive side electrodes 436 made of a conductor such as copper and generating electromotive force by electrostatic induction are provided at a position facing the electrode member 434, that is, the casing bottom surface 422b. These electromotive side electrodes 436 are connected to a secondary battery 416 serving as a charging circuit.
  • the rotor 326 rotates in accordance with muscle contraction generated by applying a voltage to the muscle tissue via the electrode, so that the electrode member 334 and the electromotive side electrode 336 The electrostatic capacity changes between the two, and a current flows through the electromotive side electrode 336 due to electrostatic induction to generate an electromotive force.
  • contraction of muscle tissue is generated by electrical stimulation, and the electrostatic induction type power generation mechanism 304 is driven using the contraction force and contraction displacement to supply power to the implantable medical device 10. It will be possible to secure the power.
  • contraction of the muscular tissue 10 is generated by electrical stimulation, and the electrostatic induction type power generation mechanisms 304 and 404 are driven using the contraction force and contraction displacement, so that the implantable medical device 10 can be applied.
  • Electric power for power supply can be secured.
  • the rotors 326 and 426 provided in the power generation mechanisms 304 and 404 are installed even if the stroke of the movable unit 108 and the wire 310 is about 3 mm.
  • By rotating at a high speed of about 600 rpm it is possible to secure a power of about several tens of ⁇ W necessary for driving the implantable medical device 10 such as a pacemaker or ICD.
  • the electromotive force is generated in the electromotive side electrodes 336 and 436 by the electrostatic induction type power generation mechanisms 304 and 404.
  • the electrostatic induction power generation mechanisms 304 and 404 have a dimension d of the power generation mechanism as compared to the electromagnetic induction power generation mechanism 104 in the in-vivo power generation system 100 according to the embodiment of the present invention described above.
  • the power generation amount p is large. From this, it can be seen that the electrostatic induction type power generation mechanisms 304 and 404 are more advantageous for downsizing and speed reduction than the electromagnetic induction type power generation mechanism 104.
  • the magnet 134 and the coil 136 serving as a power generation unit are each provided with several to several tens of poles.
  • the electrode members 334 and 434 and the electromotive side electrodes 336 and 436 which are power generation units, can be subdivided, and 100 or more poles can be installed. That is, as compared with the electromagnetic induction type power generation mechanism 104, the electrostatic induction type power generation mechanisms 304 and 404 can easily realize multipolarization, and thus the apparatus main body can be reduced in size and speed.
  • the electrode member 434 is formed of an electret, even if the power generation mechanism 404 is reduced in size and speed, it is possible to efficiently secure a power generation amount of a predetermined size or more.
  • the electrostatic induction type power generation mechanisms 304 and 404 have a power generation amount p which is inferior when the dimension d and the speed v are increased, but each device.
  • the size of the main body can be reduced. For this reason, it is possible to easily realize the increase of the total power generation amount by connecting the plurality of power generation mechanisms 304 and 404 to increase the total value of the power generation amount p.
  • the power generation mechanism 504 has a multilayer structure in which a plurality of power generation units 538 are provided by an electrode member 534 provided on the moving body 526 side and an electromotive side electrode 536 provided on the casing 522 side.
  • the total power generation amount to the secondary battery 516 serving as a charging circuit can be increased. That is, even when a small amount of power is generated by one power generation unit 538, it is possible to generate power of a predetermined magnitude or more by connecting a plurality of units.
  • the power generation mechanism 504 of this embodiment is a power generation unit 538 that generates electromotive force by electrostatic induction in the electromotive side electrode 536 by reciprocating movement of the moving body 526.
  • a configuration may be adopted in which an electromotive force is generated by electrostatic induction in the electric side electrode 536.
  • the multi-layered power generation mechanism 504 in this embodiment is more easily realized by the electrostatic induction type that can be reduced in size, but the power generation unit 538 is an electromagnetic induction type that includes a plurality of magnets and coils. Even if it is feasible.

Abstract

 To continuously supply power in a more reliable manner to an intracorporeal implant-type medical device upon reducing the physical burden on a patient. An intracorporeal power generation system (100) provided in a living body, said system (100) generating power fed to an intracorporeal implant-type medical device (10), wherein the intracorporeal power generation system (100) is provided with: electrodes (106) provided so as to be capable of applying a voltage to muscle tissue (20) at a predetermined site in vivo; a movable part (108) provided so as to be capable of moving in a predetermined direction upon detection of muscle tissue contraction in response to application of the voltage to the electrodes; a power generation mechanism (104) for generating an electromotive force in concert with the movement of the movable part; a string-shaped connecting member (110) having one end connected to the movable part and the other end connected to the power generation mechanism; and a control unit (118) for controlling the voltage applied to the electrodes.

Description

体内発電システムInternal power generation system
 本発明は、体内植込み型医療機器の給電用電源となる体内発電システム等に関する。本出願は、日本国において2014年8月26日に出願された日本特許出願番号特願2014-171562を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。 The present invention relates to an in-vivo power generation system that serves as a power supply for power supply of an implantable medical device. This application claims priority on the basis of Japanese Patent Application No. 2014-171562 filed on August 26, 2014 in Japan, and is incorporated herein by reference. Is done.
 徐脈や頻拍等の不整脈の症状を呈する心疾患の治療機器として、近年、植込み型心臓ペースメーカ(以下、「ペースメーカ」と記す)や植込み型除細動器(以下、「ICD」と記す)、人工心臓等の体内植込み型医療機器が広く用いられている。このような体内植込み型医療機器を体内で自立して作動させるためには、体外で電源とケーブル接続して当該電源から直接給電して駆動させるか、当該医療機器にリチウム電池等の一次電池による給電が行われている。 In recent years, as a treatment device for heart diseases that exhibit arrhythmia such as bradycardia and tachycardia, an implantable cardiac pacemaker (hereinafter referred to as “pacemaker”) and an implantable defibrillator (hereinafter referred to as “ICD”). In-vivo implantable medical devices such as artificial hearts are widely used. In order to operate such an in-vivo implantable medical device independently in the body, it is connected to a power source and connected to a power source outside the body and directly powered from the power source or driven by a primary battery such as a lithium battery. Power is being supplied.
 しかしながら、体外の電源から直接ケーブル接続して給電する手法では、皮膚貫通部での感染症や炎症を引き起こすリスクがあり、患者にとっても入浴等の日常生活における各種制約を受けることが課題となる。また、一次電池による給電では、数年毎に電池交換のための外科的な手術が必要となり、患者にとって身体的にも経済的にも負担が大きい。 However, the method of supplying power by connecting a cable directly from an external power source has a risk of causing infections and inflammation in the skin penetrating part, and suffers from various restrictions in daily life such as bathing. In addition, the power supply by the primary battery requires a surgical operation for replacing the battery every few years, which is a burden both physically and economically for the patient.
 かかる課題を解決するための他の体内植込み型医療機器への給電方法として、特許文献1では、体内植込み型医療機器の給電を二次電池で行って、電磁誘導を用いて体外からリモートで当該医療機器の電源となる二次電池に非接触給電を行う充電システムが開示されている。また、非特許文献1では、電気刺激による筋収縮を利用した圧電型の発電装置を体内に植え込む体内発電システムとして、積層した圧電素子を骨と筋肉-腱単位の間に外科的に組み込んで、電気刺激による筋肉の単収縮を利用して発電する手法が開示されている。 As a method for supplying power to another in-vivo implantable medical device for solving such a problem, in Patent Document 1, the in-vivo implantable medical device is supplied with a secondary battery, and is remotely controlled from outside the body using electromagnetic induction. A charging system that performs non-contact power supply to a secondary battery serving as a power source of a medical device is disclosed. In Non-Patent Document 1, as an internal power generation system for implanting a piezoelectric power generation device using muscle contraction by electrical stimulation into a body, a laminated piezoelectric element is surgically incorporated between a bone and a muscle-tendon unit, A method of generating power using muscle twitching by electrical stimulation is disclosed.
特開2002-315209号公報JP 2002-315209 A
 体内植込み型医療機器への給電をするに際にして、当該医療機器を装着している患者への身体的負担を軽減した上で、その給電手法が当該患者にとって使い勝手が良好で生活自由度が確保されることが好ましい。また、体内に埋め込まれた体内植込み型医療機器を継続的に作動させるためには、当該体内植込み型医療機器の作動に必要な電力を継続的に給電する必要がある。 When power is supplied to an implantable medical device, the physical burden on the patient wearing the medical device is reduced, and the power supply method is convenient for the patient and provides freedom of life. It is preferable to ensure. In order to continuously operate the implantable medical device embedded in the body, it is necessary to continuously supply power necessary for the operation of the implantable medical device.
 特許文献1に開示された非接触給電による充電システムでは、電池交換の頻度を減らせるものの、継続的に体内植込み型医療機器を作動させるためには、充電器を携行する必要あり、患者にとって生活自由度の確保に課題が残る。また、非特許文献1に開示された体内発電システムでは、理論上、継続的な給電が可能となるものの、ペースメーカ駆動に必要な数十μWの電力を発電するために、数百gに及ぶ大きさの筋肉の使用が想定されるので、当該発電システムの使用による患者への身体的負担が大きいことが課題として残る。 In the charging system using non-contact power feeding disclosed in Patent Document 1, although the frequency of battery replacement can be reduced, in order to continuously operate the implantable medical device, it is necessary to carry the charger, and the life for the patient. Issues remain in securing the degree of freedom. In addition, the in-vivo power generation system disclosed in Non-Patent Document 1 theoretically enables continuous power supply, but generates several tens of microwatts of power necessary for driving the pacemaker. Since the use of other muscles is assumed, there remains a problem that the physical burden on the patient due to the use of the power generation system is large.
 本発明は、上記課題に鑑みてなされたものであり、患者への身体的負担を軽減した上で、より確実に体内植込み型医療機器への継続的な給電が可能な、新規かつ改良された体内発電システムを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and has been made new and improved, which can continuously supply power to an implantable medical device more reliably while reducing the physical burden on the patient. An object is to provide an in-vivo power generation system.
 本発明の一態様は、生体内に設けられ、体内植込み型医療機器に供給する電力を発生させる体内発電システムであって、前記生体内の所定の部位における筋肉組織に電圧を印加可能に設けられる電極と、前記電極への前記電圧の印加による前記筋肉組織の収縮の検出に伴い所定の方向に移動可能に設けられる可動部と、前記可動部の移動に伴って起電力を発生させる発電機構と、前記電極に印加する前記電圧を制御する制御部と、を備えることを特徴とする。 One aspect of the present invention is an in-vivo power generation system that is provided in a living body and generates electric power to be supplied to an in-vivo implantable medical device, and is provided so that a voltage can be applied to muscle tissue at a predetermined site in the living body. An electrode, a movable part provided to be movable in a predetermined direction in accordance with detection of contraction of the muscle tissue due to application of the voltage to the electrode, and a power generation mechanism that generates an electromotive force with the movement of the movable part And a control unit that controls the voltage applied to the electrode.
 本発明の一態様によれば、電極に電圧を印加して刺激電流を流した際の筋肉組織の収縮を利用して発電機構を駆動させて体内で発電できるので、体内植込み型医療機器への継続的な電力供給が可能になる。 According to one aspect of the present invention, the power generation mechanism can be driven using the contraction of the muscular tissue when a voltage is applied to the electrode and a stimulation current is applied to generate power in the body. Continuous power supply becomes possible.
 このとき、本発明の一態様では、前記発電機構で発生させた電力を蓄電する二次電池を更に備えることとしてもよい。 At this time, in one embodiment of the present invention, a secondary battery that stores electric power generated by the power generation mechanism may be further provided.
 このようにすれば、体内で発電させた電力を二次電池に蓄電することにより、体内植込み型医療機器への継続的な給電や電極への電圧印加が可能になる。 In this way, by storing the electric power generated in the body in the secondary battery, it is possible to continuously supply power to the implantable medical device and apply voltage to the electrodes.
 また、本発明の一態様では、前記発電機構は、ケーシングと、前記接続部材と接続され、前記可動部の略直線運動を回転運動に変換するクランクギアと、前記クランクギアの前記略直線運動から前記回転運動への変換に連動して回転するロータと、前記ロータの一面の外縁側に前記ケーシングの底面に対向するように環状に設けられる複数の磁石又は電極部材と、前記ケーシングの底面側の前記磁石又は前記電極部材と対向する部位に環状に設けられる複数のコイル又は起電側電極と、を備えることとしてもよい。 In one aspect of the present invention, the power generation mechanism includes a casing, a crank gear that is connected to the connection member and converts the substantially linear motion of the movable portion into a rotational motion, and the substantially linear motion of the crank gear. A rotor that rotates in conjunction with the conversion into the rotational motion, a plurality of magnets or electrode members that are annularly provided on the outer edge side of one surface of the rotor so as to face the bottom surface of the casing, and a bottom surface side of the casing It is good also as providing the some coil or electromotive side electrode provided cyclically | annularly in the site | part facing the said magnet or the said electrode member.
 このようにすれば、電極に電圧を印加して刺激電流を流した際の筋肉組織の収縮をクランクギアによって略直線運動を回転運動に変換してから、外縁部に環状に磁石又は電極部材を設けたロータがギア部材を介して高速回転させられるので、当該磁石又は電極部材に対向するコイル又は起電側電極に電磁誘導又は静電誘導によって起電力を発生させて発電できる。 In this way, the contraction of the muscular tissue when the stimulation current is applied by applying a voltage to the electrode is converted from a substantially linear motion to a rotational motion by the crank gear, and then a magnet or electrode member is annularly formed on the outer edge portion. Since the provided rotor is rotated at high speed via the gear member, it is possible to generate electric power by generating electromotive force by electromagnetic induction or electrostatic induction in the coil or electromotive side electrode facing the magnet or the electrode member.
 また、本発明の一態様では、前記電極部材は、エレクトレットで形成されることとしてもよい。 In one embodiment of the present invention, the electrode member may be formed of an electret.
 このようにすれば、発電機構を小型化及び低速化させた場合でも、効率的に所定の大きさ以上の発電量を確保できる。 In this way, even when the power generation mechanism is downsized and slowed down, a power generation amount of a predetermined size or more can be efficiently secured.
 また、本発明の一態様では、前記発電機構は、前記複数の磁石と前記コイル、又は前記電極部材と前記起電側電極による発電ユニットが複数設けられる多層構造であることとしてもよい。 In one embodiment of the present invention, the power generation mechanism may have a multilayer structure in which a plurality of power generation units including the plurality of magnets and the coil, or the electrode member and the electromotive side electrode are provided.
 このようにすれば、一つの発電ユニットでの発生電力が少量な場合でも、所定の大きさ以上の電力を発生させることができる。 In this way, even when the amount of power generated by one power generation unit is small, it is possible to generate power of a predetermined magnitude or more.
 また、本発明の一態様では、前記クランクギアにより変換された前記回転運動と連動して、前記ロータの回転速度を増大させる複数のギア部材を更に備えることとしてもよい。 Further, in one aspect of the present invention, a plurality of gear members that increase the rotational speed of the rotor in conjunction with the rotational motion converted by the crank gear may be further provided.
 このようにすれば、電極に電圧を印加して刺激電流を流した際の筋肉組織の収縮を利用して、効率的に発電機構を駆動させて体内で発電できるようになる。 In this way, the power generation mechanism can be efficiently driven to generate power in the body by utilizing the contraction of the muscular tissue when a voltage is applied to the electrode and a stimulation current is applied.
 また、本発明の一態様では、前記ロータの回転軸には、前記複数のギア部材のうちの一のギア部材を介して前記ロータを一方向のみに前記回転運動を伝達するワンウェイクラッチが設けられることとしてもよい。 In one aspect of the present invention, a one-way clutch that transmits the rotational motion to the rotor only in one direction via one gear member of the plurality of gear members is provided on the rotation shaft of the rotor. It is good as well.
 このようにすれば、ワンウェイクラッチによってロータの回転方向を一方向に制御することによって、電極に電圧を印加して刺激電流を流した際の筋肉組織の収縮による略直線運動をクランクギアによる変換後の回転運動を一方向のみ累積するので、より確実にロータの高速回転状態を維持できる。 In this way, by controlling the direction of rotation of the rotor in one direction with a one-way clutch, a substantially linear motion due to contraction of muscle tissue when a voltage is applied to the electrode and a stimulation current is applied is converted after conversion by the crank gear. Therefore, the rotor can be maintained in a high-speed rotation state more reliably.
 また、本発明の一態様では、前記ロータの内部には、該ロータの中心から放射方向に伸縮可能な弾性部材を介して移動可能な重りが設けられていることとしてもよい。 Further, in one aspect of the present invention, a weight that is movable through an elastic member that can expand and contract in the radial direction from the center of the rotor may be provided inside the rotor.
 このようにすれば、ロータの回転数の増加に応じて遠心力で重りが外側に移動することによって、ロータの慣性が大きくなるので、ロータの回転数の増加を緩やかにできる。このため、筋収縮特性に伴う筋収縮エネルギーをロータの回転エネルギーへとより確実に変換することができる。 In this way, the inertia of the rotor is increased by moving the weight outward by centrifugal force in accordance with the increase in the rotation speed of the rotor, so that the increase in the rotation speed of the rotor can be moderated. For this reason, the muscle contraction energy accompanying the muscle contraction characteristic can be more reliably converted into the rotational energy of the rotor.
 また、本発明の一態様では、前記所定の部位から前記電極及び前記可動部の離脱を防止可能な固定部材を更に備えることとしてもよい。 Moreover, in one aspect of the present invention, a fixing member that can prevent the electrode and the movable portion from being detached from the predetermined portion may be further provided.
 このように、固定部材を設けることによって、電極と可動部が所定の部位から外れなくなるので、電極に電圧を印加して刺激電流を流した際の筋肉組織の収縮による可動部の移動に伴う直線運動を発電機構に備わるクランクギアに接続部材を介して確実に伝達できる。 As described above, since the fixed member is provided, the electrode and the movable part are not detached from the predetermined part, so that the straight line accompanying the movement of the movable part due to the contraction of the muscular tissue when the voltage is applied to the electrode and the stimulation current is applied The movement can be reliably transmitted to the crank gear provided in the power generation mechanism via the connecting member.
 また、本発明の一態様では、前記可動部、前記ケーシング、及び前記固定部材は、チタン系金属から形成されることとしてもよい。 In one embodiment of the present invention, the movable part, the casing, and the fixed member may be made of a titanium metal.
 このようにすれば、体内発電システムを体内に取り付けた際における取り付け部位の筋肉組織が癒着するリスクを低減できる。 This makes it possible to reduce the risk of adhesion of muscle tissue at the attachment site when the internal power generation system is attached to the body.
 以上説明したように本発明によれば、体内で発電させた電力を体内植込み型医療機器へ直接給電することによって、定期的な手術や外部機器の携行等を不要とする。このため、患者への身体的負担を軽減した上で、より確実に体内植込み型医療機器への継続的な給電ができる。 As described above, according to the present invention, the power generated in the body is directly fed to the in-vivo implantable medical device, thereby eliminating the need for periodic surgery or carrying an external device. For this reason, while reducing the physical burden on the patient, continuous power supply to the implantable medical device can be performed more reliably.
図1は、本発明の一実施形態に係る体内発電システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of an in-vivo power generation system according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る体内発電システムで電極に印加する電圧波形図である。FIG. 2 is a voltage waveform diagram applied to electrodes in the in-vivo power generation system according to the embodiment of the present invention. 図3は、本発明の一実施形態に係る体内発電システムを人体に取り付けた状態を示す説明図である。FIG. 3 is an explanatory view showing a state in which the in-vivo power generation system according to the embodiment of the present invention is attached to a human body. 図4A及び図4Bは、本発明の一実施形態に係る体内発電システムの動作説明図である。4A and 4B are operation explanatory views of the in-vivo power generation system according to the embodiment of the present invention. 図5Aは、本発明の一実施形態に係る体内発電システムに備わる発電機構の概略構成を示す平面図、図5Bは、図5AのA-A断面図、図5Cは、図5AのB-B断面図である。FIG. 5A is a plan view showing a schematic configuration of the power generation mechanism provided in the in-vivo power generation system according to the embodiment of the present invention, FIG. 5B is a cross-sectional view along AA in FIG. 5A, and FIG. 5C is a cross-sectional view along BB in FIG. It is sectional drawing. 図6A及び図6Bは、本発明の一実施形態に係る体内発電システムに備わる発電機構に設けられるロータの変形例の動作説明図である。6A and 6B are operation explanatory views of a modified example of the rotor provided in the power generation mechanism provided in the in-body power generation system according to the embodiment of the present invention. 図7A及び図7Bは、本発明の一実施形態に係る体内発電システムに備わる発電機構の動作説明図である。7A and 7B are operation explanatory views of the power generation mechanism provided in the in-vivo power generation system according to the embodiment of the present invention. 図8Aは、本実施形態の体内発電システムに備わる発電機構の斜視図であり、図8Bは、本実施形態の体内発電システムに備わる発電機構に設けられるロータの一面側からの斜視図であり、図8Cは、本実施形態の体内発電システムに備わる発電機構に設けられる起電側電極の斜視図である。FIG. 8A is a perspective view of a power generation mechanism provided in the in-body power generation system of the present embodiment, and FIG. 8B is a perspective view from one side of a rotor provided in the power generation mechanism provided in the in-body power generation system of the present embodiment. FIG. 8C is a perspective view of the electromotive side electrode provided in the power generation mechanism provided in the in-body power generation system of the present embodiment. 図9A及び図9Bは、本発明の他の一実施形態に係る体内発電システムに備わる発電機構の動作説明図である。9A and 9B are operation explanatory views of the power generation mechanism provided in the in-vivo power generation system according to another embodiment of the present invention. 図10は、本発明の一実施形態に係る体内発電システムに備わる発電機構と、他の一実施形態に係る体内発電システムに備わる発電機構との比較結果を示すグラフである。FIG. 10 is a graph showing a comparison result between the power generation mechanism provided in the in-body power generation system according to one embodiment of the present invention and the power generation mechanism provided in the in-body power generation system according to another embodiment. 図11は、本発明の更に他の一実施形態に係る体内発電システムに備わる発電機構の構成及び動作の説明図である。FIG. 11 is an explanatory diagram of the configuration and operation of the power generation mechanism provided in the in-body power generation system according to still another embodiment of the present invention.
 以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are essential as means for solving the present invention. Not necessarily.
(第1の実施形態)
 まず、本発明の一実施形態に係る体内発電システムの構成について、図面を使用しながら説明する。図1は、本発明の一実施形態に係る体内発電システムの概略構成を示すブロック図である。
(First embodiment)
First, the configuration of an in-vivo power generation system according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of an in-vivo power generation system according to an embodiment of the present invention.
 本発明の一実施形態に係る体内発電システム100は、ペースメーカやICD等の体内植込み型医療機器10の電池や外部給電に代わる電源として、電気刺激による骨格筋の一部分となる筋肉組織20の筋収縮を利用した生体内に設けられる体内発電装置である。具体的には、本実施形態の体内発電システム100は、電気刺激によって筋肉組織20の収縮を発生させて、その収縮力・収縮変位を利用して発電機構104を駆動して、体内植込み型医療機器10への給電用の電力を人間や動物等の生体内で能動的に発生させる。 An in-vivo power generation system 100 according to an embodiment of the present invention is a muscle contraction of a muscular tissue 20 that becomes a part of skeletal muscle by electrical stimulation as a power source in place of a battery or external power supply of an implantable medical device 10 such as a pacemaker or ICD. It is the in-vivo power generation device provided in the living body using the. Specifically, the in-vivo power generation system 100 according to the present embodiment generates contraction of the muscular tissue 20 by electrical stimulation, and drives the power generation mechanism 104 using the contraction force and contraction displacement, thereby implanting the body. Power for supplying power to the device 10 is actively generated in a living body such as a human being or an animal.
 本実施形態の体内発電システム100は、図1に示すように、1対の電極106と、可動部108と、接続部材となるワイヤ110と、固定部材112と、発電機構104と、整流回路114と、二次電池116と、及び制御部118とを備える。 As shown in FIG. 1, the in-vivo power generation system 100 of the present embodiment includes a pair of electrodes 106, a movable portion 108, a wire 110 serving as a connection member, a fixed member 112, a power generation mechanism 104, and a rectifier circuit 114. And a secondary battery 116 and a control unit 118.
 電極106は、生体内の所定の部位における筋肉組織20に電圧を印加して、1~20mA程度の刺激電流を流す刺激電極としての機能を有する。本実施形態では、1対の陽極と陰極からなる電極106が電圧印加による収縮対象となる筋肉組織20に当接する部位に所定の間隔で設けられている。すなわち、電極106は、生体内の所定の部位における筋肉組織20に電圧を印加可能に設けられている。本実施形態では、電極106は、可動部108と共に、設置した所定の部位から離脱しないように、固定部材112で固定されている。なお、固定部材112の詳細については、後述する。 The electrode 106 has a function as a stimulation electrode that applies a voltage to the muscular tissue 20 at a predetermined site in the living body and flows a stimulation current of about 1 to 20 mA. In the present embodiment, the electrode 106 composed of a pair of an anode and a cathode is provided at a predetermined interval at a site that contacts the muscle tissue 20 to be contracted by voltage application. That is, the electrode 106 is provided so that a voltage can be applied to the muscular tissue 20 at a predetermined site in the living body. In the present embodiment, the electrode 106 is fixed by the fixing member 112 so as not to be separated from the predetermined site where it is installed together with the movable portion 108. Details of the fixing member 112 will be described later.
 可動部108は、電極106の近傍に設けられ、当該電極106への電圧の印加による筋肉組織20の収縮に伴って、所定の方向、具体的には、筋肉組織20の筋線繊走行の方向に移動する機能を有する。すなわち、可動部108は、電極106への電圧の印加による筋肉組織20の収縮の検出に伴い筋肉組織20の筋線繊走行の方向に移動可能に設けられる。本実施形態では、可動部108は、紐状の接続部材となるワイヤ110を介して、発電機構104に備わるクランクギア124(図5A参照)と接続されている。なお、可動部106の具体的な構成や動作、取り付け方法等の詳細については、後述する。 The movable portion 108 is provided in the vicinity of the electrode 106, and in accordance with contraction of the muscular tissue 20 due to application of a voltage to the electrode 106, a specific direction, specifically, a direction of the muscle fiber 20 running through the muscular tissue 20. The function to move to. In other words, the movable portion 108 is provided so as to be movable in the direction of the muscle fiber 20 traveling along the muscle tissue 20 in accordance with the detection of the contraction of the muscle tissue 20 due to the application of a voltage to the electrode 106. In the present embodiment, the movable portion 108 is connected to a crank gear 124 (see FIG. 5A) provided in the power generation mechanism 104 via a wire 110 serving as a string-like connection member. Details of the specific configuration, operation, attachment method, and the like of the movable unit 106 will be described later.
 発電機構104は、可動部108の移動に伴って起電力を発生させる機能を有する。本実施形態では、発電機構は104、可動部108の移動に伴って発生する電磁誘導により起電力を発生させる電磁誘導型発電機である。具体的には、本実施形態では、発電機構104は、筋肉組織20に電気刺激を与えた際に、当該筋肉組織20に発生する筋収縮の検出に伴って移動する可動部108がワイヤ110を引張して、当該ワイヤ110と接続された発電機構104に備わるコイル136(図5B参照)に電磁誘導による起電力を発生させる。なお、発電機構104の構成及び動作の詳細については、後述する。 The power generation mechanism 104 has a function of generating an electromotive force as the movable unit 108 moves. In the present embodiment, the power generation mechanism 104 is an electromagnetic induction generator that generates electromotive force by electromagnetic induction generated as the movable unit 108 moves. Specifically, in the present embodiment, when the power generation mechanism 104 applies electrical stimulation to the muscular tissue 20, the movable unit 108 that moves along with detection of muscle contraction generated in the muscular tissue 20 causes the wire 110 to move. The coil 136 is pulled to generate an electromotive force due to electromagnetic induction in the coil 136 (see FIG. 5B) provided in the power generation mechanism 104 connected to the wire 110. Details of the configuration and operation of the power generation mechanism 104 will be described later.
 交流電源となる発電機構104で発生させた電力は、交流電力を直流電力に変換する整流回路114を介して、蓄電池等の二次電池116に供給されて蓄電される。二次電池116に蓄電された電力は、体内植込み型医療機器10への給電、及び電極106を介して筋肉組織20に印加する新たな電気刺激の発生に用いられる。このように、体内で発電させた電力を二次電池116に蓄電することにより、体内植込み型医療機器10への継続的な給電や、筋肉組織20に電気刺激を付与するための電極106への電圧印加が可能になる。 The power generated by the power generation mechanism 104 serving as an AC power supply is supplied to and stored in a secondary battery 116 such as a storage battery via a rectifier circuit 114 that converts AC power into DC power. The electric power stored in the secondary battery 116 is used to supply power to the implantable medical device 10 and to generate a new electrical stimulus applied to the muscle tissue 20 via the electrode 106. In this way, by storing the electric power generated in the body in the secondary battery 116, continuous power feeding to the in-vivo implantable medical device 10 and application to the electrode 106 for applying electrical stimulation to the muscle tissue 20 are performed. Voltage can be applied.
 すなわち、本実施形態の体内発電システム100は、本発明者が前述した本発明の目的を達成するために鋭意検討を重ねた結果、筋肉組織20への電気刺激に要する電力よりも、筋肉組織20の筋収縮に伴う可動体108の移動によって発電機構104で発生させる電気エネルギーの方が大きいことを利用して創作されたものである。なお、整流回路114及び二次電池116は、発電機構104と一体で設けられる構成としても、別体で設けられる構成としてもよい。 That is, in the in-vivo power generation system 100 of the present embodiment, the inventor has made extensive studies in order to achieve the above-described object of the present invention. It was created by utilizing the fact that the electric energy generated by the power generation mechanism 104 by the movement of the movable body 108 accompanying the muscle contraction of the muscle is larger. Note that the rectifier circuit 114 and the secondary battery 116 may be provided integrally with the power generation mechanism 104 or may be provided separately.
 制御部118は、電極106に印加する電圧の大きさや間隔等を調整することによって、筋肉組織20に与える刺激電流を制御する機能を有する。具体的には、制御部118は、体内植込み型医療機器10への給電が必要な場合や、二次電池116の電池残量が少ない場合等に、電極106に印加する電流の大きさや間隔等を調整する。 The control unit 118 has a function of controlling the stimulation current applied to the muscular tissue 20 by adjusting the magnitude and interval of the voltage applied to the electrode 106. Specifically, the control unit 118 determines the magnitude and interval of the current applied to the electrode 106 when power supply to the implantable medical device 10 is necessary, or when the remaining battery level of the secondary battery 116 is low. Adjust.
 本実施形態では、筋肉組織20の収縮を促す電気刺激として、図2に示すような矩形波の交流電圧を電極106に印加する。その際に、筋肉組織20の収縮量を変えるために、印加電圧の振幅A1、継続する刺激電圧のパルス間隔となる繰返し周期T2、刺激電圧の連続パルスの継続時間となる刺激継続時間T3を調整する。一方、筋肉組織20の収縮頻度を変えるために、刺激電圧の連続パルスと次の連続パルスとの間隔となる刺激電圧の間隔(刺激間隔)を調整する。なお、電極106に印加する刺激電圧の波形は、図2に示す矩形波に限定されず、例えば、正弦波、三角波、鋸歯状波等の他のパルス形状の交流電圧としてもよい。 In the present embodiment, a rectangular wave AC voltage as shown in FIG. 2 is applied to the electrode 106 as an electrical stimulus that promotes contraction of the muscle tissue 20. At that time, in order to change the contraction amount of the muscular tissue 20, the amplitude A1 of the applied voltage, the repetition period T2 that is the pulse interval of the continuous stimulation voltage, and the stimulation duration T3 that is the duration of the continuous pulse of the stimulation voltage are adjusted. To do. On the other hand, in order to change the contraction frequency of the muscular tissue 20, the interval of stimulation voltage (stimulation interval) that is the interval between the continuous pulse of the stimulation voltage and the next continuous pulse is adjusted. Note that the waveform of the stimulation voltage applied to the electrode 106 is not limited to the rectangular wave shown in FIG. 2, and may be an AC voltage having another pulse shape such as a sine wave, a triangular wave, or a sawtooth wave.
 このように、制御部118によって電極106に印加する刺激電圧の大きさや間隔等を調整することによって、筋肉組織20の収縮頻度や収縮量が変わるので、それに伴って発電機構104で発生する起電力の大きさを調節できる。すなわち、制御部118で電極106への印加電圧の大きさや間隔等を調整することによって、所望の大きさの起電力を確保できるようになる。 In this way, by adjusting the magnitude and interval of the stimulation voltage applied to the electrode 106 by the control unit 118, the contraction frequency and contraction amount of the muscular tissue 20 change, and accordingly, the electromotive force generated in the power generation mechanism 104 The size of can be adjusted. That is, by adjusting the magnitude and interval of the voltage applied to the electrode 106 by the control unit 118, an electromotive force having a desired magnitude can be secured.
 また、本実施形態では、1対すなわち2個の電極106を設けているが、筋肉組織20の収縮量を調整するために、2対以上の電極106を収縮対象となる筋肉組織20に設けるようにしてもよい。すなわち、陽極と陰極がそれぞれ複数ずつとなるように、収縮対象となる筋肉組織20に万遍なく電極106を設置して、通電する電極106の本数を制御部118で選択することによって、筋肉組織20の収縮量が調整可能となる。これによって、発電機構104における起電力の量を調整できるようになる。 In this embodiment, one pair, that is, two electrodes 106 are provided. However, in order to adjust the contraction amount of the muscle tissue 20, two or more pairs of electrodes 106 are provided on the muscle tissue 20 to be contracted. It may be. That is, the electrodes 106 are uniformly installed on the muscle tissue 20 to be contracted so that there are a plurality of anodes and cathodes, and the number of electrodes 106 to be energized is selected by the control unit 118, thereby The amount of shrinkage of 20 can be adjusted. As a result, the amount of electromotive force in the power generation mechanism 104 can be adjusted.
 次に、本発明の一実施形態に係る体内発電システムの使用状態及び動作について、図面を使用しながら説明する。図3は、本発明の一実施形態に係る体内発電システムを人体に取り付けた状態を示す説明図であり、図4A及び図4Bは、本発明の一実施形態に係る体内発電システムの動作説明図である。 Next, the usage state and operation of the in-vivo power generation system according to one embodiment of the present invention will be described using the drawings. FIG. 3 is an explanatory view showing a state where the in-vivo power generation system according to one embodiment of the present invention is attached to a human body, and FIGS. 4A and 4B are operation explanatory views of the in-body power generation system according to one embodiment of the present invention. It is.
 本実施形態の体内発電システム100は、図3に示すように、心臓ペースメーカやICD等の胸部皮下に設置する体内植込み型医療機器10を給電対象として、当該体内植込み型医療機器10の近傍の体内に取り付けられる。具体的には、体内発電システム100は、生体内の所定の部位における筋肉組織20として、図3に示すように、大胸筋の鎖骨側に植え込まれる。 As shown in FIG. 3, the in-vivo power generation system 100 according to the present embodiment has an in-vivo implantable medical device 10 that is placed under the chest, such as a cardiac pacemaker or ICD, as a power supply target. Attached to. Specifically, the in-body power generation system 100 is implanted as a muscular tissue 20 at a predetermined site in a living body on the clavicle side of the greater pectoral muscle as shown in FIG.
 そして、図4Aに示すように、大胸筋20の上縁側の鎖骨22から数cmの部位を筋線維走行に垂直に10mm程度離断して、かかる離断部21に板状の可動部108を設置する。すなわち、可動部108は、大胸筋等の筋肉組織20の筋線維走行の方向に対して垂直方向に延在する板状部材であり、離断部21に挿入されるようにして設置される。このように、可動部108を設けることによって、電極106への電圧の印加に伴い、図4Bに示すように、電極106と当接する筋肉組織20の収縮が発生して、可動部108は、かかる筋収縮を検出に伴って、当該筋収縮に連動して傾くことによって、筋肉組織20の筋線維走行の方向に移動する。なお、可動部108は、電極106の近傍に設けられ、当該電極106への電圧の印加による筋肉組織20の収縮の検出に伴って、筋肉組織20の筋線維走行の方向に移動可能な構成となっていれば、他の態様の構成及び設置手法としてもよい。 Then, as shown in FIG. 4A, a portion of several cm is separated from the clavicle 22 on the upper edge side of the pectoralis major muscle 20 by about 10 mm perpendicular to the muscle fiber running, and the plate-like movable portion 108 is separated from the separation portion 21. Is installed. That is, the movable portion 108 is a plate-like member that extends in a direction perpendicular to the direction of muscle fiber travel of the muscle tissue 20 such as the great pectoral muscle, and is installed so as to be inserted into the separating portion 21. . As described above, by providing the movable portion 108, as the voltage is applied to the electrode 106, as shown in FIG. 4B, contraction of the muscular tissue 20 in contact with the electrode 106 occurs, and the movable portion 108 is applied. As the muscle contraction is detected, the muscle tissue 20 moves in the direction of muscle fiber travel by tilting in conjunction with the muscle contraction. The movable portion 108 is provided in the vicinity of the electrode 106 and is configured to be movable in the muscle fiber traveling direction of the muscular tissue 20 in accordance with the detection of the contraction of the muscular tissue 20 by applying a voltage to the electrode 106. If it is, it is good also as a structure and installation method of another aspect.
 可動部108は、取り付けた部位から離脱防止するための固定部材112によって固定されている。本実施形態では、固定部材112は、図3に示すように、略U字状断面を有する収縮筋シェル112aと、当該収縮筋シェル112aが可動部108の移動に追随して移動可能にするためのボールジョイント112bと、当該収縮筋シェル112a及び当該ボールジョイント112bを鎖骨に固定するための骨接続プレート112cとから構成される。 The movable part 108 is fixed by a fixing member 112 for preventing separation from the attached site. In the present embodiment, as shown in FIG. 3, the fixing member 112 has a contraction muscle shell 112 a having a substantially U-shaped cross section, and the contraction muscle shell 112 a can move following the movement of the movable portion 108. And the bone connecting plate 112c for fixing the constrictor shell 112a and the ball joint 112b to the clavicle.
 具体的には、収縮筋シェル112aで大胸筋の鎖骨側の離断筋を上方から覆ってから、収縮筋シェル112aがボールジョイント112b及び骨接続プレート112cを介して、鎖骨22に連結される。このため、図4Bに示すように、筋肉組織20の筋収縮による可動部108の移動に追随して、可動部108を取り付けた鎖骨側の離断筋を上方から覆うので、可動部108取り付け部位から外れないようになっている。また、収縮筋シェル112aは、上肢の運動に伴う大胸筋の変位にも追随できるため、体内発電システム100の装着者の上肢の運動を妨げずに、筋肉による体内発電が可能となる。なお、本実施形態では、収縮筋シェル112aの大きさは、25×10×10mm程度とする。 Specifically, the constrictor muscle shell 112a covers the dissecting muscle on the clavicle side of the pectoralis major muscle from above, and then the constrictor muscle shell 112a is connected to the clavicle 22 via the ball joint 112b and the bone connecting plate 112c. . For this reason, as shown in FIG. 4B, following the movement of the movable part 108 due to the muscle contraction of the muscular tissue 20, the dissecting muscle on the side of the clavicle to which the movable part 108 is attached is covered from above. It is designed not to come off. In addition, since the contraction muscle shell 112a can follow the displacement of the greater pectoral muscles accompanying the movement of the upper limb, it is possible to generate power in the body without damaging the movement of the upper limb of the wearer of the in-body power generation system 100. In the present embodiment, the size of the contractile muscle shell 112a is about 25 × 10 × 10 mm.
 また、収縮筋シェル112aの内側には、図4A及び図4Bに示すように、導線105を介して接続される1対の電極106が設けられる。このため、収縮筋シェル112aで可動部108を取り付けた鎖骨側の離断筋を上方から覆うことによって、かかる電極106が当該離断筋における可動部108の近傍に配置されて、電極106からの刺激電流による筋収縮に伴う可動部108の移動が可能となる。 In addition, a pair of electrodes 106 connected via a conductive wire 105 is provided inside the contractile muscle shell 112a as shown in FIGS. 4A and 4B. For this reason, the electrode 106 is arranged in the vicinity of the movable part 108 in the disconnection muscle by covering the disconnection muscle on the clavicle side to which the movable part 108 is attached with the contraction muscle shell 112a from above. The movable part 108 can be moved along with the muscle contraction caused by the stimulation current.
 このように、固定部材112として、収縮筋シェル112a、ボールジョイント112b、及び骨接続プレート112cを設けることによって、電極106と可動部108が所定の部位から外れなくなる。このため、電極106に電圧を印加した際の筋肉組織20の筋収縮による可動部108の移動に伴う直線運動を発電機構104に備わるクランクギア124(図5A参照)に、確実に伝達できる。 As described above, by providing the contraction muscle shell 112a, the ball joint 112b, and the bone connection plate 112c as the fixing member 112, the electrode 106 and the movable portion 108 do not come off from a predetermined part. For this reason, the linear motion accompanying the movement of the movable part 108 due to the muscle contraction of the muscle tissue 20 when a voltage is applied to the electrode 106 can be reliably transmitted to the crank gear 124 (see FIG. 5A) provided in the power generation mechanism 104.
 さらに、電圧を印加する電極106を有する収縮筋シェル112aの内側では、図4A及び図4Bに示すように、筋肉組織20の離断部21の一方の断端面21aと当接する可動部108が連結部108aを介して、ワイヤ110と接続される。ワイヤ110は、樹脂製のホース111内を通って、その他端110aが発電機構104に接続されて、筋収縮力を伝達して、当該発電機構104で発電させる。また、筋肉組織20の離断部21の他方の断端面21bは、収縮筋シェル112aの外側に接続されている。これによって、断端面21b側の筋肉は、収縮筋シェル112a、ボールジョイント112b、及び骨接続プレート112cを介して筋収縮力を鎖骨に伝達して、本来の機能を保持することができる。 Furthermore, inside the contracting muscle shell 112a having the electrode 106 for applying a voltage, as shown in FIGS. 4A and 4B, a movable portion 108 that comes into contact with one end face 21a of the separation portion 21 of the muscle tissue 20 is provided. It is connected to the wire 110 through the connecting portion 108a. The wire 110 passes through the resin hose 111, the other end 110 a is connected to the power generation mechanism 104, transmits muscle contraction force, and the power generation mechanism 104 generates power. The other end face 21b of the separation part 21 of the muscular tissue 20 is connected to the outside of the contraction muscle shell 112a. As a result, the muscle on the stump 21b side can transmit the muscle contraction force to the clavicle via the contraction muscle shell 112a, the ball joint 112b, and the bone connection plate 112c, and can maintain the original function.
 本実施形態では、発電機構104は、電磁誘導方式で発電可能な発電機であり、発電した電力は、図3に示すように、外部出力ライン120を介して、給電対象となる体内植込み型医療機器10に供給される。なお、当該発電機構104の本体サイズは、患者の生体内に取り付ける際に、かかる患者の負担とならない程度の大きさであり、外形寸法が30×30×6mm以内とする。 In the present embodiment, the power generation mechanism 104 is a power generator that can generate power by an electromagnetic induction method, and the generated power is an implantable medical device to be fed via an external output line 120 as shown in FIG. Supplied to the device 10. Note that the main body size of the power generation mechanism 104 is such a size that it does not become a burden on the patient when attached to the living body of the patient, and the outer dimensions are within 30 × 30 × 6 mm.
 また、本実施形態では、体内発電システム100を体内に取り付けた際における取り付け部位の筋肉組織20が癒着するリスクを低減するために、筋肉組織20と直接接触する部位となる可動部108と、発電機構104の本体となるケーシング122(図5A乃至図5C参照)と、固定部材となる収縮筋シェル112a、ボールジョイント112b、及び骨接続プレート112cは、チタン系金属から形成される。本実施形態では、体内発電システム100として、筋肉組織20の筋収縮の変位を利用するので、その弊害事象として、手術後の筋肉組織20の線維化による組織間癒着が考えられる。このため、当該癒着を予防した上で筋収縮の変位を確実に取り出し続けて体内発電を実現するために、可動部108、ケーシング122、及び固定部材112は、生体適合性や耐食性、耐熱性に優れたチタン系金属で形成される。 Moreover, in this embodiment, in order to reduce the risk that the muscular tissue 20 at the attachment site adheres when the in-body power generation system 100 is attached to the body, the movable portion 108 serving as a part that directly contacts the muscular tissue 20, The casing 122 (see FIGS. 5A to 5C) serving as the main body of the mechanism 104, and the contraction muscle shell 112a, the ball joint 112b, and the bone connecting plate 112c serving as fixing members are made of a titanium-based metal. In the present embodiment, since the in-vivo power generation system 100 uses the displacement of muscle contraction of the muscular tissue 20, an adverse event can be considered as inter-tissue adhesion due to fibrosis of the muscular tissue 20 after surgery. For this reason, the movable part 108, the casing 122, and the fixed member 112 have biocompatibility, corrosion resistance, and heat resistance in order to prevent the adhesion and reliably extract the muscle contraction and realize internal power generation. Made of excellent titanium-based metal.
 さらに、本実施形態では、発電機構104が電磁誘導型発電機であるので、電磁波を発生して、給電先となる体内植込み型医療機器10や生体組織への電磁障害を惹起することが懸念される。このため、特に、発電機構104のケーシング122は、電気伝導性や熱伝導性が極めて低いチタン系金属で形成されることが好ましい。なお、ここで言及する「チタン系金属」とは、チタン単体、酸化チタン等のチタン化合物、及びチタンを主成分とするチタン合金等を示す。 Furthermore, in the present embodiment, since the power generation mechanism 104 is an electromagnetic induction generator, there is a concern that electromagnetic waves may be generated to cause electromagnetic interference to the implantable medical device 10 or the living tissue that is a power supply destination. The For this reason, in particular, the casing 122 of the power generation mechanism 104 is preferably formed of a titanium-based metal having extremely low electrical conductivity and thermal conductivity. The “titanium-based metal” referred to here refers to titanium alone, titanium compounds such as titanium oxide, and titanium alloys containing titanium as a main component.
 このように、本実施形態に係る体内発電システム100を生体内に設置することによって、筋肉組織20の周囲の繊維化による収縮性低下を防ぎながら、骨格筋の一部分のみを利用した体内発電を可能として、体内発電に関与しない筋は、元の機能を保持することができる。また、体内で直接発電した電力を医療機器へ直接給電することによって、体内植込み型医療機器10への継続的な電力供給が可能となる。このため、電池交換のための定期的な手術を不要とし、また、非接触型充電をするための外部機器の携行も不要とし、さらに、当該体内発電システム100を体内に取り付けても入浴等の制限が無いので、かかる体内発電システム100を体内に取り付けた患者の生活の質が向上する。 As described above, by installing the in-vivo power generation system 100 according to the present embodiment in the living body, it is possible to perform in-body power generation using only a part of the skeletal muscle while preventing the contractility deterioration due to the fiberization around the muscle tissue 20. As such, muscles that are not involved in in-vivo power generation can retain their original functions. In addition, by directly supplying power generated directly in the body to the medical device, it is possible to continuously supply power to the implantable medical device 10. This eliminates the need for periodic surgery for battery replacement, does not require external equipment to be used for non-contact charging, and even if the internal power generation system 100 is attached to the body, such as bathing. Since there is no restriction, the quality of life of a patient who has such an internal power generation system 100 attached to the body is improved.
 次に、本発明の一実施形態に係る体内発電システムに備わる発電機構の構成について、図面を使用しながら説明する。図5Aは、本発明の一実施形態に係る体内発電システムに備わる発電機構の概略構成を示す平面図、図5Bは、図5AのA-A断面図、図5Cは、図5AのB-B断面図である。 Next, the configuration of the power generation mechanism provided in the in-vivo power generation system according to the embodiment of the present invention will be described with reference to the drawings. FIG. 5A is a plan view showing a schematic configuration of the power generation mechanism provided in the in-vivo power generation system according to the embodiment of the present invention, FIG. 5B is a cross-sectional view along AA in FIG. 5A, and FIG. 5C is a cross-sectional view along BB in FIG. It is sectional drawing.
 本実施形態に係る体内発電システム100に備わる発電機構104は、電磁誘導による起電力を発生させる電磁誘導型発電機である。発電機構104は、図5Aに示すように、略円柱形状のケーシング122内にクランクギア124、ロータ126、及び複数のギア部材128、130、132が設けられている。また、ケーシング122の底面122bに対向するロータ126の下側の一面126aの外縁側には、図5A乃至図5Cに示すように、複数の永久磁石134が所定の間隔で環状に設けられている。そして、ケーシング122の底面122bには、図5B及び図5Cに示すように、導線が巻回されるコイル136がこれらの永久磁石134と対向するように、複数個が環状に設けられている。なお、本実施形態では、ロータ126の一面126aの外縁側に8個の永久磁石134が等間隔で設けられているが、永久磁石134の個数は、8個に限定されない。 The power generation mechanism 104 provided in the in-vivo power generation system 100 according to the present embodiment is an electromagnetic induction generator that generates electromotive force by electromagnetic induction. As shown in FIG. 5A, the power generation mechanism 104 is provided with a crank gear 124, a rotor 126, and a plurality of gear members 128, 130, and 132 in a substantially cylindrical casing 122. Further, as shown in FIGS. 5A to 5C, a plurality of permanent magnets 134 are annularly provided at predetermined intervals on the outer edge side of the lower surface 126 a of the rotor 126 facing the bottom surface 122 b of the casing 122. . As shown in FIG. 5B and FIG. 5C, a plurality of rings are provided on the bottom surface 122 b of the casing 122 so that the coil 136 around which the conductive wire is wound faces these permanent magnets 134. In the present embodiment, eight permanent magnets 134 are provided at equal intervals on the outer edge side of one surface 126a of the rotor 126, but the number of permanent magnets 134 is not limited to eight.
 クランクギア124は、図5Aに示すように、ケーシング122の側壁側に設けられる回転軸124aを中心とする略扇形形状の板状部材であり、クランクギア124の円弧部124bに不図示の歯車が設けられている。また、クランクギア124は、可動部108との接続部材となるワイヤ110の一端110aと接続されているので、可動部108が移動して変位することによって、ワイヤ110を介して、クランクギア124が一方向に引張されて回転軸124aを中心に回転運動をする。このため、クランクギア124は、可動部108の移動に伴う略直線運動を回転運動に変換する機能を有する。 As shown in FIG. 5A, the crank gear 124 is a substantially fan-shaped plate member centering on a rotating shaft 124 a provided on the side wall of the casing 122, and a gear (not shown) is attached to the arc portion 124 b of the crank gear 124. Is provided. Further, the crank gear 124 is connected to one end 110a of the wire 110 serving as a connecting member to the movable portion 108. Therefore, when the movable portion 108 is moved and displaced, the crank gear 124 is moved via the wire 110. It is pulled in one direction and rotates around the rotation axis 124a. For this reason, the crank gear 124 has a function of converting a substantially linear motion accompanying the movement of the movable portion 108 into a rotational motion.
 さらに、ワイヤ110でクランクギア124を引張後に当該クランクギア124を元の位置に戻すために、クランクギア124には、図5Aに示すように、ねじりばね125が回転軸124aに巻着するように設けられている。ねじりばね125は、一端125aがクランクギア124に固着され、他端125bがケーシング122の側面122cに支持されて固定されている。このように、ねじりばね125を設けることによって、筋収縮による可動部108の変位を利用した略直線運動から回転運動への変換を継続的に行えるようになる。このため、永久磁石134を環状に設けたロータ126の回転運動の持続性が向上して、発電機構104での発電が安定するようになる。 Further, in order to return the crank gear 124 to its original position after pulling the crank gear 124 with the wire 110, a torsion spring 125 is wound around the rotating shaft 124a as shown in FIG. 5A. Is provided. The torsion spring 125 has one end 125 a fixed to the crank gear 124 and the other end 125 b supported and fixed to the side surface 122 c of the casing 122. As described above, by providing the torsion spring 125, it is possible to continuously convert from a substantially linear motion to a rotational motion using the displacement of the movable portion 108 due to muscle contraction. For this reason, the sustainability of the rotary motion of the rotor 126 provided with the permanent magnet 134 in an annular shape is improved, and the power generation in the power generation mechanism 104 is stabilized.
 ロータ126は、ギア部材128、130、132を介してクランクギア124による略直線運動から回転運動への変換に連動して、ケーシング122の略中心に設けられる回転軸138を中心に回転する略円盤形状の回転子である。ロータ126の一面126aの外縁側には、ケーシング122の底面122bに対向するように複数の永久磁石134が所定の間隔で設けられている。このため、ロータ126が回転することによって、これら永久磁石134と対向する部位に設けられるコイル136の内側を通過する磁束が変化するので、コイル136には、電磁誘導による起電力が発生する。 The rotor 126 is a substantially disk that rotates about a rotation shaft 138 provided substantially at the center of the casing 122 in conjunction with the conversion from the substantially linear motion to the rotational motion by the crank gear 124 via the gear members 128, 130, and 132. It is a rotor of shape. A plurality of permanent magnets 134 are provided at predetermined intervals on the outer edge side of the one surface 126 a of the rotor 126 so as to face the bottom surface 122 b of the casing 122. For this reason, when the rotor 126 rotates, the magnetic flux passing through the inside of the coil 136 provided at the portion facing the permanent magnet 134 changes, and thus an electromotive force due to electromagnetic induction is generated in the coil 136.
 ギア部材128、130、132は、クランクギア124により変換された回転運動と連動してロータ126の回転速度を増大させる機能を有する。本実施形態では、図5A乃至図5Cに示すように、クランクギア124の円弧部124bと噛合するピニオンギア128、当該ピニオンギア128と回転軸129を共有する第1中間ギア130、及び当該第1中間ギア130と噛合し、ロータ126と回転軸138を共有する第2中間ギア132の3つのギア部材を有する。 The gear members 128, 130, and 132 have a function of increasing the rotational speed of the rotor 126 in conjunction with the rotational motion converted by the crank gear 124. In this embodiment, as shown in FIGS. 5A to 5C, the pinion gear 128 that meshes with the arc portion 124 b of the crank gear 124, the first intermediate gear 130 that shares the rotation shaft 129 with the pinion gear 128, and the first It has three gear members of a second intermediate gear 132 that meshes with the intermediate gear 130 and shares the rotation shaft 138 with the rotor 126.
 そして、クランクギア124、ピニオンギア128、第1中間ギア130、及び第2中間ギア132のギア比がそれぞれ異なるので、クランクギア124により変換された回転運動と連動してロータ126の回転速度を増大させられる。本実施形態では、これらのギアのギア比が異なるため、クランクギア124とピニオンギア128、ピニオンギア128と第1中間ギア130、及び第1中間ギア130と第2中間ギア132の回転速度の比が、それぞれ160:15、1:1、3:1となる。 Since the gear ratios of the crank gear 124, the pinion gear 128, the first intermediate gear 130, and the second intermediate gear 132 are different, the rotational speed of the rotor 126 is increased in conjunction with the rotational motion converted by the crank gear 124. Be made. In the present embodiment, since the gear ratios of these gears are different, the ratio of the rotational speeds of the crank gear 124 and the pinion gear 128, the pinion gear 128 and the first intermediate gear 130, and the first intermediate gear 130 and the second intermediate gear 132. Are 160: 15, 1: 1, and 3: 1, respectively.
 このため、ロータ126の回転速度をクランクギア124により変換された回転運動の回転速度の30倍以上の大きさに高速化される。本実施形態では、体内植込み型医療機器10の駆動に必要な数十μW程度の電力を確保するためには、ロータ126の回転速度を600rpm程度にして高速回転させる必要がある。なお、各ギア124、128、130、132のギア比は、ロータ130の回転速度を所望の大きさにするために、適宜設定されるので、当該各ギア124、128、130、132の回転速度の比は、前述した値に限定されない。 For this reason, the rotational speed of the rotor 126 is increased to 30 times the rotational speed of the rotational motion converted by the crank gear 124. In the present embodiment, in order to secure the power of about several tens of μW necessary for driving the implantable medical device 10, it is necessary to rotate the rotor 126 at a high speed of about 600 rpm. Note that the gear ratios of the gears 124, 128, 130, and 132 are set as appropriate in order to set the rotational speed of the rotor 130 to a desired magnitude. Therefore, the rotational speeds of the gears 124, 128, 130, and 132 are determined. The ratio is not limited to the value described above.
 また、本実施形態では、ロータ126の回転軸138には、図5B及び図5Cに示すように、第2中間ギア132を介してロータ126を一方向のみに回転運動を伝達するワンウェイクラッチ140が設けられている。このように、ワンウェイクラッチ140によってロータ126の回転方向を一方向に制御することによって、電極106に電圧を印加した際の筋肉組織20の収縮による略直線運動をクランクギア124で変換後の回転運動を一方向のみ累積することができる。このため、より確実にロータ126の高速回転状態を維持できるようになる。 Further, in the present embodiment, the one-way clutch 140 that transmits the rotational movement of the rotor 126 in only one direction via the second intermediate gear 132 is provided on the rotating shaft 138 of the rotor 126 as shown in FIGS. 5B and 5C. Is provided. In this way, by controlling the rotation direction of the rotor 126 in one direction by the one-way clutch 140, a substantially linear motion due to the contraction of the muscular tissue 20 when a voltage is applied to the electrode 106 is converted by the crank gear 124. Can be accumulated in only one direction. For this reason, the high-speed rotation state of the rotor 126 can be maintained more reliably.
 このように、本実施形態では、発電機構104において、電極106に電圧を印加した際に発生する筋肉組織20の収縮を検出して、クランクギア124によって略直線運動を回転運動に変換してから、環状に磁石134を設けたロータ126がギア部材128、130、132を介して高速回転させられる。これによって、当該磁石134に対向するコイル136に発生する電磁誘導による起電力が発生するようになる。すなわち、体内発電機として電磁誘導方式の発電機構104を用いることで,発電効率の向上と使用筋肉量の低減を図れるようになる。 As described above, in the present embodiment, the power generation mechanism 104 detects contraction of the muscular tissue 20 that occurs when a voltage is applied to the electrode 106 and converts the substantially linear motion into a rotational motion by the crank gear 124. The rotor 126 provided with the magnet 134 in an annular shape is rotated at high speed via the gear members 128, 130, and 132. As a result, an electromotive force due to electromagnetic induction generated in the coil 136 facing the magnet 134 is generated. That is, by using the electromagnetic induction type power generation mechanism 104 as the internal power generator, it is possible to improve the power generation efficiency and reduce the amount of muscle used.
 なお、ロータ126の高速回転の慣性を高めるために、ロータ126の構成を次に説明する変形例の構成としてもよい。図6A及び図6Bは、本発明の一実施形態に係る体内発電システムに備わる発電機構に設けられるロータの変形例の動作説明図である。 In addition, in order to increase the inertia of the high speed rotation of the rotor 126, the configuration of the rotor 126 may be a configuration of a modified example described below. 6A and 6B are operation explanatory views of a modified example of the rotor provided in the power generation mechanism provided in the in-body power generation system according to the embodiment of the present invention.
 本変形例に係るロータ226は、その内部に中心から放射方向に伸縮可能な弾性部材となるばね227を介して移動可能な重り228が設けられていることを特徴とする。具体的には、図6Aに示すように、ロータ226の内部には、その中心部226aから外縁部226bに向けて放射状に4つの溝部229が形成されて、これらの溝部229の内部に、ばね227を介して放射方向に弾性的に移動可能な重り228が設けられている。 The rotor 226 according to the present modification is characterized in that a weight 228 that can move through a spring 227 that is an elastic member that can expand and contract in the radial direction from the center is provided inside the rotor 226. Specifically, as shown in FIG. 6A, four grooves 229 are formed radially from the center 226 a toward the outer edge 226 b inside the rotor 226, and springs are formed inside these grooves 229. A weight 228 that is elastically movable in the radial direction via 227 is provided.
 ロータ226をこのような構成とすることによって、ロータ226の回転開始時は、ロータ226の回転速度が小さく、重り228に掛かる遠心力がばね227の弾性力よりも小さいので、図6Aに示すように、重り228は、それぞれ中心部226aから近い位置に配置される。その後、ロータ226の回転運動の加速に伴って、遠心力で重り228が外側に移動するので、ロータ226の慣性が大きくなり、惰性回転の始時に慣性が最大となる。 By configuring the rotor 226 in such a configuration, when the rotation of the rotor 226 is started, the rotational speed of the rotor 226 is small, and the centrifugal force applied to the weight 228 is smaller than the elastic force of the spring 227. In addition, the weights 228 are disposed at positions close to the center portion 226a. Thereafter, as the rotational motion of the rotor 226 is accelerated, the weight 228 is moved outward by centrifugal force, so that the inertia of the rotor 226 is increased and the inertia is maximized at the start of inertial rotation.
 すなわち、ロータ226の回転数の増加に応じて、遠心力で重り228が外側に変位するので、ロータ226の回転運動の慣性が増加するようになり、ロータ226の回転数の増加を緩やかにできる。これは、刺激電圧を印加した際に発生する筋肉収縮動作の後半において、収縮速度の増加が緩やかになる特性に即している。このことから、より確実に筋収縮特性に伴う筋収縮エネルギーをロータの回転エネルギーへと変換することができる。このように、ロータ226の慣性を回転数に応じて可変化することによって、筋肉の収縮エネルギーをより多くロータの運動エネルギーとして蓄えられるので、発電機構104における発電量が増加して、発電効率が向上するようになる。 That is, as the rotation speed of the rotor 226 increases, the weight 228 is displaced outward by centrifugal force, so that the inertia of the rotational motion of the rotor 226 increases, and the increase in the rotation speed of the rotor 226 can be moderated. . This is in accordance with the characteristic that the increase in contraction speed becomes gentle in the latter half of the muscle contraction operation that occurs when the stimulation voltage is applied. From this, the muscle contraction energy accompanying the muscle contraction characteristic can be more reliably converted into the rotational energy of the rotor. Thus, by varying the inertia of the rotor 226 in accordance with the rotational speed, more muscle contraction energy can be stored as the kinetic energy of the rotor, so the amount of power generation in the power generation mechanism 104 increases and the power generation efficiency increases. To improve.
 次に、本発明の一実施形態に係る体内発電システムに備わる発電機構の動作について、図面を使用しながら説明する。図7A及び図7Bは、本発明の一実施形態に係る体内発電システムに備わる発電機構の動作説明図である。 Next, the operation of the power generation mechanism provided in the in-vivo power generation system according to the embodiment of the present invention will be described with reference to the drawings. 7A and 7B are operation explanatory views of the power generation mechanism provided in the in-vivo power generation system according to the embodiment of the present invention.
 本実施形態に係る体内発電システム100は、筋肉組織20に電圧を印加して刺激電流を流した際に発生する筋肉組織20の筋収縮による可動部108の変位を利用して、永久磁石134を環状に設けたロータ126を回転させる。そして、当該永久磁石134に対向するコイル136に電磁誘導によって発生する誘導起電力を取り出す。具体的には、筋収縮による可動部108の変位によって、ワイヤ110が引張されるので、クランクギア124が図7Aの位置から図7Bに示す位置に反時計回りに回転運動をする。 The internal power generation system 100 according to the present embodiment uses the displacement of the movable portion 108 due to muscle contraction of the muscular tissue 20 that occurs when a stimulation current is applied by applying a voltage to the muscular tissue 20, and causes the permanent magnet 134 to move. The rotor 126 provided in an annular shape is rotated. Then, an induced electromotive force generated by electromagnetic induction is extracted from the coil 136 facing the permanent magnet 134. Specifically, since the wire 110 is pulled by the displacement of the movable portion 108 due to muscle contraction, the crank gear 124 rotates counterclockwise from the position shown in FIG. 7A to the position shown in FIG. 7B.
 図7Bに示すように、ワイヤ110によって引張されて、クランクギア124が反時計回りに回転運動をすると、クランクギア124の円弧部124bと噛合するピニオンギア128が時計回りで回転運動をする。ピニオンギア128が回転運動をすることによって、当該ピニオンギア128と回転軸129を共有し、ギア比が大きい第1中間ギア130がピニオンギア128と同じ回転速度で時計回りに回転運動するようになる。 As shown in FIG. 7B, when the crank gear 124 is rotated counterclockwise by being pulled by the wire 110, the pinion gear 128 meshing with the arcuate portion 124b of the crank gear 124 rotates clockwise. When the pinion gear 128 rotates, the pinion gear 128 and the rotation shaft 129 are shared, and the first intermediate gear 130 having a large gear ratio rotates clockwise at the same rotation speed as the pinion gear 128. .
 そして、第1中間ギア130が回転運動をすることによって、図7Bに示すように、当該第1中間ギア130と噛合する第2中間ギア132が反時計回りで回転運動するようになる。第2中間ギア132は、ギア比が第1中間ギア130より小さいため、第1中間ギア130より大きい回転速度で回転運動するようになる。その後、図7Bに示すように、第2中間ギア132と回転軸138を共有するロータ126にワンウェイクラッチ140を介して、第2中間ギア132の反時計回りの回転運動が伝達される。このため、ロータ126が第2中間ギア132と同じ回転速度で高速回転するようになる。 Then, as the first intermediate gear 130 rotates, as shown in FIG. 7B, the second intermediate gear 132 that meshes with the first intermediate gear 130 rotates counterclockwise. Since the second intermediate gear 132 has a gear ratio smaller than that of the first intermediate gear 130, the second intermediate gear 132 rotates at a rotational speed higher than that of the first intermediate gear 130. Thereafter, as shown in FIG. 7B, the counterclockwise rotational motion of the second intermediate gear 132 is transmitted to the rotor 126 sharing the rotation shaft 138 with the second intermediate gear 132 via the one-way clutch 140. For this reason, the rotor 126 rotates at a high speed at the same rotational speed as the second intermediate gear 132.
 一方、ワイヤ110を引張後は、ワンウェイクラッチ140によって、ロータ126と第2中間ギア132が切り離されるので、第2中間ギア132からロータ126への回転運動の動力伝達が遮断される。このため、ロータ126は、慣性により回転運動を継続するので、ロータ126の外縁側に設置した永久磁石134と対向するコイル136に引き続き電磁誘導による起電力を発生させられる。また、クランクギア124は、ねじりばね125の復元力によって、図7Aに示す初期位置に移動する。 On the other hand, after pulling the wire 110, the rotor 126 and the second intermediate gear 132 are separated by the one-way clutch 140, so that the power transmission of the rotational motion from the second intermediate gear 132 to the rotor 126 is interrupted. For this reason, since the rotor 126 continues to rotate due to inertia, an electromotive force due to electromagnetic induction can be continuously generated in the coil 136 facing the permanent magnet 134 installed on the outer edge side of the rotor 126. Further, the crank gear 124 moves to the initial position shown in FIG. 7A by the restoring force of the torsion spring 125.
 このように、本実施形態では、ワイヤ110、クランクギア124、ピニオンギア128、第1中間ギア130、第2中間ギア132、及びワンウェイクラッチ140によって、ロータ126に対して筋収縮による可動部108の変位に伴う動力伝達を実行している。また、筋収縮が終了してワイヤ110を引張後は、ワンウェイクラッチ140によって、ロータ126と第2中間ギア132が切り離されるので、可動部108の逆方向への変位による動力伝達を遮断できる。 As described above, in this embodiment, the wire 110, the crank gear 124, the pinion gear 128, the first intermediate gear 130, the second intermediate gear 132, and the one-way clutch 140 are used to move the movable portion 108 due to muscle contraction to the rotor 126. Power transmission accompanying displacement is executed. Further, after the muscle contraction is finished and the wire 110 is pulled, the rotor 126 and the second intermediate gear 132 are separated by the one-way clutch 140, so that the power transmission due to the displacement of the movable portion 108 in the reverse direction can be interrupted.
 このため、刺激電流を流した際に発生する筋肉組織20の筋収縮による可動部108の一方向の変位のみをワイヤ110、クランクギア124、ピニオンギア128、第1中間ギア130、第2中間ギア132、及びワンウェイクラッチ140を介して、ロータ126の回転運動に利用できるようになる。また、ワンウェイクラッチ140を介して、高速回転している第2中間ギア132の回転運動をロータ126に動力伝達することによって、一方向のみの回転運動の動力伝達を累積させられるので、ロータ126の回転運動が慣性によって維持されるようになる。 For this reason, the wire 110, the crank gear 124, the pinion gear 128, the first intermediate gear 130, and the second intermediate gear can only be displaced in one direction due to muscle contraction of the muscle tissue 20 that occurs when a stimulation current is passed. 132 and the one-way clutch 140 can be used for the rotational movement of the rotor 126. Further, by transmitting the rotational motion of the second intermediate gear 132 rotating at high speed to the rotor 126 via the one-way clutch 140, the power transmission of the rotational motion in only one direction can be accumulated. Rotational motion is maintained by inertia.
 このため、電磁誘導によるコイル136の起電力の発生が安定して持続されるようになる。なお、慣性によるロータ126の安定した回転運動を確保するためには、ロータ126の慣性が本実施形態の体内発電システム100に合わせた最適値となるように、ロータ126の材料や形状を決定する。また、第1及び第2中間ギア130、132は、その慣性について耐摩耗性等を考慮しつつ、なるべく慣性が小さくなる材料を選択する。具体的には、ロータ126、第1及び第2中間ギア130、132は、例えば、アルミ等の軽金属又は硬質性の樹脂等で形成される。 For this reason, generation of electromotive force of the coil 136 due to electromagnetic induction is stably maintained. In order to ensure a stable rotational motion of the rotor 126 due to inertia, the material and shape of the rotor 126 are determined so that the inertia of the rotor 126 becomes an optimum value according to the in-body power generation system 100 of the present embodiment. . For the first and second intermediate gears 130 and 132, a material having as small an inertia as possible is selected in consideration of wear resistance and the like. Specifically, the rotor 126 and the first and second intermediate gears 130 and 132 are made of, for example, a light metal such as aluminum or a hard resin.
 なお、本実施形態では、発電機構104は、ワイヤ110の引張によってクランクギア124、ピニオンギア128、第1中間ギア130、第2中間ギア132、及びワンウェイクラッチ140を介して、ロータ126を回転運動させて、電磁誘導によって起電力を発生させているが、発電機構104の構成は、他の態様でも可能である。例えば、カム等の動力伝達機構によって、ワイヤ110の引張による動力を永久磁石が搭載された移動部材に伝達して直線的に往復運動させて、当該永久磁石と対向するコイル136に電磁誘導で起電力を発生させるようにしてもよい。 In the present embodiment, the power generation mechanism 104 rotationally moves the rotor 126 via the crank gear 124, the pinion gear 128, the first intermediate gear 130, the second intermediate gear 132, and the one-way clutch 140 by pulling the wire 110. The electromotive force is generated by electromagnetic induction, but the power generation mechanism 104 may be configured in other manners. For example, a power transmission mechanism such as a cam transmits the power generated by pulling the wire 110 to a moving member on which a permanent magnet is mounted, and linearly reciprocates the coil 136 facing the permanent magnet by electromagnetic induction. Electric power may be generated.
 以上説明したように、本実施形態に係る体内発電システム100では、体内で発電させた電力を体内植込み型医療機器10へ直接給電するため、定期的な電池交換のための手術や、非接触式給電をするための外部機器の携行等を不要とする。このため、患者への身体的負担を軽減した上で、より確実に体内植込み型医療機器10への継続的な給電が実現される。 As described above, in the in-vivo power generation system 100 according to the present embodiment, the power generated in the body is directly supplied to the in-vivo implantable medical device 10, so that surgery for periodic battery replacement or non-contact type is possible. Eliminates the need to carry external equipment to supply power. For this reason, while reducing the physical burden on the patient, continuous power supply to the implantable medical device 10 is more reliably realized.
 また、電気刺激によって筋肉組織10の収縮を発生させて、その収縮力・収縮変位を利用して電磁誘導方式の発電機構104を駆動して、体内植込み型医療機器10への給電用の電力を確保する。具体的には、刺激電圧の印加によって2~3cm程度の筋肉に収縮が発生した場合に、可動部108及びワイヤ110のストロークが3mm程度でも、発電機構104に設けられるロータ126を600rpm程度に高速回転させることによって、ペースメーカやICD等の体内植込み型医療機器10の駆動に必要な数十μW程度の電力を確保できる。 Further, contraction of the muscular tissue 10 is generated by electrical stimulation, and the electromagnetic induction type power generation mechanism 104 is driven using the contraction force and contraction displacement to supply power for power supply to the in-vivo implantable medical device 10. Secure. Specifically, when contraction occurs in a muscle of about 2 to 3 cm by applying a stimulation voltage, the rotor 126 provided in the power generation mechanism 104 is driven at a high speed of about 600 rpm even if the stroke of the movable unit 108 and the wire 110 is about 3 mm. By rotating, it is possible to secure a power of about several tens of μW necessary for driving the implantable medical device 10 such as a pacemaker or ICD.
 このため、筋肉組織20を高周波・高頻度で収縮しなくても、比較的コンパクトで高効率な発電が可能となり、体内発電をさせる際における使用筋肉量の低減が図れる。すなわち、大きな筋肉の一部分のみを利用して、それ以外の部分の機能が保持されるので、使用筋肉量の低減による人体への負荷が減少する。 For this reason, even if the muscle tissue 20 is not contracted at high frequency and high frequency, relatively compact and highly efficient power generation is possible, and the amount of muscle used when generating power in the body can be reduced. That is, since only the part of the large muscle is used and the function of the other part is maintained, the load on the human body due to the reduction in the amount of muscle used is reduced.
 さらに、発電機構104の設計次第で同一の仕事に対する筋肉組織20の収縮変位と収縮力を調節できる。すなわち,同じ10μWの仕事(=収縮変位×収縮力)を筋肉にさせる場合に、筋疲労が発生しにくい変位と力のバランスを設定することができる。 Furthermore, depending on the design of the power generation mechanism 104, the contraction displacement and contraction force of the muscle tissue 20 for the same work can be adjusted. That is, when the same 10 μW work (= contraction displacement × contraction force) is applied to the muscle, it is possible to set a balance between the displacement and the force that hardly cause muscle fatigue.
(第2の実施形態)
 次に、本発明の他の一実施形態に係る体内発電システムに備わる発電機構の構成について、図面を使用しながら説明する。図8Aは、本実施形態の体内発電システムに備わる発電機構の斜視図であり、図8Bは、本実施形態の体内発電システムに備わる発電機構に設けられるロータの一面側からの斜視図であり、図8Cは、本実施形態の体内発電システムに備わる発電機構に設けられる起電側電極の斜視図である。なお、図8Aでは、発電機構の各構成要素を説明するために、ケーシングの天板が外された状態を示している。
(Second Embodiment)
Next, the configuration of the power generation mechanism provided in the in-vivo power generation system according to another embodiment of the present invention will be described with reference to the drawings. FIG. 8A is a perspective view of a power generation mechanism provided in the in-body power generation system of the present embodiment, and FIG. 8B is a perspective view from one side of a rotor provided in the power generation mechanism provided in the in-body power generation system of the present embodiment. FIG. 8C is a perspective view of the electromotive side electrode provided in the power generation mechanism provided in the in-body power generation system of the present embodiment. FIG. 8A shows a state in which the top plate of the casing is removed in order to explain each component of the power generation mechanism.
 本実施形態に係る体内発電システムに備わる発電機構304は、静電誘導による起電力を発生させる静電誘導型発電機である。本実施形態では、発電機構304は、筋肉組織に電気刺激を与えた際の筋収縮に伴って移動する可動部108(図1参照)がワイヤ310を引張して、当該ワイヤ310と接続された発電機構304に備わる起電側電極336に静電誘導による起電力を発生させることを特徴とする。 The power generation mechanism 304 provided in the in-vivo power generation system according to the present embodiment is an electrostatic induction generator that generates an electromotive force by electrostatic induction. In the present embodiment, the power generation mechanism 304 is connected to the wire 310 by pulling the wire 310 by the movable portion 108 (see FIG. 1) that moves along with muscle contraction when electrical stimulation is applied to the muscle tissue. An electromotive force is generated by electrostatic induction in the electromotive side electrode 336 provided in the power generation mechanism 304.
 発電機構304は、図8Aに示すように、略円柱形状のケーシング322内にクランクギア324、ロータ326、及び回転ギア部材332が設けられている。ケーシング322の底面322bに対向するロータ326の一面326aの外縁側には、図8Bに示すように、複数の電極部材334が所定の間隔で環状に設けられている。そして、ケーシング322の底面322bには、図8A及び図8Cに示すように、起電側電極336がこれらの電極部材334と対向するように、複数個が環状に設けられている。 As shown in FIG. 8A, the power generation mechanism 304 is provided with a crank gear 324, a rotor 326, and a rotation gear member 332 in a substantially cylindrical casing 322. As shown in FIG. 8B, a plurality of electrode members 334 are annularly provided at predetermined intervals on the outer edge side of one surface 326a of the rotor 326 facing the bottom surface 322b of the casing 322. As shown in FIGS. 8A and 8C, a plurality of rings are provided on the bottom surface 322 b of the casing 322 so that the electromotive side electrode 336 faces these electrode members 334.
 電極部材334は、銅等の導電体やフッ素樹脂膜等の荷電体からなるエレクトレットから構成される。電極部材334が銅等の導電体で構成される場合には、静電誘導で発電するためには、電極部材334に電圧を与えておく必要があるので、発電機構304は、例えば、ロータ326に設置したスリップリングと、ステータに設置したブラシを介して電極部材334に電圧を与えるように構成される。 The electrode member 334 is composed of an electret made of a conductor such as copper or a charged body such as a fluororesin film. When the electrode member 334 is made of a conductor such as copper, it is necessary to apply a voltage to the electrode member 334 in order to generate electricity by electrostatic induction. A voltage is applied to the electrode member 334 via a slip ring installed on the stator and a brush installed on the stator.
 クランクギア324は、図8Aに示すように、ケーシング322の側壁側に設けられる回転軸324aを中心とする略扇形形状の板状部材であり、クランクギア324の円弧部324bに歯車324b1が設けられている。また、クランクギア324は、可動部108との接続部材となるワイヤ310の一端310aと接続されているので、可動部108が移動して変位することによって、ワイヤ310を介して、クランクギア324が一方向に引張されて回転軸324aを中心に回転運動をする。このため、クランクギア324は、可動部108の移動に伴う略直線運動を回転運動に変換する機能を有する。 As shown in FIG. 8A, the crank gear 324 is a substantially fan-shaped plate member centering on a rotating shaft 324 a provided on the side wall side of the casing 322, and a gear 324 b 1 is provided on an arc portion 324 b of the crank gear 324. ing. Further, since the crank gear 324 is connected to one end 310a of the wire 310 serving as a connecting member to the movable portion 108, the crank gear 324 is moved via the wire 310 when the movable portion 108 is moved and displaced. It is pulled in one direction and rotates around the rotation shaft 324a. For this reason, the crank gear 324 has a function of converting a substantially linear motion accompanying the movement of the movable portion 108 into a rotational motion.
 さらに、ワイヤ310でクランクギア324を引張後に当該クランクギア324を元の位置に戻すために、クランクギア324には、図8Aに示すように、ねじりばね325が回転軸324aに巻着するように設けられている。ねじりばね325は、一端325aがクランクギア324に固着され、他端325bがケーシング322の側面322cに支持されて固定されている。このように、ねじりばね325を設けることによって、筋収縮による可動部108の変位を利用した略直線運動から回転運動への変換を継続的に行えるようになる。このため、電極部材334を環状に設けたロータ326の回転運動の持続性が向上して、発電機構304での発電が安定するようになる。 Further, in order to return the crank gear 324 to its original position after pulling the crank gear 324 with the wire 310, as shown in FIG. 8A, a torsion spring 325 is wound around the rotary shaft 324a. Is provided. The torsion spring 325 has one end 325 a fixed to the crank gear 324 and the other end 325 b supported and fixed to the side surface 322 c of the casing 322. As described above, by providing the torsion spring 325, it is possible to continuously convert from a substantially linear motion to a rotational motion using the displacement of the movable portion 108 due to muscle contraction. For this reason, the sustainability of the rotational motion of the rotor 326 provided with the electrode member 334 in an annular shape is improved, and the power generation by the power generation mechanism 304 is stabilized.
 ロータ326は、回転ギア部材332を介してクランクギア324による略直線運動から回転運動への変換に連動して、ケーシング322の略中心に設けられる回転軸338を中心に回転する略円盤形状の回転子である。ロータ326の下側の一面326aの外縁側には、ケーシング322の底面322bに対向するように複数の電極部材334が所定の間隔で設けられている。このため、ロータ326が回転することによって、これらの電極部材334と起電側電極336との間の静電容量が変化して、静電誘導により起電側電極336に電流が流れて起電力が発生する。 The rotor 326 rotates in a substantially disk shape that rotates about a rotation shaft 338 provided at a substantially center of the casing 322 in conjunction with the conversion from the substantially linear motion to the rotational motion by the crank gear 324 via the rotation gear member 332. It is a child. A plurality of electrode members 334 are provided at predetermined intervals on the outer edge side of the lower surface 326a of the rotor 326 so as to face the bottom surface 322b of the casing 322. For this reason, when the rotor 326 rotates, the capacitance between the electrode member 334 and the electromotive side electrode 336 changes, and an electric current flows through the electromotive side electrode 336 due to electrostatic induction, thereby generating an electromotive force. Occurs.
 回転ギア部材332は、ロータ326と回転軸338を共有して、クランクギア324により変換された回転運動をロータ326の回転軸338に伝達する機能を有する。本実施形態では、回転ギア部材332は、図8Aに示すように、クランクギア324の円弧部324bの歯車324b1と噛合して、クランクギア324により変換された回転運動をロータ326の回転軸338に伝達する。 The rotating gear member 332 shares the rotor 326 and the rotating shaft 338 and has a function of transmitting the rotating motion converted by the crank gear 324 to the rotating shaft 338 of the rotor 326. In this embodiment, as shown in FIG. 8A, the rotating gear member 332 meshes with the gear 324b1 of the arc portion 324b of the crank gear 324, and the rotating motion converted by the crank gear 324 is applied to the rotating shaft 338 of the rotor 326. introduce.
 なお、本実施形態では、クランクギア324により変換された回転運動が回転ギア部材332を介して、ロータ326の回転軸338に伝達されるが、第1の実施形態のように、ギア比の異なる複数のギア部材を介することによって、クランクギア324により変換された回転運動が回転ギア部材332を介して、ロータ326の回転軸338を高速回転させるように伝達可能な構成にしてもよい。 In this embodiment, the rotary motion converted by the crank gear 324 is transmitted to the rotary shaft 338 of the rotor 326 via the rotary gear member 332, but the gear ratio is different as in the first embodiment. By using a plurality of gear members, the rotational motion converted by the crank gear 324 may be transmitted via the rotating gear member 332 so as to rotate the rotating shaft 338 of the rotor 326 at a high speed.
 また、第1の実施形態と同様に、より確実にロータ326の高速回転状態を維持可能とするために、ロータ326の回転軸338には、回転ギア部材332を介してロータ326を一方向のみに回転運動を伝達するワンウェイクラッチを設けて、ロータ326の回転方向を一方向に制御するようにしてもよい。 Further, similarly to the first embodiment, in order to more reliably maintain the high-speed rotation state of the rotor 326, the rotor 326 is attached to the rotation shaft 338 of the rotor 326 only in one direction via the rotation gear member 332. A one-way clutch that transmits rotational motion may be provided to control the rotational direction of the rotor 326 in one direction.
 このように、本実施形態では、発電機構304において、電極106(図1参照)に電圧を印加した際に発生する筋肉組織20の収縮を検出して、クランクギア324によって略直線運動を回転運動に変換してから、環状に電極部材334を設けたロータ326が回転ギア部材332を介して高速回転させられる。これによって、当該電極部材334に対向する起電側電極336に静電誘導による起電力が発生するようになる。すなわち、体内発電機として静電誘導方式の発電機構304を用いることで,発電効率の向上と使用筋肉量の低減を図れるようになる。 As described above, in the present embodiment, the power generation mechanism 304 detects contraction of the muscular tissue 20 that occurs when a voltage is applied to the electrode 106 (see FIG. 1), and the crank gear 324 rotates the substantially linear motion. Then, the rotor 326 provided with the electrode member 334 in a ring shape is rotated at high speed via the rotating gear member 332. Thus, an electromotive force is generated in the electromotive side electrode 336 facing the electrode member 334 by electrostatic induction. That is, by using the electrostatic induction type power generation mechanism 304 as the internal power generator, it is possible to improve the power generation efficiency and reduce the amount of muscle used.
 なお、本実施形態では、発電機構304は、ワイヤ310の引張によってクランクギア324及び回転ギア部材332を介して、ロータ326を回転運動させて、静電誘導によって起電力を発生させているが、発電機構304の構成は、他の態様でも可能である。例えば、カム等の動力伝達機構によって、ワイヤ310の引張による動力を電極部材が搭載された移動部材に伝達して直線的に往復運動させて、当該電極部材と対向する起電側電極336に静電誘導で起電力を発生させるようにしてもよい。 In the present embodiment, the power generation mechanism 304 rotates the rotor 326 via the crank gear 324 and the rotating gear member 332 by pulling the wire 310, and generates an electromotive force by electrostatic induction. The configuration of the power generation mechanism 304 is possible in other modes. For example, a power transmission mechanism such as a cam transmits the power generated by pulling the wire 310 to the moving member on which the electrode member is mounted and linearly reciprocates the static electricity to the electromotive side electrode 336 facing the electrode member. An electromotive force may be generated by electric induction.
 次に、本発明の他の一実施形態に係る体内発電システムに備わる発電機構の動作について、図面を使用しながら説明する。図9A及び図9Bは、本発明の他の一実施形態に係る体内発電システムに備わる発電機構の動作説明図である。 Next, the operation of the power generation mechanism provided in the in-vivo power generation system according to another embodiment of the present invention will be described with reference to the drawings. 9A and 9B are operation explanatory views of the power generation mechanism provided in the in-vivo power generation system according to another embodiment of the present invention.
 本実施形態では、発電機構304は、図9Aに示すように、筋肉組織に電極を介して電圧を印加することによって発生する筋収縮力により回転移動する移動体となるロータ326の一面側に、銅等の導電体からなる複数の電極部材334が設けられている。また、ロータ326側には、銅等の導電体からなる電極部材334を高電位にするために電圧を印加する移動体側電源350が設けられている。 In the present embodiment, as shown in FIG. 9A, the power generation mechanism 304 is provided on one surface side of a rotor 326 that is a moving body that rotates and moves by muscle contraction force generated by applying a voltage to muscle tissue via an electrode. A plurality of electrode members 334 made of a conductor such as copper are provided. Further, on the rotor 326 side, a moving body side power source 350 for applying a voltage in order to set the electrode member 334 made of a conductor such as copper to a high potential is provided.
 一方、電極部材334と対向する位置、すなわち、ケーシング底面322bには、銅等の導電体からなり、静電誘導による起電力を発生させる複数の起電側電極336が設けられる。そして、これら起電側電極336は、充電回路となる二次電池316に接続されている。 On the other hand, a plurality of electromotive side electrodes 336 made of a conductor such as copper and generating electromotive force by electrostatic induction are provided at a position facing the electrode member 334, that is, the casing bottom surface 322b. These electromotive side electrodes 336 are connected to a secondary battery 316 serving as a charging circuit.
 発電機構304をかかる構成とすることによって、筋肉組織に電極を介して電圧を印加することによって発生する筋収縮に伴ってロータ326が回転運動すると、電極部材334と起電側電極336との間の静電容量が変化して、静電誘導により起電側電極336に電流が流れて起電力が発生する。このようにして、電気刺激によって筋肉組織の収縮を発生させて、その収縮力・収縮変位を利用して静電誘導方式の発電機構304を駆動して、体内植込み型医療機器10への給電用の電力を確保できるようになる。 When the power generation mechanism 304 is configured as described above, when the rotor 326 rotates and moves due to muscle contraction generated by applying a voltage to the muscle tissue via the electrode, the electrode member 334 and the electromotive side electrode 336 are interposed. , And a current flows through the electromotive side electrode 336 due to electrostatic induction to generate an electromotive force. In this way, contraction of muscle tissue is generated by electrical stimulation, and the electrostatic induction type power generation mechanism 304 is driven using the contraction force and contraction displacement to supply power to the implantable medical device 10. It will be possible to secure the power.
 また、本実施形態の静電誘導方式の発電機構404として、図9Bに示すように、ロータ426の一面側に設けられる複数の電極部材434として、半永久的に電気分極を自ら保持し、周囲に電界を形成可能なフッ素樹脂膜等の荷電体からなるエレクトレットで形成されたものを使用してもよい。電極部材434として、エレクトレットで形成されたものを使用すると、半永久的に電荷が保持されるので、図9Aの発電機構304のような移動体側電源350が不要となるので、発電機構404の小型化が実現できる。 Further, as shown in FIG. 9B, as the electrostatic induction type power generation mechanism 404 of the present embodiment, as a plurality of electrode members 434 provided on one surface side of the rotor 426, the electric polarization is held semipermanently and is surrounded by the surroundings. You may use what was formed with the electret which consists of charged bodies, such as a fluororesin film | membrane which can form an electric field. If an electrode member 434 formed of an electret is used, the electric charge is held semi-permanently, so that the moving body side power source 350 like the power generation mechanism 304 in FIG. Can be realized.
 一方、電極部材434と対向する位置、すなわち、ケーシング底面422bには、銅等の導電体からなり、静電誘導による起電力を発生させる複数の起電側電極436が設けられる。そして、これら起電側電極436は、充電回路となる二次電池416に接続されている。 On the other hand, a plurality of electromotive side electrodes 436 made of a conductor such as copper and generating electromotive force by electrostatic induction are provided at a position facing the electrode member 434, that is, the casing bottom surface 422b. These electromotive side electrodes 436 are connected to a secondary battery 416 serving as a charging circuit.
 発電機構404をかかる構成とすることによって、筋肉組織に電極を介して電圧を印加することによって発生する筋収縮に伴ってロータ326が回転運動することによって、電極部材334と起電側電極336との間の静電容量が変化して、静電誘導により起電側電極336に電流が流れて起電力が発生する。このようにして、電気刺激によって筋肉組織の収縮を発生させて、その収縮力・収縮変位を利用して静電誘導方式の発電機構304を駆動して、体内植込み型医療機器10への給電用の電力を確保できるようになる。 By configuring the power generation mechanism 404 as described above, the rotor 326 rotates in accordance with muscle contraction generated by applying a voltage to the muscle tissue via the electrode, so that the electrode member 334 and the electromotive side electrode 336 The electrostatic capacity changes between the two, and a current flows through the electromotive side electrode 336 due to electrostatic induction to generate an electromotive force. In this way, contraction of muscle tissue is generated by electrical stimulation, and the electrostatic induction type power generation mechanism 304 is driven using the contraction force and contraction displacement to supply power to the implantable medical device 10. It will be possible to secure the power.
 このように、電気刺激によって筋肉組織10の収縮を発生させて、その収縮力・収縮変位を利用して静電誘導方式の発電機構304、404を駆動して、体内植込み型医療機器10への給電用の電力を確保することができる。具体的には、刺激電圧の印加によって2~3cm程度の筋肉に収縮が発生した場合に、可動部108及びワイヤ310のストロークが3mm程度でも、発電機構304、404に設けられるロータ326、426を600rpm程度に高速回転させることによって、ペースメーカやICD等の体内植込み型医療機器10の駆動に必要な数十μW程度の電力を確保できるようになる。 In this way, contraction of the muscular tissue 10 is generated by electrical stimulation, and the electrostatic induction type power generation mechanisms 304 and 404 are driven using the contraction force and contraction displacement, so that the implantable medical device 10 can be applied. Electric power for power supply can be secured. Specifically, when contraction occurs in a muscle of about 2 to 3 cm due to application of a stimulation voltage, the rotors 326 and 426 provided in the power generation mechanisms 304 and 404 are installed even if the stroke of the movable unit 108 and the wire 310 is about 3 mm. By rotating at a high speed of about 600 rpm, it is possible to secure a power of about several tens of μW necessary for driving the implantable medical device 10 such as a pacemaker or ICD.
 このため、電磁誘導型の発電機構104と同様に、筋肉組織20を高周波・高頻度で収縮しなくても、比較的コンパクトで高効率な発電が可能となり、体内発電をさせる際における使用筋肉量の低減が図れる。すなわち、大きな筋肉の一部分のみを利用して、それ以外の部分の機能が保持されるので、使用筋肉量の低減による人体への負荷を減少させる。また、発電機構304、404の設計次第で同一の仕事に対する筋肉組織20の収縮変位と収縮力を調節できるので、同じ10μWの仕事(=収縮変位×収縮力)を筋肉にさせる場合に、筋疲労が発生しにくい変位と力のバランスを設定できるようになる。 Therefore, similarly to the electromagnetic induction type power generation mechanism 104, relatively compact and highly efficient power generation is possible without contracting the muscular tissue 20 with high frequency and high frequency, and the amount of muscle used when generating power in the body. Can be reduced. That is, since only the part of the large muscle is used and the function of the other part is maintained, the load on the human body due to the reduction in the amount of muscle used is reduced. Further, since the contraction displacement and contraction force of the muscle tissue 20 for the same work can be adjusted depending on the design of the power generation mechanisms 304 and 404, muscle fatigue is caused when the same 10 μW work (= contraction displacement × contraction force) is applied to the muscle. It becomes possible to set the balance between displacement and force that are difficult to generate.
 また、本実施形態では、静電誘導型の発電機構304、404によって、起電側電極336、436に起電力を発生させている。静電誘導型の発電機構304、404は、前述した本発明の一実施形態に係る体内発電システム100における電磁誘導型の発電機構104と比べて、図10に示すように、発電機構の寸法dとロータ等の移動体の移動速度vとの積が小さい場合には、発電量pが大きいことが分かる。このことから、静電誘導型の発電機構304、404は、電磁誘導型の発電機構104と比べて、小型化、低速化に有利なことが分かる。 In this embodiment, the electromotive force is generated in the electromotive side electrodes 336 and 436 by the electrostatic induction type power generation mechanisms 304 and 404. As shown in FIG. 10, the electrostatic induction power generation mechanisms 304 and 404 have a dimension d of the power generation mechanism as compared to the electromagnetic induction power generation mechanism 104 in the in-vivo power generation system 100 according to the embodiment of the present invention described above. When the product of the moving speed v of the moving body such as the rotor is small, it can be seen that the power generation amount p is large. From this, it can be seen that the electrostatic induction type power generation mechanisms 304 and 404 are more advantageous for downsizing and speed reduction than the electromagnetic induction type power generation mechanism 104.
 さらに、発電機構を同じ大きさとした場合に、電磁誘導型の発電機構104では、発電ユニットとなる磁石134とコイル136がそれぞれ数個~数十個程度の極数が設置されるのに対して、静電誘導型の発電機構304、404では、発電ユニットとなる電極部材334、434と起電側電極336、436をそれぞれ細分化して、100個以上の極数を設置することができる。すなわち、電磁誘導型の発電機構104と比べて、静電誘導型の発電機構304、404は、多極化が容易に実現できるので、装置本体の小型化、低速度化が可能となる。特に、電極部材434をエレクトレットで形成した場合には、発電機構404を小型化及び低速化させても、効率的に所定の大きさ以上の発電量を確保できるようになる。 Furthermore, when the power generation mechanism is the same size, in the electromagnetic induction power generation mechanism 104, the magnet 134 and the coil 136 serving as a power generation unit are each provided with several to several tens of poles. In the electrostatic induction power generation mechanisms 304 and 404, the electrode members 334 and 434 and the electromotive side electrodes 336 and 436, which are power generation units, can be subdivided, and 100 or more poles can be installed. That is, as compared with the electromagnetic induction type power generation mechanism 104, the electrostatic induction type power generation mechanisms 304 and 404 can easily realize multipolarization, and thus the apparatus main body can be reduced in size and speed. In particular, when the electrode member 434 is formed of an electret, even if the power generation mechanism 404 is reduced in size and speed, it is possible to efficiently secure a power generation amount of a predetermined size or more.
 また、電磁誘導型の発電機構104と比べて、静電誘導型の発電機構304、404は、寸法dや速度vが大きくした場合には、発電量pは、劣るものの、1つあたりの装置本体の大きさの小型化が図れる。このため、複数個の発電機構304、404を連結して、発電量pの合計値を大きして、総発電量を増加させることが容易に実現できる。 Further, compared with the electromagnetic induction type power generation mechanism 104, the electrostatic induction type power generation mechanisms 304 and 404 have a power generation amount p which is inferior when the dimension d and the speed v are increased, but each device. The size of the main body can be reduced. For this reason, it is possible to easily realize the increase of the total power generation amount by connecting the plurality of power generation mechanisms 304 and 404 to increase the total value of the power generation amount p.
 例えば、図11に示すように、発電機構504を移動体526側に設けられる電極部材534と、ケーシング522側に設けられる起電側電極536による発電ユニット538が複数設けられる多層構造とすることによって、充電回路となる二次電池516への総発電量を増加させられる。すなわち、1つの発電ユニット538での発生電力が少量な場合でも、複数ユニットを連結することによって、所定の大きさ以上の電力を発生させることができるようになる。 For example, as shown in FIG. 11, the power generation mechanism 504 has a multilayer structure in which a plurality of power generation units 538 are provided by an electrode member 534 provided on the moving body 526 side and an electromotive side electrode 536 provided on the casing 522 side. The total power generation amount to the secondary battery 516 serving as a charging circuit can be increased. That is, even when a small amount of power is generated by one power generation unit 538, it is possible to generate power of a predetermined magnitude or more by connecting a plurality of units.
 本実施形態の発電機構504は、移動体526の往復運動によって、起電側電極536に静電誘導による起電力を発生させる発電ユニット538となっているが、移動体526の回転運動によって、起電側電極536に静電誘導による起電力を発生させる構成としてもよい。また、本実施形態における多層構造の発電機構504は、小型化が可能な静電誘導型の方が実現し易いものとなっているが、発電ユニット538を複数の磁石とコイルによる電磁誘導型の場合でも、実現可能である。 The power generation mechanism 504 of this embodiment is a power generation unit 538 that generates electromotive force by electrostatic induction in the electromotive side electrode 536 by reciprocating movement of the moving body 526. A configuration may be adopted in which an electromotive force is generated by electrostatic induction in the electric side electrode 536. In addition, the multi-layered power generation mechanism 504 in this embodiment is more easily realized by the electrostatic induction type that can be reduced in size, but the power generation unit 538 is an electromagnetic induction type that includes a plurality of magnets and coils. Even if it is feasible.
 なお、上記のように本発明の各実施形態について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although each embodiment of the present invention has been described in detail as described above, it is easily understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. It will be possible. Therefore, all such modifications are included in the scope of the present invention.
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、体内発電システムの構成、動作も本発明の各実施形態で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described together with a different term having a broader meaning or the same meaning at least once in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. Further, the configuration and operation of the internal power generation system are not limited to those described in the embodiments of the present invention, and various modifications can be made.
10 体内植込み型医療機器、20 筋肉組織、100 体内発電システム、104、304、404、504 発電機構、105 導線、106 電極、108 可動部、110、310 ワイヤ(接続部材)、112 固定部材、112a 収縮筋シェル、112b ボールジョイント、112c 骨接続プレート、114 整流回路、116、316、416、516 二次電池、118 制御部、120 外部出力ライン、122、322,522 ケーシング、122b、322b、422b 底面、124、324 クランクギア、124a、324a 回転軸、124b、324b 円弧部、125、325 ねじりばね、126、226、326 ロータ、126a、326a 一面、128 ピニオンギア(ギア部材)、130 第1中間ギア(ギア部材)、132 第2中間ギア(ギア部材)、134 永久磁石(磁石)、136 コイル、138、338 回転軸、140 ワンウェイクラッチ、227 ばね(弾性部材)、228 重り、229 溝部、332 回転ギア部材、334、434、534 電極部材、336、436、536 起電側電極 10 implantable medical device, 20 muscle tissue, 100 in-vivo power generation system, 104, 304, 404, 504 power generation mechanism, 105 lead, 106 electrode, 108 movable part, 110, 310 wire (connection member), 112 fixed member, 112a Contractor muscle shell, 112b ball joint, 112c bone connection plate, 114 rectifier circuit, 116, 316, 416, 516 secondary battery, 118 control unit, 120 external output line, 122, 322, 522 casing, 122b, 322b, 422b bottom , 124, 324 crank gear, 124a, 324a rotating shaft, 124b, 324b arc portion, 125, 325 torsion spring, 126, 226, 326 rotor, 126a, 326a one side, 128 pinion gear (gear member), 30 1st intermediate gear (gear member), 132 2nd intermediate gear (gear member), 134 permanent magnet (magnet), 136 coil, 138, 338 rotating shaft, 140 one-way clutch, 227 spring (elastic member), 228 weight, 229 Groove part, 332 Rotating gear member, 334, 434, 534 Electrode member, 336, 436, 536 Electromotive side electrode

Claims (10)

  1.  生体内に設けられ、体内植込み型医療機器に供給する電力を発生させる体内発電システムであって、
     前記生体内の所定の部位における筋肉組織に電圧を印加可能に設けられる電極と、
     前記電極への前記電圧の印加による前記筋肉組織の収縮の検出に伴い所定の方向に移動可能に設けられる可動部と、
     前記可動部の移動に伴って起電力を発生させる発電機構と、
     前記電極に印加する前記電圧を制御する制御部と、を備えることを特徴とする体内発電システム。
    An in-vivo power generation system that is provided in a living body and generates electric power to be supplied to an implantable medical device,
    An electrode provided to be able to apply a voltage to muscle tissue at a predetermined site in the living body;
    A movable portion provided to be movable in a predetermined direction in accordance with detection of contraction of the muscle tissue by application of the voltage to the electrode;
    A power generation mechanism for generating an electromotive force with the movement of the movable part;
    And a control unit that controls the voltage applied to the electrode.
  2.  前記発電機構で発生させた電力を蓄電する二次電池を更に備えることを特徴とする請求項1に記載の体内発電システム。 The in-body power generation system according to claim 1, further comprising a secondary battery that stores electric power generated by the power generation mechanism.
  3.  前記発電機構は、
     ケーシングと、
     前記接続部材と接続され、前記可動部の略直線運動を回転運動に変換するクランクギアと、
     前記クランクギアの前記略直線運動から前記回転運動への変換に連動して回転するロータと、
     前記ロータの一面の外縁側に前記ケーシングの底面に対向するように環状に設けられる複数の磁石又は電極部材と、
     前記ケーシングの底面側の前記磁石又は前記電極部材と対向する部位に環状に設けられる複数のコイル又は起電側電極と、を備えることを特徴とする請求項1又は2に記載の体内発電システム。
    The power generation mechanism is
    A casing,
    A crank gear connected to the connection member and converting a substantially linear motion of the movable portion into a rotational motion;
    A rotor that rotates in conjunction with conversion of the crank gear from the substantially linear motion to the rotational motion;
    A plurality of magnets or electrode members provided in an annular shape on the outer edge side of one surface of the rotor so as to face the bottom surface of the casing;
    3. The in-vivo power generation system according to claim 1, further comprising: a plurality of coils or electromotive side electrodes provided in a ring shape at a portion facing the magnet or the electrode member on the bottom surface side of the casing.
  4.  前記電極部材は、エレクトレットで形成されることを特徴とする請求項3に記載の体内発電システム。 The in-vivo power generation system according to claim 3, wherein the electrode member is formed of an electret.
  5.  前記発電機構は、前記複数の磁石と前記コイル、又は前記電極部材と前記起電側電極による発電ユニットが複数設けられる多層構造であることを特徴とする請求項3又は4に記載の体内発電システム。 5. The in-vivo power generation system according to claim 3, wherein the power generation mechanism has a multilayer structure in which a plurality of power generation units including the plurality of magnets and the coils, or the electrode member and the electromotive side electrode are provided. .
  6.  前記クランクギアにより変換された前記回転運動と連動して、前記ロータの回転速度を増大させる複数のギア部材を更に備えることを特徴とする請求項3に記載の体内発電システム。 The in-vivo power generation system according to claim 3, further comprising a plurality of gear members that increase the rotational speed of the rotor in conjunction with the rotational movement converted by the crank gear.
  7.  前記ロータの回転軸には、前記複数のギア部材のうちの一のギア部材を介して前記ロータを一方向のみに前記回転運動を伝達するワンウェイクラッチが設けられることを特徴とする請求項6に記載の体内発電システム。 The one-way clutch which transmits the said rotational movement to the said rotor only to one direction via one gear member of the said several gear members is provided in the rotating shaft of the said rotor. The in-vivo power generation system described.
  8.  前記ロータの内部には、該ロータの中心から放射方向に伸縮可能な弾性部材を介して移動可能な重りが設けられていることを特徴とする請求項1乃至7の何れか1項に記載の体内発電システム。 8. The weight according to claim 1, wherein a weight is provided inside the rotor through an elastic member that can expand and contract in a radial direction from the center of the rotor. In-body power generation system.
  9.  前記所定の部位から前記電極及び前記可動部の離脱を防止可能な固定部材を更に備えることを特徴とする請求項1乃至8の何れか1項に記載の体内発電システム。 The in-vivo power generation system according to any one of claims 1 to 8, further comprising a fixing member capable of preventing the electrode and the movable part from being detached from the predetermined part.
  10.  前記可動部、前記ケーシング、及び前記固定部材は、チタン系金属から形成されることを特徴とする請求項9に記載の体内発電システム。 The in-vivo power generation system according to claim 9, wherein the movable part, the casing, and the fixed member are made of a titanium metal.
PCT/JP2015/073617 2014-08-26 2015-08-21 Intracorporeal power generation system WO2016031734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016545504A JPWO2016031734A1 (en) 2014-08-26 2015-08-21 Internal power generation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014171562 2014-08-26
JP2014-171562 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016031734A1 true WO2016031734A1 (en) 2016-03-03

Family

ID=55399626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073617 WO2016031734A1 (en) 2014-08-26 2015-08-21 Intracorporeal power generation system

Country Status (2)

Country Link
JP (1) JPWO2016031734A1 (en)
WO (1) WO2016031734A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151542A1 (en) * 2021-01-12 2022-07-21 深圳大学 Friction nano-generator and manufacturing method, self-powered sensing system and measurement method for angle of joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020156205A (en) * 2019-03-20 2020-09-24 シチズン時計株式会社 Electrostatic induction type converter and method of manufacturing electrostatic induction type converter

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215185A (en) * 1991-04-09 1993-08-24 Yan Tai-Haa Flywheel structure of main driving or centrifugal-force linear slave driving
JPH0666205U (en) * 1993-02-24 1994-09-16 実典 横田 Energy recovery equipment for automobiles
JPH0749121A (en) * 1993-06-07 1995-02-21 C I Kasei Co Ltd Lighter for smoking
US20050027332A1 (en) * 2003-07-30 2005-02-03 Zohar Avrahami Implanted autonomic energy source
US20080262567A1 (en) * 2004-07-15 2008-10-23 Zohar Avrahami Implanted energy source
JP2009236001A (en) * 2008-03-27 2009-10-15 Atsuya Kawamoto Roadway power generation device used for bridge
JP2010286428A (en) * 2009-06-15 2010-12-24 Casio Computer Co Ltd Power generation device for timepiece, and power generation device
JP2011097718A (en) * 2009-10-29 2011-05-12 Panasonic Corp Power generator
JP2012066068A (en) * 2010-08-25 2012-04-05 Yamatake Kk Boat rowing type exercise apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05215185A (en) * 1991-04-09 1993-08-24 Yan Tai-Haa Flywheel structure of main driving or centrifugal-force linear slave driving
JPH0666205U (en) * 1993-02-24 1994-09-16 実典 横田 Energy recovery equipment for automobiles
JPH0749121A (en) * 1993-06-07 1995-02-21 C I Kasei Co Ltd Lighter for smoking
US20050027332A1 (en) * 2003-07-30 2005-02-03 Zohar Avrahami Implanted autonomic energy source
US20080262567A1 (en) * 2004-07-15 2008-10-23 Zohar Avrahami Implanted energy source
JP2009236001A (en) * 2008-03-27 2009-10-15 Atsuya Kawamoto Roadway power generation device used for bridge
JP2010286428A (en) * 2009-06-15 2010-12-24 Casio Computer Co Ltd Power generation device for timepiece, and power generation device
JP2011097718A (en) * 2009-10-29 2011-05-12 Panasonic Corp Power generator
JP2012066068A (en) * 2010-08-25 2012-04-05 Yamatake Kk Boat rowing type exercise apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022151542A1 (en) * 2021-01-12 2022-07-21 深圳大学 Friction nano-generator and manufacturing method, self-powered sensing system and measurement method for angle of joint

Also Published As

Publication number Publication date
JPWO2016031734A1 (en) 2017-06-08

Similar Documents

Publication Publication Date Title
Parvez Mahmud et al. Recent advances in nanogenerator‐driven self‐powered implantable biomedical devices
US7729767B2 (en) Implantable generating system
Kim et al. New and emerging energy sources for implantable wireless microdevices
Dai et al. Hip-mounted electromagnetic generator to harvest energy from human motion
Romero et al. Body motion for powering biomedical devices
US20050256549A1 (en) Micro-generator implant
US11785856B2 (en) Method and apparatus for energy harvesting using polymeric piezoelectric structures
WO2004032788A2 (en) Micro-generator implant
CN203663246U (en) Heart pacemaker
WO2010070650A1 (en) High efficiency piezoelectric micro-generator and energy storage system
JP2009506846A (en) Ultracapacitor-driven embedded pulse generator with dedicated power supply
WO2010096774A2 (en) Implantable micro-generator devices with optimized configuration, methods of use, systems and kits therefor
CN108310649A (en) A kind of wireless pacemaker of self energizing with Charge Management technology
Turner et al. Ultrasound‐powered implants: a critical review of piezoelectric material selection and applications
WO2016031734A1 (en) Intracorporeal power generation system
JP2019130303A (en) Electric pacemaker
JP3743152B2 (en) Non-contact power generation system and in-vivo electronic device
US20070078492A1 (en) Method and device to convert cardiac and other body movements into electricity to power any implantable medical system
Dong et al. Nanogenerators for biomedical applications
CN115800801A (en) Implanted flexible pulse generator
CN104740768A (en) Self-energized cardiac pacemaker
US20120290043A1 (en) Implanted energy source
US20080262567A1 (en) Implanted energy source
KR20210046358A (en) Electric stent with Self-generation function
EP3526894B1 (en) Mechanical energy harvesting utilizing liquid rotor homopolar generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836390

Country of ref document: EP

Kind code of ref document: A1