WO2016031236A1 - Heat-shielding roofing underlayment material - Google Patents

Heat-shielding roofing underlayment material Download PDF

Info

Publication number
WO2016031236A1
WO2016031236A1 PCT/JP2015/004274 JP2015004274W WO2016031236A1 WO 2016031236 A1 WO2016031236 A1 WO 2016031236A1 JP 2015004274 W JP2015004274 W JP 2015004274W WO 2016031236 A1 WO2016031236 A1 WO 2016031236A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
layer
film layer
metal film
infrared
Prior art date
Application number
PCT/JP2015/004274
Other languages
French (fr)
Japanese (ja)
Inventor
雅貴 出口
Original Assignee
セーレン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セーレン株式会社 filed Critical セーレン株式会社
Priority to JP2016544962A priority Critical patent/JP6691867B2/en
Publication of WO2016031236A1 publication Critical patent/WO2016031236A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D12/00Non-structural supports for roofing materials, e.g. battens, boards

Definitions

  • the present invention relates to a heat-insulating roof underlaying material, and more particularly, to a heat-insulating roof underlaying material excellent in heat shielding properties, slip resistance, waterproofness, and durability.
  • roofing materials are used for the roofs of houses.
  • the roof underfloor material prevents rainwater from entering indoors by constructing it under a roof material such as a tile, a slate, or a sheet metal.
  • the surface has anti-slip properties in consideration of safety when the worker walks on the roof covering material.
  • Asphalt felt is a roofing material made of nonwoven fabric or paper impregnated with asphalt.
  • a roof underlaying material that is lighter than asphalt and excellent in workability, a roof underlaying material obtained by laminating lightweight synthetic resins and fabrics has been proposed.
  • Patent Document 1 discloses a heat shield roof covering material in which an aluminum foil or an aluminum vapor deposition film as a metal film layer is laminated on a surface layer of a resin sheet provided with protrusions in a dispersed manner.
  • Patent Document 2 discloses a heat insulating roof base material having a metal film layer on one surface of a fabric and a moisture permeable waterproof film laminated on the other surface of the fabric.
  • Patent Document 3 discloses a waterproof sheet for a thermal insulation roof provided with a thermal insulation layer obtained by adding a titanium oxide powder having thermal insulation properties to a foamable resin.
  • the present invention solves the above-mentioned problems, has sufficient heat shielding properties, satisfies the slip resistance and waterproof properties required as the performance of roofing roofing materials, and has durability that can withstand long-term construction.
  • Another object is to provide a heat-insulating roof underlaying material that also serves as a base.
  • the uppermost outermost layer in the vertical direction is a metal film layer containing a metal pigment, a binder, and particles, and the heat shielding roof covering material having at least a reinforcing layer and a waterproof layer under the metal film layer.
  • the metal film layer has an average infrared reflectance of 60% or more in a wavelength region of 5 to 10 ⁇ m and an infrared average absorptance in a wavelength region of 5 to 10 ⁇ m of 30% or less. It is a thermal roof underglazing material.
  • the shape of the metal pigment is preferably scaly.
  • the surface of the metal pigment is preferably subjected to at least one treatment selected from an organic coating treatment, an inorganic coating treatment, an oxide coating treatment, and a hydroxide coating treatment.
  • the said particle body is comprised by the at least 1 sort (s) of particle body selected from inorganic type powder or a thermally expansible microcapsule.
  • the average infrared transmittance of the binder in the wavelength region of 5 to 10 ⁇ m is 80% or more.
  • the present invention there is an effect that it has sufficient heat shielding properties, has anti-slip properties and waterproof properties required as the performance of the roof underlaying material, and also has durability that can withstand long-term construction.
  • the heat-insulating roof underlaying material 1 of the present invention is a laminate in which a waterproof layer 6 and a reinforcing layer 7 are sequentially provided under a metal film layer 5 composed of a metal pigment 2, a binder 3, and a particle body 4.
  • the uppermost outermost layer in the vertical direction is the metal film layer 5 in which the metal pigment 2 and the particle body 4 are mixed in the binder 3, and the metal film layer 5 has a wavelength of 5 to 10 ⁇ m.
  • the average infrared reflectance is 60% or more and the average infrared absorption is 30% or less. If the average infrared reflectance is less than 60%, infrared rays cannot be sufficiently reflected, and sufficient heat shielding properties cannot be obtained. When the average infrared absorption rate exceeds 30%, heat is accumulated by absorption in the metal film layer, thereby hindering heat insulation.
  • the infrared average absorptance is calculated by the following calculation formula from the result of measuring the infrared average reflectance and the infrared average transmittance with a Fourier transform infrared spectrophotometer.
  • Infrared average absorption rate [%] 100 [%]-(Infrared average reflectance [%] + Infrared average transmittance [%])
  • the metal film layer 5 includes the metal pigment 2 mixed in the binder 3, so that the binder 3 becomes a protective film, prevents the metal pigment 2 from corroding, and improves the durability of the heat shield roof covering material. Can be improved.
  • the metal film layer 5 preferably has an infrared reflection retention in a wavelength region of 5 to 10 ⁇ m of 40% or more. More preferably, it is 60% or more. Further, it is particularly preferably 80% or more. When the infrared reflection retention is 40% or more, the heat shielding property can be maintained even when the construction is performed for a long time.
  • the thermal insulation roof underglazing material 1 is subjected to an exposure promotion treatment (JIS A 611.17.7), an acid treatment (JIS K 714.4), and an alkali treatment (JIS A 6013.7. Perform 5.2) to calculate the infrared reflection retention in each process.
  • an exposure promotion treatment JIS A 611.17.7
  • an acid treatment JIS K 714.4
  • an alkali treatment JIS A 6013.7. Perform 5.2
  • the metal pigment 2 is preferably at least one selected from the group consisting of aluminum, nickel, stainless steel, gold, silver, lead, zinc, magnesium, chromium and the like, which are metals having infrared reflectivity. Of these, aluminum is preferable from the viewpoints of economy and workability.
  • scale-like metal pigments 2 There are two types of scale-like metal pigments 2, a leafing type that tends to be in a parallel arrangement when a coating film is formed, and a non-leafing type that tends to be in a dispersed arrangement, but both are used in the embodiment of the present invention. It can.
  • the leafing type is more preferably used to increase the infrared reflectance.
  • the average particle diameter of the metal pigment 2 is preferably 2 ⁇ m to 80 ⁇ m, more preferably 4 to 40 ⁇ m. If it is 2 ⁇ m or more, there is little influence of diffuse reflection and the heat shielding property is improved. Moreover, if it is 80 micrometers or less, the dispersibility of a pigment is good and abrasion resistance improves.
  • the metal pigment 2 is preferably subjected to a surface treatment in order to obtain more excellent durability.
  • a surface treatment Specifically, an organic coating treatment with an acrylic or melamine resin, an inorganic coating treatment with silica or the like, an oxide coating treatment with phosphoric acid or molybdic acid, or a hydroxide coating treatment.
  • acrylic organic coating treatment is preferable in terms of excellent adhesion to the binder, friction resistance, and chemical resistance.
  • the added amount of the metal pigment 2 is preferably 5 to 50 parts by weight, more preferably 5 to 20 parts by weight, and further preferably 5 to 10 parts by weight with respect to 100 parts by weight of the binder 3. . If it is 5 parts by weight or more, it is easy to form a metal film and a sufficient heat shielding property can be obtained. If it is 50 parts by weight or less, the wear resistance is improved.
  • the binder 3 is not particularly limited as long as the binder 3 is a resin material that can be formed into a film and can disperse the metal pigment 2 and the particles 4.
  • the polyolefin 3, polyurethane-based, acrylic-based, and epoxy-based materials can be used.
  • a low molecular weight polyolefin as a main agent in terms of good dispersibility of the metal pigment and increased uniformity.
  • the binder 3 preferably has an average infrared transmittance of 80% or more in a wavelength region of 5 to 10 ⁇ m. If it is 80% or more, the infrared rays incident on the metal film layer can easily reach the metal pigment, and the reflected infrared rays can be easily emitted to the outside.
  • the molecular weight of the binder 3 is preferably 500 to 150,000, more preferably 8000 to 100,000, and still more preferably 10,000 to 50,000. If it is 500 or more, a film having excellent strength can be formed, and film formation is facilitated. If it is 150,000 or less, a metal pigment can be disperse
  • examples of the particle body 4 include polymer powder, inorganic powder, and thermally expandable microcapsule.
  • at least one kind of particle body is preferable, which is selected from inorganic powders and heat-expandable microcapsules from the viewpoint of further improving the anti-slip property of the surface of the roof underlaying material.
  • the inorganic powder preferably has a wedge shape such as a wedge shape, a polygonal pyramid, a cone or other wedge shape, or a puncture type three-dimensional irregular shape such as a needle shape.
  • a wedge shape such as a wedge shape, a polygonal pyramid, a cone or other wedge shape, or a puncture type three-dimensional irregular shape such as a needle shape.
  • Specific examples include silica, calcium carbonate, titanium oxide, zinc oxide, and magnesium carbonate. Of these, zinc oxide is preferred because of its good dispersibility in the binder, excellent chemical resistance, and heat dissipation.
  • the heat-expandable microcapsule is a microcapsule enclosing a gas such as hydrocarbon, and has excellent heat insulation properties, and therefore can enhance heat shielding properties.
  • the hydrocarbon encapsulated in the thermally expandable microcapsule is preferably a low boiling point hydrocarbon such as n-butane, i-butane, pentane, or neopentane.
  • examples of the material of the thermally expandable microcapsule include thermoplastic resins, and specific examples include acrylic, olefin, urethane, vinyl acetate, and silicone. Of these, acrylic is preferred because it is inexpensive and has excellent processability.
  • the average particle diameter of the thermally expandable microcapsule before foaming is preferably 5 to 50 ⁇ m.
  • the expansion ratio is preferably 2 to 20 times.
  • the foaming magnification here shows the magnification of the average particle diameter of a thermally expansible microcapsule. If it is this range, sufficient slip resistance and abrasion resistance can be obtained.
  • the particle diameter of the thermally expandable microcapsule after thermal foaming is preferably 10 to 1000 ⁇ m. If it is 10 micrometers or more, the fine unevenness
  • the addition amount of the particle body 4 is preferably 2 to 40 parts by weight with respect to 100 parts by weight of the binder 3.
  • the amount is more preferably 5 to 30 parts by weight
  • the amount is more preferably 3 to 15 parts by weight. If it is 2 parts by weight or more, it is possible to form irregularities by the particulates on the entire surface. If it is 40 parts by weight or less, dropping of the particles can be suppressed.
  • the metal film layer is formed by dispersing the metal pigment 2 and the particle body 4 in the binder 3.
  • other additives such as an antioxidant, a light stabilizer, an ultraviolet absorber, an antifungal agent, and a filler can be added as necessary as long as the object of the present invention is not impaired.
  • a solvent can be added to the metal pigment 2, the binder 3, and the particle body 4.
  • the solvent to be used include aromatic hydrocarbon-based hexane, benzene, toluene, xylene, styrene, naphthalene and the like in which the dispersibility of the metal pigment is good. Of these, toluene is preferable from the viewpoints of economy and ease of handling.
  • the metal film layer 5 For the formation of the metal film layer 5, a known coating method such as a roll coating method, a gravure coating method, or a reverse coating method is used.
  • the thickness of the metal film layer after drying is preferably 30 to 300 ⁇ m. If it is 30 ⁇ m or more, sufficient heat shielding properties and slip resistance can be obtained. Moreover, if it is 300 micrometers or less, since the resin crack of a metal film layer can be suppressed and it is further lightweight, the workability
  • the material of the waterproof layer 6 is not particularly limited as long as it is waterproof, but a resin film is preferably used.
  • Specific examples include films made of one or more materials selected from the group consisting of polyolefins, polyesters, polyamides, and polyurethanes. Of these, polyolefin or polyester films are preferred in terms of processability, strength, dimensional stability, and hydrophobicity.
  • the waterproof layer 6 preferably has a tensile strength of 10 MPa or more in the length direction and 10 MPa or more in the width direction. As long as this strength is satisfied, tearing during work can be reduced.
  • the waterproof layer 6 preferably has a thickness in the range of 20 to 200 ⁇ m. If it is 20 ⁇ m or more, sufficient strength can be obtained, and if it is 200 ⁇ m or less, it is lightweight and excellent in flexibility, so that workability is improved.
  • the manufacturing method of the waterproof layer 6 is not particularly limited, and can be manufactured by a known manufacturing method such as an inflation method, a T-die method, or a casting method.
  • the waterproof layer 6 is preferably subjected to surface modification such as ultraviolet treatment, plasma treatment, corona treatment, etc., in order to improve adhesion with adjacent layers.
  • the reinforcing layer 7 is not particularly limited as long as it can reinforce and support the waterproof layer 6, and specific examples thereof include a nonwoven fabric, a woven fabric, a knitted fabric, and a film. Among these, a nonwoven fabric is preferable because it is inexpensive and has excellent productivity.
  • the reinforcing layer 7 preferably has a tensile strength of 25 N / cm or more in the length direction, 20 N / cm or more in the width direction, and a tear strength of 10 N or more in the length direction and 8 N or more in the width direction. If this strength is satisfied, tearing and tearing during work can be reduced.
  • the basis weight of the reinforcing layer 7 is preferably 60 to 300 g / m 2 . If it is 60 g / m 2 or more, sufficient strength can be obtained. Moreover, since it is lightweight if it is 300 g / m ⁇ 2 > or less, the workability
  • the material of the reinforcing layer 7 is not particularly limited, and specifically, from the group consisting of polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polymethylene terephthalate, and polyamides such as nylon and aramid. It is mentioned that it is a polymer material consisting of at least one selected material. Of these, polyesters and polyolefins are preferred in terms of excellent processability, strength, dimensional stability, and hydrophobicity.
  • the heat-insulating roof underlaying material 1 of the present invention may be appropriately laminated with a water-stopping layer, an adhesive layer, an anti-slip layer, a reinforcing layer, a waterproof layer and the like as necessary. Moreover, you may laminate
  • a waterproof layer 6, a water blocking layer 8, a reinforcing layer 7, and a waterproof layer 6 are provided in this order under the metal film layer 5 composed of the metal pigment 2, the binder 3, and the particle body 4.
  • the laminated body is shown in FIG.
  • a water-absorbing resin is preferably used, and is a layer provided for the purpose of preventing moisture from entering from a nail hole or the like, not particularly limited, polyvinyl alcohol-based polyvinyl alcohol cross-linked polymer, etc.
  • Other addition polymers such as acrylic polyacrylate cross-linked products, sodium acrylate-vinyl alcohol copolymer, polyether-based polyethylene glycol diacrylate cross-linked polymers, maleic anhydride polymers, vinyl Pyrrolidone polymers and other condensation resins can be used.
  • a laminate in which a waterproof layer 6, a reinforcing layer 7, and an adhesive layer 9 are provided in this order under a metal film layer 5 composed of a metal pigment 2, a binder 3, and a particle body 4 is shown in FIG. Shown in By laminating as in this embodiment, adhesiveness is exhibited, workability is improved, and further, the roof underlaying material can reduce sliding from a field board after the construction.
  • Examples of the adhesive layer 9 include solvent-based resins such as polyolefin-based, polyacryl-based, polyurethane-based, polyester-based, and silicone-based materials, natural rubber-based materials, and synthetic rubber-based materials. Among these, a synthetic rubber that is less affected by temperature and hardly affected by the polarity of the adherend is preferably used.
  • the heat shielding roof covering material 1 preferably has a total weight of 100 to 500 g / m 2 . If it is 100 g / m 2 or more, it is difficult to be affected by wind during construction. Moreover, since it is lightweight if it is 500 g / m ⁇ 2 > or less, the workability
  • the total thickness of the heat insulating roof underlaying material 1 is 300 to 1000 ⁇ m. If it is 300 micrometers or more, the tearing and tearing during work can be reduced. Moreover, if it is 1000 micrometers or less, a softness
  • the thermal insulation roof underlay material 1 has a tensile strength of 60 N / cm or more in the length direction, 40 N / cm or more in the width direction, and a tear strength of 10 N or more in the length direction and 10 N or more in the width direction. If this strength is satisfied, tearing and tearing during work can be reduced.
  • the heat insulating roof underlaying material 1 has a water pressure resistance of 30 kPa or more. If it is 30 kPa or more, even if rainwater or the like falls on the surface, moisture can be prevented from entering the inside.
  • the heat shielding roof underlaying material of the present invention will be specifically described with reference to the following examples and comparative examples, but the present invention is not limited thereto.
  • the roof underglazing materials of Examples 1 to 7 according to the present invention were manufactured, and their physical properties were measured.
  • the roof underglazing materials of Comparative Examples 1 to 4 were manufactured or obtained, and their physical properties were measured. Each physical property in Examples and Comparative Examples was measured by the following methods.
  • Particle diameter of metal pigment and particle body The particle diameter and particle body of the metal pigment were measured according to JIS K 5600-9-3. When the particle body was a thermally expandable microcapsule, the thermally expandable microcapsule before thermal expansion was measured. Specifically, the particle size distribution was measured using a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation. The volume-based median diameter (D 50 ) was calculated and determined. These results are not shown in the table.
  • (2) Infrared average reflectance The metal film layer 5 of each roof underlaying material was evaluated by infrared average reflectance, and those having an average of 60% or more in the wavelength range of 5 to 10 ⁇ m were judged to have heat shielding properties.
  • the infrared average reflectance was measured using a Fourier transform infrared spectrophotometer ((FT-IR), IR Prestige-21 manufactured by Shimadzu Corporation).
  • FT-IR Fourier transform infrared spectrophotometer
  • IR Prestige-21 manufactured by Shimadzu Corporation
  • (3) Infrared average absorptivity The metal film layer 5 of each underfloor roofing material was evaluated by the average infrared absorptivity, and an average of 30% or less was judged to have a heat shielding property in a wavelength region of 5 to 10 ⁇ m.
  • Infrared average absorptance is calculated by the above-mentioned formula by measuring the infrared average reflectance and the infrared average transmittance using a Fourier transform infrared spectrophotometer ((FT-IR) IR Prestige-21 manufactured by Shimadzu Corporation). did.
  • the binder 3 of each roofing roof material was evaluated with the average infrared transmittance.
  • a resin used as the binder 3 with a thickness of 80 ⁇ m is prepared, and using a Fourier transform infrared spectrophotometer ((FT-IR) Shimadzu Corporation IR Prestige-21), Infrared average transmittance was measured. It was judged that an average of 80% or more in the wavelength range of 5 to 10 ⁇ m had no influence on the heat shielding property of the metal pigment.
  • FT-IR Fourier transform infrared spectrophotometer
  • Temperature difference [° C] backside temperature of asphalt roofing 940 [° C]-backside temperature of each roofing material [° C]
  • Anti-slip property 6-gradient (angle 30.9638 °) roof model is prepared, and each roof underlaying material on the base plate surface After pasting, we confirmed the sliding condition when walking on the surface of the roof under the roof.
  • Slightly slip, but can walk safely.
  • the reinforcing layer 7 is a polyester nonwoven fabric (100 g / m 2 spunbond, manufactured by Shinryo Co., Ltd.), the adhesive layer is a polyethylene resin (Perosen 212, manufactured by Tosoh Corporation), 40 ⁇ m, and the waterproof layer 6 is a polyethylene film ( Sakai Chemical Industry Co., Ltd., 60 ⁇ m) was laminated.
  • binder 3 polyolefin-based resin, UPRY P-3963, Sakai Chemical Industries, Ltd., infrared average transmittance 88%, molecular weight 17814
  • metal pigment 2 (acrylic organic coating).
  • Example 2 After forming the reinforcing layer 7, the adhesive layer, the waterproof layer 6, and the metal film layer 5 in the same manner as in Example 1, the polyester nonwoven fabric (100 g / m 2 spunbond, manufactured by Shinryo Co., Ltd.) that is the reinforcing layer 7 is vertical. On the lower surface, a pressure-sensitive adhesive layer 9 (synthetic rubber-based adhesive, G207K, manufactured by Furuto Kogyo Co., Ltd.) is coated to a thickness of 100 ⁇ m by a calendar coating method, and the thermal barrier roof base material 1 as shown in FIG. Got. The evaluation results are shown in Table 1.
  • Example 3 A polyacrylate cross-linked product (WP-manufactured by Nikka Chemical Co., Ltd.) is formed on the surface on the vertical upper side of the polyester nonwoven fabric (100 g / m 2 spun bond, manufactured by Shinryo Co., Ltd.) as the reinforcing layer 7. 01, water absorption swelling ratio 400 times) with a gravure coater so that the solid content is 15 g / m 2 , and then a polyethylene resin as a waterproof layer 6 on the surface opposite to the surface on which the water blocking layer 8 is formed.
  • WP-manufactured by Nikka Chemical Co., Ltd. is formed on the surface on the vertical upper side of the polyester nonwoven fabric (100 g / m 2 spun bond, manufactured by Shinryo Co., Ltd.) as the reinforcing layer 7. 01, water absorption swelling ratio 400 times
  • Example 4 Except that the metallic pigment 2 was changed from scale-like to powdery aluminum (91-2323T, manufactured by Toyo Aluminum Co., Ltd.), the heat-shielding roof base material 1 was obtained in the same manner as in Example 3. The evaluation results are shown in Table 1.
  • Example 5 Except that the particle body 4 was changed to a zinc oxide filler (Panatetra WZ-0511L manufactured by Amtec Co., Ltd.), it was processed in the same manner as in Example 3 to obtain a thermal barrier roof base material 1. The evaluation results are shown in Table 1.
  • Example 6 Except for changing the binder 3 to an acrylic resin having an infrared average transmittance of 69% and a molecular weight of 199130 (manufactured by Negami Kogyo Co., Ltd., Paracron W248E), it is processed in the same manner as in Example 3 to provide a thermal barrier roof base material. 1 was obtained. The evaluation results are shown in Table 1.
  • Example 7 Except for changing the metallic pigment 2 to scaly aluminum having a particle size of 16 ⁇ m that is not surface-treated (Toyo Aluminum Co., Ltd., 7675NS), the same processing as in Example 3 was performed to obtain a heat-shielding roof base material 1. It was. The evaluation results are shown in Table 1.
  • Example 2 Aluminum is vapor-deposited on the waterproof layer 6 by a vacuum vapor deposition method so as to have a thickness of 600 mm, and 10 parts by weight of the particles 4 and 50 parts by weight of toluene as a solvent with respect to 100 parts by weight of the binder 3 thereon.
  • the heat-shielding roof base material 1 was obtained in the same manner as in Example 3 except that the added resin was coated with a gravure coater so that the thickness was 80 ⁇ m. The evaluation results are shown in Table 1.
  • Table 1 shows the evaluation results of asphalt roofing 940 (P color, manufactured by Tajima Kappa Kako Co., Ltd.) defined in JIS A6005. Since the metal film layer was not provided, “wear resistance” and “durability of metal film layer” were not evaluated.

Abstract

[Problem] The purpose of the present invention is to provide a heat-shielding roofing underlayment material that has sufficient heat shielding properties, and has satisfactory slip resistance and waterproofness required as properties of roofing underlayment materials, and in addition, has durability such that the roofing underlayment material is durable for long-term construction. [Solution] The heat-shielding roofing underlayment material has: a metal film layer which contains a metal pigment, a binder, and a particulate member, and which is an upper outermost layer in a vertical direction; and at least a reinforcement layer and a waterproof layer which are disposed below the metal film layer. The heat-shielding roofing underlayment material is characterized in that the metal film layer has an average infrared reflectance of 60% or more in the wavelength region of 5-10 μm and an average infrared absorbance of 30% or less in the wavelength region of 5-10 μm.

Description

遮熱屋根下葺材Thermal insulation under the roof
 本発明は、遮熱屋根下葺材に関するものであり、さらに詳しくは、遮熱性、防滑性、防水性、耐久性に優れた遮熱屋根下葺材に関する。 The present invention relates to a heat-insulating roof underlaying material, and more particularly, to a heat-insulating roof underlaying material excellent in heat shielding properties, slip resistance, waterproofness, and durability.
 従来、家屋の屋根には屋根下葺材が使用されている。屋根下葺材とは、瓦、スレート、板金などの屋根材の下に施工することにより、雨水が屋内に浸入することを防止するものである。また、作業者が屋根下葺材の上を歩行する際の安全を考慮し、表面に防滑性を有している。 Traditionally, roofing materials are used for the roofs of houses. The roof underfloor material prevents rainwater from entering indoors by constructing it under a roof material such as a tile, a slate, or a sheet metal. In addition, the surface has anti-slip properties in consideration of safety when the worker walks on the roof covering material.
 従来使用されてきた屋根下葺材の具体例として、アスファルトフェルトがある。アスファルトフェルトとは、不織布や紙にアスファルトを含浸させてなる屋根下葺材である。また、アスファルトよりも軽量でかつ施工性に優れた屋根下葺材として、軽量な合成樹脂や布帛を積層してなる屋根下葺材が提案されている。 As a specific example of roofing materials that have been used conventionally, there is asphalt felt. Asphalt felt is a roofing material made of nonwoven fabric or paper impregnated with asphalt. In addition, as a roof underlaying material that is lighter than asphalt and excellent in workability, a roof underlaying material obtained by laminating lightweight synthetic resins and fabrics has been proposed.
 近年では、夏期の冷房効果を高めるため、遮熱性を有する屋根下葺材の開発が求められており、例えば、太陽からの赤外線を反射させるような金属膜層を設けた屋根下葺材が提案されている。例えば、特許文献1には、分散状に突起部を設けた樹脂シートの表層に金属膜層であるアルミニウム箔もしくはアルミ蒸着フィルムを積層した遮熱屋根下葺材が開示されている。また、特許文献2には、布帛の一方面に金属膜層を有し、布帛の他方の面には透湿防水フィルムを積層した遮熱屋根下地材が開示されている。また、特許文献3には、遮熱性を有する酸化チタン粉末を発泡性樹脂に添加させた遮熱層を設けた遮熱屋根用防水シートが開示されている。 In recent years, in order to enhance the cooling effect in summer, the development of a roof covering material having a heat shielding property has been demanded. For example, a roof covering material provided with a metal film layer that reflects infrared rays from the sun has been proposed. Yes. For example, Patent Document 1 discloses a heat shield roof covering material in which an aluminum foil or an aluminum vapor deposition film as a metal film layer is laminated on a surface layer of a resin sheet provided with protrusions in a dispersed manner. Patent Document 2 discloses a heat insulating roof base material having a metal film layer on one surface of a fabric and a moisture permeable waterproof film laminated on the other surface of the fabric. Patent Document 3 discloses a waterproof sheet for a thermal insulation roof provided with a thermal insulation layer obtained by adding a titanium oxide powder having thermal insulation properties to a foamable resin.
 しかし、特許文献1の屋根下葺材では、シート表面の突起部により遮熱効果は向上するが、分散状に設けられた突起部では防滑性に劣り、作業時、シート上を歩行する際に滑るおそれがあった。また、特許文献2の建築用シートのような構成のものは、金属膜層を蒸着により形成しているため遮光性に優れているが、金属が直接シート表面に設けられているため、金属が暴露された状態となり、長期施工の環境では金属膜の耐久性が劣っている。また、特許文献3では、不織布の上に酸化チタン粉末を含有する樹脂層を配置しているため、遮熱層の耐久性は優れるものとなったが、酸化チタン粉末を採用しているため金属と比べると遮熱性は劣るおそれがあった。 However, in the roof underlaying material of Patent Document 1, the heat shielding effect is improved by the protrusions on the surface of the sheet, but the protrusions provided in a dispersed manner are inferior in slip resistance and slip when walking on the seat during work. There was a fear. Moreover, since the thing like the building sheet of patent document 2 is excellent in light-shielding property because the metal film layer is formed by vapor deposition, the metal is provided directly on the sheet surface, The exposed state of the metal film is inferior in a long-term construction environment. Moreover, in patent document 3, since the resin layer containing a titanium oxide powder is arrange | positioned on a nonwoven fabric, although durability of the thermal-insulation layer became excellent, since the titanium oxide powder is employ | adopted, it is metal Compared with, there was a possibility that the heat shielding property was inferior.
特開2008-214934号公報JP 2008-214934 A 特開2008-069539号公報JP 2008-069539 A 特開2010-043496号公報JP 2010-043496 A
 本発明は、前述の問題を解決するものであり、充分な遮熱性を有するとともに、屋根下葺材の性能として求められる防滑性、および防水性を満たし、さらには長期施工にも耐えうる耐久性をも兼ね備える遮熱屋根下葺材を提供することを目的とする。 The present invention solves the above-mentioned problems, has sufficient heat shielding properties, satisfies the slip resistance and waterproof properties required as the performance of roofing roofing materials, and has durability that can withstand long-term construction. Another object is to provide a heat-insulating roof underlaying material that also serves as a base.
 すなわち、本発明は、鉛直方向の上側の最外層が金属顔料、バインダー、および粒子体を含む金属膜層であり、前記金属膜層の下層に少なくとも補強層と防水層を有する遮熱屋根下葺材であって、前記金属膜層の5~10μmの波長領域における赤外線平均反射率が60%以上で、かつ5~10μmの波長領域における赤外線平均吸収率が30%以下であることを特徴とする遮熱屋根下葺材である。 That is, according to the present invention, the uppermost outermost layer in the vertical direction is a metal film layer containing a metal pigment, a binder, and particles, and the heat shielding roof covering material having at least a reinforcing layer and a waterproof layer under the metal film layer. Wherein the metal film layer has an average infrared reflectance of 60% or more in a wavelength region of 5 to 10 μm and an infrared average absorptance in a wavelength region of 5 to 10 μm of 30% or less. It is a thermal roof underglazing material.
 ここで、前記金属顔料の形状が鱗片状であることが好ましい。
 また、前記金属顔料の表面が有機被膜処理、無機被膜処理、酸化被膜処理、水酸化被膜処理から選択される少なくとも1つの処理を施されていることが好ましい。
 また、前記粒子体が無機系粉末、または熱膨張性マイクロカプセルから選択される少なくとも1種の粒子体により構成されていることが好ましい。
 また、前記バインダーの5~10μmの波長領域における赤外線平均透過率が80%以上であることが好ましい。
Here, the shape of the metal pigment is preferably scaly.
The surface of the metal pigment is preferably subjected to at least one treatment selected from an organic coating treatment, an inorganic coating treatment, an oxide coating treatment, and a hydroxide coating treatment.
Moreover, it is preferable that the said particle body is comprised by the at least 1 sort (s) of particle body selected from inorganic type powder or a thermally expansible microcapsule.
In addition, it is preferable that the average infrared transmittance of the binder in the wavelength region of 5 to 10 μm is 80% or more.
 本発明によれば、充分な遮熱性を有するとともに、屋根下葺材の性能として求められる防滑性、および防水性を満たし、さらには長期施工にも耐えうる耐久性をも兼ね備えるという効果を奏する。 According to the present invention, there is an effect that it has sufficient heat shielding properties, has anti-slip properties and waterproof properties required as the performance of the roof underlaying material, and also has durability that can withstand long-term construction.
本発明の実施形態の一例である遮熱屋根下葺材の例を示す断面模式図である。It is a cross-sectional schematic diagram which shows the example of the heat insulation roof underlay material which is an example of embodiment of this invention. 他の実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows other embodiment. 他の実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows other embodiment.
 本発明の遮熱屋根下葺材の実施形態の一例について、図1にて説明する。本発明の遮熱屋根下葺材1は、金属顔料2とバインダー3と粒子体4からなる金属膜層5の下に防水層6、補強層7が順に設けられた積層体である。 An example of an embodiment of the heat-insulating roof underfloor material of the present invention will be described with reference to FIG. The heat-insulating roof underlaying material 1 of the present invention is a laminate in which a waterproof layer 6 and a reinforcing layer 7 are sequentially provided under a metal film layer 5 composed of a metal pigment 2, a binder 3, and a particle body 4.
 本発明は、鉛直方向の上側の最外層が前記金属顔料2および前記粒子体4を前記バインダー3に混在させてなる前記金属膜層5であり、前記金属膜層5は、5~10μmの波長領域において赤外線平均反射率が60%以上であり、かつ赤外線平均吸収率が30%以下である。赤外線平均反射率が60%未満であると、赤外線を充分に反射することができず、遮熱性が充分に得られない。赤外線平均吸収率が30%を超えると、金属膜層内に吸収されることにより、熱が蓄積され、遮熱性を妨げる。赤外線平均吸収率は、フーリエ変換赤外分光光度計で赤外線平均反射率と赤外線平均透過率を測定した結果から、以下の計算式で算出する。
   赤外線平均吸収率[%]=100[%]-(赤外線平均反射率[%]+赤外線平均透過率[%])
In the present invention, the uppermost outermost layer in the vertical direction is the metal film layer 5 in which the metal pigment 2 and the particle body 4 are mixed in the binder 3, and the metal film layer 5 has a wavelength of 5 to 10 μm. In the region, the average infrared reflectance is 60% or more and the average infrared absorption is 30% or less. If the average infrared reflectance is less than 60%, infrared rays cannot be sufficiently reflected, and sufficient heat shielding properties cannot be obtained. When the average infrared absorption rate exceeds 30%, heat is accumulated by absorption in the metal film layer, thereby hindering heat insulation. The infrared average absorptance is calculated by the following calculation formula from the result of measuring the infrared average reflectance and the infrared average transmittance with a Fourier transform infrared spectrophotometer.
Infrared average absorption rate [%] = 100 [%]-(Infrared average reflectance [%] + Infrared average transmittance [%])
 また、前記金属膜層5は、前記金属顔料2を前記バインダー3に混在させることで、前記バインダー3が保護膜となり、前記金属顔料2の腐食を防止し、遮熱屋根下葺材の耐久性を向上することができる。
 前記金属膜層5は、5~10μmの波長領域における赤外線反射保持率が40%以上であることが好ましい。また、より好ましくは60%以上である。また、特に好ましくは80%以上である。赤外線反射保持率が40%以上であれば、長期間施工した場合でも遮熱性を維持することができる。赤外線反射保持率は、フーリエ変換赤外分光光度計で耐久性評価実施後の金属膜層の赤外線平均反射率と耐久性評価実施前の金属膜層の赤外線平均反射率を測定した結果から、以下の計算式で算出する。
   赤外線反射保持率[%]=(耐久性評価実施後の金属膜層の赤外線平均反射率[%]/ 耐久性評価実施前の金属膜層の赤外線平均反射率[%])×100
In addition, the metal film layer 5 includes the metal pigment 2 mixed in the binder 3, so that the binder 3 becomes a protective film, prevents the metal pigment 2 from corroding, and improves the durability of the heat shield roof covering material. Can be improved.
The metal film layer 5 preferably has an infrared reflection retention in a wavelength region of 5 to 10 μm of 40% or more. More preferably, it is 60% or more. Further, it is particularly preferably 80% or more. When the infrared reflection retention is 40% or more, the heat shielding property can be maintained even when the construction is performed for a long time. From the results of measuring the infrared average reflectance of the metal film layer before carrying out the durability evaluation and the infrared average reflectance of the metal film layer after carrying out the durability evaluation, the infrared reflection retention rate is as follows: Calculate with the following formula.
Infrared reflection retention [%] = (Infrared average reflectance [%] of the metal film layer after the durability evaluation is performed / Infrared average reflectance [%] of the metal film layer before the durability evaluation is performed) × 100
 耐久性評価としては、後述するように前記遮熱屋根下葺材1を暴露促進処理(JIS A 6111.7.7)、酸性処理(JIS K 7114.4)、アルカリ処理(JIS A 6013.7.5.2)を行い、各処理における赤外線反射保持率を算出する。 For durability evaluation, as described later, the thermal insulation roof underglazing material 1 is subjected to an exposure promotion treatment (JIS A 611.17.7), an acid treatment (JIS K 714.4), and an alkali treatment (JIS A 6013.7. Perform 5.2) to calculate the infrared reflection retention in each process.
 前記金属顔料2は、赤外線反射能を有する金属であるアルミニウム、ニッケル、ステンレス、金、銀、鉛、亜鉛、マグネシウム、クロムなどからなる群から選択される少なくとも1つであることが好ましい。なかでも経済性、加工性の点からアルミニウムが好ましい。 The metal pigment 2 is preferably at least one selected from the group consisting of aluminum, nickel, stainless steel, gold, silver, lead, zinc, magnesium, chromium and the like, which are metals having infrared reflectivity. Of these, aluminum is preferable from the viewpoints of economy and workability.
 前記金属顔料2の形状としては、粉末状や鱗片状などがあるが、なかでも赤外線を反射し易い鱗片状が好ましい。すなわち、平均アスペクト比(平均粒子径(D50:体積ベースのメディアン径)÷平均粒子厚み(N=100の平均))は5以上が好ましく、より好ましくは10~1000、特に好ましくは20~500である。 Examples of the shape of the metal pigment 2 include a powder shape and a scale shape, and a scale shape that easily reflects infrared rays is preferable. That is, the average aspect ratio (average particle diameter (D 50 : volume-based median diameter) ÷ average particle thickness (N = 100 average)) is preferably 5 or more, more preferably 10 to 1000, and particularly preferably 20 to 500. It is.
 鱗片状の金属顔料2としては、塗膜が形成された際に平行配列になり易いリーフィングタイプと分散配列になり易いノンリーフィングタイプの2種類があるが、本発明の実施形態においてはどちらでも使用できる。特には、金属顔料2の添加量が比較的少なく、平均アスペクト比が比較的低い場合などに、赤外線反射率を高める上で、リーフィングタイプが、より好ましく用いられる。 There are two types of scale-like metal pigments 2, a leafing type that tends to be in a parallel arrangement when a coating film is formed, and a non-leafing type that tends to be in a dispersed arrangement, but both are used in the embodiment of the present invention. it can. In particular, when the amount of the metal pigment 2 is relatively small and the average aspect ratio is relatively low, the leafing type is more preferably used to increase the infrared reflectance.
 前記金属顔料2の平均粒子径は、2μm~80μmであることが好ましく、より好ましくは4~40μmである。2μm以上であれば、拡散反射の影響が少なく遮熱性が向上する。また、80μm以下であれば、顔料の分散性が良く、耐摩耗性も向上する。 The average particle diameter of the metal pigment 2 is preferably 2 μm to 80 μm, more preferably 4 to 40 μm. If it is 2 μm or more, there is little influence of diffuse reflection and the heat shielding property is improved. Moreover, if it is 80 micrometers or less, the dispersibility of a pigment is good and abrasion resistance improves.
 前記金属顔料2は、より優れた耐久性を得るために表面処理を施されていることが好ましい。具体的にはアクリル系、メラミン系などの樹脂により被膜する有機被膜処理や、シリカなどの無機被膜処理、リン酸やモリブデン酸などによる酸化被膜処理、水酸化被膜処理が挙げられる。なかでも、バインダーとの密着性、耐摩擦性、耐薬品性に優れる点でアクリル系の有機被膜処理が好ましい。 The metal pigment 2 is preferably subjected to a surface treatment in order to obtain more excellent durability. Specifically, an organic coating treatment with an acrylic or melamine resin, an inorganic coating treatment with silica or the like, an oxide coating treatment with phosphoric acid or molybdic acid, or a hydroxide coating treatment. Of these, acrylic organic coating treatment is preferable in terms of excellent adhesion to the binder, friction resistance, and chemical resistance.
 前記金属顔料2の添加量としては、前記バインダー3が100重量部に対し、5~50重量部であることが好ましく、より好ましくは5~20重量部、さらに好ましくは5~10重量部である。5重量部以上であれば、金属膜を形成しやすく、遮熱性も充分に得られる。50重量部以下であれば、耐摩耗性が向上する。 The added amount of the metal pigment 2 is preferably 5 to 50 parts by weight, more preferably 5 to 20 parts by weight, and further preferably 5 to 10 parts by weight with respect to 100 parts by weight of the binder 3. . If it is 5 parts by weight or more, it is easy to form a metal film and a sufficient heat shielding property can be obtained. If it is 50 parts by weight or less, the wear resistance is improved.
 前記バインダー3としては、フィルム成形可能な樹脂材料であって金属顔料2および粒子体4を分散できるものであれば特に限定されないが、具体的には、ポリオレフィン系、ポリウレタン系、アクリル系、エポキシ系、酢酸ビニル系、ポリエステル系、セルロース系、フェノール系、メラミン系の群から選択される少なくとも1つの樹脂が挙げられる。なかでも金属顔料の分散性が良く、均一性が増す点で低分子量のポリオレフィン系を主剤とすることが好ましい。 The binder 3 is not particularly limited as long as the binder 3 is a resin material that can be formed into a film and can disperse the metal pigment 2 and the particles 4. Specifically, the polyolefin 3, polyurethane-based, acrylic-based, and epoxy-based materials can be used. And at least one resin selected from the group consisting of vinyl acetate, polyester, cellulose, phenol, and melamine. Among them, it is preferable to use a low molecular weight polyolefin as a main agent in terms of good dispersibility of the metal pigment and increased uniformity.
 また、前記バインダー3は、波長5~10μm領域における赤外線平均透過率が80%以上であることが好ましい。80%以上であれば金属膜層に入射した赤外線が金属顔料まで容易に到達でき、また反射された赤外線を容易に外部へ放出できる。 The binder 3 preferably has an average infrared transmittance of 80% or more in a wavelength region of 5 to 10 μm. If it is 80% or more, the infrared rays incident on the metal film layer can easily reach the metal pigment, and the reflected infrared rays can be easily emitted to the outside.
 前記バインダー3の分子量は、500~150000であることが好ましく、より好ましくは8000~100,000、さらに好ましくは10,000~50,000である。500以上であれば、強度に優れた被膜を形成でき、成膜もしやすくなる。150000以下であれば、金属顔料を均一に分散でき遮熱性が向上する。 The molecular weight of the binder 3 is preferably 500 to 150,000, more preferably 8000 to 100,000, and still more preferably 10,000 to 50,000. If it is 500 or more, a film having excellent strength can be formed, and film formation is facilitated. If it is 150,000 or less, a metal pigment can be disperse | distributed uniformly and heat insulation property will improve.
 また、前記粒子体4としては、高分子系粉末、無機系粉末および熱膨張性マイクロカプセルなどが挙げられる。なかでも屋根下葺材の表面の防滑性をより高めるという点で無機系粉末および熱膨張性マイクロカプセルから選択され、少なくとも1種の粒子体であることが好ましい。前記粒子体4を添加することにより、遮熱屋根下葺材の表面の全体に微細な凹凸を形成することができ摩擦係数が高まり、これにより防滑性が得られる。 Further, examples of the particle body 4 include polymer powder, inorganic powder, and thermally expandable microcapsule. Among these, at least one kind of particle body is preferable, which is selected from inorganic powders and heat-expandable microcapsules from the viewpoint of further improving the anti-slip property of the surface of the roof underlaying material. By adding the particle body 4, fine irregularities can be formed on the entire surface of the heat-insulating roof underfloor material, and the friction coefficient is increased, thereby providing anti-slip properties.
 前記無機系粉末としては、楔形、多角錘、円錐またはその他の楔形といった楔状、または針状などの突き刺し型の三次元異形形状を有するものが好ましい。具体的にはシリカ、炭酸カルシウム、酸化チタン、酸化亜鉛、炭酸マグネシウムなどが挙げられる。なかでも、バインダーへの分散性が良く耐薬品性に優れ、熱放散性を有する点で酸化亜鉛が好ましい。 The inorganic powder preferably has a wedge shape such as a wedge shape, a polygonal pyramid, a cone or other wedge shape, or a puncture type three-dimensional irregular shape such as a needle shape. Specific examples include silica, calcium carbonate, titanium oxide, zinc oxide, and magnesium carbonate. Of these, zinc oxide is preferred because of its good dispersibility in the binder, excellent chemical resistance, and heat dissipation.
 前記熱膨張性マイクロカプセルは、炭化水素などのガスを内包したマイクロカプセルであり、断熱性に優れるため、遮熱性を助長することができる。 The heat-expandable microcapsule is a microcapsule enclosing a gas such as hydrocarbon, and has excellent heat insulation properties, and therefore can enhance heat shielding properties.
 前記熱膨張性マイクロカプセルの内部に封入される炭化水素としては、n-ブタン、i-ブタン、ペンタン、ネオペンタンのような低沸点の炭化水素が好ましい。 The hydrocarbon encapsulated in the thermally expandable microcapsule is preferably a low boiling point hydrocarbon such as n-butane, i-butane, pentane, or neopentane.
 また、前記熱膨張性マイクロカプセルの素材としては熱可塑性樹脂が挙げられ、具体的には、アクリル系、オレフィン系、ウレタン系、酢酸ビニル系、シリコーン系などが挙げられる。なかでも、安価であり、加工性に優れている点でアクリル系が好ましい。 In addition, examples of the material of the thermally expandable microcapsule include thermoplastic resins, and specific examples include acrylic, olefin, urethane, vinyl acetate, and silicone. Of these, acrylic is preferred because it is inexpensive and has excellent processability.
 前記熱膨張性マイクロカプセルの発泡前の平均粒子径は、5~50μmであることが好ましい。また発泡倍率は2~20倍であることが好ましい。尚、ここでいう発泡倍率は熱膨張性マイクロカプセルの平均粒子径の倍率を示す。この範囲であれば、充分な防滑性および耐摩耗性を得ることができる。また、熱発泡後の前記熱膨張性マイクロカプセルの粒子径が10~1000μmであることが好ましい。10μm以上であれば、表面に防滑性を得るための微細な凹凸を形成することができる。また、1000μm以下であれば粒子体の脱落が抑えられ、耐摩耗性が向上する。 The average particle diameter of the thermally expandable microcapsule before foaming is preferably 5 to 50 μm. The expansion ratio is preferably 2 to 20 times. In addition, the foaming magnification here shows the magnification of the average particle diameter of a thermally expansible microcapsule. If it is this range, sufficient slip resistance and abrasion resistance can be obtained. The particle diameter of the thermally expandable microcapsule after thermal foaming is preferably 10 to 1000 μm. If it is 10 micrometers or more, the fine unevenness | corrugation for obtaining anti-slip property on the surface can be formed. Moreover, if it is 1000 micrometers or less, drop-off | omission of a particle body will be suppressed and abrasion resistance will improve.
 前記粒子体4の添加量としては、前記バインダー3が100重量部に対し2~40重量部で添加することが好ましい。なかでも前記粒子体が熱膨張性マイクロカプセルである場合は、5~30重量部であるがより好ましく、前記無機系粉末の場合は、3~15重量部であることがより好ましい。2重量部以上であれば、表面全体に粒子体による凹凸の形成が可能となる。40重量部以下であれば、粒子体の脱落が抑えられる。 The addition amount of the particle body 4 is preferably 2 to 40 parts by weight with respect to 100 parts by weight of the binder 3. In particular, when the particle body is a thermally expandable microcapsule, the amount is more preferably 5 to 30 parts by weight, and when the particle is the inorganic powder, the amount is more preferably 3 to 15 parts by weight. If it is 2 parts by weight or more, it is possible to form irregularities by the particulates on the entire surface. If it is 40 parts by weight or less, dropping of the particles can be suppressed.
 前記金属膜層は、前記金属顔料2および前記粒子体4を前記バインダー3に分散させて形成させる。また、本発明の目的を阻害しない範囲であれば、必要に応じて酸化防止剤、光安定剤、紫外線吸収剤、耐侯剤、充填剤などのその他の添加剤を加えることができる。 The metal film layer is formed by dispersing the metal pigment 2 and the particle body 4 in the binder 3. In addition, other additives such as an antioxidant, a light stabilizer, an ultraviolet absorber, an antifungal agent, and a filler can be added as necessary as long as the object of the present invention is not impaired.
 前記金属膜層5を形成する際、前記金属顔料2、前記バインダー3、前記粒子体4に、溶媒を加えることができる。用いる溶媒としては、金属顔料の分散性が良い芳香族炭化水素系のヘキサン、ベンゼン、トルエン、キシレン、スチレン、ナフタレンなどが挙げられる。なかでも、経済性、取り扱いのし易さの点でトルエンが好ましい。 When forming the metal film layer 5, a solvent can be added to the metal pigment 2, the binder 3, and the particle body 4. Examples of the solvent to be used include aromatic hydrocarbon-based hexane, benzene, toluene, xylene, styrene, naphthalene and the like in which the dispersibility of the metal pigment is good. Of these, toluene is preferable from the viewpoints of economy and ease of handling.
 金属膜層5の形成には、ロールコーティング法、グラビアコーティング法、リバースコーティング法などの公知の塗膜付与方法が用いられる。また乾燥後の金属膜層の厚さは、30~300μmであることが好ましい。30μm以上であれば充分な遮熱性と防滑性が得られる。また、300μm以下であれば金属膜層の樹脂割れを抑制することができ、さらに軽量であるため、施工時の作業性も向上する。 For the formation of the metal film layer 5, a known coating method such as a roll coating method, a gravure coating method, or a reverse coating method is used. The thickness of the metal film layer after drying is preferably 30 to 300 μm. If it is 30 μm or more, sufficient heat shielding properties and slip resistance can be obtained. Moreover, if it is 300 micrometers or less, since the resin crack of a metal film layer can be suppressed and it is further lightweight, the workability | operativity at the time of construction will also improve.
 前記防水層6の素材としては、防水性を有するものであれば特に限定されるものではないが、樹脂フィルムが好ましく用いられる。具体的にはポリオレフィン系、ポリエステル系、ポリアミド系、ポリウレタン系からなる群から選ばれる1種または2種以上の材料からなるフィルムが挙げられる。なかでも、加工性、強度、寸法安定性、疎水性の点でポリオレフィン系またはポリエステル系フィルムが好ましい。 The material of the waterproof layer 6 is not particularly limited as long as it is waterproof, but a resin film is preferably used. Specific examples include films made of one or more materials selected from the group consisting of polyolefins, polyesters, polyamides, and polyurethanes. Of these, polyolefin or polyester films are preferred in terms of processability, strength, dimensional stability, and hydrophobicity.
 前記防水層6は、引張強度が長さ方向10MPa以上、幅方向10MPa以上であることが好ましい。この強度を満たすものであれば、作業中の破れを軽減することができる。 The waterproof layer 6 preferably has a tensile strength of 10 MPa or more in the length direction and 10 MPa or more in the width direction. As long as this strength is satisfied, tearing during work can be reduced.
 前記防水層6は、厚みが20~200μmの範囲内であることが好ましい。20μm以上であれば、充分な強度が得られ、200μm以下であれば、軽量であり、柔軟性にも優れるため、施工性が向上する。 The waterproof layer 6 preferably has a thickness in the range of 20 to 200 μm. If it is 20 μm or more, sufficient strength can be obtained, and if it is 200 μm or less, it is lightweight and excellent in flexibility, so that workability is improved.
 前記防水層6の製法は特に限定されず、インフレーション法、Tダイ法、キャスト法など公知の製造法で製造することができる。 The manufacturing method of the waterproof layer 6 is not particularly limited, and can be manufactured by a known manufacturing method such as an inflation method, a T-die method, or a casting method.
 また、前記防水層6は、隣接する層との密着性を向上させるため、紫外線処理、プラズマ処理、コロナ処理などの表面改質を行うことが好ましい。 In addition, the waterproof layer 6 is preferably subjected to surface modification such as ultraviolet treatment, plasma treatment, corona treatment, etc., in order to improve adhesion with adjacent layers.
 前記補強層7は、前記防水層6を補強、支持できるものであれば特に限定されるものはなく、具体的には不織布、織物、編物、フィルムなどが挙げられる。なかでも、安価であり、生産性に優れる点で不織布が好ましい。 The reinforcing layer 7 is not particularly limited as long as it can reinforce and support the waterproof layer 6, and specific examples thereof include a nonwoven fabric, a woven fabric, a knitted fabric, and a film. Among these, a nonwoven fabric is preferable because it is inexpensive and has excellent productivity.
 前記補強層7は、引張強度が長さ方向25N/cm以上、幅方向20N/cm以上、引裂強度は長さ方向10N以上、幅方向8N以上であることが好ましい。この強度を満たしていれば、作業中の破れや裂けを軽減ことができる。 The reinforcing layer 7 preferably has a tensile strength of 25 N / cm or more in the length direction, 20 N / cm or more in the width direction, and a tear strength of 10 N or more in the length direction and 8 N or more in the width direction. If this strength is satisfied, tearing and tearing during work can be reduced.
 また、前記補強層7の目付は60~300g/m2であることが好ましい。60g/m2以上であれば、充分な強度を得ことができる。また、300g/m2以下であれば軽量であるため、施工時の作業性が向上する。 The basis weight of the reinforcing layer 7 is preferably 60 to 300 g / m 2 . If it is 60 g / m 2 or more, sufficient strength can be obtained. Moreover, since it is lightweight if it is 300 g / m < 2 > or less, the workability | operativity at the time of construction improves.
 前記補強層7の素材としては特に限定されるものではなく、具体的にはポリエチレン、ポリプロピレンなどのポリオレフィン系、ポリエチレンテレフタレート、ポリメチレンテレフタレートなどのポリエステル系、ナイロン、アラミドなどのポリアミド系からなる群から選ばれる少なくとも1種の材料からなる高分子素材であることが挙げられる。なかでも、加工性、強度、寸法安定性、疎水性の優れる点でポリエステル系またはポリオレフィン系が好ましい。 The material of the reinforcing layer 7 is not particularly limited, and specifically, from the group consisting of polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate and polymethylene terephthalate, and polyamides such as nylon and aramid. It is mentioned that it is a polymer material consisting of at least one selected material. Of these, polyesters and polyolefins are preferred in terms of excellent processability, strength, dimensional stability, and hydrophobicity.
 本発明の遮熱屋根下葺材1は、必要に応じてさらに止水層、粘着層、防滑層、補強層、防水層などを適宜積層しても良い。また、防水層を2層以上積層するなど、同じ効果を目的とした層を2層以上積層しても良い。 The heat-insulating roof underlaying material 1 of the present invention may be appropriately laminated with a water-stopping layer, an adhesive layer, an anti-slip layer, a reinforcing layer, a waterproof layer and the like as necessary. Moreover, you may laminate | stack two or more layers aiming at the same effect, such as laminating | stacking two or more waterproof layers.
 例えば、本発明の別の実施形態として、金属顔料2とバインダー3と粒子体4からなる金属膜層5の下に防水層6、止水層8、補強層7、防水層6が順に設けられた積層体を図2に示す。前述のように積層することにより、止水性、強度、防水性が向上する。 For example, as another embodiment of the present invention, a waterproof layer 6, a water blocking layer 8, a reinforcing layer 7, and a waterproof layer 6 are provided in this order under the metal film layer 5 composed of the metal pigment 2, the binder 3, and the particle body 4. The laminated body is shown in FIG. By laminating as described above, waterstop, strength and waterproofness are improved.
 前記止水層8としては吸水性樹脂が好ましく用いられ、釘穴などから水分が浸入することを防ぐ目的で設ける層であり、特に限定せず、ポリビニルアルコール系であるポリビニルアルコール架橋重合体等、アクリル系であるポリアクリル酸塩架橋体、アクリル酸ナトリウム- ビニルアルコール共重合体等、ポリエーテル系であるポリエチレングリコールジアクリレート架橋重合体等、その他の付加重合体では無水マレイン酸系重合体、ビニルピロリドン系重合体等、その他縮合系樹脂等を用いることができる。 As the water-stopping layer 8, a water-absorbing resin is preferably used, and is a layer provided for the purpose of preventing moisture from entering from a nail hole or the like, not particularly limited, polyvinyl alcohol-based polyvinyl alcohol cross-linked polymer, etc. Other addition polymers such as acrylic polyacrylate cross-linked products, sodium acrylate-vinyl alcohol copolymer, polyether-based polyethylene glycol diacrylate cross-linked polymers, maleic anhydride polymers, vinyl Pyrrolidone polymers and other condensation resins can be used.
 また、さらに別の実施形態としては、金属顔料2とバインダー3と粒子体4からなる金属膜層5の下に防水層6、補強層7、粘着層9が順に設けられた積層体を図3に示す。この実施形態のように積層することにより、粘着性が発揮され、施工性が向上し、さらには施工後に野地板などから屋根下葺材が滑落を軽減することができる。 As still another embodiment, a laminate in which a waterproof layer 6, a reinforcing layer 7, and an adhesive layer 9 are provided in this order under a metal film layer 5 composed of a metal pigment 2, a binder 3, and a particle body 4 is shown in FIG. Shown in By laminating as in this embodiment, adhesiveness is exhibited, workability is improved, and further, the roof underlaying material can reduce sliding from a field board after the construction.
 前記粘着層9としては、ポリオレフィン系、ポリアクリル系、ポリウレタン系、ポリエステル系、シリコーン系などの溶剤系樹脂、天然ゴム系、合成ゴム系などが挙げられる。なかでも温度による影響が少なく、被着体の極性に左右され難い合成系ゴムが好ましく使用される。 Examples of the adhesive layer 9 include solvent-based resins such as polyolefin-based, polyacryl-based, polyurethane-based, polyester-based, and silicone-based materials, natural rubber-based materials, and synthetic rubber-based materials. Among these, a synthetic rubber that is less affected by temperature and hardly affected by the polarity of the adherend is preferably used.
 前記遮熱屋根下葺材1は、総重量が100~500g/m2であることが好ましい。100g/m2以上であれば、施工の際に風の影響を受けにくい。また、500g/m2以下であれば、軽量であるため、施工時の作業性が向上する。 The heat shielding roof covering material 1 preferably has a total weight of 100 to 500 g / m 2 . If it is 100 g / m 2 or more, it is difficult to be affected by wind during construction. Moreover, since it is lightweight if it is 500 g / m < 2 > or less, the workability | operativity at the time of construction improves.
 前記遮熱屋根下葺材1は、総厚さが300~1000μmであることが好ましい。300μm以上であれば、作業中の破れ、裂けを軽減することができる。また、1000μm以下であれば、柔軟性が良く、施工性が向上する。 It is preferable that the total thickness of the heat insulating roof underlaying material 1 is 300 to 1000 μm. If it is 300 micrometers or more, the tearing and tearing during work can be reduced. Moreover, if it is 1000 micrometers or less, a softness | flexibility will be good and workability will improve.
 前記遮熱屋根下葺材1は、引張強度が長さ方向60N/cm以上、幅方向40N/cm以上、引裂強度は長さ方向10N以上、幅方向10N以上であることが好ましい。この強度を満たしていれば、作業時の破れや裂けを軽減することができる。 It is preferable that the thermal insulation roof underlay material 1 has a tensile strength of 60 N / cm or more in the length direction, 40 N / cm or more in the width direction, and a tear strength of 10 N or more in the length direction and 10 N or more in the width direction. If this strength is satisfied, tearing and tearing during work can be reduced.
 前記遮熱屋根下葺材1は、耐水圧が30kPa以上であることが好ましい。30kPa以上であれば、雨水などが表面に降り注いだとしても内部まで水分が浸入することを防ぐことができる。 It is preferable that the heat insulating roof underlaying material 1 has a water pressure resistance of 30 kPa or more. If it is 30 kPa or more, even if rainwater or the like falls on the surface, moisture can be prevented from entering the inside.
 以下に述べる実施例、比較例によって本発明の遮熱屋根下葺材を具体的に説明するが、本発明はこれらに限定されるものではない。
 本発明に係る実施例1乃至実施例7の屋根下葺材を製造し、その物性を測定した。なお、比較のため、比較例1乃至比較例4の屋根下葺材を製造、または入手し、その物性を測定した。実施例および比較例における各物性は、以下の方法により測定した。
The heat shielding roof underlaying material of the present invention will be specifically described with reference to the following examples and comparative examples, but the present invention is not limited thereto.
The roof underglazing materials of Examples 1 to 7 according to the present invention were manufactured, and their physical properties were measured. For comparison, the roof underglazing materials of Comparative Examples 1 to 4 were manufactured or obtained, and their physical properties were measured. Each physical property in Examples and Comparative Examples was measured by the following methods.
(1)金属顔料及び粒子体の粒径
 JIS K 5600-9-3に準じて金属顔料の粒径、及び、粒子体を測定した。尚、粒子体が熱膨張性マイクロカプセルの場合、熱膨張前の熱膨張性マイクロカプセルを測定した。具体的には、株式会社 島津製作所のレーザ回折式粒子径分布測定装置SALD-3100を用いて粒径分布を測定した。そして、体積ベースのメディアン径(D50)を算出して求めた。これらの結果は表中に記載していない。
(2)赤外線平均反射率
 各屋根下葺材の金属膜層5に対して赤外線平均反射率にて評価を行い、5~10μmの波長領域で平均60%以上のものを遮熱性ありと判断した。赤外線平均反射率はフーリエ変換赤外分光光度計((FT-IR) 株式会社 島津製作所製 IRPrestige-21)を用いて測定した。
(3)赤外線平均吸収率
 各屋根下葺材の金属膜層5に対して、赤外線平均吸収率にて評価を行い、5~10μmの波長領域で平均30%以下を遮熱性があると判断した。赤外線平均吸収率は、フーリエ変換赤外分光光度計((FT-IR) 株式会社 島津製作所製 IRPrestige-21)を用いて、赤外線平均反射率と赤外線平均透過率を測定し、前述した式により算出した。
(4)赤外線平均透過率
 各屋根下葺材のバインダー3に対して赤外線平均透過率にて評価を行った。また、バインダー3で使用される樹脂を厚み80μmになるように皮膜化したものを用意し、フーリエ変換赤外分光光度計((FT-IR) 株式会社 島津製作所製 IRPrestige-21)を用いて、赤外線平均透過率を測定した。5~10μmの波長領域で平均80%以上を金属顔料の遮熱性に影響がないと判断した。
(5)静摩擦係数
 静摩擦係数試験機(新東科学株式会社製 トライボギア静摩擦係数測定機TYPE:10)を用いて、各屋根下葺材の金属膜層5の表面とクラフト紙(JIS P 3401 クラフト紙1種)との静摩擦係数を測定した。
(6)耐水性
 JIS A 6111.7.6に準じて各屋根下葺材を測定した。30kPa以上であれば防水性ありと判断した。
(7)耐摩擦性
 JIS L 0849摩擦試験機II型法に準じて各屋根下葺材を処理し、金属膜層のはがれを確認した。
(8)遮熱性
 F型和瓦、通気層15mm、屋根下葺材の順で構成した屋根模型を作製し、F型和瓦の表面に、太陽光の代わりとしてハロゲンランプを照射し、F型和瓦の表面が80℃になった際の各屋根下葺材の裏面温度を、放射温度計で測定した。
 JIS A 6005に規定される厚さ1121μm、重量1099g/m2のアスファルトルーフィング940(田嶋応用化工株式会社製、Pカラー)との温度差を確認し、遮熱性の評価を行った。
   温度差[℃]=アスファルトルーフィング940の裏面温度[℃]- 各屋根下葺材の裏面温度[℃]
 評価基準
 ○:8℃以上
 △:6℃以上8℃未満
 ×:6℃未満
(9)防滑性
 6寸勾配(角度30.9638°)の屋根模型を作製し、野地板面に各屋根下葺材を張り付けたのち、屋根下葺材表面を歩行時の滑り具合を確認した。
 評価基準
 ○:滑り難く、安全に歩行できる
 △:少し滑るが、安全に歩行できる
 ×:滑り易く、危険である
(10)金属膜層の耐久性
 各屋根下葺材に下記(10)-1~(10)-3の各処理を行った後、目視にて腐食状態の確認を行い、かつ前述(1)記載の方法にて赤外線反射率を測定し、処理前後の保持率で金属膜層の腐食を確認する。
 評価基準
○:変色は見られない
△:やや変色が見られる
×:大部分に変色が見られる
(10)-1 耐曝露促進
 JIS A 6111.7.7の耐久性に準じて処理し、各屋根下葺材の金属膜層の反射率を確認した。
(10)-2 耐酸性
 JIS K 7114.4に準じて処理し、各屋根下葺材の金属膜層の反射率を確認した。
  試験温度23℃、浸漬時間1週間、試薬硝酸(濃度10質量%)
(10)-3 耐アルカリ性
 JIS A 6013.7.5.2のアルカリ処理に準じて処理し、各屋根下葺材の金属膜層の反射率を確認した。
(1) Particle diameter of metal pigment and particle body The particle diameter and particle body of the metal pigment were measured according to JIS K 5600-9-3. When the particle body was a thermally expandable microcapsule, the thermally expandable microcapsule before thermal expansion was measured. Specifically, the particle size distribution was measured using a laser diffraction particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation. The volume-based median diameter (D 50 ) was calculated and determined. These results are not shown in the table.
(2) Infrared average reflectance The metal film layer 5 of each roof underlaying material was evaluated by infrared average reflectance, and those having an average of 60% or more in the wavelength range of 5 to 10 μm were judged to have heat shielding properties. The infrared average reflectance was measured using a Fourier transform infrared spectrophotometer ((FT-IR), IR Prestige-21 manufactured by Shimadzu Corporation).
(3) Infrared average absorptivity The metal film layer 5 of each underfloor roofing material was evaluated by the average infrared absorptivity, and an average of 30% or less was judged to have a heat shielding property in a wavelength region of 5 to 10 μm. Infrared average absorptance is calculated by the above-mentioned formula by measuring the infrared average reflectance and the infrared average transmittance using a Fourier transform infrared spectrophotometer ((FT-IR) IR Prestige-21 manufactured by Shimadzu Corporation). did.
(4) Average Infrared Transmittance The binder 3 of each roofing roof material was evaluated with the average infrared transmittance. In addition, a resin used as the binder 3 with a thickness of 80 μm is prepared, and using a Fourier transform infrared spectrophotometer ((FT-IR) Shimadzu Corporation IR Prestige-21), Infrared average transmittance was measured. It was judged that an average of 80% or more in the wavelength range of 5 to 10 μm had no influence on the heat shielding property of the metal pigment.
(5) Static Friction Coefficient Using a static friction coefficient tester (Tribogear Static Friction Coefficient Measuring Machine TYPE: 10, manufactured by Shinto Kagaku Co., Ltd.), the surface of the metal film layer 5 of each roofing material and craft paper (JIS P 3401 craft paper 1) The coefficient of static friction with the seed) was measured.
(6) Water resistance Each roof covering material was measured according to JIS A 6111.7.6. If it was 30 kPa or more, it was judged to be waterproof.
(7) Friction resistance Each roof covering was processed according to JIS L 0849 friction tester type II method, and peeling of the metal film layer was confirmed.
(8) Thermal insulation A roof model constructed in the order of F-type Japanese roof tile, ventilation layer 15mm, and under roof roofing material is produced, and the surface of the F-type Japanese roof tile is irradiated with a halogen lamp instead of sunlight. The back surface temperature of each roof underglazing when the surface of the tile reached 80 ° C. was measured with a radiation thermometer.
The temperature difference with asphalt roofing 940 (Tajima Applied Chemical Co., Ltd., P color) having a thickness of 1121 μm and a weight of 1099 g / m 2 as defined in JIS A 6005 was confirmed, and the heat shielding property was evaluated.
Temperature difference [° C] = backside temperature of asphalt roofing 940 [° C]-backside temperature of each roofing material [° C]
Evaluation criteria ○: 8 ° C. or more Δ: 6 ° C. or more and less than 8 ° C. x: Less than 6 ° C. (9) Anti-slip property 6-gradient (angle 30.9638 °) roof model is prepared, and each roof underlaying material on the base plate surface After pasting, we confirmed the sliding condition when walking on the surface of the roof under the roof.
Evaluation criteria ○: It is difficult to slip and can walk safely. △: Slightly slip, but can walk safely. ×: Slippery and dangerous. (10) Durability of metal film layer. After each treatment of (10) -3, the corrosion state is visually confirmed, and the infrared reflectance is measured by the method described in (1) above, and the metal film layer is measured with the retention before and after the treatment. Check for corrosion.
Evaluation criteria ○: No discoloration is observed Δ: Some discoloration is observed ×: Discoloration is mostly observed (10) -1 Exposure resistance promotion Treated according to the durability of JIS A 61117.7 The reflectance of the metal film layer of the roof underglazing material was confirmed.
(10) -2 Acid resistance Treated according to JIS K 714.4, and the reflectivity of the metal film layer of each roofing roof material was confirmed.
Test temperature 23 ° C, immersion time 1 week, reagent nitric acid (concentration 10% by mass)
(10) -3 Alkali resistance Treated according to the alkali treatment of JIS A 6013.7.5.2, and the reflectance of the metal film layer of each roof covering material was confirmed.
[実施例1]
 補強層7としてポリエステル不織布(新麗企業株式会社製、100g/m2スパンボンド)の表面に、接着層としてポリエチレン樹脂(東ソー株式会社製 ペロトセン212)40μmを介して、防水層6としてポリエチレンフィルム(酒井化学工業株式会社、60μm)を積層した。
 次に、バインダー3(ポリオレフィン系樹脂、坂井化学工業株式会社製 ユープライP-3963、赤外線平均透過率88%、分子量17814)100重量部に対し、金属顔料2(アクリル系有機皮膜の表面処理を施した鱗片状アルミニウム、東洋アルミニウム株式会社製、FZ7640、粒径17μm)を20重量部、粒子体4(アクリル系熱膨張性マイクロカプセル、松本油脂製薬株式会社製、マイクロスフェアーF-30、粒径14μm、熱膨張倍率5倍、炭化水素n-ブタン)を10重量部、溶媒(トルエン)を50重量部配合した混合液を得た。混合液を、防水層6の上に、グラビアコーター機により塗工し、130℃の温度で乾燥、加熱処理し厚みが80μmとなるように塗膜し、金属膜層5を形成して、図1のような遮熱屋根下地材1を得た。評価結果を表1に示す。
[Example 1]
The reinforcing layer 7 is a polyester nonwoven fabric (100 g / m 2 spunbond, manufactured by Shinryo Co., Ltd.), the adhesive layer is a polyethylene resin (Perosen 212, manufactured by Tosoh Corporation), 40 μm, and the waterproof layer 6 is a polyethylene film ( Sakai Chemical Industry Co., Ltd., 60 μm) was laminated.
Next, 100 parts by weight of binder 3 (polyolefin-based resin, UPRY P-3963, Sakai Chemical Industries, Ltd., infrared average transmittance 88%, molecular weight 17814) is subjected to surface treatment of metal pigment 2 (acrylic organic coating). Scaled aluminum, Toyo Aluminum Co., Ltd., FZ7640, particle size 17 μm), 20 parts by weight, particle body 4 (acrylic thermally expandable microcapsule, Matsumoto Yushi Seiyaku Co., Ltd., Microsphere F-30, particle size 14 μm, a thermal expansion ratio of 5 times, 10 parts by weight of hydrocarbon n-butane) and 50 parts by weight of solvent (toluene) were obtained. The liquid mixture is applied onto the waterproof layer 6 by a gravure coater, dried at a temperature of 130 ° C., heat-treated and coated to a thickness of 80 μm to form a metal film layer 5. 1 was obtained. The evaluation results are shown in Table 1.
[実施例2]
 実施例1と同様に補強層7、接着層、防水層6、金属膜層5を形成したのち、補強層7であるポリエステル不織布(新麗企業株式会社製、100g/m2スパンボンド)の鉛直下側の表面に、粘着層9(合成ゴム系粘着剤、古藤工業株式会社製 G207K)をカレンダーコーティング法にて100μm厚になるよう塗膜して、図3のような遮熱屋根下地材1を得た。評価結果を表1に示す。
[Example 2]
After forming the reinforcing layer 7, the adhesive layer, the waterproof layer 6, and the metal film layer 5 in the same manner as in Example 1, the polyester nonwoven fabric (100 g / m 2 spunbond, manufactured by Shinryo Co., Ltd.) that is the reinforcing layer 7 is vertical. On the lower surface, a pressure-sensitive adhesive layer 9 (synthetic rubber-based adhesive, G207K, manufactured by Furuto Kogyo Co., Ltd.) is coated to a thickness of 100 μm by a calendar coating method, and the thermal barrier roof base material 1 as shown in FIG. Got. The evaluation results are shown in Table 1.
[実施例3]
 補強層7であるポリエステル不織布(新麗企業株式会社製、100g/m2スパンボンド)の鉛直上側の表面に、止水層8としてポリアクリル酸塩架橋体(日華化学株式会社社製 WP-01、吸水膨潤倍率400倍)を、グラビアコーターにより固形分が15g/m2になるように塗膜し、次に、止水層8を形成した面と反対面に、防水層6としてポリエチレン樹脂(東ソー株式会社製、ペロトセン212)を押出ラミネート法によって厚み60μmで押出、冷却して形成した後、実施例1と同様に接着層、防水層6、金属膜層5を形成して、図2のような遮熱屋根下地材1を得た。評価結果を表1に示す。
[Example 3]
A polyacrylate cross-linked product (WP-manufactured by Nikka Chemical Co., Ltd.) is formed on the surface on the vertical upper side of the polyester nonwoven fabric (100 g / m 2 spun bond, manufactured by Shinryo Co., Ltd.) as the reinforcing layer 7. 01, water absorption swelling ratio 400 times) with a gravure coater so that the solid content is 15 g / m 2 , and then a polyethylene resin as a waterproof layer 6 on the surface opposite to the surface on which the water blocking layer 8 is formed. (Tosoh Co., Ltd., Perotocene 212) was extruded and cooled by an extrusion laminating method to a thickness of 60 μm, and then the adhesive layer, waterproof layer 6 and metal film layer 5 were formed in the same manner as in Example 1. FIG. The heat insulation roof base material 1 like this was obtained. The evaluation results are shown in Table 1.
[実施例4]
 金属顔料2を、鱗片状から粉末状のアルミニウム(東洋アルミニウム株式会社製、91-2323T)に変更した以外は、実施例3と同様に加工して、遮熱屋根下地材1を得た。評価結果を表1に示す。
[Example 4]
Except that the metallic pigment 2 was changed from scale-like to powdery aluminum (91-2323T, manufactured by Toyo Aluminum Co., Ltd.), the heat-shielding roof base material 1 was obtained in the same manner as in Example 3. The evaluation results are shown in Table 1.
[実施例5] 
 粒子体4を、酸化亜鉛のフィラー(株式会社アムテック製、パナテトラWZ-0511L)に変更した以外は、実施例3と同様に加工して、遮熱屋根下地材1を得た。評価結果を表1に示す。
[Example 5]
Except that the particle body 4 was changed to a zinc oxide filler (Panatetra WZ-0511L manufactured by Amtec Co., Ltd.), it was processed in the same manner as in Example 3 to obtain a thermal barrier roof base material 1. The evaluation results are shown in Table 1.
[実施例6]
 バインダー3を、赤外線平均透過率が69%で分子量199130であるアクリル系樹脂(根上工業株式会社製、パラクロンW248E)に変更した以外は、実施例3と同様に加工して、遮熱屋根下地材1を得た。評価結果を表1に示す。
[Example 6]
Except for changing the binder 3 to an acrylic resin having an infrared average transmittance of 69% and a molecular weight of 199130 (manufactured by Negami Kogyo Co., Ltd., Paracron W248E), it is processed in the same manner as in Example 3 to provide a thermal barrier roof base material. 1 was obtained. The evaluation results are shown in Table 1.
[実施例7] 
 金属顔料2を、表面処理されていない粒径16μmの鱗片状アルミニウム(東洋アルミニウム株式会社製、7675NS)に変更した以外は、実施例3と同様に加工して、遮熱屋根下地材1を得た。評価結果を表1に示す。
[Example 7]
Except for changing the metallic pigment 2 to scaly aluminum having a particle size of 16 μm that is not surface-treated (Toyo Aluminum Co., Ltd., 7675NS), the same processing as in Example 3 was performed to obtain a heat-shielding roof base material 1. It was. The evaluation results are shown in Table 1.
[比較例1]
 粒子体4を配合しなかった以外は、実施例3と同様に加工して、遮熱屋根下地材1を得た。評価結果を表1に示す。
[Comparative Example 1]
Except that the particle body 4 was not blended, it was processed in the same manner as in Example 3 to obtain a heat shield roof base material 1. The evaluation results are shown in Table 1.
[比較例2]
 防水層6の上に、真空蒸着法にてアルミニウムを600Åの厚さになるよう蒸着し、その上にバインダー3の100重量部に対し、粒子体4を10重量部、溶媒としてトルエンを50重量部、添加した樹脂をグラビアコーターにより厚みが80μm付着するように塗膜した点以外は、実施例3と同様に加工して、遮熱屋根下地材1を得た。評価結果を表1に示す。
[Comparative Example 2]
Aluminum is vapor-deposited on the waterproof layer 6 by a vacuum vapor deposition method so as to have a thickness of 600 mm, and 10 parts by weight of the particles 4 and 50 parts by weight of toluene as a solvent with respect to 100 parts by weight of the binder 3 thereon. The heat-shielding roof base material 1 was obtained in the same manner as in Example 3 except that the added resin was coated with a gravure coater so that the thickness was 80 μm. The evaluation results are shown in Table 1.
[比較例3]
 防水層6を押出ラミネート法によって積層しなかった点以外は、実施例3と同様に加工して、遮熱屋根下地材1を得た。評価結果を表1に示す。
[Comparative Example 3]
Except that the waterproof layer 6 was not laminated by the extrusion laminating method, it was processed in the same manner as in Example 3 to obtain a thermal barrier roof base material 1. The evaluation results are shown in Table 1.
[比較例4]
 JIS A6005に規定されるアスファルトルーフィング940(田嶋応用化工株式会社製 Pカラー)の評価結果を表1に示す。なお、金属膜層を有していないため、「耐摩耗性」、「金属膜層の耐久性」は評価しなかった。
[Comparative Example 4]
Table 1 shows the evaluation results of asphalt roofing 940 (P color, manufactured by Tajima Kappa Kako Co., Ltd.) defined in JIS A6005. Since the metal film layer was not provided, “wear resistance” and “durability of metal film layer” were not evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
1 遮熱屋根下葺材
2 金属顔料
3 バインダー
4 粒子体
5 金属膜層
6 防水層
7 補強層
8 止水層
9 粘着層


 
DESCRIPTION OF SYMBOLS 1 Heat shielding underfloor material 2 Metal pigment 3 Binder 4 Particle body 5 Metal film layer 6 Waterproof layer 7 Reinforcement layer 8 Water stop layer 9 Adhesive layer


Claims (5)

  1.  鉛直方向の上側の最外層が金属顔料、バインダー、および粒子体を含む金属膜層であり、前記金属膜層の下層に少なくとも補強層と防水層を有する遮熱屋根下葺材であって、前記金属膜層の5~10μmの波長領域における赤外線平均反射率が60%以上で、かつ5~10μmの波長領域における赤外線平均吸収率が30%以下であることを特徴とする遮熱屋根下葺材。 The outermost layer on the upper side in the vertical direction is a metal film layer containing a metal pigment, a binder, and particles, and is a heat insulating roof covering material having at least a reinforcing layer and a waterproof layer under the metal film layer, A heat shield roof covering material characterized in that an infrared average reflectance in a wavelength region of 5 to 10 μm of a film layer is 60% or more and an infrared average absorptance in a wavelength region of 5 to 10 μm is 30% or less.
  2.  前記金属顔料が鱗片状である請求項1に記載の遮熱屋根下葺材。 The heat insulating roof covering material according to claim 1, wherein the metal pigment is scaly.
  3.  前記金属顔料の表面に、有機被膜処理、無機被膜処理、酸化被膜処理、水酸化被膜処理から選択される少なくとも1の処理が施されている請求項1または2に記載の遮熱屋根下葺材。 The heat shield roof covering material according to claim 1 or 2, wherein the surface of the metal pigment is subjected to at least one treatment selected from an organic coating treatment, an inorganic coating treatment, an oxide coating treatment, and a hydroxide coating treatment.
  4.  前記粒子体が、無機系粉末および熱膨張性マイクロカプセルから選択される少なくとも1種の粒子体である請求項1乃至3のいずれか1項に記載の遮熱屋根下葺材。 4. The thermal insulation roof covering material according to any one of claims 1 to 3, wherein the particulate body is at least one particulate body selected from inorganic powder and thermally expandable microcapsules.
  5.  前記バインダーの5~10μmの波長領域における赤外線透過率が80%以上である請求項1乃至4のいずれか1項に記載の遮熱屋根下葺材。 The heat-shielding roof covering material according to any one of claims 1 to 4, wherein the binder has an infrared transmittance of 80% or more in a wavelength region of 5 to 10 µm.
PCT/JP2015/004274 2014-08-27 2015-08-25 Heat-shielding roofing underlayment material WO2016031236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016544962A JP6691867B2 (en) 2014-08-27 2015-08-25 Heat shield roofing material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014173057 2014-08-27
JP2014-173057 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016031236A1 true WO2016031236A1 (en) 2016-03-03

Family

ID=55399150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004274 WO2016031236A1 (en) 2014-08-27 2015-08-25 Heat-shielding roofing underlayment material

Country Status (2)

Country Link
JP (1) JP6691867B2 (en)
WO (1) WO2016031236A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055463A (en) * 2019-10-01 2021-04-08 セーレン株式会社 Underroof material
JP7410266B1 (en) 2022-12-22 2024-01-09 東洋紡エムシー株式会社 Protective materials and clothing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145083A1 (en) * 2006-06-16 2007-12-21 Achilles Corporation Dark color sheet-shaped material having light reflective properties in near infrared range
JP2009520844A (en) * 2005-12-21 2009-05-28 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング White pigment reflecting IR radiation, its manufacture and use
JP2010043450A (en) * 2008-08-12 2010-02-25 Fukuvi Chem Ind Co Ltd Heat-shield, moisture-permeable and waterproof sheet
JP2010043496A (en) * 2008-08-18 2010-02-25 Seiren Co Ltd Thermal-insulating moisture-permeable waterproof sheet for construction
JP2010100051A (en) * 2008-09-29 2010-05-06 Dainippon Printing Co Ltd Decorative sheet
JP2012066578A (en) * 2010-08-24 2012-04-05 Aisin Chemical Co Ltd Heat shield structure and heat shield coating composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520844A (en) * 2005-12-21 2009-05-28 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング White pigment reflecting IR radiation, its manufacture and use
WO2007145083A1 (en) * 2006-06-16 2007-12-21 Achilles Corporation Dark color sheet-shaped material having light reflective properties in near infrared range
JP2010043450A (en) * 2008-08-12 2010-02-25 Fukuvi Chem Ind Co Ltd Heat-shield, moisture-permeable and waterproof sheet
JP2010043496A (en) * 2008-08-18 2010-02-25 Seiren Co Ltd Thermal-insulating moisture-permeable waterproof sheet for construction
JP2010100051A (en) * 2008-09-29 2010-05-06 Dainippon Printing Co Ltd Decorative sheet
JP2012066578A (en) * 2010-08-24 2012-04-05 Aisin Chemical Co Ltd Heat shield structure and heat shield coating composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021055463A (en) * 2019-10-01 2021-04-08 セーレン株式会社 Underroof material
JP7308714B2 (en) 2019-10-01 2023-07-14 セーレン株式会社 roof underlayment
JP7410266B1 (en) 2022-12-22 2024-01-09 東洋紡エムシー株式会社 Protective materials and clothing

Also Published As

Publication number Publication date
JPWO2016031236A1 (en) 2017-06-22
JP6691867B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
JP5365140B2 (en) Solar battery backsheet
JP5171473B2 (en) Thermal barrier breathable waterproof sheet for construction
KR101600252B1 (en) laminated sheet
US20080248257A1 (en) Highly reflective and highly emissive film laminate
NZ541741A (en) Multilayer slip resistant roofing underlay sheet material
TWI377986B (en) Photocatalyst hard coat film
EP3290487B1 (en) Antifouling composition, antifouling sheet and method for producing antifouling sheet
WO2007064322A1 (en) Composition of a weatherable roofing composite product
JP2011142179A (en) Solar cell module
CN106688107B (en) Flame retardant systems and protective layers or coatings
WO2016031236A1 (en) Heat-shielding roofing underlayment material
JP3129145U (en) Heat shield sheet
JP5326496B2 (en) Thermal barrier sheet
JP5324389B2 (en) Heat-permeable and moisture-permeable waterproof sheet
JP6115852B2 (en) Roofing material and manufacturing method thereof
JP6724293B2 (en) Heat shield sheet
KR200443505Y1 (en) Anti-flammable insulating film
JP6578208B2 (en) Thermal barrier sheet
JP6789816B2 (en) Under-roofing material with adhesive layer
JP2019077581A (en) Concrete curing tape
JP2013042016A (en) Polymer sheet for solar cell, back sheet for solar cell, and solar cell module
JP6600978B2 (en) Heat shield sheet
JP2010030203A (en) Thermally insulative film material
JP2016094735A (en) Waterproof sheet for building substrate
TW201511310A (en) Rearside protective sheet for solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835786

Country of ref document: EP

Kind code of ref document: A1