WO2016031733A1 - Curable composition, cured product, method for using curable composition, and optical device - Google Patents

Curable composition, cured product, method for using curable composition, and optical device Download PDF

Info

Publication number
WO2016031733A1
WO2016031733A1 PCT/JP2015/073611 JP2015073611W WO2016031733A1 WO 2016031733 A1 WO2016031733 A1 WO 2016031733A1 JP 2015073611 W JP2015073611 W JP 2015073611W WO 2016031733 A1 WO2016031733 A1 WO 2016031733A1
Authority
WO
WIPO (PCT)
Prior art keywords
curable composition
group
component
optical element
silane coupling
Prior art date
Application number
PCT/JP2015/073611
Other languages
French (fr)
Japanese (ja)
Inventor
優美 松井
秀一 中山
幹広 樫尾
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2016541469A priority Critical patent/JP6062120B2/en
Publication of WO2016031733A1 publication Critical patent/WO2016031733A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/544Silicon-containing compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a curable composition from which a cured product having excellent peel resistance and heat resistance and high adhesive strength is obtained, a cured product obtained by curing the composition, and the composition as an adhesive for optical elements. Or it is related with the method used as a sealing material for optical elements, and an optical device.
  • the curable composition has been variously improved according to the application, and has been widely used in industry as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like.
  • the curable composition has attracted attention as a composition for optical element fixing materials such as an optical element adhesive and an optical element sealing material when producing an optical element sealing body.
  • the optical element examples include various lasers such as a semiconductor laser (LD), light emitting elements such as a light emitting diode (LED), a light receiving element, a composite optical element, and an optical integrated circuit.
  • LD semiconductor laser
  • LED light emitting diode
  • a composite optical element a composite optical element
  • optical integrated circuit an optical integrated circuit
  • the cured product of the composition for optical element fixing materials is exposed to higher energy light or higher temperature heat generated from the optical element for a long time, and deteriorates and peels off. Or a problem that the adhesive strength is reduced.
  • Patent Documents 1 to 3 an optical element fixing material composition containing a polysilsesquioxane compound as a main component is disclosed in Patent Document 4, and a hydrolyzate / polycondensate of a silane compound is disclosed in Patent Document 4.
  • a member for a semiconductor light emitting device to be used has been proposed.
  • the cured products such as the compositions and members described in Patent Documents 1 to 4 sometimes have difficulty in obtaining peeling resistance and heat resistance while maintaining sufficient adhesive force. Therefore, development of the curable composition which is excellent in peeling resistance and heat resistance, and can obtain the hardened
  • JP 2004-359933 A JP 2005-263869 A JP 2006-328231 A JP 2007-1212975 A (US2009008673A1)
  • the present invention has been made in view of the situation of such prior art, and is a curable composition from which a cured product having excellent peel resistance (delamination resistance), heat resistance, and high adhesive strength can be obtained, It is an object to provide a cured product obtained by curing a composition, a method of using the composition as an optical element adhesive or an optical element sealing material, and an optical device.
  • the present inventors have determined that a composition containing a specific silane compound polymer, fine particles, and a silane coupling agent in a specific ratio as described below is resistant to peeling.
  • the present invention has been completed by finding that the cured product has excellent properties and heat resistance and has high adhesive strength.
  • the curable composition characterized by containing.
  • R 1 represents an alkyl group having 1 to 10 carbon atoms. A plurality of R 1 may be the same or different. Z represents a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms.) Or represents a halogen atom, s represents a positive integer, and t and u each independently represents 0 or a positive integer.)
  • the total amount of the component (A), the component (B), the component (C), the component (D), and the component (E) is 50 with respect to the total components excluding the diluent of the curable composition.
  • cured material which is excellent in peeling resistance and heat resistance, and has high adhesive force can be obtained.
  • the curable composition of this invention can be used when forming an optical element fixing material, and can be used especially suitably as an adhesive for optical elements and a sealing material for optical elements.
  • the cured product of the present invention is excellent in peeling resistance and heat resistance and has high adhesive strength in fixing an optical element.
  • the present invention will be described in detail by dividing it into 1) a curable composition, 2) a cured product, 3) a method for using the curable composition, and 4) an optical device.
  • Silane compound polymer represented by the following formula (a) The component (A) used in the present invention is a silane compound polymer represented by the following formula (a).
  • Component (A) component used for the curable composition of this invention is the silane compound polymer represented by said Formula (a) (henceforth "silane compound polymer (A)"). It is.
  • R 1 represents an alkyl group having 1 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, n- Examples include hexyl group, n-octyl group, n-nonyl group and the like.
  • an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is more preferable.
  • Z represents a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom.
  • alkoxy group having 1 to 10 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, t-butoxy group, pentyloxy group, hexyloxy group and octyloxy group.
  • halogen atom include a chlorine atom and a bromine atom.
  • Z is preferably a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms.
  • s represents a positive integer
  • t and u each independently represent 0 or a positive integer.
  • a plurality of R 1 may be all the same or different.
  • the plurality of Z may be all the same or different.
  • the manufacturing method of a silane compound polymer (A) is not specifically limited.
  • the silane compound polymer (A) can be produced by condensing the silane compound (1) represented by the formula (1): R 1 Si (OR 2 ) x (X 1 ) 3-x.
  • condensation is used in a broad concept including hydrolysis and polycondensation reactions.
  • R 1 represents the same meaning as described above.
  • R 2 represents an alkyl group having 1 to 10 carbon atoms, X 1 represents a halogen atom, and x represents an integer of 0 to 3.
  • Examples of the alkyl group having 1 to 10 carbon atoms of R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group and t-butyl group.
  • Examples of the halogen atom for X 1 include a chlorine atom and a bromine atom.
  • OR 2 may be the same or different.
  • (3-x) is 2 or more, X 1 may be the same or different.
  • silane compound (1) examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, Alkyltrialkoxy such as n-propyltripropoxysilane, n-propyltributoxysilane, n-butyltrimethoxysilane, isobutyltrimethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, isooctyltriethoxysilane Silane compounds;
  • a silane compound (1) can be used individually by 1 type or in combination of 2 or more types.
  • silane compound (1) an alkyltrialkoxysilane compound is preferable because a curable composition capable of obtaining a cured product superior in adhesiveness can be obtained.
  • a method for condensing the silane compound (1) is not particularly limited, and a method of adding a predetermined amount of catalyst to the silane compound (1) in a solvent or without a solvent and stirring at a predetermined temperature may be mentioned. It is done.
  • the catalyst used may be either an acid catalyst or a base catalyst.
  • an acid catalyst and a base catalyst can be used in combination.
  • a basic catalyst may be added to the reaction solution to make it basic, and the condensation reaction may be further performed under basic conditions.
  • the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid, and trifluoroacetic acid; It is done.
  • Base catalysts include ammonia (water), trimethylamine, triethylamine, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picoline, 1, Organic bases such as 4-diazabicyclo [2.2.2] octane and imidazole; organic salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium t Metal alkoxides such as butoxide; metal hydrides such as sodium hydride and calcium hydride; metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; sodium carbonate, potassium carbonate, magnesium carbonate, etc. Genus carbonate; and the like are; sodium bicarbonate, metal bicarbonates such as potassium bicarbonate.
  • the amount of catalyst used is usually in the range of 0.1 mol% to 10 mol%, preferably 1 mol% to 5 mol%, based on the total molar amount of the silane compound.
  • a solvent When a solvent is used, it can be appropriately selected according to the type of silane compound.
  • water aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
  • alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, t-butyl alcohol; These solvents can be used alone or in combination of two or more.
  • the amount of the solvent used is 0.1 to 10 liters, preferably 0.1 to 2 liters per mol of the total molar amount of the silane compound.
  • the temperature at which the silane compound is condensed (reacted) is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. to 100 ° C. If the reaction temperature is too low, the progress of the condensation reaction may be insufficient. On the other hand, if the reaction temperature is too high, it is difficult to suppress gelation. The reaction is usually completed in 30 minutes to 20 hours.
  • the target silane compound polymer can be obtained by performing summation and removing the salt produced by filtration or washing with water.
  • the silane compound polymer (A) When the silane compound polymer (A) is produced by the above method, the portion of the silane compound (1) that is not dehydrated and / or dealcoholized in the OR 2 or X 1 is in the silane compound polymer (A). Remain. That is, when there is one remaining OR 2 or X 1 , in the formula (a), (CHR 1 X 0 -D-SiZO 2/2 ) remains, and the remaining OR 2 or X 1 is 2 In the formula (a), it remains as (CHR 1 X 0 -D-SiZ 2 O 1/2 ).
  • the silane compound polymer (A) may be a homopolymer (R 1 is a type of polymer) or a copolymer (R 1 is a polymer of two or more types).
  • the silane compound polymer (A) is a copolymer
  • the silane compound polymer (A) is any copolymer such as a random copolymer, a block copolymer, a graft copolymer, and an alternating copolymer.
  • a random copolymer is preferable from the viewpoint of ease of production and the like.
  • the structure of the silane compound polymer (A) may be any of a ladder structure, a double decker structure, a cage structure, a partially cleaved cage structure, a cyclic structure, and a random structure.
  • the mass average molecular weight (Mw) of the silane compound polymer (A) is usually in the range of 800 to 50,000, preferably 3,000 to 30,000, more preferably 5,000 to 15,000. By being in the said range, the hardened
  • the mass average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, as standard polystyrene conversion values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent (the same applies below). .)
  • the molecular weight distribution (Mw / Mn) of the silane compound polymer (A) is not particularly limited, but is usually in the range of 1.0 to 10.0, preferably 1.1 to 6.0. By being in the said range, the hardened
  • the silane compound polymer (A) can be used alone or in combination of two or more.
  • the curable composition of this invention contains the microparticles
  • the fine particles are not particularly limited, and may be fine particles made of an inorganic material or fine particles made of an organic material.
  • the constituents of fine particles made of inorganic materials include metals; metal oxides; minerals; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; metal hydroxides such as aluminum hydroxide; Examples thereof include metal silicates such as aluminum silicate, calcium silicate and magnesium silicate; silica; silicone; metal oxide whose surface is coated with silicone; Examples of the constituent component of the fine particles made of an organic material include acrylic beads. Two or more kinds of these fine particles may be used in combination.
  • the metal refers to Group 1 (excluding H), Group 2 to 11, Group 12 (excluding Hg), Group 13 (excluding B), Group 14 (excluding C and Si) in the periodic table, An element belonging to Group 15 (excluding N, P, As and Sb) or Group 16 (excluding O, S, Se, Te and Po).
  • Silica may be any of dry silica, wet silica, and organically modified silica, and may be a mixture of two or more of these.
  • Silicone means an artificial polymer compound having a main skeleton with a siloxane bond.
  • dimethyl polysiloxane, diphenyl polysiloxane, methylphenyl polysiloxane and the like can be mentioned.
  • metal oxide examples include titanium oxide, alumina, boehmite, chromium oxide, nickel oxide, copper oxide, titanium oxide, zirconium oxide, indium oxide, zinc oxide, and composite oxides thereof.
  • the metal oxide fine particles include sol particles composed of these metal oxides.
  • Examples of minerals include smectite and bentonite.
  • Examples of the smectite include montmorillonite, beidellite, hectorite, saponite, stevensite, nontronite, and soconite.
  • silica, silicone, or metal oxide fine particles whose surface is coated with silicone is preferable, and silica and silicone are more preferable.
  • the shape of the fine particles may be any of spherical, chain-like, needle-like, plate-like, piece-like, rod-like, and fiber-like, but is preferably spherical.
  • the spherical shape means a substantially spherical shape including a polyhedron shape that can be approximated to a spherical shape, a spheroidal shape, an oval shape, a confetti shape, an eyebrow shape, and the like.
  • the average primary particle diameter of the fine particles is more than 0.04 ⁇ m and not more than 8 ⁇ m. When it is larger than 0.04 ⁇ m, the effect of adding fine particles can be obtained.
  • the dispersibility of the curable composition obtained as it is 8 micrometers or less becomes a favorable thing.
  • the average primary particle size is preferably 0.06 to 7 ⁇ m, more preferably 0.3 to 6 ⁇ m, and particularly preferably 1 to 4 ⁇ m from the viewpoint of achieving both peel resistance and dispersibility.
  • the average primary particle size is determined by measuring the particle size distribution by the laser scattering method using a laser diffraction / scattering particle size distribution measuring device (for example, product name “LA-920” manufactured by Horiba, Ltd.). Says what is required.
  • the amount of component (B) used is usually such that the proportion of component (A) and component (B) used is the mass ratio of component (A) to component (B) (component (A): component (B)).
  • the amount is from 100: 0.3 to 100: 20, preferably from 100: 0.5 to 100: 15, and more preferably from 100: 0.8 to 100: 12.
  • the amount of the component (B) used is less than the above range, it is difficult to obtain the intended peeling resistance effect, and when it is more than the above range, the adhesive strength decreases, which is not preferable.
  • the curable composition of this invention contains the silane coupling agent which has a nitrogen atom in a molecule
  • numerator deoxysilylator
  • the silane coupling agent (C) is not particularly limited as long as it is a silane coupling agent having a nitrogen atom in the molecule.
  • Examples thereof include trialkoxysilane compounds represented by the following formula (c-1), dialkoxyalkylsilane compounds or dialkoxyarylsilane compounds represented by the formula (c-2), and the like.
  • R a represents an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, or a t-butoxy group.
  • a plurality of R a may be the same or different.
  • R b represents an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or a t-butyl group; or a phenyl group, a 4-chlorophenyl group, a 4- An aryl group having a substituent or not having a substituent, such as a methylphenyl group;
  • R c represents a C 1-10 organic group having a nitrogen atom. R c may further be bonded to a group containing another silicon atom. Specific examples of the organic group having 1 to 10 carbon atoms of R c include N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, N- (1,3-dimethyl-butylidene) amino. Examples thereof include a propyl group, 3-ureidopropyltriethoxysilane, N-phenyl-aminopropyl group and the like.
  • the compound in the case where R c is an organic group bonded to another group containing a silicon atom includes an isocyanurate skeleton. And an isocyanurate-based silane coupling agent bonded to another silicon atom, and an urea-based silane coupling agent bonded to another silicon atom via a urea skeleton.
  • silane coupling agent (C) an isocyanurate-based silane coupling agent and a urea-based silane coupling agent are preferable from the viewpoint of obtaining a cured product having higher adhesive force.
  • those having 4 or more alkoxy groups bonded to silicon atoms are preferred. Having 4 or more alkoxy groups bonded to silicon atoms means that the total count of alkoxy groups bonded to the same silicon atom and alkoxy groups bonded to different silicon atoms is 4 or more.
  • a compound represented by the following formula (c-3) is a urea-based silane cup having 4 or more alkoxy groups bonded to silicon atoms.
  • the ring agent include compounds represented by the following formula (c-4).
  • t1 to t5 each independently represents an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
  • Specific examples of the compound represented by the formula (c-3) include 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate, 1,3,5, -N-tris (3- Triethoxysilylpropyl) isocyanurate, 1,3,5, -N-tris (3-trii-propoxysilylpropyl) isocyanurate, 1,3,5, -N-tris (3-tributoxysilylpropyl) isocyanate 1,3,5-N-tris [(tri (C1-6) alkoxy) silyl (C1-10) alkyl] isocyanurate such as nurate; 1,3,5, -N-tris (3-ditoxymethylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-dimethoxyethylsilylpropyl) isocyanurate, 1,3,5,- N-tris (3-dimethoxy i-propylsilylpropyl) isocyan
  • Specific examples of the compound represented by the formula (c-4) include N, N′-bis (3-trimethoxysilylpropyl) urea, N, N′-bis (3-triethoxysilylpropyl) urea, N N, N′-bis (3-tripropoxysilylpropyl) urea, N, N′-bis (3-tributoxysilylpropyl) urea, N, N′-bis (2-trimethoxysilylethyl) urea, N′-bis [(tri (C1-6) alkoxysilyl) (C1-10) alkyl] urea; N, N′-bis (3-dimethoxymethylsilylpropyl) urea, N, N′-bis (3-dimethoxyethylsilylpropyl) urea, N, N′-bis (3-diethoxymethylsilylpropyl) urea, etc.
  • the component (C) of the present invention includes 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris (3-triethoxysilylpropyl).
  • Isocyanurate hereinafter referred to as “isocyanurate compound”
  • N, N′-bis (3-trimethoxysilylpropyl) urea N, N′-bis (3-triethoxysilylpropyl) urea
  • the use ratio of both is preferably 100: 1 to 100: 200 in terms of the mass ratio of (isocyanurate compound) and (urea compound).
  • the isocyanurate compound is used alone or in combination with the urea compound.
  • the component (A) and the component (C) are mixed at a mass ratio of the component (A) to the component (C) (component (A): component (C)) 100: 0. It is preferably contained in a ratio of 3 to 100: 40, more preferably in a ratio of 100: 1 to 100: 30, and further preferably in a ratio of 100: 3 to 100: 25.
  • a ratio of 3 to 100: 40 it is possible to obtain a curable composition from which a cured product having excellent heat resistance and high adhesive strength can be obtained.
  • silane coupling agent (D) Component
  • silane coupling agent (D) a silane coupling agent having an acid anhydride structure in the molecule
  • the silane coupling agent (D) is an organosilicon compound having both a group (Q) having an acid anhydride structure and a hydrolyzable group (R e ) in one molecule. Specifically, it is a compound represented by the following formula (d).
  • Q represents an acid anhydride structure
  • R d represents an alkyl group having 1 to 6 carbon atoms, or a phenyl group having or not having a substituent
  • R e having 1 to 6 represents an alkoxy group or a halogen atom
  • i and k represent an integer of 1 to 3
  • j represents an integer of 0 to 2
  • i + j + k 4.
  • R d may be the same or different.
  • k is 2 or 3
  • among a plurality of R e may be different from each be the same.
  • i is 2 or 3
  • a plurality of Qs may be the same or different.
  • Q is the following formula
  • examples of the alkoxy group having 1 to 6 carbon atoms represented by R e include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, and a t-butoxy group.
  • examples of the halogen atom include a chlorine atom and a bromine atom.
  • Examples of the alkyl group having 1 to 6 carbon atoms of R d include the same groups as those exemplified as the alkyl group having 1 to 6 carbon atoms represented by R 1. Examples of the phenyl group that does not include the same groups as those exemplified for R 2 above. Among these, as the compound represented by the formula (d), the following formula (d-1)
  • h is preferably 2 to 8, more preferably 2 or 3, and particularly preferably 3.
  • silane coupling agent represented by the formula (d-1) examples include 2- (trimethoxysilyl) ethyl succinic anhydride, 2- (triethoxysilyl) ethyl succinic anhydride, 3- (trimethoxy Tri (carbon number 1-6) alkoxysilyl (carbon number 2-8) alkyl succinic anhydride, such as silyl) propyl succinic anhydride, 3- (triethoxysilyl) propyl succinic anhydride; Di (C 1-6) alkoxymethylsilyl (C 2-8) alkyl succinic anhydride, such as 2- (dimethoxymethylsilyl) ethyl succinic anhydride; (C1-C6) alkoxydimethylsilyl (C2-C8) alkyl succinic anhydride, such as 2- (methoxydimethylsilyl) ethyl succinic anhydride;
  • Trihalogenosilyl (2 to 8 carbon atoms) alkyl succinic anhydride such as 2- (trichlorosilyl) ethyl succinic anhydride, 2- (tribromosilyl) ethyl succinic anhydride; Dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2- (dichloromethylsilyl) ethyl succinic anhydride; And halogenodimethylsilyl (having 2 to 8 carbon atoms) alkyl succinic anhydride such as 2- (chlorodimethylsilyl) ethyl succinic anhydride.
  • a component can be used individually by 1 type or in combination of 2 or more types.
  • the component (A) and the component (D) are mixed at a mass ratio of the component (A) to the component (D) (component (A): component (D)) 100: 0. It is preferably contained in a ratio of 01 to 100: 30, more preferably in a ratio of 100: 0.1 to 100: 10.
  • the cured product of the curable composition of the present invention has excellent heat resistance, adhesiveness, and peel resistance.
  • silane coupling agent (E) Component
  • the curable composition of the present invention may be referred to as a silane coupling agent having a sulfur atom-containing functional group in the molecule (hereinafter referred to as “silane coupling agent (E)”) as the component (E). .)including.
  • the silane coupling agent (E) includes, in the molecule, a thiol group (—SH); an acylthio group (—S—CO—R ′); a sulfide group (—S—); a disulfide group (—S—S—).
  • Any silane coupling agent having a sulfur atom-containing functional group such as a polysulfide group [— (S) n —]; such as a tetrasulfide group (—S—S—S—S—);
  • silane coupling agent (E) examples include silane coupling agents represented by any one of the following formulas (e-1) to (e-4), other silane coupling agents having a sulfur atom-containing functional group, and the like. And the like.
  • Y 1 and Y 2 each independently represents an alkoxy group having 1 to 10 carbon atoms, and A 1 and A 2 each independently represents a carbon having a substituent or no substituent.
  • v represents an integer of 1 to 4.
  • Y 1 and Y 2 may be the same as or different from each other.
  • alkoxy group having 1 to 10 carbon atoms of Y 1 and Y 2 examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, an isobutoxy group, and a t-butoxy group.
  • Etc. Y 1 and Y 2 are more preferably an alkoxy group having 1 to 6 carbon atoms.
  • Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms having or not having a substituent of A 1 and A 2 include an alkylene group having 1 to 20 carbon atoms and an alkenylene having 2 to 20 carbon atoms.
  • Examples of the alkylene group having 1 to 20 carbon atoms include methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group and hexamethylene group.
  • Examples of the alkenylene group having 2 to 20 carbon atoms include vinylene group, propenylene group, butenylene group and pentenylene group.
  • Examples of the alkynylene group having 2 to 20 carbon atoms include an ethynylene group and a propynylene group.
  • Examples of the arylene group having 6 to 20 carbon atoms include an o-phenylene group, an m-phenylene group, a p-phenylene group, and a 2,6-naphthylene group.
  • alkylene group having 1 to 20 carbon atoms, alkenylene group having 2 to 20 carbon atoms, and alkynylene group having 2 to 20 carbon atoms may have include a halogen atom such as a fluorine atom and a chlorine atom.
  • An alkoxy group such as a methoxy group or an ethoxy group; an alkoxycarbonyl group such as a methoxycarbonyl group or an ethoxycarbonyl group;
  • substituent of the arylene group having 6 to 20 carbon atoms examples include cyano group; nitro group; halogen atom such as fluorine atom, chlorine atom and bromine atom; alkyl group such as methyl group and ethyl group; methoxy group, ethoxy group and the like And the like. These substituents may be bonded at arbitrary positions in groups such as an alkylene group, an alkenylene group, an alkynylene group, and an arylene group, and a plurality of them may be bonded in the same or different manner.
  • a divalent group consisting of a combination of a substituted or non-substituted group (alkylene group, alkenylene group or alkynylene group) and a substituted or non-substituted arylene group , At least one of the above-mentioned substituents or no substituents (an alkylene group, an alkenylene group, or an alkynylene group) and at least one of the arylene groups having the above-mentioned substituents or no substituents. Examples include groups bonded in series. Specific examples include groups represented by the following formula.
  • a 1 and A 2 are preferably alkylene groups having 1 to 4 carbon atoms such as a methylene group, an ethylene group, a propylene group, a trimethylene group, and a tetramethylene group.
  • R ′ is not particularly limited as long as —CO—R ′ can function as a protecting group.
  • Examples of the substituent of the phenyl group having a substituent of R ′ include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n- Alkyl groups such as pentyl group and n-hexyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group and ethoxy group; R ′ is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
  • v represents an integer of 1 to 4, preferably 1, 2 or 4, more preferably 2 or 4.
  • Examples of the silane coupling agent represented by the formula (e-1) include mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltripropoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, And mercaptoalkyltrialkoxysilanes such as 2-mercaptoethyltripropoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyltripropoxysilane.
  • silane coupling agent represented by the formula (e-2) examples include 2-hexanoylthioethyltrimethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltrimethoxysilane, and 2-octanoyl.
  • Examples of the silane coupling agent represented by the formula (e-3) include 2-trimethoxysilylethylsulfanyltrimethoxysilane, 2-trimethoxysilylethylsulfanyltriethoxysilane, 2-triethoxysilylethylsulfanyltrimethoxysilane, 2 -Triethoxysilylethylsulfanyltriethoxysilane, 3-trimethoxysilylpropylsulfanyltrimethoxysilane, 3-trimethoxysilylpropylsulfanyltriethoxysilane, 3-triethoxysilylpropylsulfanyltrimethoxysilane, 3-triethoxysilylpropylsulfanylpropylsulfanyltrimethoxysilane, 3-triethoxysilylpropylsulfanyl Examples include triethoxysilane.
  • Examples of the silane coupling agent represented by the formula (e-4) include bis (2-trimethoxysilylethyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis Disulfide compounds such as (3-triethoxysilylpropyl) disulfide, bis (4-trimethoxysilylbutyl) disulfide, bis (4-triethoxysilylbutyl) disulfide; bis (2-triethoxysilylethyl) tetrasulfide, bis ( And tetrasulfide compounds such as 3-trimethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) tetrasulfide;
  • silane coupling agents having a sulfur atom-containing functional group include 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, Thiocarbamoyl group-containing silane coupling agents such as 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide and 2-trimethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide; 3-trimethoxysilylpropyl Benzothiazolyl group-containing silane coupling agents such as benzothiazolyl tetrasulfide and 3-triethoxysilylpropylbenzothiazolyl tetrasulfide; 3-triethoxysily
  • (meth) acrylate group-containing silane coupling agent [ "(meth) acrylate” means acrylate or methacrylate. And bis (3-triethoxysilylpropyl) polysulfide, bis (2-triethoxysilylpropyl) polysulfide, bis (4-triethoxysilylbutyl) polysulfide and other polysulfide group-containing silane coupling agents.
  • Oligomers are partial hydrolysis products of these compounds and have a molecular weight of usually 300 to 3000.
  • a silane coupling agent represented by the formula (e-1) or the formula (e-3) and oligomers thereof are preferable, and 2-mercaptoethyltrimethoxysilane, 2- In formula (e-1), Y 1 such as mercaptoethyltriethoxysilane, 2-mercaptoethyltripropoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltripropoxysilane, etc.
  • a silane coupling agent in which is an alkoxy group having 1 to 10 carbon atoms 2-trimethoxysilylethylsulfanyltrimethoxysilane, 2-trimethoxysilylethylsulfanyltriethoxysilane, 2-triethoxysilylethylsulfanyltrimethoxysilane, 2 -Triethoxy Rylethylsulfanyltriethoxysilane, 3-trimethoxysilylpropylsulfanyltrimethoxysilane, 3-trimethoxysilylpropylsulfanyltriethoxysilane, 3-triethoxysilylpropylsulfanyltrimethoxysilane, 3-triethoxysilylpropylsulfanyltriethoxysilane, More preferred are silane coupling agents in which Y 1 and Y 2 are alkoxy groups having 1 to 10 carbon atoms in formula (e-3); and oli
  • the amount of component (E) used is preferably the mercapto equivalent [the number of moles of mercapto group per 1 g of curable composition (or the number of moles converted to mercapto group, the same applies hereinafter)]. 0.001 to 1.00 mmol / g, more preferably 0.005 to 0.80 mmol / g, and particularly preferably 0.015 to 0.60 mmol / g.
  • the mercapto equivalent can be measured and determined by a known method.
  • cured material of the curable composition containing (A) component and (E) component in such a ratio becomes excellent in peeling resistance and heat resistance, and has high adhesive force.
  • the content ratio of the component (E) is less than the above range, the object of the present invention cannot be achieved, and when it is large, the obtained cured product may be colored and the adhesive strength at high temperature may be lowered.
  • the total mass of the components (A) to (E) is preferably 60% by mass or more, and more preferably 70% by mass or more of the total composition.
  • the curable composition of the present invention preferably further contains a diluent for the purpose of imparting fluidity.
  • a diluent for example, diethylene glycol monobutyl ether acetate, glycerin diglycidyl ether, butanediol diglycidyl ether, diglycidyl aniline, neopentyl glycol glycidyl ether, cyclohexane dimethanol diglycidyl ether, alkylene diglycidyl ether, polyglycol diglycidyl ether Polypropylene glycol diglycidyl ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, 4-vinylcyclohexene monooxide, vinylcyclohexene dioxide, methylated vinylcyclohexene dioxide, and the like.
  • the amount of the diluent used is preferably 50 to 100% by mass, more preferably 60 to 90% by mass, and 70 to 85% by mass of the solid content of the curable composition of the present invention. Is more preferable.
  • the total amount of (A) component, (B) component, (C) component, (D) component, and (E) component is curable composition. It is preferably 50 to 100% by mass, and more preferably 60 to 100% by mass, based on the entire component excluding the diluent.
  • the total amount of the component (A), the component (B), the component (C), the component (D), and the component (E) is within the above range, so that the curable composition of the present invention has heat resistance and Excellent adhesion.
  • the curable composition of the present invention may further contain other components in the above-described component within a range not impairing the object of the present invention.
  • examples of other components include an antioxidant, an ultraviolet absorber, and a light stabilizer.
  • An antioxidant is added to prevent oxidative degradation during heating.
  • examples of the antioxidant include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants and the like.
  • Examples of phosphorus antioxidants include phosphites and oxaphosphaphenanthrene oxides.
  • phenolic antioxidants include monophenols, bisphenols, and high-molecular phenols.
  • sulfur-based antioxidant include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and the like.
  • antioxidants can be used singly or in combination of two or more.
  • the usage-amount of antioxidant is 10 mass% or less normally with respect to (A) component.
  • the ultraviolet absorber is added for the purpose of improving the light resistance of the resulting cured product.
  • examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
  • An ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types.
  • the usage-amount of a ultraviolet absorber is 10 mass% or less normally with respect to (A) component.
  • the light stabilizer is added for the purpose of improving the light resistance of the resulting cured product.
  • the light stabilizer include poly [ ⁇ 6- (1,1,3,3, -tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6 , 6-tetramethyl-4-piperidine) imino ⁇ hexamethylene ⁇ (2,2,6,6-tetramethyl-4-piperidine) imino ⁇ ] and the like.
  • These light stabilizers can be used alone or in combination of two or more.
  • the total amount of these other components (excluding the diluent) is usually 20% by mass or less based on the component (A).
  • the above components (A) to (E) and optionally (F) and (G) components are blended in a predetermined ratio, and mixed and defoamed by a known method. Can be obtained.
  • the curable composition of the present invention obtained as described above, a cured product having excellent peel resistance and heat resistance and high adhesive strength can be obtained. Therefore, the curable composition of the present invention is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like. In particular, since the problem relating to deterioration of the optical element fixing material accompanying the increase in luminance of the optical element can be solved, the curable composition of the present invention can be suitably used as an optical element fixing composition. .
  • the second of the present invention is a cured product obtained by curing the curable composition of the present invention.
  • Heat curing is mentioned as a method of hardening the curable composition of this invention.
  • the heating temperature for curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • cured material of this invention has high adhesive force, and is excellent in peeling resistance and heat resistance. Therefore, the hardened
  • the cured product obtained by heating the curable composition of the present invention is excellent in peel resistance.
  • the sapphire chip is pressure-bonded and cured by heat treatment at 170 ° C. for 2 hours, and then the sealing material is poured into the cup and heated at 150 ° C. for 1 hour. Process to obtain a cured specimen.
  • This test piece was exposed to an environment of 85 ° C. and 85% RH for 168 hours, then pre-heated at 160 ° C. and treated by IR reflow with a maximum temperature of 260 ° C. for 1 minute, and then a heat cycle tester The test is allowed to stand at ⁇ 40 ° C. and + 100 ° C.
  • the sealing material is removed, and it is examined whether or not the elements are peeled off together.
  • the probability of peeling is usually 45% or less, more preferably 25% or less.
  • the cured product obtained by curing the curable composition of the present invention has a high adhesive force, for example, by measuring the adhesive force as follows. That is, the curable composition is applied to the mirror surface of the silicon chip, the application surface is placed on the adherend, Crimp and heat treat to cure. This is left for 30 seconds on a measurement stage of a bond tester that has been heated to a predetermined temperature (for example, 23 ° C., 100 ° C.) in advance, and in a horizontal direction (shearing) with respect to the adhesion surface from a position 50 ⁇ m high from the adherend. Direction) and measure the adhesive force between the test piece and the adherend.
  • a predetermined temperature for example, 23 ° C., 100 ° C.
  • the adhesive strength of the cured product is preferably 60 N / 2 mm ⁇ or more at 23 ° C., more preferably 80 N / 2 mm ⁇ or more, and particularly preferably 100 N / 2 mm ⁇ or more.
  • the adhesive strength of the cured product is preferably 40 N / 2 mm ⁇ or more at 100 ° C., more preferably 50 N / 2 mm ⁇ or more, and particularly preferably 60 N / 2 mm ⁇ or more.
  • the third aspect of the present invention is a method of using the curable composition of the present invention as a composition for an optical element fixing material such as an optical element adhesive or an optical element sealing material. It is.
  • optical elements include light emitting elements such as LEDs and LDs, light receiving elements, composite optical elements, and optical integrated circuits.
  • the curable composition of this invention can be used conveniently as an adhesive agent for optical elements.
  • the composition is applied to one or both adhesive surfaces of a material to be bonded (such as an optical element and its substrate), followed by pressure bonding. Then, the method of making it heat-cure and adhere
  • Main substrate materials for bonding optical elements include glass such as soda lime glass and heat-resistant hard glass; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium, and these metals Metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyether Synthetic resins such as ether ketone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, glass epoxy resin; And the like.
  • glass such as soda lime glass and heat-resistant hard glass
  • ceramics such as soda lime glass and heat-resistant hard glass
  • sapphire iron, copper, aluminum, gold,
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the curable composition of this invention can be used suitably as a sealing material of an optical element sealing body.
  • the composition is molded into a desired shape to obtain a molded body containing the optical element, and then heated.
  • cure are mentioned.
  • the method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known molding method such as a normal transfer molding method or a casting method can be employed.
  • the heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used.
  • the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
  • the obtained optical element sealing body uses the curable composition of the present invention, it has excellent peel resistance and heat resistance, and has high adhesive strength.
  • Optical device A fourth aspect of the present invention is an optical device using the curable composition of the present invention as an adhesive for optical element fixing materials or a sealing material for optical element fixing materials.
  • optical elements include light emitting elements such as LEDs and LDs, light receiving elements, composite optical elements, and optical integrated circuits.
  • the optical device of the present invention is obtained by fixing the optical element using the curable composition of the present invention as an adhesive or sealing material for fixing the optical element. For this reason, the optical element is fixed with a high adhesive force and has excellent durability.
  • the mass average molecular weight (Mw) and number average molecular weight (Mn) of the silane compound polymer obtained in the following production examples were standard polystyrene equivalent values, and were measured using the following apparatus and conditions.
  • IR spectrum of the silane compound polymer obtained in the production example was measured using a Fourier transform infrared spectrophotometer (Spectrum 100, manufactured by Perkin Elmer).
  • Example 1 To 100 parts (parts by mass, the same shall apply hereinafter) of the silane compound polymer (A1) obtained in Production Example 1, As component (B), 3 parts of silicone fine particles having an average primary particle size of 0.8 ⁇ m (manufactured by Nikko Jamaica Co., Ltd .: MSP-SN08, referred to as “(B2)” in Table 1 below), As component (C), 10 parts of 1,3,5-N-tris [3- (trimethoxysilyl) propyl] isocyanurate (referred to as “(C1)” in Table 1 below), As component (D), 1 part of 3- (trimethoxysilyl) propyl succinic anhydride (referred to as “(D1)” in Table 1 below), As component (E), 0.5 part of 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-803, referred to as “(E1)” in Table 1 below), and Diethylene
  • Example 1 the type of component (B), the amount used (part), the amount used (C), the amount used (D) of component (part), the type of component (E), the amount used (part) are shown in Table 1 below.
  • the curable compositions 2 to 27 of Examples 2 to 27 and the curable compositions 1r to 4r of Comparative Examples 1 to 4 were obtained in the same manner as in Example 1, except that the changes were made as described above.
  • types of component (B): B1 to B4, B9, types of component (E): E1 to E3 represent the following.
  • E1 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-803, mercapto equivalent (number of moles of mercapto group per 1 g of E1): 5.10 mmol / g)
  • E2 3-trimethoxysilylpropylsulfanyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., X-12-1056ES, mercapto equivalent (number of moles of mercapto group per 1 g of E2): 2.79 mmol / g)
  • E3 oligomer [molecular weight: 700, manufactured by Shin-Etsu Chemical Co., Ltd., X-41-1810, mercapto equivalent (number of moles of mercapto group per 1 g of E3): 2.22 mmol / g]
  • Each of the curable compositions 1-27 and 1r-4r is applied to a mirror surface of a 2 mm square silicon chip so that the thickness is about 2 ⁇ m, and the coated surface is placed on an adherend (silver-plated copper plate). Placed and crimped. Then, it heat-processed at 170 degreeC for 2 hours, it was made to harden
  • the test piece-attached adherend is left for 30 seconds on a measurement stage of a bond tester (series 4000, manufactured by Daisy) heated in advance to a predetermined temperature (23 ° C., 100 ° C.), and has a height of 50 ⁇ m from the adherend.
  • the LED lead frame (product name: 5050 D / G PKG LEADFRAME manufactured by Enomoto Co.) is coated with curable compositions 1-27, 1r-4r about 0.4 mm ⁇ , and then a 0.5 mm square sapphire chip is applied. Crimped. Then, after curing by heat treatment at 170 ° C. for 2 hours, a sealing material (manufactured by Shin-Etsu Chemical Co., Ltd., product name: EG6301) is poured into the cup, and heat treatment is performed at 150 ° C. for 1 hour to obtain a test piece. It was. This test piece is exposed to an environment of 85 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to: a curable composition which contains the components (A)-(E) described below so that the mass ratio of the component (A) to the component (B), namely (A):(B) is from 100:0.3 to 100:20; a cured product; a method for using a curable composition; and an optical device. (A) a silane compound polymer represented by formula (a) (wherein R1 represents an alkyl group having 1-10 carbon atoms; Z represents a hydroxyl group or the like; s represents a positive integer; and each of t and u represents 0 or a positive integer) (B) fine particles having an average primary particle diameter of more than 0.04 μm but 8 μm or less (C) a silane coupling agent having a nitrogen atom (D) a silane coupling agent having an acid anhydride structure (E) a silane coupling agent having a sulfur atom-containing functional group The present invention provides: a curable composition which enables the achievement of a cured product that has excellent releasability and excellent heat resistance, while having high adhesive force; a cured product which is obtained by curing the composition; a method for using the composition as an adhesive for optical elements, and the like; and an optical device. (R1SiO3/2)s(R1SiZO2/2)t(R1SiZ2O1/2)u...(a)

Description

硬化性組成物、硬化物、硬化性組成物の使用方法、及び光デバイスCurable composition, cured product, method of using curable composition, and optical device
 本発明は、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物、該組成物を硬化してなる硬化物、前記組成物を光素子用接着剤又は光素子用封止材として使用する方法、及び光デバイスに関する。 The present invention relates to a curable composition from which a cured product having excellent peel resistance and heat resistance and high adhesive strength is obtained, a cured product obtained by curing the composition, and the composition as an adhesive for optical elements. Or it is related with the method used as a sealing material for optical elements, and an optical device.
 従来、硬化性組成物は用途に応じて様々な改良がなされ、光学部品や成形体の原料、接着剤、コーティング剤等として産業上広く利用されてきている。
 また、硬化性組成物は、光素子封止体を製造する際に、光素子用接着剤や光素子用封止材等の光素子固定材用組成物としても注目を浴びてきている。
Conventionally, the curable composition has been variously improved according to the application, and has been widely used in industry as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like.
In addition, the curable composition has attracted attention as a composition for optical element fixing materials such as an optical element adhesive and an optical element sealing material when producing an optical element sealing body.
 光素子には、半導体レーザー(LD)等の各種レーザーや発光ダイオード(LED)等の発光素子、受光素子、複合光素子、光集積回路等がある。近年においては、発光のピーク波長がより短波長である青色光や白色光の光素子が開発され広く使用されてきている。このような発光のピーク波長の短い発光素子の高輝度化が飛躍的に進み、これに伴い光素子の発熱量がさらに大きくなっていく傾向にある。 Examples of the optical element include various lasers such as a semiconductor laser (LD), light emitting elements such as a light emitting diode (LED), a light receiving element, a composite optical element, and an optical integrated circuit. In recent years, blue and white light optical elements having a shorter peak emission wavelength have been developed and widely used. Such a light emitting element with a short peak wavelength of light emission has been dramatically increased in brightness, and accordingly, the amount of heat generated by the optical element tends to be further increased.
 ところが、近年における光素子の高輝度化に伴い、光素子固定材用組成物の硬化物が、より高いエネルギーの光や光素子から発生するより高温の熱に長時間さらされ、劣化して剥離したり、接着力が低下したりするという問題が生じた。 However, with the recent increase in brightness of optical elements, the cured product of the composition for optical element fixing materials is exposed to higher energy light or higher temperature heat generated from the optical element for a long time, and deteriorates and peels off. Or a problem that the adhesive strength is reduced.
 この問題を解決するべく、特許文献1~3において、ポリシルセスキオキサン化合物を主成分とする光素子固定材用組成物が、特許文献4には、シラン化合物の加水分解・重縮合物を用いる半導体発光デバイス用部材等が提案されている。
 しかしながら、特許文献1~4に記載された組成物や部材等の硬化物であっても、十分な接着力を保ちつつ、耐剥離性、耐熱性を得るのは困難な場合があった。
 従って、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物の開発が切望されている。
In order to solve this problem, in Patent Documents 1 to 3, an optical element fixing material composition containing a polysilsesquioxane compound as a main component is disclosed in Patent Document 4, and a hydrolyzate / polycondensate of a silane compound is disclosed in Patent Document 4. A member for a semiconductor light emitting device to be used has been proposed.
However, even the cured products such as the compositions and members described in Patent Documents 1 to 4 sometimes have difficulty in obtaining peeling resistance and heat resistance while maintaining sufficient adhesive force.
Therefore, development of the curable composition which is excellent in peeling resistance and heat resistance, and can obtain the hardened | cured material which has high adhesive force is earnestly desired.
特開2004-359933号公報JP 2004-359933 A 特開2005-263869号公報JP 2005-263869 A 特開2006-328231号公報JP 2006-328231 A 特開2007-112975号公報(US2009008673A1)JP 2007-1212975 A (US2009008673A1)
 本発明は、かかる従来技術の実情に鑑みてなされたものであり、耐剥離性(耐デラミネーション)、耐熱性に優れ、かつ、高い接着力を有する硬化物が得られる硬化性組成物、該組成物を硬化してなる硬化物、該組成物を光素子用接着剤又は光素子用封止材として使用する方法、及び光デバイスを提供することを課題とする。 The present invention has been made in view of the situation of such prior art, and is a curable composition from which a cured product having excellent peel resistance (delamination resistance), heat resistance, and high adhesive strength can be obtained, It is an object to provide a cured product obtained by curing a composition, a method of using the composition as an optical element adhesive or an optical element sealing material, and an optical device.
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、以下に述べるように、特定のシラン化合物重合体、微粒子及びシランカップリング剤を特定の割合で含有する組成物は、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する硬化物となることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have determined that a composition containing a specific silane compound polymer, fine particles, and a silane coupling agent in a specific ratio as described below is resistant to peeling. The present invention has been completed by finding that the cured product has excellent properties and heat resistance and has high adhesive strength.
 かくして本発明によれば、下記〔1〕~〔7〕の硬化性組成物、〔8〕、〔9〕の硬化物、〔10〕、〔11〕の硬化性組成物を使用する方法、及び、〔12〕の光デバイスが提供される。 Thus, according to the present invention, the following [1] to [7] curable composition, [8], [9] cured product, [10], [11] curable composition, and [12] Optical devices are provided.
〔1〕下記(A)~(E)成分を有する硬化性組成物であって、(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3~100:20の割合で含有することを特徴とする硬化性組成物。
(A)下記式(a)
[1] A curable composition having the following components (A) to (E), wherein the components (A) and (B) are mixed in a mass ratio of the components (A) and (B) [( A) component: (B) component] = 100: 0.3 to 100: 20 The curable composition characterized by containing.
(A) The following formula (a)
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、Rは炭素数1~10のアルキル基を表す。複数のRはすべて同一であっても相異なっていてもよい。Zは、ヒドロキシル基、炭素数1~10のアルコキシ基、又は、ハロゲン原子を示す。sは正の整数を示し、t、uはそれぞれ独立して、0又は正の整数を示す。)
で示されるシラン化合物重合体
(B)平均一次粒子径が0.04μm超、8μm以下の微粒子
(C)分子内に窒素原子を有するシランカップリング剤
(D)分子内に酸無水物構造を有するシランカップリング剤
(E)分子内に硫黄原子含有官能基を有するシランカップリング剤
(In the formula, R 1 represents an alkyl group having 1 to 10 carbon atoms. A plurality of R 1 may be the same or different. Z represents a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms.) Or represents a halogen atom, s represents a positive integer, and t and u each independently represents 0 or a positive integer.)
The silane compound polymer (B) represented by the formula (B) Fine particles having an average primary particle diameter of more than 0.04 μm and 8 μm or less (C) A silane coupling agent having a nitrogen atom in the molecule (D) having an acid anhydride structure in the molecule Silane coupling agent (E) Silane coupling agent having a sulfur atom-containing functional group in the molecule
〔2〕前記(B)成分が、シリカ、シリコーン、及び、シリコーンで表面が被覆された金属酸化物、から選ばれる少なくとも1種の微粒子である〔1〕に記載の硬化性組成物。
〔3〕前記(A)成分の質量平均分子量が800~50,000である、〔1〕に記載の硬化性組成物。
〔4〕さらに、希釈剤を含有する〔1〕に記載の硬化性組成物。
〔5〕前記(A)成分、(B)成分、(C)成分、(D)成分及び(E)成分の合計量が、硬化性組成物の希釈剤を除いた成分全体に対して、50~100質量%であることを特徴とする、〔1〕に記載の硬化性組成物。
〔6〕前記硬化性組成物の固形分濃度が、50~100質量%であることを特徴とする、請求項1~5のいずれかに記載の硬化性組成物。
〔7〕光素子固定材用組成物である〔1〕に記載の硬化性組成物。
[2] The curable composition according to [1], wherein the component (B) is at least one fine particle selected from silica, silicone, and a metal oxide whose surface is coated with silicone.
[3] The curable composition according to [1], wherein the component (A) has a mass average molecular weight of 800 to 50,000.
[4] The curable composition according to [1], further containing a diluent.
[5] The total amount of the component (A), the component (B), the component (C), the component (D), and the component (E) is 50 with respect to the total components excluding the diluent of the curable composition. The curable composition according to [1], characterized in that it is ˜100% by mass.
[6] The curable composition according to any one of [1] to [5], wherein the solid content concentration of the curable composition is 50 to 100% by mass.
[7] The curable composition according to [1], which is a composition for an optical element fixing material.
〔8〕前記〔1〕に記載の硬化性組成物を硬化してなる硬化物。
〔9〕光素子固定材である〔8〕に記載の硬化物。
[8] A cured product obtained by curing the curable composition according to [1].
[9] The cured product according to [8], which is an optical element fixing material.
〔10〕前記〔1〕に記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。
〔11〕前記〔1〕に記載の硬化性組成物を、光素子固定材用封止材として使用する方法。
〔12〕前記〔1〕に記載の硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として用いてなる光デバイス。
[10] A method of using the curable composition according to [1] as an adhesive for an optical element fixing material.
[11] A method of using the curable composition according to the above [1] as a sealing material for an optical element fixing material.
[12] An optical device obtained by using the curable composition according to [1] as an adhesive for an optical element fixing material or an encapsulant for an optical element fixing material.
 本発明の硬化性組成物によれば、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する硬化物を得ることができる。
 本発明の硬化性組成物は、光素子固定材を形成する際に使用することができ、特に、光素子用接着剤、及び光素子用封止材として好適に使用することができる。
 本発明の硬化物は、光素子固定において、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する。
According to the curable composition of this invention, the hardened | cured material which is excellent in peeling resistance and heat resistance, and has high adhesive force can be obtained.
The curable composition of this invention can be used when forming an optical element fixing material, and can be used especially suitably as an adhesive for optical elements and a sealing material for optical elements.
The cured product of the present invention is excellent in peeling resistance and heat resistance and has high adhesive strength in fixing an optical element.
 以下、本発明を、1)硬化性組成物、2)硬化物、3)硬化性組成物の使用方法、及び、4)光デバイス、に項分けして詳細に説明する。 Hereinafter, the present invention will be described in detail by dividing it into 1) a curable composition, 2) a cured product, 3) a method for using the curable composition, and 4) an optical device.
1)硬化性組成物
 本発明の硬化性組成物は、下記(A)~(E)成分を有する硬化性組成物であって、(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3~100:20の割合で含有することを特徴とする。
1) Curable composition The curable composition of the present invention is a curable composition having the following components (A) to (E), comprising (A) component and (B) component, And (B) component, [(A) component: (B) component] = 100: 0.3 to 100: 20.
(A)下記式(a)で示されるシラン化合物重合体
 本発明に用いる(A)成分は、下記式(a)で示されるシラン化合物重合体である。
(A) Silane compound polymer represented by the following formula (a) The component (A) used in the present invention is a silane compound polymer represented by the following formula (a).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(B)平均一次粒子径が0.04μm超、8μm以下の微粒子
(C)分子内に窒素原子を有するシランカップリング剤
(D)分子内に酸無水物構造を有するシランカップリング剤
(E)分子内に硫黄原子含有官能基を有するシランカップリング剤
(B) Fine particles having an average primary particle diameter of more than 0.04 μm and 8 μm or less (C) A silane coupling agent having a nitrogen atom in the molecule (D) A silane coupling agent having an acid anhydride structure in the molecule (E) Silane coupling agent having a sulfur atom-containing functional group in the molecule
(A)成分
 本発明の硬化性組成物に用いる(A)成分は、前記式(a)で表されるシラン化合物重合体(以下、「シラン化合物重合体(A)」ということがある。)である。
(A) Component (A) component used for the curable composition of this invention is the silane compound polymer represented by said Formula (a) (henceforth "silane compound polymer (A)"). It is.
 前記式(a)中、Rは炭素数1~10のアルキル基を表す。炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基等が挙げられる。これらの中でも、炭素数1~6のアルキル基が好ましく、炭素数1~3のアルキル基がより好ましい。 In the formula (a), R 1 represents an alkyl group having 1 to 10 carbon atoms. Examples of the alkyl group having 1 to 10 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, n- Examples include hexyl group, n-octyl group, n-nonyl group and the like. Among these, an alkyl group having 1 to 6 carbon atoms is preferable, and an alkyl group having 1 to 3 carbon atoms is more preferable.
 Zは、ヒドロキシル基、炭素数1~10のアルコキシ基、又は、ハロゲン原子を示す。炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基等が挙げられる。ハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
 これらの中でも、Zは、ヒドロキシル基又は炭素数1~6のアルコキシ基が好ましい。
 sは正の整数を示し、t、uはそれぞれ独立して、0又は正の整数を示す。
 複数のRはすべて同一であっても相異なっていてもよい。また、複数のZはすべて同一であっても相異なっていてもよい。
Z represents a hydroxyl group, an alkoxy group having 1 to 10 carbon atoms, or a halogen atom. Examples of the alkoxy group having 1 to 10 carbon atoms include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, t-butoxy group, pentyloxy group, hexyloxy group and octyloxy group. Examples of the halogen atom include a chlorine atom and a bromine atom.
Among these, Z is preferably a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms.
s represents a positive integer, and t and u each independently represent 0 or a positive integer.
A plurality of R 1 may be all the same or different. The plurality of Z may be all the same or different.
 シラン化合物重合体(A)の製造方法は特に限定されない。例えば、式(1):RSi(OR(X3-xで表されるシラン化合物(1)を縮合させることにより、シラン化合物重合体(A)を製造することができる。ここで、「縮合」は、加水分解及び重縮合反応を含む広い概念で用いている。 The manufacturing method of a silane compound polymer (A) is not specifically limited. For example, the silane compound polymer (A) can be produced by condensing the silane compound (1) represented by the formula (1): R 1 Si (OR 2 ) x (X 1 ) 3-x. . Here, “condensation” is used in a broad concept including hydrolysis and polycondensation reactions.
 式(1)中、Rは前記と同じ意味を表す。Rは炭素数1~10のアルキル基を表し、Xはハロゲン原子を表し、xは0~3の整数を表す。 In formula (1), R 1 represents the same meaning as described above. R 2 represents an alkyl group having 1 to 10 carbon atoms, X 1 represents a halogen atom, and x represents an integer of 0 to 3.
 Rの炭素数1~10のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基等が挙げられる。
 Xのハロゲン原子としては、塩素原子、及び臭素原子等が挙げられる。
 xが2以上のとき、OR同士は同一であっても相異なっていてもよい。また、(3-x)が2以上のとき、X同士は同一であっても相異なっていてもよい。
Examples of the alkyl group having 1 to 10 carbon atoms of R 2 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group and t-butyl group.
Examples of the halogen atom for X 1 include a chlorine atom and a bromine atom.
When x is 2 or more, OR 2 may be the same or different. When (3-x) is 2 or more, X 1 may be the same or different.
 シラン化合物(1)の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-プロピルトリプロポキシシラン、n-プロピルトリブトキシシラン、n-ブチルトリメトキシシラン、イソブチルトリメトキシシラン、n-ペンチルトリメトキシシラン、n-ヘキシルトリメトキシシラン、イソオクチルトリエトキシシラン等のアルキルトリアルコキシシラン化合物類; Specific examples of the silane compound (1) include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltripropoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, Alkyltrialkoxy such as n-propyltripropoxysilane, n-propyltributoxysilane, n-butyltrimethoxysilane, isobutyltrimethoxysilane, n-pentyltrimethoxysilane, n-hexyltrimethoxysilane, isooctyltriethoxysilane Silane compounds;
 メチルクロロジメトキシシラン、メチルクロロジエトキシシラン、メチルジクロロメトキシシラン、メチルブロモジメトキシシラン、エチルクロロジメトキシシラン、エチルクロロジエトキシシラン、エチルジクロロメトキシシラン、エチルブロモジメトキシシラン、n-プロピルクロロジメトキシシラン、n-プロピルジクロロメトキシシラン、n-ブチルクロロジメトキシシラン、n-ブチルジクロロメトキシシラン等のアルキルハロゲノアルコキシシラン化合物類; Methylchlorodimethoxysilane, methylchlorodiethoxysilane, methyldichloromethoxysilane, methylbromodimethoxysilane, ethylchlorodimethoxysilane, ethylchlorodiethoxysilane, ethyldichloromethoxysilane, ethylbromodimethoxysilane, n-propylchlorodimethoxysilane, n Alkylhalogenoalkoxysilane compounds such as propyldichloromethoxysilane, n-butylchlorodimethoxysilane, n-butyldichloromethoxysilane;
 メチルトリクロロシラン、メチルトリブロモシラン、エチルトリトリクロロシラン、エチルトリブロモシラン、n-プロピルトリクロロシラン、n-プロピルトリブロモシラン、n-ブチルトリクロロシラン、イソブチルトリクロロシラン、n-ペンチルトリクロロシラン、n-ヘキシルトリクロロシラン、イソオクチルトリクロロシラン等のアルキルトリハロゲノシラン化合物類;等が挙げられる。
 シラン化合物(1)は一種単独で、或いは二種以上を組み合わせて用いることができる。
Methyltrichlorosilane, methyltribromosilane, ethyltritrichlorosilane, ethyltribromosilane, n-propyltrichlorosilane, n-propyltribromosilane, n-butyltrichlorosilane, isobutyltrichlorosilane, n-pentyltrichlorosilane, n-hexyl And alkyltrihalogenosilane compounds such as trichlorosilane and isooctyltrichlorosilane;
A silane compound (1) can be used individually by 1 type or in combination of 2 or more types.
 これらの中でも、シラン化合物(1)としては、接着性により優れる硬化物が得られる硬化性組成物を得ることができることから、アルキルトリアルコキシシラン化合物類が好ましい。 Among these, as the silane compound (1), an alkyltrialkoxysilane compound is preferable because a curable composition capable of obtaining a cured product superior in adhesiveness can be obtained.
 前記シラン化合物(1)を縮合させる方法としては、特に限定されないが、溶媒中、又は無溶媒中で、シラン化合物(1)に、所定量の触媒を添加し、所定温度で撹拌する方法が挙げられる。 A method for condensing the silane compound (1) is not particularly limited, and a method of adding a predetermined amount of catalyst to the silane compound (1) in a solvent or without a solvent and stirring at a predetermined temperature may be mentioned. It is done.
 用いる触媒は、酸触媒及び塩基触媒のいずれであってもよい。
 また、酸触媒と塩基触媒を組み合わせて用いることもできる。例えば、酸触媒の存在下、シラン化合物の縮合反応を行った後に、反応液に塩基触媒を添加して塩基性とし、塩基性条件下に、さらに縮合反応を行ってもよい。
 酸触媒としては、塩酸、硫酸、硝酸、リン酸等の無機酸;メタンスルホン酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、酢酸、トリフルオロ酢酸等の有機酸;等が挙げられる。
The catalyst used may be either an acid catalyst or a base catalyst.
Also, an acid catalyst and a base catalyst can be used in combination. For example, after performing a condensation reaction of a silane compound in the presence of an acid catalyst, a basic catalyst may be added to the reaction solution to make it basic, and the condensation reaction may be further performed under basic conditions.
Examples of the acid catalyst include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and phosphoric acid; organic acids such as methanesulfonic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, acetic acid, and trifluoroacetic acid; It is done.
 塩基触媒としては、アンモニア(水)、トリメチルアミン、トリエチルアミン、リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、アニリン、ピコリン、1,4-ジアザビシクロ[2.2.2]オクタン、イミダゾール等の有機塩基;水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム等の有機塩水酸化物;ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt-ブトキシド、カリウムt-ブトキシド等の金属アルコキシド;水素化ナトリウム、水素化カルシウム等の金属水素化物;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等の金属水酸化物;炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム等の金属炭酸塩;炭酸水素ナトリウム、炭酸水素カリウム等の金属炭酸水素塩;等が挙げられる。 Base catalysts include ammonia (water), trimethylamine, triethylamine, lithium diisopropylamide, lithium bis (trimethylsilyl) amide, pyridine, 1,8-diazabicyclo [5.4.0] -7-undecene, aniline, picoline, 1, Organic bases such as 4-diazabicyclo [2.2.2] octane and imidazole; organic salt hydroxides such as tetramethylammonium hydroxide and tetraethylammonium hydroxide; sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium t Metal alkoxides such as butoxide; metal hydrides such as sodium hydride and calcium hydride; metal hydroxides such as sodium hydroxide, potassium hydroxide and calcium hydroxide; sodium carbonate, potassium carbonate, magnesium carbonate, etc. Genus carbonate; and the like are; sodium bicarbonate, metal bicarbonates such as potassium bicarbonate.
 触媒の使用量は、シラン化合物の総モル量に対して、通常、0.1mol%~10mol%、好ましくは1mol%~5mol%の範囲である。 The amount of catalyst used is usually in the range of 0.1 mol% to 10 mol%, preferably 1 mol% to 5 mol%, based on the total molar amount of the silane compound.
 溶媒を用いる場合、シラン化合物の種類等に応じて、適宜選択することができる。例えば、水;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル等のエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール、s-ブチルアルコール、t-ブチルアルコール等のアルコール類;等が挙げられる。これらの溶媒は一種単独で、或いは二種以上を混合して用いることができる。 When a solvent is used, it can be appropriately selected according to the type of silane compound. For example, water; aromatic hydrocarbons such as benzene, toluene and xylene; esters such as methyl acetate, ethyl acetate, propyl acetate, butyl acetate and methyl propionate; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone And alcohols such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, isobutyl alcohol, s-butyl alcohol, t-butyl alcohol; These solvents can be used alone or in combination of two or more.
 溶媒の使用量は、シラン化合物の総モル量1mol当たり、0.1~10リットル、好ましくは0.1~2リットルである。 The amount of the solvent used is 0.1 to 10 liters, preferably 0.1 to 2 liters per mol of the total molar amount of the silane compound.
 シラン化合物を縮合(反応)させるときの温度は、通常0℃から用いる溶媒の沸点までの温度範囲、好ましくは20℃~100℃の範囲である。反応温度があまりに低いと縮合反応の進行が不十分となる場合がある。一方、反応温度が高くなりすぎるとゲル化抑制が困難となる。反応は、通常30分から20時間で完結する。 The temperature at which the silane compound is condensed (reacted) is usually in the temperature range from 0 ° C. to the boiling point of the solvent used, preferably in the range of 20 ° C. to 100 ° C. If the reaction temperature is too low, the progress of the condensation reaction may be insufficient. On the other hand, if the reaction temperature is too high, it is difficult to suppress gelation. The reaction is usually completed in 30 minutes to 20 hours.
 反応終了後は、酸触媒を用いた場合は、反応溶液に炭酸水素ナトリウム等のアルカリ水溶液を添加することにより、塩基触媒を用いた場合は、反応溶液に塩酸等の酸を添加することにより中和を行い、その際に生じる塩をろ別又は水洗等により除去し、目的とするシラン化合物重合体を得ることができる。 After completion of the reaction, when an acid catalyst is used, an alkaline aqueous solution such as sodium hydrogen carbonate is added to the reaction solution. When a base catalyst is used, the reaction solution is added with an acid such as hydrochloric acid. The target silane compound polymer can be obtained by performing summation and removing the salt produced by filtration or washing with water.
 上記方法により、シラン化合物重合体(A)を製造する際、シラン化合物(1)のOR又はXのうち、脱水及び/又は脱アルコールされなかった部分は、シラン化合物重合体(A)中に残存する。すなわち、残存するOR又はXが1つである場合は、前記式(a)において、(CHR-D-SiZO2/2)として残存し、残存するOR又はXが2つである場合は、式(a)において、(CHR-D-SiZ1/2)として残存する。 When the silane compound polymer (A) is produced by the above method, the portion of the silane compound (1) that is not dehydrated and / or dealcoholized in the OR 2 or X 1 is in the silane compound polymer (A). Remain. That is, when there is one remaining OR 2 or X 1 , in the formula (a), (CHR 1 X 0 -D-SiZO 2/2 ) remains, and the remaining OR 2 or X 1 is 2 In the formula (a), it remains as (CHR 1 X 0 -D-SiZ 2 O 1/2 ).
 シラン化合物重合体(A)は、単独重合体(Rが一種の重合体)であっても、共重合体(Rが二種以上の重合体)であってもよい。
 シラン化合物重合体(A)が共重合体である場合、シラン化合物重合体(A)は、ランダム共重合体、ブロック共重合体、グラフト共重合体、交互共重合体等のいずれの共重合体であってもよいが、製造容易性等の観点からは、ランダム共重合体が好ましい。
 また、シラン化合物重合体(A)の構造は、ラダー型構造、ダブルデッカー型構造、籠型構造、部分開裂籠型構造、環状型構造、ランダム型構造のいずれの構造であってもよい。
The silane compound polymer (A) may be a homopolymer (R 1 is a type of polymer) or a copolymer (R 1 is a polymer of two or more types).
When the silane compound polymer (A) is a copolymer, the silane compound polymer (A) is any copolymer such as a random copolymer, a block copolymer, a graft copolymer, and an alternating copolymer. However, a random copolymer is preferable from the viewpoint of ease of production and the like.
The structure of the silane compound polymer (A) may be any of a ladder structure, a double decker structure, a cage structure, a partially cleaved cage structure, a cyclic structure, and a random structure.
 シラン化合物重合体(A)の質量平均分子量(Mw)は、通常800~50,000、好ましくは3,000~30,000、より好ましくは5,000~15,000の範囲である。当該範囲内にあることで、組成物の取扱性に優れ、かつ、接着性、耐熱性に優れる硬化物が得られる。
 質量平均分子量(Mw)および数平均分子量(Mn)は、例えば、テトラヒドロフラン(THF)を溶媒とするゲル・パーミエーション・クロマトグラフィー(GPC)による標準ポリスチレン換算値として求めることができる(以下にて同じである。)。
The mass average molecular weight (Mw) of the silane compound polymer (A) is usually in the range of 800 to 50,000, preferably 3,000 to 30,000, more preferably 5,000 to 15,000. By being in the said range, the hardened | cured material which is excellent in the handleability of a composition, and excellent in adhesiveness and heat resistance is obtained.
The mass average molecular weight (Mw) and the number average molecular weight (Mn) can be determined, for example, as standard polystyrene conversion values by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as a solvent (the same applies below). .)
 シラン化合物重合体(A)の分子量分布(Mw/Mn)は、特に制限されないが、通常1.0~10.0、好ましくは1.1~6.0の範囲である。当該範囲内にあることで、接着性、耐熱性に優れる硬化物が得られる。 The molecular weight distribution (Mw / Mn) of the silane compound polymer (A) is not particularly limited, but is usually in the range of 1.0 to 10.0, preferably 1.1 to 6.0. By being in the said range, the hardened | cured material which is excellent in adhesiveness and heat resistance is obtained.
 シラン化合物重合体(A)は一種単独で、あるいは二種以上を組み合わせて用いることができる。 The silane compound polymer (A) can be used alone or in combination of two or more.
(B)成分
 本発明の硬化性組成物は、(B)成分として、平均一次粒子径が0.04μm超、8μm以下の微粒子を含む。
 微粒子としては、特に制限はなく、無機物からなる微粒子であっても、有機物からなる微粒子であってもよい。無機物からなる微粒子の構成成分としては、金属;金属酸化物;鉱物;炭酸カルシウム、炭酸マグネシウム等の金属炭酸塩;硫酸カルシウム、硫酸バリウム等の金属硫酸塩;水酸化アルミニウム等の金属水酸化物;珪酸アルミニウム、珪酸カルシウム、珪酸マグネシウム等の金属珪酸塩;シリカ;シリコーン;シリコーンで表面が被覆された金属酸化物;等が挙げられる。有機物からなる微粒子の構成成分としては、アクリルビーズ等が挙げられる。
 これらの微粒子は2種類以上を併用してもよい。
(B) component The curable composition of this invention contains the microparticles | fine-particles whose average primary particle diameter exceeds 0.04 micrometer and is 8 micrometers or less as (B) component.
The fine particles are not particularly limited, and may be fine particles made of an inorganic material or fine particles made of an organic material. The constituents of fine particles made of inorganic materials include metals; metal oxides; minerals; metal carbonates such as calcium carbonate and magnesium carbonate; metal sulfates such as calcium sulfate and barium sulfate; metal hydroxides such as aluminum hydroxide; Examples thereof include metal silicates such as aluminum silicate, calcium silicate and magnesium silicate; silica; silicone; metal oxide whose surface is coated with silicone; Examples of the constituent component of the fine particles made of an organic material include acrylic beads.
Two or more kinds of these fine particles may be used in combination.
 ここで、金属とは、周期表における、1族(Hを除く)、2~11族、12族(Hgを除く)、13族(Bを除く)、14族(C及びSiを除く)、15族(N、P、As及びSbを除く)、又は16族(O、S、Se、Te及びPoを除く)に属する元素をいう。 Here, the metal refers to Group 1 (excluding H), Group 2 to 11, Group 12 (excluding Hg), Group 13 (excluding B), Group 14 (excluding C and Si) in the periodic table, An element belonging to Group 15 (excluding N, P, As and Sb) or Group 16 (excluding O, S, Se, Te and Po).
 シリカとしては、乾式シリカ、湿式シリカ及び有機修飾シリカのいずれであってもよく、これらの2種以上からなる混合物であってもよい。
 シリコーンとは、シロキサン結合による主骨格を持つ、人工高分子化合物を意味する。例えば、ジメチルポリシロキサン、ジフェニルポリシロキサン、メチルフェニルポリシロキサン等が挙げられる。
Silica may be any of dry silica, wet silica, and organically modified silica, and may be a mixture of two or more of these.
Silicone means an artificial polymer compound having a main skeleton with a siloxane bond. For example, dimethyl polysiloxane, diphenyl polysiloxane, methylphenyl polysiloxane and the like can be mentioned.
 金属酸化物としては、例えば、酸化チタン、アルミナ、ベーマイト、酸化クロム、酸化ニッケル、酸化銅、酸化チタン、酸化ジルコニウム、酸化インジウム、酸化亜鉛、及びこれらの複合酸化物等が挙げられる。金属酸化物の微粒子には、これらの金属酸化物からなるゾル粒子も含まれる。 Examples of the metal oxide include titanium oxide, alumina, boehmite, chromium oxide, nickel oxide, copper oxide, titanium oxide, zirconium oxide, indium oxide, zinc oxide, and composite oxides thereof. The metal oxide fine particles include sol particles composed of these metal oxides.
 鉱物としては、スメクタイト、ベントナイト等が挙げられる。
 スメクタイトとしては、例えば、モンモリロナイト、バイデライト、ヘクトライト、サポナイト、スチブンサイト、ノントロナイト、ソーコナイト等が挙げられる。
Examples of minerals include smectite and bentonite.
Examples of the smectite include montmorillonite, beidellite, hectorite, saponite, stevensite, nontronite, and soconite.
 これらの中でも、本発明においては、本発明の目的を発現しやすいことから、シリカ、シリコーン、又は、シリコーンで表面が被覆された金属酸化物の微粒子が好ましく、シリカ、シリコーンがより好ましい。 Among these, in the present invention, since the object of the present invention is easily expressed, silica, silicone, or metal oxide fine particles whose surface is coated with silicone is preferable, and silica and silicone are more preferable.
 微粒子の形状は、球状、鎖状、針状、板状、片状、棒状、繊維状等のいずれであってもよいが、球状であるのが好ましい。ここで、球状とは、真球状の他、回転楕円体、卵形、金平糖状、まゆ状等球体に近似できる多面体形状を含む略球状を意味する。 The shape of the fine particles may be any of spherical, chain-like, needle-like, plate-like, piece-like, rod-like, and fiber-like, but is preferably spherical. Here, the spherical shape means a substantially spherical shape including a polyhedron shape that can be approximated to a spherical shape, a spheroidal shape, an oval shape, a confetti shape, an eyebrow shape, and the like.
 微粒子の平均一次粒子径は、0.04μm超、8μm以下である。0.04μmより大きいと微粒子の添加の効果が得られる。8μm以下であると得られる硬化性組成物の分散性が良好なものとなる。
 平均一次粒子径としては、耐剥離性と分散性を両立させる観点から、0.06~7μmがより好ましく、0.3~6μmがさらに好ましく、1~4μmが特に好ましい。
 本発明において平均一次粒子径は、レーザー回折・散乱式粒度分布測定装置(例えば堀場製作所社製、製品名「LA-920」)等を用いて、レーザー散乱法による粒度分布の測定を行うことにより求められるものをいう。
The average primary particle diameter of the fine particles is more than 0.04 μm and not more than 8 μm. When it is larger than 0.04 μm, the effect of adding fine particles can be obtained. The dispersibility of the curable composition obtained as it is 8 micrometers or less becomes a favorable thing.
The average primary particle size is preferably 0.06 to 7 μm, more preferably 0.3 to 6 μm, and particularly preferably 1 to 4 μm from the viewpoint of achieving both peel resistance and dispersibility.
In the present invention, the average primary particle size is determined by measuring the particle size distribution by the laser scattering method using a laser diffraction / scattering particle size distribution measuring device (for example, product name “LA-920” manufactured by Horiba, Ltd.). Says what is required.
 (B)成分の使用量は、前記(A)成分と(B)成分の使用割合が、(A)成分と(B)成分の質量比〔(A)成分:(B)成分〕で、通常100:0.3~100:20、好ましくは100:0.5~100:15、より好ましくは100:0.8~100:12となる量である。(B)成分の使用量が上記範囲より少ないと、目的とする耐剥離性の効果が得られにくくなり、上記範囲より多いと、接着力が低下して好ましくない。 The amount of component (B) used is usually such that the proportion of component (A) and component (B) used is the mass ratio of component (A) to component (B) (component (A): component (B)). The amount is from 100: 0.3 to 100: 20, preferably from 100: 0.5 to 100: 15, and more preferably from 100: 0.8 to 100: 12. When the amount of the component (B) used is less than the above range, it is difficult to obtain the intended peeling resistance effect, and when it is more than the above range, the adhesive strength decreases, which is not preferable.
(C)成分
 本発明の硬化性組成物は、(C)成分として、分子内に窒素原子を有するシランカップリング剤(以下、「シランカップリング剤(C)」ということがある。)を含む。
(C) Component The curable composition of this invention contains the silane coupling agent which has a nitrogen atom in a molecule | numerator (henceforth a "silane coupling agent (C)") as (C) component. .
 シランカップリング剤(C)としては、分子内に窒素原子を有するシランカップリング剤であれば特に制限はない。例えば、下記式(c-1)で表されるトリアルコキシシラン化合物、式(c-2)で表されるジアルコキシアルキルシラン化合物又はジアルコキシアリールシラン化合物等が挙げられる。 The silane coupling agent (C) is not particularly limited as long as it is a silane coupling agent having a nitrogen atom in the molecule. Examples thereof include trialkoxysilane compounds represented by the following formula (c-1), dialkoxyalkylsilane compounds or dialkoxyarylsilane compounds represented by the formula (c-2), and the like.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記式中、Rは、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、t-ブトキシ基等の炭素数1~6のアルコキシ基を表す。複数のR同士は同一であっても相異なっていてもよい。
 Rは、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基等の炭素数1~6のアルキル基;又は、フェニル基、4-クロロフェニル基、4-メチルフェニル基等の、置換基を有する、又は置換基を有さないアリール基;を表す。
In the above formula, R a represents an alkoxy group having 1 to 6 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, or a t-butoxy group. A plurality of R a may be the same or different.
R b represents an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, or a t-butyl group; or a phenyl group, a 4-chlorophenyl group, a 4- An aryl group having a substituent or not having a substituent, such as a methylphenyl group;
 Rは、窒素原子を有する、炭素数1~10の有機基を表す。また、Rは、さらに他のケイ素原子を含む基と結合していてもよい。
 Rの炭素数1~10の有機基の具体例としては、N-2-(アミノエチル)-3-アミノプロピル基、3-アミノプロピル基、N-(1,3-ジメチル-ブチリデン)アミノプロピル基、3-ウレイドプロピルトリエトキシシラン、N-フェニル-アミノプロピル基等が挙げられる。
R c represents a C 1-10 organic group having a nitrogen atom. R c may further be bonded to a group containing another silicon atom.
Specific examples of the organic group having 1 to 10 carbon atoms of R c include N-2- (aminoethyl) -3-aminopropyl group, 3-aminopropyl group, N- (1,3-dimethyl-butylidene) amino. Examples thereof include a propyl group, 3-ureidopropyltriethoxysilane, N-phenyl-aminopropyl group and the like.
 前記式(c-1)又は(c-2)で表される化合物のうち、Rが、他のケイ素原子を含む基と結合した有機基である場合の化合物としては、イソシアヌレート骨格を介して他のケイ素原子と結合してイソシアヌレート系シランカップリング剤を構成するものや、ウレア骨格を介して他のケイ素原子と結合してウレア系シランカップリング剤を構成するものが挙げられる。 Of the compounds represented by the formula (c-1) or (c-2), the compound in the case where R c is an organic group bonded to another group containing a silicon atom includes an isocyanurate skeleton. And an isocyanurate-based silane coupling agent bonded to another silicon atom, and an urea-based silane coupling agent bonded to another silicon atom via a urea skeleton.
 これらの中でも、シランカップリング剤(C)としては、より高い接着力を有する硬化物が得られる観点から、イソシアヌレート系シランカップリング剤、及びウレア系シランカップリング剤が好ましく、さらに、分子内に、ケイ素原子に結合したアルコキシ基を4以上有するものが好ましい。
 ケイ素原子に結合したアルコキシ基を4以上有するとは、同一のケイ素原子に結合したアルコキシ基と、異なるケイ素原子に結合したアルコキシ基との総合計数が4以上という意味である。
Among these, as the silane coupling agent (C), an isocyanurate-based silane coupling agent and a urea-based silane coupling agent are preferable from the viewpoint of obtaining a cured product having higher adhesive force. Further, those having 4 or more alkoxy groups bonded to silicon atoms are preferred.
Having 4 or more alkoxy groups bonded to silicon atoms means that the total count of alkoxy groups bonded to the same silicon atom and alkoxy groups bonded to different silicon atoms is 4 or more.
 ケイ素原子に結合したアルコキシ基を4以上有するイソシアヌレート系シランカップリング剤としては、下記式(c-3)で表される化合物が、ケイ素原子に結合したアルコキシ基を4以上有するウレア系シランカップリング剤としては、下記式(c-4)で表される化合物が挙げられる。 As an isocyanurate-based silane coupling agent having 4 or more alkoxy groups bonded to silicon atoms, a compound represented by the following formula (c-3) is a urea-based silane cup having 4 or more alkoxy groups bonded to silicon atoms. Examples of the ring agent include compounds represented by the following formula (c-4).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、Rは前記と同じ意味を表す。
 t1~t5はそれぞれ独立して、1~10の整数を表し、1~6の整数であるのが好ましく、3であるのが特に好ましい。
Wherein, R a are as defined above.
t1 to t5 each independently represents an integer of 1 to 10, preferably an integer of 1 to 6, and particularly preferably 3.
 式(c-3)で表される化合物の具体例としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-トリi-プロポキシシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-トリブトキシシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(トリ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;
1,3,5,-N-トリス(3-ジトキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジメトキシフェニルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジエトキシフェニルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジi-プロポキシフェニルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシメチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシエチルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシi-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシn-プロピルシリルプロピル)イソシアヌレート、1,3,5,-N-トリス(3-ジブトキシフェニルシリルプロピル)イソシアヌレート等の1,3,5-N-トリス〔(ジ(炭素数1~6)アルコキシ)シリル(炭素数1~10)アルキル〕イソシアヌレート;等が挙げられる。
Specific examples of the compound represented by the formula (c-3) include 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate, 1,3,5, -N-tris (3- Triethoxysilylpropyl) isocyanurate, 1,3,5, -N-tris (3-trii-propoxysilylpropyl) isocyanurate, 1,3,5, -N-tris (3-tributoxysilylpropyl) isocyanate 1,3,5-N-tris [(tri (C1-6) alkoxy) silyl (C1-10) alkyl] isocyanurate such as nurate;
1,3,5, -N-tris (3-ditoxymethylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-dimethoxyethylsilylpropyl) isocyanurate, 1,3,5,- N-tris (3-dimethoxy i-propylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-dimethoxy n-propylsilylpropyl) isocyanurate, 1,3,5, -N-tris ( 3-Dimethoxyphenylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-diethoxymethylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-diethoxyethylsilylpropyl) ) Isocyanurate, 1,3,5, -N-tris (3-diethoxy i-propylsilylpropyl) isocyanurate, 1,3 , -N-tris (3-diethoxyn-propylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-diethoxyphenylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-dii-propoxymethylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-dii-propoxyethylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3 -Di-propoxy i-propylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-dii-propoxy n-propylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-Dii-propoxyphenylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-dibutoxymethylsilylpropyl) Sosocyanurate, 1,3,5, -N-tris (3-dibutoxyethylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-dibutoxy i-propylsilylpropyl) isocyanurate, 1,3 1,3,5-N such as 1,5, -N-tris (3-dibutoxyn-propylsilylpropyl) isocyanurate, 1,3,5, -N-tris (3-dibutoxyphenylsilylpropyl) isocyanurate -Tris [(di (C1-6) alkoxy) silyl (C1-10) alkyl] isocyanurate; and the like.
 式(c-4)で表される化合物の具体例としては、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア、N,N’-ビス(3-トリプロポキシシリルプロピル)ウレア、N,N’-ビス(3-トリブトキシシリルプロピル)ウレア、N,N’-ビス(2-トリメトキシシリルエチル)ウレア等のN,N’-ビス〔(トリ(炭素数1~6)アルコキシシリル)(炭素数1~10)アルキル〕ウレア;
N,N’-ビス(3-ジメトキシメチルシリルプロピル)ウレア、N,N’-ビス(3-ジメトキシエチルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシメチルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数1~6)アルキルシリル(炭素数1~10)アルキル)ウレア;
N,N’-ビス(3-ジメトキシフェニルシリルプロピル)ウレア、N,N’-ビス(3-ジエトキシフェニルシリルプロピル)ウレア等のN,N’-ビス〔(ジ(炭素数1~6)アルコキシ(炭素数6~20)アリールシリル(炭素数1~10)アルキル)ウレア;等が挙げられる。
Specific examples of the compound represented by the formula (c-4) include N, N′-bis (3-trimethoxysilylpropyl) urea, N, N′-bis (3-triethoxysilylpropyl) urea, N N, N′-bis (3-tripropoxysilylpropyl) urea, N, N′-bis (3-tributoxysilylpropyl) urea, N, N′-bis (2-trimethoxysilylethyl) urea, N′-bis [(tri (C1-6) alkoxysilyl) (C1-10) alkyl] urea;
N, N′-bis (3-dimethoxymethylsilylpropyl) urea, N, N′-bis (3-dimethoxyethylsilylpropyl) urea, N, N′-bis (3-diethoxymethylsilylpropyl) urea, etc. N, N′-bis [(di (C1-6) alkoxy (C1-6) alkylsilyl (C1-10) alkyl) urea;
N, N′-bis [(di (C 1-6)) such as N, N′-bis (3-dimethoxyphenylsilylpropyl) urea, N, N′-bis (3-diethoxyphenylsilylpropyl) urea And alkoxy (6 to 20 carbon atoms) arylsilyl (1 to 10 carbon atoms) alkyl) urea.
 これらは1種単独で、或いは2種以上を組み合わせて用いることができる。
 これらの中でも、本発明の(C)成分としては、1,3,5-N-トリス(3-トリメトキシシリルプロピル)イソシアヌレート、1,3,5-N-トリス(3-トリエトキシシリルプロピル)イソシアヌレート(以下、「イソシアヌレート化合物」という。)、N,N’-ビス(3-トリメトキシシリルプロピル)ウレア、N,N’-ビス(3-トリエトキシシリルプロピル)ウレア(以下、「ウレア化合物」という。)、及び、前記イソシアヌレート化合物とウレア化合物との組み合わせを用いるのが好ましい。
These can be used alone or in combination of two or more.
Among these, the component (C) of the present invention includes 1,3,5-N-tris (3-trimethoxysilylpropyl) isocyanurate, 1,3,5-N-tris (3-triethoxysilylpropyl). ) Isocyanurate (hereinafter referred to as “isocyanurate compound”), N, N′-bis (3-trimethoxysilylpropyl) urea, N, N′-bis (3-triethoxysilylpropyl) urea (hereinafter referred to as “ It is preferable to use a combination of an isocyanurate compound and a urea compound.
 前記イソシアヌレート化合物とウレア化合物とを組み合わせて用いる場合、両者の使用割合は、(イソシアヌレート化合物)と(ウレア化合物)の質量比で、100:1~100:200であるのが好ましい。 When the isocyanurate compound and the urea compound are used in combination, the use ratio of both is preferably 100: 1 to 100: 200 in terms of the mass ratio of (isocyanurate compound) and (urea compound).
 なお、イソシアヌレート化合物の使用割合は、前記(A)成分100質量部に対して、35質量部以下であるのが好ましく、25質量部以下であるのがより好ましい。イソシアヌレート化合物単独で用いる場合も、ウレア化合物と併用して用いる場合においても同様である。
 また、ウレア化合物の使用割合は、前記(A)成分100質量部に対して、20質量部以下であるのが好ましく、15質量部以下であるのがより好ましい。ウレア化合物単独で用いる場合も、イソシアヌレート化合物と併用して用いる場合においても同様である。
In addition, it is preferable that it is 35 mass parts or less with respect to 100 mass parts of said (A) component, and, as for the usage-amount of an isocyanurate compound, it is more preferable that it is 25 mass parts or less. The same applies when the isocyanurate compound is used alone or in combination with the urea compound.
Moreover, it is preferable that it is 20 mass parts or less with respect to 100 mass parts of said (A) component, and, as for the usage-amount of a urea compound, it is more preferable that it is 15 mass parts or less. The same applies when the urea compound is used alone or in combination with the isocyanurate compound.
 本発明の硬化性組成物は、前記(A)成分及び(C)成分を、(A)成分と(C)成分の質量比〔(A)成分:(C)成分〕で、100:0.3~100:40の割合で含有するのが好ましく、100:1~100:30の割合で含有するのがより好ましく、100:3~100:25の割合で含有するのがさらに好ましい。
 このような割合で(A)成分及び(C)成分を用いることにより、耐熱性に優れ、高い接着力を有する硬化物が得られる硬化性組成物を得ることができる。
In the curable composition of the present invention, the component (A) and the component (C) are mixed at a mass ratio of the component (A) to the component (C) (component (A): component (C)) 100: 0. It is preferably contained in a ratio of 3 to 100: 40, more preferably in a ratio of 100: 1 to 100: 30, and further preferably in a ratio of 100: 3 to 100: 25.
By using the component (A) and the component (C) at such a ratio, it is possible to obtain a curable composition from which a cured product having excellent heat resistance and high adhesive strength can be obtained.
(D)成分
 本発明の硬化性組成物は、(D)成分として、分子内に酸無水物構造を有するシランカップリング剤(以下、「シランカップリング剤(D)」ということがある。)を含む。
(D) Component In the curable composition of the present invention, as the component (D), a silane coupling agent having an acid anhydride structure in the molecule (hereinafter sometimes referred to as “silane coupling agent (D)”). including.
 シランカップリング剤(D)は、一つの分子中に、酸無水物構造を有する基(Q)と、加水分解性基(R)の両者を併せ持つ有機ケイ素化合物である。具体的には下記式(d)で表される化合物である。 The silane coupling agent (D) is an organosilicon compound having both a group (Q) having an acid anhydride structure and a hydrolyzable group (R e ) in one molecule. Specifically, it is a compound represented by the following formula (d).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、Qは酸無水物構造を表し、Rは炭素数1~6のアルキル基、又は、置換基を有する、若しくは置換基を有さないフェニル基を表し、Rは炭素数1~6のアルコキシ基又はハロゲン原子を表し、i、kは1~3の整数を表し、jは0~2の整数を表し、i+j+k=4である。jが2であるとき、R同士は同一であっても相異なっていてもよい。kが2又は3のとき、複数のR同士は同一であっても相異なっていてもよい。iが2又は3のとき、複数のQ同士は同一であっても相異なっていてもよい。
 Qとしては、下記式
In the formula, Q represents an acid anhydride structure, R d represents an alkyl group having 1 to 6 carbon atoms, or a phenyl group having or not having a substituent, and R e having 1 to 6 represents an alkoxy group or a halogen atom, i and k represent an integer of 1 to 3, j represents an integer of 0 to 2, and i + j + k = 4. When j is 2, R d may be the same or different. when k is 2 or 3, among a plurality of R e may be different from each be the same. When i is 2 or 3, a plurality of Qs may be the same or different.
Q is the following formula
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、hは0~10の整数を表す。)で表される基等が挙げられ、(Q1)で表される基が特に好ましい。
 式(d)中、Rの炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、t-ブトキシ基等が挙げられる。
 ハロゲン原子としては、塩素原子、臭素原子等が挙げられる。
(Wherein, h represents an integer of 0 to 10) and the like, and the group represented by (Q1) is particularly preferable.
In the formula (d), examples of the alkoxy group having 1 to 6 carbon atoms represented by R e include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, and a t-butoxy group.
Examples of the halogen atom include a chlorine atom and a bromine atom.
 Rの炭素数1~6のアルキル基としては、前記Rで表される炭素数1~6のアルキル基として例示したのと同様の基が挙げられ、置換基を有する、又は置換基を有さないフェニル基としては、前記Rで例示したのと同様の基が挙げられる。
 なかでも、式(d)で表される化合物としては、下記式(d-1)
Examples of the alkyl group having 1 to 6 carbon atoms of R d include the same groups as those exemplified as the alkyl group having 1 to 6 carbon atoms represented by R 1. Examples of the phenyl group that does not include the same groups as those exemplified for R 2 above.
Among these, as the compound represented by the formula (d), the following formula (d-1)
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(式中、R、h、i、j、kは前記と同じ意味を表す。)
で表される化合物が好ましい。式中、hは2~8であるのが好ましく、2又は3であるのがより好ましく、3であるのが特に好ましい。
(In the formula, R e , h, i, j, and k represent the same meaning as described above.)
The compound represented by these is preferable. In the formula, h is preferably 2 to 8, more preferably 2 or 3, and particularly preferably 3.
 前記式(d-1)で表されるシランカップリング剤の具体例としては、2-(トリメトキシシリル)エチル無水コハク酸、2-(トリエトキシシリル)エチル無水コハク酸、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸等の、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジメトキシメチルシリル)エチル無水コハク酸等の、ジ(炭素数1~6)アルコキシメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(メトキシジメチルシリル)エチル無水コハク酸等の、(炭素数1~6)アルコキシジメチルシリル(炭素数2~8)アルキル無水コハク酸;
Specific examples of the silane coupling agent represented by the formula (d-1) include 2- (trimethoxysilyl) ethyl succinic anhydride, 2- (triethoxysilyl) ethyl succinic anhydride, 3- (trimethoxy Tri (carbon number 1-6) alkoxysilyl (carbon number 2-8) alkyl succinic anhydride, such as silyl) propyl succinic anhydride, 3- (triethoxysilyl) propyl succinic anhydride;
Di (C 1-6) alkoxymethylsilyl (C 2-8) alkyl succinic anhydride, such as 2- (dimethoxymethylsilyl) ethyl succinic anhydride;
(C1-C6) alkoxydimethylsilyl (C2-C8) alkyl succinic anhydride, such as 2- (methoxydimethylsilyl) ethyl succinic anhydride;
2-(トリクロロシリル)エチル無水コハク酸、2-(トリブロモシリル)エチル無水コハク酸等の、トリハロゲノシリル(炭素数2~8)アルキル無水コハク酸;
2-(ジクロロメチルシリル)エチル無水コハク酸等の、ジハロゲノメチルシリル(炭素数2~8)アルキル無水コハク酸;
2-(クロロジメチルシリル)エチル無水コハク酸等の、ハロゲノジメチルシリル(炭素数2~8)アルキル無水コハク酸;等が挙げられる。
Trihalogenosilyl (2 to 8 carbon atoms) alkyl succinic anhydride, such as 2- (trichlorosilyl) ethyl succinic anhydride, 2- (tribromosilyl) ethyl succinic anhydride;
Dihalogenomethylsilyl (2-8 carbon atoms) alkyl succinic anhydride, such as 2- (dichloromethylsilyl) ethyl succinic anhydride;
And halogenodimethylsilyl (having 2 to 8 carbon atoms) alkyl succinic anhydride such as 2- (chlorodimethylsilyl) ethyl succinic anhydride.
 これらの中でも、トリ(炭素数1~6)アルコキシシリル(炭素数2~8)アルキル無水コハク酸が好ましく、3-(トリメトキシシリル)プロピル無水コハク酸、3-(トリエトキシシリル)プロピル無水コハク酸が特に好ましい。
 (D)成分は一種単独で、或いは二種以上を組み合わせて用いることができる。
Among these, tri (carbon number 1-6) alkoxysilyl (carbon number 2-8) alkyl succinic anhydride is preferable, 3- (trimethoxysilyl) propyl succinic anhydride, 3- (triethoxysilyl) propyl succinic anhydride Acid is particularly preferred.
(D) A component can be used individually by 1 type or in combination of 2 or more types.
 本発明の硬化性組成物は、前記(A)成分及び(D)成分を、(A)成分と(D)成分の質量比〔(A)成分:(D)成分〕で、100:0.01~100:30の割合で含有するのが好ましく、100:0.1~100:10の割合で含有するのがより好ましい。
 このような割合で(A)成分及び(D)成分を用いることにより、本発明の硬化性組成物の硬化物は、耐熱性、接着性、かつ、耐剥離性に優れるものとなる。
In the curable composition of the present invention, the component (A) and the component (D) are mixed at a mass ratio of the component (A) to the component (D) (component (A): component (D)) 100: 0. It is preferably contained in a ratio of 01 to 100: 30, more preferably in a ratio of 100: 0.1 to 100: 10.
By using the component (A) and the component (D) at such a ratio, the cured product of the curable composition of the present invention has excellent heat resistance, adhesiveness, and peel resistance.
(E)成分
 本発明の硬化性組成物は、(E)成分として、分子内に、硫黄原子含有官能基を有するシランカップリング剤(以下、「シランカップリング剤(E)」ということがある。)を含む。
(E) Component The curable composition of the present invention may be referred to as a silane coupling agent having a sulfur atom-containing functional group in the molecule (hereinafter referred to as “silane coupling agent (E)”) as the component (E). .)including.
 シランカップリング剤(E)としては、分子内に、チオール基(-SH);アシルチオ基(-S-CO-R’);スルフィド基(-S-);ジスルフィド基(-S-S-)、テトラスルフィド基(-S-S-S-S-)等のポリスルフィド基〔-(S)-〕;等の硫黄原子含有官能基を有するシランカップリング剤であれば特に制限はない。 The silane coupling agent (E) includes, in the molecule, a thiol group (—SH); an acylthio group (—S—CO—R ′); a sulfide group (—S—); a disulfide group (—S—S—). Any silane coupling agent having a sulfur atom-containing functional group such as a polysulfide group [— (S) n —]; such as a tetrasulfide group (—S—S—S—S—);
 シランカップリング剤(E)としては、下記式(e-1)~式(e-4)のいずれかで示されるシランカップリング剤、硫黄原子含有官能基を有するその他のシランカップリング剤、これらのオリゴマー等が挙げられる。 Examples of the silane coupling agent (E) include silane coupling agents represented by any one of the following formulas (e-1) to (e-4), other silane coupling agents having a sulfur atom-containing functional group, and the like. And the like.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
〔式中、Y、Yは、それぞれ独立に、炭素数1~10のアルコキシ基を表し、A、Aは、それぞれ独立に、置換基を有する、又は置換基を有さない炭素数1~20の2価の炭化水素基を表し、R’は、炭素数1~20の1価の有機基を表す。vは、1~4の整数を表す。Y同士、Y同士は、互いに同一であっても相異なっていてもよい。〕 [Wherein Y 1 and Y 2 each independently represents an alkoxy group having 1 to 10 carbon atoms, and A 1 and A 2 each independently represents a carbon having a substituent or no substituent. Represents a divalent hydrocarbon group having 1 to 20 carbon atoms, and R ′ represents a monovalent organic group having 1 to 20 carbon atoms. v represents an integer of 1 to 4. Y 1 and Y 2 may be the same as or different from each other. ]
 Y、Yの、炭素数1~10のアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、s-ブトキシ基、イソブトキシ基、t-ブトキシ基等が挙げられる。
 Y、Yとしては、炭素数1~6のアルコキシ基がより好ましい。
Examples of the alkoxy group having 1 to 10 carbon atoms of Y 1 and Y 2 include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an s-butoxy group, an isobutoxy group, and a t-butoxy group. Etc.
Y 1 and Y 2 are more preferably an alkoxy group having 1 to 6 carbon atoms.
 A、Aの、置換基を有する、又は置換基を有さない炭素数1~20の2価の炭化水素基としては、炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基、炭素数2~20のアルキニレン基、炭素数6~20のアリーレン基、(アルキレン基、アルケニレン基、又はアルキニレン基)とアリーレン基との組み合わせからなる炭素数7~20の2価の基等が挙げられる。 Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms having or not having a substituent of A 1 and A 2 include an alkylene group having 1 to 20 carbon atoms and an alkenylene having 2 to 20 carbon atoms. Groups, alkynylene groups having 2 to 20 carbon atoms, arylene groups having 6 to 20 carbon atoms, divalent groups having 7 to 20 carbon atoms composed of a combination of (alkylene group, alkenylene group, or alkynylene group) and an arylene group, etc. Is mentioned.
 炭素数1~20のアルキレン基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基等が挙げられる。
 炭素数2~20のアルケニレン基としては、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基等が挙げられる。
 炭素数2~20のアルキニレン基としては、エチニレン基、プロピニレン基等が挙げられる。
 炭素数6~20のアリーレン基としては、o-フェニレン基、m-フェニレン基、p-フェニレン基、2,6-ナフチレン基等が挙げられる。
Examples of the alkylene group having 1 to 20 carbon atoms include methylene group, ethylene group, propylene group, trimethylene group, tetramethylene group, pentamethylene group and hexamethylene group.
Examples of the alkenylene group having 2 to 20 carbon atoms include vinylene group, propenylene group, butenylene group and pentenylene group.
Examples of the alkynylene group having 2 to 20 carbon atoms include an ethynylene group and a propynylene group.
Examples of the arylene group having 6 to 20 carbon atoms include an o-phenylene group, an m-phenylene group, a p-phenylene group, and a 2,6-naphthylene group.
 これらの炭素数1~20のアルキレン基、炭素数2~20のアルケニレン基、及び炭素数2~20のアルキニレン基が有していてもよい置換基としては、フッ素原子、塩素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;メトキシカルボニル基、エトキシカルボニル基等のアルコキシカルボニル基;等が挙げられる。 Examples of the substituent that these alkylene group having 1 to 20 carbon atoms, alkenylene group having 2 to 20 carbon atoms, and alkynylene group having 2 to 20 carbon atoms may have include a halogen atom such as a fluorine atom and a chlorine atom. An alkoxy group such as a methoxy group or an ethoxy group; an alkoxycarbonyl group such as a methoxycarbonyl group or an ethoxycarbonyl group;
 前記炭素数6~20のアリーレン基の置換基としては、シアノ基;ニトロ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メチル基、エチル基等のアルキル基;メトキシ基、エトキシ基等のアルコキシ基;等が挙げられる。
 これらの置換基は、アルキレン基、アルケニレン基、アルキニレン基及びアリーレン基等の基において任意の位置に結合していてよく、同一若しくは相異なって複数個が結合していてもよい。
Examples of the substituent of the arylene group having 6 to 20 carbon atoms include cyano group; nitro group; halogen atom such as fluorine atom, chlorine atom and bromine atom; alkyl group such as methyl group and ethyl group; methoxy group, ethoxy group and the like And the like.
These substituents may be bonded at arbitrary positions in groups such as an alkylene group, an alkenylene group, an alkynylene group, and an arylene group, and a plurality of them may be bonded in the same or different manner.
 置換基を有する、又は置換基を有さない(アルキレン基、アルケニレン基、又はアルキニレン基)と、置換基を有する、又は置換基を有さないアリーレン基との組み合わせからなる2価の基としては、前記置換基を有する、又は置換基を有さない(アルキレン基、アルケニレン基、又はアルキニレン基)の少なくとも一種と、前記置換基を有する、又は置換基を有さないアリーレン基の少なくとも一種とが直列に結合した基等が挙げられる。具体的には、下記式で表される基等が挙げられる。 As a divalent group consisting of a combination of a substituted or non-substituted group (alkylene group, alkenylene group or alkynylene group) and a substituted or non-substituted arylene group , At least one of the above-mentioned substituents or no substituents (an alkylene group, an alkenylene group, or an alkynylene group) and at least one of the arylene groups having the above-mentioned substituents or no substituents. Examples include groups bonded in series. Specific examples include groups represented by the following formula.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 これらの中でも、A、Aとしては、メチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基等の炭素数1~4のアルキレン基が好ましい。 Among these, A 1 and A 2 are preferably alkylene groups having 1 to 4 carbon atoms such as a methylene group, an ethylene group, a propylene group, a trimethylene group, and a tetramethylene group.
 R’としては、-CO-R’が保護基として機能し得るものであれば特に制限されない。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基等のアルキル基;置換基を有する、又は置換基を有さないフェニル基;等が挙げられる。
 R’の、置換基を有するフェニル基の置換基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等のアルキル基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等のアルコキシ基;が挙げられる。
 R’としては、炭素数1~20のアルキル基が好ましく、炭素数1~10のアルキル基がより好ましい。
 vは、1~4の整数を表し、1、2又は4が好ましく、2又は4がより好ましい。
R ′ is not particularly limited as long as —CO—R ′ can function as a protecting group. For example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n -An alkyl group such as an octyl group, an n-nonyl group, an n-decyl group, an n-undecyl group, and an n-dodecyl group; a phenyl group having a substituent or an unsubstituted group; and the like.
Examples of the substituent of the phenyl group having a substituent of R ′ include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n- Alkyl groups such as pentyl group and n-hexyl group; halogen atoms such as fluorine atom, chlorine atom and bromine atom; alkoxy groups such as methoxy group and ethoxy group;
R ′ is preferably an alkyl group having 1 to 20 carbon atoms, and more preferably an alkyl group having 1 to 10 carbon atoms.
v represents an integer of 1 to 4, preferably 1, 2 or 4, more preferably 2 or 4.
 式(e-1)で示されるシランカップリング剤としては、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルトリプロポキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルトリプロポキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリプロポキシシラン等のメルカプトアルキルトリアルコキシシラン類が挙げられる。 Examples of the silane coupling agent represented by the formula (e-1) include mercaptomethyltrimethoxysilane, mercaptomethyltriethoxysilane, mercaptomethyltripropoxysilane, 2-mercaptoethyltrimethoxysilane, 2-mercaptoethyltriethoxysilane, And mercaptoalkyltrialkoxysilanes such as 2-mercaptoethyltripropoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropyltripropoxysilane.
 式(e-2)で示されるシランカップリング剤としては、2-ヘキサノイルチオエチルトリメトキシシラン、2-ヘキサノイルチオエチルトリエトキシシラン、2-オクタノイルチオエチルトリメトキシシラン、2-オクタノイルチオエチルトリエトキシシラン、2-デカノイルチオエチルトリメトキシシラン、2-デカノイルチオエチルトリエトキシシラン、3-ヘキサノイルチオプロピルトリメトキシシラン、3-ヘキサノイルチオプロピルトリエトキシシラン、3-オクタノイルチオプロピルトリメトキシシラン、3-オクタノイルチオプロピルトリエトキシシラン、3-デカノイルチオプロピルトリメトキシシラン、3-デカノイルチオプロピルトリエトキシシラン等のアルカノイルチオアルキルトリアルコキシシラン化合物類が挙げられる。 Examples of the silane coupling agent represented by the formula (e-2) include 2-hexanoylthioethyltrimethoxysilane, 2-hexanoylthioethyltriethoxysilane, 2-octanoylthioethyltrimethoxysilane, and 2-octanoyl. Ruthioethyltriethoxysilane, 2-decanoylthioethyltrimethoxysilane, 2-decanoylthioethyltriethoxysilane, 3-hexanoylthiopropyltrimethoxysilane, 3-hexanoylthiopropyltriethoxysilane, 3-octanoy Alkanoylthioalkyltrialkoxysilane compounds such as ruthiopropyltrimethoxysilane, 3-octanoylthiopropyltriethoxysilane, 3-decanoylthiopropyltrimethoxysilane, and 3-decanoylthiopropyltriethoxysilane It is below.
 式(e-3)で示されるシランカップリング剤としては、2-トリメトキシシリルエチルスルファニルトリメトキシシラン、2-トリメトキシシリルエチルスルファニルトリエトキシシラン、2-トリエトキシシリルエチルスルファニルトリメトキシシラン、2-トリエトキシシリルエチルスルファニルトリエトキシシラン、3-トリメトキシシリルプロピルスルファニルトリメトキシシラン、3-トリメトキシシリルプロピルスルファニルトリエトキシシラン、3-トリエトキシシリルプロピルスルファニルトリメトキシシラン、3-トリエトキシシリルプロピルスルファニルトリエトキシシラン等が挙げられる。 Examples of the silane coupling agent represented by the formula (e-3) include 2-trimethoxysilylethylsulfanyltrimethoxysilane, 2-trimethoxysilylethylsulfanyltriethoxysilane, 2-triethoxysilylethylsulfanyltrimethoxysilane, 2 -Triethoxysilylethylsulfanyltriethoxysilane, 3-trimethoxysilylpropylsulfanyltrimethoxysilane, 3-trimethoxysilylpropylsulfanyltriethoxysilane, 3-triethoxysilylpropylsulfanyltrimethoxysilane, 3-triethoxysilylpropylsulfanyl Examples include triethoxysilane.
 式(e-4)で示されるシランカップリング剤としては、ビス(2-トリメトキシシリルエチル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(4-トリメトシシリルブチル)ジスルフィド、ビス(4-トリエキトシシリルブチル)ジスルフィド等のジスルフィド化合物;ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)テトラスルフィド等のテトラスルフィド化合物;等が挙げられる。 Examples of the silane coupling agent represented by the formula (e-4) include bis (2-trimethoxysilylethyl) disulfide, bis (2-triethoxysilylethyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis Disulfide compounds such as (3-triethoxysilylpropyl) disulfide, bis (4-trimethoxysilylbutyl) disulfide, bis (4-triethoxysilylbutyl) disulfide; bis (2-triethoxysilylethyl) tetrasulfide, bis ( And tetrasulfide compounds such as 3-trimethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) tetrasulfide;
 硫黄原子含有官能基を有するその他のシランカップリング剤としては、3-トリメトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、3-トリエトキシシリルプロピル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリエトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド、2-トリメトキシシリルエチル-N,N-ジメチルチオカルバモイルテトラスルフィド等のチオカルバモイル基含有シランカップリング剤;3-トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3-トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド等のベンゾチアゾリル基含有シランカップリング剤;3-トリエトキシシリルプロピル(メタ)アクリレートモノスルフィド、3-トリメトキシシリルプロピル(メタ)アクリレートモノスルフィド等の(メタ)アクリレート基含有シランカップリング剤〔「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。〕;ビス(3-トリエトキシシリルプロピル)ポリスルフィド、ビス(2-トリエトキシシリルプロピル)ポリスルフィド、ビス(4-トリエトキシシリルブチル)ポリスルフィド等のポリスルフィド基含有シランカップリング剤;等が挙げられる。 Other silane coupling agents having a sulfur atom-containing functional group include 3-trimethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, 3-triethoxysilylpropyl-N, N-dimethylthiocarbamoyl tetrasulfide, Thiocarbamoyl group-containing silane coupling agents such as 2-triethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide and 2-trimethoxysilylethyl-N, N-dimethylthiocarbamoyl tetrasulfide; 3-trimethoxysilylpropyl Benzothiazolyl group-containing silane coupling agents such as benzothiazolyl tetrasulfide and 3-triethoxysilylpropylbenzothiazolyl tetrasulfide; 3-triethoxysilylpropyl (meth) acrylate monos Fido, 3-trimethoxysilylpropyl (meth) acrylate monosulfide, etc. (meth) acrylate group-containing silane coupling agent [ "(meth) acrylate" means acrylate or methacrylate. And bis (3-triethoxysilylpropyl) polysulfide, bis (2-triethoxysilylpropyl) polysulfide, bis (4-triethoxysilylbutyl) polysulfide and other polysulfide group-containing silane coupling agents.
 オリゴマーは、これらの化合物の部分加水分解生成物であって、分子量が通常300~3000のものである。 Oligomers are partial hydrolysis products of these compounds and have a molecular weight of usually 300 to 3000.
 これらの中でも、(E)成分としては、前記式(e-1)又は式(e-3)で示されるシランカップリング剤、及びこれらのオリゴマーが好ましく、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルトリプロポキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルトリプロポキシシラン等の、式(e-1)中、Yが炭素数1~10のアルコキシ基であるシランカップリング剤;2-トリメトキシシリルエチルスルファニルトリメトキシシラン、2-トリメトキシシリルエチルスルファニルトリエトキシシラン、2-トリエトキシシリルエチルスルファニルトリメエトキシシラン、2-トリエトキシシリルエチルスルファニルトリエトキシシラン、3-トリメトキシシリルプロピルスルファニルトリメトキシシラン、3-トリメトキシシリルプロピルスルファニルトリエトキシシラン、3-トリエトキシシリルプロピルスルファニルトリメトキシシラン、3-トリエトキシシリルプロピルスルファニルトリエトキシシラン等の、式(e-3)中、Y及びYが炭素数1~10のアルコキシ基であるシランカップリング剤;及びこれらのオリゴマー;がより好ましく、3-メルカプトプロピルトリメトキシシラン、3-トリメトキシシリルプロピルスルファニルトリエトキシシラン、及びこれらのオリゴマーがさらに好ましい。
 シランカップリング剤(E)は、1種単独で、或いは2種以上を組み合わせて用いることができる。
Among these, as the component (E), a silane coupling agent represented by the formula (e-1) or the formula (e-3) and oligomers thereof are preferable, and 2-mercaptoethyltrimethoxysilane, 2- In formula (e-1), Y 1 such as mercaptoethyltriethoxysilane, 2-mercaptoethyltripropoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropyltripropoxysilane, etc. A silane coupling agent in which is an alkoxy group having 1 to 10 carbon atoms; 2-trimethoxysilylethylsulfanyltrimethoxysilane, 2-trimethoxysilylethylsulfanyltriethoxysilane, 2-triethoxysilylethylsulfanyltrimethoxysilane, 2 -Triethoxy Rylethylsulfanyltriethoxysilane, 3-trimethoxysilylpropylsulfanyltrimethoxysilane, 3-trimethoxysilylpropylsulfanyltriethoxysilane, 3-triethoxysilylpropylsulfanyltrimethoxysilane, 3-triethoxysilylpropylsulfanyltriethoxysilane More preferred are silane coupling agents in which Y 1 and Y 2 are alkoxy groups having 1 to 10 carbon atoms in formula (e-3); and oligomers thereof; 3-mercaptopropyltrimethoxysilane, 3 More preferred are trimethoxysilylpropylsulfanyltriethoxysilane and oligomers thereof.
A silane coupling agent (E) can be used individually by 1 type or in combination of 2 or more types.
 (E)成分の使用量は、硬化性組成物に対するメルカプト当量〔硬化性組成物1gあたりのメルカプト基のモル数(又はメルカプト基に換算したモル数、以下にて同じ。)〕が、好ましくは、0.001~1.00mmol/g、より好ましくは0.005~0.80mmol/g、特に好ましくは0.015~0.60mmol/gとなる量である。前記メルカプト当量は、公知の方法により測定し求めることができる。 The amount of component (E) used is preferably the mercapto equivalent [the number of moles of mercapto group per 1 g of curable composition (or the number of moles converted to mercapto group, the same applies hereinafter)]. 0.001 to 1.00 mmol / g, more preferably 0.005 to 0.80 mmol / g, and particularly preferably 0.015 to 0.60 mmol / g. The mercapto equivalent can be measured and determined by a known method.
 (A)成分と(E)成分との含有割合(質量比)は、〔(A)成分〕:〔(E)成分〕=100:0.1~100:50、好ましくは100:0.3~100:30であり、特に好ましくは100:0.4~100:25である。
 このような割合で(A)成分及び(E)成分を含有する硬化性組成物の硬化物は、耐剥離性、耐熱性に優れ、かつ、高い接着力を有するものとなる。(E)成分の含有割合が上記範囲より少ないと、本発明の目的が達成できず、多いと、得られる硬化物が着色し、高温時の接着強度が低下するおそれがある。
The content ratio (mass ratio) of the component (A) to the component (E) is [(A) component]: [(E) component] = 100: 0.1 to 100: 50, preferably 100: 0.3. To 100: 30, particularly preferably 100: 0.4 to 100: 25.
The hardened | cured material of the curable composition containing (A) component and (E) component in such a ratio becomes excellent in peeling resistance and heat resistance, and has high adhesive force. When the content ratio of the component (E) is less than the above range, the object of the present invention cannot be achieved, and when it is large, the obtained cured product may be colored and the adhesive strength at high temperature may be lowered.
 本発明において、前記(A)成分~(E)成分の質量の合計は、全組成物の、60質量%以上であるのが好ましく、70質量%以上であるのがより好ましい。 In the present invention, the total mass of the components (A) to (E) is preferably 60% by mass or more, and more preferably 70% by mass or more of the total composition.
(F)希釈剤
 本発明の硬化性組成物においては、流動性をもたせる目的で、希釈剤を更に含有するのが好ましい。
 希釈剤としては、例えば、ジエチレングリコールモノブチルエーテルアセテート、グリセリンジグリシジルエーテル、ブタンジオールジグリシジルエーテル、ジグリシジルアニリン、ネオペンチルグリコールグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、アルキレンジグリシジルエーテル、ポリグリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、グリセリントリグリシジルエーテル、4-ビニルシクロヘキセンモノオキサイド、ビニルシクロヘキセンジオキサイド、メチル化ビニルシクロヘキセンジオキサイド等が挙げられる。
 これらの希釈剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 希釈剤の使用量は、本発明の硬化性組成物の固形分濃度を50~100質量%とするのが好ましく、60~90質量%とするのがより好ましく、70~85質量%とするのがさらに好ましい。
 また、本発明の硬化性組成物が希釈剤を含有する場合、(A)成分、(B)成分、(C)成分、(D)成分、及び(E)成分の合計量が、硬化性組成物の希釈剤を除いた成分全体に対して、50~100質量%であることが好ましく、60~100質量%であることがより好ましい。(A)成分、(B)成分、(C)成分、(D)成分、及び(E)成分の合計量が、上記範囲内にあることで、本発明の硬化性組成物は、耐熱性及び接着性により優れたものとなる。
(F) Diluent The curable composition of the present invention preferably further contains a diluent for the purpose of imparting fluidity.
As the diluent, for example, diethylene glycol monobutyl ether acetate, glycerin diglycidyl ether, butanediol diglycidyl ether, diglycidyl aniline, neopentyl glycol glycidyl ether, cyclohexane dimethanol diglycidyl ether, alkylene diglycidyl ether, polyglycol diglycidyl ether Polypropylene glycol diglycidyl ether, trimethylolpropane triglycidyl ether, glycerin triglycidyl ether, 4-vinylcyclohexene monooxide, vinylcyclohexene dioxide, methylated vinylcyclohexene dioxide, and the like.
These diluents can be used alone or in combination of two or more.
The amount of the diluent used is preferably 50 to 100% by mass, more preferably 60 to 90% by mass, and 70 to 85% by mass of the solid content of the curable composition of the present invention. Is more preferable.
Moreover, when the curable composition of this invention contains a diluent, the total amount of (A) component, (B) component, (C) component, (D) component, and (E) component is curable composition. It is preferably 50 to 100% by mass, and more preferably 60 to 100% by mass, based on the entire component excluding the diluent. The total amount of the component (A), the component (B), the component (C), the component (D), and the component (E) is within the above range, so that the curable composition of the present invention has heat resistance and Excellent adhesion.
(G)その他の成分
 本発明の硬化性組成物には、本発明の目的を阻害しない範囲で、上記成分に、さらに他の成分を含有させてもよい。
 他の成分としては、酸化防止剤、紫外線吸収剤、光安定剤等が挙げられる。
(G) Other components The curable composition of the present invention may further contain other components in the above-described component within a range not impairing the object of the present invention.
Examples of other components include an antioxidant, an ultraviolet absorber, and a light stabilizer.
 酸化防止剤は、加熱時の酸化劣化を防止するために添加される。酸化防止剤としては、リン系酸化防止剤、フェノール系酸化防止剤、硫黄系酸化防止剤等が挙げられる。 An antioxidant is added to prevent oxidative degradation during heating. Examples of the antioxidant include phosphorus antioxidants, phenolic antioxidants, sulfur antioxidants and the like.
 リン系酸化防止剤としては、ホスファイト類、オキサホスファフェナントレンオキサイド類等が挙げられる。フェノール系酸化防止剤としては、モノフェノール類、ビスフェノール類、高分子型フェノール類等が挙げられる。硫黄系酸化防止剤としては、ジラウリル-3,3’-チオジプロピオネート、ジミリスチル-3,3’-チオジプロピオネート、ジステアリル-3,3’-チオジプロピオネート等が挙げられる。 Examples of phosphorus antioxidants include phosphites and oxaphosphaphenanthrene oxides. Examples of phenolic antioxidants include monophenols, bisphenols, and high-molecular phenols. Examples of the sulfur-based antioxidant include dilauryl-3,3'-thiodipropionate, dimyristyl-3,3'-thiodipropionate, distearyl-3,3'-thiodipropionate, and the like.
 これらの酸化防止剤は一種単独で、或いは二種以上を組み合わせて用いることができる。酸化防止剤の使用量は、(A)成分に対して、通常、10質量%以下である。 These antioxidants can be used singly or in combination of two or more. The usage-amount of antioxidant is 10 mass% or less normally with respect to (A) component.
 紫外線吸収剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 紫外線吸収剤としては、サリチル酸類、ベンゾフェノン類、ベンゾトリアゾール類、ヒンダードアミン類等が挙げられる。
 紫外線吸収剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 紫外線吸収剤の使用量は、(A)成分に対して、通常、10質量%以下である。
The ultraviolet absorber is added for the purpose of improving the light resistance of the resulting cured product.
Examples of the ultraviolet absorber include salicylic acids, benzophenones, benzotriazoles, hindered amines and the like.
An ultraviolet absorber can be used individually by 1 type or in combination of 2 or more types.
The usage-amount of a ultraviolet absorber is 10 mass% or less normally with respect to (A) component.
 光安定剤は、得られる硬化物の耐光性を向上させる目的で添加される。
 光安定剤としては、例えば、ポリ[{6-(1,1,3,3,-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジン)イミノ}]等のヒンダードアミン類等が挙げられる。
 これらの光安定剤は一種単独で、或いは二種以上を組み合わせて用いることができる。
 これらの他の成分(希釈剤を除く)の総使用量は、(A)成分に対して、通常、20質量%以下である。
The light stabilizer is added for the purpose of improving the light resistance of the resulting cured product.
Examples of the light stabilizer include poly [{6- (1,1,3,3, -tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2,6 , 6-tetramethyl-4-piperidine) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidine) imino}] and the like.
These light stabilizers can be used alone or in combination of two or more.
The total amount of these other components (excluding the diluent) is usually 20% by mass or less based on the component (A).
 本発明の硬化性組成物は、例えば、前記(A)~(E)成分、及び、所望により(F)、(G)成分を所定割合で配合して、公知の方法により混合、脱泡することにより得ることができる。 In the curable composition of the present invention, for example, the above components (A) to (E) and optionally (F) and (G) components are blended in a predetermined ratio, and mixed and defoamed by a known method. Can be obtained.
 以上のようにして得られる本発明の硬化性組成物によれば、耐剥離性、耐熱性に優れ、かつ、高い接着力を有する硬化物を得ることができる。
 したがって、本発明の硬化性組成物は、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。特に、光素子の高輝度化に伴う、光素子固定材の劣化に関する問題を解決することができることから、本発明の硬化性組成物は、光素子固定用組成物として好適に使用することができる。
According to the curable composition of the present invention obtained as described above, a cured product having excellent peel resistance and heat resistance and high adhesive strength can be obtained.
Therefore, the curable composition of the present invention is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like. In particular, since the problem relating to deterioration of the optical element fixing material accompanying the increase in luminance of the optical element can be solved, the curable composition of the present invention can be suitably used as an optical element fixing composition. .
2)硬化物
 本発明の第2は、本発明の硬化性組成物を硬化してなる硬化物である。
 本発明の硬化性組成物を硬化する方法としては加熱硬化が挙げられる。硬化するときの加熱温度は、通常、100~200℃であり、加熱時間は、通常10分から20時間、好ましくは30分から10時間である。
2) Cured product The second of the present invention is a cured product obtained by curing the curable composition of the present invention.
Heat curing is mentioned as a method of hardening the curable composition of this invention. The heating temperature for curing is usually 100 to 200 ° C., and the heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 本発明の硬化物は、高い接着力を有し、耐剥離性、耐熱性に優れる。
 したがって、本発明の硬化物は、光素子の高輝度化に伴う劣化に関する問題を解決し、光素子固定材として好適に使用することができる。例えば、光学部品や成形体の原料、接着剤、コーティング剤等として好適に使用される。
The hardened | cured material of this invention has high adhesive force, and is excellent in peeling resistance and heat resistance.
Therefore, the hardened | cured material of this invention can solve the problem regarding deterioration accompanying the increase in the brightness of an optical element, and can be used suitably as an optical element fixing material. For example, it is suitably used as a raw material for optical parts and molded articles, an adhesive, a coating agent, and the like.
 本発明の硬化性組成物を加熱して得られる硬化物が耐剥離性に優れることは、例えば、次のようにして確認することができる。
 LEDリードフレームに、硬化性組成物を塗布した上に、サファイアチップを圧着し、170℃で2時間加熱処理して硬化させた後、封止材をカップ内に流し込み、150℃で1時間加熱処理して硬化物の試験片を得る。この試験片を85℃、85%RHの環境に168時間曝したのち、プレヒート160℃で、最高温度が260℃になる加熱時間1分間のIRリフローにて処理を行い、次いで、熱サイクル試験機にて、-40℃及び+100℃で各30分放置する試験を1サイクルとして、300サイクル実施する。その後、封止材を除去し、その際に素子が一緒に剥がれるか否かを調べる。本発明の硬化物においては、剥離する確率は通常45%以下、より好ましくは25%以下である。
It can be confirmed as follows, for example, that the cured product obtained by heating the curable composition of the present invention is excellent in peel resistance.
After applying the curable composition to the LED lead frame, the sapphire chip is pressure-bonded and cured by heat treatment at 170 ° C. for 2 hours, and then the sealing material is poured into the cup and heated at 150 ° C. for 1 hour. Process to obtain a cured specimen. This test piece was exposed to an environment of 85 ° C. and 85% RH for 168 hours, then pre-heated at 160 ° C. and treated by IR reflow with a maximum temperature of 260 ° C. for 1 minute, and then a heat cycle tester The test is allowed to stand at −40 ° C. and + 100 ° C. for 30 minutes for one cycle, and 300 cycles are performed. Thereafter, the sealing material is removed, and it is examined whether or not the elements are peeled off together. In the cured product of the present invention, the probability of peeling is usually 45% or less, more preferably 25% or less.
 本発明の硬化性組成物を硬化してなる硬化物が高い接着力を有することは、例えば、次のようにして接着力を測定することで確認することができる。すなわち、シリコンチップのミラー面に硬化性組成物を塗布し、塗布面を被着体の上に載せ,
圧着し、加熱処理して硬化させる。これを、予め所定温度(例えば、23℃、100℃)に加熱したボンドテスターの測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、接着面に対し水平方向(せん断方向)に応力をかけ、試験片と被着体との接着力を測定する。
 硬化物の接着力は、23℃において60N/2mm□以上であることが好ましく、80N/2mm□以上であることがより好ましく、100N/2mm□以上であることが特に好ましい。また硬化物の接着力は、100℃において40N/2mm□以上であることが好ましく、50N/2mm□以上であることがより好ましく、60N/2mm□以上であることが特に好ましい。
It can be confirmed that the cured product obtained by curing the curable composition of the present invention has a high adhesive force, for example, by measuring the adhesive force as follows. That is, the curable composition is applied to the mirror surface of the silicon chip, the application surface is placed on the adherend,
Crimp and heat treat to cure. This is left for 30 seconds on a measurement stage of a bond tester that has been heated to a predetermined temperature (for example, 23 ° C., 100 ° C.) in advance, and in a horizontal direction (shearing) with respect to the adhesion surface from a position 50 μm high from the adherend. Direction) and measure the adhesive force between the test piece and the adherend.
The adhesive strength of the cured product is preferably 60 N / 2 mm □ or more at 23 ° C., more preferably 80 N / 2 mm □ or more, and particularly preferably 100 N / 2 mm □ or more. The adhesive strength of the cured product is preferably 40 N / 2 mm □ or more at 100 ° C., more preferably 50 N / 2 mm □ or more, and particularly preferably 60 N / 2 mm □ or more.
3)硬化性組成物の使用方法
 本発明の第3は、本発明の硬化性組成物を、光素子用接着剤又は光素子用封止材等の光素子固定材用組成物として使用する方法である。
 光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
3) Method of using curable composition The third aspect of the present invention is a method of using the curable composition of the present invention as a composition for an optical element fixing material such as an optical element adhesive or an optical element sealing material. It is.
Examples of optical elements include light emitting elements such as LEDs and LDs, light receiving elements, composite optical elements, and optical integrated circuits.
〈光素子用接着剤〉
 本発明の硬化性組成物は、光素子用接着剤として好適に使用することができる。
 本発明の硬化性組成物を光素子用接着剤として使用する方法としては、接着の対象とする材料(光素子とその基板等)の一方又は両方の接着面に該組成物を塗布し、圧着した後、加熱硬化させ、接着の対象とする材料同士を強固に接着させる方法が挙げられる。
<Adhesive for optical elements>
The curable composition of this invention can be used conveniently as an adhesive agent for optical elements.
As a method of using the curable composition of the present invention as an adhesive for optical elements, the composition is applied to one or both adhesive surfaces of a material to be bonded (such as an optical element and its substrate), followed by pressure bonding. Then, the method of making it heat-cure and adhere | attach the materials made into the object of adhesion | attachment firmly is mentioned.
 光素子を接着するための主な基板材料としては、ソーダライムガラス、耐熱性硬質ガラス等のガラス類;セラミックス;サファイア;鉄、銅、アルミニウム、金、銀、白金、クロム、チタン及びこれらの金属の合金、ステンレス(SUS302、SUS304、SUS304L、SUS309等)等の金属類;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレン-酢酸ビニル共重合体、ポリスチレン、ポリカーボネート、ポリメチルペンテン、ポリスルホン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリイミド、ポリアミド、アクリル樹脂、ノルボルネン系樹脂、シクロオレフィン樹脂、ガラスエポキシ樹脂等の合成樹脂;等が挙げられる。 Main substrate materials for bonding optical elements include glass such as soda lime glass and heat-resistant hard glass; ceramics; sapphire; iron, copper, aluminum, gold, silver, platinum, chromium, titanium, and these metals Metals such as stainless steel (SUS302, SUS304, SUS304L, SUS309, etc.); polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene-vinyl acetate copolymer, polystyrene, polycarbonate, polymethylpentene, polysulfone, polyether Synthetic resins such as ether ketone, polyethersulfone, polyphenylene sulfide, polyetherimide, polyimide, polyamide, acrylic resin, norbornene resin, cycloolefin resin, glass epoxy resin; And the like.
 加熱硬化させる際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 The heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used. The heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
〈光素子用封止材〉
 本発明の硬化性組成物は、光素子封止体の封止材として好適に用いることができる。
 本発明の硬化性組成物を光素子用封止材として使用する方法としては、例えば、該組成物を所望の形状に成形して、光素子を内包した成形体を得た後、そのものを加熱硬化させることにより光素子封止体を製造する方法等が挙げられる。
 本発明の硬化性組成物を所望の形状に成形する方法としては、特に限定されるものではなく、通常のトランスファー成形法や、注型法等の公知のモールド法を採用できる。
<Encapsulant for optical element>
The curable composition of this invention can be used suitably as a sealing material of an optical element sealing body.
As a method of using the curable composition of the present invention as an encapsulant for optical elements, for example, the composition is molded into a desired shape to obtain a molded body containing the optical element, and then heated. The method etc. which manufacture an optical element sealing body by making it harden | cure are mentioned.
The method for molding the curable composition of the present invention into a desired shape is not particularly limited, and a known molding method such as a normal transfer molding method or a casting method can be employed.
 加熱硬化する際の加熱温度は、用いる硬化性組成物等にもよるが、通常、100~200℃である。加熱時間は、通常10分から20時間、好ましくは30分から10時間である。 The heating temperature at the time of heat curing is usually 100 to 200 ° C. although it depends on the curable composition used. The heating time is usually 10 minutes to 20 hours, preferably 30 minutes to 10 hours.
 得られる光素子封止体は、本発明の硬化性組成物を用いているので、耐剥離性、耐熱性に優れ、かつ、高い接着力を有するものである。 Since the obtained optical element sealing body uses the curable composition of the present invention, it has excellent peel resistance and heat resistance, and has high adhesive strength.
4)光デバイス
 本発明の第4は、本発明の硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として用いた光デバイスである。
 光素子としては、LED、LD等の発光素子、受光素子、複合光素子、光集積回路等が挙げられる。
 本発明の光デバイスは、本発明の硬化性組成物を、光素子固定用の接着剤又は封止材として用い、光素子を固定して得られるものである。そのため、光素子が高い接着力で固定された、耐久性に優れたものとなっている。
4) Optical device A fourth aspect of the present invention is an optical device using the curable composition of the present invention as an adhesive for optical element fixing materials or a sealing material for optical element fixing materials.
Examples of optical elements include light emitting elements such as LEDs and LDs, light receiving elements, composite optical elements, and optical integrated circuits.
The optical device of the present invention is obtained by fixing the optical element using the curable composition of the present invention as an adhesive or sealing material for fixing the optical element. For this reason, the optical element is fixed with a high adhesive force and has excellent durability.
 次に実施例及び比較例により本発明を更に詳細に説明するが、本発明は下記の実施例に限定されるものではない。なお、特に断りのない限り、「%」、「部」は質量基準である。 Next, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to the following examples. Unless otherwise specified, “%” and “parts” are based on mass.
(質量平均分子量測定)
 下記製造例で得たシラン化合物重合体の質量平均分子量(Mw)及び数平均分子量(Mn)は、標準ポリスチレン換算値とし、以下の装置及び条件にて測定した。
 装置名:HLC-8220GPC、東ソー社製
 カラム:TSKgelGMHXL、TSKgelGMHXL、及び、TSKgel2000HXLを順次連結したもの
 溶媒:テトラヒドロフラン
 注入量:80μl
 測定温度:40℃
 流速:1ml/分
 検出器:示差屈折計
(Mass average molecular weight measurement)
The mass average molecular weight (Mw) and number average molecular weight (Mn) of the silane compound polymer obtained in the following production examples were standard polystyrene equivalent values, and were measured using the following apparatus and conditions.
Device name: HLC-8220GPC, manufactured by Tosoh Corporation Column: TSKgelGMHXL, TSKgelGMHXL, and TSKgel2000HXL sequentially connected Solvent: Tetrahydrofuran Injection volume: 80 μl
Measurement temperature: 40 ° C
Flow rate: 1 ml / min Detector: Differential refractometer
(IRスペクトルの測定)
 製造例で得たシラン化合物重合体のIRスペクトルは、フーリエ変換赤外分光光度計(Spectrum100、パーキンエルマー社製)を使用して測定した。
(Measurement of IR spectrum)
The IR spectrum of the silane compound polymer obtained in the production example was measured using a Fourier transform infrared spectrophotometer (Spectrum 100, manufactured by Perkin Elmer).
(製造例1)
 300mlのナス型フラスコに、メチルトリエトキシシラン(信越化学工業社製、製品名:KBE-13)71.37g(400mmol)を仕込んだ後、蒸留水21.6mlに35%塩酸0.10g(シラン化合物の合計量に対して0.25モル%)を溶解した水溶液を撹拌しながら加え、全容を30℃にて2時間、次いで70℃に昇温して5時間撹拌したのち、酢酸プロピルを140g入れ撹拌した。ここに、28%アンモニア水0.12g(シラン化合物の合計量に対して0.5モル%)を撹拌しながら加え、全容を70℃に昇温して3時間さらに撹拌した。反応液に精製水を加え、分液し、水層のpHが7になるまでこの操作を繰り返した。有機層をエバポレーターで濃縮し、濃縮物を真空乾燥することにより、シラン化合物重合体(A1)を55.7g得た。このものの質量平均分子量(M)は7800、分子量分布(PDI)は4.52であった。
 シラン化合物重合体(A1)のIRスペクトルデータを以下に示す。
Si-CH:1272cm-1,1409cm-1,Si-O:1132cm-1
(Production Example 1)
Into a 300 ml eggplant-shaped flask was charged 71.37 g (400 mmol) of methyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KBE-13), and then 0.10 g of 35% hydrochloric acid (silane) was added to 21.6 ml of distilled water. An aqueous solution in which 0.25 mol% of the total amount of the compound was dissolved was added with stirring. The whole volume was stirred at 30 ° C. for 2 hours, then heated to 70 ° C. and stirred for 5 hours, and then 140 g of propyl acetate was added. The mixture was stirred. To this, 0.12 g of 28% ammonia water (0.5 mol% based on the total amount of silane compounds) was added with stirring, and the whole volume was heated to 70 ° C. and further stirred for 3 hours. Purified water was added to the reaction solution, liquid separation was performed, and this operation was repeated until the pH of the aqueous layer became 7. The organic layer was concentrated with an evaporator, and the concentrate was vacuum-dried to obtain 55.7 g of a silane compound polymer (A1). The weight average molecular weight of this (M W) is 7800, the molecular weight distribution (PDI) was 4.52.
IR spectrum data of the silane compound polymer (A1) are shown below.
Si—CH 3 : 1272 cm −1 , 1409 cm −1 , Si—O: 1132 cm −1
(実施例1)
 製造例1で得たシラン化合物重合体(A1)100部(質量部、以下同じ)に、
(B)成分として、平均一次粒子径が0.8μmのシリコーン系微粒子(日興リカ社製:MSP-SN08、下記表1において、「(B2)」という。)3部、
(C)成分として、1,3,5-N-トリス〔3-(トリメトキシシリル)プロピル〕イソシアヌレート(下記表1において、「(C1)」という。)10部、
(D)成分として、3-(トリメトキシシリル)プロピルコハク酸無水物(下記表1において、「(D1)」という。)1部、
(E)成分として、3-メルカプトプロピルトリメトキシシラン(信越化学工業社製、KBM-803、下記表1において、「(E1)」という。)0.5部、及び、
固形分が80%になるようジエチレンクリコールモノブチルエーテルアセテートを添加し、全容を十分に混合、脱泡することにより硬化性組成物1を得た。
(Example 1)
To 100 parts (parts by mass, the same shall apply hereinafter) of the silane compound polymer (A1) obtained in Production Example 1,
As component (B), 3 parts of silicone fine particles having an average primary particle size of 0.8 μm (manufactured by Nikko Rica Co., Ltd .: MSP-SN08, referred to as “(B2)” in Table 1 below),
As component (C), 10 parts of 1,3,5-N-tris [3- (trimethoxysilyl) propyl] isocyanurate (referred to as “(C1)” in Table 1 below),
As component (D), 1 part of 3- (trimethoxysilyl) propyl succinic anhydride (referred to as “(D1)” in Table 1 below),
As component (E), 0.5 part of 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-803, referred to as “(E1)” in Table 1 below), and
Diethylenecricol monobutyl ether acetate was added so that the solid content was 80%, and the entire volume was thoroughly mixed and defoamed to obtain curable composition 1.
(実施例2~27、比較例1~4)
 実施例1において、(B)成分の種類、使用量(部)、(C)、(D)成分の使用量(部)、(E)成分の種類、使用量(部)を、下記表1に記載した通りに変更した以外は、実施例1と同様にして、実施例2~27の硬化性組成物2~27、比較例1~4の硬化性組成物1r~4rを得た。
 下記表中、(B)成分の種類:B1~B4、B9、(E)成分の種類:E1~E3は以下を表す。
(Examples 2 to 27, Comparative Examples 1 to 4)
In Example 1, the type of component (B), the amount used (part), the amount used (C), the amount used (D) of component (part), the type of component (E), the amount used (part) are shown in Table 1 below. The curable compositions 2 to 27 of Examples 2 to 27 and the curable compositions 1r to 4r of Comparative Examples 1 to 4 were obtained in the same manner as in Example 1, except that the changes were made as described above.
In the table below, types of component (B): B1 to B4, B9, types of component (E): E1 to E3 represent the following.
・B1:シリコーン系微粒子(平均一次粒子径:0.5μm)、日興リカ社製、MSP-SN05
・B2:シリコーン系微粒子(平均一次粒子径:0.8μm)、日興リカ社製、MSP-SN08
・B3:シリコーン系微粒子(平均一次粒子径:2μm)、モメンティブ・パフォーマンス・マテ・リアルズ・ジャパン合同会社製、トスパール120
・B4:シリコーン系微粒子(平均一次粒子径:4.5μm)、モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製、トスパール145
・B9:シリカ系微粒子(平均一次粒子径:0.07μm)、トクヤマ社製、シルフィル NSS-5N
B1: Silicone fine particles (average primary particle size: 0.5 μm), manufactured by Nikko Rica Co., Ltd., MSP-SN05
B2: Silicone fine particles (average primary particle size: 0.8 μm), manufactured by Nikko Rica Co., Ltd., MSP-SN08
B3: Silicone fine particles (average primary particle size: 2 μm), Momentive Performance Mate Reals Japan GK, Tospearl 120
B4: Silicone fine particles (average primary particle size: 4.5 μm), manufactured by Momentive Performance Materials Japan, Tospearl 145
B9: Silica-based fine particles (average primary particle size: 0.07 μm), manufactured by Tokuyama Corporation, Silfil NSS-5N
・E1:3-メルカプトプロピルトリメトキシシラン〔信越化学工業社製、KBM-803、メルカプト当量(E1 1gあたりのメルカプト基のモル数):5.10mmol/g〕
・E2:3-トリメトキシシリルプロピルスルファニルトリエトキシシラン〔信越化学工業社製、X-12-1056ES、メルカプト当量(E2 1gあたりのメルカプト基のモル数):2.79mmol/g〕
・E3:オリゴマー〔分子量:700、信越化学工業社製、X-41-1810、メルカプト当量(E3 1gあたりのメルカプト基のモル数):2.22mmol/g〕
E1: 3-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-803, mercapto equivalent (number of moles of mercapto group per 1 g of E1): 5.10 mmol / g)
E2: 3-trimethoxysilylpropylsulfanyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., X-12-1056ES, mercapto equivalent (number of moles of mercapto group per 1 g of E2): 2.79 mmol / g)
E3: oligomer [molecular weight: 700, manufactured by Shin-Etsu Chemical Co., Ltd., X-41-1810, mercapto equivalent (number of moles of mercapto group per 1 g of E3): 2.22 mmol / g]
 実施例1~27及び比較例1~4で得た硬化性組成物1~27、1r~4rの硬化物につき、下記のようにして、接着強度の測定、及び耐剥離性の評価を行った。
 測定結果及び評価を下記表1に示す。
The cured products of the curable compositions 1-27 and 1r-4r obtained in Examples 1-27 and Comparative Examples 1-4 were measured for adhesive strength and evaluated for peel resistance as follows. .
The measurement results and evaluation are shown in Table 1 below.
(接着強度の測定)
 2mm角のシリコンチップのミラー面に、硬化性組成物1~27、1r~4rのそれぞれを、厚さが約2μmになるよう塗布し、塗布面を被着体(銀メッキ銅板)の上に載せ圧着した。その後、170℃で2時間加熱処理して硬化させて試験片付被着体を得た。この試験片付被着体を、予め所定温度(23℃、100℃)に加熱したボンドテスター(シリーズ4000、デイジ社製)の測定ステージ上に30秒間放置し、被着体から50μmの高さの位置より、スピード200μm/sで接着面に対し水平方法(せん断方向)に応力をかけ、23℃及び100℃における、試験片と被着体との接着強度(N/2mm□)を測定した。
(Measurement of adhesive strength)
Each of the curable compositions 1-27 and 1r-4r is applied to a mirror surface of a 2 mm square silicon chip so that the thickness is about 2 μm, and the coated surface is placed on an adherend (silver-plated copper plate). Placed and crimped. Then, it heat-processed at 170 degreeC for 2 hours, it was made to harden | cure, and the adherend with a test piece was obtained. The test piece-attached adherend is left for 30 seconds on a measurement stage of a bond tester (series 4000, manufactured by Daisy) heated in advance to a predetermined temperature (23 ° C., 100 ° C.), and has a height of 50 μm from the adherend. From the position, stress was applied in a horizontal direction (shear direction) to the bonding surface at a speed of 200 μm / s, and the bonding strength (N / 2 mm □) between the test piece and the adherend at 23 ° C. and 100 ° C. was measured. .
(耐剥離性試験)
 LEDリードフレーム(エノモト社製、製品名:5050 D/G PKG LEADFRAME)に、硬化性組成物1~27、1r~4rを、0.4mmφ程度塗布した上に、0.5mm角のサファイアチップを圧着した。その後、170℃で2時間加熱処理して硬化させた後、封止材(信越化学工業社製、製品名:EG6301)をカップ内に流し込み、150℃で1時間加熱処理して試験片を得た。
 この試験片を85℃、85%RHの環境に168時間曝したのち、プレヒート160℃で、最高温度が260℃になる加熱時間1分間のIRリフロー(リフロー炉:相模理工社製、製品名「WL-15-20DNX型」)にて処理を行った。その後、熱サイクル試験機にて、-40℃及び+100℃で各30分放置する試験を1サイクルとして、300サイクル実施した。その後、封止材を除去する操作を行い、その際に素子が一緒に剥がれるか否かを調べた。この試験を、各硬化性組成物につき12回行った。
 下記表1に、素子が一緒に剥がれた回数を数え、剥離発生率が25%以下であれば「A」、25%より大きく50%以下であれば「B」、50%より大きければ「C」と評価した。
 下記表中、(E)の右欄は硬化性組成物に対するメルカプト当量(硬化性組成物1gあたりのメルカプト基のモル数)(mmol/g)を示す。
(Peel resistance test)
The LED lead frame (product name: 5050 D / G PKG LEADFRAME manufactured by Enomoto Co.) is coated with curable compositions 1-27, 1r-4r about 0.4 mmφ, and then a 0.5 mm square sapphire chip is applied. Crimped. Then, after curing by heat treatment at 170 ° C. for 2 hours, a sealing material (manufactured by Shin-Etsu Chemical Co., Ltd., product name: EG6301) is poured into the cup, and heat treatment is performed at 150 ° C. for 1 hour to obtain a test piece. It was.
This test piece is exposed to an environment of 85 ° C. and 85% RH for 168 hours, and then subjected to IR reflow (reflow furnace: manufactured by Sagami Riko Co., Ltd., product name “ WL-15-20DNX type "). Thereafter, the test was allowed to stand for 30 minutes each at −40 ° C. and + 100 ° C. in a thermal cycle tester, and 300 cycles were performed. Then, operation which removes a sealing material was performed, and it was investigated whether the element peeled together in that case. This test was performed 12 times for each curable composition.
In Table 1 below, the number of times the elements are peeled off is counted. If the peeling occurrence rate is 25% or less, “A”, if it is greater than 25% and less than 50%, “B”, if greater than 50%, “C”. "
In the following table, the right column of (E) indicates the mercapto equivalent (number of moles of mercapto group per 1 g of curable composition) (mmol / g) with respect to the curable composition.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1から、実施例1~27の硬化性組成物1~27の硬化物はすべて、耐剥離性の評価がAであり、耐剥離性に優れていることがわかる。また、接着強度も、23℃においては、すべて122N/2mm□以上であり、100℃においては77N/2mm□以上であり、接着力、耐熱性にも優れていることがわかる。
 一方、比較例1~4の硬化性組成物の硬化物1r~4rは、すべて耐剥離性の評価はCであり、耐剥離性に劣っていることがわかる。接着強度は、23℃で98N/2mm□以下であり、100℃においては、34N/2mm□以下であり、接着力、耐熱性にも劣っていることがわかる。
From Table 1, it can be seen that all of the cured products of the curable compositions 1 to 27 of Examples 1 to 27 have an evaluation of peel resistance of A and are excellent in peel resistance. Also, the adhesive strength is all 122 N / 2 mm □ or more at 23 ° C. and 77 N / 2 mm □ or more at 100 ° C., indicating that the adhesive strength and heat resistance are also excellent.
On the other hand, all of the cured products 1r to 4r of the curable compositions of Comparative Examples 1 to 4 have an evaluation of peel resistance of C, indicating that the peel resistance is inferior. The adhesive strength is 98 N / 2 mm □ or less at 23 ° C. and 34 N / 2 mm □ or less at 100 ° C., indicating that the adhesive strength and heat resistance are poor.

Claims (12)

  1.  下記(A)~(E)成分を有する硬化性組成物であって、(A)成分と(B)成分とを、(A)成分と(B)成分の質量比で、〔(A)成分:(B)成分〕=100:0.3~100:20の割合で含有することを特徴とする硬化性組成物。
    (A)下記式(a)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは炭素数1~10のアルキル基を表す。複数のRはすべて同一であっても相異なっていてもよい。Zは、ヒドロキシル基、炭素数1~10のアルコキシ基、又は、ハロゲン原子を示す。sは正の整数を示し、t、uはそれぞれ独立して、0又は正の整数を示す。)
    で示されるシラン化合物重合体
    (B)平均一次粒子径が0.04μm超、8μm以下の微粒子
    (C)分子内に窒素原子を有するシランカップリング剤
    (D)分子内に酸無水物構造を有するシランカップリング剤
    (E)分子内に硫黄原子含有官能基を有するシランカップリング剤
    A curable composition having the following components (A) to (E), wherein the component (A) and the component (B) are mixed in a mass ratio of the component (A) and the component (B) [(A) component : (B) component] = 100: 0.3 to 100: 20 The curable composition characterized by the above-mentioned.
    (A) The following formula (a)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents an alkyl group having 1 to 10 carbon atoms. A plurality of R 1 may be the same or different. Z represents a hydroxyl group or an alkoxy group having 1 to 10 carbon atoms.) Or represents a halogen atom, s represents a positive integer, and t and u each independently represents 0 or a positive integer.)
    The silane compound polymer (B) represented by the formula (B) Fine particles having an average primary particle diameter of more than 0.04 μm and 8 μm or less (C) A silane coupling agent having a nitrogen atom in the molecule (D) having an acid anhydride structure in the molecule Silane coupling agent (E) Silane coupling agent having a sulfur atom-containing functional group in the molecule
  2.  前記(B)成分が、シリカ、シリコーン、及び、シリコーンで表面が被覆された金属酸化物、から選ばれる少なくとも1種の微粒子である請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the component (B) is at least one fine particle selected from silica, silicone, and a metal oxide whose surface is coated with silicone.
  3.  前記(A)成分の質量平均分子量が800~50,000である、請求項1に記載の硬化性組成物。 The curable composition according to claim 1, wherein the component (A) has a mass average molecular weight of 800 to 50,000.
  4.  さらに、希釈剤を含有する請求項1に記載の硬化性組成物。 The curable composition according to claim 1, further comprising a diluent.
  5.  前記(A)成分、(B)成分、(C)成分、(D)成分及び(E)成分の合計量が、硬化性組成物の希釈剤を除いた成分全体に対して、50~100質量%であることを特徴とする、請求項1に記載の硬化性組成物。 The total amount of the component (A), the component (B), the component (C), the component (D), and the component (E) is 50 to 100 mass with respect to the entire component excluding the diluent of the curable composition. The curable composition according to claim 1, wherein the curable composition is%.
  6.  前記硬化性組成物の固形分濃度が、50~100質量%であることを特徴とする、請求項1に記載の硬化性組成物。 2. The curable composition according to claim 1, wherein the solid content concentration of the curable composition is 50 to 100% by mass.
  7.  光素子固定材用組成物である請求項1に記載の硬化性組成物。 The curable composition according to claim 1, which is a composition for an optical element fixing material.
  8.  請求項1に記載の硬化性組成物を硬化してなる硬化物。 Hardened | cured material formed by hardening | curing the curable composition of Claim 1.
  9.  光素子固定材である請求項8に記載の硬化物。 The cured product according to claim 8, which is an optical element fixing material.
  10.  請求項1に記載の硬化性組成物を、光素子固定材用接着剤として使用する方法。 A method of using the curable composition according to claim 1 as an adhesive for an optical element fixing material.
  11.  請求項1に記載の硬化性組成物を、光素子固定材用封止材として使用する方法。 A method of using the curable composition according to claim 1 as an encapsulant for an optical element fixing material.
  12.  請求項1に記載の硬化性組成物を、光素子固定材用接着剤又は光素子固定材用封止材として用いた光デバイス。 An optical device using the curable composition according to claim 1 as an adhesive for an optical element fixing material or an encapsulant for an optical element fixing material.
PCT/JP2015/073611 2014-08-26 2015-08-21 Curable composition, cured product, method for using curable composition, and optical device WO2016031733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016541469A JP6062120B2 (en) 2014-08-26 2015-08-21 Curable composition, cured product, method of using curable composition, and optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014171421 2014-08-26
JP2014-171421 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016031733A1 true WO2016031733A1 (en) 2016-03-03

Family

ID=55399625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073611 WO2016031733A1 (en) 2014-08-26 2015-08-21 Curable composition, cured product, method for using curable composition, and optical device

Country Status (3)

Country Link
JP (1) JP6062120B2 (en)
TW (1) TWI660010B (en)
WO (1) WO2016031733A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176828A1 (en) * 2018-03-12 2019-09-19 リンテック株式会社 Curable composition, cured product, method for producing cured product, and method for using curable composition
WO2020166414A1 (en) * 2019-02-14 2020-08-20 日立化成株式会社 Reactive hot-melt adhesive composition, and bonded body and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313621A (en) * 2001-04-17 2002-10-25 Nippon Kayaku Co Ltd Silicone resin composition and resin-bonded molded metallic parts
JP2007507583A (en) * 2003-09-30 2007-03-29 スリーエム イノベイティブ プロパティズ カンパニー Printable insulating composition and printable article
JP2009138059A (en) * 2007-12-04 2009-06-25 Canon Inc Molding material, molded article using it, and manufacturing method thereof
WO2009101753A1 (en) * 2008-02-14 2009-08-20 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
WO2009104505A1 (en) * 2008-02-19 2009-08-27 リンテック株式会社 Adhesive mainly composed of polyorganosiloxane compound
JP2011173738A (en) * 2010-02-23 2011-09-08 Nagase Chemtex Corp Transparent fired body
WO2011111667A1 (en) * 2010-03-08 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition
WO2013141360A1 (en) * 2012-03-23 2013-09-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
WO2014069508A1 (en) * 2012-10-30 2014-05-08 リンテック株式会社 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002313621A (en) * 2001-04-17 2002-10-25 Nippon Kayaku Co Ltd Silicone resin composition and resin-bonded molded metallic parts
JP2007507583A (en) * 2003-09-30 2007-03-29 スリーエム イノベイティブ プロパティズ カンパニー Printable insulating composition and printable article
JP2009138059A (en) * 2007-12-04 2009-06-25 Canon Inc Molding material, molded article using it, and manufacturing method thereof
WO2009101753A1 (en) * 2008-02-14 2009-08-20 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
WO2009104505A1 (en) * 2008-02-19 2009-08-27 リンテック株式会社 Adhesive mainly composed of polyorganosiloxane compound
JP2011173738A (en) * 2010-02-23 2011-09-08 Nagase Chemtex Corp Transparent fired body
WO2011111667A1 (en) * 2010-03-08 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition
WO2013141360A1 (en) * 2012-03-23 2013-09-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
WO2014069508A1 (en) * 2012-10-30 2014-05-08 リンテック株式会社 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176828A1 (en) * 2018-03-12 2019-09-19 リンテック株式会社 Curable composition, cured product, method for producing cured product, and method for using curable composition
WO2020166414A1 (en) * 2019-02-14 2020-08-20 日立化成株式会社 Reactive hot-melt adhesive composition, and bonded body and method for producing same
JP7484730B2 (en) 2019-02-14 2024-05-16 株式会社レゾナック Reactive hot melt adhesive composition, adhesive body and method for producing same

Also Published As

Publication number Publication date
JPWO2016031733A1 (en) 2017-04-27
JP6062120B2 (en) 2017-01-18
TWI660010B (en) 2019-05-21
TW201612248A (en) 2016-04-01

Similar Documents

Publication Publication Date Title
JP6761491B2 (en) Curable Compositions, Curables and How to Use Curable Compositions
JP5744221B2 (en) Curable composition, cured product and method of using curable composition
JP6009120B2 (en) Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
JP6151458B2 (en) Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
JP6064094B2 (en) Curable composition, cured product, method of using curable composition, and optical device
JP6151457B2 (en) Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
JP6151459B2 (en) Curable composition, method for producing curable composition, cured product, method for using curable composition, and optical device
JP6062120B2 (en) Curable composition, cured product, method of using curable composition, and optical device
WO2015041339A1 (en) Curable composition, cured product, and method for using curable composition
WO2017110947A1 (en) Curable composition, method for producing curable composition, cured product, and use of curable composition
JP6062119B2 (en) Curable composition, cured product, method of using curable composition, and optical device
WO2015041341A1 (en) Curable composition, curing product, and method for using curable composition
JP6830563B2 (en) Curable Polysilsesquioxane Compounds, Curable Compositions, Curables, and How to Use Curable Compositions
WO2015041343A1 (en) Curable composition, cured product, and method for using curable composition
WO2015041344A1 (en) Curable composition, cured product, and method for using curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835760

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016541469

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835760

Country of ref document: EP

Kind code of ref document: A1