WO2016031322A1 - Building - Google Patents

Building Download PDF

Info

Publication number
WO2016031322A1
WO2016031322A1 PCT/JP2015/064810 JP2015064810W WO2016031322A1 WO 2016031322 A1 WO2016031322 A1 WO 2016031322A1 JP 2015064810 W JP2015064810 W JP 2015064810W WO 2016031322 A1 WO2016031322 A1 WO 2016031322A1
Authority
WO
WIPO (PCT)
Prior art keywords
base plate
fire
seismic isolation
building
building according
Prior art date
Application number
PCT/JP2015/064810
Other languages
French (fr)
Japanese (ja)
Inventor
琴世 水野
邦彦 佐藤
圭輔 笹島
清水 弘
松岡 真二
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2016031322A1 publication Critical patent/WO2016031322A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • A62C2/06Physical fire-barriers
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0235Anti-seismic devices with hydraulic or pneumatic damping
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • G21C13/024Supporting constructions for pressure vessels or containment vessels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/04Means for suppressing fires ; Earthquake protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a building such as a containment vessel equipped with a seismic isolation device.
  • One of the nuclear power plants is a pressurized water reactor.
  • this pressurized water reactor light water is used as a reactor coolant and a neutron moderator, and high-temperature and high-pressure water that does not boil throughout the primary system is used. Water is sent to a steam generator to generate steam by heat exchange, and this steam is sent to a turbine generator to generate electricity.
  • the containment vessel is erected on a foundation plate laid on the ground, and this foundation plate has a seismic isolation structure.
  • a seismic isolation structure for example, there is one described in Patent Document 1 below.
  • a seismic isolation device is provided between the lower basic version provided on the ground and the upper basic version in which the reactor containment vessel is erected. .
  • the seismic isolation device has a combustible structure constituted by laminated rubber and oil dampers, generally a fireproof coating material is provided on the outside and sufficient Fire resistance is ensured.
  • a conventional protection structure for a seismic isolation device for example, there is one described in Patent Document 2 below.
  • the protection structure for a seismic isolation device described in Patent Document 2 is provided with a protection cover surrounding the isolator.
  • Conventional seismic isolation devices have been provided with a fireproof coating on the outside and a protective cover that surrounds them.
  • a flammable fluid such as fuel or oil enters from the outside, the flame is flammable.
  • the fluid and fire There is a risk of igniting the fluid and fire.
  • sufficient safety of the seismic isolation device cannot be ensured only with the fireproof covering material and the protective cover.
  • This invention solves the subject mentioned above, and aims at providing the building which aims at the improvement of disaster prevention performance.
  • the building of the present invention comprises a lower foundation plate provided on the ground, an upper foundation plate provided above the lower foundation plate and provided with a structure, and the upper foundation plate.
  • a seismic isolation apparatus having a plurality of seismic isolation structures arranged at predetermined intervals in the horizontal direction between the lower base plate, and a slope provided on an upper surface of the lower base plate and inclined downward toward the outside. And a side groove provided outside the slope.
  • the slope is provided outside the seismic isolation device.
  • a plurality of water collecting basins are provided at predetermined intervals in the circumferential direction on the upper surface of the lower foundation plate, the side grooves communicate with the plurality of water collecting basins, and the slope is the plurality of water collecting basins. It is characterized by inclining downward toward the water tank.
  • the flammable liquid that has entered between the upper base plate and the lower base plate moves outward by the slope and flows into the side groove, and is then collected in each catchment. Can be safely isolated in the position of.
  • the water collecting basin is provided with a drainage device.
  • the flammable liquid collected in each catchment basin is discharged to the outside from the catchment basin by the drainage device, and the flammable liquid can be safely discharged.
  • the building of the present invention is characterized in that a fire extinguishing device for supplying a fire extinguishing agent toward the side groove is provided.
  • the fire extinguishing agent is directed toward the flame by the fire extinguishing device. It will be supplied and fire extinguishing activities can be performed quickly.
  • the building of the present invention is characterized in that a fire wall is provided between the upper base plate and the lower base plate so as to surround the plurality of seismic isolation structures from the outside.
  • the flammable liquid that has entered between the upper and lower foundation plates flows to the seismic isolation structure side while being blocked by the fire protection walls.
  • the flammable liquid can be safely poured into the side groove by the slope without contacting the seismic isolation structure.
  • the building of the present invention is characterized in that the fire wall has flexibility.
  • the fire wall is flexible, even if an earthquake occurs and the upper base plate moves relative to the lower base plate by the seismic isolation device, the fire wall will not be damaged and safety Can be improved.
  • the fire wall includes an upper fire wall fixed to a lower part of the upper base plate and a lower fire wall fixed to an upper part of the lower base plate, and a lower part of the upper fire wall. And an upper part of the lower fire wall are connected to each other so as to be relatively movable in a vertical direction and a horizontal direction.
  • the upper and lower firewalls are relatively movable in the vertical and horizontal directions, even if an earthquake occurs and the upper base plate moves relative to the lower base plate by the seismic isolation device, The wall is not damaged and safety can be improved.
  • a retaining wall is provided around the lower foundation plate so as to surround the upper foundation plate, and is horizontally closed between the upper surface of the upper foundation plate and the upper surface of the retaining wall.
  • a member is provided.
  • the gap between the upper surface of the upper base plate and the upper surface of the retaining wall is closed by the closing member, and the intrusion of a dangerous substance such as a flammable liquid from the gap can be prevented.
  • the building of the present invention is characterized in that a ventilation device is provided for discharging the air in the space between the upper base plate and the lower base plate.
  • the ventilation device includes an exhaust passage that penetrates the retaining wall inward and outward, a filter that is provided in the exhaust passage and collects harmful substances, and sends air in the space to the exhaust passage. And an exhaust fan for feeding.
  • the building of the present invention is characterized in that a fire detector is provided for detecting a fire in the space between the upper base plate and the lower base plate.
  • the fire detector detects a fire that has occurred in the space between the upper base plate and the lower base plate, and safety can be improved.
  • a seismic isolation device having a plurality of seismic isolation structures disposed between the upper base plate and the lower base plate, and provided downward on the upper surface of the lower base plate. Since the slope which inclines and the side groove provided in the outer side of a slope are provided, the disaster prevention performance of a building can be improved.
  • FIG. 1 is a schematic structure figure showing the building of a 1st embodiment.
  • FIG. 2 is a schematic plan view showing the building.
  • FIG. 3 is a cross-sectional view of the main part showing the basic version of the building.
  • FIG. 4 is a cross-sectional view of a main part showing a basic version of the building.
  • FIG. 5 is a cross-sectional view illustrating a modified example of the fire wall.
  • FIG. 6 is a cross-sectional view illustrating a modified example of the fire wall.
  • FIG. 7 is a schematic plan view showing the building of the second embodiment.
  • FIG. 8 is a cross-sectional view of the main part showing the basic version of the building.
  • the nuclear reactor according to the first embodiment uses light water as a reactor coolant and a neutron moderator, and generates high-temperature and high-pressure water that does not boil over the entire core. And a pressurized water reactor (PWR) that generates power by sending the steam to a turbine generator.
  • PWR pressurized water reactor
  • FIG. 1 is a schematic configuration diagram showing the building of the first embodiment
  • FIG. 2 is a schematic plan view showing the building.
  • the reactor containment vessel 11 contains a pressurized water reactor 12, a steam generator 13, a pressurizer 14, and the like.
  • the reactor containment vessel 11 is installed on a solid ground 22 such as a rock through a foundation plate 21. That is, the ground 23 is dug down to the ground 22 by a predetermined depth to form a recess 24, the base plate 21 is installed in the recess 24, and the reactor containment vessel 11 is erected on the base plate 21.
  • the basic version 21 is composed of a lower basic version 31, an upper basic version 32, and a seismic isolation device 33.
  • the lower basic plate 31 and the upper basic plate 32 have a rectangular shape in plan view, and the reactor containment vessel 11 has a circular shape in plan view.
  • the lower base plate 31 has, for example, a reinforced concrete structure (RC structure) in which a reinforcing bar is incorporated, and is laid on the ground 22 that is flatly formed in the recess 24, and has a height substantially the same as that of the ground 23 around the periphery.
  • the retaining wall 34 is formed, and is constructed in a rectangular shape or a rectangular shape so that its surface (upper surface) is flat.
  • the upper base plate 32 has, for example, a reinforced concrete structure (RC structure) in which a reinforcing bar is incorporated therein, and the surface (upper surface) of the upper base plate 32 is substantially the same as that of the ground 23. It is constructed in a rectangular parallelepiped shape or a rectangular parallelepiped shape so that its height and the front surface and back surface (lower surface) are flat.
  • the upper base plate 32 is provided with a plurality of space portions 35 for accommodating various devices.
  • the upper basic version 32 is provided with the reactor containment vessel 11 as a structure on the upper surface.
  • the seismic isolation device 33 is provided between the upper surface of the lower base plate 31 and the lower surface of the upper base plate 32.
  • the seismic isolation device 33 is configured by arranging a plurality of seismic isolation structures 36 in a grid pattern at predetermined intervals (preferably at equal intervals) in the horizontal direction.
  • the seismic isolation structure 36 has, for example, a multi-layer seismic isolation structure in which disc-shaped rubber materials and disc-shaped steel plates are alternately stacked.
  • the seismic isolation structure 36 is not limited to a multilayer seismic isolation structure, and may be, for example, a hydraulic damper.
  • Each seismic isolation structure 36 has a lower portion fixed to the upper surface of the lower base plate 31 and an upper portion fixed to the lower surface of the upper base plate 32.
  • the reactor containment vessel 11 is a reinforced concrete reactor containment vessel (PCCV: Prestressed Concrete Containment Vessel) or steel plate concrete containment vessel (SCCC: Steal Concrete Containment) using pre-stressed steel wire (Tendon). Vessel), or a nuclear reactor containment vessel such as a reinforced concrete containment vessel (RCCV: Reinforced Concrete Containment Vessel) or a steel reactor containment vessel (SCV: Steel Containment Vessel). Therefore, the base plate 21 needs to properly support the reactor containment vessel 11 that is a heavy object and ensure high earthquake resistance by the seismic isolation device 33.
  • PCCV Prestressed Concrete Containment Vessel
  • SCCC Steal Concrete Containment
  • Tendon pre-stressed steel wire
  • FIG.3 and FIG.4 is principal part sectional drawing showing the foundation version of a building.
  • a slope 41 is provided on the upper surface of the lower base plate 31 that is inclined downward toward the outside.
  • the slope 41 is provided outside the seismic isolation device 33.
  • a side groove 42 is provided outside the slope 41.
  • the lower foundation plate 31 is provided with a retaining wall 34 surrounding the upper foundation plate 32 around the periphery, and a predetermined distance is secured in the horizontal direction between the upper foundation plate 32 and the retaining wall 34, An open space S is secured.
  • the lower base plate 31 is provided with a horizontal upper surface portion 31a facing the upper base plate 32, and a slope 41 is provided outside the upper surface portion 31a.
  • the lower base plate 31 since the lower base plate 31 has a rectangular parallelepiped shape or a rectangular parallelepiped shape, a slope 41 that is inclined downward from the four sides of the outer periphery toward the outside is provided.
  • the side groove 42 is provided inside the retaining wall 34 in the lower base plate 31.
  • the side groove 42 is provided continuously with the outer end portion of the slope 41 and has a bottom surface lower than the outer end portion of the slope 41.
  • the retaining wall 34 has a square ring shape in plan view
  • the side groove 42 has a square ring shape in plan view along the inside of the retaining wall 34. Therefore, the slope 41 can collect the fluid that has entered the space S, in particular, the flammable liquid, by flowing it into the side groove 42.
  • the lower base plate 31 is provided with a fire extinguishing device 51 that supplies a fire extinguishing agent to the retaining wall 34 toward the side groove 42.
  • the fire extinguishing device 51 is configured such that a fire extinguishing pipe 52 extends from the outside of the lower base plate 31 through the retaining wall 34 to the inside.
  • the fire extinguishing pipe 52 can be connected to a fire extinguishing agent storage source such as a fire extinguishing tank (not shown) at the base end, and can supply the fire extinguishing agent by operating a pump (not shown) or operating an on-off valve.
  • the extinguishing pipe 52 has a tip portion extending toward the side groove 42 and can supply a fire extinguishing agent to the flame that is collected in the side groove 42 and ignited.
  • a plurality of fire extinguishing devices 51 are provided at predetermined intervals in the circumferential direction of the retaining wall 34.
  • a fire wall 61 is provided between the lower base plate 31 and the upper base plate 32 to surround the plurality of seismic isolation structures 36 from the outside.
  • the fire wall 61 has a square cylindrical shape surrounding the plurality of seismic isolation structures 36 from the outside.
  • the lower part is fixed to the upper part of the lower base plate 31 and the upper part is fixed to the lower part of the upper base plate 32. It has flexibility and fire resistance. Therefore, the fire wall 61 can partition a plurality of seismic isolation structures 36 inside the space S.
  • a closing member 62 that is movable in the horizontal direction is provided between the upper surface of the upper base plate 32 and the upper surface of the retaining wall 34.
  • the closing member 62 includes a first closing plate 63 fixed to the upper surface of the upper base plate 32 and a second closing plate 64 fixed to the upper surface of the retaining wall 34. Part of the plate 64 overlaps.
  • the closing member 62 since the space portion S formed by the upper base plate 32 and the retaining wall 34 has a square ring shape in plan view, the closing member 62 has a square ring shape having a width wider than the width of the space portion S. I am doing. Therefore, the closing member 62 can close the space part S.
  • a ventilation device 71 for discharging the air in the space S to the outside is provided.
  • the ventilation device 71 supplies the exhaust passage 72 that penetrates the retaining wall 34 inward and outward, a filter 73 that is provided in the exhaust passage 72 and collects harmful substances, and supplies the air in the space S to the exhaust passage 72.
  • an exhaust fan 74 is installed in a support base 75 fixed to the wall surface of the retaining wall 34 in the space S. Therefore, when a fire occurs in the space portion S, the ventilator 71 can discharge to the outside after removing harmful substances from smoke generated by the fire.
  • a plurality of ventilation devices 71 are provided at predetermined intervals in the circumferential direction of the retaining wall 34.
  • a fire detector 76 for detecting a fire in the space S is provided.
  • the fire detector 76 is a smoke detector, a temperature sensor, a fire alarm or the like, and outputs a detection signal to a control device (not shown). Then, the control device receives this detection signal and operates the fire extinguishing device 51 and the ventilation device 71.
  • the fire wall 61 was made flexible, it is not limited to this structure. 5 and 6 are sectional views showing modifications of the fire wall.
  • the fire wall 81 has an upper fire wall 82 fixed to the lower part of the upper base plate 32 and a lower fire wall 83 fixed to the upper part of the lower base plate 31.
  • the upper fire wall 82 has a horizontal locking piece 82a fixed to the lower end portion
  • the lower fire wall 83 has a connection piece 83a having a U-shaped cross section fixed to the upper end portion. And it connects with the locking piece 82a in the upper fire wall 82 so that the connection piece 83a of the lower fire wall 83 may surround. Since the lower part of the upper fire wall 82 and the upper part of the lower fire wall 83 are connected with a predetermined gap, they can move relative to each other in the vertical direction and the horizontal direction.
  • the fire wall 86 has an upper fire wall 87 fixed to the lower part of the upper base plate 32 and a lower fire wall 88 fixed to the upper part of the lower base plate 31.
  • the upper fire wall 87 has a lower end portion connected to a pair of rotatable wheels 87b by a horizontal shaft 87a
  • the lower fire wall 88 has an upper end portion to which a connecting piece 88a having a U-shaped cross section is fixed. And it connects with the wheel 87b in the upper fire wall 87 so that the connection piece 88a of the lower fire wall 88 may surround. Since the lower part of the upper fire wall 87 and the upper part of the lower fire wall 83 are connected with a predetermined gap, they can move relative to each other in the vertical and horizontal directions.
  • the operation of the flame protection device 40 of the present embodiment will be described.
  • flammable liquid such as oil or fuel is caught between the blocking members 62. Intrudes into the space S.
  • the closing member 62 is not a complete sealing structure, the flammable liquid enters the space S through the gap.
  • the flammable liquid enters the space S from the periphery of the closing member 62 and falls onto the slope 41.
  • the combustible liquid falling on the slope 41 flows outward along the inclination and flows into the side groove 42. Therefore, the attachment of the flammable liquid to the plurality of seismic isolation structures 36 is prevented.
  • the plurality of seismic isolation structures 36 are surrounded by the fire wall 61 from the outside, adhesion of the flammable liquid to the plurality of seismic isolation structures 36 is also prevented in this respect.
  • the fire detector 76 detects the fire and outputs a detection signal, and the control device receives the detection signal, and the fire extinguishing device 51 and the ventilator 71 are operated.
  • the fire extinguishing device 51 supplies a fire extinguishing agent to the flame that is collected in the side groove 42 through the fire extinguishing pipe 52 and ignited.
  • the ventilator 71 operates the exhaust fan 74 to remove harmful substances such as smoke generated by the fire in the space S and discharge the smoke to the outside.
  • the lower foundation plate 31 provided on the ground 22 and the upper foundation plate 32 provided above the lower foundation plate 31 and provided with the reactor containment vessel 11 are provided.
  • the seismic isolation device 33 having the seismic isolation structures 36 arranged in the horizontal direction at a predetermined interval between the upper base plate 32 and the lower base plate 31 and the upper surface of the lower base plate 31 are provided outward.
  • a slope 41 inclined downward and a side groove 42 provided on the outer side of the slope 41 are provided.
  • the slope 41 is provided outside the seismic isolation device 33. Accordingly, a plurality of seismic isolation structures 36 can be stably installed on the upper surface of the lower base plate 31, and the side grooves 42 can be safely secured by the slope 41 without contacting the flammable liquid with the seismic isolation structure 36. Can be poured into.
  • a fire extinguishing device 51 that supplies a fire extinguishing agent toward the side groove 42 is provided. Therefore, the flammable liquid that has entered between the upper foundation plate 32 and the lower foundation plate 31 moves outward by the slope 41 and flows into the side groove 42, and then, when ignited by a fire type, Fire extinguishing agent will be supplied towards the fire extinguisher, and fire extinguishing activities can be performed quickly.
  • a fire wall 61 is provided between the upper base plate 32 and the lower base plate 31 so as to surround a plurality of seismic isolation structures 36 from the outside. Therefore, the flammable liquid that has entered between the upper foundation plate 32 and the lower foundation plate 31 is not blocked by the fire wall 61 and does not flow to the seismic isolation structure 36 side.
  • the slope 41 can safely flow into the side groove 42 without contacting the body 36.
  • the fire wall 61 has flexibility and fire resistance. Therefore, even if an earthquake occurs and the upper base plate 31 is moved relative to the lower base plate 31 by the seismic isolation device 33, the fire wall 61 is not damaged, and safety can be improved.
  • the fire walls 81 and 86 are the upper fire walls 82 and 87 fixed to the lower part of the upper base plate 32, and the lower fire walls 83 and 88 fixed to the upper part of the lower base plate 31.
  • the lower part of the upper fire walls 82 and 87 and the upper part of the lower fire walls 83 and 88 are connected to each other so as to be relatively movable in the vertical direction and the horizontal direction. Therefore, even if an earthquake occurs and the upper base plate 32 is moved relative to the lower base plate 31 by the seismic isolation device 33, the fire walls 81 and 86 are not damaged, and safety can be improved. it can.
  • a retaining wall 34 surrounding the upper foundation plate 32 is provided around the lower foundation plate 31, and is movable in the horizontal direction between the upper surface of the upper foundation plate 32 and the upper surface of the retaining wall 34.
  • An obstructing member 62 is provided. Accordingly, the gap between the upper surface of the upper base plate 32 and the upper surface of the retaining wall 34 is closed by the closing member 62, and invasion of dangerous substances such as flammable liquids into the space S from the gap is prevented. Can do.
  • a ventilation device 71 is provided to discharge air in the space S between the upper base plate 32 and the lower base plate 31. Therefore, when a fire occurs in the space S between the upper base plate 32 and the lower base plate 31, harmful gas generated inside by the ventilator 71 is discharged to the outside, and safety can be improved. .
  • the ventilation device 71 exhausts the air in the space portion S, the exhaust passage 72 penetrating the retaining wall 34 in and out, the filter 73 provided in the exhaust passage 72 and collecting harmful substances.
  • An exhaust fan 74 that feeds the passage 72 is provided. Therefore, harmful gas generated inside can be easily discharged to the outside with a simple configuration.
  • a fire detector 76 that detects a fire in the space S is provided. Therefore, the fire detector 75 detects a fire that has occurred in the space S, and the fire extinguishing device 51 and the ventilation device 71 can be automatically operated to improve safety.
  • FIG. 7 is a schematic plan view showing a building according to the second embodiment
  • FIG. 8 is a cross-sectional view of a main part showing a basic version of the building.
  • symbol is attached
  • the lower base plate 31 is provided with a slope 41 that is inclined downward on the upper surface outwardly from the seismic isolation device 33.
  • a side groove 42 is provided outside 41.
  • the lower base plate 31 is provided with a plurality of water collecting basins 91 at predetermined intervals along the circumferential direction on the upper surface, and the side grooves 42 communicate with the water collecting basins 91.
  • Each drainage basin 91 is provided inside the retaining wall 34 at the outer peripheral portion of the lower base plate 31.
  • Each drainage basin 91 is provided at a corner portion of the side groove 42 having a square ring shape and an intermediate portion of the linear portion, and communicates with the side groove 42. And the slope 41 and the side groove 42 incline below toward each water catchment 91.
  • All drainage basins 91 are provided with a drainage device 92.
  • the drainage device 92 includes a drainage hole 93, a drainage pipe 94, a drainage pump 95, and an on-off valve 96.
  • the drainage basin 91 has a drain hole 93 formed at the bottom, and one end of a drain pipe 94 is connected to the drain hole 93.
  • the drainage pipe 94 is provided with a drainage pump 95 and an on-off valve 96, and the other end is connected to a wastewater treatment apparatus (not shown). Therefore, when the drainage device 92 is activated, the flammable liquid accumulated in the drainage basin 91 flows into the drainage pipe 94 through the drainage hole 93, and when the drainage pump 95 is operated to open the on-off valve 96, the flammable liquid is removed.
  • the waste water can be fed to the waste water treatment device by the drain pipe 94.
  • the slope 41 that is inclined downward toward the outside is provided on the upper surface of the lower foundation plate 31, the side grooves 42 are provided outside the slope 41, and the lower foundation plate 31.
  • a plurality of water collecting basins 91 are provided at predetermined intervals in the circumferential direction on the upper surface of the basin, and communicated with the side grooves 42 and each water basin 91, and the slope 41 is inclined downward toward the water basin 91.
  • the flammable liquid when a flammable liquid enters the space S, the liquid moves outward by the slope 41 provided on the upper surface of the lower base plate 31 and flows into the side groove 42. Will be collected. Therefore, the flammable liquid does not flow into the plurality of seismic isolation structures 36, and damage to the seismic isolation device 33 having the seismic isolation structures 36 can be prevented. Further, the flammable liquid can be safely isolated at a predetermined position separated from the seismic isolation structure 36 to prevent diffusion, and the disaster prevention performance of the building can be improved.
  • a drainage device 92 is provided in the water collecting tank 91. Therefore, the flammable liquid collected in each water collecting basin 91 is discharged to the outside from the water collecting basin 91 by the drainage device 92, and the flammable liquid can be safely discharged.
  • the fire extinguishing device 51, the ventilation device 71, and the fire detector 76 described in the first embodiment are omitted, but these may be provided. In this case, it is desirable that the fire extinguishing apparatus 51 is provided at the same position corresponding to the plurality of water collecting tanks 91.
  • the inclination angle and shape of the slope 41 (linear shape, curved shape), and the shape of the side groove 42 (a U-shaped cross section, a semicircular cross section, an inclined bottom surface) are the base plates 31, 32, What is necessary is just to set suitably by the shape, dimension, etc. of the retaining wall 34 and the seismic isolation apparatus 33.
  • FIG. 1 the inclination angle and shape of the slope 41 (linear shape, curved shape), and the shape of the side groove 42 (a U-shaped cross section, a semicircular cross section, an inclined bottom surface) are the base plates 31, 32, What is necessary is just to set suitably by the shape, dimension, etc. of the retaining wall 34 and the seismic isolation apparatus 33.
  • the basic structure of the building of the present invention is applied to a pressurized water reactor.
  • the embodiment can be applied to a boiling water reactor (BWR), and any light water reactor can be used. It may be applied to any nuclear reactor.
  • the building is a reactor containment vessel, but it may be a general building such as a building or a tower.
  • Reactor containment vessel (structure) DESCRIPTION OF SYMBOLS 12 Pressurized water reactor 13 Steam generator 14 Pressurizer 21 Base plate 22 Ground 23 Ground 24 Recess 31 Lower base plate 31a Upper surface part 32 Upper base plate 33 Seismic isolation device 34 Retaining wall 35 Space part 36 Base isolation structure 40 Flame protection Device 41 Slope 42 Side groove 51 Fire extinguishing device 52 Fire extinguishing pipe 61 Fire barrier 62 Blocking member 63 First block plate 64 Second block plate 71 Ventilator 72 Exhaust passage 73 Filter 74 Exhaust fan 75 Support base 76 Fire detector 81, 86 Fire wall 82, 87 Upper fire wall 82a Locking piece 83, 88 Lower fire wall 83a, 88a Connecting piece 87a Horizontal shaft 87b Wheel 91 Drainage 92 Discharge device 93 Drain hole 94 Drain pipe 95 Drain pump 96 On-off valve S Space part

Abstract

A building is provided with: a lower foundation plate (31) that is provided on the ground (22); an upper foundation plate (32) that is provided above the lower foundation plate (31) and on which a containment building (11) is disposed; a seismic isolation device (33) that has a plurality of seismic isolation structures (36) disposed at prescribed intervals in the horizontal direction between the lower foundation plate (31) and the upper foundation plate (32); a slope (41) that is provided on the upper face of the lower foundation plate (31) and that inclines down toward the outside; and a side groove (42) that is provided on the outer side of the slope (41). Thus, the capacity for preventing disasters can be improved

Description

建屋Building
 本発明は、免震装置が装備される原子炉格納容器などの建屋に関するものである。 The present invention relates to a building such as a containment vessel equipped with a seismic isolation device.
 原子力発電プラントの一つとして、加圧水型原子炉があり、この加圧水型原子炉では、軽水を原子炉冷却材及び中性子減速材として使用し、一次系全体にわたって沸騰しない高温高圧水とし、この高温高圧水を蒸気発生器に送って熱交換により蒸気を発生させ、この蒸気をタービン発電機へ送って発電している。 One of the nuclear power plants is a pressurized water reactor. In this pressurized water reactor, light water is used as a reactor coolant and a neutron moderator, and high-temperature and high-pressure water that does not boil throughout the primary system is used. Water is sent to a steam generator to generate steam by heat exchange, and this steam is sent to a turbine generator to generate electricity.
 このような加圧水型原子炉を有する原子力発電プラントでは、地盤に敷設された基礎版上に、この原子炉格納容器が立設されており、この基礎版は免震構造となっている。このような免震構造を有する基礎版としては、例えば、下記特許文献1に記載されたものがある。この特許文献1に記載された原子力施設の建屋の基礎版では、地盤上に設けられた下部基礎版と原子炉格納容器が立設された上部基礎版との間に免震装置を設けている。 In such a nuclear power plant having a pressurized water reactor, the containment vessel is erected on a foundation plate laid on the ground, and this foundation plate has a seismic isolation structure. As a basic version having such a seismic isolation structure, for example, there is one described in Patent Document 1 below. In the basic version of the building of the nuclear facility described in Patent Document 1, a seismic isolation device is provided between the lower basic version provided on the ground and the upper basic version in which the reactor containment vessel is erected. .
 そして、このような原子力発電プラントにて、免震装置は、積層ゴムやオイルダンパにより構成された可燃性の構造となっているものの、一般的に、外側に耐火被覆材が設けられ、十分な耐火性能が確保されている。しかし、免震装置の安全性を高めるためには、火災に対する免震装置の更なる防火対策が必要となる。従来における免震装置の防護構造としては、例えば、下記特許文献2に記載されたものがある。この特許文献2に記載された免震装置の防護構造は、アイソレータの周囲を囲むような防護カバーを設けたものである。 And in such a nuclear power plant, although the seismic isolation device has a combustible structure constituted by laminated rubber and oil dampers, generally a fireproof coating material is provided on the outside and sufficient Fire resistance is ensured. However, in order to increase the safety of the seismic isolation device, further fire prevention measures for the seismic isolation device are necessary. As a conventional protection structure for a seismic isolation device, for example, there is one described in Patent Document 2 below. The protection structure for a seismic isolation device described in Patent Document 2 is provided with a protection cover surrounding the isolator.
特開2013-249711号公報JP 2013-249711 A 特開平10-280728号公報JP-A-10-280728
 従来、免震装置は、外側に耐火被覆材が設けられ、その周囲を囲むような防護カバーを設けられているが、外部から燃料や油などの可燃性流体が侵入した場合、火炎がこの可燃性流体に引火し、火災が発生するおそれがある。火災が発生した場合、耐火被覆材や防護カバーだけでは、免震装置の十分な安全性が確保できないおそれがある。 Conventional seismic isolation devices have been provided with a fireproof coating on the outside and a protective cover that surrounds them. However, if a flammable fluid such as fuel or oil enters from the outside, the flame is flammable. There is a risk of igniting the fluid and fire. In the event of a fire, there is a risk that sufficient safety of the seismic isolation device cannot be ensured only with the fireproof covering material and the protective cover.
 本発明は、上述した課題を解決するものであり、防災性能の向上を図る建屋を提供することを目的とする。 This invention solves the subject mentioned above, and aims at providing the building which aims at the improvement of disaster prevention performance.
 上記の目的を達成するための本発明の建屋は、地盤上に設けられる下部基礎版と、前記下部基礎版の上方に設けられて構造物が設置される上部基礎版と、前記上部基礎版と前記下部基礎版との間に水平方向に所定間隔で複数配置される免震構造体を有する免震装置と、前記下部基礎版の上面に設けられて外方に向けて下方に傾斜するスロープと、前記スロープの外側に設けられる側溝と、を有することを特徴とするものである。 In order to achieve the above object, the building of the present invention comprises a lower foundation plate provided on the ground, an upper foundation plate provided above the lower foundation plate and provided with a structure, and the upper foundation plate. A seismic isolation apparatus having a plurality of seismic isolation structures arranged at predetermined intervals in the horizontal direction between the lower base plate, and a slope provided on an upper surface of the lower base plate and inclined downward toward the outside. And a side groove provided outside the slope.
 従って、上部基礎版と下部基礎版との間に可燃性の液体が浸入した場合、この液体は、下部基礎版の上面に設けられたスロープにより外側に移動して側溝に流れ込むこととなる。そのため、可燃性の液体が複数の免震構造体側に流れ込むことはなく、免震構造体を有する免震装置の火災による損傷を防止し、建屋の防災性能を向上することができる。 Therefore, when a flammable liquid enters between the upper base plate and the lower base plate, the liquid moves to the outside by the slope provided on the upper surface of the lower base plate and flows into the side groove. Therefore, the flammable liquid does not flow into the plurality of seismic isolation structures, preventing damage to the seismic isolation apparatus having the seismic isolation structures from fire and improving the disaster prevention performance of the building.
 本発明の建屋では、前記スロープは、前記免震装置より外側に設けられることを特徴としている。 In the building of the present invention, the slope is provided outside the seismic isolation device.
 従って、スロープを免震装置より外側に設けることで、複数の免震構造体を下部基礎版の上面に安定して設置することができると共に、可燃性の液体を免震構造体に接触させることなくスロープにより安全に側溝に流し込むことができる。 Therefore, by providing a slope outside the seismic isolation device, it is possible to stably install a plurality of seismic isolation structures on the upper surface of the lower base plate, and to bring flammable liquid into contact with the seismic isolation structure Without a slope, it can be poured safely into the side groove.
 本発明の建屋では、前記下部基礎版の上面に周方向に所定間隔で複数の集水桝が設けられ、前記側溝が前記複数の集水桝に連通されると共に、前記スロープが前記複数の集水桝に向けて下方に傾斜することを特徴としている。 In the building of the present invention, a plurality of water collecting basins are provided at predetermined intervals in the circumferential direction on the upper surface of the lower foundation plate, the side grooves communicate with the plurality of water collecting basins, and the slope is the plurality of water collecting basins. It is characterized by inclining downward toward the water tank.
 従って、上部基礎版と下部基礎版との間に浸入した可燃性の液体は、スロープにより外側に移動して側溝に流れ込んだ後、各集水桝に集められることとなり、可燃性の液体を所定の位置に安全に隔離することができる。 Therefore, the flammable liquid that has entered between the upper base plate and the lower base plate moves outward by the slope and flows into the side groove, and is then collected in each catchment. Can be safely isolated in the position of.
 本発明の建屋では、前記集水桝は、排水装置が設けられることを特徴としている。 In the building of the present invention, the water collecting basin is provided with a drainage device.
 従って、各集水桝に集められた可燃性の液体は、集水桝から排水装置により外部に排出されることとなり、可燃性の液体を安全に排出することができる。 Therefore, the flammable liquid collected in each catchment basin is discharged to the outside from the catchment basin by the drainage device, and the flammable liquid can be safely discharged.
 本発明の建屋では、前記側溝に向けて消火剤を供給する消火装置が設けられることを特徴としている。 The building of the present invention is characterized in that a fire extinguishing device for supplying a fire extinguishing agent toward the side groove is provided.
 従って、上部基礎版と下部基礎版との間に浸入した可燃性の液体は、スロープにより外側に移動して側溝に流れ込んだ後、火種により着火した場合、消火装置により火炎に向けて消火剤が供給されることとなり、消火活動を迅速に行うことができる。 Therefore, when the flammable liquid that has entered between the upper base plate and the lower base plate moves outward by the slope and flows into the side groove, and is ignited by a fire type, the fire extinguishing agent is directed toward the flame by the fire extinguishing device. It will be supplied and fire extinguishing activities can be performed quickly.
 本発明の建屋では、前記上部基礎版と前記下部基礎版との間で前記複数の免震構造体を外側から取り囲む防火壁が設けられることを特徴としている。 The building of the present invention is characterized in that a fire wall is provided between the upper base plate and the lower base plate so as to surround the plurality of seismic isolation structures from the outside.
 従って、複数の免震構造体を外側から取り囲む防火壁を設けることで、上部基礎版と下部基礎版との間に浸入した可燃性の液体は、防火壁に阻止されて免震構造体側に流れることはなく、可燃性の液体を免震構造体に接触させることなくスロープにより安全に側溝に流し込むことができる。 Therefore, by providing a fire wall that surrounds multiple seismic isolation structures from the outside, the flammable liquid that has entered between the upper and lower foundation plates flows to the seismic isolation structure side while being blocked by the fire protection walls. The flammable liquid can be safely poured into the side groove by the slope without contacting the seismic isolation structure.
 本発明の建屋では、前記防火壁は、可撓性を有することを特徴としている。 The building of the present invention is characterized in that the fire wall has flexibility.
 従って、防火壁が可撓性を有することで、地震が発生し、免震装置により下部基礎版に対して上部基礎版が相対移動しても、防火壁が損傷を受けることはなく、安全性を向上することができる。 Therefore, because the fire wall is flexible, even if an earthquake occurs and the upper base plate moves relative to the lower base plate by the seismic isolation device, the fire wall will not be damaged and safety Can be improved.
 本発明の建屋では、前記防火壁は、前記上部基礎版の下部に固定される上部防火壁と、前記下部基礎版の上部に固定される下部防火壁とを有し、前記上部防火壁の下部と前記下部防火壁の上部が鉛直方向及び水平方向に相対移動自在に連結されることを特徴としている。 In the building of the present invention, the fire wall includes an upper fire wall fixed to a lower part of the upper base plate and a lower fire wall fixed to an upper part of the lower base plate, and a lower part of the upper fire wall. And an upper part of the lower fire wall are connected to each other so as to be relatively movable in a vertical direction and a horizontal direction.
 従って、上部防火壁と下部防火壁が鉛直方向及び水平方向に相対移動自在であることから、地震が発生し、免震装置により下部基礎版に対して上部基礎版が相対移動しても、防火壁が損傷を受けることはなく、安全性を向上することができる。 Therefore, since the upper and lower firewalls are relatively movable in the vertical and horizontal directions, even if an earthquake occurs and the upper base plate moves relative to the lower base plate by the seismic isolation device, The wall is not damaged and safety can be improved.
 本発明の建屋では、前記下部基礎版の周囲に前記上部基礎版の周囲を取り囲む擁壁が設けられ、前記上部基礎版の上面と前記擁壁の上面との間に水平方向に移動自在な閉塞部材が設けられることを特徴としている。 In the building according to the present invention, a retaining wall is provided around the lower foundation plate so as to surround the upper foundation plate, and is horizontally closed between the upper surface of the upper foundation plate and the upper surface of the retaining wall. A member is provided.
 従って、閉塞部材により上部基礎版の上面と擁壁の上面との隙間が閉塞されることとなり、この隙間からの可燃性の液体などの危険物の侵入を防止することができる。 Therefore, the gap between the upper surface of the upper base plate and the upper surface of the retaining wall is closed by the closing member, and the intrusion of a dangerous substance such as a flammable liquid from the gap can be prevented.
 本発明の建屋では、前記上部基礎版と前記下部基礎版との間の空間部の空気を排出する換気装置が設けられることを特徴としている。 The building of the present invention is characterized in that a ventilation device is provided for discharging the air in the space between the upper base plate and the lower base plate.
 従って、基礎版と下部基礎版との間の空間部で火災が発生すると、換気装置により内部で発生した有害ガスを外部に排出することとなり、安全性を向上することができる。 Therefore, if a fire occurs in the space between the base plate and the lower base plate, the harmful gas generated inside by the ventilator will be discharged to the outside, and safety can be improved.
 本発明の建屋では、前記換気装置は、前記擁壁を内外に貫通する排気通路と、前記排気通路に設けられて有害物質を捕集するフィルタと、前記空間部の空気を前記排気通路に送給する排気ファンとを有することを特徴としている。 In the building of the present invention, the ventilation device includes an exhaust passage that penetrates the retaining wall inward and outward, a filter that is provided in the exhaust passage and collects harmful substances, and sends air in the space to the exhaust passage. And an exhaust fan for feeding.
 従って、簡単な構成により容易に内部で発生した有害ガスを外部に排出することができる。 Therefore, harmful gas generated inside can be easily discharged to the outside with a simple configuration.
 本発明の建屋では、前記上部基礎版と前記下部基礎版との間の空間部の火災を検知する火災検知器が設けられることを特徴としている。 The building of the present invention is characterized in that a fire detector is provided for detecting a fire in the space between the upper base plate and the lower base plate.
 従って、火災検知器が上部基礎版と下部基礎版との空間部で発生した火災を検知することとなり、安全性を向上することができる。 Therefore, the fire detector detects a fire that has occurred in the space between the upper base plate and the lower base plate, and safety can be improved.
 本発明の建屋によれば、上部基礎版と下部基礎版との間に複数配置される免震構造体を有する免震装置と、下部基礎版の上面に設けられて外方に向けて下方に傾斜するスロープと、スロープの外側に設けられる側溝とを設けるので、建屋の防災性能を向上することができる。 According to the building of the present invention, a seismic isolation device having a plurality of seismic isolation structures disposed between the upper base plate and the lower base plate, and provided downward on the upper surface of the lower base plate. Since the slope which inclines and the side groove provided in the outer side of a slope are provided, the disaster prevention performance of a building can be improved.
図1は、第1実施形態の建屋を表す概略構成図である。 Drawing 1 is a schematic structure figure showing the building of a 1st embodiment. 図2は、建屋を表す概略平面図である。FIG. 2 is a schematic plan view showing the building. 図3は、建屋の基礎版を表す要部断面図である。FIG. 3 is a cross-sectional view of the main part showing the basic version of the building. 図4は、建屋の基礎版を表す要部断面図である。FIG. 4 is a cross-sectional view of a main part showing a basic version of the building. 図5は、防火壁の変形例を表す断面図である。FIG. 5 is a cross-sectional view illustrating a modified example of the fire wall. 図6は、防火壁の変形例を表す断面図である。FIG. 6 is a cross-sectional view illustrating a modified example of the fire wall. 図7は、第2実施形態の建屋を表す概略平面図である。FIG. 7 is a schematic plan view showing the building of the second embodiment. 図8は、建屋の基礎版を表す要部断面図である。FIG. 8 is a cross-sectional view of the main part showing the basic version of the building.
 以下に添付図面を参照して、本発明に係る建屋の好適な実施形態を詳細に説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。 Hereinafter, preferred embodiments of a building according to the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by this embodiment, and when there are two or more embodiments, what comprises combining each embodiment is also included.
[第1実施形態]
 第1実施形態の原子炉は、軽水を原子炉冷却材及び中性子減速材として使用し、炉心全体にわたって沸騰しない高温高圧水とし、この高温高圧水を蒸気発生器に送って熱交換により蒸気を発生させ、この蒸気をタービン発電機へ送って発電する加圧水型原子炉(PWR:Pressurized Water Reactor)である。
[First Embodiment]
The nuclear reactor according to the first embodiment uses light water as a reactor coolant and a neutron moderator, and generates high-temperature and high-pressure water that does not boil over the entire core. And a pressurized water reactor (PWR) that generates power by sending the steam to a turbine generator.
 図1は、第1実施形態の建屋を表す概略構成図、図2は、建屋を表す概略平面図である。 FIG. 1 is a schematic configuration diagram showing the building of the first embodiment, and FIG. 2 is a schematic plan view showing the building.
 第1実施形態において、図1及び図2に示すように、原子炉格納容器11は、内部に加圧水型原子炉12、蒸気発生器13、加圧器14などが収容されている。この原子炉格納容器11は、基礎版21を介して岩盤等の堅固な地盤22上に設置されている。即ち、地面23を地盤22まで所定深さだけ掘り下げて凹部24を形成し、この凹部24内に基礎版21を設置し、この基礎版21上に原子炉格納容器11を立設している。 In the first embodiment, as shown in FIGS. 1 and 2, the reactor containment vessel 11 contains a pressurized water reactor 12, a steam generator 13, a pressurizer 14, and the like. The reactor containment vessel 11 is installed on a solid ground 22 such as a rock through a foundation plate 21. That is, the ground 23 is dug down to the ground 22 by a predetermined depth to form a recess 24, the base plate 21 is installed in the recess 24, and the reactor containment vessel 11 is erected on the base plate 21.
 基礎版21は、下部基礎版31と上部基礎版32と免震装置33とから構成されている。下部基礎版31と上部基礎版32は、平面視が矩形状をなし、原子炉格納容器11は、平面視が円形状をなしている。下部基礎版31は、例えば、内部に鉄筋を組み込んだ鉄筋コンクリート構造(RC構造)となっており、凹部24内で、平坦に造成した地盤22上に敷設され、周囲に地面23とほぼ同様の高さまで擁壁34が形成され、その表面(上面)が平坦となるように正方体状または長方体状に建造される。 The basic version 21 is composed of a lower basic version 31, an upper basic version 32, and a seismic isolation device 33. The lower basic plate 31 and the upper basic plate 32 have a rectangular shape in plan view, and the reactor containment vessel 11 has a circular shape in plan view. The lower base plate 31 has, for example, a reinforced concrete structure (RC structure) in which a reinforcing bar is incorporated, and is laid on the ground 22 that is flatly formed in the recess 24, and has a height substantially the same as that of the ground 23 around the periphery. The retaining wall 34 is formed, and is constructed in a rectangular shape or a rectangular shape so that its surface (upper surface) is flat.
 上部基礎版32は、下部基礎版31と同様に、例えば、内部に鉄筋を組み込んだ鉄筋コンクリート構造(RC構造)となっており、凹部24内で、その表面(上面)が地面23とほぼ同様の高さとなり、その表面及び裏面(下面)が平坦となるように正方体状または長方体状に建造される。この上部基礎版32は、内部に各種の機器などを収容したりする空間部35が複数設けられている。この上部基礎版32は、上面に構造体としての原子炉格納容器11が設置されている。 The upper base plate 32 has, for example, a reinforced concrete structure (RC structure) in which a reinforcing bar is incorporated therein, and the surface (upper surface) of the upper base plate 32 is substantially the same as that of the ground 23. It is constructed in a rectangular parallelepiped shape or a rectangular parallelepiped shape so that its height and the front surface and back surface (lower surface) are flat. The upper base plate 32 is provided with a plurality of space portions 35 for accommodating various devices. The upper basic version 32 is provided with the reactor containment vessel 11 as a structure on the upper surface.
 免震装置33は、下部基礎版31の上面と上部基礎版32の下面との間に設けられている。この免震装置33は、複数の免震構造体36が水平方向に所定間隔(好ましくは、等間隔)に格子状に配置されて構成されている。この免震構造体36は、例えば、円盤状のゴム材と円盤状の鋼板とを交互に積層した多層免震構造を有するものである。なお、免震構造体36は、多層免震構造に限るものではなく、例えば、油圧ダンパなどであってもよい。そして、この各免震構造体36は、その下部が下部基礎版31の上面に固定され、その上部が上部基礎版32の下面に固定されている。 The seismic isolation device 33 is provided between the upper surface of the lower base plate 31 and the lower surface of the upper base plate 32. The seismic isolation device 33 is configured by arranging a plurality of seismic isolation structures 36 in a grid pattern at predetermined intervals (preferably at equal intervals) in the horizontal direction. The seismic isolation structure 36 has, for example, a multi-layer seismic isolation structure in which disc-shaped rubber materials and disc-shaped steel plates are alternately stacked. The seismic isolation structure 36 is not limited to a multilayer seismic isolation structure, and may be, for example, a hydraulic damper. Each seismic isolation structure 36 has a lower portion fixed to the upper surface of the lower base plate 31 and an upper portion fixed to the lower surface of the upper base plate 32.
 なお、原子炉格納容器11は、プレストレスを導入した鋼線(テンドン)を用いた鉄筋コンクリート製原子炉格納容器(PCCV:Prestressed Concrete Containment Vessel)、または、鋼板コンクリート製格納容器(SCCV:Steal Concrete Containment Vessel)、または、鉄筋コンクリート製原子炉格納容器(RCCV:Reinforced Concrete Containment Vessel)、鋼製原子炉格納容器(SCV:Steel Containment Vessel)などの原子炉格納容器である。そのため、基礎版21は、重量物である原子炉格納容器11を適正に支持し、免震装置33により高い耐震性を確保する必要がある。 The reactor containment vessel 11 is a reinforced concrete reactor containment vessel (PCCV: Prestressed Concrete Containment Vessel) or steel plate concrete containment vessel (SCCC: Steal Concrete Containment) using pre-stressed steel wire (Tendon). Vessel), or a nuclear reactor containment vessel such as a reinforced concrete containment vessel (RCCV: Reinforced Concrete Containment Vessel) or a steel reactor containment vessel (SCV: Steel Containment Vessel). Therefore, the base plate 21 needs to properly support the reactor containment vessel 11 that is a heavy object and ensure high earthquake resistance by the seismic isolation device 33.
 そして、本実施形態では、建屋の火炎防護装置40が設けられている。図3及び図4は、建屋の基礎版を表す要部断面図である。 And in this embodiment, the flame protection apparatus 40 of a building is provided. FIG.3 and FIG.4 is principal part sectional drawing showing the foundation version of a building.
 火炎防護装置40において、図1から図3に示すように、下部基礎版31の上面に外方に向けて下方に傾斜するスロープ41が設けられている。スロープ41は、免震装置33より外側に設けられている。また、スロープ41の外側に側溝42が設けられている。 In the flame protection device 40, as shown in FIGS. 1 to 3, a slope 41 is provided on the upper surface of the lower base plate 31 that is inclined downward toward the outside. The slope 41 is provided outside the seismic isolation device 33. A side groove 42 is provided outside the slope 41.
 即ち、下部基礎版31は、周囲に上部基礎版32の周囲を取り囲む擁壁34が設けられており、上部基礎版32と擁壁34との間に水平方向に所定距離が確保され、上方に開放される空間部Sが確保されている。下部基礎版31は、上部基礎版32に対向する水平な上面部31aが設けられ、この上面部31aの外側にスロープ41が設けられている。この場合、下部基礎版31が正方体状または長方体状であることから、外周の4辺から外側に向けて下方に傾斜するスロープ41が設けられる。 That is, the lower foundation plate 31 is provided with a retaining wall 34 surrounding the upper foundation plate 32 around the periphery, and a predetermined distance is secured in the horizontal direction between the upper foundation plate 32 and the retaining wall 34, An open space S is secured. The lower base plate 31 is provided with a horizontal upper surface portion 31a facing the upper base plate 32, and a slope 41 is provided outside the upper surface portion 31a. In this case, since the lower base plate 31 has a rectangular parallelepiped shape or a rectangular parallelepiped shape, a slope 41 that is inclined downward from the four sides of the outer periphery toward the outside is provided.
 側溝42は、下部基礎版31における擁壁34の内側に設けられている。この側溝42は、スロープ41の外端部に連続して設けられ、スロープ41の外端部より低い底面を有する溝となっている。この場合、擁壁34は、平面視が四角いリング形状をなすことから、側溝42は、擁壁34の内側に沿って平面視が四角いリング形状をなしている。そのため、スロープ41は、空間部Sに入り込んだ流体、特に、可燃性の液体を側溝42に流して集めることができる。 The side groove 42 is provided inside the retaining wall 34 in the lower base plate 31. The side groove 42 is provided continuously with the outer end portion of the slope 41 and has a bottom surface lower than the outer end portion of the slope 41. In this case, since the retaining wall 34 has a square ring shape in plan view, the side groove 42 has a square ring shape in plan view along the inside of the retaining wall 34. Therefore, the slope 41 can collect the fluid that has entered the space S, in particular, the flammable liquid, by flowing it into the side groove 42.
 また、下部基礎版31は、擁壁34に側溝42へ向けて消火剤を供給する消火装置51が設けられている。消火装置51は、消火配管52が下部基礎版31の外部から擁壁34を貫通して内部まで延出して構成されている。消火配管52は、基端部が図示しない消火タンクなどの消火剤貯留源に連結可能であり、図示しないポンプの作動や開閉弁の操作により消火剤を供給することができる。また、消火配管52は、先端部が側溝42に向かって延出しており、側溝42に集められて引火した火炎に対して消火剤を供給することができる。なお、消火装置51は、擁壁34の周方向に所定間隔で複数設けられている。 Further, the lower base plate 31 is provided with a fire extinguishing device 51 that supplies a fire extinguishing agent to the retaining wall 34 toward the side groove 42. The fire extinguishing device 51 is configured such that a fire extinguishing pipe 52 extends from the outside of the lower base plate 31 through the retaining wall 34 to the inside. The fire extinguishing pipe 52 can be connected to a fire extinguishing agent storage source such as a fire extinguishing tank (not shown) at the base end, and can supply the fire extinguishing agent by operating a pump (not shown) or operating an on-off valve. Further, the extinguishing pipe 52 has a tip portion extending toward the side groove 42 and can supply a fire extinguishing agent to the flame that is collected in the side groove 42 and ignited. A plurality of fire extinguishing devices 51 are provided at predetermined intervals in the circumferential direction of the retaining wall 34.
 更に、下部基礎版31と上部基礎版32との間で、複数の免震構造体36を外側から取り囲む防火壁61が設けられている。この防火壁61は、複数の免震構造体36を外側から取り囲む四角い筒形状をなし、下部が下部基礎版31の上部に固定され、上部が上部基礎版32の下部に固定されており、可撓性及び耐火性を有している。そのため、防火壁61は、内部にある複数の免震構造体36を空間部Sに対して区画することができる。 Further, a fire wall 61 is provided between the lower base plate 31 and the upper base plate 32 to surround the plurality of seismic isolation structures 36 from the outside. The fire wall 61 has a square cylindrical shape surrounding the plurality of seismic isolation structures 36 from the outside. The lower part is fixed to the upper part of the lower base plate 31 and the upper part is fixed to the lower part of the upper base plate 32. It has flexibility and fire resistance. Therefore, the fire wall 61 can partition a plurality of seismic isolation structures 36 inside the space S.
 上部基礎版32の上面と擁壁34の上面との間に水平方向に移動自在な閉塞部材62が設けられている。この閉塞部材62は、上部基礎版32の上面に固定される第1閉塞板63と、擁壁34の上面に固定される第2閉塞板64から構成され、第1閉塞板63と第2閉塞板64は、一部が重なっている。この場合、上部基礎版32と擁壁34とで構成される空間部Sは、平面視が四角いリング形状をなすことから、閉塞部材62は、空間部Sの幅より広い幅を有する四角いリング形状をなしている。そのため、この閉塞部材62は、空間部Sの上方を閉塞することができる。 A closing member 62 that is movable in the horizontal direction is provided between the upper surface of the upper base plate 32 and the upper surface of the retaining wall 34. The closing member 62 includes a first closing plate 63 fixed to the upper surface of the upper base plate 32 and a second closing plate 64 fixed to the upper surface of the retaining wall 34. Part of the plate 64 overlaps. In this case, since the space portion S formed by the upper base plate 32 and the retaining wall 34 has a square ring shape in plan view, the closing member 62 has a square ring shape having a width wider than the width of the space portion S. I am doing. Therefore, the closing member 62 can close the space part S.
 図4に示すように、空間部Sの空気を外部に排出する換気装置71が設けられている。換気装置71は、擁壁34を水平方向に内外に貫通する排気通路72と、排気通路72に設けられて有害物質を捕集するフィルタ73と、空間部Sの空気を排気通路72に送給する排気ファン74とを有している。排気ファン74は、空間部Sで、擁壁34の壁面に固定された支持台75に設置されている。そのため、換気装置71は、空間部Sで火災が発生したとき、火災により発生した煙などから有害物質を除去した後に外部に排出することができる。なお、換気装置71は、擁壁34の周方向に所定間隔で複数設けられている。 As shown in FIG. 4, a ventilation device 71 for discharging the air in the space S to the outside is provided. The ventilation device 71 supplies the exhaust passage 72 that penetrates the retaining wall 34 inward and outward, a filter 73 that is provided in the exhaust passage 72 and collects harmful substances, and supplies the air in the space S to the exhaust passage 72. And an exhaust fan 74. The exhaust fan 74 is installed in a support base 75 fixed to the wall surface of the retaining wall 34 in the space S. Therefore, when a fire occurs in the space portion S, the ventilator 71 can discharge to the outside after removing harmful substances from smoke generated by the fire. A plurality of ventilation devices 71 are provided at predetermined intervals in the circumferential direction of the retaining wall 34.
 この空間部Sの火災を検知する火災検知器76が設けられている。この火災検知器76は、煙探知機、温度センサ、火災報知機などであり、検知信号を図示しない制御装置に出力する。すると、制御装置は、この検知信号を受け、消火装置51や換気装置71を作動する。 A fire detector 76 for detecting a fire in the space S is provided. The fire detector 76 is a smoke detector, a temperature sensor, a fire alarm or the like, and outputs a detection signal to a control device (not shown). Then, the control device receives this detection signal and operates the fire extinguishing device 51 and the ventilation device 71.
 なお、本実施形態にて、防火壁61を可撓性としたが、この構成に限定されるものではない。図5及び図6は、防火壁の変形例を表す断面図である。 In addition, in this embodiment, although the fire wall 61 was made flexible, it is not limited to this structure. 5 and 6 are sectional views showing modifications of the fire wall.
 図5に示すように、防火壁81は、上部基礎版32の下部に固定される上部防火壁82と、下部基礎版31の上部に固定される下部防火壁83とを有している。上部防火壁82は、下端部に水平な係止片82aが固定され、下部防火壁83は、上端部にコ字状断面を有する連結片83aが固定されている。そして、上部防火壁82における係止片82aに対して、下部防火壁83の連結片83aが囲むように連結されている。上部防火壁82の下部と下部防火壁83の上部は、所定隙間を持って連結されていることから、互いに鉛直方向及び水平方向に相対移動自在となっている。 As shown in FIG. 5, the fire wall 81 has an upper fire wall 82 fixed to the lower part of the upper base plate 32 and a lower fire wall 83 fixed to the upper part of the lower base plate 31. The upper fire wall 82 has a horizontal locking piece 82a fixed to the lower end portion, and the lower fire wall 83 has a connection piece 83a having a U-shaped cross section fixed to the upper end portion. And it connects with the locking piece 82a in the upper fire wall 82 so that the connection piece 83a of the lower fire wall 83 may surround. Since the lower part of the upper fire wall 82 and the upper part of the lower fire wall 83 are connected with a predetermined gap, they can move relative to each other in the vertical direction and the horizontal direction.
 また、図6に示すように、防火壁86は、上部基礎版32の下部に固定される上部防火壁87と、下部基礎版31の上部に固定される下部防火壁88とを有している。上部防火壁87は、下端部に水平軸87aにより回転自在な一対の車輪87bが連結され、下部防火壁88は、上端部にコ字状断面を有する連結片88aが固定されている。そして、上部防火壁87における車輪87bに対して、下部防火壁88の連結片88aが囲むように連結されている。上部防火壁87の下部と下部防火壁83の上部は、所定隙間を持って連結されていることから、互いに鉛直方向及び水平方向に相対移動自在となっている。 As shown in FIG. 6, the fire wall 86 has an upper fire wall 87 fixed to the lower part of the upper base plate 32 and a lower fire wall 88 fixed to the upper part of the lower base plate 31. . The upper fire wall 87 has a lower end portion connected to a pair of rotatable wheels 87b by a horizontal shaft 87a, and the lower fire wall 88 has an upper end portion to which a connecting piece 88a having a U-shaped cross section is fixed. And it connects with the wheel 87b in the upper fire wall 87 so that the connection piece 88a of the lower fire wall 88 may surround. Since the lower part of the upper fire wall 87 and the upper part of the lower fire wall 83 are connected with a predetermined gap, they can move relative to each other in the vertical and horizontal directions.
 ここで、本実施形態の火炎防護装置40の作動について説明する。図1から図4に示すように、例えば、原子炉格納容器11から油が漏洩したり、航空機の落下により燃料が漏洩したりすると、油や燃料などの可燃性の液体が閉塞部材62の間から空間部Sに浸入する。この場合、閉塞部材62は、完全な密封構造ではないことから、可燃性の液体が隙間から空間部Sに入り込む。 Here, the operation of the flame protection device 40 of the present embodiment will be described. As shown in FIG. 1 to FIG. 4, for example, when oil leaks from the reactor containment vessel 11 or fuel leaks due to the fall of the aircraft, flammable liquid such as oil or fuel is caught between the blocking members 62. Intrudes into the space S. In this case, since the closing member 62 is not a complete sealing structure, the flammable liquid enters the space S through the gap.
 すると、可燃性の液体は、閉塞部材62の周辺から空間部S内に入り込み、スロープ41に落下する。スロープ41に落下した可燃性の液体は、その傾斜に沿って外側に流れ、側溝42に流れ込む。そのため、複数の免震構造体36への可燃性の液体の付着が防止される。また、複数の免震構造体36は、外側から防火壁61により囲まれていることから、この点でも、複数の免震構造体36への可燃性の液体の付着が防止される。 Then, the flammable liquid enters the space S from the periphery of the closing member 62 and falls onto the slope 41. The combustible liquid falling on the slope 41 flows outward along the inclination and flows into the side groove 42. Therefore, the attachment of the flammable liquid to the plurality of seismic isolation structures 36 is prevented. In addition, since the plurality of seismic isolation structures 36 are surrounded by the fire wall 61 from the outside, adhesion of the flammable liquid to the plurality of seismic isolation structures 36 is also prevented in this respect.
 その後、側溝42に集められた可燃性の液体に引火して火災が発生すると、火災検知器76がこの火災を検知して検知信号を出力し、制御装置は、この検知信号を受け、消火装置51や換気装置71を作動する。消火装置51は、消火配管52を通して側溝42に集められて引火した火炎に対して消火剤を供給する。また、換気装置71は、排気ファン74を作動し、空間部Sでの火災により発生した煙などを有害物質を除去して外部に排出する。 Thereafter, when a fire is generated by igniting the combustible liquid collected in the side groove 42, the fire detector 76 detects the fire and outputs a detection signal, and the control device receives the detection signal, and the fire extinguishing device 51 and the ventilator 71 are operated. The fire extinguishing device 51 supplies a fire extinguishing agent to the flame that is collected in the side groove 42 through the fire extinguishing pipe 52 and ignited. The ventilator 71 operates the exhaust fan 74 to remove harmful substances such as smoke generated by the fire in the space S and discharge the smoke to the outside.
 このように第1実施形態の建屋にあっては、地盤22上に設けられる下部基礎版31と、下部基礎版31の上方に設けられて原子炉格納容器11が設置される上部基礎版32と、上部基礎版32と下部基礎版31との間に水平方向に所定間隔で複数配置される免震構造体36を有する免震装置33と、下部基礎版31の上面に設けられて外方に向けて下方に傾斜するスロープ41と、スロープ41の外側に設けられる側溝42とを設けている。 As described above, in the building of the first embodiment, the lower foundation plate 31 provided on the ground 22 and the upper foundation plate 32 provided above the lower foundation plate 31 and provided with the reactor containment vessel 11 are provided. The seismic isolation device 33 having the seismic isolation structures 36 arranged in the horizontal direction at a predetermined interval between the upper base plate 32 and the lower base plate 31 and the upper surface of the lower base plate 31 are provided outward. A slope 41 inclined downward and a side groove 42 provided on the outer side of the slope 41 are provided.
 従って、空間部Sに可燃性の液体が浸入した場合、この液体は、下部基礎版31の上面に設けられたスロープ41により外側に移動して側溝42に流れ込むこととなる。そのため、可燃性の液体が複数の免震構造体36側に流れ込むことはなく、免震構造体36を有する免震装置33の火災による損傷を防止し、建屋の防災性能を向上することができる。 Therefore, when a flammable liquid enters the space S, the liquid moves outward by the slope 41 provided on the upper surface of the lower base plate 31 and flows into the side groove 42. Therefore, the flammable liquid does not flow into the plurality of seismic isolation structures 36, and damage to the seismic isolation device 33 having the seismic isolation structures 36 due to fire can be prevented, and the disaster prevention performance of the building can be improved. .
 第1実施形態の建屋では、スロープ41は、免震装置33より外側に設けられている。従って、複数の免震構造体36を下部基礎版31の上面に安定して設置することができると共に、可燃性の液体を免震構造体36に接触させることなく、スロープ41により安全に側溝42に流し込むことができる。 In the building of the first embodiment, the slope 41 is provided outside the seismic isolation device 33. Accordingly, a plurality of seismic isolation structures 36 can be stably installed on the upper surface of the lower base plate 31, and the side grooves 42 can be safely secured by the slope 41 without contacting the flammable liquid with the seismic isolation structure 36. Can be poured into.
 第1実施形態の建屋では、側溝42に向けて消火剤を供給する消火装置51を設けている。従って、上部基礎版32と下部基礎版31との間に浸入した可燃性の液体は、スロープ41により外側に移動して側溝42に流れ込んだ後、火種により着火した場合、消火装置51により火炎に向けて消火剤が供給されることとなり、消火活動を迅速に行うことができる。 In the building of the first embodiment, a fire extinguishing device 51 that supplies a fire extinguishing agent toward the side groove 42 is provided. Therefore, the flammable liquid that has entered between the upper foundation plate 32 and the lower foundation plate 31 moves outward by the slope 41 and flows into the side groove 42, and then, when ignited by a fire type, Fire extinguishing agent will be supplied towards the fire extinguisher, and fire extinguishing activities can be performed quickly.
 第1実施形態の建屋では、上部基礎版32と下部基礎版31との間で複数の免震構造体36を外側から取り囲む防火壁61を設けている。従って、上部基礎版32と下部基礎版31との間に浸入した可燃性の液体は、防火壁61に阻止されて免震構造体36側に流れることはなく、可燃性の液体を免震構造体36に接触させることなくスロープ41により安全に側溝42に流し込むことができる。 In the building of the first embodiment, a fire wall 61 is provided between the upper base plate 32 and the lower base plate 31 so as to surround a plurality of seismic isolation structures 36 from the outside. Therefore, the flammable liquid that has entered between the upper foundation plate 32 and the lower foundation plate 31 is not blocked by the fire wall 61 and does not flow to the seismic isolation structure 36 side. The slope 41 can safely flow into the side groove 42 without contacting the body 36.
 第1実施形態の建屋では、防火壁61は、可撓性と耐火性を有している。従って、地震が発生し、免震装置33により下部基礎版31に対して上部基礎版31が相対移動しても、防火壁61が損傷を受けることはなく、安全性を向上することができる。 In the building of the first embodiment, the fire wall 61 has flexibility and fire resistance. Therefore, even if an earthquake occurs and the upper base plate 31 is moved relative to the lower base plate 31 by the seismic isolation device 33, the fire wall 61 is not damaged, and safety can be improved.
 第1実施形態の建屋では、防火壁81,86は、上部基礎版32の下部に固定される上部防火壁82,87と、下部基礎版31の上部に固定される下部防火壁83,88とを有し、上部防火壁82,87の下部と下部防火壁83,88の上部を鉛直方向及び水平方向に相対移動自在に連結している。従って、地震が発生し、免震装置33により下部基礎版31に対して上部基礎版32が相対移動しても、防火壁81,86が損傷を受けることはなく、安全性を向上することができる。 In the building of the first embodiment, the fire walls 81 and 86 are the upper fire walls 82 and 87 fixed to the lower part of the upper base plate 32, and the lower fire walls 83 and 88 fixed to the upper part of the lower base plate 31. The lower part of the upper fire walls 82 and 87 and the upper part of the lower fire walls 83 and 88 are connected to each other so as to be relatively movable in the vertical direction and the horizontal direction. Therefore, even if an earthquake occurs and the upper base plate 32 is moved relative to the lower base plate 31 by the seismic isolation device 33, the fire walls 81 and 86 are not damaged, and safety can be improved. it can.
 第1実施形態の建屋では、下部基礎版31の周囲に上部基礎版32の周囲を取り囲む擁壁34を設け、上部基礎版32の上面と擁壁34の上面との間に水平方向に移動自在な閉塞部材62を設けている。従って、閉塞部材62により上部基礎版32の上面と擁壁34の上面との隙間が閉塞されることとなり、この隙間から空間部Sへの可燃性の液体などの危険物の侵入を防止することができる。 In the building of the first embodiment, a retaining wall 34 surrounding the upper foundation plate 32 is provided around the lower foundation plate 31, and is movable in the horizontal direction between the upper surface of the upper foundation plate 32 and the upper surface of the retaining wall 34. An obstructing member 62 is provided. Accordingly, the gap between the upper surface of the upper base plate 32 and the upper surface of the retaining wall 34 is closed by the closing member 62, and invasion of dangerous substances such as flammable liquids into the space S from the gap is prevented. Can do.
 第1実施形態の建屋では、上部基礎版32と下部基礎版31との間の空間部Sの空気を排出する換気装置71を設けている。従って、上部基礎版32と下部基礎版31との間の空間部Sで火災が発生すると、換気装置71により内部で発生した有害ガスを外部に排出することとなり、安全性を向上することができる。 In the building of the first embodiment, a ventilation device 71 is provided to discharge air in the space S between the upper base plate 32 and the lower base plate 31. Therefore, when a fire occurs in the space S between the upper base plate 32 and the lower base plate 31, harmful gas generated inside by the ventilator 71 is discharged to the outside, and safety can be improved. .
 第1実施形態の建屋では、換気装置71は、擁壁34を内外に貫通する排気通路72と、排気通路72に設けられて有害物質を捕集するフィルタ73と、空間部Sの空気を排気通路72に送給する排気ファン74とを有している。従って、簡単な構成により容易に内部で発生した有害ガスを外部に排出することができる。 In the building of the first embodiment, the ventilation device 71 exhausts the air in the space portion S, the exhaust passage 72 penetrating the retaining wall 34 in and out, the filter 73 provided in the exhaust passage 72 and collecting harmful substances. An exhaust fan 74 that feeds the passage 72 is provided. Therefore, harmful gas generated inside can be easily discharged to the outside with a simple configuration.
 第1実施形態の建屋では、空間部Sの火災を検知する火災検知器76を設けている。従って、火災検知器75が空間部Sで発生した火災を検知することとなり、消火装置51や換気装置71を自動手に作動することができ、安全性を向上することができる。 In the building of the first embodiment, a fire detector 76 that detects a fire in the space S is provided. Therefore, the fire detector 75 detects a fire that has occurred in the space S, and the fire extinguishing device 51 and the ventilation device 71 can be automatically operated to improve safety.
[第2実施形態]
 図7は、第2実施形態の建屋を表す概略平面図、図8は、建屋の基礎版を表す要部断面図である。なお、上述した実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Second Embodiment]
FIG. 7 is a schematic plan view showing a building according to the second embodiment, and FIG. 8 is a cross-sectional view of a main part showing a basic version of the building. In addition, the same code | symbol is attached | subjected to the member which has the same function as embodiment mentioned above, and detailed description is abbreviate | omitted.
 第2実施形態にて、図7及び図8に示すように、下部基礎版31は、上面に外方に向けて下方に傾斜するスロープ41が免震装置33より外側に設けられており、スロープ41の外側に側溝42が設けられている。 In the second embodiment, as shown in FIG. 7 and FIG. 8, the lower base plate 31 is provided with a slope 41 that is inclined downward on the upper surface outwardly from the seismic isolation device 33. A side groove 42 is provided outside 41.
 また、下部基礎版31は、上面に周方向に沿って所定間隔で複数の集水桝91が設けられており、側溝42が各集水桝91に連通している。各集水桝91は、下部基礎版31の外周部で擁壁34の内側に設けられている。各集水桝91は、四角いリング形状をなす側溝42の隅部と、直線部の中間部に設けられており、側溝42により連通している。そして、スロープ41及び側溝42は、各集水桝91に向けて下方に傾斜している。 The lower base plate 31 is provided with a plurality of water collecting basins 91 at predetermined intervals along the circumferential direction on the upper surface, and the side grooves 42 communicate with the water collecting basins 91. Each drainage basin 91 is provided inside the retaining wall 34 at the outer peripheral portion of the lower base plate 31. Each drainage basin 91 is provided at a corner portion of the side groove 42 having a square ring shape and an intermediate portion of the linear portion, and communicates with the side groove 42. And the slope 41 and the side groove 42 incline below toward each water catchment 91.
 全ての集水桝91は、排水装置92が設けられている。排水装置92は、排水孔93と、排水管94と、排水ポンプ95と、開閉弁96とを有している。集水桝91は、底部に排水孔93が形成され、この排水孔93に排水管94の一端部が連結されている。この排水管94は、排水ポンプ95と開閉弁96が設けられており、他端部が図示しない排水処理装置に連結されている。そのため、排水装置92が作動すると、排水升91に溜まっている可燃性の液体が排水孔93を通して排水管94に流れ、排水ポンプ95を作動して開閉弁96を開放すると、可燃性の液体を排水管94により排水処理装置に送給することができる。 All drainage basins 91 are provided with a drainage device 92. The drainage device 92 includes a drainage hole 93, a drainage pipe 94, a drainage pump 95, and an on-off valve 96. The drainage basin 91 has a drain hole 93 formed at the bottom, and one end of a drain pipe 94 is connected to the drain hole 93. The drainage pipe 94 is provided with a drainage pump 95 and an on-off valve 96, and the other end is connected to a wastewater treatment apparatus (not shown). Therefore, when the drainage device 92 is activated, the flammable liquid accumulated in the drainage basin 91 flows into the drainage pipe 94 through the drainage hole 93, and when the drainage pump 95 is operated to open the on-off valve 96, the flammable liquid is removed. The waste water can be fed to the waste water treatment device by the drain pipe 94.
 即ち、油や燃料などの可燃性の液体が閉塞部材62の間から空間部Sに浸入すると、この可燃性の液体は、スロープ41に落下して傾斜に沿って外側に流れ、側溝42に流れ込む。そのため、複数の免震構造体36への可燃性の液体の付着が防止される。また、複数の免震構造体36は、外側から防火壁61により囲まれていることから、この点でも、複数の免震構造体36への可燃性の液体の付着が防止される。 That is, when a flammable liquid such as oil or fuel enters the space S from between the closing members 62, the flammable liquid falls on the slope 41 and flows outward along the slope, and flows into the side groove 42. . Therefore, the attachment of the flammable liquid to the plurality of seismic isolation structures 36 is prevented. In addition, since the plurality of seismic isolation structures 36 are surrounded by the fire wall 61 from the outside, adhesion of the flammable liquid to the plurality of seismic isolation structures 36 is also prevented in this respect.
 その後、排水装置92を作動、つまり、排水ポンプ95を作動して開閉弁96を開放すると、排水升91に溜まっている可燃性の液体が排水孔93を通して排水管94に流れ、この排水管94を通して排水処理装置に送給される。 Thereafter, when the drainage device 92 is actuated, that is, when the drainage pump 95 is actuated and the on-off valve 96 is opened, the flammable liquid accumulated in the drainage basin 91 flows into the drainage pipe 94 through the drainage hole 93. To the wastewater treatment equipment.
 このように第2実施形態の建屋にあっては、下部基礎版31の上面に外方に向けて下方に傾斜するスロープ41を設け、スロープ41の外側に側溝42を設けると共に、下部基礎版31の上面に周方向に所定間隔で複数の集水桝91を設け、側溝42と各集水桝91に連通すると共に、スロープ41を集水桝91に向けて下方に傾斜させている。 As described above, in the building according to the second embodiment, the slope 41 that is inclined downward toward the outside is provided on the upper surface of the lower foundation plate 31, the side grooves 42 are provided outside the slope 41, and the lower foundation plate 31. A plurality of water collecting basins 91 are provided at predetermined intervals in the circumferential direction on the upper surface of the basin, and communicated with the side grooves 42 and each water basin 91, and the slope 41 is inclined downward toward the water basin 91.
 従って、空間部Sに可燃性の液体が浸入した場合、この液体は、下部基礎版31の上面に設けられたスロープ41により外側に移動して側溝42に流れ込み、その後、各集水桝91に集められることとなる。そのため、可燃性の液体が複数の免震構造体36側に流れ込むことはなく、免震構造体36を有する免震装置33の火災による損傷を防止することができる。また、可燃性の液体を免震構造体36から離間した所定の位置に安全に隔離し、拡散を防止することができ、建屋の防災性能を向上することができる。 Therefore, when a flammable liquid enters the space S, the liquid moves outward by the slope 41 provided on the upper surface of the lower base plate 31 and flows into the side groove 42. Will be collected. Therefore, the flammable liquid does not flow into the plurality of seismic isolation structures 36, and damage to the seismic isolation device 33 having the seismic isolation structures 36 can be prevented. Further, the flammable liquid can be safely isolated at a predetermined position separated from the seismic isolation structure 36 to prevent diffusion, and the disaster prevention performance of the building can be improved.
 第2実施形態の建屋では、集水桝91に排水装置92を設けている。従って、各集水桝91に集められた可燃性の液体は、集水桝91から排水装置92により外部に排出されることとなり、可燃性の液体を安全に排出することができる。 In the building of the second embodiment, a drainage device 92 is provided in the water collecting tank 91. Therefore, the flammable liquid collected in each water collecting basin 91 is discharged to the outside from the water collecting basin 91 by the drainage device 92, and the flammable liquid can be safely discharged.
 なお、第2実施形態では、第1実施形態で説明した消火装置51、換気装置71、火災検知器76を省略したが、これらを設けてもよい。この場合、消火装置51は、複数の集水桝91に対応して同じ位置に設けることが望ましい。 In the second embodiment, the fire extinguishing device 51, the ventilation device 71, and the fire detector 76 described in the first embodiment are omitted, but these may be provided. In this case, it is desirable that the fire extinguishing apparatus 51 is provided at the same position corresponding to the plurality of water collecting tanks 91.
 また、上述した実施形態では、また、スロープ41の傾斜角度や形状(直線形状、湾曲形状)、側溝42の形状(コ字断面、半円断面、傾斜底面)は、各基礎版31,32、擁壁34、免震装置33の形状や寸法などにより適宜設定すればよいものである。 Further, in the above-described embodiment, the inclination angle and shape of the slope 41 (linear shape, curved shape), and the shape of the side groove 42 (a U-shaped cross section, a semicircular cross section, an inclined bottom surface) are the base plates 31, 32, What is necessary is just to set suitably by the shape, dimension, etc. of the retaining wall 34 and the seismic isolation apparatus 33. FIG.
 また、上述した実施形態では、本発明の建屋の基礎構造を加圧水型原子炉に適用して説明したが、沸騰型原子炉(BWR:Boiling Water Reactor)に適用することもでき、軽水炉であれば、いずれの原子炉に適用してもよい。更に、上述した実施形態では、建屋を原子炉格納容器としたが、ビルや塔などの一般的な建築物であってもよい。 In the above-described embodiment, the basic structure of the building of the present invention is applied to a pressurized water reactor. However, the embodiment can be applied to a boiling water reactor (BWR), and any light water reactor can be used. It may be applied to any nuclear reactor. Furthermore, in the above-described embodiment, the building is a reactor containment vessel, but it may be a general building such as a building or a tower.
 11 原子炉格納容器(構造体)
 12 加圧水型原子炉
 13 蒸気発生器
 14 加圧器
 21 基礎版
 22 地盤
 23 地面
 24 凹部
 31 下部基礎版
 31a 上面部
 32 上部基礎版
 33 免震装置
 34 擁壁
 35 空間部
 36 免震構造体
 40 火炎防護装置
 41 スロープ
 42 側溝
 51 消火装置
 52 消火配管
 61 防火壁
 62 閉塞部材
 63 第1閉塞板
 64 第2閉塞板
 71 換気装置
 72 排気通路
 73 フィルタ
 74 排気ファン
 75 支持台
 76 火災検知器
 81,86 防火壁
 82,87 上部防火壁
 82a 係止片
 83,88 下部防火壁
 83a,88a 連結片
 87a 水平軸
 87b 車輪
 91 集水桝
 92 排水装置
 93 排水孔
 94 排水管
 95 排水ポンプ
 96 開閉弁
 S 空間部
11 Reactor containment vessel (structure)
DESCRIPTION OF SYMBOLS 12 Pressurized water reactor 13 Steam generator 14 Pressurizer 21 Base plate 22 Ground 23 Ground 24 Recess 31 Lower base plate 31a Upper surface part 32 Upper base plate 33 Seismic isolation device 34 Retaining wall 35 Space part 36 Base isolation structure 40 Flame protection Device 41 Slope 42 Side groove 51 Fire extinguishing device 52 Fire extinguishing pipe 61 Fire barrier 62 Blocking member 63 First block plate 64 Second block plate 71 Ventilator 72 Exhaust passage 73 Filter 74 Exhaust fan 75 Support base 76 Fire detector 81, 86 Fire wall 82, 87 Upper fire wall 82a Locking piece 83, 88 Lower fire wall 83a, 88a Connecting piece 87a Horizontal shaft 87b Wheel 91 Drainage 92 Discharge device 93 Drain hole 94 Drain pipe 95 Drain pump 96 On-off valve S Space part

Claims (12)

  1.  地盤上に設けられる下部基礎版と、
     前記下部基礎版の上方に設けられて構造物が設置される上部基礎版と、
     前記上部基礎版と前記下部基礎版との間に水平方向に所定間隔で複数配置される免震構造体を有する免震装置と、
     前記下部基礎版の上面に設けられて外方に向けて下方に傾斜するスロープと、
     前記スロープの外側に設けられる側溝と、
     を有することを特徴とする建屋。
    Lower base version provided on the ground,
    An upper foundation plate provided above the lower foundation plate and on which a structure is installed;
    A seismic isolation device having a seismic isolation structure arranged in a horizontal direction at a predetermined interval between the upper base version and the lower base version;
    A slope provided on the upper surface of the lower base plate and inclined downward toward the outside;
    A side groove provided outside the slope;
    The building characterized by having.
  2.  前記スロープは、前記免震装置より外側に設けられることを特徴とする請求項1に記載の建屋。 The building according to claim 1, wherein the slope is provided outside the seismic isolation device.
  3.  前記下部基礎版の上面に周方向に所定間隔で複数の集水桝が設けられ、前記側溝が前記複数の集水桝に連通されると共に、前記スロープが前記複数の集水桝に向けて下方に傾斜することを特徴とする請求項1または請求項2に記載の建屋。 A plurality of catchment basins are provided on the upper surface of the lower base plate at predetermined intervals in the circumferential direction, the side grooves communicate with the plurality of catchment basins, and the slope is downward toward the plurality of catchment basins The building according to claim 1 or 2, wherein the building is inclined.
  4.  前記集水桝は、排水装置が設けられることを特徴とする請求項3に記載の建屋。 The building according to claim 3, wherein the drainage basin is provided with a drainage device.
  5.  前記側溝に向けて消火剤を供給する消火装置が設けられることを特徴とする請求項1から請求項4のいずれか一項に記載の建屋。 The building according to any one of claims 1 to 4, further comprising a fire extinguishing device that supplies a fire extinguishing agent toward the side groove.
  6.  前記上部基礎版と前記下部基礎版との間で前記複数の免震構造体を外側から取り囲む防火壁が設けられることを特徴とする請求項1から請求項5のいずれか一項に記載の建屋。 The building according to any one of claims 1 to 5, wherein a fire wall is provided between the upper base plate and the lower base plate so as to surround the plurality of seismic isolation structures from outside. .
  7.  前記防火壁は、可撓性を有することを特徴とする請求項6に記載の建屋。 The building according to claim 6, wherein the fire wall has flexibility.
  8.  前記防火壁は、前記上部基礎版の下部に固定される上部防火壁と、前記下部基礎版の上部に固定される下部防火壁とを有し、前記上部防火壁の下部と前記下部防火壁の上部が鉛直方向及び水平方向に相対移動自在に連結されることを特徴とする請求項6に記載の建屋。 The fire wall includes an upper fire wall fixed to a lower portion of the upper base plate, and a lower fire wall fixed to an upper portion of the lower base plate, and includes a lower portion of the upper fire wall and a lower fire wall. The building according to claim 6, wherein upper portions are connected to each other so as to be relatively movable in a vertical direction and a horizontal direction.
  9.  前記下部基礎版の上面に前記上部基礎版の周囲を取り囲む擁壁が設けられ、前記上部基礎版の上面と前記擁壁の上面との間に水平方向に移動自在な閉塞部材が設けられることを特徴とする請求項1から請求項8のいずれか一項に記載の建屋。 A retaining wall surrounding the periphery of the upper foundation plate is provided on the upper surface of the lower foundation plate, and a closing member movable in the horizontal direction is provided between the upper surface of the upper foundation plate and the upper surface of the retaining wall. The building according to any one of claims 1 to 8, wherein the building is characterized.
  10.  前記上部基礎版と前記下部基礎版との間の空間部の空気を排出する換気装置が設けられることを特徴とする請求項9に記載の建屋。 The building according to claim 9, further comprising a ventilation device for discharging air in a space between the upper base plate and the lower base plate.
  11.  前記換気装置は、前記擁壁を内外に貫通する排気通路と、前記排気通路に設けられて有害物質を捕集するフィルタと、前記空間部の空気を前記排気通路に送給する排気ファンとを有することを特徴とする請求項10に記載の建屋。 The ventilation device includes an exhaust passage that penetrates the retaining wall inward and outward, a filter that is provided in the exhaust passage and collects harmful substances, and an exhaust fan that supplies air in the space to the exhaust passage. The building according to claim 10.
  12.  前記上部基礎版と前記下部基礎版との間の空間部の火災を検知する火災検知器が設けられることを特徴とする請求項1から請求項11のいずれか一項に記載の建屋。 The building according to any one of claims 1 to 11, wherein a fire detector for detecting a fire in a space between the upper base plate and the lower base plate is provided.
PCT/JP2015/064810 2014-08-25 2015-05-22 Building WO2016031322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014170639A JP2016044483A (en) 2014-08-25 2014-08-25 Building
JP2014-170639 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031322A1 true WO2016031322A1 (en) 2016-03-03

Family

ID=55399227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064810 WO2016031322A1 (en) 2014-08-25 2015-05-22 Building

Country Status (2)

Country Link
JP (1) JP2016044483A (en)
WO (1) WO2016031322A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039093A (en) * 2017-03-31 2017-08-11 哈尔滨工程大学 Three generations's Power Station With The Pressurized Water Reactor containment isolation design structure
WO2017187003A1 (en) * 2016-04-29 2017-11-02 Tejasa-Tc, S.L.L. Earthquake protection system for a floating slab
CN113161023A (en) * 2021-05-07 2021-07-23 浙江大亚节能科技有限公司 Support arrangement for nuclear power pressure vessel heat preservation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019082368A (en) * 2017-10-30 2019-05-30 日立Geニュークリア・エナジー株式会社 Fireproof wall system for equipment in nuclear power plant

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238593A (en) * 1990-02-15 1991-10-24 Azusa Eng:Kk Centralized control device for disaster preventing equipment
JPH062451A (en) * 1992-06-17 1994-01-11 Kajima Corp Disaster prevention structure of base isolation device
JPH1122062A (en) * 1997-07-04 1999-01-26 Kajima Corp Fireproof structure in base-isolated structural part
JP2001073586A (en) * 1999-07-05 2001-03-21 Kozo Machida Fire preventive apparatus for base isolator, vibration control apparatus, vibration resisting apparatus, etc.
JP2002294611A (en) * 2001-03-30 2002-10-09 Okuno Kogyo Kk Drain structure for elevated road
JP2007222532A (en) * 2006-02-27 2007-09-06 Jfe Steel Kk Lampblack exhauster and its fire extinguishing method
JP2010091395A (en) * 2008-10-08 2010-04-22 Toshiba Corp Ventilation and air-conditioning equipment in nuclear power plant and method for controlling airflow rate of air-conditioning the same
JP2012230061A (en) * 2011-04-27 2012-11-22 Hitachi-Ge Nuclear Energy Ltd Atomic power plant with seismic isolation structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238593A (en) * 1990-02-15 1991-10-24 Azusa Eng:Kk Centralized control device for disaster preventing equipment
JPH062451A (en) * 1992-06-17 1994-01-11 Kajima Corp Disaster prevention structure of base isolation device
JPH1122062A (en) * 1997-07-04 1999-01-26 Kajima Corp Fireproof structure in base-isolated structural part
JP2001073586A (en) * 1999-07-05 2001-03-21 Kozo Machida Fire preventive apparatus for base isolator, vibration control apparatus, vibration resisting apparatus, etc.
JP2002294611A (en) * 2001-03-30 2002-10-09 Okuno Kogyo Kk Drain structure for elevated road
JP2007222532A (en) * 2006-02-27 2007-09-06 Jfe Steel Kk Lampblack exhauster and its fire extinguishing method
JP2010091395A (en) * 2008-10-08 2010-04-22 Toshiba Corp Ventilation and air-conditioning equipment in nuclear power plant and method for controlling airflow rate of air-conditioning the same
JP2012230061A (en) * 2011-04-27 2012-11-22 Hitachi-Ge Nuclear Energy Ltd Atomic power plant with seismic isolation structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017187003A1 (en) * 2016-04-29 2017-11-02 Tejasa-Tc, S.L.L. Earthquake protection system for a floating slab
US10774558B2 (en) 2016-04-29 2020-09-15 Tejasa-Tc, S.L.L. Earthquake protection system for a floating slab
CN107039093A (en) * 2017-03-31 2017-08-11 哈尔滨工程大学 Three generations's Power Station With The Pressurized Water Reactor containment isolation design structure
CN113161023A (en) * 2021-05-07 2021-07-23 浙江大亚节能科技有限公司 Support arrangement for nuclear power pressure vessel heat preservation

Also Published As

Publication number Publication date
JP2016044483A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
WO2016031322A1 (en) Building
KR102111814B1 (en) Filter for a nuclear reactor containment ventilation system
WO2013159443A1 (en) Completely passive cooling system for post-incident reactor core of large-scale pressurized water reactor nuclear power plant
JP2838790B2 (en) Evacuation shelter for tsunami and fire during the earthquake
US10014082B2 (en) Nuclear power plant and reactor building gas treatment system
CN110949893B (en) A emergency system and oily storehouse on ground for oil storehouse on ground
JP2009221673A (en) Protective shelter
Luster et al. Feedback from practical experience with large sodium fire accidents
JP2014223559A (en) Vertical wall structure of waste storage facility
Schlueter et al. Filtered vented containments
JP6314059B2 (en) Boiling water nuclear power plant
WO2016038942A1 (en) Structure for preventing submersion of seismic base isolated building
JP6742896B2 (en) Overflow drainage system for nuclear power plants
JP4974258B1 (en) Nuclear power plant with radioactive decontamination facility
JP4960200B2 (en) Fire-extinguishing system for nuclear power plants
JP6207892B2 (en) Building and building fire extinguishing system
CN102810337B (en) Auxiliary water storage type passive double-layered containment
Yasuda et al. Measures taken at hamaoka nuclear power station for further safety
RU2107342C1 (en) Shielding system of water-moderated reactor unit containment
JP2928610B2 (en) Nuclear facilities
Marguet The Nuclear Island
Gordon Non-EAC Corrosion Concerns Affecting Life Extension of Light Water Reactors
JP6542151B2 (en) Building
RU2095532C1 (en) Reservoir for storage, utilization of polluted liquid
CN115478721A (en) Single-pile nuclear island plant structure for nuclear power plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836995

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836995

Country of ref document: EP

Kind code of ref document: A1