WO2016031275A1 - Heat storage device - Google Patents

Heat storage device Download PDF

Info

Publication number
WO2016031275A1
WO2016031275A1 PCT/JP2015/057561 JP2015057561W WO2016031275A1 WO 2016031275 A1 WO2016031275 A1 WO 2016031275A1 JP 2015057561 W JP2015057561 W JP 2015057561W WO 2016031275 A1 WO2016031275 A1 WO 2016031275A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat storage
anode electrode
storage device
narrow space
electrode
Prior art date
Application number
PCT/JP2015/057561
Other languages
French (fr)
Japanese (ja)
Inventor
富松 師浩
亮介 八木
典裕 吉永
勝之 櫻井
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2016031275A1 publication Critical patent/WO2016031275A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

A heat storage device 1 according to one embodiment of the present invention is provided with: a heat storage tank 3; a heat storage material 4 that is contained in the heat storage tank 3 and is able to be supercooled; an anode electrode 5 that is immersed in the heat storage material 4; a cathode electrode 6 that is immersed in the heat storage material 4 at a position apart from the anode electrode 5; a voltage application means 12 that applies a voltage between the anode electrode 5 and the cathode electrode 6; and a narrow space that is formed in the anode electrode 5 and is provided with a plurality of particle-like projections 8 on surfaces 7A facing each other.

Description

蓄熱装置Heat storage device
 本発明の実施形態は、熱を蓄積したり外部に放出したり可能な蓄熱装置に関する。 Embodiment of this invention is related with the thermal storage apparatus which can accumulate | store heat | fever and can discharge | release it outside.
 相変化が可能な蓄熱材の過冷却を利用する蓄熱装置が知られている。この蓄熱装置は、この蓄熱材に過冷却状態で熱を貯蔵し、放熱要求がされた時に、過冷却状態を解除して蓄熱材を液体から固体に相変化させ、それに伴って放出される潜熱を利用する。 A heat storage device that uses supercooling of a heat storage material capable of phase change is known. This heat storage device stores heat in a supercooled state in this heat storage material, and when a heat release request is made, releases the supercooling state and changes the phase of the heat storage material from a liquid to a solid, and the latent heat released along with it. Is used.
 過冷却されて液相状態にある蓄熱材の過冷却状態を解除して、蓄熱材を液体から固体に相変化させることは、「発核」と称されている。蓄熱材が液相状態にあるときに発核操作を行うと、過冷却されて液相状態にある蓄熱材に結晶核が形成され、それを起点に結晶化を開始する。 It is called “nucleation” to release the supercooled state of the heat storage material in the liquid phase after being supercooled and to change the phase of the heat storage material from liquid to solid. If the nucleation operation is performed while the heat storage material is in the liquid phase, crystal nuclei are formed in the heat storage material that is supercooled and in the liquid phase, and crystallization starts from that.
特開2012-32130号公報JP 2012-32130 A
 近年、エネルギーの効率的利用の観点から、蓄熱装置に対する需要があり、信頼性の高い蓄熱装置が要望されている。 In recent years, there has been a demand for a heat storage device from the viewpoint of efficient use of energy, and a highly reliable heat storage device has been demanded.
 実施形態の蓄熱装置は、蓄熱槽と、この蓄熱槽に収容され過冷却可能な蓄熱材と、前記蓄熱材に浸かったアノード電極と、前記アノード電極から分離した位置で前記蓄熱材に浸かったカソード電極と、前記アノード電極とカソード電極との間に電圧を印加する電圧印加手段と、前記アノード電極に形成され、対向する面の表面に複数の粒子状の凸部が形成された狭空間と、を備える。 The heat storage device of the embodiment includes a heat storage tank, a heat storage material accommodated in the heat storage tank and capable of being supercooled, an anode electrode immersed in the heat storage material, and a cathode immersed in the heat storage material at a position separated from the anode electrode An electrode, voltage applying means for applying a voltage between the anode electrode and the cathode electrode, a narrow space formed in the anode electrode and having a plurality of particle-like convex portions formed on the surfaces of the opposing surfaces, Is provided.
第1実施形態の蓄熱装置を示した模式図。The schematic diagram which showed the thermal storage apparatus of 1st Embodiment. 図1に示す蓄熱装置のアノード電極の狭空間(溝部)を拡大して示した模式図。The schematic diagram which expanded and showed the narrow space (groove part) of the anode electrode of the thermal storage apparatus shown in FIG. 図1に示す蓄熱装置のアノード電極の狭空間(溝部)の形状の他の例を示した模式図。The schematic diagram which showed the other example of the shape of the narrow space (groove part) of the anode electrode of the thermal storage apparatus shown in FIG. 図2に示す狭空間(溝部)内の複数の粒子状の凸部を拡大して示した電子顕微鏡写真。The electron micrograph which expanded and showed the several particle-shaped convex part in the narrow space (groove part) shown in FIG. 図4に示す狭空間(溝部)のF5-F5線方向(狭空間(溝部)を横切る方向)に沿った断面の電子顕微鏡写真。FIG. 5 is an electron micrograph of a cross section of the narrow space (groove) shown in FIG. 4 along the F5-F5 line direction (a direction crossing the narrow space (groove)). 参考例にかかる正の曲率(接触角θ)で形成された結晶核を示した模式図。The schematic diagram which showed the crystal nucleus formed with the positive curvature (contact angle (theta)) concerning a reference example. 本実施形態の結晶核の保持状態の概念を示し、下地(アノード電極5)に対して負の曲率(接触角θ)で結晶核が形成された状態を示す模式図。The schematic diagram which shows the concept of the holding | maintenance state of the crystal nucleus of this embodiment, and shows the state in which the crystal nucleus was formed with the negative curvature (contact angle (theta)) with respect to the foundation | substrate (anode electrode 5). 本実施形態の結晶核の保持状態の概念をより具体的に示し、下地(アノード電極5)に対して負の曲率(接触角θ)で結晶核が形成された状態を示す模式図。The schematic diagram which shows the concept of the holding | maintenance state of the crystal nucleus of this embodiment more concretely, and shows the state in which the crystal nucleus was formed with the negative curvature (contact angle (theta)) with respect to the foundation | substrate (anode electrode 5). 比較例1にかかるアノード電極の表面に複数の粒子状の凸部(結晶核)を設けた場合に、多サイクルの熱放出によってアノード電極が薄肉化する過程を示した模式図。The schematic diagram which showed the process in which an anode electrode becomes thin by multiple cycles of heat discharge | release, when providing the several particle-form convex part (crystal nucleus) on the surface of the anode electrode concerning the comparative example 1. FIG. 第1実施形態において、多サイクルの熱放出によってアノード電極が薄肉化する過程を示した模式図。FIG. 3 is a schematic diagram showing a process in which the anode electrode is thinned by multi-cycle heat release in the first embodiment. 第1実施形態の蓄熱装置において、アノード電極の溝部の幅寸法(溝幅)を変化させた場合に、30秒後の発核確率を比較した第1の実験結果を示す表。The heat storage apparatus of 1st Embodiment WHEREIN: When changing the width dimension (groove width) of the groove part of an anode electrode, the table | surface which shows the 1st experimental result which compared the nucleation probability after 30 second. 図11に示す表に対応するグラフ。The graph corresponding to the table | surface shown in FIG. 第1実施形態の蓄熱装置において、10時間経過後に、過冷却状態が維持される確率を調べた第2の実験の実験結果を示す表。The table | surface which shows the experimental result of the 2nd experiment which investigated the probability that a supercooled state will be maintained after 10-hour progress in the thermal storage apparatus of 1st Embodiment. 図13に示す表に対応するグラフ。14 is a graph corresponding to the table shown in FIG. 第1実施形態の蓄熱装置において、実施例1から7のように溝部の溝幅および凸部の平均粒径(凸部径)を変化させた場合に、発核待ち時間を調べた実験結果を示す表。In the heat storage device according to the first embodiment, when the groove width of the groove and the average particle diameter (convex diameter) of the convex portion are changed as in Examples 1 to 7, the experimental results of examining the nucleation waiting time are shown. Table shown. 第2実施形態の蓄熱装置を示した模式図。The schematic diagram which showed the thermal storage apparatus of 2nd Embodiment. 第2実施形態の変形例において、アノード電極の周囲を拡大して模式的に示した模式図。The schematic diagram which expanded and showed typically the circumference of an anode electrode in the modification of a 2nd embodiment.
 [第1実施形態]
 以下、本発明の実施の形態に係る蓄熱装置を、図1~図14を参照して詳細に説明する。図1に示すように、蓄熱装置1は、蓄熱部2と、制御部11と、を具備している。
[First embodiment]
Hereinafter, a heat storage device according to an embodiment of the present invention will be described in detail with reference to FIGS. As shown in FIG. 1, the heat storage device 1 includes a heat storage unit 2 and a control unit 11.
 制御部11は、電圧印加手段12と、制御手段13を備えている。制御部11は、例えばユニットをなしていて、例えば蓄熱槽3の外部(外面)に設けられている。なお、制御部11は、蓄熱槽3から分離して設けられてもよい。また、制御部11は、蓄熱装置1を備える例えば空気調和機の制御システムに接続ないしは組込まれてもよい。さらに、制御部11は、蓄熱装置1を備える例えば空気調和機及びその他の家電製品全体を制御するネットワーク家電制御システムなどの他のシステムに、接続ないしは組込まれていてもよい。 The control unit 11 includes a voltage application unit 12 and a control unit 13. The control unit 11 forms a unit, for example, and is provided on the outside (outer surface) of the heat storage tank 3, for example. The control unit 11 may be provided separately from the heat storage tank 3. Further, the control unit 11 may be connected to or incorporated in, for example, an air conditioner control system including the heat storage device 1. Further, the control unit 11 may be connected to or incorporated in another system including the heat storage device 1 such as a network home appliance control system that controls the entire air conditioner and other home appliances.
 電圧印加手段12の正極は、第1給電線14を経由して後述するアノード電極5に接続されている。電圧印加手段12の負極は、第2給電線15を経由して後述するカソード電極6に接続されている。即ち、電圧印加手段12は、アノード電極5とカソード電極6間に電圧を印加することができる。 The positive electrode of the voltage applying means 12 is connected to the anode electrode 5 described later via the first power supply line 14. The negative electrode of the voltage application unit 12 is connected to the cathode electrode 6 described later via the second power supply line 15. That is, the voltage applying unit 12 can apply a voltage between the anode electrode 5 and the cathode electrode 6.
 電圧印加手段12は、例えば、複数の電池と、スイッチ回路と、を含む電源ユニットとして構成されている。スイッチ回路は、アノード電極5およびカソード電極6と電池とを電気的に接続したり、アノード電極5およびカソード電極6と電池との電気的な接続状態を遮断したりすることができる。電圧印加手段12は、スイッチ回路によって複数の電池の接続状態を切り替えることで、アノード電極5とカソード電極6間に印加される電圧を任意の値に設定することができる。また、電圧印加手段12には、アノード電極5とカソード電極6間に印加される電圧を任意の値に設定可能な定電圧電源等を使用してもよい。 The voltage applying means 12 is configured as a power supply unit including a plurality of batteries and a switch circuit, for example. The switch circuit can electrically connect the anode electrode 5 and the cathode electrode 6 and the battery, and can interrupt the electrical connection state of the anode electrode 5 and the cathode electrode 6 and the battery. The voltage application means 12 can set the voltage applied between the anode electrode 5 and the cathode electrode 6 to an arbitrary value by switching the connection state of a plurality of batteries by a switch circuit. The voltage applying means 12 may be a constant voltage power source or the like that can set the voltage applied between the anode electrode 5 and the cathode electrode 6 to an arbitrary value.
 制御手段13は、メモリ、演算部、及び印加電圧コントローラ等を有している。この制御手段13のメモリには、蓄熱装置1を制御するために必要な各種のデータが記憶されている。制御手段13の印加電圧コントローラと電圧印加手段12とは信号線16を経由して電気的に接続されている。 The control means 13 includes a memory, a calculation unit, an applied voltage controller, and the like. Various data necessary for controlling the heat storage device 1 is stored in the memory of the control means 13. The application voltage controller of the control means 13 and the voltage application means 12 are electrically connected via a signal line 16.
 蓄熱部2は、蓄熱槽3と、蓄熱材4と、アノード電極5と、カソード電極6と、を備えている。 The heat storage unit 2 includes a heat storage tank 3, a heat storage material 4, an anode electrode 5, and a cathode electrode 6.
 蓄熱材4は、蓄熱槽3の内部に収容されている。蓄熱材4には、過冷却性能を有する潜熱蓄熱材(PCM;Phase change material)が用いられている。この蓄熱材4は、液相の状態から温度が下がって融点以下になっても凝固せずに液相状態を維持する特性を有している。このような蓄熱材は、過冷却性能を有する潜熱蓄熱材又は相変化蓄熱材と称される。 The heat storage material 4 is accommodated in the heat storage tank 3. As the heat storage material 4, a latent heat storage material (PCM; Phase change material) having supercooling performance is used. The heat storage material 4 has a characteristic of maintaining the liquid phase state without solidifying even when the temperature is lowered from the liquid phase state to be below the melting point. Such a heat storage material is referred to as a latent heat storage material or a phase change heat storage material having supercooling performance.
 蓄熱材4には、例えば酢酸ナトリウム三水和物等の酢酸ソーダや、硫酸ナトリウム水和物等の硫酸ソーダを用いることができる。蓄熱温度が高い場合には、蓄熱材4として、酢酸ナトリウム三水和物を用いることが望ましい。酢酸ナトリウム三水和物の一般的な物性は、融点が40~58℃、潜熱が100~264kj/kg、比熱が1~4kJ/kg/Kである。 As the heat storage material 4, for example, sodium acetate such as sodium acetate trihydrate or sodium sulfate such as sodium sulfate hydrate can be used. When the heat storage temperature is high, it is desirable to use sodium acetate trihydrate as the heat storage material 4. The general physical properties of sodium acetate trihydrate are a melting point of 40 to 58 ° C., a latent heat of 100 to 264 kj / kg, and a specific heat of 1 to 4 kJ / kg / K.
 カソード電極6は、導電性を有する金属材料、例えばステンレスやチタン、銀等で形成され、蓄熱材4に負電圧を印加することができる。図1に示すようにカソード電極6は、アノード電極5から分離して設けられ、例えば全体が蓄熱材4に浸かった状態に配置されているが、その一部が蓄熱材4に浸かっていてもよい。 The cathode electrode 6 is formed of a conductive metal material, such as stainless steel, titanium, silver, or the like, and can apply a negative voltage to the heat storage material 4. As shown in FIG. 1, the cathode electrode 6 is provided separately from the anode electrode 5. For example, the cathode electrode 6 is disposed so as to be entirely immersed in the heat storage material 4, but even if a part of the cathode electrode 6 is immersed in the heat storage material 4. Good.
 図1に示すようにアノード電極5は、例えば全体が蓄熱材4に浸かった状態に配置されているが、その一部が蓄熱材4に浸かっていてもよい。そのため、アノード電極5に形成される溝部7も蓄熱材4に浸かっている。 As shown in FIG. 1, the anode electrode 5 is disposed, for example, in a state where the whole is immersed in the heat storage material 4, but a part of the anode electrode 5 may be immersed in the heat storage material 4. Therefore, the groove portion 7 formed in the anode electrode 5 is also immersed in the heat storage material 4.
 アノード電極5は、例えば、丸棒形状をなしている。アノード電極5は、導電性を有する金属材料で形成され、蓄熱材4に正電圧を印加することができる。アノード電極5の材料としては、銀や銅、銅アマルガム等が適している。このアノード電極5には、その一部に蓄熱材4の発核起点となる一つまたは複数の狭空間が設けられる。本実施形態では、狭空間のそれぞれは、例えば、アノード電極5の表面に形成した溝部7で構成されている。溝部7は、丸棒状のアノード電極5の長手方向Lに対して、例えば交差する方向に延びている。溝部7は、アノード電極5に、例えば図2に示すように隣接して対向する面7Aが形成され、対向する面7Aの表面に粒子状の凸部8(凹凸)が形成されている。本実施形態では、溝部7は、対向する面7A同士の間の寸法(溝部の幅寸法W)が、開口部付近から溝部7の奥部に至るまで、略同じになった形状(スリット形状)に形成されている。本実施形態では、対向する面7A同士の間の寸法は、0.5~300μmで設定される。溝部7の形状は、上記スリット形状に限定されるものではなく、図3に示すように、例えば、開口部付近から溝部7の奥部に至るまで溝部7の幅寸法Wが徐々に小さくなるV字形状であってもよい。 The anode electrode 5 has, for example, a round bar shape. The anode electrode 5 is formed of a conductive metal material, and can apply a positive voltage to the heat storage material 4. Suitable materials for the anode electrode 5 include silver, copper, copper amalgam and the like. The anode electrode 5 is provided with one or a plurality of narrow spaces serving as a nucleation starting point of the heat storage material 4 in a part thereof. In the present embodiment, each of the narrow spaces is constituted by, for example, a groove portion 7 formed on the surface of the anode electrode 5. The groove portion 7 extends, for example, in a direction crossing the longitudinal direction L of the round bar-shaped anode electrode 5. For example, as shown in FIG. 2, the groove portion 7 has a surface 7 </ b> A that is adjacently opposed to each other as shown in FIG. 2, and a particle-like convex portion 8 (unevenness) is formed on the surface of the facing surface 7 </ b> A. In the present embodiment, the groove portion 7 has a shape (slit shape) in which the dimension between the opposing surfaces 7A (the groove width W) is substantially the same from the vicinity of the opening to the back of the groove portion 7. Is formed. In the present embodiment, the dimension between the opposing surfaces 7A is set to 0.5 to 300 μm. The shape of the groove portion 7 is not limited to the above-described slit shape. For example, as shown in FIG. 3, the width dimension W of the groove portion 7 gradually decreases from the vicinity of the opening portion to the deep portion of the groove portion V. It may be a letter shape.
 図4に、溝部7を上方から見た電子顕微鏡写真を示し、図5に、溝部7の断面の電子顕微鏡写真を示す。溝部7内には、複数の粒子状の凸部8(凹凸)が形成されている。図4、図5から明らかなように、複数の粒子状の凸部8は、複数層にわたって形成されており、全体として多孔質の層をなしている。これらに示すように、溝部7内には、直径が0.1~1μmの複数の粒子状の凸部8が形成される。このため、本実施形態では、凸部8の平均粒径は、1μm以下である。 FIG. 4 shows an electron micrograph of the groove 7 as viewed from above, and FIG. 5 shows an electron micrograph of a cross section of the groove 7. In the groove portion 7, a plurality of particulate convex portions 8 (unevenness) are formed. As apparent from FIGS. 4 and 5, the plurality of particulate projections 8 are formed over a plurality of layers and form a porous layer as a whole. As shown in these figures, a plurality of particulate projections 8 having a diameter of 0.1 to 1 μm are formed in the groove 7. For this reason, in this embodiment, the average particle diameter of the convex part 8 is 1 micrometer or less.
 続いて、アノード電極5の溝部7内の複数の粒子状の凸部8の作成方法について説明する。先ず、直径2mm程度の銀製の丸棒に、刃角30°から40°カッターを用いて切り込みを入れることで溝部7を形成する。次に、溝部7の開口部をプレスして開口部周辺を潰すことで溝幅を0.5~300μmに調整する。 Subsequently, a method of creating a plurality of particulate projections 8 in the groove 7 of the anode electrode 5 will be described. First, the groove portion 7 is formed by cutting a silver round bar having a diameter of about 2 mm using a cutter with a blade angle of 30 ° to 40 °. Next, the groove width is adjusted to 0.5 to 300 μm by pressing the opening of the groove 7 and crushing the periphery of the opening.
 次に、このアノード電極5となる溝部7が設けられた銀棒を電源の正極に接続し、別途用意した銀製の丸棒を電源の負極に接続する。これらの正極側の銀棒および負極側の銀棒を電解液に浸し、電解液中で正極・負極間に0V~2Vのパルス波を1000回印加する。電解液は、導電性を持つ液体であれば特に限定されるものではなく、例えば、食塩水や希塩酸、または、融点以上に加熱されて融解した蓄熱材4を用いてもよい。このようにして作製したアノード電極5は、図4、図5に示す写真のようになる。溝部7の表面に直径0.5μm程度の粒子状の凸部8(凹凸)が形成されている。 Next, the silver bar provided with the groove 7 serving as the anode electrode 5 is connected to the positive electrode of the power source, and a separately prepared silver round bar is connected to the negative electrode of the power source. These positive electrode side silver bar and negative electrode side silver bar are immersed in an electrolytic solution, and a pulse wave of 0 V to 2 V is applied 1000 times between the positive electrode and the negative electrode in the electrolytic solution. The electrolyte solution is not particularly limited as long as it is a conductive liquid, and for example, saline solution, dilute hydrochloric acid, or the heat storage material 4 heated to a melting point or higher and melted may be used. The anode electrode 5 produced in this way is as shown in the photographs shown in FIGS. On the surface of the groove portion 7, particle-like convex portions 8 (unevenness) having a diameter of about 0.5 μm are formed.
 続いて、図6から図10を参照して、本実施形態の蓄熱装置1の動作および発核の原理について説明する。 Subsequently, with reference to FIG. 6 to FIG. 10, the operation of the heat storage device 1 of the present embodiment and the principle of nucleation will be described.
 蓄熱槽3に熱を入力する場合は、蓄熱槽3内の蓄熱材4は予め融点以上の温度となるように加熱される。それによって、蓄熱材4は溶解して液相状態となる。熱入力が完了すると、蓄熱材4はその融点を下回る温度にまで下がる。既述のように蓄熱材4は過冷却可能な物質であるため、蓄熱材4は、液相の状態から温度が下がって融点以下になっても、凝固せずに液相状態を維持する。蓄熱材4は、過冷却された状態となり、潜熱を蓄え続ける。 When heat is input to the heat storage tank 3, the heat storage material 4 in the heat storage tank 3 is heated in advance to a temperature equal to or higher than the melting point. As a result, the heat storage material 4 is dissolved and becomes a liquid phase. When the heat input is completed, the heat storage material 4 is lowered to a temperature below its melting point. Since the heat storage material 4 is a substance that can be supercooled as described above, the heat storage material 4 maintains the liquid phase state without solidifying even when the temperature drops from the liquid phase state to the melting point or lower. The heat storage material 4 is in a supercooled state and continues to store latent heat.
 蓄熱材4を過冷却状態に保持する場合、制御手段13は、両電極(アノード電極5とカソード電極6)間に電圧が印加されないように制御する。この制御で蓄熱材4が過冷却状態に保持されている間、蓄熱材4は過冷却された液相状態で安定しており、蓄熱材4は結晶化(発核)されない。このため、蓄熱材4に蓄えられた潜熱は放出されない。 When the heat storage material 4 is held in a supercooled state, the control means 13 controls so that no voltage is applied between both electrodes (the anode electrode 5 and the cathode electrode 6). While the heat storage material 4 is maintained in the supercooled state by this control, the heat storage material 4 is stable in the supercooled liquid phase state, and the heat storage material 4 is not crystallized (nucleated). For this reason, the latent heat stored in the heat storage material 4 is not released.
 蓄熱材4の潜熱を取り出す指令が外部から制御手段13に与えられた場合、制御手段13は、電圧印加手段12で設定した電圧を両電極間に印加する制御をする。この場合、両電極間に印加される電圧は、設定電圧を一定時間連続的に印加してもよいし、又は、設定電圧をパルス状で複数回に分けて印加してもよい。 When a command to take out the latent heat of the heat storage material 4 is given to the control means 13 from the outside, the control means 13 performs control to apply the voltage set by the voltage application means 12 between both electrodes. In this case, as the voltage applied between both electrodes, the set voltage may be applied continuously for a certain period of time, or the set voltage may be applied in a plurality of times in the form of pulses.
 電圧印加手段12により両電極間に電圧が印加されると、蓄熱材4と接したアノード電極5から金属イオンが溶出する。これによって、液相状態にある蓄熱材4の過冷却が解除される。この場合、両電極間に印加される電圧としては、液相状態にある蓄熱材4の過冷却を解除できる(蓄熱材4を発核させる)必要最低限の電圧を用いることが好ましい。発明者らは、銀をアノード電極5に用いる場合には、1.0V以上2.0V以下の電圧を印加すればよく、より好ましくは1.5V以上1.9V以下の電圧が好適であることを見出した。 When a voltage is applied between both electrodes by the voltage applying means 12, metal ions are eluted from the anode electrode 5 in contact with the heat storage material 4. Thereby, the supercooling of the heat storage material 4 in a liquid phase state is released. In this case, as the voltage applied between both electrodes, it is preferable to use a minimum voltage that can cancel the supercooling of the heat storage material 4 in the liquid phase state (nucleate the heat storage material 4). The inventors may apply a voltage of 1.0 V or more and 2.0 V or less, and more preferably a voltage of 1.5 V or more and 1.9 V or less when silver is used for the anode electrode 5. I found.
 酢酸ナトリウム三水和物からなる蓄熱材4に接しているアノード電極5とカソード電極6間に所定の電圧が印加されると、溝部7(発核起点部)の表面でアノード電極5を構成する金属の酸化反応が起こり、カソード電極6側において水の還元反応が起こって蓄熱材4に電流が流れる。 When a predetermined voltage is applied between the anode electrode 5 in contact with the heat storage material 4 made of sodium acetate trihydrate and the cathode electrode 6, the anode electrode 5 is formed on the surface of the groove 7 (nucleation start point). A metal oxidation reaction occurs, a water reduction reaction occurs on the cathode electrode 6 side, and a current flows through the heat storage material 4.
 蓄熱材4の発核は、アノード電極5が有する溝部7(発核起点部)が起点となって開始される。発核が起こると、過冷却状態の蓄熱材4は、液相状態から固相状態に相変位し、それに伴い潜熱を放出する。放出された潜熱は、熱エネルギーとして活用される。 Nucleation of the heat storage material 4 is started from the groove 7 (nucleation start point) of the anode electrode 5. When nucleation occurs, the supercooled heat storage material 4 undergoes a phase displacement from the liquid phase state to the solid phase state, thereby releasing latent heat. The released latent heat is used as thermal energy.
 ここで、発核起点部に蓄熱材4の結晶核が存在すると、確実に瞬間的に電圧発核を発生させることができる。しかしながら、上述のように蓄熱槽3に蓄熱する際には蓄熱材4の温度を融点以上に上げる必要があり、図6に示すように下地(アノード電極5)の上に正の曲率(接触角θ)で形成された結晶核は融解してしまう。これに対し、図7に示すように下地(アノード電極5)に対して負の曲率(接触角θ)で結晶核を形成すれば、融点以上の温度でも安定して存在することが出来る。 Here, if the crystal nucleus of the heat storage material 4 is present at the nucleation starting point, the voltage nucleation can be surely and instantaneously generated. However, when storing heat in the heat storage tank 3 as described above, it is necessary to raise the temperature of the heat storage material 4 to the melting point or higher, and a positive curvature (contact angle) is formed on the base (anode electrode 5) as shown in FIG. The crystal nuclei formed in θ) melt. On the other hand, if crystal nuclei are formed with a negative curvature (contact angle θ) with respect to the base (anode electrode 5) as shown in FIG. 7, they can exist stably even at temperatures above the melting point.
 このような理論に基づき、本発明のアノード電極5の溝部7(発核起点部)においては、その表面に粒子状の凸部8(凹凸)が設けられている。これにより、図8に示すように、複数の隣接する粒子状の凸部8の間に存在する結晶核は負の曲率を持つことになる。このため、融点以上にさらされても結晶核が安定に存在することができ、過冷却状態における電圧発核の起点としての機能を維持することができる。結晶核の大きさは、過冷却を維持するうえでは核成長の臨界径よりも小さい方が好ましい。このため、粒子状の凸部8の平均粒径Lは1μm以下であることが好ましい。 Based on such a theory, the groove portion 7 (nucleation start point portion) of the anode electrode 5 of the present invention is provided with a particle-like convex portion 8 (unevenness) on the surface thereof. Thereby, as shown in FIG. 8, the crystal nucleus which exists between the several adjacent particle-like convex parts 8 has a negative curvature. For this reason, even when exposed to the melting point or higher, crystal nuclei can exist stably, and the function as a starting point of voltage nucleation in a supercooled state can be maintained. The size of the crystal nucleus is preferably smaller than the critical diameter for nucleus growth in order to maintain supercooling. For this reason, it is preferable that the average particle diameter L of the granular convex part 8 is 1 micrometer or less.
 ここで、図9を参照して、丸棒状のアノード電極5の表面に複数の粒子状の凸部8(結晶核)を設けた例(比較例1)について説明する。上述したように、電圧印加手段12により両電極間に電圧が印加されると、アノード電極5表面から金属イオンが溶出する。従って、図9に示すように電極表面のみに結晶核が存在する場合、発核を繰り返すに従い電極が減肉し、結晶核が消失してしまう。 Here, with reference to FIG. 9, an example (Comparative Example 1) in which a plurality of particulate projections 8 (crystal nuclei) are provided on the surface of the round bar-like anode electrode 5 will be described. As described above, when a voltage is applied between both electrodes by the voltage applying means 12, metal ions are eluted from the surface of the anode electrode 5. Therefore, when crystal nuclei exist only on the electrode surface as shown in FIG. 9, the electrode is thinned as nucleation is repeated, and the crystal nuclei disappear.
 これに対し図10に示すように、本実施形態では、狭空間である溝部7の対向する面7Aの表面に粒子状の凸部8(凹凸)が形成され、その凸部8に結晶核が存在する。従って、電圧印加でアノード電極5の表面が減肉しても、溝部7内の複数の粒子状の凸部8(凹凸)が維持され、そこに存在する結晶核も維持される。 On the other hand, as shown in FIG. 10, in the present embodiment, particulate convex portions 8 (unevenness) are formed on the surface 7 </ b> A of the groove portion 7 which is a narrow space, and crystal nuclei are formed on the convex portions 8. Exists. Therefore, even if the surface of the anode electrode 5 is thinned by voltage application, the plurality of particulate projections 8 (unevenness) in the groove 7 are maintained, and the crystal nuclei existing there are also maintained.
 溝部7の対向する面7Aの間隔は、300μm以下であることが好ましい。これは、これ以上間隔が広くなると、比較例1の電極表面に複数の粒子状の凸部8を設けた場合と同様、電圧印加時の対向面からの金属イオンの溶出も多くなり、結果として結晶核が消失してしまうからである。また、金属イオンの溶出によるアノード電極5の耐久性を確保するために、溝部7(発核起点部)は複数設けることが好ましい。 It is preferable that the space | interval of 7 A of opposing surfaces of the groove part 7 is 300 micrometers or less. This is because, when the gap is further widened, the elution of metal ions from the facing surface at the time of voltage application increases as in the case where a plurality of particle-like convex portions 8 are provided on the electrode surface of Comparative Example 1. This is because crystal nuclei disappear. Moreover, in order to ensure the durability of the anode electrode 5 by elution of metal ions, it is preferable to provide a plurality of groove portions 7 (nucleation start point portions).
 図11、図12を参照して、本実施形態の蓄熱装置1において、アノード電極の溝部7の幅寸法(溝幅)を変化させた場合に、30秒後の発核確率を比較した実験結果(第1の実験結果)について説明する。実験は、0.5μm~600μmの範囲で溝部の幅寸法を変化させた各条件(溝幅:0.5μm、1μm、5μm、10μm、100μm、200μm、300μm、400μm、500μm、600μm)について行った。各溝部7の内側の表面には、平均粒径0.5μmの粒子状の凸部8が形成されている。 11 and 12, in the heat storage device 1 of the present embodiment, when the width dimension (groove width) of the groove portion 7 of the anode electrode is changed, the experimental results comparing the nucleation probabilities after 30 seconds. (First Experiment Result) will be described. The experiment was performed for each condition (groove width: 0.5 μm, 1 μm, 5 μm, 10 μm, 100 μm, 200 μm, 300 μm, 400 μm, 500 μm, 600 μm) in which the width of the groove was changed in the range of 0.5 μm to 600 μm. . On the inner surface of each groove portion 7, particle-like convex portions 8 having an average particle diameter of 0.5 μm are formed.
 実験では、まず、過冷却状態の蓄熱材4に対し両電極(アノード電極5およびカソード電極6)間に例えば、1.7Vの定電圧を印加する発核操作を1000回繰り返す。そして、1000回目に電圧を印加した後、30秒以内に発核が起こったか否かを調べた。実験は、上記各条件ごとに、3個のサンプルについて行った。 In the experiment, first, a nucleation operation in which a constant voltage of 1.7 V, for example, is applied between the electrodes (the anode electrode 5 and the cathode electrode 6) to the supercooled heat storage material 4 is repeated 1000 times. Then, after applying the voltage at the 1000th time, it was examined whether or not nucleation occurred within 30 seconds. The experiment was performed on three samples for each of the above conditions.
 図11に、実験結果(1000回目に電圧を印加した後、30秒以内に発核する確率)の表を示す。図12にこの実験結果を表すグラフを示す。図11、図12から明らかなように、溝幅が300μm以下であれば1000サイクル後も良好な発核応答性を示すことが分かった。一方、300μmよりも溝幅が大きいと、1000サイクル後の発核応答性が極端に悪くなることが分かった。 FIG. 11 shows a table of experimental results (probability of nucleation within 30 seconds after the voltage is applied for the 1000th time). FIG. 12 shows a graph representing the experimental results. As is clear from FIGS. 11 and 12, it was found that if the groove width was 300 μm or less, good nucleation response was exhibited even after 1000 cycles. On the other hand, it was found that when the groove width is larger than 300 μm, the nucleation response after 1000 cycles is extremely deteriorated.
 図13、図14を参照して、本実施形態の蓄熱装置1において、アノード電極5の溝部7内の凸部8の粒子径を変化させた場合に、10時間後でも過冷却状態を維持している確率を比較した実験結果(第2の実験結果)について説明する。実験は、0.1μm~2.0μmの範囲で、凸部8の粒子径(凸部径)を変化させた各条件(凸部径:0.1μm、0.5μm、1.0μm、1.5μm、2.0μm)について行った。この第2の実験では、溝部7の幅寸法は、100μmで設定される。 Referring to FIGS. 13 and 14, in the heat storage device 1 of the present embodiment, when the particle diameter of the convex portion 8 in the groove portion 7 of the anode electrode 5 is changed, the supercooled state is maintained even after 10 hours. An experimental result (second experimental result) comparing the probabilities of being present will be described. The experiment was performed under various conditions (projection diameters: 0.1 μm, 0.5 μm, 1.0 μm, and 1.2 μm) in the range of 0.1 μm to 2.0 μm. 5 μm, 2.0 μm). In this second experiment, the width dimension of the groove 7 is set to 100 μm.
 第2の実験では、蓄熱装置1において蓄熱材4を加熱して融解させ、その後常温に戻し、10時間経過後に自然発核せずに過冷却状態を維持するかどうかについて調べた。実験は上記した各条件ごとに、3個のサンプルについて行った。 In the second experiment, the heat storage material 4 was heated and melted in the heat storage device 1 and then returned to room temperature to examine whether or not the supercooled state was maintained without spontaneous nucleation after 10 hours. The experiment was performed on three samples for each condition described above.
 図13に、第2の実験の実験結果(10時間経過後に、過冷却状態が維持される確率)の表を示す。図14にこの実験結果を表すグラフを示す。図13、図14から明らかなように、凸部8の粒子径が1.0μm以下では過冷却状態を維持できることが分かった。一方、凸部8の粒子径が1.0μmより大きくなると、過冷却状態を維持できない確率が極端に悪化する(常温で保持している間に自然発核を生じる確率が高くなる)ことが分かる。なお、自然発核を生じると、蓄熱装置1内に蓄熱していた熱が放出されてしまい、蓄熱装置1として使用することができない。 FIG. 13 shows a table of experimental results of the second experiment (probability of maintaining the supercooled state after 10 hours). FIG. 14 shows a graph representing the experimental results. As is clear from FIGS. 13 and 14, it was found that the supercooled state can be maintained when the particle diameter of the convex portion 8 is 1.0 μm or less. On the other hand, when the particle diameter of the convex portion 8 is larger than 1.0 μm, it is understood that the probability that the supercooled state cannot be maintained is extremely deteriorated (the probability that spontaneous nucleation occurs while being held at room temperature is increased). . If spontaneous nucleation occurs, the heat stored in the heat storage device 1 is released, and cannot be used as the heat storage device 1.
 図15を参照して、実施例1から6のように溝部7の溝幅および凸部8の平均粒径(凸部径)を変化させた場合に、発核待ち時間を調べた実験結果を説明する。 Referring to FIG. 15, the experimental results of examining the nucleation waiting time when the groove width of the groove 7 and the average particle diameter (convex diameter) of the protrusion 8 are changed as in Examples 1 to 6 are shown. explain.
(実施例1)
 直径2mmの銀の丸棒に刃角40°のカッターを深さ約400μmまで切り込むことにより、溝幅約300μmの溝部7を形成した。次に、溝部7を形成した銀棒を電源の正極に、負極にも別途用意した銀電極を接続し、正極および負極を電解液に漬ける。両電極間に電解液中で0V~2Vのパルス波を印加することにより、溝部7の表面に平均粒径約1μmの粒子状の凸部8(凹凸)を形成した。
(Example 1)
A groove 7 having a groove width of about 300 μm was formed by cutting a cutter having a blade angle of 40 ° into a silver round bar having a diameter of 2 mm to a depth of about 400 μm. Next, the silver bar in which the groove 7 is formed is connected to the positive electrode of the power source, and a silver electrode separately prepared for the negative electrode is connected, and the positive electrode and the negative electrode are immersed in the electrolyte. By applying a pulse wave of 0V to 2V in the electrolytic solution between both electrodes, particulate projections 8 (unevenness) having an average particle diameter of about 1 μm were formed on the surface of the groove 7.
 作製した電極をアノード電極5とし、カソード電極6として直径2mmの銀棒を用いて、図1の蓄熱装置1を構成した。発核操作は、両電極(アノード電極5とカソード電極6)間に、1.7Vの定電圧をステップ波形にして印加するとともに、この印加が開始された時点から蓄熱材4の結晶化が始まるまでの時間を、発核待ち時間として測定した。発核開始時間が60秒を経過した場合は、結晶化不能(発核不能)であるとして判断した。 The heat storage device 1 shown in FIG. 1 was configured using the prepared electrode as the anode electrode 5 and a silver bar having a diameter of 2 mm as the cathode electrode 6. In the nucleation operation, a constant voltage of 1.7 V is applied in a step waveform between both electrodes (the anode electrode 5 and the cathode electrode 6), and the crystallization of the heat storage material 4 starts from the time when this application is started. The time until was measured as the nucleation latency. When the nucleation start time passed 60 seconds, it was judged that crystallization was impossible (nucleation was impossible).
 この調査では、最初の1サイクル目(初期)の発核待ち時間と、1000サイクル後(発核1000回後)での発核待ち時間を測定した。ここで、1サイクルとは、蓄熱材4が結晶化して固相状態となった後、蓄熱材4に熱を加えて結晶を溶融させて液相状態とした上で、この蓄熱材4が過冷却するまでの過程を指している。そして、初期サイクルとは、1回目の測定が実行された最初のサイクルであり、1000サイクルとは前記過程を1000回繰り返したことを指している。 In this investigation, the nucleation waiting time in the first cycle (initial) and the nucleation waiting time after 1000 cycles (1000 times after nucleation) were measured. Here, one cycle means that after the heat storage material 4 is crystallized to be in a solid phase state, heat is applied to the heat storage material 4 to melt the crystal into a liquid phase state. It refers to the process until cooling. The initial cycle is the first cycle in which the first measurement is performed, and the 1000 cycle indicates that the above process is repeated 1000 times.
 図15中の表に実験結果を示す。実施例1では、初期サイクルにおいて電圧印加と同時に瞬間的に発核を生じた。また、1000サイクル後も発核待ち時間10秒と、良好な性能を維持していた。 The results of the experiment are shown in the table in FIG. In Example 1, nucleation occurred instantaneously simultaneously with the voltage application in the initial cycle. In addition, good performance was maintained with a nucleation waiting time of 10 seconds even after 1000 cycles.
(実施例2)
 直径2mmの銀の丸棒に刃角30°のカッターを深さ約400μmまで切り込むことにより、溝幅約200μmの溝を形成した。次に、実施例1と同様の方法で溝部7の表面に平均粒径約1μmの粒子状の凸部8(凹凸)を形成した。
(Example 2)
A groove having a groove width of about 200 μm was formed by cutting a cutter having a blade angle of 30 ° into a silver round bar having a diameter of 2 mm to a depth of about 400 μm. Next, particulate projections 8 (unevenness) having an average particle diameter of about 1 μm were formed on the surface of the groove portion 7 in the same manner as in Example 1.
 作製した電極をアノード電極5とし、図1の蓄熱装置1を構成し、実施例1と同様の発核サイクル試験を実施した。 The produced electrode was used as the anode electrode 5, the heat storage device 1 of FIG. 1 was configured, and the same nucleation cycle test as in Example 1 was performed.
 図15中の表に実験結果を示す。実施例2では、初期サイクルにおいて電圧印加と同時に瞬間的に発核を生じた。また、1000サイクル後も発核待ち時間5秒と、良好な性能を維持していた。 The results of the experiment are shown in the table in FIG. In Example 2, nucleation occurred instantaneously at the same time as the voltage application in the initial cycle. In addition, good performance was maintained with a nucleation waiting time of 5 seconds even after 1000 cycles.
(実施例3)
 直径2mmの銀の丸棒に刃角30°のカッターを深さ約200μmまで切り込むことにより、溝幅約100μmの溝を形成した。次に、実施例1と同様の方法で溝部7の表面に平均粒径約1μmの粒子状の凸部8(凹凸)を形成した。
(Example 3)
A groove having a groove width of about 100 μm was formed by cutting a cutter having a blade angle of 30 ° into a silver round bar having a diameter of 2 mm to a depth of about 200 μm. Next, particulate projections 8 (unevenness) having an average particle diameter of about 1 μm were formed on the surface of the groove portion 7 in the same manner as in Example 1.
 作製した電極をアノード電極5とし、図1の蓄熱装置1を構成し、実施例1と同様の発核サイクル試験を実施した。 The produced electrode was used as the anode electrode 5, the heat storage device 1 of FIG. 1 was configured, and the same nucleation cycle test as in Example 1 was performed.
 図15中の表に実験結果を示す。実施例3では、初期サイクルにおいて電圧印加と同時に瞬間的に発核を生じた。また、1000サイクル後も発核待ち時間2秒と、良好な性能を維持していた。 The results of the experiment are shown in the table in FIG. In Example 3, nucleation occurred instantaneously at the same time as the voltage application in the initial cycle. In addition, good performance was maintained with a nucleation waiting time of 2 seconds even after 1000 cycles.
(実施例4)
 直径2mmの銀の丸棒に刃角30°のカッターを深さ約200μmまで切り込むことにより、溝幅約100μmの溝を形成した。更に、溝部7をプレスして電極を潰すことにより、溝幅を10μmまで狭めた。次に、実施例1と同様の方法で溝部7の表面に平均粒径約0.5μmの粒子状の凸部(凹凸)を形成した。
Example 4
A groove having a groove width of about 100 μm was formed by cutting a cutter having a blade angle of 30 ° into a silver round bar having a diameter of 2 mm to a depth of about 200 μm. Furthermore, the groove width was reduced to 10 μm by pressing the groove portion 7 to crush the electrode. Next, particulate projections (unevenness) having an average particle diameter of about 0.5 μm were formed on the surface of the groove portion 7 in the same manner as in Example 1.
 作製した電極をアノード電極5とし、図1の蓄熱装置1を構成し、実施例1と同様の発核サイクル試験を実施した。 The produced electrode was used as the anode electrode 5, the heat storage device 1 of FIG. 1 was configured, and the same nucleation cycle test as in Example 1 was performed.
 図15中の表に実験結果を示す。実施例4では、初期サイクルにおいて電圧印加と同時に瞬間的に発核を生じた。また、1000サイクル後も電圧印加と同時に瞬間的に発核を生じ、良好な性能を維持していた。 The results of the experiment are shown in the table in FIG. In Example 4, nucleation occurred instantaneously at the same time as voltage application in the initial cycle. In addition, even after 1000 cycles, nucleation occurred instantaneously simultaneously with the application of voltage, and good performance was maintained.
(実施例5)
 直径2mmの銀の丸棒に刃角30°のカッターを深さ約200μmまで切り込むことにより、溝幅約100μmの溝を形成した。更に、溝部7をプレスして電極を潰すことにより、溝幅を5μmまで狭めた。次に、実施例1と同様の方法で溝部の表面に平均粒径約0.5μmの粒子状の凸部8(凹凸)を形成した。
(Example 5)
A groove having a groove width of about 100 μm was formed by cutting a cutter having a blade angle of 30 ° into a silver round bar having a diameter of 2 mm to a depth of about 200 μm. Further, the groove width was reduced to 5 μm by pressing the groove portion 7 to crush the electrode. Next, in the same manner as in Example 1, particulate projections 8 (unevenness) having an average particle diameter of about 0.5 μm were formed on the surface of the groove.
 作製した電極をアノード電極5とし、図1の蓄熱装置1を構成し、実施例1と同様の発核サイクル試験を実施した。 The produced electrode was used as the anode electrode 5, the heat storage device 1 of FIG. 1 was configured, and the same nucleation cycle test as in Example 1 was performed.
 図15中の表に実験結果を示す。実施例5では、初期サイクルにおいて電圧印加と同時に瞬間的に発核を生じた。また、1000サイクル後も電圧印加と同時に瞬間的に発核を生じ、良好な性能を維持していた。 The results of the experiment are shown in the table in FIG. In Example 5, nucleation occurred instantaneously simultaneously with the voltage application in the initial cycle. In addition, even after 1000 cycles, nucleation occurred instantaneously simultaneously with the application of voltage, and good performance was maintained.
(実施例6)
 直径2mmの銀の丸棒に刃角30°のカッターを深さ約200μmまで切り込むことにより、溝幅約100μmの溝を形成した。更に、溝部7をプレスして電極を潰すことにより、溝幅を1μmまで狭めた。次に、実施例1と同様の方法で溝部の表面に平均粒径約0.5μmの粒子状の凸部(凹凸)を形成した。
(Example 6)
A groove having a groove width of about 100 μm was formed by cutting a cutter having a blade angle of 30 ° into a silver round bar having a diameter of 2 mm to a depth of about 200 μm. Furthermore, the groove width was reduced to 1 μm by pressing the groove portion 7 and crushing the electrode. Next, particulate projections (unevenness) having an average particle diameter of about 0.5 μm were formed on the surface of the groove by the same method as in Example 1.
 作製した電極をアノード電極5とし、図1の蓄熱装置1を構成し、実施例1と同様の発核サイクル試験を実施した。 The produced electrode was used as the anode electrode 5, the heat storage device 1 of FIG. 1 was configured, and the same nucleation cycle test as in Example 1 was performed.
 図15中の表に実験結果を示す。実施例6では、初期サイクルにおいて電圧印加と同時に瞬間的に発核を生じた。また、1000サイクル後も電圧印加と同時に瞬間的に発核を生じ、良好な性能を維持していた。 The results of the experiment are shown in the table in FIG. In Example 6, nucleation occurred instantaneously simultaneously with the voltage application in the initial cycle. In addition, even after 1000 cycles, nucleation occurred instantaneously simultaneously with the application of voltage, and good performance was maintained.
(実施例7)
 直径2mmの銀の丸棒に刃角30°のカッターを深さ約200μmまで切り込むことにより、溝幅約100μmの溝を形成した。更に、溝部7をプレスして電極を潰すことにより、溝幅を0.5μmまで狭めた。次に、実施例1と同様の方法で溝部の表面に平均粒径約0.1~0.3μmの粒子状の凸部(凹凸)を形成した。
(Example 7)
A groove having a groove width of about 100 μm was formed by cutting a cutter having a blade angle of 30 ° into a silver round bar having a diameter of 2 mm to a depth of about 200 μm. Further, the groove width was narrowed to 0.5 μm by pressing the groove portion 7 to crush the electrode. Next, in the same manner as in Example 1, particulate projections (irregularities) having an average particle diameter of about 0.1 to 0.3 μm were formed on the surface of the groove.
 作製した電極をアノード電極5とし、図1の蓄熱装置1を構成し、実施例1と同様の発核サイクル試験を実施した。 The produced electrode was used as the anode electrode 5, the heat storage device 1 of FIG. 1 was configured, and the same nucleation cycle test as in Example 1 was performed.
 図15中の表に実験結果を示す。実施例7では、初期サイクルにおいて電圧印加と同時に瞬間的に発核を生じた。また、1000サイクル後も電圧印加と同時に瞬間的に発核を生じ、良好な性能を維持していた。 The results of the experiment are shown in the table in FIG. In Example 7, nucleation occurred instantaneously simultaneously with the voltage application in the initial cycle. In addition, even after 1000 cycles, nucleation occurred instantaneously simultaneously with the application of voltage, and good performance was maintained.
 以上の実施例1-7のように、アノード電極5に隣接して対向する面7Aが形成され、対向する面7Aの表面に粒子状の凸部8(凹凸)が形成された電極においては、1000回の発核サイクルを経ても良好な発核応答性が維持されることが分かった。 As in Example 1-7 above, in the electrode in which the facing surface 7A is formed adjacent to the anode electrode 5 and the particle-like convex portions 8 (unevenness) are formed on the surface of the facing surface 7A, It was found that good nucleation response was maintained even after 1000 nucleation cycles.
 第1実施形態によれば、蓄熱装置1は、蓄熱槽3と、この蓄熱槽3に収容され過冷却可能な蓄熱材4と、蓄熱材4に浸漬されたアノード電極5と、アノード電極5から分離した位置で蓄熱材4に浸かったカソード電極6と、アノード電極5とカソード電極6との間に電圧を印加する電圧印加手段12と、アノード電極5に形成され、対向する面7Aの表面に複数の粒子状の凸部8が形成された狭空間と、を備える。 According to the first embodiment, the heat storage device 1 includes a heat storage tank 3, a heat storage material 4 accommodated in the heat storage tank 3 and capable of being supercooled, an anode electrode 5 immersed in the heat storage material 4, and the anode electrode 5. The cathode electrode 6 immersed in the heat storage material 4 at the separated position, the voltage applying means 12 for applying a voltage between the anode electrode 5 and the cathode electrode 6, and the surface of the opposing surface 7A formed on the anode electrode 5 A narrow space in which a plurality of particulate convex portions 8 are formed.
 一般に、金属を発核電極に用いた場合、電圧印加によって陽極から溶出した金属イオンが電極表面に拡散二重層を形成し、そこで発生する電界が核形成の駆動力になる。従って、電圧発核には電極の溶出が必須であり、電極表面に核形成部材を設けても、発核操作を繰り返すと金属電極が減肉して核形成部材が脱離してしまい、発核機能を喪失してしまう。 Generally, when a metal is used for the nucleation electrode, metal ions eluted from the anode by voltage application form a diffusion double layer on the electrode surface, and the electric field generated there becomes a driving force for nucleation. Therefore, elution of the electrode is indispensable for voltage nucleation, and even if a nucleation member is provided on the electrode surface, if the nucleation operation is repeated, the metal electrode is thinned and the nucleation member is detached, resulting in nucleation. Loss of function.
 上記の構成によれば、狭空間内に複数の粒子状の凸部8が配置されるため、複数サイクルの電圧印加でアノード電極5の表面が減肉しても、狭空間内に複数の粒子状の凸部8が維持される。このため、複数回の電圧印加後であっても、融点以上でも溶融しない結晶核を凸部8同士の間に形成することができ、発核応答性を良好にすることができる。これによって、アノード電極5の劣化の進行を緩やかにすることができる。以上より、発核待ち時間が短く、更に、発核操作に対する繰り返し耐久性の高い、高信頼性の蓄熱装置1を提供できる。 According to the above configuration, since the plurality of particle-shaped convex portions 8 are arranged in the narrow space, even if the surface of the anode electrode 5 is thinned by applying a plurality of cycles of voltage, the plurality of particles are in the narrow space. The convex portion 8 is maintained. For this reason, even after a plurality of times of voltage application, crystal nuclei that do not melt even when the melting point is exceeded can be formed between the convex portions 8, and nucleation responsiveness can be improved. Thereby, the progress of the deterioration of the anode electrode 5 can be moderated. As described above, it is possible to provide a highly reliable heat storage device 1 that has a short nucleation waiting time and that has high repeated durability against the nucleation operation.
 前記狭空間は、アノード電極5に設けられた溝部7によって形成される。この構成によれば、アノード電極5に対して狭空間を簡単に形成することができる。 The narrow space is formed by the groove portion 7 provided in the anode electrode 5. According to this configuration, a narrow space can be easily formed with respect to the anode electrode 5.
 前記狭空間の対向する面同士の間隔は、0.5~300μmである。この構成によれば、対向する面7A同士の間隔を極めて小さくすることができる。これによって、複数サイクル(固相状態から加熱して液相状態となり、その後冷却されて蓄熱材4が過冷却状態となり、必要時に発核するサイクル)の熱の取り出しの実行によって、複数の粒子状の凸部8が溶出する確率を低減することができ、多サイクルの熱の取り出しを実施後に結晶核がなくなってしまうことを防止することができる。 The distance between the opposing surfaces of the narrow space is 0.5 to 300 μm. According to this structure, the space | interval of 7 A of opposing surfaces can be made very small. Thus, a plurality of particulates are obtained by performing heat extraction in a plurality of cycles (a cycle in which the solid phase is heated to become a liquid phase and then cooled and the heat storage material 4 is subcooled and nucleates when necessary). It is possible to reduce the probability that the convex portion 8 is eluted, and it is possible to prevent the crystal nuclei from being lost after the multiple cycles of heat extraction.
 前記複数の粒子状の凸部8の平均粒径は、0.1~1μmである。この構成によれば、凸部8同士の間の隙間に形成される結晶核(蓄熱材4を融点以上にしても溶融しない結晶核)の大きさを核成長の臨界径よりも小さくすることができる。これによって、意図しないときに発核を生じて熱を放出してしまう危険性を低減することができる。 The average particle diameter of the plurality of particulate projections 8 is 0.1 to 1 μm. According to this configuration, the size of crystal nuclei (crystal nuclei that do not melt even when the heat storage material 4 is equal to or higher than the melting point) formed in the gap between the convex portions 8 can be made smaller than the critical diameter of the nucleus growth. it can. This can reduce the risk of nucleation and release of heat when not intended.
 前記狭空間の前記対向する面7Aの表面は、前記複数の粒子状の凸部8によって多孔質をなしている。この構成によれば、凸部8同士の間に多数の隙間を形成することができ、この隙間に融点以上でも溶融しない結晶核を形成することができる。これによって、発核の応答性を良好にすることができる。 The surface of the facing surface 7A in the narrow space is porous by the plurality of particulate projections 8. According to this configuration, a large number of gaps can be formed between the protrusions 8, and crystal nuclei that do not melt even at the melting point or higher can be formed in the gaps. Thereby, the responsiveness of nucleation can be improved.
 アノード電極5は、銀を主体とする金属からなる。この構成によれば、すでに蓄熱装置1のアノード電極5として実績のある銀を用いることで、過冷却状態の蓄熱材を安定的に発核させることができる。 The anode electrode 5 is made of a metal mainly composed of silver. According to this configuration, by using silver that has already been proven as the anode electrode 5 of the heat storage device 1, the supercooled heat storage material can be stably nucleated.
 [第2実施形態]
 続いて、図16を参照して、蓄熱装置の第2実施形態について説明する。蓄熱装置1の第2実施形態は、アノード電極5の構成が第1実施形態とは異なっているが、それ以外の部分は第1実施形態と同じである。このため、主として第1実施形態と異なる部分について以下に説明し、第1実施形態と共通する部分については図示または説明を省略する。
[Second Embodiment]
Then, 2nd Embodiment of a thermal storage apparatus is described with reference to FIG. The second embodiment of the heat storage device 1 is different from the first embodiment in the configuration of the anode electrode 5, but the other parts are the same as those in the first embodiment. For this reason, parts different from the first embodiment will be mainly described below, and illustrations or descriptions of parts common to the first embodiment will be omitted.
 アノード電極5は、例えば、例えば、厚さ0.1~0.2mm程度の金属製(例えば、銀)の板状部材を、例えば図16に示すように、「U」字形に折り曲げることで形成される。アノード電極5の材料としては、銀だけに限定されるものではなく、銅板、銅アマルガム板等によっても形成できる。 The anode electrode 5 is formed, for example, by bending a metal (eg, silver) plate member having a thickness of about 0.1 to 0.2 mm into a “U” shape as shown in FIG. 16, for example. Is done. The material of the anode electrode 5 is not limited to silver but can be formed of a copper plate, a copper amalgam plate, or the like.
 このアノード電極5には、「U」字形の内側に蓄熱材4の発核起点となる狭空間21が設けられる。狭空間21は、幅方向Wの寸法よりも奥行き方向の寸法Lが十分に長く形成されている。狭空間21の対向する面7Aの表面には、粒子状の凸部8(凹凸)が形成されている。本実施形態では、狭空間21は、対向する面7A同士の間の寸法が、開口部付近から狭空間21の奥部に至るまで、略同じになった形状(スリット形状)に形成されている。本実施形態では、対向する面7A同士の間の寸法は、第1実施形態と同様に0.5~300μmの範囲で設定される。この対向する面7A同士の間の寸法は、銀の板状部材を「U」字形に折り曲げた後、これに所定の圧力を加えて狭空間21を潰すことで、0.5~300μmの範囲で適宜に調整することができる。また、対向する面7A同士の間の寸法は、「U」字形に折り曲げたアノード電極5の切片を電子顕微鏡で観察することで確認できる。 The anode electrode 5 is provided with a narrow space 21 serving as a nucleation starting point of the heat storage material 4 inside the “U” shape. The narrow space 21 is formed such that the dimension L in the depth direction is sufficiently longer than the dimension in the width direction W. On the surface of the opposing surface 7A of the narrow space 21, a particulate convex portion 8 (unevenness) is formed. In the present embodiment, the narrow space 21 is formed in a shape (slit shape) in which the dimension between the facing surfaces 7A is substantially the same from the vicinity of the opening to the back of the narrow space 21. . In the present embodiment, the dimension between the opposing surfaces 7A is set in the range of 0.5 to 300 μm, as in the first embodiment. The dimension between the opposing surfaces 7A is in the range of 0.5 to 300 μm by folding a silver plate-like member into a “U” shape and then applying a predetermined pressure to the narrow space 21 to crush it. Can be adjusted appropriately. Further, the dimension between the opposing surfaces 7A can be confirmed by observing a section of the anode electrode 5 bent in a “U” shape with an electron microscope.
 狭空間21は、対向する面7Aおよび狭空間の底部には、複数の粒子状の凸部8が形成される。複数の粒子状の凸部8の直径は、第1実施形態と同様に、0.1~1μmである。また、凸部8の平均粒径は、1μm以下である。なお、狭空間21の対向する面7A同士の間の寸法が1μmである場合には、凸部8の直径は、0.5μm程度であり、対向する面7A同士の間の寸法が0.5μmである場合には、凸部8の直径は、0.1~0.3μmである。 In the narrow space 21, a plurality of particle-like convex portions 8 are formed on the opposing surface 7 </ b> A and the bottom of the narrow space. The diameter of the plurality of particle-like convex portions 8 is 0.1 to 1 μm, as in the first embodiment. Moreover, the average particle diameter of the convex part 8 is 1 micrometer or less. When the dimension between the opposing surfaces 7A of the narrow space 21 is 1 μm, the diameter of the convex portion 8 is about 0.5 μm, and the dimension between the opposing surfaces 7A is 0.5 μm. In this case, the diameter of the convex portion 8 is 0.1 to 0.3 μm.
 複数の粒子状の凸部8の形成方法は、第1実施形態と同様である。すなわち、「U」字形に折り曲げたアノード電極5を電源の正極に接続し、別途用意した銀製の丸棒を電源の負極に接続する。これらの正極側のアノード電極5および負極側の銀棒を電解液に浸し、電解液中で正極・負極間に0V~2Vのパルス波を1000回印加する。電解液の組成は、第1実施形態と同様である。このようにして作製したアノード電極5では、第1実施形態と同様に、「U」字形の内部に直径0.1~1μm程度の粒子状の凸部8(凹凸)が形成される。狭空間21の対向する面7Aの表面には、複数の粒子状の凸部8が複数層にわたって形成されている。複数の粒子状の凸部8は、全体として多孔質の層をなしている。 The method for forming the plurality of particulate protrusions 8 is the same as in the first embodiment. That is, the anode electrode 5 bent in a “U” shape is connected to the positive electrode of the power source, and a separately prepared silver round bar is connected to the negative electrode of the power source. The anode electrode 5 on the positive electrode side and the silver bar on the negative electrode side are immersed in an electrolytic solution, and a pulse wave of 0 V to 2 V is applied 1000 times between the positive electrode and the negative electrode in the electrolytic solution. The composition of the electrolytic solution is the same as in the first embodiment. In the anode electrode 5 thus manufactured, as in the first embodiment, the particle-shaped protrusions 8 (unevenness) having a diameter of about 0.1 to 1 μm are formed inside the “U” shape. On the surface of the opposing surface 7A of the narrow space 21, a plurality of particulate convex portions 8 are formed over a plurality of layers. The plurality of particle-like convex portions 8 form a porous layer as a whole.
 第2実施形態によれば、アノード電極5は、板状部材をU字形に折り曲げて形成され、狭空間21は、前記U字形の内側に形成される。この構成によれば、狭空間21内に複数の粒子状の凸部8が配置されるため、複数サイクルの電圧印加でアノード電極5の表面が減肉しても、狭空間21内に複数の粒子状の凸部8が維持される。このため、複数回の電圧印加後であっても、発核応答性を良好にすることができる。これによって、アノード電極5の劣化の進行を緩やかにすることができ、蓄熱装置1の信頼性を向上することができる。また、第1実施形態と同様、狭空間21を簡単な構造によって形成することができる。 According to the second embodiment, the anode electrode 5 is formed by bending a plate-like member into a U shape, and the narrow space 21 is formed inside the U shape. According to this configuration, since the plurality of particulate projections 8 are arranged in the narrow space 21, even if the surface of the anode electrode 5 is thinned by applying a plurality of cycles of voltage, a plurality of the convex portions 8 are formed in the narrow space 21. The particulate convex portion 8 is maintained. For this reason, it is possible to improve the nucleation response even after a plurality of voltage applications. Thereby, the progress of the deterioration of the anode electrode 5 can be moderated, and the reliability of the heat storage device 1 can be improved. Further, as in the first embodiment, the narrow space 21 can be formed with a simple structure.
 狭空間21の対向する面7A同士の間隔は、0.5~300μmである。この構成によれば、対向する面7A同士の間隔を小さくすることができる。これによって、複数サイクルの熱の取り出しの実行によって、複数の粒子状の凸部8が溶出する確率を低減することができ、多サイクルの熱の取り出しを実施後に結晶核がなくなってしまうことを防止できる。 The distance between the opposing surfaces 7A of the narrow space 21 is 0.5 to 300 μm. According to this structure, the space | interval of 7 A of opposing surfaces can be made small. As a result, it is possible to reduce the probability that a plurality of particulate projections 8 are eluted by executing multiple cycles of heat extraction, and to prevent the disappearance of crystal nuclei after performing multiple cycles of heat extraction. it can.
 (変形例)
 続いて、図17を参照して、第2実施形態の蓄熱装置の変形例について説明する。本変形例では、アノード電極5が金属製の丸棒(例えば、銀棒)の周囲に銀の薄膜を巻き回したもので構成される点が第2実施形態と異なるが、他の部分は第2実施形態と共通する。このため、主として第2実施形態と異なる部分について説明し、第2実施形態と共通する部分については図示および説明を省略する。
(Modification)
Then, with reference to FIG. 17, the modification of the heat storage apparatus of 2nd Embodiment is demonstrated. In this modification, the anode electrode 5 is different from the second embodiment in that the anode electrode 5 is formed by winding a silver thin film around a metal round bar (for example, a silver bar). Common to the second embodiment. For this reason, a different part from 2nd Embodiment is mainly demonstrated, and illustration and description are abbreviate | omitted about the part which is common in 2nd Embodiment.
 本変形例のアノード電極5は、例えば直径2mm程度の金属製(一例として、銀)の丸棒(心棒)5Aの周囲に、例えば厚さ0.1~0.2mm程度の金属製(一例として、銀)の薄膜5Bを複数回巻き回して形成される。このため、アノード電極5は、丸棒(心棒)5Aの周囲に薄膜5Bの層が複数層設けられている。隣接する薄膜5B同士の間に、上記第2実施形態と同様の狭空間21が形成される。この狭空間21に、複数の粒子状の凸部8が形成される。隣接(対向)する薄膜5Bの層同士の間の寸法は、0.5~300μmの範囲で適宜に設定できる。すなわち、隣接(対向)する薄膜5Bの層同士の間の寸法は、銀製の丸棒5Aの周囲に銀の薄膜5Bを巻き回した後、薄膜5Bの上側から所定の圧力を加えて狭空間21を潰すことで、0.5~300μmの範囲で適宜に調整することができる。アノード電極5の材料としては、銀だけに限定されるものではない。アノード電極5は、銅や銅アマルガム等を用いて上記と同じ構造を採用できる。 The anode electrode 5 of this modification is made of, for example, a metal (for example, about 0.1 to 0.2 mm thick) around a metal (for example, silver) round rod (mandrel) 5A having a diameter of about 2 mm. , Silver) thin film 5B is wound a plurality of times. For this reason, the anode electrode 5 is provided with a plurality of thin film 5B layers around a round bar (mandrel) 5A. A narrow space 21 similar to that in the second embodiment is formed between adjacent thin films 5B. In this narrow space 21, a plurality of particulate projections 8 are formed. The dimension between adjacent (opposing) thin film 5B layers can be appropriately set within a range of 0.5 to 300 μm. That is, the dimension between the adjacent (opposing) thin film 5B layers is such that after the silver thin film 5B is wound around the silver round bar 5A, a predetermined pressure is applied from the upper side of the thin film 5B to form the narrow space 21. By crushing, it can be appropriately adjusted in the range of 0.5 to 300 μm. The material for the anode electrode 5 is not limited to silver. The anode electrode 5 can employ the same structure as described above using copper, copper amalgam, or the like.
 狭空間21の内部には、複数の粒子状の凸部8が形成される。複数の粒子状の凸部8の直径は、第1実施形態および第2実施形態と同様に、0.1~1μmである。また、凸部8の平均粒径は、1μm以下である。なお、狭空間21を構成する隣接する薄膜5Bの層同士の間の寸法が1μmである場合には、凸部8の直径は、0.5μm程度であり、隣接する薄膜5Bの層同士の間の寸法が0.5μmである場合には、凸部8の直径は、0.1~0.3μm程度である。 In the narrow space 21, a plurality of particulate convex portions 8 are formed. The diameter of the plurality of particulate projections 8 is 0.1 to 1 μm, as in the first and second embodiments. Moreover, the average particle diameter of the convex part 8 is 1 micrometer or less. In addition, when the dimension between the layers of the adjacent thin film 5B which comprises the narrow space 21 is 1 micrometer, the diameter of the convex part 8 is about 0.5 micrometer, and between the layers of the adjacent thin film 5B Is 0.5 μm, the diameter of the protrusion 8 is about 0.1 to 0.3 μm.
 複数の粒子状の凸部8の形成方法は、第1実施形態および第2実施形態と同様である。すなわち、銀製の丸棒5Aの周囲に銀の薄膜5Bを巻き回したアノード電極5を電源の正極に接続し、別途用意した銀製の丸棒を電源の負極に接続する。これらの正極側のアノード電極5および負極側の銀棒を電解液に浸し、電解液中で正極・負極間に0V-2Vのパルス波を1000回印加する。電解液の組成は、第1実施形態と同様である。このようにして作製したアノード電極5では、第1実施形態および第2実施形態と同様に、狭空間21の内部に直径0.1~1μm程度の粒子状の凸部8(凹凸)が形成される。狭空間21を構成する薄膜5Bの表面には、複数の粒子状の凸部8が複数層にわたって形成されている。複数の粒子状の凸部8は、全体として多孔質の層をなしている。 The method for forming the plurality of particulate projections 8 is the same as in the first embodiment and the second embodiment. That is, an anode electrode 5 in which a silver thin film 5B is wound around a silver round bar 5A is connected to the positive electrode of the power source, and a separately prepared silver round bar is connected to the negative electrode of the power source. The anode electrode 5 on the positive electrode side and the silver bar on the negative electrode side are immersed in an electrolytic solution, and a pulse wave of 0V-2V is applied 1000 times between the positive electrode and the negative electrode in the electrolytic solution. The composition of the electrolytic solution is the same as in the first embodiment. In the anode electrode 5 produced in this way, as in the first and second embodiments, the particle-shaped convex portions 8 (unevenness) having a diameter of about 0.1 to 1 μm are formed inside the narrow space 21. The On the surface of the thin film 5 </ b> B constituting the narrow space 21, a plurality of particulate projections 8 are formed over a plurality of layers. The plurality of particle-like convex portions 8 form a porous layer as a whole.
 本変形例のアノード電極5によっても、第2実施形態のアノード電極5と同様の効果を発揮することができる。これによって、複数回の電圧印加後であっても、発核応答性が良好な高信頼性の蓄熱装置1を提供できる。 The same effect as that of the anode electrode 5 of the second embodiment can be exhibited by the anode electrode 5 of the present modification. As a result, the highly reliable heat storage device 1 with good nucleation responsiveness can be provided even after multiple voltage applications.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これらの実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.
1…蓄熱装置、3…蓄熱槽、4…蓄熱材、5…アノード電極、6…カソード電極、7…溝部、7A…対向する面、8…凸部、12…電圧印加手段、21…狭空間。 DESCRIPTION OF SYMBOLS 1 ... Thermal storage apparatus, 3 ... Thermal storage tank, 4 ... Thermal storage material, 5 ... Anode electrode, 6 ... Cathode electrode, 7 ... Groove part, 7A ... Opposite surface, 8 ... Convex part, 12 ... Voltage application means, 21 ... Narrow space .

Claims (16)

  1.  蓄熱槽と、
     この蓄熱槽に収容され過冷却可能な蓄熱材と、
     前記蓄熱材に浸かったアノード電極と、
     前記アノード電極から分離した位置で前記蓄熱材に浸かったカソード電極と、
     前記アノード電極とカソード電極との間に電圧を印加する電圧印加手段と、
     前記アノード電極に形成され、対向する面の表面に複数の粒子状の凸部が形成された狭空間と、
     を備える蓄熱装置。
    A heat storage tank,
    A heat storage material accommodated in the heat storage tank and capable of being supercooled;
    An anode electrode immersed in the heat storage material;
    A cathode electrode immersed in the heat storage material at a position separated from the anode electrode;
    Voltage applying means for applying a voltage between the anode electrode and the cathode electrode;
    Formed in the anode electrode, a narrow space in which a plurality of particulate projections are formed on the surface of the facing surface; and
    A heat storage device comprising:
  2.  前記狭空間は、前記アノード電極に設けられた溝部によって形成される請求項1に記載の蓄熱装置。 The heat storage device according to claim 1, wherein the narrow space is formed by a groove provided in the anode electrode.
  3.  前記狭空間の対向する面同士の間隔は、0.5~300μmである請求項2に記載の蓄熱装置。 The heat storage device according to claim 2, wherein an interval between opposing surfaces of the narrow space is 0.5 to 300 µm.
  4.  前記複数の粒子状の凸部の平均粒径は、0.1~1μmである請求項3に記載の蓄熱装置。 The heat storage device according to claim 3, wherein an average particle diameter of the plurality of particulate convex portions is 0.1 to 1 µm.
  5.  前記狭空間の前記対向する面の表面は、前記複数の粒子状の凸部によって多孔質をなした請求項4に記載の蓄熱装置。 The heat storage device according to claim 4, wherein a surface of the facing surface of the narrow space is made porous by the plurality of particulate convex portions.
  6.  前記アノード電極は、銀を主体とする金属からなる請求項5に記載の蓄熱装置。 The heat storage device according to claim 5, wherein the anode electrode is made of a metal mainly composed of silver.
  7.  前記アノード電極は、板状部材をU字形に折り曲げて形成され、
     前記狭空間は、前記U字形の内側に形成される請求項1に記載の蓄熱装置。
    The anode electrode is formed by bending a plate-like member into a U shape,
    The heat storage device according to claim 1, wherein the narrow space is formed inside the U-shape.
  8.  前記狭空間の対向する面同士の間隔は、0.5~300μmである請求項7に記載の蓄熱装置。 The heat storage device according to claim 7, wherein an interval between opposing surfaces of the narrow space is 0.5 to 300 µm.
  9.  前記複数の粒子状の凸部の平均径は、0.1~1μmである請求項8に記載の蓄熱装置。 The heat storage device according to claim 8, wherein an average diameter of the plurality of particulate convex portions is 0.1 to 1 µm.
  10.  前記狭空間の前記対向する面の表面は、前記複数の粒子状の凸部によって多孔質をなした請求項9に記載の蓄熱装置。 The heat storage device according to claim 9, wherein a surface of the facing surface of the narrow space is made porous by the plurality of particulate convex portions.
  11.  前記アノード電極は、銀を主体とする金属からなる請求項10に記載の蓄熱装置。 The heat storage device according to claim 10, wherein the anode electrode is made of a metal mainly composed of silver.
  12.  前記アノード電極は、心棒の周囲に金属製の薄膜を巻き回して形成され、
     前記狭空間は、隣接する前記薄膜同士の間に形成される請求項1に記載の蓄熱装置。
    The anode electrode is formed by winding a metal thin film around a mandrel,
    The heat storage device according to claim 1, wherein the narrow space is formed between the adjacent thin films.
  13.  前記狭空間の対向する前記薄膜同士の間隔は、0.5~300μmである請求項12に記載の蓄熱装置。 The heat storage device according to claim 12, wherein an interval between the thin films facing each other in the narrow space is 0.5 to 300 µm.
  14.  前記複数の粒子状の凸部の平均径は、0.1~1μmである請求項13に記載の蓄熱装置。 The heat storage device according to claim 13, wherein an average diameter of the plurality of particulate convex portions is 0.1 to 1 µm.
  15.  前記狭空間の前記対向する面の表面は、前記複数の粒子状の凸部によって多孔質をなした請求項14に記載の蓄熱装置。 The heat storage device according to claim 14, wherein a surface of the facing surface of the narrow space is made porous by the plurality of particulate convex portions.
  16.  前記アノード電極は、銀を主体とする金属からなる請求項15に記載の蓄熱装置。 The heat storage device according to claim 15, wherein the anode electrode is made of a metal mainly composed of silver.
PCT/JP2015/057561 2014-08-25 2015-03-13 Heat storage device WO2016031275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014170793A JP2016044917A (en) 2014-08-25 2014-08-25 Heat storage device
JP2014-170793 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031275A1 true WO2016031275A1 (en) 2016-03-03

Family

ID=55399182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057561 WO2016031275A1 (en) 2014-08-25 2015-03-13 Heat storage device

Country Status (2)

Country Link
JP (1) JP2016044917A (en)
WO (1) WO2016031275A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3647708A4 (en) * 2017-06-29 2020-07-15 Panasonic Corporation Heat storage device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189789A (en) * 1987-01-31 1988-08-05 Toshiba Corp Heat accumulator
JPH0596769U (en) * 1991-08-01 1993-12-27 エヌオーケー株式会社 Nucleator for supercooled liquid
JPH085276A (en) * 1994-06-21 1996-01-12 Toyota Motor Corp Thermal storage apparatus
JP2000081290A (en) * 1998-06-25 2000-03-21 Matsushita Electric Works Ltd Supercooling releasing apparatus, thermal storage material and heating apparatus
JP2004205149A (en) * 2002-12-26 2004-07-22 Sumika Plastech Co Ltd Activating method for electrode of heat accumulator
JP2004205150A (en) * 2002-12-26 2004-07-22 Sumika Plastech Co Ltd Heat accumulator and activating method for electrode thereof
JP2012032130A (en) * 2010-08-03 2012-02-16 National Institute Of Advanced Industrial Science & Technology Control device for maintaining/releasing of supercooling and radiation speed
JP2013194970A (en) * 2012-03-19 2013-09-30 Furukawa Electric Co Ltd:The Heat accumulator and trigger unit
JP2014025666A (en) * 2012-07-27 2014-02-06 Kitagawa Ind Co Ltd Heat storage device
US20140131012A1 (en) * 2012-11-13 2014-05-15 Kabushiki Kaisha Toshiba Heat storage apparatus
JP2014102014A (en) * 2012-11-16 2014-06-05 Toshiba Corp Thermal storage device, and air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189789A (en) * 1987-01-31 1988-08-05 Toshiba Corp Heat accumulator
JPH0596769U (en) * 1991-08-01 1993-12-27 エヌオーケー株式会社 Nucleator for supercooled liquid
JPH085276A (en) * 1994-06-21 1996-01-12 Toyota Motor Corp Thermal storage apparatus
JP2000081290A (en) * 1998-06-25 2000-03-21 Matsushita Electric Works Ltd Supercooling releasing apparatus, thermal storage material and heating apparatus
JP2004205149A (en) * 2002-12-26 2004-07-22 Sumika Plastech Co Ltd Activating method for electrode of heat accumulator
JP2004205150A (en) * 2002-12-26 2004-07-22 Sumika Plastech Co Ltd Heat accumulator and activating method for electrode thereof
JP2012032130A (en) * 2010-08-03 2012-02-16 National Institute Of Advanced Industrial Science & Technology Control device for maintaining/releasing of supercooling and radiation speed
JP2013194970A (en) * 2012-03-19 2013-09-30 Furukawa Electric Co Ltd:The Heat accumulator and trigger unit
JP2014025666A (en) * 2012-07-27 2014-02-06 Kitagawa Ind Co Ltd Heat storage device
US20140131012A1 (en) * 2012-11-13 2014-05-15 Kabushiki Kaisha Toshiba Heat storage apparatus
JP2014102014A (en) * 2012-11-16 2014-06-05 Toshiba Corp Thermal storage device, and air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3647708A4 (en) * 2017-06-29 2020-07-15 Panasonic Corporation Heat storage device
US11268003B2 (en) * 2017-06-29 2022-03-08 Panasonic Corporation Heat storage device

Also Published As

Publication number Publication date
JP2016044917A (en) 2016-04-04

Similar Documents

Publication Publication Date Title
Huang et al. In situ measurement of lithium-ion cell internal temperatures during extreme fast charging
Sudant et al. Synthesis and electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process
JP2016027292A (en) Thermal storage device and method for using latent heat storage material
DE102012020958A1 (en) Cooling device for cooling an electrical machine and electrical machine with such
JP2943609B2 (en) Heat storage device
JP2008166265A (en) Electron emission source
WO2016031275A1 (en) Heat storage device
Hu et al. Microwave-Assisted Hydrothermal Synthesis of RuO2⋅ xH2O–TiO2 Nanocomposites for High Power Supercapacitors
JP5389928B2 (en) Nanostructure target for isotope production and method for producing the same
Huang et al. In situ measurement of temperature distributions in a Li-ion cell during internal short circuit and thermal runaway
US20140131012A1 (en) Heat storage apparatus
In Kim et al. Scaling behaviors for resistive memory switching in NiO nanowire devices
Gordon et al. Production of ultrathin nanowires from refractory metals (Nb, Re, W, Mo) by laser ablation in superfluid helium
CN111519257B (en) Preparation method of doped vanadium dioxide micron tube array, vanadium dioxide micron tube array and vanadium dioxide micron tube
JP2009193841A (en) Method of manufacturing battery
Ossei‐Wusu et al. Silicon nanowires made via macropore etching for superior Li ion batteries
Lu et al. Investigation of Ga8Sb34Se58 material for low-power phase change memory
Lin et al. Bipolar resistive switching characteristics in LaTiO 3 nanosheets
JP6535241B2 (en) Heat storage device and heat storage method
Yin et al. Sub 10 ns fast switching and resistance control in lateral GeTe-based phase-change memory
CN108075096A (en) Battery pack
JP2006083486A (en) Carbon fiber body, member containing the same and method for producing them
JP2017053528A (en) Heat storage device and overcooling release device
JP2015083882A (en) Accumulator
Zheng et al. The improvement of endurance characteristics in a superlattice-like material-based phase change device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836594

Country of ref document: EP

Kind code of ref document: A1