WO2016031283A1 - Connection part of superconducting wire rods and method for connecting superconducting wire rods - Google Patents

Connection part of superconducting wire rods and method for connecting superconducting wire rods Download PDF

Info

Publication number
WO2016031283A1
WO2016031283A1 PCT/JP2015/059017 JP2015059017W WO2016031283A1 WO 2016031283 A1 WO2016031283 A1 WO 2016031283A1 JP 2015059017 W JP2015059017 W JP 2015059017W WO 2016031283 A1 WO2016031283 A1 WO 2016031283A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
wire
metal container
filling
superconducting wire
Prior art date
Application number
PCT/JP2015/059017
Other languages
French (fr)
Japanese (ja)
Inventor
洋太 一木
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016031283A1 publication Critical patent/WO2016031283A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/06Coils, e.g. winding, insulating, terminating or casing arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a connection structure of a connection portion of a superconducting wire (MgB 2 wire) using magnesium diboride (MgB 2 ), and a connection method of the MgB 2 wire.
  • the critical temperature (transition temperature) of magnesium diboride (MgB 2 ) is 39 K, which is higher than the critical temperature of conventional superconductors (eg niobium titanium (NbTi), niobium tritin (Nb 3 Sn), etc.). Further, unlike a wire using an oxide superconductor, a wire using MgB 2 has a feature of high magnetic field stability when operated in a permanent current mode in a closed circuit using it.
  • the permanent current mode is an operation method in which a current is continuously supplied to a closed circuit formed using a superconductor. That is, since the superconducting wire has zero resistance, once the current flows in the closed circuit, the current continues to flow without being attenuated. In order to realize such a permanent current mode, it is important to connect the ends of the superconducting wire or the superconducting wire constituting the permanent current switch with a superconductor.
  • MgB 2 wire material or a MgB 2 wire material
  • the following techniques are known.
  • Patent Document 1 describes a method of connecting MgB 2 wires using a superconducting solder.
  • the connection method of a superconducting wire using a superconducting solder is also used for the connection of other superconducting wires such as NbTi wires.
  • Patent Document 2 the tip of a wire containing a mixed powder of magnesium (Mg) and boron (B), or an MgB 2 wire, is polished to expose the MgB 2 core, and inserted into a container.
  • a method is described in which a mixed powder of Mg and B is filled and pressed from orthogonal directions, and heat treatment is performed. A heat treatment produces a sintered body of MgB 2 and the wires are connected to each other.
  • Non-Patent Document 1 describes a method of connecting MgB 2 wires in the following process.
  • a mixed powder of Mg and B is filled in a cylindrical stainless steel container, and after inserting a copper plug, an unreacted MgB 2 wire (a wire containing mixed powder of Mg and B) in which the core is exposed is inserted. Thereafter, the powder is pressurized with a copper plug, and the container is sealed with a ceramic bond, followed by heat treatment to form a MgB 2 sintered body, and the wires are connected to each other.
  • the critical temperature of the superconducting solder is about 9 K or less, it can not be used at an operating temperature of 10 K or more. That is, even in the case of a superconducting magnet using MgB 2 having a relatively high critical temperature (39 K), it has to be cooled to 10 K or less, and its characteristics can not be fully utilized.
  • Patent Document 2 and Non-patent Document 1 the core (MgB 2 or the mixed powder containing Mg and B) at the tip of the wire is exposed in the metal container and connected via the MgB 2 sintered body Be done.
  • the wire end to be connected is fixed by superconducting solder over the entire length in the metal container, whereas in Patent Document 2 and Non-Patent Document 1, the vicinity of the container opening for inserting the wire, also only by the MgB 2 sintered body produced by heat treatment, it is fixed to the metal container. Therefore, there is a portion where the wire is not fixed in the container.
  • the connection is energized, the current and the magnetic field exert an electromagnetic force on the wire.
  • Non-Patent Document 1 the variation of the conduction characteristic among the samples is shown, and it can be seen that the sample with the lowest critical current (Ic) is about 1 ⁇ 3 of the highest sample. This variation is considered to be caused by insufficient fixing of the wire, as described above.
  • An object of the present invention is to solve the above-mentioned problems regarding the connection of MgB 2 superconducting wire, and to realize a connection portion having a small variation between samples and having high current-carrying characteristics.
  • connection portion of the superconducting wire according to the present invention a plurality of superconducting wires are integrated by a sintered body containing MgB 2 in a metal container, and the superconducting wire is connected to the metal container via Mg. .
  • connection portion of a superconducting wire rod having a small variation and high conduction characteristics.
  • connection structure in the present invention is as described below.
  • the tip of a wire having a core containing Mg and B or a compound containing them constituting the superconducting coil or permanent current switch to be connected is polished to expose the wire core.
  • the ends of the wires are inserted into the metal container, and the raw material (Mg, B, or a compound containing them) of the MgB 2 sintered body formed around the ends of the wires is filled into the metal container.
  • the MgB 2 sintered body is formed by pressurizing and heat treating it, and the wires inserted into the metal container are connected to each other.
  • the present invention is intended to improve fixing of the wire by filling Mg excessively before heat treatment and pouring in solder after heat treatment.
  • the superconducting magnet is used in an MRI (Magnetic Resonance Imaging: magnetic resonance imaging) apparatus, an NMR (Nuclear Magnetic Resonance: nuclear magnetic resonance) apparatus, and the like. Since such a device requires high magnetic field stability, the superconducting magnet forms a closed circuit with only a superconductor and is operated in a "permanent current mode" in which current flows continuously. For that purpose, the technology which connects a superconducting coil, a permanent current switch, and wiring which connects them via a superconductor is essential.
  • Magnesium diboride (MgB 2 ) is expected to be put to practical use as a superconducting magnet by refrigerator cooling that does not use liquid helium, because the critical temperature for transition to superconductivity is higher than that of conventional metal-based materials. In this case, since it is required to operate at 10 K or more, the conventional superconducting solder connection having a critical temperature of 10 K or less can not be applied. Therefore, it is necessary to establish a technique for connecting MgB 2 wires with MgB 2 .
  • FIG. 1 shows an example of the configuration of a superconducting magnet.
  • a superconducting coil 22 and a permanent current switch 23 are disposed inside a cooling vessel 26, and these are cooled by a refrigerator (not shown) via a support plate 25.
  • a current lead 24 connecting a power supply at room temperature (not shown) and the superconducting coil 22 at low temperature.
  • the superconducting connection portion 21 is provided at two positions between the superconducting coil 22 and the permanent current switch 23.
  • a superconducting wire to be connected a single-core wire composed of a metal sheath and an MgB 2 core will be described as an example.
  • Metal sheaths generally prevent stabilizers from reacting with stabilizers such as stabilizers to ensure high electrical and thermal stability and heat treatments to Mg and B to MgB 2
  • the barrier material for The superconducting wire to be connected is not limited to MgB 2 , and the present invention is applicable to NbTi and Nb 3 Sn used in conventional superconducting magnets. Since connection is made via (39 K) MgB 2, which has a high critical temperature, higher stability can be expected compared to connection with a conventional superconducting solder (critical temperature: 9 K).
  • a superconducting wire is generally used as a multifilamentary wire having a plurality of cores from the viewpoint of current capacity, wire length, magnetic stability, and AC loss
  • the configuration of the connection part is the same whether single or multifilamentary wire. Therefore, only the connection structure of a single core wire will be described here.
  • the number of superconducting wires to be connected is not limited to two, and may be three or more.
  • FIG. 2 shows the connection procedure of this embodiment. Although only one wire is shown in the drawing, another wire is present in the depth direction of the drawing.
  • the ends of the two wires 1 to be connected are polished to expose the cores 2 of the wires.
  • the core 2 may be either in an unreacted state of Mg and B or in a state where MgB 2 has been formed.
  • the wire portion may be simultaneously heat treated at the time of the heat treatment for connection to make MgB 2 .
  • the wire with the core 2 exposed at the end is inserted into the metal container 4.
  • As a material of the metal container 4 it is desirable to use Fe, Ni, Nb, Ta or alloys thereof which hardly react with Mg and B during heat treatment.
  • ⁇ (A) Mg + B filling> After the wire 1 is inserted, the raw material of the MgB 2 sintered body 8 is filled and pressurized. In this embodiment, a mixed powder (mixture) 5 of Mg and B is filled. A ball mill is usually used for mixing, but the method is not limited. In order to improve the current-carrying characteristics of the MgB 2 sintered body 8, carbon or the like may be added, or MgB 2 powder may be mixed. After filling the mixed powder 5 of Mg and B, the metal pin 6 is pressed by a press machine or the like.
  • Mg 7 is further added after this.
  • the form of the Mg 7 powder may be powder or lump because it melts during heat treatment (in the case of powder, pressurization is required).
  • the MgB 2 sintered body 8 is formed at the end of the wire 1 by heat treatment, and the ends of the wire 1 are connected.
  • heating is usually performed at 500 ° C. to 900 ° C. in an inert gas such as argon and nitrogen using an electric furnace.
  • the melting point of Mg is heated to 650 ° C. or higher to dissolve Mg and fix the wire rod 1 and the metal container 4.
  • a heat treatment at about 650 ° C. to 850 ° C. is desirable.
  • sealing is performed with a heat-resistant adhesive such as a ceramic bond before heat treatment, but in the present embodiment, sealing is not performed before heat treatment because solder fixation described later is performed. Therefore, in order to suppress the evaporation of Mg, heat treatment is performed in a state in which there is no gap at the opening of the metal container 4 as much as possible. That is, the gap between the metal pin 6 and the wire 1 is designed to be small, and heat treatment is performed in a state in which the metal pin 6 is inserted.
  • the solder 9 may be a general PbSn solder or lead-free solder, but it is desirable that the viscosity be low.
  • both of the fixing by Mg 7 and the solder 9 are performed, but only one of them may be used.
  • Mg 7 may fix only the periphery of the MgB 2 sintered body 8 and solder may flow only to the periphery of the opening of the metal container 4, it is preferable to carry out both.
  • the conduction characteristic of the connection portion is about 10% of the wire performance, but by fixing the wire with Mg and the solder, it becomes possible to suppress the variation within ⁇ 10%. .
  • FIG. 3 shows the connection procedure of this embodiment. It is basically the same as Example 1, but the method of filling the raw materials is different.
  • the mixed powder 5 of Mg and B is heat-treated as in Example 1 to produce the MgB 2 sintered body 8
  • the portion where Mg was present becomes a void, so the density of the generated MgB 2 is the theory
  • the maximum is about 50% of the density.
  • an MgB 2 sintered body 8 having a density of 70% or more with respect to the theoretical density is formed around the end of the wire 1, and high current conduction characteristics can be realized.
  • the form since B10 and Mg7 melt
  • the filling amount of Mg with respect to B is 0.5 mol or more, excess Mg will remain after heat treatment, which contributes to fixing of the superconducting wire.
  • the wire rod 1 and the metal container 4 are fixed by being filled with excess Mg 7 powder.
  • excess Mg 7 powder if the gap between the opening of the metal container 4 and the wire 1 is not sealed by the ceramic bond 11, molten Mg flows out from the opening of the metal container 4 for inserting the wire, so sealing is performed. Stop is essential. Therefore, it is not possible to carry out the fixing by the solder after the heat treatment.
  • ⁇ (C) After heat treatment> If the filling amount of Mg with respect to B is 0.5 mol or more, excess Mg will remain after heat treatment, which contributes to fixing of the superconducting wire. As shown in FIG. 4, Mg 7 exists between one end of the superconducting wire positioned inside the metal container and the opening.
  • FIG. 5 is an example in which the fixation by Mg is abandoned contrary to FIG. 4 and is fixed by solder.
  • ⁇ (A) B filling> ⁇ (b) Mg filling> In this embodiment, after inserting the wire rod 1 into the metal container 4, first, only the B10 powder is filled and pressurized, and then the Mg7 powder is filled. As a result, an MgB 2 sintered body 8 having a density of 70% or more with respect to the theoretical density is formed around the end of the wire 1, and high current conduction characteristics can be realized.
  • the wire rod 1 and the metal container 4 are fixed by being filled with excess Mg 7 powder.
  • the gap between the opening of the metal container 4 and the wire 1 is not sealed by the ceramic bond 11.
  • the metal pin 6 was fixed by the ceramic bond 11, and (b) the Mg-filled connection portion was rotated about 90 degrees to the left to heat the metal pin 6 so that it was on the lower side. Make sure that Mg does not flow out.
  • Mg 7 exists between one end of the superconducting wire positioned inside the metal container and the opening.
  • Example 5 is an example in which “insertion direction of wire rod” and “pressing direction of mixed powder of Mg and B (or B powder)” are almost orthogonal to each other as shown in FIG. It is. ⁇ (A) B filling> ⁇ (b) Mg filling> B10 powder is filled, pressed by metal pin 6, and metal pin 6 is fixed and sealed by ceramic bond 11, and then excess Mg 7 is filled from the wire insertion direction. Thereby, the excess Mg 7 contributes to the wire fixation, and the fixation by the solder 9 can be performed after the heat treatment.
  • Example 5 as in Examples 3 and 4, “insertion direction of wire rod” and “pressing direction of mixed powder of Mg and B (or B powder)” are different, preferably substantially orthogonal (80 In addition to the fact that the angle is in the range of 100 ° to 100 °, it is also characterized in that the metal pin 6 applies pressure from substantially the same direction as the wire insertion direction.
  • the wire insertion direction and the powder pressing direction are orthogonal to each other, and further, the fixation with Mg and solder is realized.
  • an opening for filling Mg may be provided, and the workability of filling is better.
  • an angle between the insertion direction of the plurality of superconducting wires into the metal container and the direction from one end of the superconducting wire located inside the metal container to the opening for Mg filling be 10 to 80 °.
  • ⁇ (A) B filling> ⁇ (b) Mg filling> In the metal container 4, an opening for filling Mg is provided between “wire insertion direction”, “wire insertion direction”, and “pressure direction of mixed powder of Mg and B (or B powder)”.
  • the maximum values of the conduction characteristics of the connection portions obtained in Examples 3 to 6 were all as high as about 50% with respect to the wire performance. Furthermore, in Examples 5 to 6 in which Mg and solder are fixed, the variation can be suppressed to within ⁇ 10%.
  • Wire 2 Core 3: Sheath 4: Metal container 5: Mixed powder of Mg and B 6: Metal pin 7: Mg 8: MgB 2 sintered body 9: solder 10: B 11: ceramic bond 21: superconducting connection 22: superconducting coil 23: permanent current switch 24: current lead 25: support plate 26: cooling vessel

Abstract

In order to realize a superconducting connection part having uniform and highly conductive properties, a solution is provided as follows. In the connection part of superconducting wire rods according to the present invention, a plurality of superconducting wire rods are integrated in a metal container by means of an MgB2-containing sintered body, and the superconducting wire rods are connected to the metal container through Mg.

Description

超電導線材の接続部及び超電導線材の接続方法Connecting part of superconducting wire and method of connecting superconducting wire
 本発明は二ホウ化マグネシウム(MgB2)を用いた超電導線材(MgB2線材)の接続部の接続構造、及びMgB2線材の接続方法に関する。 The present invention relates to a connection structure of a connection portion of a superconducting wire (MgB 2 wire) using magnesium diboride (MgB 2 ), and a connection method of the MgB 2 wire.
 二ホウ化マグネシウム(MgB2)の臨界温度(転移温度)は39Kであり、従来の超電導体(例えばニオブチタン(NbTi)やニオブ3スズ(Nb3Sn)等)の臨界温度よりも高い。また、酸化物超電導体を用いた線材とは異なり、MgB2を用いた線材は、それを使用した閉回路において永久電流モードで運転したとき、磁場安定度が高いという特長を有する。 The critical temperature (transition temperature) of magnesium diboride (MgB 2 ) is 39 K, which is higher than the critical temperature of conventional superconductors (eg niobium titanium (NbTi), niobium tritin (Nb 3 Sn), etc.). Further, unlike a wire using an oxide superconductor, a wire using MgB 2 has a feature of high magnetic field stability when operated in a permanent current mode in a closed circuit using it.
 永久電流モードは、超電導体を用いて形成される閉回路に電流を流し続ける運転方法である。即ち、超電導線材は抵抗がゼロであるため、いったん閉回路に電流を流すと、その電流が減衰せずに流れ続けることになる。このような永久電流モードを実現させるためには、超電導コイルもしくは永久電流スイッチを構成する超電導線材の端部同士を超電導体で接続する技術が重要となる。 The permanent current mode is an operation method in which a current is continuously supplied to a closed circuit formed using a superconductor. That is, since the superconducting wire has zero resistance, once the current flows in the closed circuit, the current continues to flow without being attenuated. In order to realize such a permanent current mode, it is important to connect the ends of the superconducting wire or the superconducting wire constituting the permanent current switch with a superconductor.
 例えば、MgB2線材同士、又はMgB2線材と、NbTi線材やNb3Sn線材等の他の線材とを接続する技術として、以下の技術が知られている。 For example, among MgB 2 wire material, or a MgB 2 wire material, as a technique for connecting the other wires, such as NbTi wire and Nb 3 Sn wire, the following techniques are known.
 特許文献1には、超電導ハンダを用いたMgB2線材の接続方法が記載されている。超電導ハンダを用いる超電導線材の接続方法は、NbTi線材等の他の超電導線材の接続にも使用されている。 Patent Document 1 describes a method of connecting MgB 2 wires using a superconducting solder. The connection method of a superconducting wire using a superconducting solder is also used for the connection of other superconducting wires such as NbTi wires.
 特許文献2には、マグネシウム(Mg)とホウ素(B)との混合粉末を含む線材、又はMgB2線材の先端を研磨して、MgB2コアを露出させ、容器に挿入し、線材に対して直交方向からMgとBの混合粉末を充填及び加圧し、熱処理をする方法が記載されている。熱処理によりMgB2の焼結体が生成し、線材同士が接続される。 In Patent Document 2, the tip of a wire containing a mixed powder of magnesium (Mg) and boron (B), or an MgB 2 wire, is polished to expose the MgB 2 core, and inserted into a container. A method is described in which a mixed powder of Mg and B is filled and pressed from orthogonal directions, and heat treatment is performed. A heat treatment produces a sintered body of MgB 2 and the wires are connected to each other.
 非特許文献1には、以下のプロセスでMgB2線材を接続する方法が記載されている。円筒状のステンレス容器に、MgとBの混合粉末を充填し、銅製プラグを挿入後、コアを露出させた未反応のMgB2線材(MgとBの混合粉末を含む線材)を挿入する。その後、銅製プラグで粉末を加圧、セラミックボンドで容器を封止後、熱処理をすることでMgB2焼結体が生成し、線材同士が接続される。 Non-Patent Document 1 describes a method of connecting MgB 2 wires in the following process. A mixed powder of Mg and B is filled in a cylindrical stainless steel container, and after inserting a copper plug, an unreacted MgB 2 wire (a wire containing mixed powder of Mg and B) in which the core is exposed is inserted. Thereafter, the powder is pressurized with a copper plug, and the container is sealed with a ceramic bond, followed by heat treatment to form a MgB 2 sintered body, and the wires are connected to each other.
特開2006-174546号公報JP, 2006-174546, A 特開2012-094413号公報JP, 2012-094413, A
 特許文献1に記載の技術においては、超電導ハンダの臨界温度が約9K以下であるため、運転温度を10K以上にして使用することができない。即ち、比較的高温の臨界温度(39K)を有するMgB2を用いた超電導マグネットにおいても、10K以下まで冷却しなければならず、その特性を十分に活かすことができない。 In the technology described in Patent Document 1, since the critical temperature of the superconducting solder is about 9 K or less, it can not be used at an operating temperature of 10 K or more. That is, even in the case of a superconducting magnet using MgB 2 having a relatively high critical temperature (39 K), it has to be cooled to 10 K or less, and its characteristics can not be fully utilized.
 特許文献2及び非特許文献1に記載の技術においては、金属容器内にて線材先端部のコア(MgB2もしくはMgとBを含む混合粉末)が露出され、MgB2焼結体を介して接続される。特許文献1では、接続される線材端部は、金属容器内で全長にわたって超電導ハンダによって固定されるのに対し、特許文献2及び非特許文献1では、線材を挿入するための容器開口部付近、また熱処理により生成するMgB2焼結体によってのみ、金属容器と固定される。そのため容器内で線材が固定されていない部分が存在する。接続部に通電するとその電流と磁場により、線材に電磁力が働く。固定されていない部分に電磁力がかかると、その両端の固定部分に負荷がかかる。線材コアとMgB2焼結体の接合界面は機械的に脆く壊れやすいため、結果的に界面における通電特性の劣化が生じる。非特許文献1のFig2において、サンプル間における通電特性のばらつきが示されており、臨界電流(Ic)が最低のサンプルは、最高のサンプルに対して約1/3であることがわかる。このばらつきは、前述のように、線材の固定が不十分であることに起因すると考えられる。 In the techniques described in Patent Document 2 and Non-patent Document 1, the core (MgB 2 or the mixed powder containing Mg and B) at the tip of the wire is exposed in the metal container and connected via the MgB 2 sintered body Be done. In Patent Document 1, the wire end to be connected is fixed by superconducting solder over the entire length in the metal container, whereas in Patent Document 2 and Non-Patent Document 1, the vicinity of the container opening for inserting the wire, also only by the MgB 2 sintered body produced by heat treatment, it is fixed to the metal container. Therefore, there is a portion where the wire is not fixed in the container. When the connection is energized, the current and the magnetic field exert an electromagnetic force on the wire. When an electromagnetic force is applied to the non-fixed portion, a load is applied to the fixed portions at both ends. The bonding interface between the wire core and the MgB 2 sintered body is mechanically brittle and easily broken, resulting in deterioration of the current-carrying characteristics at the interface. In FIG. 2 of Non-Patent Document 1, the variation of the conduction characteristic among the samples is shown, and it can be seen that the sample with the lowest critical current (Ic) is about 1⁄3 of the highest sample. This variation is considered to be caused by insufficient fixing of the wire, as described above.
 本発明の目的は、MgB2超電導線材の接続に関する上記のような課題を解決し、サンプル間のバラツキが小さく、かつ高い通電特性を有する接続部を実現することにある。 An object of the present invention is to solve the above-mentioned problems regarding the connection of MgB 2 superconducting wire, and to realize a connection portion having a small variation between samples and having high current-carrying characteristics.
 本発明者らは前述の課題を解決するべく検討した結果、接続部の構造および端部の処理方法により前記課題を解決できることを見出し、本発明を完成させた。本発明に係る超電導線材の接続部は、金属容器内で、複数の超電導線材が、MgB2を含む焼結体によって一体化され、前記超電導線材が、前記金属容器とMgを介してつながっている。 As a result of investigations to solve the above-mentioned problems, the present inventors have found that the problems can be solved by the structure of the connecting portion and the method of processing the end, and completed the present invention. In the connection portion of the superconducting wire according to the present invention, a plurality of superconducting wires are integrated by a sintered body containing MgB 2 in a metal container, and the superconducting wire is connected to the metal container via Mg. .
 本発明に拠れば、ばらつきが小さく、かつ高い通電特性を有する超電導線材の接続部を実現することができる。 According to the present invention, it is possible to realize a connection portion of a superconducting wire rod having a small variation and high conduction characteristics.
超電導マグネットの構成例Configuration example of superconducting magnet 実施例1の超電導線材の接続方法Method of connecting superconducting wire of Example 1 実施例2の超電導線材の接続方法Method of connecting superconducting wire of Example 2 実施例3の超電導線材の接続方法Method of connecting superconducting wire of Example 3 実施例4の超電導線材の接続方法Method of connecting superconducting wire of Example 4 実施例5の超電導線材の接続方法Method of connecting superconducting wire of Example 5 実施例6の超電導線材の接続方法Method of connecting superconducting wire of Example 6
 本発明における接続構造は以下に記す通りである。まず接続対象である超電導コイルもしくは永久電流スイッチを構成する、MgおよびB、もしくはそれらを含む化合物をコアとして有する線材の、先端を研磨して線材コアを露出させる。それらの線材端部を金属容器の中へ挿入し、線材端部周辺に形成されるMgB2焼結体の原料(Mg、B、もしくはそれらを含む化合物)を、金属容器の中へ充填する。それを加圧・熱処理することでMgB2焼結体が形成され、金属容器へ挿入した線材同士が接続される。本発明は、熱処理前にMgを過剰に充填し、熱処理後にハンダを流し込むことで、線材の固定改善を図るものである。 The connection structure in the present invention is as described below. First, the tip of a wire having a core containing Mg and B or a compound containing them constituting the superconducting coil or permanent current switch to be connected is polished to expose the wire core. The ends of the wires are inserted into the metal container, and the raw material (Mg, B, or a compound containing them) of the MgB 2 sintered body formed around the ends of the wires is filled into the metal container. The MgB 2 sintered body is formed by pressurizing and heat treating it, and the wires inserted into the metal container are connected to each other. The present invention is intended to improve fixing of the wire by filling Mg excessively before heat treatment and pouring in solder after heat treatment.
 超電導マグネットは、MRI(Magnetic Resonance Imaging:磁気共鳴イメージング)装置、NMR(Nuclear Magnetic Resonance:核磁気共鳴)装置等で用いられる。このような機器では高い磁場安定度が必要となるため、超電導マグネットは超電導体のみで閉回路を構成し、電流を流し続ける「永久電流モード」で運転される。そのためには、超電導コイル、永久電流スイッチ、それらをつなぐ配線を、超電導体を介して接続する技術が必須である。 The superconducting magnet is used in an MRI (Magnetic Resonance Imaging: magnetic resonance imaging) apparatus, an NMR (Nuclear Magnetic Resonance: nuclear magnetic resonance) apparatus, and the like. Since such a device requires high magnetic field stability, the superconducting magnet forms a closed circuit with only a superconductor and is operated in a "permanent current mode" in which current flows continuously. For that purpose, the technology which connects a superconducting coil, a permanent current switch, and wiring which connects them via a superconductor is essential.
 従来の超電導マグネット装置では、NbTiやNb3Snの超電導線材が使用されており、それらの多くは液体ヘリウムによって4.2Kに冷却して運転される。そのような超電導マグネットにおいては、PbBi合金に代表される超電導ハンダによる接続技術が確立されている。 In a conventional superconducting magnet apparatus, superconducting wires of NbTi or Nb3Sn are used, and many of them are operated by cooling to 4.2 K by liquid helium. In such a superconducting magnet, a connection technique using a superconducting solder represented by a PbBi alloy has been established.
 二ホウ化マグネシウム(MgB2)は超電導に転移する臨界温度が従来の金属系材料よりも高いため、液体ヘリウムを使用しない冷凍機冷却による超電導マグネットとして実用化が期待されている。その場合10K以上で運転することが求められるため、臨界温度が10K以下である従来の超電導ハンダ接続を適用できない。そこでMgB2線材同士をMgB2によって接続する技術の確立が必要となる。
(概要)
 金属容器内で、複数の超電導線材が、MgB2を含む焼結体によって一体化された超電導線材の接続部であって、前記超電導線材が、前記金属容器内部で、前記金属容器とMgもしくはハンダを介してつながっている。線材の固定が改善され、通電時に電磁力が働いたときの線材の動きが抑制されることで、ばらつきの小さな高い通電特性を有する超電導接続部の実現が可能となる。
(超電導マグネット)
 上記のような超電導線材の接続構造を有する超電導マグネットは、接続部の信頼性が高く、クエンチのない安定した運転が可能である。図1に超電導マグネットの構成例を示す。図1の超電導マグネットは、冷却容器26の内部に超電導コイル22と永久電流スイッチ23が配置されており、これらは支持板25を介して、図示しない冷凍機によって冷却される。超電導コイル22の励磁時には、図示しない室温側の電源と、低温側の超電導コイル22をつなぐ、電流リード24を介して電流が供給される。超電導接続部21は、超電導コイル22と、永久電流スイッチ23の間に2箇所設けられている。
Magnesium diboride (MgB 2 ) is expected to be put to practical use as a superconducting magnet by refrigerator cooling that does not use liquid helium, because the critical temperature for transition to superconductivity is higher than that of conventional metal-based materials. In this case, since it is required to operate at 10 K or more, the conventional superconducting solder connection having a critical temperature of 10 K or less can not be applied. Therefore, it is necessary to establish a technique for connecting MgB 2 wires with MgB 2 .
(Overview)
A connecting portion of a superconducting wire in which a plurality of superconducting wires are integrated by a sintered body containing MgB 2 in a metal case, wherein the superconducting wire is the inside of the metal case, Mg and solder with the metal case It is connected through. Fixing of the wire is improved, and the movement of the wire when the electromagnetic force works during current conduction is suppressed, so that it is possible to realize a superconducting joint having high current conduction characteristics with small variation.
(Superconducting magnet)
The superconducting magnet having the above-described superconducting wire connection structure has high reliability of the connection portion and stable operation without quenching is possible. FIG. 1 shows an example of the configuration of a superconducting magnet. In the superconducting magnet of FIG. 1, a superconducting coil 22 and a permanent current switch 23 are disposed inside a cooling vessel 26, and these are cooled by a refrigerator (not shown) via a support plate 25. When the superconducting coil 22 is excited, current is supplied via a current lead 24 connecting a power supply at room temperature (not shown) and the superconducting coil 22 at low temperature. The superconducting connection portion 21 is provided at two positions between the superconducting coil 22 and the permanent current switch 23.
 接続する超電導線材として、ここでは金属シースとMgB2コアから構成される単芯線を例に説明する。金属シースは一般に、高い電気的・熱的安定性を確保するための銅などの安定化材および、MgとBをMgB2化するための熱処理の際に、安定化材と反応することを防ぐためのバリア材で構成される。接続する超電導線材はMgB2に限らず、従来の超電導マグネットで使用されているNbTiやNb3Snに対しても本発明は適用可能である。臨界温度が高い(39K)MgB2を介して接続するため、従来の超電導ハンダ(臨界温度:9K)で接続するよりも、高い安定性が期待できる。また超電導線材は一般に、電流容量・線材長・磁気的安定性・交流損失の観点から、複数のコアを有する多芯線として使用されるが、単芯線でも多芯線でも接続部の構成は同じであるため、ここでは単芯線の接続構造についてのみ記述する。接続する超電導線材の本数は2本に限らず、3本以上でも構わない。 Here, as a superconducting wire to be connected, a single-core wire composed of a metal sheath and an MgB 2 core will be described as an example. Metal sheaths generally prevent stabilizers from reacting with stabilizers such as stabilizers to ensure high electrical and thermal stability and heat treatments to Mg and B to MgB 2 The barrier material for The superconducting wire to be connected is not limited to MgB 2 , and the present invention is applicable to NbTi and Nb 3 Sn used in conventional superconducting magnets. Since connection is made via (39 K) MgB 2, which has a high critical temperature, higher stability can be expected compared to connection with a conventional superconducting solder (critical temperature: 9 K). In addition, although a superconducting wire is generally used as a multifilamentary wire having a plurality of cores from the viewpoint of current capacity, wire length, magnetic stability, and AC loss, the configuration of the connection part is the same whether single or multifilamentary wire. Therefore, only the connection structure of a single core wire will be described here. The number of superconducting wires to be connected is not limited to two, and may be three or more.
 図2に本実施例の接続手順を示す。図中には1本の線材のみ示されているが、紙面奥行き方向にもう1本の線材が存在する。まず接続する2本の線材1の端部を研磨し、線材のコア2を露出させる。このときのコア2は、MgとBが未反応状態でもMgB2生成済みでもどちらでも構わない。MgとBが未反応状態の場合、接続のための熱処理時に線材部分も同時に熱処理し、MgB2化させれば良い。端部でコア2を露出させた線材を金属容器4に挿入する。金属容器4の材質は、熱処理中にMgやBと反応しにくい、Fe,Ni,Nb,Taもしくはそれらの合金を使用することが望ましい。
<(a)Mg+B充填>
 線材1を挿入後、MgB2焼結体8の原料を充填し、加圧する。本実施例ではMgとBの混合粉末(混合物)5を充填する。混合には通常ボールミルが用いられるが、その手法は問わない。MgB2焼結体8の通電特性を向上させるために、炭素などを添加したり、MgB2粉を混合したりしても良い。MgとBの混合粉末5を充填後、金属ピン6をプレス機などによって加圧する。
<(b)Mg充填>
 従来技術では、MgとBの混合粉末5を充填後、封止して熱処理するが、本発明ではこの後さらにMg7を充填する。Mg7粉末は熱処理時に溶けるため、その形態は粉末でも塊でも構わない(粉末の場合は加圧が必要)。
FIG. 2 shows the connection procedure of this embodiment. Although only one wire is shown in the drawing, another wire is present in the depth direction of the drawing. First, the ends of the two wires 1 to be connected are polished to expose the cores 2 of the wires. At this time, the core 2 may be either in an unreacted state of Mg and B or in a state where MgB 2 has been formed. When Mg and B are in an unreacted state, the wire portion may be simultaneously heat treated at the time of the heat treatment for connection to make MgB 2 . The wire with the core 2 exposed at the end is inserted into the metal container 4. As a material of the metal container 4, it is desirable to use Fe, Ni, Nb, Ta or alloys thereof which hardly react with Mg and B during heat treatment.
<(A) Mg + B filling>
After the wire 1 is inserted, the raw material of the MgB 2 sintered body 8 is filled and pressurized. In this embodiment, a mixed powder (mixture) 5 of Mg and B is filled. A ball mill is usually used for mixing, but the method is not limited. In order to improve the current-carrying characteristics of the MgB 2 sintered body 8, carbon or the like may be added, or MgB 2 powder may be mixed. After filling the mixed powder 5 of Mg and B, the metal pin 6 is pressed by a press machine or the like.
<(B) Mg filling>
In the prior art, after filling the mixed powder 5 of Mg and B, sealing and heat treatment are performed, but in the present invention, Mg 7 is further added after this. The form of the Mg 7 powder may be powder or lump because it melts during heat treatment (in the case of powder, pressurization is required).
<(c)熱処理後>
 その後、熱処理をすることで、線材1の端部にMgB2焼結体8が形成され、線材1の端部同士が接続される。MgB2焼結体8を生成するために、通常、電気炉を用いて、アルゴン・窒素などの不活性ガス中で、500℃~900℃で加熱する。本実施例では、Mgの融点:650℃以上に加熱し、Mgを溶かして線材1と金属容器4を固定させる。ただし、温度が高いとMgの蒸発量が多くなるため、650℃~850℃程度の熱処理が望ましい。従来は、Mgの蒸発を防ぐために、熱処理前にセラミックボンドなどの耐熱接着剤で封止していたが、本実施例では後述するハンダ固定を実施するため、熱処理前に封止はできない。よって、Mgの蒸発を抑制するために、できるだけ金属容器4の開口部における隙間がない状態で熱処理を行う。すなわち、金属ピン6と線材1の隙間が小さくなるように設計しておき、金属ピン6を挿入した状態で熱処理を行う。MgとBの混合粉末5の上部にMgが存在することは、線材固定だけでなく、Mg:B=1:2で混合された混合粉からのMg蒸発を抑制する効果もある。
<(C) After heat treatment>
After that, the MgB 2 sintered body 8 is formed at the end of the wire 1 by heat treatment, and the ends of the wire 1 are connected. In order to produce the MgB 2 sintered body 8, heating is usually performed at 500 ° C. to 900 ° C. in an inert gas such as argon and nitrogen using an electric furnace. In the present embodiment, the melting point of Mg is heated to 650 ° C. or higher to dissolve Mg and fix the wire rod 1 and the metal container 4. However, if the temperature is high, the amount of evaporation of Mg increases, so a heat treatment at about 650 ° C. to 850 ° C. is desirable. Conventionally, in order to prevent evaporation of Mg, sealing is performed with a heat-resistant adhesive such as a ceramic bond before heat treatment, but in the present embodiment, sealing is not performed before heat treatment because solder fixation described later is performed. Therefore, in order to suppress the evaporation of Mg, heat treatment is performed in a state in which there is no gap at the opening of the metal container 4 as much as possible. That is, the gap between the metal pin 6 and the wire 1 is designed to be small, and heat treatment is performed in a state in which the metal pin 6 is inserted. The presence of Mg in the upper part of the mixed powder 5 of Mg and B not only fixes the wire, but also has the effect of suppressing the evaporation of Mg from the mixed powder mixed at Mg: B = 1: 2.
<(d)ハンダ充填>
 熱処理後、金属容器4を150℃~300℃に加熱しながら、金属容器4の開口部よりハンダを流し込み、線材1と金属容器4を固定する。ハンダ9は一般的なPbSnハンダや鉛フリーハンダで構わないが、粘性が低い方が望ましい。本実施例では、Mg7とハンダ9による両方の固定を実施したが、どちらか片方だけでも構わない。ただし、Mg7はMgB2焼結体8の周辺しか固定せず、またハンダは金属容器4の開口部周辺のみにしか流れ込まない恐れがあるため、両方を実施する方が望ましい。ハンダ固定を実施しない場合は、熱処理前に金属容器4の開口部をセラミックボンドなどの耐熱接着剤もしくはネジ止めで封止することで、Mgの蒸発を防ぐことが可能となり、不活性ガス中だけでなく、真空中での熱処理も可能となる。本実施例では、接続部の通電特性は線材性能に対して10%程度であるが、Mgとハンダで線材が固定されることにより、そのバラツキを±10%以内に抑えることが可能となった。
<(D) Solder filling>
After the heat treatment, while heating the metal container 4 to 150 ° C. to 300 ° C., solder is poured from the opening of the metal container 4 to fix the wire 1 and the metal container 4. The solder 9 may be a general PbSn solder or lead-free solder, but it is desirable that the viscosity be low. In this embodiment, both of the fixing by Mg 7 and the solder 9 are performed, but only one of them may be used. However, since Mg 7 may fix only the periphery of the MgB 2 sintered body 8 and solder may flow only to the periphery of the opening of the metal container 4, it is preferable to carry out both. When soldering is not performed, the evaporation of Mg can be prevented by sealing the opening of the metal container 4 with a heat-resistant adhesive such as ceramic bond or screw before heat treatment, and only in the inert gas Also, heat treatment in vacuum is possible. In this example, the conduction characteristic of the connection portion is about 10% of the wire performance, but by fixing the wire with Mg and the solder, it becomes possible to suppress the variation within ± 10%. .
 図3に本実施例の接続手順を示す。実施例1と基本的に同じであるが、原料の充填方法が異なる。実施例1のようにMgとBの混合粉末5を熱処理して、MgB2焼結体8を作製した場合、Mgが存在していた部分が空隙となるため、生成したMgB2の密度は理論密度に対して最大50%程度である。
<(a)B充填><(b)Mg充填>
 本実施例では、線材1を金属容器4へ挿入後、まずB10粉末のみを充填・加圧し、その後Mg7粉末を充填する。それにより、線材1の端部周辺には理論密度に対して70%以上の密度のMgB2焼結体8が形成され、高い通電特性が実現できる。なお、B10、Mg7は熱処理時に溶けるため、その形態は粉末でも塊でも構わない(粉末の場合は加圧が必要)。
<(c)熱処理後>
 Bに対するMgの充填量を0.5モル以上にすれば、熱処理後に余分なMgが残ることになり、超電導線材の固定に寄与する。
<(d)ハンダ充填>
 ハンダ9による固定に関しては実施例1と同様である。本実施例により、実施例1よりも高密度なMgB2焼結体が形成されるため、接続部の通電特性は線材性能に対して20%程度まで向上した。
FIG. 3 shows the connection procedure of this embodiment. It is basically the same as Example 1, but the method of filling the raw materials is different. When the mixed powder 5 of Mg and B is heat-treated as in Example 1 to produce the MgB 2 sintered body 8, the portion where Mg was present becomes a void, so the density of the generated MgB 2 is the theory The maximum is about 50% of the density.
<(A) B filling><(b) Mg filling>
In this embodiment, after inserting the wire rod 1 into the metal container 4, first, only the B10 powder is filled and pressurized, and then the Mg7 powder is filled. As a result, an MgB 2 sintered body 8 having a density of 70% or more with respect to the theoretical density is formed around the end of the wire 1, and high current conduction characteristics can be realized. In addition, since B10 and Mg7 melt | dissolve at the time of heat processing, the form may be powder or lump (in the case of powder, pressurization is required).
<(C) After heat treatment>
If the filling amount of Mg with respect to B is 0.5 mol or more, excess Mg will remain after heat treatment, which contributes to fixing of the superconducting wire.
<(D) Solder filling>
The fixing by the solder 9 is the same as in the first embodiment. According to this example, since the MgB 2 sintered body having a density higher than that of Example 1 is formed, the conduction characteristic of the connection portion is improved to about 20% with respect to the wire performance.
 図4~7に本実施例3~6の接続手順を示す。基本的な流れは実施例2と同様であるが、各実施例の特徴は、線材挿入方向と粉末加圧方向が異なること、望ましくはほぼ直交(80°~100°)していることである。実施例1、2のように『線材の挿入方向』と『MgとBの混合粉末(またはB粉末)の加圧方向』が同一である場合、粉末を加圧した力が線材コアの断面に対して伝わりにくく、また加圧方向と平行に粉末密度勾配が生じてしまうため、線材コアと粉末の密着性を高めることが難しい。 4 to 7 show the connection procedure of the third to sixth embodiments. The basic flow is the same as in Example 2, but the feature of each example is that the wire insertion direction and the powder pressing direction are different, desirably, substantially orthogonal (80 ° to 100 °). . When the “insertion direction of the wire” and the “pressing direction of the mixed powder of Mg and B (or B powder)” are the same as in Examples 1 and 2, the force applied to the powder is applied to the cross section of the wire core. However, it is difficult to improve the adhesion between the wire core and the powder because a powder density gradient is generated in parallel to the pressing direction.
 一方、実施例3~6のように『線材の挿入方向』と『Bの混合粉末(またはB粉末)の加圧方向』が直交していれば、加圧した力が直接線材コアの断面に加わり、また加圧面と線材コアの断面を近づけることができるため、粉末と線材コアの高い密着性を実現できる。よって、これらの実施例では、金属容器内部に位置する超電導線材の一端からみて、線材を挿入するための開口部と直交する方向に、Bの混合粉末(またはB粉末)を充填・加圧するための開口部を金属容器に設ける。ここでは、実施例2に記述したBとMgを二層充填する場合についてのみ言及するが、実施例1に記述したMgとBの混合粉を充填する場合でも、本発明に係る超電線材の接続部を製造可能である。 On the other hand, if the “insertion direction of the wire” and the “pressing direction of the mixed powder of B (or B powder)” are orthogonal as in Examples 3 to 6, the applied pressure is directly applied to the cross section of the wire core. In addition, since the cross-sections of the pressing surface and the wire core can be made close to each other, high adhesion between the powder and the wire core can be realized. Therefore, in these embodiments, in order to fill and press the mixed powder (or B powder) of B in the direction orthogonal to the opening for inserting the wire, as viewed from one end of the superconducting wire located inside the metal container Provide an opening in the metal container. Here, only the case of two-layer filling of B and Mg described in Example 2 will be mentioned, but even when the mixed powder of Mg and B described in Example 1 is filled, the super electric wire material according to the present invention The connection can be manufactured.
<(a)B充填><(b)Mg充填>
 本実施例では、線材1を金属容器4へ挿入後、まずB10粉末のみを充填・加圧し、その後Mg7粉末を充填する。それにより、線材1の端部周辺には理論密度に対して70%以上の密度のMgB2焼結体8が形成され、高い通電特性が実現できる。
<(A) B filling><(b) Mg filling>
In this embodiment, after inserting the wire rod 1 into the metal container 4, first, only the B10 powder is filled and pressurized, and then the Mg7 powder is filled. As a result, an MgB 2 sintered body 8 having a density of 70% or more with respect to the theoretical density is formed around the end of the wire 1, and high current conduction characteristics can be realized.
 実施例3では、実施例2と同様に、過剰なMg7粉末を充填することで、線材1と金属容器4を固定した例である。この場合、金属容器4の開口部と線材1の間の隙間をセラミックボンド11による封止をしないと、線材挿入用の金属容器4の開口部から、溶融したMgが流出してしまうため、封止が必須である。そのため、熱処理後にハンダによる固定を実施することができない。
<(c)熱処理後>
 Bに対するMgの充填量を0.5モル以上にすれば、熱処理後に余分なMgが残ることになり、超電導線材の固定に寄与する。図4に示すように、金属容器内部に位置する超電導線材の一端から開口部までの間にMg7が存在する。
In the third embodiment, as in the second embodiment, the wire rod 1 and the metal container 4 are fixed by being filled with excess Mg 7 powder. In this case, if the gap between the opening of the metal container 4 and the wire 1 is not sealed by the ceramic bond 11, molten Mg flows out from the opening of the metal container 4 for inserting the wire, so sealing is performed. Stop is essential. Therefore, it is not possible to carry out the fixing by the solder after the heat treatment.
<(C) After heat treatment>
If the filling amount of Mg with respect to B is 0.5 mol or more, excess Mg will remain after heat treatment, which contributes to fixing of the superconducting wire. As shown in FIG. 4, Mg 7 exists between one end of the superconducting wire positioned inside the metal container and the opening.
 図5は、図4とは逆にMgによる固定をあきらめ、ハンダにより固定した例である。
<(a)B充填><(b)Mg充填>
 本実施例では、線材1を金属容器4へ挿入後、まずB10粉末のみを充填・加圧し、その後Mg7粉末を充填する。それにより、線材1の端部周辺には理論密度に対して70%以上の密度のMgB2焼結体8が形成され、高い通電特性が実現できる。
FIG. 5 is an example in which the fixation by Mg is abandoned contrary to FIG. 4 and is fixed by solder.
<(A) B filling><(b) Mg filling>
In this embodiment, after inserting the wire rod 1 into the metal container 4, first, only the B10 powder is filled and pressurized, and then the Mg7 powder is filled. As a result, an MgB 2 sintered body 8 having a density of 70% or more with respect to the theoretical density is formed around the end of the wire 1, and high current conduction characteristics can be realized.
 実施例4では、実施例2と同様に、過剰なMg7粉末を充填することで、線材1と金属容器4を固定した例である。ここでは、金属容器4の開口部と線材1の間の隙間にセラミックボンド11による封止はしていない。
<(c)熱処理後>
 熱処理前に、金属ピン6をセラミックボンド11によって固定し、(b)Mg充填の接続部を約90度左回転して、金属ピン6が下側になるようにして熱処理することで、溶融したMgが流出しないようにする。図5に示すように、金属容器内部に位置する超電導線材の一端から開口部までの間にMg7が存在する。
<(d)ハンダ充填>
 この場合、溶融したMg7は金属ピン6側にたまるため、Mg7による線材1の固定は期待できないが、金属容器4の線材挿入用の開口部は封止していないため、ハンダ9による固定を実施することが可能である。熱処理後、金属容器4を150℃~300℃に加熱しながら、金属容器4の開口部よりハンダ9を流し込み、線材1と金属容器4を固定する。
In the fourth embodiment, as in the second embodiment, the wire rod 1 and the metal container 4 are fixed by being filled with excess Mg 7 powder. Here, the gap between the opening of the metal container 4 and the wire 1 is not sealed by the ceramic bond 11.
<(C) After heat treatment>
Before heat treatment, the metal pin 6 was fixed by the ceramic bond 11, and (b) the Mg-filled connection portion was rotated about 90 degrees to the left to heat the metal pin 6 so that it was on the lower side. Make sure that Mg does not flow out. As shown in FIG. 5, Mg 7 exists between one end of the superconducting wire positioned inside the metal container and the opening.
<(D) Solder filling>
In this case, since molten Mg 7 accumulates on the metal pin 6 side, fixation of the wire 1 by Mg 7 can not be expected, but the opening for inserting the wire of the metal container 4 is not sealed. It is possible. After the heat treatment, while heating the metal container 4 to 150 ° C. to 300 ° C., the solder 9 is poured from the opening of the metal container 4 to fix the wire 1 and the metal container 4.
 実施例5は、図6のように、『線材の挿入方向』と『MgとBの混合粉末(またはB粉末)の加圧方向』をほぼ直交させ、さらにMgとハンダによる固定を実現した例である。<(a)B充填><(b)Mg充填>
 B10粉末を充填し、金属ピン6により加圧し、その金属ピン6をセラミックボンド11で固定して封止した後、過剰なMg7を線材挿入方向より充填する。それにより、余分なMg7は線材固定に寄与し、また熱処理後にハンダ9による固定を実施可能である。
Example 5 is an example in which “insertion direction of wire rod” and “pressing direction of mixed powder of Mg and B (or B powder)” are almost orthogonal to each other as shown in FIG. It is. <(A) B filling><(b) Mg filling>
B10 powder is filled, pressed by metal pin 6, and metal pin 6 is fixed and sealed by ceramic bond 11, and then excess Mg 7 is filled from the wire insertion direction. Thereby, the excess Mg 7 contributes to the wire fixation, and the fixation by the solder 9 can be performed after the heat treatment.
 なお、実施例5では、実施例3、4と同様に、『線材の挿入方向』と『MgとBの混合粉末(またはB粉末)の加圧方向』が異なること、望ましくはほぼ直交(80°~100°)していることに加え、線材挿入方向とほぼ同一方向から金属ピン6により加圧することも特徴となる。
<(c)熱処理後>
 熱処理後、余分なMg7は線材1と隣り合う位置に存在する。線材挿入方向と同一方向に位置する金属ピン6とMg7の間には空間が存在する。図6に示すように、金属容器内部に位置する超電導線材の一端から、線材1が存在する金属容器4の開口部までの間にMg7が存在する。
<(d)ハンダ充填>
 熱処理後、金属容器4を150℃~300℃に加熱しながら、金属容器4の開口部(線材1が存在する側)よりハンダ9を流し込み、線材1と金属容器4を固定する。
In Example 5, as in Examples 3 and 4, “insertion direction of wire rod” and “pressing direction of mixed powder of Mg and B (or B powder)” are different, preferably substantially orthogonal (80 In addition to the fact that the angle is in the range of 100 ° to 100 °, it is also characterized in that the metal pin 6 applies pressure from substantially the same direction as the wire insertion direction.
<(C) After heat treatment>
After the heat treatment, excess Mg 7 is present at a position adjacent to the wire 1. There is a space between the metal pin 6 and Mg 7 located in the same direction as the wire insertion direction. As shown in FIG. 6, Mg 7 exists between one end of the superconducting wire positioned inside the metal container and the opening of the metal container 4 in which the wire 1 is present.
<(D) Solder filling>
After the heat treatment, while heating the metal container 4 to 150 ° C. to 300 ° C., the solder 9 is poured from the opening of the metal container 4 (the side where the wire 1 exists) to fix the wire 1 and the metal container 4.
 実施例6は、図7のように、線材挿入方向と粉末加圧方向を直交させ、さらにMgとハンダによる固定を実現した例である。Mgを充填するのは、線材と同一の開口部である必要はなく、図7に示すようにMg充填用の開口部を設けても良く、その方が充填の作業性が良い。例えば、複数の超電導線材の金属容器への挿入方向と、金属容器内部に位置する超電導線材の一端からMg充填用の開口部への方向とのなす角が10~80°であると良い。
<(a)B充填><(b)Mg充填>
 金属容器4において、『線材挿入方向』と『線材の挿入方向』と『MgとBの混合粉末(またはB粉末)の加圧方向』の間にMg充填用の開口部を設ける。
In the sixth embodiment, as shown in FIG. 7, the wire insertion direction and the powder pressing direction are orthogonal to each other, and further, the fixation with Mg and solder is realized. It is not necessary for the filling of Mg to be the same opening as the wire, and as shown in FIG. 7, an opening for filling Mg may be provided, and the workability of filling is better. For example, it is preferable that an angle between the insertion direction of the plurality of superconducting wires into the metal container and the direction from one end of the superconducting wire located inside the metal container to the opening for Mg filling be 10 to 80 °.
<(A) B filling><(b) Mg filling>
In the metal container 4, an opening for filling Mg is provided between “wire insertion direction”, “wire insertion direction”, and “pressure direction of mixed powder of Mg and B (or B powder)”.
 B10粉末を充填し、金属ピン6により加圧し、過剰なMg7をMg充填用の開口部から充填する。それにより、余分なMg7は線材固定に寄与し、また熱処理後にハンダ9による固定を実施可能である。
<(c)熱処理後>
 熱処理後、余分なMg7は、金属容器4のMg充填用の開口部より内側であって、線材1と隣り合う位置に存在する。Mg充填用の開口部の金属ピン6とMg7の間には空間が存在する。図7に示すように、金属容器内部に位置する超電導線材の一端からMg充填用の開口部までの間にMg7が存在する。
<(d)ハンダ充填>
 熱処理後、金属容器4を150℃~300℃に加熱しながら、金属容器4の開口部(線材1が存在する側)よりハンダ9を流し込み、線材1と金属容器4を固定する。
B10 powder is filled, pressed by metal pin 6, excess Mg 7 is filled from the opening for Mg filling. Thereby, the excess Mg 7 contributes to the wire fixation, and the fixation by the solder 9 can be performed after the heat treatment.
<(C) After heat treatment>
After the heat treatment, excess Mg 7 is present inside the Mg filling opening of the metal container 4 and adjacent to the wire 1. There is a space between the metal pin 6 and the Mg 7 in the opening for Mg filling. As shown in FIG. 7, Mg 7 exists between one end of the superconducting wire positioned inside the metal container and the opening for Mg filling.
<(D) Solder filling>
After the heat treatment, while heating the metal container 4 to 150 ° C. to 300 ° C., the solder 9 is poured from the opening of the metal container 4 (the side where the wire 1 exists) to fix the wire 1 and the metal container 4.
 実施例3~6で得られる接続部の通電特性の最大値は、いずれも線材性能に対して50%程度の高い値が得られた。さらに、Mgとハンダで固定される実施例5~6ではそのバラツキを±10%以内に抑えることが可能となった。 The maximum values of the conduction characteristics of the connection portions obtained in Examples 3 to 6 were all as high as about 50% with respect to the wire performance. Furthermore, in Examples 5 to 6 in which Mg and solder are fixed, the variation can be suppressed to within ± 10%.
1:線材
2:コア
3:シース
4:金属容器
5:MgとBの混合粉末
6:金属ピン
7:Mg
8:MgB2焼結体
9:ハンダ
10:B
11:セラミックボンド
21:超電導接続部
22:超電導コイル
23:永久電流スイッチ
24:電流リード
25:支持板
26:冷却容器
1: Wire 2: Core 3: Sheath 4: Metal container 5: Mixed powder of Mg and B 6: Metal pin 7: Mg
8: MgB 2 sintered body 9: solder 10: B
11: ceramic bond 21: superconducting connection 22: superconducting coil 23: permanent current switch 24: current lead 25: support plate 26: cooling vessel

Claims (17)

  1.  金属容器内で、複数の超電導線材が、MgB2を含む焼結体によって一体化された超電導線材の接続部であって、
     前記金属容器内部で、前記超電導線材と隣接して、Mgが存在することを特徴とする超電導線材の接続部。
    A connecting portion of a superconducting wire in which a plurality of superconducting wires are integrated by a sintered body containing MgB 2 in a metal container,
    A connection portion of a superconducting wire characterized in that Mg is present inside the metal container and adjacent to the superconducting wire.
  2.  請求項1に記載の超電導線材の接続部であって、
     前記超電導線材が、前記金属容器内部で前記金属容器とハンダを介してつながっていることを特徴とする超電導線材の接続部。
    A connecting portion of the superconducting wire according to claim 1, wherein
    The connecting portion of a superconducting wire characterized in that the superconducting wire is connected to the metal case via solder inside the metal case.
  3.  請求項1また2に記載の超電導線材の接続部であって、
     前記焼結体の密度が、MgB2の理論密度の70%以上であることを特徴とする超電導線材の接続部。
    A connecting portion of the superconducting wire according to claim 1 or 2, wherein
    The connection portion of a superconducting wire characterized in that the density of the sintered body is 70% or more of the theoretical density of MgB 2 .
  4.  請求項1乃至3のいずれかに記載の超電導線材の接続部であって、
     前記金属容器が、前記金属容器内部に位置する前記超電導線材の一端からみて、前記複数の超電導線材の前記金属容器への挿入方向とは異なる方向に、開口部を有することを特徴とする超電導線材の接続部。
    It is a connection part of the superconducting wire rod according to any one of claims 1 to 3,
    A superconducting wire characterized in that the metal container has an opening in a direction different from the insertion direction of the plurality of superconducting wires into the metal container as viewed from one end of the superconducting wire located inside the metal container. Connection part.
  5.  請求項4に記載の超電導線材の接続部であって、
     前記複数の超電導線材の前記金属容器への挿入方向と、前記金属容器内部に位置する前記超電導線材の一端から前記開口部への方向とのなす角が80~100°であることを特徴とする超電導線材の接続部。
    A connecting portion of the superconducting wire according to claim 4, wherein
    An angle between an inserting direction of the plurality of superconducting wires into the metal container and a direction from one end of the superconducting wire positioned inside the metal container to the opening is 80 to 100 °. Superconductor wire connection.
  6.  請求項4に記載の超電導線材の接続部であって、
     前記複数の超電導線材の前記金属容器への挿入方向と、前記金属容器内部に位置する前記超電導線材の一端から前記開口部への方向とのなす角が10~80°であることを特徴とする超電導線材の接続部。
    A connecting portion of the superconducting wire according to claim 4, wherein
    An angle between an inserting direction of the plurality of superconducting wires into the metal container and a direction from one end of the superconducting wire located inside the metal container to the opening is 10 to 80 °. Superconductor wire connection.
  7.  請求項4乃至6のいずれかに記載の超電導線材の接続部であって、
     前記金属容器内部に位置する前記超電導線材の一端から前記開口部までの間にMgが存在することを特徴とする超電導線材の接続部。
    A connecting portion of the superconducting wire according to any one of claims 4 to 6, wherein
    A connecting portion of a superconducting wire characterized in that Mg is present between one end of the superconducting wire located inside the metal container and the opening.
  8.  超電導線材の接続方法であって、
     金属容器の開口部に、複数の超電導線材を挿入する挿入工程と、
     前記複数の超電導線材の近傍にMgB2焼結体の原料を充填する充填工程と、
     前記充填された原料を加熱する加熱工程と、を有し、
     前記MgB2焼結体の原料において、MgのBに対するモル比は0.5より大きいことを特徴とする超電導線材の接続方法。
    A method of connecting superconducting wires,
    Inserting the plurality of superconducting wires into the opening of the metal container;
    Filling the raw material of the MgB 2 sintered body in the vicinity of the plurality of superconducting wires;
    And d) heating the filled raw material.
    In a raw material of the MgB 2 sintered body, a molar ratio of Mg to B is larger than 0.5, and a method of connecting a superconducting wire.
  9.  請求項8に記載の超電導線材の接続方法であって、
     前記充填工程は、MgとBの混合物を充填する第1充填工程と、前記第1充填工程の後にMgを充填する第2充填工程とを含むことを特徴とする超電導線材の接続方法。
    It is a connection method of the superconducting wire according to claim 8,
    The method of connecting superconducting wires, wherein the filling step includes a first filling step of filling a mixture of Mg and B, and a second filling step of filling Mg after the first filling step.
  10.  請求項8に記載の超電導線材の接続方法であって、
     前記充填工程は、Bを充填する第1充填工程と、前記第1充填工程の後にMgを充填する第2充填工程とを含むことを特徴とする超電導線材の接続方法。
    It is a connection method of the superconducting wire according to claim 8,
    The method of connecting superconducting wires, wherein the filling step includes a first filling step of filling B and a second filling step of filling Mg after the first filling step.
  11.  請求項9に記載の超電導線材の接続方法であって、
     前記第1充填工程及び第2充填工程の充填方向と、前記複数の超電導線材の前記金属容器への挿入方向のなす角が80~100°であることを特徴とする超電導線材の接続方法。
    10. The method of connecting superconducting wires according to claim 9, wherein
    An angle between the filling direction in the first filling step and the second filling step and the insertion direction of the plurality of superconducting wires into the metal container is 80 to 100 °.
  12.  請求項10に記載の超電導線材の接続方法であって、
     前記第1充填工程及び第2充填工程の充填方向と、前記複数の超電導線材の前記金属容器への挿入方向のなす角が80~100°であることを特徴とする超電導線材の接続方法。
    A method of connecting superconducting wires according to claim 10, wherein
    An angle between the filling direction in the first filling step and the second filling step and the insertion direction of the plurality of superconducting wires into the metal container is 80 to 100 °.
  13.  請求項9に記載の超電導線材の接続方法であって、
     前記第1充填工程の充填方向と、前記複数の超電導線材の前記金属容器への挿入方向のなす角が80~100°であり、
     前記第2充填工程の充填方向と、前記複数の超電導線材の前記金属容器への挿入方向のなす角が-10~10°であることを特徴とする超電導線材の接続方法。
    10. The method of connecting superconducting wires according to claim 9, wherein
    The angle between the filling direction of the first filling step and the inserting direction of the plurality of superconducting wires into the metal container is 80 to 100 °.
    An angle between a filling direction of the second filling step and an inserting direction of the plurality of superconducting wires into the metal container is -10 to 10 °.
  14.  請求項10に記載の超電導線材の接続方法であって、
     前記第1充填工程の充填方向と、前記複数の超電導線材の前記金属容器への挿入方向のなす角が80~100°であり、
     前記第2充填工程の充填方向と、前記複数の超電導線材の前記金属容器への挿入方向のなす角が-10~10°であることを特徴とする超電導線材の接続方法。
    A method of connecting superconducting wires according to claim 10, wherein
    The angle between the filling direction of the first filling step and the inserting direction of the plurality of superconducting wires into the metal container is 80 to 100 °.
    An angle between a filling direction of the second filling step and an inserting direction of the plurality of superconducting wires into the metal container is -10 to 10 °.
  15.  請求項9に記載の超電導線材の接続方法であって、
     前記第1充填工程の充填方向と、前記複数の超電導線材の前記金属容器への挿入方向のなす角が80~100°であり、
     前記第2充填工程の充填方向と、前記複数の超電導線材の前記金属容器への挿入方向のなす角が10~80°であることを特徴とする超電導線材の接続方法。
    10. The method of connecting superconducting wires according to claim 9, wherein
    The angle between the filling direction of the first filling step and the inserting direction of the plurality of superconducting wires into the metal container is 80 to 100 °.
    An angle between the filling direction of the second filling step and the inserting direction of the plurality of superconducting wires into the metal container is 10 to 80 °.
  16.  請求項10に記載の超電導線材の接続方法であって、
     前記第1充填工程の充填方向と、前記複数の超電導線材の前記金属容器への挿入方向のなす角が80~100°であり、
     前記第2充填工程の充填方向と、前記複数の超電導線材の前記金属容器への挿入方向のなす角が10~80°であることを特徴とする超電導線材の接続方法。
    A method of connecting superconducting wires according to claim 10, wherein
    The angle between the filling direction of the first filling step and the inserting direction of the plurality of superconducting wires into the metal container is 80 to 100 °.
    An angle between the filling direction of the second filling step and the inserting direction of the plurality of superconducting wires into the metal container is 10 to 80 °.
  17.  請求項8乃至16のいずれかに記載の超電導線材の接続方法であって、
     前記加熱工程の後に、前記複数の超電導線材の隙間から前記金属容器の開口部にハンダを流し込むハンダ工程を有することを特徴とする超電導線材の接続方法。
    The method of connecting superconducting wires according to any one of claims 8 to 16, wherein
    A method of connecting a superconducting wire, the method comprising: a soldering step of pouring solder into the opening of the metal container from the gap between the plurality of superconducting wires after the heating step.
PCT/JP2015/059017 2014-08-29 2015-03-25 Connection part of superconducting wire rods and method for connecting superconducting wire rods WO2016031283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014174727A JP2017208156A (en) 2014-08-29 2014-08-29 Connection part of superconducting wire rod and connection method of superconducting wire rod
JP2014-174727 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031283A1 true WO2016031283A1 (en) 2016-03-03

Family

ID=55399189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059017 WO2016031283A1 (en) 2014-08-29 2015-03-25 Connection part of superconducting wire rods and method for connecting superconducting wire rods

Country Status (2)

Country Link
JP (1) JP2017208156A (en)
WO (1) WO2016031283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212869A1 (en) * 2016-06-08 2017-12-14 株式会社日立製作所 Connector for superconducting wire, and method for connecting superconducting wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7351771B2 (en) 2020-03-02 2023-09-27 株式会社日立製作所 Connection part of superconducting wire and connection method of superconducting wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086265A (en) * 2001-09-12 2003-03-20 Furukawa Electric Co Ltd:The Connection part of superconducting line and its connecting method
JP2012094413A (en) * 2010-10-28 2012-05-17 Hitachi Ltd Connection of superconducting wire rod and connection method of superconducting wire rod
JP2013506946A (en) * 2009-09-30 2013-02-28 シーメンス アクチエンゲゼルシヤフト Method for fabricating a connection structure between two superconductors and structure for connecting two superconductors
JP2013225598A (en) * 2012-04-23 2013-10-31 Hitachi Ltd Mgb2 superconducting magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086265A (en) * 2001-09-12 2003-03-20 Furukawa Electric Co Ltd:The Connection part of superconducting line and its connecting method
JP2013506946A (en) * 2009-09-30 2013-02-28 シーメンス アクチエンゲゼルシヤフト Method for fabricating a connection structure between two superconductors and structure for connecting two superconductors
JP2012094413A (en) * 2010-10-28 2012-05-17 Hitachi Ltd Connection of superconducting wire rod and connection method of superconducting wire rod
JP2013225598A (en) * 2012-04-23 2013-10-31 Hitachi Ltd Mgb2 superconducting magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212869A1 (en) * 2016-06-08 2017-12-14 株式会社日立製作所 Connector for superconducting wire, and method for connecting superconducting wire
US10804624B2 (en) 2016-06-08 2020-10-13 Hitachi, Ltd. Joint portion of superconducting wires and method of joining superconducting wires

Also Published As

Publication number Publication date
JP2017208156A (en) 2017-11-24

Similar Documents

Publication Publication Date Title
JP5560160B2 (en) Superconducting wire connecting part and superconducting wire connecting method
JP4058920B2 (en) Superconducting connection structure
US7602269B2 (en) Permanent current switch
JP5476242B2 (en) Superconducting wire connection structure and manufacturing method thereof
JP4391403B2 (en) Magnesium diboride superconducting wire connection structure and connection method thereof
JP2011029557A (en) Superconducting circuit, production method of superconducting joints, superconducting magnet, and production method of superconducting magnet
US20230008754A1 (en) Superconducting wire, method for manufacturing superconducting wire, and mri device
US20100245005A1 (en) Superconducting wire rod, persistent current switch, and superconducting magnet
JP6628877B2 (en) Connection of superconducting wire and method of connecting superconducting wire
WO2016031283A1 (en) Connection part of superconducting wire rods and method for connecting superconducting wire rods
JP6442598B2 (en) Superconducting wire connection
WO2013161475A1 (en) MgB2 SUPERCONDUCTING MAGNET
JP2013197072A (en) Mgb2 superconducting multi-core wire material, superconducting cable, superconducting magnet
WO2015015627A1 (en) Superconducting magnet and manufacturing method for same
WO2014034295A1 (en) Conduction cooling permanent current switch, mri device, nmr device
JP5977261B2 (en) Ultra-low resistance connection between superconducting wires and method of forming the connection
JP3866926B2 (en) Powder method Nb (3) Superconducting connection structure manufacturing method using Sn superconducting wire
JP5603297B2 (en) Superconducting magnet and manufacturing method thereof
US20130102473A1 (en) Superconducting magnet and method of producing same
CN113346259B (en) Connection part of superconducting wire rod and connection method of superconducting wire rod
Murakami et al. Development of terminal joint and lead extension for JT-60SA central solenoid
JP7428617B2 (en) Connection part of superconducting wire and connection method of superconducting wire
JP2013089416A (en) Superconducting wire rod, connection part of superconducting wire rod, permanent current switch, superconducting magnet system, and method of connecting superconducting wire rod

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834987

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP