WO2016029775A1 - Encapsulation structure and method for forming the same, and vehicle window - Google Patents

Encapsulation structure and method for forming the same, and vehicle window Download PDF

Info

Publication number
WO2016029775A1
WO2016029775A1 PCT/CN2015/085536 CN2015085536W WO2016029775A1 WO 2016029775 A1 WO2016029775 A1 WO 2016029775A1 CN 2015085536 W CN2015085536 W CN 2015085536W WO 2016029775 A1 WO2016029775 A1 WO 2016029775A1
Authority
WO
WIPO (PCT)
Prior art keywords
rust layer
plasma treatment
insert component
treatment process
encapsulation
Prior art date
Application number
PCT/CN2015/085536
Other languages
French (fr)
Inventor
Ce Shi
Yang Sun
Xiaohui Guo
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Publication of WO2016029775A1 publication Critical patent/WO2016029775A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • B29C2045/14885Pretreatment of the insert, e.g. etching, cleaning by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14778Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles the article consisting of a material with particular properties, e.g. porous, brittle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2709/00Use of inorganic materials not provided for in groups B29K2703/00 - B29K2707/00, for preformed parts, e.g. for inserts
    • B29K2709/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/30Vehicles, e.g. ships or aircraft, or body parts thereof
    • B29L2031/3052Windscreens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J10/00Sealing arrangements
    • B60J10/70Sealing arrangements specially adapted for windows or windscreens

Definitions

  • the present disclosure generally relates to vehicle technology, and more particularly, to a method for forming an encapsulation structure, an encapsulation structure and a vehicle window.
  • an encapsulation structure to provide a better sealing effect, such that the vehicle window may have improved encapsulation features and thus can be mounted on the bodywork in an optimized way.
  • an encapsulation structure may have an insert component inside of itself.
  • the insert component can support the encapsulation structure, plus with some decorative function. Therefore, the existing encapsulation structure normally includes such an insert component and an encapsulation component encompassing the insert component.
  • the encapsulation component is formed as an integrate structure on the outer surface of the insert component through an injection molding process, so that the encapsulation structure is formed.
  • the encapsulation component is very likely to peel off from the insert component.
  • the encapsulation component peeling off from the insert component not only affects the aesthetics of the encapsulation structure, but also leads to a product failure and affects the yield. Besides, when such an encapsulation structure is matched with a glass substrate to form a vehicle window, the encapsulation component peeling off from the insert component can even result in the glass substrate falling off from the vehicle bodywork, which is a great harm for vehicle safety.
  • a method for forming an encapsulation structure includes: providing an insert component with an anti-rust layer formed thereon; applying a plasma treatment process to the insert component with the anti-rust layer to increase a surface tension of the anti-rust layer; after applying the plasma treatment process, coating the anti-rust layer of the insert component with a primer; and injecting an encapsulation material onto the insert component coated with the primer to form the encapsulation structure.
  • a basic idea is that, by applying the plasma treatment process to the insert component coated with the anti-rust layer, the anti-rust layer treated with plasma is activated. Or else, some contamination and impurity particles formerly existing on the surface of the anti-rust layer are removed by the plasma. As such, the surface tension of the anti-rust layer may be increased. Therefore, the primer can be ideally attached to the anti-rust layer of the insert component after it is coated onto the anti-rust layer. When the encapsulation component is formed on the insert component, it can be ideally adhered with the insert component through the primer. That is to say, the encapsulation structure may have an increased yield, as the encapsulation component thereof is not likely to peel off from the insert component.
  • an encapsulation structure includes an insert component and an encapsulation component formed on a surface of the insert component by injection molding, wherein an anti-rust layer is formed on the surface of the insert component, and the anti-rust layer has an activated surface which has been subject to a plasma treatment process; wherein the activated surface of the anti-rust layer is coated with primer; and wherein the encapsulation component is adhered to the anti-rust layer of the insert component through the primer.
  • a basic idea is that, as the insert component has an anti-rust layer which is activated by a plasma treatment process, the activated surface of the anti-rust layer has a greater surface tension compared with a conventional anti-rust layer.
  • the primer can be ideally attached to the activated surface of the anti-rust layer, thereby the encapsulation component can be adhered to the insert component through the primer in an optimized way. As such, in the encapsulation structure, the encapsulation component is not likely to peel off from the insert component.
  • a vehicle window which includes an encapsulation structure formed by the aforesaid method, and further includes a glass substrate.
  • the encapsulation component is not likely to peel off from the insert component, therefore the glass substrate in the formed vehicle window is not likely to fall off from the bodywork of the vehicle. Both the safety and aesthetics of the vehicle can be improved.
  • FIGs. 1 to 2 schematically illustrate diagrams of a conventional insert component
  • FIGs. 3 to 5 schematically illustrate diagrams of intermediate structures formed in a method for forming an encapsulation structure according to one embodiment
  • FIGs. 6 to 7 schematically illustrate diagrams of a vehicle window according to one embodiment.
  • FIGs. 1 and 2 structures of a conventional insert component and a conventional encapsulation component are illustrated.
  • a layer of a primer is required to be disposed between the insert component and the encapsulation component for enhancing the adhesion.
  • an insert component 1 needs a surface treatment to form an anti-rust layer 2 for protection.
  • the anti-rust layer 2 may have a relatively low surface tension.
  • a primer 4 (referring to FIG. 2) to be attached onto the surface of the insert component 1 coated with the anti-rust layer 2.
  • the primer 4 may shrink and thus form multiple liquid drops.
  • the anti-rust layer 2 may appear to be flat on a macro level, on a micro level it may have multiple tiny convex and concave portions. In practice, these convex and concave portions are very likely to be attached with some impurity or contamination particles which may lead to a reduction of the contact region between the subsequently formed the primer 4 and the anti-rust layer 2. As such, the surface tension of the anti-rust layer 2 relative to the primer 4 may decrease, and the primer 4 coated on the anti-rust layer 2 tends to shrink to form the liquid drops.
  • the anti-rust layer 2 of the insert component 1 may not be able to ideally attach with the liquid-drop-shaped primer 4.
  • the primer 4 shrinks to form liquid drops, some portions of the anti-rust layer 2 of the insert component 1 are not covered by the primer 4 and thus become directly in contact with an encapsulation component formed by injection molding. Therefore, the adhesion between the anti-rust layer 2 and the encapsulation component doesn’ t reach a high quality standard. Due to the poor adhesion between the insert component 1 and the encapsulation component, the encapsulation component is very likely to peel off from the insert component 1. As a result, both the aesthetics of the entire encapsulation structure and the production yield will be affected. Furthermore, a potential safety risk also exists in a vehicle window formed with such an encapsulation structure.
  • FIGs. 3 to 5 schematically illustrate diagrams of intermediate structures formed in a method for forming an encapsulation structure according to one embodiment.
  • an insert component 100 is provided.
  • the insert component (or shortly called as “insert” ) may be a bright trim. After the encapsulation structure is formed, the bright trim may be partially covered by an encapsulation component in the encapsulation structure. The uncovered part of the bright trim can function as a decoration component.
  • the insert component may have other configurations. In some embodiments, the insert component may be completely or mostly covered by the encapsulation component. In such configurations, the main function of the insert component is to support the encapsulation structure.
  • the insert component 100 is coated with an anti-rust layer 110.
  • the insert component 100 may include iron, iron alloy, aluminum, aluminum alloy or high polymer material.
  • the material of the insert component 100 is not limited to the aforesaid examples.
  • a plasma treatment process is to be applied subsequently to the anti-rust layer 110 on the surface of the insert component 100.
  • the anti-rust layer 110 may include epoxy resin. Epoxy resin is commonly used as an anti-rust material. However, the material of the anti-rust layer 110 is not limited to epoxy resin.
  • a plasma treatment process is applied to the insert component 100 coated with the anti-rust layer 110.
  • the plasma treatment process is applied to increase the surface tension of the anti-rust layer 110.
  • the plasma treatment process aims to remove the contaminations, impurity particles, etc., attached on the surface of the anti-rust layer 110, thereby increasing the surface tension of the anti-rust layer 110. Furthermore, the plasma treatment process aims to activate the surface of the anti-rust layer 110, and thus further increase the surface tension of the anti-rust layer 110. Therefore, in a subsequent coating process, the primer is more likely to be coated onto the surface of the anti-rust layer 110.
  • the increased surface tension of the anti-rust layer 110 may at least reach 72mN/m, such that the primer can be ideally coated to the surface of the anti-rust layer 110 in following processing.
  • the above described parameter, 72mN/m is merely an example.
  • the required magnitude of the surface tension of the anti-rust layer 110 varies based on practical conditions, for example the components of the primer.
  • the present disclosure is not limited to the above embodiments.
  • the resulting surface tension of the anti-rust layer 110 can be controlled to reach different levels.
  • the plasma treatment process is an atmospheric pressure plasma treatment process, i.e., it is implemented at ambient atmospheric pressure. Such a plasma treatment process can enhance the surface tension of the anti-rust layer 110, as described above, and also save the cost.
  • the plasma treatment process is not limited to an atmospheric pressure plasma treatment process.
  • the plasma treatment process may be selected from other plasma treatment processes, for example, it may be a vacuum plasma treatment process implemented at a pressure below 100pa.
  • the plasma treatment process can directly use air as its gas source. In such a configuration, the process can be simply applied as no extra gas source is dedicatedly required.
  • the present disclosure is not limited to the embodiments.
  • inert gases, nitrogen, etc. can also be selected as the gas source of the plasma treatment process.
  • a plasma treatment device including a nozzle 200 may be used in the plasma treatment process applied to the anti-rust layer 110.
  • Plasma flow 201 may be sprayed from the nozzle 200 and hit the surface of the anti-rust layer 110.
  • the contaminants and impurity particles on the surface of the anti-rust layer 110 can be removed, and the surface of the anti-rust layer 110 can be activated.
  • the anti-rust layer 110 may bring several drawbacks.
  • the anti-rust layer 110 may be thinned too much to provide its original function, i.e., rust-proof.
  • a too long treating period may increase the manufacturing cost, which is not necessary.
  • parameters of the plasma treatment process may be configured as follows: the plasma treatment device has an output power ranging from 300W to 1500W, a distance between the nozzle 200 and the anti-rust layer 110 is set from 3mm to 25mm, and the nozzle 200 moves relative to the insert component 100 (i.e., relative to the anti-rust layer 110) at a speed ranging from 3m/minute to 60m/minute.
  • the output power of the plasma treatment device is set as 300W
  • the distance between the nozzle 200 and the anti-rust layer 110 is set as 25mm
  • the nozzle 200 moves relative to the anti-rust layer 110 at a speed of 60m/minute.
  • the output power of the plasma treatment device is relatively low
  • the distance between the nozzle 200 and the surface of the anti-rust layer 110 is relatively long
  • the moving speed of the nozzle 200 relative to the anti-rust layer 110 is relatively fast, which means the processing intensity of the plasma treatment process applied to the anti-rust layer 110 is relatively low.
  • the surface tension of the anti-rust layer 110 can be increased to the required level, while the anti-rust layer 110 will not be overly treated.
  • the thickness of the anti-rust layer 110 can be maintained enough to provide its anti-rust function. According to practical experiments, after the aforesaid plasma treatment process, the surface tension of the anti-rust layer 110 is increased to beyond 72mN/m.
  • a primer 120 is coated on the anti-rust layer 110 of the insert component 100.
  • the primer 120 is used for enhancing the adhesion between the insert component 100 formed with the anti-rust layer 110 and the subsequently formed encapsulation component.
  • the anti-rust layer 110 which has been subject to the plasma treatment process, has in increased surface tension. Therefore, compared with existing techniques, the primer 120 can be more easily attached to the surface of the anti-rust layer 110. In conventional practices, the primer may shrink to form liquid drops on the anti-rust layer. However, in embodiments of the present disclosure, the primer 120 may be more evenly distributed on the anti-rust layer 110, thereby forming a thin film attached thereon.
  • the primer 120 may include polyurethane.
  • Polyurethane can be used as the effective ingredient in the primer 120, attribute to its strong adhesion with both the anti-rust layer 110 made of epoxy resin and the encapsulation component formed in following processing.
  • the primer 120 may be solvent-based.
  • the solution of the solvent-based primer may include methylbenzene, dimethylbenzene, ethyl acetate, methyl cyclohexane or propylene glycol monomethyl ether acetate.
  • the solution is not limited to the above examples, and it can be adjusted based on practical needs.
  • the primer is not limited to a solvent-based primer.
  • the primer 120 may be water-based, that is to say, the solution of the primer 120 is water.
  • the effective ingredient and solution of the primer may be adjusted based on the materials of the anti-rust layer 110 and/or the encapsulation component, so as to achieve an ideal adhesion among the anti-rust layer 110, the primer 120 and the encapsulation component.
  • the insert component 100 coated with the primer 120 is subject to an injection molding process to form an encapsulation component 120 thereon.
  • the encapsulation structure is formed.
  • the adhesion between the primer 120 and the encapsulation component 130 is relatively strong, and the adhesion between the primer 120 and the anti-rust layer 110 is also strong, the encapsulation component 130 is not likely to peel off from the insert component 100, thereby improving the production yield of the encapsulation structure.
  • the encapsulation component 130 may be formed with PVC material.
  • the present disclosure is not limited to these embodiments.
  • the plasma treatment process may be configured as follows.
  • the output power of the plasma treatment device is set as 1500W
  • the distance between the nozzle 200 and the anti-rust layer 110 is set as 3mm
  • the nozzle 200 moves relative to the anti-rust layer 110 at a speed of 3m/minute.
  • the output power of the plasma treatment device is relatively high
  • the distance between the nozzle 200 and the surface of the anti-rust layer 110 is relatively short
  • the moving speed of the nozzle 200 relative to the anti-rust layer 110 is relatively slow, which means the processing intensity of the plasma treatment process applied to the anti-rust layer 110 is relatively strong.
  • the surface tension of the anti-rust layer 110 can be increased as much as possible.
  • the plasma treatment process may be configured as follows.
  • the output power of the plasma treatment device is set as 400W, the distance between the nozzle 200 and the anti-rust layer 110 is set as 6mm, and the nozzle 200 moves relative to the anti-rust layer 110 at a speed of 10m/minute.
  • the output power of the plasma treatment device is relatively low, the distance between the nozzle 200 and the surface of the anti-rust layer 110 is relatively short, and the moving speed of the nozzle 200 relative to the anti-rust layer 110 is relatively slow.
  • the nozzle 200 is set to be closer to the anti-rust layer 110 and the speed is set to be slow. Therefore, the processing intensity of the plasma treatment process applied to the anti-rust layer 110 is still maintained at a high level, and thus the surface tension of the anti-rust layer 110 can still be increased to the required value.
  • the plasma treatment process may be configured as follows.
  • the output power of the plasma treatment device is set as 900W
  • the distance between the nozzle 200 and the anti-rust layer 110 is set as 14mm
  • the nozzle 200 moves relative to the anti-rust layer 110 at a speed of 61.5m/minute.
  • the output power of the plasma treatment device, the distance between the nozzle 200 and the surface of the anti-rust layer 110, and the moving speed of the nozzle 200 relative to the anti-rust layer 110 are all set at an intermediate level. Therefore, the surface tension of the anti-rust layer 110 can still be increased to the required level.
  • parameters of the plasma treatment process may vary based on practical conditions and requirements. Therefore, the present disclosure is not limited to the above embodiments illustrating the specific process parameters.
  • an encapsulation structure is provided, the structure of which is illustrated in FIG. 5.
  • the encapsulation structure includes: an insert component 100 and an encapsulation component 130 formed on a surface of the insert component 100 by an injection molding process.
  • the insert component 100 may include iron, iron alloy, aluminum, aluminum alloy or high polymer material.
  • the material of the insert component 100 is not limited to the aforesaid examples.
  • a plasma treatment process is to be applied subsequently to the anti-rust layer 110 on the surface of the insert component 100.
  • the insert component 100 is formed with an anti-rust layer 110 on the surface thereof.
  • the anti-rust layer 11 is an epoxy resin anti-rust layer.
  • a surface of the anti-rust layer 11 is an activated surface treated by plasma.
  • the surface of the anti-rust layer 11 is an activated surface treated by an atmospheric pressure plasma treatment process.
  • the plasma treatment process is not limited to the specific type mentioned above. As long as the plasma treatment process can activate the surface of the anti-rust layer 110, it may be selected in the present disclosure.
  • the surface of the anti-rust layer 11 is an activated surface treated by a vacuum plasma treatment process.
  • the activated surface of the anti-rust layer 110 is coated with a primer 120.
  • the primer 120 includes polyurethane.
  • the encapsulation component 130 is adhered to the anti-rust layer 110 formed on the insert component 100 through the primer 120, thereby constituting the encapsulation structure.
  • the encapsulation component 130 may be formed as an integrate structure on the anti-rust layer 110 on the surface of the insert component 100 by an injection molding process.
  • the encapsulation structure provided in the present disclosure may be formed, but not limited to, by the method described above.
  • FIG. 6 schematically illustrates a plane view of the vehicle window
  • FIG. 7 schematically illustrates a cross section of a part of the vehicle window.
  • the vehicle window includes a glass substrate 60 and an encapsulation structure 10 (referring to FIG. 6) formed by the aforesaid method for forming an encapsulation structure.
  • the encapsulation structure 10 includes an insert component 101, an anti-rust layer 111, a primer 121 and an encapsulation component 131 (referring to FIG. 7) .
  • the encapsulation component 131 is formed to cover an edge portion of the glass substrate 60 by an injection molding process, such that the encapsulation structure 10 can be fixed with the glass substrate 60.
  • the vehicle window When the vehicle window is in use, it may be mounted on a vehicle bodywork 50. Specifically, in some embodiments, the vehicle window is mounted in such a way that the insert component 101 is disposed towards the vehicle bodywork 50. As such, the encapsulation structure 10, together with the glass substrate 60, is mounted on the vehicle bodywork 50.
  • the glass substrate 60 in the vehicle window formed in such a way is less likely to fall off from the vehicle bodywork 50. Therefore, both the aesthetics and safety of the vehicle can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

A method for forming an encapsulation structure, an encapsulation structure and a vehicle window are provided. The method includes: providing an insert component with an anti-rust layer formed thereon; applying a plasma treatment to the insert component to increase a surface tension of the anti-rust layer; coating the anti-rust layer of the insert component with primer; and injecting an encapsulation material to form the encapsulation structure. The encapsulation structure includes components formed by the aforementioned method. The vehicle window includes a glass substrate and the encapsulation structure formed by the aforementioned method. The encapsulation component can be well adhered with the insert component, such that it is not likely to drop off from the insert component. Therefore, yield of the encapsulation structures can be improved.

Description

ENCAPSULATION STRUCTURE AND METHOD FOR FORMING THE SAME, AND VEHICLE WINDOW
CROSS-REFERENCE TO RELATED APPLICATIONS
The present application claims priority to Chinese patent application No. 201410422096.0, filed on August 25, 2014, and entitled “ENCAPSULATION STRUCTURE AND METHOD FOR FORMING THE SAME, AND VEHICLE WINDOW” , and the entire disclosure of which is incorporated herein by reference.
TECHNICAL FIELD
The present disclosure generally relates to vehicle technology, and more particularly, to a method for forming an encapsulation structure, an encapsulation structure and a vehicle window.
BACKGROUND
Between a vehicle bodywork and a vehicle window, there is normally provided an encapsulation structure to provide a better sealing effect, such that the vehicle window may have improved encapsulation features and thus can be mounted on the bodywork in an optimized way.
In existing techniques, an encapsulation structure may have an insert component inside of itself. The insert component can support the encapsulation structure, plus with some decorative function. Therefore, the existing encapsulation structure normally includes such an insert component and an encapsulation component encompassing the insert component.
Further, conventionally the encapsulation component is formed as an integrate structure on the outer surface of the insert component through an injection molding process, so that the encapsulation structure is formed. However, the encapsulation component is very likely to peel off from the insert component.
The encapsulation component peeling off from the insert component not  only affects the aesthetics of the encapsulation structure, but also leads to a product failure and affects the yield. Besides, when such an encapsulation structure is matched with a glass substrate to form a vehicle window, the encapsulation component peeling off from the insert component can even result in the glass substrate falling off from the vehicle bodywork, which is a great harm for vehicle safety.
SUMMARY
In light of the above, there is a need for a method for forming an encapsulation structure, an encapsulation structure and a vehicle window, which can prevent an insert component from peeling off from an encapsulation component.
In one aspect, a method for forming an encapsulation structure is provided. The method includes: providing an insert component with an anti-rust layer formed thereon; applying a plasma treatment process to the insert component with the anti-rust layer to increase a surface tension of the anti-rust layer; after applying the plasma treatment process, coating the anti-rust layer of the insert component with a primer; and injecting an encapsulation material onto the insert component coated with the primer to form the encapsulation structure.
A basic idea is that, by applying the plasma treatment process to the insert component coated with the anti-rust layer, the anti-rust layer treated with plasma is activated. Or else, some contamination and impurity particles formerly existing on the surface of the anti-rust layer are removed by the plasma. As such, the surface tension of the anti-rust layer may be increased. Therefore, the primer can be ideally attached to the anti-rust layer of the insert component after it is coated onto the anti-rust layer. When the encapsulation component is formed on the insert component, it can be ideally adhered with the insert component through the primer. That is to say, the encapsulation structure may have an increased yield, as the encapsulation component thereof is not likely to peel off from the insert component.
According to another aspect, an encapsulation structure is provided. The  encapsulation structure includes an insert component and an encapsulation component formed on a surface of the insert component by injection molding, wherein an anti-rust layer is formed on the surface of the insert component, and the anti-rust layer has an activated surface which has been subject to a plasma treatment process; wherein the activated surface of the anti-rust layer is coated with primer; and wherein the encapsulation component is adhered to the anti-rust layer of the insert component through the primer.
A basic idea is that, as the insert component has an anti-rust layer which is activated by a plasma treatment process, the activated surface of the anti-rust layer has a greater surface tension compared with a conventional anti-rust layer. The primer can be ideally attached to the activated surface of the anti-rust layer, thereby the encapsulation component can be adhered to the insert component through the primer in an optimized way. As such, in the encapsulation structure, the encapsulation component is not likely to peel off from the insert component.
According to another aspect, a vehicle window is provided, which includes an encapsulation structure formed by the aforesaid method, and further includes a glass substrate.
In the encapsulation structure, the encapsulation component is not likely to peel off from the insert component, therefore the glass substrate in the formed vehicle window is not likely to fall off from the bodywork of the vehicle. Both the safety and aesthetics of the vehicle can be improved.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGs. 1 to 2 schematically illustrate diagrams of a conventional insert component;
FIGs. 3 to 5 schematically illustrate diagrams of intermediate structures formed in a method for forming an encapsulation structure according to one embodiment; and
FIGs. 6 to 7 schematically illustrate diagrams of a vehicle window according to one embodiment.
DETAILED DESCRIPTION
Referring to FIGs. 1 and 2, structures of a conventional insert component and a conventional encapsulation component are illustrated. Normally, a layer of a primer is required to be disposed between the insert component and the encapsulation component for enhancing the adhesion. However, referring to FIG. 1, in existing techniques, an insert component 1 needs a surface treatment to form an anti-rust layer 2 for protection. The anti-rust layer 2 may have a relatively low surface tension. As a result, it may be difficult for a primer 4 (referring to FIG. 2) to be attached onto the surface of the insert component 1 coated with the anti-rust layer 2. In some occasions, the primer 4 may shrink and thus form multiple liquid drops. Specifically, although the anti-rust layer 2 may appear to be flat on a macro level, on a micro level it may have multiple tiny convex and concave portions. In practice, these convex and concave portions are very likely to be attached with some impurity or contamination particles which may lead to a reduction of the contact region between the subsequently formed the primer 4 and the anti-rust layer 2. As such, the surface tension of the anti-rust layer 2 relative to the primer 4 may decrease, and the primer 4 coated on the anti-rust layer 2 tends to shrink to form the liquid drops.
On the one hand, due to the impurity or contamination particles, the anti-rust layer 2 of the insert component 1 may not be able to ideally attach with the liquid-drop-shaped primer 4. On the other hand, as the primer 4 shrinks to form liquid drops, some portions of the anti-rust layer 2 of the insert component 1 are not covered by the primer 4 and thus become directly in contact with an encapsulation component formed by injection molding. Therefore, the adhesion between the anti-rust layer 2 and the encapsulation component doesn’ t reach a high quality standard. Due to the poor adhesion between the insert component 1 and the encapsulation component, the encapsulation component is very likely to peel off from  the insert component 1. As a result, both the aesthetics of the entire encapsulation structure and the production yield will be affected. Furthermore, a potential safety risk also exists in a vehicle window formed with such an encapsulation structure.
Therefore, in order to solve the technical problems mentioned in the background, embodiments of the present disclosure provide a method for forming an encapsulation structure. FIGs. 3 to 5 schematically illustrate diagrams of intermediate structures formed in a method for forming an encapsulation structure according to one embodiment.
First, referring to FIG. 3, an insert component 100 is provided. In some embodiments, the insert component (or shortly called as “insert” ) may be a bright trim. After the encapsulation structure is formed, the bright trim may be partially covered by an encapsulation component in the encapsulation structure. The uncovered part of the bright trim can function as a decoration component. It should be noted that the insert component may have other configurations. In some embodiments, the insert component may be completely or mostly covered by the encapsulation component. In such configurations, the main function of the insert component is to support the encapsulation structure.
The insert component 100 is coated with an anti-rust layer 110.
In some embodiments, the insert component 100 may include iron, iron alloy, aluminum, aluminum alloy or high polymer material. However, the material of the insert component 100 is not limited to the aforesaid examples. In the present disclosure, a plasma treatment process is to be applied subsequently to the anti-rust layer 110 on the surface of the insert component 100.
In some embodiment, the anti-rust layer 110 may include epoxy resin. Epoxy resin is commonly used as an anti-rust material. However, the material of the anti-rust layer 110 is not limited to epoxy resin.
Thereafter, a plasma treatment process is applied to the insert component  100 coated with the anti-rust layer 110. The plasma treatment process is applied to increase the surface tension of the anti-rust layer 110.
Specifically, the plasma treatment process aims to remove the contaminations, impurity particles, etc., attached on the surface of the anti-rust layer 110, thereby increasing the surface tension of the anti-rust layer 110. Furthermore, the plasma treatment process aims to activate the surface of the anti-rust layer 110, and thus further increase the surface tension of the anti-rust layer 110. Therefore, in a subsequent coating process, the primer is more likely to be coated onto the surface of the anti-rust layer 110.
In some embodiments, the increased surface tension of the anti-rust layer 110 may at least reach 72mN/m, such that the primer can be ideally coated to the surface of the anti-rust layer 110 in following processing.
It should be noted that the above described parameter, 72mN/m, is merely an example. The required magnitude of the surface tension of the anti-rust layer 110 varies based on practical conditions, for example the components of the primer. The present disclosure is not limited to the above embodiments. Besides, by adjusting the parameters of the plasma treatment process, the resulting surface tension of the anti-rust layer 110 can be controlled to reach different levels.
In some embodiments, the plasma treatment process is an atmospheric pressure plasma treatment process, i.e., it is implemented at ambient atmospheric pressure. Such a plasma treatment process can enhance the surface tension of the anti-rust layer 110, as described above, and also save the cost. However, the plasma treatment process is not limited to an atmospheric pressure plasma treatment process. In some embodiments, the plasma treatment process may be selected from other plasma treatment processes, for example, it may be a vacuum plasma treatment process implemented at a pressure below 100pa.
In some embodiments, the plasma treatment process can directly use air as its gas source. In such a configuration, the process can be simply applied as no extra  gas source is dedicatedly required. However, the present disclosure is not limited to the embodiments. In some other embodiments, inert gases, nitrogen, etc., can also be selected as the gas source of the plasma treatment process.
Specifically, a plasma treatment device including a nozzle 200 may be used in the plasma treatment process applied to the anti-rust layer 110. Plasma flow 201 may be sprayed from the nozzle 200 and hit the surface of the anti-rust layer 110. As such, the contaminants and impurity particles on the surface of the anti-rust layer 110 can be removed, and the surface of the anti-rust layer 110 can be activated.
It should be noted that over treating the surface of the anti-rust layer 110 may bring several drawbacks. For example, the anti-rust layer 110 may be thinned too much to provide its original function, i.e., rust-proof. Besides, a too long treating period may increase the manufacturing cost, which is not necessary. Therefore, in order to increase the surface tension of the anti-rust layer 110 to more than 72mN/m and meanwhile avoid over treating the surface of the anti-rust layer 110, parameters of the plasma treatment process may be configured as follows: the plasma treatment device has an output power ranging from 300W to 1500W, a distance between the nozzle 200 and the anti-rust layer 110 is set from 3mm to 25mm, and the nozzle 200 moves relative to the insert component 100 (i.e., relative to the anti-rust layer 110) at a speed ranging from 3m/minute to 60m/minute.
For example, in a specific embodiment, air is used as the gas source of the plasma treatment process, the output power of the plasma treatment device is set as 300W, the distance between the nozzle 200 and the anti-rust layer 110 is set as 25mm, and the nozzle 200 moves relative to the anti-rust layer 110 at a speed of 60m/minute. In such an embodiment, the output power of the plasma treatment device is relatively low, the distance between the nozzle 200 and the surface of the anti-rust layer 110 is relatively long, and the moving speed of the nozzle 200 relative to the anti-rust layer 110 is relatively fast, which means the processing intensity of the plasma treatment process applied to the anti-rust layer 110 is relatively low. In such a configuration,  the surface tension of the anti-rust layer 110 can be increased to the required level, while the anti-rust layer 110 will not be overly treated. The thickness of the anti-rust layer 110 can be maintained enough to provide its anti-rust function. According to practical experiments, after the aforesaid plasma treatment process, the surface tension of the anti-rust layer 110 is increased to beyond 72mN/m.
Referring to FIG. 4, after the plasma treatment process is applied to the anti-rust layer 110, a primer 120 is coated on the anti-rust layer 110 of the insert component 100. The primer 120 is used for enhancing the adhesion between the insert component 100 formed with the anti-rust layer 110 and the subsequently formed encapsulation component.
As described above, the anti-rust layer 110, which has been subject to the plasma treatment process, has in increased surface tension. Therefore, compared with existing techniques, the primer 120 can be more easily attached to the surface of the anti-rust layer 110. In conventional practices, the primer may shrink to form liquid drops on the anti-rust layer. However, in embodiments of the present disclosure, the primer 120 may be more evenly distributed on the anti-rust layer 110, thereby forming a thin film attached thereon.
In some embodiments, the primer 120 may include polyurethane. Polyurethane can be used as the effective ingredient in the primer 120, attribute to its strong adhesion with both the anti-rust layer 110 made of epoxy resin and the encapsulation component formed in following processing.
In some embodiments, the primer 120 may be solvent-based. Specifically, the solution of the solvent-based primer may include methylbenzene, dimethylbenzene, ethyl acetate, methyl cyclohexane or propylene glycol monomethyl ether acetate. However, the solution is not limited to the above examples, and it can be adjusted based on practical needs.
It should be noted that the primer is not limited to a solvent-based primer. In some embodiments, the primer 120 may be water-based, that is to say, the solution  of the primer 120 is water.
It should be noted that the effective ingredient and solution of the primer may be adjusted based on the materials of the anti-rust layer 110 and/or the encapsulation component, so as to achieve an ideal adhesion among the anti-rust layer 110, the primer 120 and the encapsulation component.
Referring to FIG. 5, after the primer 120 is coated on the insert component 100, the insert component 100 coated with the primer 120 is subject to an injection molding process to form an encapsulation component 120 thereon. Thus, the encapsulation structure is formed. As the adhesion between the primer 120 and the encapsulation component 130 is relatively strong, and the adhesion between the primer 120 and the anti-rust layer 110 is also strong, the encapsulation component 130 is not likely to peel off from the insert component 100, thereby improving the production yield of the encapsulation structure.
In some embodiments, the encapsulation component 130 may be formed with PVC material. However, the present disclosure is not limited to these embodiments.
In another specific embodiment, the plasma treatment process may be configured as follows. The output power of the plasma treatment device is set as 1500W, the distance between the nozzle 200 and the anti-rust layer 110 is set as 3mm, and the nozzle 200 moves relative to the anti-rust layer 110 at a speed of 3m/minute. In such an embodiment, the output power of the plasma treatment device is relatively high, the distance between the nozzle 200 and the surface of the anti-rust layer 110 is relatively short, and the moving speed of the nozzle 200 relative to the anti-rust layer 110 is relatively slow, which means the processing intensity of the plasma treatment process applied to the anti-rust layer 110 is relatively strong. In such a configuration, the surface tension of the anti-rust layer 110 can be increased as much as possible.
In another specific embodiment, the plasma treatment process may be configured as follows. The output power of the plasma treatment device is set as  400W, the distance between the nozzle 200 and the anti-rust layer 110 is set as 6mm, and the nozzle 200 moves relative to the anti-rust layer 110 at a speed of 10m/minute. In such an embodiment, the output power of the plasma treatment device is relatively low, the distance between the nozzle 200 and the surface of the anti-rust layer 110 is relatively short, and the moving speed of the nozzle 200 relative to the anti-rust layer 110 is relatively slow. In such a configuration, although the output power is reduced, which is benefit for saving cost, the nozzle 200 is set to be closer to the anti-rust layer 110 and the speed is set to be slow. Therefore, the processing intensity of the plasma treatment process applied to the anti-rust layer 110 is still maintained at a high level, and thus the surface tension of the anti-rust layer 110 can still be increased to the required value.
In another specific embodiment, the plasma treatment process may be configured as follows. The output power of the plasma treatment device is set as 900W, the distance between the nozzle 200 and the anti-rust layer 110 is set as 14mm, and the nozzle 200 moves relative to the anti-rust layer 110 at a speed of 61.5m/minute. In such an embodiment, the output power of the plasma treatment device, the distance between the nozzle 200 and the surface of the anti-rust layer 110, and the moving speed of the nozzle 200 relative to the anti-rust layer 110 are all set at an intermediate level. Therefore, the surface tension of the anti-rust layer 110 can still be increased to the required level.
In light of the above, it could be concluded that parameters of the plasma treatment process (the output power of the plasma treatment device, the distance between the nozzle and the anti-rust layer, and the moving speed of the nozzle relative to the anti-rust layer) may vary based on practical conditions and requirements. Therefore, the present disclosure is not limited to the above embodiments illustrating the specific process parameters.
According to another embodiment of the present disclosure, an encapsulation structure is provided, the structure of which is illustrated in FIG. 5.
Referring to FIG. 5, the encapsulation structure includes: an insert component 100 and an encapsulation component 130 formed on a surface of the insert component 100 by an injection molding process. In some embodiments, the insert component 100 may include iron, iron alloy, aluminum, aluminum alloy or high polymer material. However, the material of the insert component 100 is not limited to the aforesaid examples. In the present disclosure, a plasma treatment process is to be applied subsequently to the anti-rust layer 110 on the surface of the insert component 100.
The insert component 100 is formed with an anti-rust layer 110 on the surface thereof.
In some embodiments, the anti-rust layer 11 is an epoxy resin anti-rust layer.
A surface of the anti-rust layer 11 is an activated surface treated by plasma.
In some embodiments, the surface of the anti-rust layer 11 is an activated surface treated by an atmospheric pressure plasma treatment process. However, the plasma treatment process is not limited to the specific type mentioned above. As long as the plasma treatment process can activate the surface of the anti-rust layer 110, it may be selected in the present disclosure. In some embodiments, the surface of the anti-rust layer 11 is an activated surface treated by a vacuum plasma treatment process.
The activated surface of the anti-rust layer 110 is coated with a primer 120.
In some embodiments, the primer 120 includes polyurethane.
The encapsulation component 130 is adhered to the anti-rust layer 110 formed on the insert component 100 through the primer 120, thereby constituting the encapsulation structure.
Specifically, the encapsulation component 130 may be formed as an integrate structure on the anti-rust layer 110 on the surface of the insert component 100 by an injection molding process.
It should be noted that the encapsulation structure provided in the present disclosure may be formed, but not limited to, by the method described above.
Further, a vehicle window is provided according to one embodiment. FIG. 6 schematically illustrates a plane view of the vehicle window, and FIG. 7 schematically illustrates a cross section of a part of the vehicle window.
The vehicle window includes a glass substrate 60 and an encapsulation structure 10 (referring to FIG. 6) formed by the aforesaid method for forming an encapsulation structure.
The encapsulation structure 10 includes an insert component 101, an anti-rust layer 111, a primer 121 and an encapsulation component 131 (referring to FIG. 7) . The encapsulation component 131 is formed to cover an edge portion of the glass substrate 60 by an injection molding process, such that the encapsulation structure 10 can be fixed with the glass substrate 60.
When the vehicle window is in use, it may be mounted on a vehicle bodywork 50. Specifically, in some embodiments, the vehicle window is mounted in such a way that the insert component 101 is disposed towards the vehicle bodywork 50. As such, the encapsulation structure 10, together with the glass substrate 60, is mounted on the vehicle bodywork 50.
As the encapsulation component 131 in the encapsulation structure 10 is not likely to peel off from the insert component 101, the glass substrate 60 in the vehicle window formed in such a way is less likely to fall off from the vehicle bodywork 50. Therefore, both the aesthetics and safety of the vehicle can be improved.
Although the present disclosure has been disclosed above with reference to preferred embodiments thereof, it should be understood that the disclosure is presented by way of example only, and not limitation. Those skilled in the art can modify and vary the embodiments without departing from the spirit and scope of the present disclosure. Therefore, the protection scope of the present disclosure is  subject to the scope defined by the claims.

Claims (15)

  1. A method for forming an encapsulation structure, comprising:
    providing an insert component with an anti-rust layer formed thereon;
    applying a plasma treatment process to the insert component with the anti-rust layer to increase a surface tension of the anti-rust layer;
    after applying the plasma treatment process, coating the anti-rust layer of the insert component with a primer; and
    injecting an encapsulation material onto the insert component coated with the primer to form the encapsulation structure.
  2. The method according to claim 1, wherein the insert component comprises iron, iron alloy, aluminum, aluminum alloy or high polymer material.
  3. The method according to claim 1, wherein the anti-rust layer comprises epoxy resin.
  4. The method according to claim 1, wherein the primer comprises polyurethane.
  5. The method according to claim 1, wherein the primer is water-based or solvent-based.
  6. The method according to claim 5, wherein the solvent-based primer comprises methylbenzene, dimethylbenzene, ethyl acetate, methyl cyclohexane or propylene glycol monomethyl ether acetate.
  7. The method according to claim 1, wherein the plasma treatment process is an atmospheric pressure plasma treatment process or a vacuum plasma treatment process.
  8. The method according to claim 1, wherein the plasma treatment process uses air as a gas source.
  9. The method according to claim 1, wherein the plasma treatment process comprises: using a plasma treatment device comprising a nozzle to apply the plasma treatment process to the insert component with the anti-rust layer, wherein the plasma treatment device has an output power ranging from 300W to 1500W, a  distance between the nozzle and the anti-rust layer is set from 3mm to 25mm, and the nozzle moves relative to the insert component at a speed ranging from 3m/minute to 60m/minute.
  10. An encapsulation structure, comprising an insert component and an encapsulation component formed on a surface of the insert component by injection molding, wherein an anti-rust layer is formed on the surface of the insert component, and the anti-rust layer has an activated surface which has been subject to a plasma treatment process;
    wherein the activated surface of the anti-rust layer is coated with a primer; and
    wherein the encapsulation component is adhered to the anti-rust layer of the insert component through the primer.
  11. The encapsulation structure according to claim 10, wherein the activated surface has been subject to an atmospheric pressure plasma treatment process or a vacuum plasma treatment process.
  12. The encapsulation structure according to claim 10, wherein the anti-rust layer is an epoxy resin anti-rust layer.
  13. The encapsulation structure according to claim 10, wherein the insert component comprises iron, iron alloy, aluminum, aluminum alloy or high polymer material.
  14. The encapsulation structure according to claim 10, wherein the primer comprises polyurethane.
  15. A vehicle window, comprising:
    a glass substrate; and
    an encapsulation structure formed by the method according to any one of claims 1 to 9.
PCT/CN2015/085536 2014-08-25 2015-07-30 Encapsulation structure and method for forming the same, and vehicle window WO2016029775A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410422096.0 2014-08-25
CN201410422096.0A CN105437459A (en) 2014-08-25 2014-08-25 A method of forming an edge cladding structure, the edge cladding structure, and window glass

Publications (1)

Publication Number Publication Date
WO2016029775A1 true WO2016029775A1 (en) 2016-03-03

Family

ID=55398733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085536 WO2016029775A1 (en) 2014-08-25 2015-07-30 Encapsulation structure and method for forming the same, and vehicle window

Country Status (2)

Country Link
CN (1) CN105437459A (en)
WO (1) WO2016029775A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108790203A (en) * 2017-12-31 2018-11-13 芜湖恒信汽车内饰制造有限公司 A kind of production method of plastics rear tailgate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124087A (en) * 2005-02-23 2008-02-13 大日本油墨化学工业株式会社 Laminated sheet for heat molding, molding, injection molding and its manufacturing process
CN101679656A (en) * 2007-05-01 2010-03-24 埃克阿泰克有限责任公司 Plastic plate of encapsulation and preparation method thereof
CN204055248U (en) * 2014-08-25 2014-12-31 法国圣戈班玻璃公司 Binding structure and glass for vehicle window

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894972A (en) * 1986-12-19 1990-01-23 Central Glass Company, Limited Window assembly and method of producing same
JP3272956B2 (en) * 1996-07-08 2002-04-08 株式会社小糸製作所 Bonding structure of lamp body and lens in vehicle lamp and bonding method thereof
JP4815894B2 (en) * 2005-06-27 2011-11-16 セントラル硝子株式会社 Method for manufacturing window glass with decorative molding and window glass with decorative molding
CN101870251A (en) * 2009-04-21 2010-10-27 浙江胜华波电器股份有限公司 Integrated glass hemming assembly for vehicle skylight and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124087A (en) * 2005-02-23 2008-02-13 大日本油墨化学工业株式会社 Laminated sheet for heat molding, molding, injection molding and its manufacturing process
CN101679656A (en) * 2007-05-01 2010-03-24 埃克阿泰克有限责任公司 Plastic plate of encapsulation and preparation method thereof
CN204055248U (en) * 2014-08-25 2014-12-31 法国圣戈班玻璃公司 Binding structure and glass for vehicle window

Also Published As

Publication number Publication date
CN105437459A (en) 2016-03-30

Similar Documents

Publication Publication Date Title
US20160293897A1 (en) Oled device package and packaging method thereof, and light-emitting device
US11101453B2 (en) Organic light emitting diode display panel and manufacturing method thereof
US11226518B2 (en) Display panel, and frame sealant application device and application method thereof
CN111253076A (en) Method for manufacturing high-precision ultrathin glass by rotary single-sided etching and glass manufactured by method
KR101715688B1 (en) Release films and methods of manufacturing the same
WO2016029775A1 (en) Encapsulation structure and method for forming the same, and vehicle window
WO2009051087A1 (en) Plasma film forming apparatus
WO2010103416A3 (en) Method of particle contaminant removal
US9612481B2 (en) Display substrate, method for manufacturing the same, and liquid crystal display device
ZA202204220B (en) Apparatus and method for coating substrates with washcoats
US8278189B2 (en) Method for thinning wafer
KR20180107152A (en) Bonding structure, a flexible screen having the bonding structure, and a method of manufacturing the same
CN103531722B (en) A kind of preparation method of flexible display
ATE458607T1 (en) VEHICLE WINDOW COVERED WITH SAFETY FILM AND PRODUCTION PROCESS
CN204055248U (en) Binding structure and glass for vehicle window
WO2018157577A1 (en) Solar chip packaging method for solar car
WO2009022494A1 (en) Method for manufacturing laminated body, and laminated body
US9717143B2 (en) Method for fabricating flexible substrate and flexible substrate prefabricated component
JP4908801B2 (en) Copper base material for electronic parts and electronic parts
US20110299151A1 (en) E-ink display device and method for manufacturing the same
MY160576A (en) Method for the spot repair of scratch-resistant paint films
CN205705626U (en) A kind of wafer cutting, thinning protecting film
WO2013022713A3 (en) Air flow management in a system with high speed spinning chuck
KR101517726B1 (en) Jig for etching
JP2011162074A (en) Glass with molding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834882

Country of ref document: EP

Kind code of ref document: A1