WO2016030565A1 - Battery with polymer electrolyte - Google Patents

Battery with polymer electrolyte Download PDF

Info

Publication number
WO2016030565A1
WO2016030565A1 PCT/ES2015/070633 ES2015070633W WO2016030565A1 WO 2016030565 A1 WO2016030565 A1 WO 2016030565A1 ES 2015070633 W ES2015070633 W ES 2015070633W WO 2016030565 A1 WO2016030565 A1 WO 2016030565A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
monopolar
plates
polymer electrolyte
battery
Prior art date
Application number
PCT/ES2015/070633
Other languages
Spanish (es)
French (fr)
Inventor
Pedro Luis GARCÍA YBARRA
José Luis CASTILLO GIMENO
Beatriz MARTÍNEZ VÁZQUEZ
Original Assignee
Universidad Nacional De Educación A Distancia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Nacional De Educación A Distancia filed Critical Universidad Nacional De Educación A Distancia
Publication of WO2016030565A1 publication Critical patent/WO2016030565A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to an improved polymer electrolyte fuel cell with application in the energy sector, for example for automotive and portable systems, and in particular in direct small and medium scale power generation.
  • Fuel cells are electrochemical devices formed by the connection of unit cells, each consisting basically of two electrodes separated by an electrolyte.
  • Polymeric electrolyte (PEM) batteries incorporate at least two reactive fluids, liquid or gaseous, that act as fuel and oxidizer.
  • the electrolyte used is impermeable to the passage of the reagents and these are fed separately through the porous electrodes, anode and cathode, respectively.
  • each of the electrodes is in contact with a system of channels that distribute the fluid along the surface of the electrode.
  • the plate material that distributes the reactive fluids and on which said channels are printed is a good electronic conductor. This allows the serial connection of adjacent cells to be made, so that the channel system of an electrode is connected to the opposite sign electrode channel system of the adjacent cell. Both reactive fluid distribution systems are therefore part of the same component, called bipolar plate.
  • the two independent channel systems have been engraved on opposite sides of the bipolar plate, typically reducing the material with a milling machine. Therefore, the thickness "e" of a bipolar layer turns out to be equal to the sum of the depths of the channels on both sides plus the thickness of the remaining material between them (Fig. 1).
  • the battery is closed at both ends with monopolar plates with channels printed only on the operating side in the corresponding cell, called collector end plates. These collector plates confine the battery and typically subject it to a certain pressure to ensure the tightness of the entire assembly.
  • a single cell cell is composed of the electrodes, anode A and cathode C, separated by electrolyte E and closed by monopolar plates M, being able to be represented by the MAECM sequence.
  • MEA Membrane Electrode Assembly
  • the serial connection of the cells is made through a bipolar plate B, so that it would be represented by the MAECBAECM sequence.
  • the model can represent batteries of more units without juxtaposing them by means of bipolar plates, that is: MAECBAECBAECB BAECM
  • US Patent 7585577 B2 describes PEM methanol batteries as a liquid reagent made of monopolar plates, the structure of which involves a particular assembly of individually sealed unit cells. The plates that close these individual batteries on each side are monopolar plates grooved only on one side and in contact with the anode or cathode, respectively. The distribution sequence would then be MAECM.
  • the problem of the technique is the need to improve the operability of the current electrolytic batteries by lightening the material and reducing its size.
  • the solution proposed by the present invention is the replacement of bipolar plates with monopolar plates with through channels that open the plate from side to side operating either as an anode or as a common cathode to two adjacent electrolytic cells that are connected in parallel. Description of the invention
  • the present invention is a PEM, comprising at least one monopolar plate separating two electrolytic cells, wherein said monopolar plate has a through slot through which a reactive fluid circulates, said reactive fluid feeding at the same time the two juxtaposed electrodes, one on each side of the plate.
  • This monopolar plate can be said to have dual functionality.
  • said monopolar plate has more than one through slot.
  • said monopolar plate is connected to the anodic terminal, and in one more aspect is connected to the cathodic terminal.
  • the "dual monopolar plate" of the present invention simultaneously serves two juxtaposed electrodes of two adjacent unit cells leading naturally to the parallel connection of the unit cells.
  • the concept of a battery in which these monopolar plates are integrated is the classic one, in the sense that the unit cells are distributed one after the other, forming among all a battery that ends up being compressed with collector end plates, that provide solidity and tightness to the whole.
  • the invention replaces the bipolar plates of the technique with monopolar plates that connect electrodes of the same sign from adjacent cells.
  • the channels are grooves that open the plate from side to side, allowing the reactive fluid to feed the two juxtaposed electrodes at the same time.
  • these unipolar plates are called dual D plates. With this arrangement the cells must be connected in parallel, so that in the operating mode of a battery consisting of two cells, the dual plate D would be connected and the Porous electrodes adjacent C to the cathodic terminal, and to the anodic terminal would be the final monopolar plates M and adjacent porous electrodes A previously interconnected, as follows:
  • a four cell stack would respond to the following scheme:
  • a very preferable aspect of the invention is a PEM comprising "n" electrolytic cells, in which each of said cells is separated from the adjacent cell by a monopolar plate, said monopolar plate having a slot through the a reactive fluid circulating that feeds at the same time the two electrodes juxtaposed one on each side of the plate, in which said monopolar plates are successively of opposite sign and in which "n” is an integer between 2 and 150, more preferably between 2 and 100, more preferably between 50 and 100, even more preferable between 75 and 100, most preferably 100.
  • said monopolar plate has more than one through slot. The number of electrolytic cells will depend on the application of said battery depending on the total power to be developed and the geometry of the available volume.
  • said monopolar plate is of a unique coil and in another aspect it is of parallel coils. In the latter case, there cannot be a single reagent input common to the different channels, but the input of each must be separated from the others so that the spacing between them serves as support for the material between channels.
  • the invention also comprises the single-coil single-pole plate itself and the parallel-coil monopolar plate, respectively.
  • a further aspect is the PEM of the invention in which said monopolar plate is a corrugated plate.
  • the typical topology of several parallel channels in coil is translated into a series of parallel grooves separated by strips of material, also in the form of a coil or two combs interspersed in the case of a single channel.
  • the plates of the invention are made of stainless steel because their strength and toughness allow processing by die cutting or laser cutting or water.
  • Another preferable material of the invention is the electrically conductive plastics, which allow easy manufacturing of the monopolar plates by molding and imply a substantial reduction in the weight of the battery.
  • Another preferable material would be a composite of graphite or carbon fiber, whose possible porous consistency does not in this case have any difficulty being a monopolar plate.
  • the present invention is conceptualized for PEM or polymer electrolyte fuel cells and gaseous or liquid reagents. It proposes the use of dual monopolar plates, which are essentially grooved plates, replacing the bipolar plates common in the art.
  • the main advantage therefore of the invention over the technique is a faster and cheaper manufacturing of the electrolytic cell.
  • the high costs of the battery components are one of the main problems that prevent their implementation on a large scale.
  • bipolar plates are one of the most expensive because the most common manufacturing procedure consists in roughing the chosen material, typically graphite or steel, by precision milling to mold the distribution channels of reactive fluids on both sides. of the plate.
  • the reagent distribution channels are grooves that slide the plate from one side to the other, so that they can be manufactured by simple die cutting or mechanical cutting, laser or water depending on the material and the accuracy required.
  • the result is that the difference in the cost of the cell of the invention in the proportional part corresponding to the monopolar plates is of the order of ten times less than the cost of the bipolar plates of a conventional PEM battery.
  • Another advantage over the technique is the reduction of the size and weight of the cell of the invention.
  • the length of a pile, not counting the collector plates of the ends, is given by the sum of the thicknesses of the MEAs and mainly of the plates bipolar, which are the ones that contribute most to the total length.
  • the thickness of these bipolar plates is typically about 3 mm, the channels on each side being for the passage of reactive fluids 1 mm deep.
  • the thickness of a dual monopolar plate according to the present invention is the depth of the channel, which typically becomes 1 mm, that is, one third of the thickness of a bipolar plate of the art. Most of the weight of the battery is due to the weight of the bipolar plates, therefore also the weight of the battery is markedly reduced if dual monopolar plates are used.
  • the PEM battery of the invention maintains the technical performance of the conventional batteries of the technique of similar characteristics. In particular, with the same active surface per electrode and the same number of unit cells it develops the same electrical power, although with a current of greater amperage and lower voltage as a result of the parallel connection of the unit cells.
  • P / P m 2 (l / l m ) - (l / l m ) 2 as shown in curve 1 of Figure 4.
  • Figure 1 Schematic of a cross section of a bipolar parallel channel plate used in the art, "e”: Total thickness.
  • FIG. 1a Dual monopolar plate with single coil type channel.
  • Figure 2b Enlargement in three dimensions of the circumferential detail of Figure 2a.
  • FIG. 3 Dual monopolar plate with parallel coil type channels.
  • Figure 4 Comparative scheme of the power generated by an individual unit cell (line 1) and that of a battery composed of two unit cells, either connected in series (line 2) as in the current technique or connected in parallel (line 3 ) according to the present invention.
  • Figure 5 Particular embodiment of the monopolar plate of Figure 2, with lateral widening for interconnection. The dimensions are in millimeters.
  • Example 1 Characteristics of monopolar steel plate.
  • the material is a 1 mm thick stainless steel sheet with good corrosion resistance.
  • WO 201 1/154576 A1 describes the use of corrugated metal plates as bipolar plates.
  • the concept of corrugated plate, which forms a series of parallel channels alternating on both sides of the plate, turns out to be a very suitable configuration for use as a dual monopolar plate.
  • the corrugated plate made of a corrosion-resistant steel, is attached to a frame of conductive material where through holes have been made for reactive fluids, two of which connect to the internal cavity where the corrugated plate is located to feed , with the corresponding reagent, the electrodes of the adjacent MEAs to be juxtaposed to the monopolar plate, as indicated in the general description of the invention.

Abstract

The invention relates to a battery with a polymer electrolyte (PEM), comprising at least one unipolar plate that separates two electrolytic cells, wherein said unipolar plate has a groove passing through same, via which a reactive fluid circulates, said reactive fluid simultaneously supplying the two adjacent electrodes arranged one on each side of the plate. The substitution of the bipolar plates of prior art with unipolar plates comprising through-channels operating as an anode or cathode at the same time in two adjacent electrolytic cells mounted in parallel, improves the operability of the current electrolytic batteries, reducing the weight and size of the material.

Description

PILA CON ELECTROLITO POLIMÉRICO  BATTERY WITH POLYMER ELECTROLYTE
Campo de la invención Field of the Invention
La presente invención refiere a una pila de combustible con electrolito polimérico mejorada con aplicación en el sector energético, por ejemplo para automoción y sistemas portátiles, y en particular en la generación eléctrica directa a pequeña y media escala.  The present invention relates to an improved polymer electrolyte fuel cell with application in the energy sector, for example for automotive and portable systems, and in particular in direct small and medium scale power generation.
Antecedentes de la invención Background of the invention
Las pilas de combustible son dispositivos electroquímicos formados por la conexión de celdas unidad, cada una de ellas compuesta básicamente de dos electrodos separados por un electrolito. Fuel cells are electrochemical devices formed by the connection of unit cells, each consisting basically of two electrodes separated by an electrolyte.
Las pilas con electrolito polimérico (PEM) incorporan al menos dos fluidos reactivos, líquidos o gaseosos, que actúan como combustible y comburente. El electrolito utilizado es impermeable al paso de los reactivos y éstos se alimentan separadamente a través de los electrodos porosos, ánodo y cátodo, respectivamente. Para ello, cada uno de los electrodos está en contacto con un sistema de canales que distribuyen el fluido por la superficie del electrodo. Polymeric electrolyte (PEM) batteries incorporate at least two reactive fluids, liquid or gaseous, that act as fuel and oxidizer. The electrolyte used is impermeable to the passage of the reagents and these are fed separately through the porous electrodes, anode and cathode, respectively. For this, each of the electrodes is in contact with a system of channels that distribute the fluid along the surface of the electrode.
El material de la placa que distribuye los fluidos reactivos y sobre la que se imprimen dichos canales es un buen conductor electrónico. Esto permite realizar la conexión en serie de celdas contiguas, de modo que el sistema de canales de un electrodo está conectado con el sistema de canales del electrodo de signo contrario de la celda contigua. Ambos sistemas de distribución de fluidos reactivos forman parte por tanto de un mismo componente, denominado placa bipolar. En las caras opuestas de la placa bipolar se han grabado los dos sistemas de canales independientes, rebajando el material típicamente con una fresadora. Por lo tanto, el grosor "e" de una capa bipolar resulta ser igual a la suma de las profundidades de los canales de ambos lados más el espesor del material remanente entre ambos (Fig. 1 ). The plate material that distributes the reactive fluids and on which said channels are printed is a good electronic conductor. This allows the serial connection of adjacent cells to be made, so that the channel system of an electrode is connected to the opposite sign electrode channel system of the adjacent cell. Both reactive fluid distribution systems are therefore part of the same component, called bipolar plate. The two independent channel systems have been engraved on opposite sides of the bipolar plate, typically reducing the material with a milling machine. Therefore, the thickness "e" of a bipolar layer turns out to be equal to the sum of the depths of the channels on both sides plus the thickness of the remaining material between them (Fig. 1).
Por otra parte, la pila se cierra por ambos extremos con placas monopolares con canales impresos solamente por el lado operativo en la célula correspondiente, denominadas placas terminales colectoras. Estas placas colectoras confinan la pila y típicamente la someten a una cierta presión para asegurar la estanqueidad de todo el conjunto. Así, una pila de una única celda está compuesta por los electrodos, ánodo A y cátodo C, separados por el electrolito E y cerrada por placas monopolares M, pudiendo representarse por la sucesión MAECM. En la técnica actual existen montajes membrana-electrodo (MEA, Membrane Electrode Assembly) que constan de un cuerpo poroso unido solidariamente al electrolito polimérico, que a su vez está unido a otro cuerpo poroso, cada uno de dichos cuerpos porosos actuando como cátodo o ánodo respectivamente según su diseño en cuanto a contenido catalítico, estructura, etc. Así, la sucesión AEC anterior constituiría un MEA. On the other hand, the battery is closed at both ends with monopolar plates with channels printed only on the operating side in the corresponding cell, called collector end plates. These collector plates confine the battery and typically subject it to a certain pressure to ensure the tightness of the entire assembly. Thus, a single cell cell is composed of the electrodes, anode A and cathode C, separated by electrolyte E and closed by monopolar plates M, being able to be represented by the MAECM sequence. In the current technique there are membrane-electrode assemblies (MEA, Membrane Electrode Assembly) that consist of a porous body joined in solidarity with the polymer electrolyte, which in turn is attached to another porous body, each of said porous bodies acting as cathode or anode respectively according to its design in terms of catalytic content, structure, etc. Thus, the previous AEC succession would constitute an MEA.
La conexión en serie de las celdas se realiza a través de una placa bipolar B, de modo que vendría representada por la sucesión MAECBAECM. El modelo puede representar pilas de más unidades sin más que yuxtaponerlas mediante placas bipolares, es decir: MAECBAECBAECB BAECM The serial connection of the cells is made through a bipolar plate B, so that it would be represented by the MAECBAECM sequence. The model can represent batteries of more units without juxtaposing them by means of bipolar plates, that is: MAECBAECBAECB BAECM
Esta disposición presenta sin embargo el inconveniente de la gran cantidad de material necesario para la fabricación de pilas en serie, y el tamaño y peso de la pila resultante. This arrangement however has the disadvantage of the large amount of material necessary for the manufacture of batteries in series, and the size and weight of the resulting battery.
La patente US 7585577 B2 describe pilas PEM de metanol como reactivo líquido fabricadas con placas monopolares, cuya estructura implica un ensamblado particular de celdas unidad individualmente estancas. Las placas que cierran estas pilas individuales a cada lado son placas monopolares acanaladas sólo en uno de sus lados y en contacto con el ánodo o con el cátodo, respectivamente. La secuencia de distribución sería entonces MAECM. US Patent 7585577 B2 describes PEM methanol batteries as a liquid reagent made of monopolar plates, the structure of which involves a particular assembly of individually sealed unit cells. The plates that close these individual batteries on each side are monopolar plates grooved only on one side and in contact with the anode or cathode, respectively. The distribution sequence would then be MAECM.
El problema de la técnica es la necesidad de mejorar la operatividad de las pilas electrolíticas actuales aligerando el material y reduciendo su tamaño. La solución que propone la presente invención es la sustitución de las placas bipolares por placas monopolares con canales pasantes que calan la placa de lado a lado operando sea como ánodo o como cátodo común a dos celdas electrolíticas contiguas que se conectan en paralelo. Descripción de la invención The problem of the technique is the need to improve the operability of the current electrolytic batteries by lightening the material and reducing its size. The solution proposed by the present invention is the replacement of bipolar plates with monopolar plates with through channels that open the plate from side to side operating either as an anode or as a common cathode to two adjacent electrolytic cells that are connected in parallel. Description of the invention
La presente invención es una PEM, que comprende al menos una placa monopolar que separa dos celdas electrolíticas, en la que dicha placa monopolar presenta una ranura pasante por la que circula un fluido reactivo, siendo que dicho fluido reactivo alimenta al mismo tiempo los dos electrodos yuxtapuestos, uno a cada lado de la placa. Esta placa monopolar se puede decir que tiene una funcionalidad dual. En un aspecto de la invención, dicha placa monopolar presenta más de una ranura pasante. En otro aspecto de la invención, dicha placa monopolar se conecta al terminal anódico, y en un aspecto más se conecta al terminal catódico. The present invention is a PEM, comprising at least one monopolar plate separating two electrolytic cells, wherein said monopolar plate has a through slot through which a reactive fluid circulates, said reactive fluid feeding at the same time the two juxtaposed electrodes, one on each side of the plate. This monopolar plate can be said to have dual functionality. In one aspect of the invention, said monopolar plate has more than one through slot. In another aspect of the invention, said monopolar plate is connected to the anodic terminal, and in one more aspect is connected to the cathodic terminal.
La "placa monopolar dual" de la presente invención sirve a la vez a dos electrodos yuxtapuestos de dos celdas unidad adyacentes conduciendo de forma natural a la conexión en paralelo de las celdas unidad. Por otro lado, el concepto de pila en el que se integran estas placas monopolares es el clásico, en el sentido de que las celdas unidad se distribuyen una a continuación de la otra formando entre todas una pila que se acaba comprimiendo con placas terminales colectoras, que proporcionan solidez y estanqueidad al conjunto. The "dual monopolar plate" of the present invention simultaneously serves two juxtaposed electrodes of two adjacent unit cells leading naturally to the parallel connection of the unit cells. On the other hand, the concept of a battery in which these monopolar plates are integrated is the classic one, in the sense that the unit cells are distributed one after the other, forming among all a battery that ends up being compressed with collector end plates, that provide solidity and tightness to the whole.
La invención sustituye las placas bipolares de la técnica por placas monopolares que conectan electrodos del mismo signo de celdas contiguas. En las placas monopolares de la invención los canales son ranuras que calan la placa de lado a lado, permitiendo que el fluido reactivo alimente al mismo tiempo a los dos electrodos yuxtapuestos. En el alcance de la presente invención, estas placas unipolares se denominan placas duales D. Con esta disposición las celdas han de conectarse en paralelo, de forma que en el modo operativo de una pila constituida por dos células se conectarían la placa dual D y los electrodos porosos adyacentes C al terminal catódico, y al terminal anódico lo harían las placas monopolares finales M y los electrodos porosos adyacentes A previamente interconectados, tal como sigue: The invention replaces the bipolar plates of the technique with monopolar plates that connect electrodes of the same sign from adjacent cells. In the monopolar plates of the invention the channels are grooves that open the plate from side to side, allowing the reactive fluid to feed the two juxtaposed electrodes at the same time. Within the scope of the present invention, these unipolar plates are called dual D plates. With this arrangement the cells must be connected in parallel, so that in the operating mode of a battery consisting of two cells, the dual plate D would be connected and the Porous electrodes adjacent C to the cathodic terminal, and to the anodic terminal would be the final monopolar plates M and adjacent porous electrodes A previously interconnected, as follows:
Cátodo  Cathode
r
Figure imgf000005_0001
r
Figure imgf000005_0001
Una realización preferible de la invención es una pila de tres células constituida de manera análoga según el esquema:  A preferable embodiment of the invention is a three cell stack constituted analogously according to the scheme:
Cátodo Cathode
, í ,  , í,
MAECDCEADAECM  MAECDCEADAECM
Anodo En el que la primera placa dual junto con los electrodos porosos C adyacentes se conectan con la placa final catódica, y la segunda placa dual con los electrodos porosos A adyacentes se conectan con la placa final anódica. Anode In which the first dual plate together with the adjacent porous electrodes C are connected with the cathodic end plate, and the second dual plate with the adjacent porous electrodes A are connected with the anodic end plate.
En una realización preferible más de la invención, una pila de cuatro celdas respondería al esquema siguiente: In a more preferred embodiment of the invention, a four cell stack would respond to the following scheme:
Cátodo Cathode
t  t
MAECDCEADAECDCEAM
Figure imgf000006_0001
y así sucesivamente.
MAECDCEADAECDCEAM
Figure imgf000006_0001
and so on.
De forma que un aspecto muy preferible de la invención es una PEM que comprende "n" celdas electrolíticas, en que cada una de dichas celdas está separada de la celda adyacente por una placa monopolar, siendo que dicha placa monopolar presenta una ranura pasante por la que circula un fluido reactivo que alimenta al mismo tiempo los dos electrodos yuxtapuestos uno a cada lado de la placa, en que dichas placas monopolares son sucesivamente de signo contrario y en que "n" es número entero entre 2 y 150, más preferiblemente entre 2 y 100, más preferible entre 50 y 100, aún más preferible entre 75 y 100, lo más preferible 100. En otro aspecto, dicha placa monopolar presenta más de una ranura pasante. El número de celdas electrolíticas dependerá de la aplicación de dicha pila en función de la potencia total a desarrollar y de la geometría del volumen disponible. So that a very preferable aspect of the invention is a PEM comprising "n" electrolytic cells, in which each of said cells is separated from the adjacent cell by a monopolar plate, said monopolar plate having a slot through the a reactive fluid circulating that feeds at the same time the two electrodes juxtaposed one on each side of the plate, in which said monopolar plates are successively of opposite sign and in which "n" is an integer between 2 and 150, more preferably between 2 and 100, more preferably between 50 and 100, even more preferable between 75 and 100, most preferably 100. In another aspect, said monopolar plate has more than one through slot. The number of electrolytic cells will depend on the application of said battery depending on the total power to be developed and the geometry of the available volume.
En un aspecto más de la invención dicha placa monopolar es de serpentín único y en otro aspecto diferente es de serpentines paralelos. En este último caso no puede haber una única entrada de reactivo común a los distintos canales, sino que la entrada de cada uno ha de estar separada de las demás para que el espaciado entre ellas sirva de soporte al material entre canales. La invención también comprende la propia placa monopolar de serpentín único y la placa monopolar de serpentines paralelos, respectivamente. Un aspecto más es la PEM de la invención en que dicha placa monopolar es una placa corrugada. In a further aspect of the invention said monopolar plate is of a unique coil and in another aspect it is of parallel coils. In the latter case, there cannot be a single reagent input common to the different channels, but the input of each must be separated from the others so that the spacing between them serves as support for the material between channels. The invention also comprises the single-coil single-pole plate itself and the parallel-coil monopolar plate, respectively. A further aspect is the PEM of the invention in which said monopolar plate is a corrugated plate.
En las placas de la invención la topología típica de varios canales paralelos en serpentín se traduce en una serie de ranuras paralelas separadas por franjas de material, también en forma de serpentín o de dos peines intercalados en el caso de un único canal. Preferiblemente, las placas de la invención son de acero inoxidable porque su resistencia y tenacidad permiten el procesamiento por troquelado o corte con láser o al agua. Otro material preferible de la invención son los plásticos conductores de electricidad, que permiten una fácil fabricación de las placas monopolares mediante moldeo e implican una rebaja sustancial del peso de la pila. Otro material preferible sería un composite de grafito o fibra de carbono, cuya posible consistencia porosa no reviste en este caso ninguna dificultad al ser una placa monopolar. In the plates of the invention, the typical topology of several parallel channels in coil is translated into a series of parallel grooves separated by strips of material, also in the form of a coil or two combs interspersed in the case of a single channel. Preferably, the plates of the invention are made of stainless steel because their strength and toughness allow processing by die cutting or laser cutting or water. Another preferable material of the invention is the electrically conductive plastics, which allow easy manufacturing of the monopolar plates by molding and imply a substantial reduction in the weight of the battery. Another preferable material would be a composite of graphite or carbon fiber, whose possible porous consistency does not in this case have any difficulty being a monopolar plate.
La presente invención está conceptualizada para las pilas PEM o de combustible de electrolito polimérico y reactivos gaseosos o líquidos. Propone el uso de placas monopolares duales, que son esencialmente placas surcadas por ranuras, en sustitución de las placas bipolares habituales en la técnica. The present invention is conceptualized for PEM or polymer electrolyte fuel cells and gaseous or liquid reagents. It proposes the use of dual monopolar plates, which are essentially grooved plates, replacing the bipolar plates common in the art.
La principal ventaja por tanto de la invención sobre la técnica es una fabricación de la pila electrolítica más rápida y barata. Los altos costes de los componentes de las pilas son uno de los principales problemas que impiden su implantación a gran escala. Entre estos componentes, las placas bipolares son uno de los más costosos porque el procedimiento de fabricación más habitual consiste en desbastar el material elegido, típicamente grafito o acero, mediante un fresado de precisión para moldear los canales de distribución de los fluidos reactivos a ambos lados de la placa. En la placa unipolar dual de la presente invención los canales de distribución de los reactivos son ranuras que calan la placa de un lado a otro, de modo que pueden fabricarse por simple troquelado o corte mecánico, a láser o al agua según el material y la precisión requerida. El resultado es que la diferencia del coste de la pila de la invención en la parte proporcional correspondiente a las placas monopolares es del orden de diez veces menor que el coste de las placas bipolares de una pila PEM convencional. Otra ventaja sobre la técnica es la reducción del tamaño y peso de la pila de la invención. La longitud de una pila, sin contar las placas colectoras de los extremos, viene dada por la suma de los espesores de las MEAs y principalmente de las placas bipolares, que son las que contribuyen en mayor medida a la longitud total. El espesor de estas placas bipolares es típicamente de unos 3 mm, siendo los canales a cada lado para el paso de los fluidos reactivos de 1 mm de profundidad. El espesor de una placa monopolar dual según la presente invención es la profundidad del canal, que viene a ser típicamente de 1 mm, es decir, la tercera parte del espesor de una placa bipolar de la técnica. La mayor parte del peso de la pila es debida al peso de las placas bipolares, por tanto también el peso de la pila queda notablemente reducido si se usan placas monopolares duales. La pila PEM de la invención mantiene las prestaciones técnicas de las pilas convencionales de la técnica de similares características. En particular, con la misma superficie activa por electrodo y mismo número de celdas unidad desarrolla la misma potencia eléctrica, aunque con una corriente de mayor amperaje y menor voltaje como consecuencia de la conexión en paralelo de las celdas unidad. Si tomamos como referencia una pila formada por una única celda de fuerza electromotriz ε y resistencia interna R¡ y suponemos por simplicidad que su comportamiento es puramente óhmico, cuando genera un corriente de intensidad I la caída de tensión en bornes de la pila V es V = ε - I R¡ dando una potencia eléctrica P que es igual a The main advantage therefore of the invention over the technique is a faster and cheaper manufacturing of the electrolytic cell. The high costs of the battery components are one of the main problems that prevent their implementation on a large scale. Among these components, bipolar plates are one of the most expensive because the most common manufacturing procedure consists in roughing the chosen material, typically graphite or steel, by precision milling to mold the distribution channels of reactive fluids on both sides. of the plate. In the dual unipolar plate of the present invention the reagent distribution channels are grooves that slide the plate from one side to the other, so that they can be manufactured by simple die cutting or mechanical cutting, laser or water depending on the material and the accuracy required. The result is that the difference in the cost of the cell of the invention in the proportional part corresponding to the monopolar plates is of the order of ten times less than the cost of the bipolar plates of a conventional PEM battery. Another advantage over the technique is the reduction of the size and weight of the cell of the invention. The length of a pile, not counting the collector plates of the ends, is given by the sum of the thicknesses of the MEAs and mainly of the plates bipolar, which are the ones that contribute most to the total length. The thickness of these bipolar plates is typically about 3 mm, the channels on each side being for the passage of reactive fluids 1 mm deep. The thickness of a dual monopolar plate according to the present invention is the depth of the channel, which typically becomes 1 mm, that is, one third of the thickness of a bipolar plate of the art. Most of the weight of the battery is due to the weight of the bipolar plates, therefore also the weight of the battery is markedly reduced if dual monopolar plates are used. The PEM battery of the invention maintains the technical performance of the conventional batteries of the technique of similar characteristics. In particular, with the same active surface per electrode and the same number of unit cells it develops the same electrical power, although with a current of greater amperage and lower voltage as a result of the parallel connection of the unit cells. If we take as a reference a battery formed by a single cell of electromotive force ε and internal resistance R¡ and we assume for simplicity that its behavior is purely ohmic, when it generates a current of intensity I the voltage drop in terminals of battery V is V = ε - IR¡ giving an electric power P that is equal to
P = l V = I ε - I2P = l V = I ε - I 2
En términos de la intensidad de corriente, esta potencia tiene forma de parábola invertida presentando un máximo de valor Pm = ε lm/2 cuando la corriente es lm = s/2R¡, de modo que la curva de potencia se puede escribir como P/Pm = 2(l/lm) - (l/lm)2 tal como se ha representado en la curva 1 de la Figura 4. En una pila convencional formada por la conexión en serie de dos celdas unidad, la fuerza electromotriz resultante es 2ε y la resistencia interna es 2R¡, de manera que la curva de potencia es In terms of the current intensity, this power is in the form of an inverted parabola presenting a maximum value P m = ε l m / 2 when the current is l m = s / 2R¡, so that the power curve can be written as P / P m = 2 (l / l m ) - (l / l m ) 2 as shown in curve 1 of Figure 4. In a conventional cell formed by the serial connection of two unit cells, The resulting electromotive force is 2ε and the internal resistance is 2R¡, so that the power curve is
P/Pm = 4(l/lm) - 2(l/lm)2 como la curva 2 de la Figura 4. Es decir, que esta pila ofrece el doble de potencia con los mismos valores de la corriente al duplicarse el potencial total en bornes de la pila. Por otra parte, si las dos celdas unidad se conectan en paralelo la pila resultante tiene la misma fuerza electromotriz ε que cada una de las celdas unidad y una resistencia interna R¡/2, que resulta ser la mitad de la resistencia interna de una celda unidad. En estas condiciones, la potencia de la pila resultante es P / P m = 4 (l / l m ) - 2 (l / l m ) 2 as curve 2 of Figure 4. That is, this battery offers twice the power with the same current values as the total potential in the battery terminals is doubled. On the other hand, if the two unit cells are connected in parallel, the resulting battery has the same electromotive force ε as each of the unit cells and an internal resistance R¡ / 2, which turns out to be half of the internal resistance of a cell unity. Under these conditions, the power of the resulting battery is
P/Pm = 2(l/lm) - (l/lm)2/2 representada en la curva 3 de la Figura 4. Como se observa, al igual que en el caso de la pila convencional, también el máximo de potencia es el doble del que produce una celda unidad, aunque en el caso de la presente invención el máximo se obtiene a una intensidad de corriente doble y con el mismo voltaje que la celda unidad. En cuanto a la fluidodinámica de los canales de distribución de la placa dual, al servir ahora cada canal a una superficie de electrodo doble debe llevar también el doble de caudal, lo que multiplica por 2 la velocidad media del fluido reactivo en el canal. Típicamente, este aumento no llevará a un cambio significativo de régimen en el flujo. Por otro lado, una mayor velocidad del fluido reactivo implica un mayor esfuerzo viscoso sobre las paredes y, por lo tanto, una mejor evacuación del agua que puede condensar en ellas. P / Pm = 2 (l / l m ) - (l / l m ) 2/2 represented in curve 3 of Figure 4. As can be seen, as in the case of the conventional battery, also the maximum of power is twice that produced by a unit cell, although in the case of the present invention the maximum is obtained at a double current intensity and with the same voltage as the unit cell. As for the dynamic dynamics of the distribution channels of the dual plate, each channel now serving a double electrode surface must also carry twice the flow rate, which multiplies by 2 the average speed of the reactive fluid in the channel. Typically, this increase will not lead to a significant change of flow regime. On the other hand, a greater speed of the reactive fluid implies a greater viscous effort on the walls and, therefore, a better evacuation of the water that can condense on them.
Breve descripción de las figuras Brief description of the figures
Figura 1 : esquema de una sección transversal de una placa bipolar de canales paralelos utilizada en la técnica, "e": Grosor total.  Figure 1: Schematic of a cross section of a bipolar parallel channel plate used in the art, "e": Total thickness.
Figura 2a: Placa monopolar dual con canal tipo serpentín único. Figure 2a: Dual monopolar plate with single coil type channel.
Figura 2b: Ampliación en tres dimensiones del detalle circunvalado de la Figura 2a. Figure 2b: Enlargement in three dimensions of the circumferential detail of Figure 2a.
Figura 3: Placa monopolar dual con canales tipo serpentines paralelos. Figure 3: Dual monopolar plate with parallel coil type channels.
Figura 4: Esquema comparativo de la potencia generada por una celda unidad individual (línea 1 ) y la de una pila compuesta de dos celdas unidad, bien conectadas en serie (línea 2) como en la técnica actual o bien conectadas en paralelo (línea 3) según la presente invención.  Figure 4: Comparative scheme of the power generated by an individual unit cell (line 1) and that of a battery composed of two unit cells, either connected in series (line 2) as in the current technique or connected in parallel (line 3 ) according to the present invention.
Figura 5: Realización particular de la placa monopolar de la Figura 2, con ensanche lateral para la interconexión. Las cotas son en milímetros.  Figure 5: Particular embodiment of the monopolar plate of Figure 2, with lateral widening for interconnection. The dimensions are in millimeters.
Ejemplos Examples
Con la intención de mostrar la presente invención de un modo ilustrativo aunque ningún modo limitante, se aportan los siguientes ejemplos. Ejemplo 1 : Características de placa monopolar de acero. With the intention of showing the present invention in an illustrative way but not in any way limiting, the following examples are provided. Example 1: Characteristics of monopolar steel plate.
Se considera una placa monopolar de acuerdo a la Figura 5. El material es una chapa de 1 mm de espesor de acero inoxidable con buena resistencia a la corrosión. El peso es de Mm = 60,6 g. Puesto que la densidad del acero es de 8 g/cm3 aprox., esta masa resulta de un volumen aproximado de material de 7,6 cm3. Por otro lado, si la placa fuera una placa bipolar de las mismas dimensiones su masa sería una masa igual a Mm por cada una de las dos acanaladuras de cada lado más la masa del material sólido entre ambas, resultando aproximadamente igual a Mb = 204 g; es decir, más de 3 veces superior a la de la placa monopolar y además de un espesor 3 veces superior. Aún a pesar de su fragilidad, el grafito se suele preferir para la fabricación de placas bipolares dada su reducida densidad, 2,2 g/cm3, que en el caso considerado llevaría a una placa bipolar de masa Mbg = 56,3 g. No obstante, cuando se compara este valor con el de una placa monopolar de acero según la presente invención, la masa de ésta última resulta ser superior sólo en algo más de 4 g. El resultado es que la placa monopolar de acero resulta tener un peso muy similar, un espesor 3 veces inferior y un coste unas 9 veces inferior comparada con una placa bipolar de grafito de la técnica, evitando además la fragilidad del grafito, de suma importancia para aplicaciones industriales. It is considered a monopolar plate according to Figure 5. The material is a 1 mm thick stainless steel sheet with good corrosion resistance. The weight is Mm = 60.6 g. Since the density of steel is approximately 8 g / cm 3 , this mass results from an approximate volume of material of 7.6 cm 3 . On the other hand, if the plate were a bipolar plate of the same dimensions, its mass would be a mass equal to Mm for each of the two grooves on each side plus the mass of the solid material between them, resulting approximately equal to Mb = 204 g ; that is, more than 3 times greater than that of the monopolar plate and in addition to a thickness 3 times greater. Even in spite of its fragility, graphite is usually preferred for the manufacture of bipolar plates given its reduced density, 2.2 g / cm 3 , which in the case considered would lead to a bipolar plate of mass Mbg = 56.3 g. However, when this value is compared with that of a monopolar steel plate according to the present invention, the latter's mass turns out to be greater only by a little more than 4 g. The result is that the monopolar steel plate turns out to have a very similar weight, a thickness 3 times lower and a cost about 9 times lower compared to a bipolar graphite plate of the technique, also avoiding the fragility of graphite, of utmost importance for industrial applications
Ejemplo 2: Example 2:
Otra realización de placa monopolar se puede conseguir con una placa metálica corrugada, correspondiendo este caso a una distribución de los fluidos reactivos en canales paralelos. En WO 201 1 /154576 A1 se describe la utilización de placas metálicas corrugadas como placas bipolares. La concepción de placa corrugada, que conforma una serie de canales paralelos alternándose a ambos lados de la placa, resulta ser una configuración muy adecuada para su uso como placa monopolar dual. La placa corrugada, confeccionada con un acero resistente a la corrosión, va solidaria a un marco de material conductor donde se han efectuado los taladros pasantes para los fluidos reactivos, dos de los cuales conectan con la cavidad interna donde se encuentra la placa corrugada para alimentar, con el reactivo correspondiente, los electrodos de las MEAs adyacentes que han de yuxtaponerse a la placa monopolar, tal como se ha indicado en la descripción general de la invención.  Another embodiment of monopolar plate can be achieved with a corrugated metal plate, this case corresponding to a distribution of reactive fluids in parallel channels. WO 201 1/154576 A1 describes the use of corrugated metal plates as bipolar plates. The concept of corrugated plate, which forms a series of parallel channels alternating on both sides of the plate, turns out to be a very suitable configuration for use as a dual monopolar plate. The corrugated plate, made of a corrosion-resistant steel, is attached to a frame of conductive material where through holes have been made for reactive fluids, two of which connect to the internal cavity where the corrugated plate is located to feed , with the corresponding reagent, the electrodes of the adjacent MEAs to be juxtaposed to the monopolar plate, as indicated in the general description of the invention.

Claims

1 . Pila con electrolito polimérico, caracterizada por que comprende al menos una placa monopolar que separa dos celdas electrolíticas, en la que dicha placa monopolar presenta una ranura pasante por la que circula un fluido reactivo, siendo que dicho fluido reactivo alimenta al mismo tiempo los dos electrodos yuxtapuestos uno a cada lado de la placa. one . Polymeric electrolyte cell, characterized in that it comprises at least one monopolar plate that separates two electrolytic cells, in which said monopolar plate has a through slot through which a reactive fluid circulates, said reactive fluid feeding at the same time the two electrodes juxtaposed one on each side of the plate.
2. Una pila con electrolito polimérico según la reivindicación 1 , caracterizada por que dicha placa monopolar se conecta al terminal anódico.  2. A polymer electrolyte cell according to claim 1, characterized in that said monopolar plate is connected to the anodic terminal.
3. Una pila con electrolito polimérico según la reivindicación 1 , caracterizada por que dicha placa monopolar se conecta al terminal catódico.  3. A polymer electrolyte cell according to claim 1, characterized in that said monopolar plate is connected to the cathodic terminal.
4. Una pila con electrolito polimérico según cualquiera de las reivindicaciones 1 a 3, caracterizada por que dicha placa monopolar es de serpentín único.  4. A polymer electrolyte cell according to any one of claims 1 to 3, characterized in that said monopolar plate is single coil.
5. Una pila con electrolito polimérico según cualquiera de las reivindicaciones 1 a 3, caracterizada por que dicha placa monopolar es de serpentines paralelos. 5. A polymer electrolyte cell according to any one of claims 1 to 3, characterized in that said monopolar plate is of parallel coils.
6. Una pila con electrolito polimérico según cualquiera de las reivindicaciones 1 a 3, caracterizada por que dicha placa monopolar es una placa corrugada. A polymer electrolyte cell according to any one of claims 1 to 3, characterized in that said monopolar plate is a corrugated plate.
7. Una pila con electrolito polimérico según cualquiera de las reivindicaciones 1 a 6, que comprende "n" celdas electrolíticas, caracterizada por que cada una de dichas celdas está separada de la celda adyacente por una placa monopolar, siendo que dicha placa monopolar presenta una ranura pasante por la que circula un fluido reactivo que alimenta al mismo tiempo los dos electrodos yuxtapuestos uno a cada lado de la placa, en que dichas placas monopolares son sucesivamente de signo contrario y en que "n" es número entero entre 2 y 150.  7. A polymer electrolyte cell according to any one of claims 1 to 6, comprising "n" electrolytic cells, characterized in that each of said cells is separated from the adjacent cell by a monopolar plate, said monopolar plate having a through slot through which a reactive fluid circulates that feeds at the same time the two electrodes juxtaposed one on each side of the plate, in which said monopolar plates are successively of opposite sign and in which "n" is an integer between 2 and 150.
8. Una pila con electrolito polimérico según la reivindicación 7, caracterizada porque "n" es 100.  8. A polymer electrolyte cell according to claim 7, characterized in that "n" is 100.
9. Placa monopolar de serpentín único.  9. Single coil monopolar plate.
10. Placa monopolar de serpentines paralelos.  10. Monopolar plate of parallel coils.
PCT/ES2015/070633 2014-08-28 2015-08-26 Battery with polymer electrolyte WO2016030565A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201431260A ES2561705B2 (en) 2014-08-28 2014-08-28 Battery with polymer electrolyte
ESP201431260 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016030565A1 true WO2016030565A1 (en) 2016-03-03

Family

ID=55359298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070633 WO2016030565A1 (en) 2014-08-28 2015-08-26 Battery with polymer electrolyte

Country Status (2)

Country Link
ES (1) ES2561705B2 (en)
WO (1) WO2016030565A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108963293B (en) * 2018-07-09 2021-08-17 上海轩玳科技有限公司 Proton exchange membrane fuel cell unit, fuel cell stack, assembly process and control method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083986A1 (en) * 2002-04-02 2003-10-09 Gang Xu A proton exchange membrane fuel cell battery
EP1432060A1 (en) * 2002-12-10 2004-06-23 Asia Pacific Fuel Cell Technologies, Ltd. Integrated bipolar plate module for fuel cell stack
US20060051645A1 (en) * 2004-09-07 2006-03-09 Liqing Hu Fuel cell stack with high output current and low output voltage
FR2956522A1 (en) * 2010-02-16 2011-08-19 Air Liquide Fuel cell plate e.g. monopolar plate, assembly, has plates integrated with common frame that is provided with folding line for folding frame to stack two of plates to form part of fuel cell
WO2014060198A1 (en) * 2012-10-19 2014-04-24 Universite De Lorraine Improved fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003083986A1 (en) * 2002-04-02 2003-10-09 Gang Xu A proton exchange membrane fuel cell battery
EP1432060A1 (en) * 2002-12-10 2004-06-23 Asia Pacific Fuel Cell Technologies, Ltd. Integrated bipolar plate module for fuel cell stack
US20060051645A1 (en) * 2004-09-07 2006-03-09 Liqing Hu Fuel cell stack with high output current and low output voltage
FR2956522A1 (en) * 2010-02-16 2011-08-19 Air Liquide Fuel cell plate e.g. monopolar plate, assembly, has plates integrated with common frame that is provided with folding line for folding frame to stack two of plates to form part of fuel cell
WO2014060198A1 (en) * 2012-10-19 2014-04-24 Universite De Lorraine Improved fuel cell

Also Published As

Publication number Publication date
ES2561705A1 (en) 2016-02-29
ES2561705B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
ES2629208T3 (en) Composite flow plate for electrolytic cell
EP3217461B1 (en) Battery cell and redox flow battery
Ressel et al. Performance of a vanadium redox flow battery with tubular cell design
CN106575776A (en) Flow fields for use with an electrochemical cell
US10141583B2 (en) Bipolar plate and fuel cell comprising a bipolar plate of this type
US20160036060A1 (en) Composite electrode for flow battery
ES2744241T3 (en) Resilient flow structures for electrochemical cells
US9153832B2 (en) Electrochemical cell stack having a protective flow channel
CN103053057A (en) Fuel cell
ES2781301T3 (en) Redox flow battery and procedure for the operation of a redox flow battery
TW201711262A (en) Bipolar plate, cell frame, cell stack and redox-flow battery
WO2016072191A1 (en) Battery cell and redox flow battery
US20180205067A1 (en) Additive Manufactured Electrode For Flow Battery
KR101163996B1 (en) a redox flow secondary cell having metal foam electrodes
US9200374B2 (en) Device for high-temperature water electrolysis having improved operation
JP2017010809A (en) Electrode for redox flow battery and redox flow battery
CN109997266B (en) Current collecting plate and redox flow battery
WO2020235237A1 (en) Metal porous sheet, fuel cell, and water electrolysis device
JP2012094488A (en) Fuel cell structure
JP7001094B2 (en) Redox flow battery
ES2561705B2 (en) Battery with polymer electrolyte
JP2007087655A5 (en)
EP2095455A1 (en) Solid oxide fuel cell
CN102668202A (en) Thin battery having improved internal resistance
US11769886B2 (en) Battery cell, cell stack, and redox flow battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835126

Country of ref document: EP

Kind code of ref document: A1