WO2016029515A1 - 一种基于缩减像素采样处理的显示方法及设备 - Google Patents

一种基于缩减像素采样处理的显示方法及设备 Download PDF

Info

Publication number
WO2016029515A1
WO2016029515A1 PCT/CN2014/086510 CN2014086510W WO2016029515A1 WO 2016029515 A1 WO2016029515 A1 WO 2016029515A1 CN 2014086510 W CN2014086510 W CN 2014086510W WO 2016029515 A1 WO2016029515 A1 WO 2016029515A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixels
pixel
adjacent
directions
cubic interpolation
Prior art date
Application number
PCT/CN2014/086510
Other languages
English (en)
French (fr)
Inventor
胡厚亮
李�浩
朱立伟
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/396,057 priority Critical patent/US9519951B2/en
Publication of WO2016029515A1 publication Critical patent/WO2016029515A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4007Interpolation-based scaling, e.g. bilinear interpolation

Definitions

  • the present invention relates to the field of image processing technologies, and in particular, to a display method and device based on reduced pixel sampling processing.
  • PMPs portable multimedia players
  • PDAs personal digital assistants
  • DS Downsampling
  • the content with a resolution of 1280*960 is reduced to 640*480 by DS processing.
  • the current DS method can be divided into Pixel-based DS (pixel-based downsampling) and Subpixel-based DS (subpixel-based downsampling), using APD (Average Pixel-based DS, pixel-based reduction) Pixel sampling)
  • APD Average Pixel-based DS, pixel-based reduction
  • RGB values such as 4 pixels during processing and calculates an average value to obtain a new RGB value.
  • the Subpixel-based DS processing the sub-pixel RGB values in the oblique direction are obtained to obtain a new image. In this way, the image obtained is clearer than the image obtained by the APD method, but the color aliasing problem occurs.
  • the technical problem to be solved by the present invention is to provide a display method and apparatus based on downsampling sampling processing, which can obtain clear images and avoid color aliasing.
  • the present invention provides a display method based on reduced pixel sampling processing, wherein the method includes: acquiring an input image, the input image including a plurality of pixels; acquiring at least two directions from a plurality of pixels of the input image Up to at least two pixels of the pixel to be calculated DS Pixel in the target image are respectively obtained to obtain at least four first adjacent pixels, and respectively calculating each of the at least four first adjacent pixels in the at least two a theoretical value in the direction; obtaining an error between a theoretical value of each of the at least four first adjacent pixels and a corresponding original value, and determining, according to the error, for calculating the a weighting factor of the DS Pixel; and calculating an estimate of the DS Pixel based on the weighting factor and a weighted cubic interpolation calculation model pre-established for the DS Pixel, and using the above steps for the remaining DS Pixels in the target image A corresponding estimated value is calculated to obtain a reduced-pixel sampling processed image.
  • the step of acquiring an input image further includes: acquiring at least four pixels adjacent to the DS Pixel in at least two directions from the plurality of pixels of the input image to obtain at least eight second neighbors Pixels, and establishing the weighted cubic interpolation calculation model according to the at least eight second adjacent pixels.
  • the at least two directions are four directions of 0 degrees, 45 degrees, 90 degrees, and 135 degrees with respect to the DS Pixel, and 16 second adjacent pixels are obtained, and the calculation model of the weighted cubic interpolation is obtained. for:
  • p m k 0 ( ⁇ 1 A+ ⁇ 2 B+ ⁇ 3 C+ ⁇ 4 D)+k 45 ( ⁇ 1 P h1 + ⁇ 2 P h2 + ⁇ 3 P h3 + ⁇ 4 P h4 )+k 90 ( ⁇ 1 E+ ⁇ 2 F+ ⁇ 3 G+ ⁇ 4 H)+k 135 ( ⁇ 1 P h5 + ⁇ 2 P h6 + ⁇ 3 P h7 + ⁇ 4 P h8 ); wherein, p m is DS Pixel, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 cubic interpolation coefficients, P h1 ⁇ P h4 plurality of pixels of the input image in the 45-degree direction in which p m p m and adjacent four pixels, P h5 ⁇ P h8 is 4 pixels adjacent to p m in a direction of 135 degrees of p m among a plurality of pixels of the input image; A, B, C, D are 0 of p m of the plurality of pixels of the input image p
  • W 1 ⁇ 1 P n1 + ⁇ 2 P n2 + ⁇ 3 P n3 + ⁇ 4 P n4 (1)
  • the four pixels in four directions of 0, 45, 90, and 135 degrees of the DS Pixel respectively are formed into a 4*4 pixel matrix, and the formula (1) is used to calculate A, B,
  • the values of C and D, P n1 , P n2 , P n3 , P n4 are 4 pixels in each column of the pixel matrix;
  • formula (2) is used to calculate the values of E, F, G, H, P m1 P m2 , P m3 , and P m4 are 4 pixels in each row of the pixel matrix.
  • the at least two directions are two directions of 45 degrees and 135 degrees with respect to the DS Pixel, and eight second adjacent pixels are obtained, and the calculation model of the weighted cubic interpolation is:
  • p m k 45 ( ⁇ 1 P h1 + ⁇ 2 P h2 + ⁇ 3 P h3 + ⁇ 4 P h4 )+k 135 ( ⁇ 1 P h5 + ⁇ 2 P h6 + ⁇ 3 P h7 + ⁇ 4 P h8 )
  • p m is DS Pixel
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 are cubic interpolation coefficients
  • P h1 ⁇ P h4 are in the 45-degree direction of p m of the plurality of pixels of the input image and adjacent four pixels p m, P h5 ⁇ P h8 to the 135-degree direction of the input image in a plurality of pixels located at p m p m and adjacent four pixels
  • k 45, k 135 is a weighting coefficient
  • k 45 +k 135 1.
  • the present invention further provides a display device based on reduced pixel sampling processing, inputting an image including a plurality of pixels, wherein: a pixel theoretical value calculation unit for using a plurality of pixels from the input image Obtaining at least two adjacent pixels respectively adjacent to the DS Pixel in at least two directions to obtain at least four first adjacent pixels, and respectively calculating each of the at least four first adjacent pixels a theoretical value in the at least two directions; a weighted cubic interpolation calculation unit, configured to acquire, from the plurality of pixels of the input image, at least four of the pixels to be calculated in the target image, respectively, in at least two directions Obtaining at least eight second adjacent pixels, and pre-establishing a weighted cubic interpolation calculation model for calculating the DS Pixel according to the at least eight second adjacent pixels; and a weight coefficient calculation unit, configured to acquire the at least four An error between a theoretical value of each of the first adjacent pixels and a corresponding original value, and determining a weight for calculating the DS Pixel
  • the at least two directions are four directions of 0, 45, 90, and 135 degrees with respect to the DS Pixel, and 16 adjacent pixels are obtained correspondingly, and the weighted cubic interpolation calculation unit is pre-established.
  • the calculation model for the weighted cubic interpolation is:
  • p m k 0 ( ⁇ 1 A+ ⁇ 2 B+ ⁇ 3 C+ ⁇ 4 D)+k 45 ( ⁇ 1 P h1 + ⁇ 2 P h2 + ⁇ 3 P h3 + ⁇ 4 P h4 )+k 90 ( ⁇ 1 E+ ⁇ 2 F+ ⁇ 3 G+ ⁇ 4 H)+k 135 ( ⁇ 1 P h5 + ⁇ 2 P h6 + ⁇ 3 P h7 + ⁇ 4 P h8 ); wherein, p m is DS Pixel, ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4 cubic interpolation coefficients, P h1 ⁇ P h4 plurality of pixels of the input image in the 45-degree direction in which p m p m and adjacent four pixels, P h5 ⁇ P h8 is 4 pixels adjacent to p m in a direction of 135 degrees of p m among a plurality of pixels of the input image; A, B, C, D are 0 of p m of the plurality of pixels of the input image p
  • the pixel theoretical value calculation unit substitutes the original values of each of the at least four first adjacent pixels into a cubic interpolation formula to calculate a theoretical value of the pixel in the at least two directions,
  • the at least two directions are two directions of 45 degrees and 135 degrees with respect to the DS Pixel, and the calculation model of the weighted cubic interpolation pre-established by the weighted cubic interpolation calculation unit is:
  • p m k 45 ( ⁇ 1 P h1 + ⁇ 2 P h2 + ⁇ 3 P h3 + ⁇ 4 P h4 )+k 135 ( ⁇ 1 P h5 + ⁇ 2 P h6 + ⁇ 3 P h7 + ⁇ 4 P h8 )
  • p m is DS Pixel
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 are cubic interpolation coefficients
  • P h1 ⁇ P h4 are in the 45-degree direction of p m of the plurality of pixels of the input image and adjacent four pixels p m, P h5 ⁇ P h8 to the 135-degree direction of the input image in a plurality of pixels located at p m p m and adjacent four pixels
  • k 45, k 135 is a weighting coefficient
  • k 45 +k 135 1.
  • the pixel theoretical value calculation unit substitutes the original values of each of the at least four first adjacent pixels into a cubic interpolation formula to calculate a theoretical value of the pixel in the at least two directions,
  • the present invention also provides a display method based on reduced pixel sampling processing, wherein the method includes: acquiring an input image, the input image including a plurality of pixels; from a plurality of pixels of the input image Acquiring at least four pixels adjacent to the pixel to be calculated DS Pixel in the target image in at least two directions to obtain at least eight second adjacent pixels, and according to the at least eight second Establishing a weighted cubic interpolation calculation model for adjacent pixels; acquiring at least two pixels adjacent to the DS Pixel in at least two directions from the plurality of pixels of the input image to obtain at least four first adjacent pixels, and Calculating a theoretical value of each of the at least four first adjacent pixels in the at least two directions; acquiring a theoretical value of each of the at least four first adjacent pixels and a corresponding original An error between the values, and determining a weighting coefficient for calculating the DS Pixel based on the error; and calculating an estimated value of the DS Pixel according to the weighting coefficient and the weighted cubic interpol
  • the invention provides a display method and a display device based on reduced pixel sampling processing, by establishing a weighted cubic interpolation model of a pixel to be calculated DS Pixel, and using the model to calculate an original image pixel adjacent to the pixel to be calculated DS Pixel
  • the theoretical value is obtained, and then the error between the theoretical value and the original value is analyzed to obtain a weight coefficient, which is then fed back into the weighted cubic interpolation model to calculate DS Pixel.
  • This DS method based on Pixel calculation avoids the phenomenon of color aliasing based on Subpixel-based DS mode, and at the same time, clear images can be obtained.
  • FIG. 1 is a flowchart of a display method based on reduced pixel sampling processing according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a pixel array for establishing a weighted cubic interpolation model according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of a pixel array for calculating a theoretical value of an original image pixel according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a pixel array for establishing a weighted cubic interpolation model according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of functional modules of a display device based on reduced pixel sampling processing according to an embodiment of the present invention.
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 are cubic interpolation coefficients
  • FIG. 1 is a flowchart of a display method based on reduced pixel sampling processing according to an embodiment of the present invention.
  • the method is used to sequentially calculate DS Pixel to convert an original image including a pixel matrix M*N into an image including a pixel matrix P*Q, wherein M, N, P, and Q are natural numbers, and P ⁇ M, Q ⁇ N.
  • DS Pixel is a pixel corresponding to the M*N pixels of the original image after DS processing, and each DS Pixel in the P*Q pixel matrix is respectively calculated by the method to finally form a subtraction pixel with lower resolution than the original image. Sampling the image.
  • the method comprises the following steps:
  • Step S10 Acquire an input image, the input image includes M*N pixels, and obtain an original image according to the M*N pixels.
  • the video stream image or the picture image collected by the camera, the network download, and the mutual transmission between the devices may be used as the current input image.
  • Step S11 selecting at least four pixels adjacent to a pixel to be calculated DS Pixel in at least two directions in the M*N pixels of the original image to obtain at least eight second adjacent pixels, and acquiring according to the At least eight second neighboring pixels establish a weighted cubic interpolation calculation model that computes a corresponding DS Pixel.
  • the at least two directions are four directions of 0, 45, 90, and 135 degrees with respect to the DS Pixel
  • the weighted cubic interpolation calculation model is a 0-45-90-135 model.
  • the M*N pixels of the original image are respectively located in four directions of 0, 45, 90, and 135 degrees of the DS Pixel and adjacent to the 4 pixels of the DS Pixel to obtain 16 second phases. Adjacent pixels, and using the 16 second neighboring pixels to establish a calculation model of the weighted cubic interpolation.
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 are cubic interpolation coefficients
  • P h1 to P h4 are the 45* directions of p m in the M*N pixels of the original image. adjacent four pixels p m, P h5 ⁇ P h8 of the original image of m * N pixels and adjacent four pixels p m of the original 135-degree direction in which the p m.
  • A, B, C, and D are the M*N pixels of the original image located 4 pixels adjacent to p m in the 0 degree direction of p m
  • E, F, G, and H are the original images of M*N pixels located at p four neighboring pixels p m m the direction of 90 degrees.
  • the at least two directions are two directions of 45 degrees and 135 degrees with respect to the DS Pixel
  • the weighted cubic interpolation calculation model is a 45-135 model.
  • the M*N pixels of the original image are respectively located in the two directions of 45 degrees and 135 degrees of the DS Pixel and adjacent to the 4 pixels of the DS Pixel to obtain 8 second adjacent pixels, and the 8 adjacent pixels are used.
  • the second adjacent pixel establishes a computational model of the weighted cubic interpolation.
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 are cubic interpolation coefficients
  • P h1 ⁇ P h4 are the M*N pixels of the original image located in the 45-degree direction of p m and adjacent to p m four pixels
  • P h5 ⁇ P h8 of the original image of m * N pixels and four pixels adjacent to the 135-degree p m p m of the direction in which.
  • k 45 and k 135 are weight coefficients
  • k 45 +k 135 1.
  • Step S12 selecting at least two pixels in the at least two directions and adjacent to the DS Pixel from the pixel array M*N of the original image to obtain at least four first adjacent pixels, and using the cubic interpolation Equation (17) calculates the theoretical value of each of the at least four first adjacent pixels, respectively.
  • Step S13 calculating an error between a theoretical value of each of the at least four first adjacent pixels and its original value, and further determining a weight coefficient for calculating the corresponding DS Pixel according to the error.
  • Step S14 selecting a corresponding weighted cubic interpolation calculation model, and calculating an estimated value of the DS Pixel according to the determined weight coefficient.
  • the corresponding steps are used to calculate corresponding Estimate the value to get the reduced pixel sample processed image.
  • FIG. 2 is a schematic diagram of a pixel array for establishing a weighted cubic interpolation calculation model according to the first embodiment of the present invention.
  • P00 ⁇ P911 are the pixels of the original image
  • p00 ⁇ p45 are the DS Pixel to be calculated.
  • the weighted cubic interpolation calculation model for calculating p22 is:
  • P 63 , P 54 , P 45 , and P 36 are the original pixels in the P00 to P911 pixels of the original image, which are located in the 45-degree direction of p22 and adjacent to p22, and P 33 , P 44 , P 55 , and P 66 are original images.
  • the P00 to P911 pixels there are 4 pixels located in the 135-degree direction of p22 and adjacent to p22.
  • FIG. 3 is a schematic diagram of a pixel array for calculating a theoretical value of a pixel according to an embodiment of the present invention.
  • four pixels located in the four directions of 0, 45, 90, and 135 degrees of p22 and adjacent to p22 are respectively P44, P45, P54, and P55.
  • P' 45 (45) ⁇ 1 P 63 + ⁇ 2 P 54 + ⁇ 3 P 36 + ⁇ 4 P 27
  • P' 55 (45) ⁇ 1 P 63 + ⁇ 2 P 64 + ⁇ 3 P 46 + ⁇ 4 P 37
  • step S13 the errors between the theoretical values of P44, P45, P54, and P55 and their original values are respectively calculated, and the error sums in the directions of 0, 45, 90, and 135 degrees are further determined as:
  • Sum_error 45
  • Sum_error 90
  • Sum_error 135
  • step S14 the weighted cubic interpolation calculation model corresponding to p22 is selected, and the calculated weight coefficient is substituted into the weighted cubic interpolation calculation model to calculate the estimated value of p22:
  • FIG. 4 is a schematic diagram of a pixel array for establishing a weighted cubic interpolation calculation model according to a second embodiment of the present invention.
  • the weighted cubic interpolation calculation model for calculating p22 is:
  • p 22 k 45 ( ⁇ 1 P 63 + ⁇ 2 P 54 + ⁇ 3 P 45 + ⁇ 4 P 36 ) + k 135 ( ⁇ 1 P 33 + ⁇ 2 P 44 + ⁇ 3 P 55 + ⁇ 4 P 66 ) ;
  • P 63 , P 54 , P 45 , and P 36 are the original pixels in the P00 to P911 pixels of the original image, which are located in the 45-degree direction of p22 and adjacent to p22, and P 33 , P 44 , P 55 , and P 66 are original images.
  • the P00 to P911 pixels there are 4 pixels located in the 135-degree direction of p22 and adjacent to p22.
  • P' 45 (45) ⁇ 1 P 63 + ⁇ 2 P 54 + ⁇ 3 P 36 + ⁇ 4 P 27
  • P' 55 (45) ⁇ 1 P 63 + ⁇ 2 P 64 + ⁇ 3 P 46 + ⁇ 4 P 37
  • step S13 the error between the theoretical value of P44, P45, P54, P55 and its original value is calculated separately, and the error sum in the direction of 45 degrees and 135 degrees is further determined as:
  • Sum_error 45
  • Sum_error 135
  • step S14 the weighted cubic interpolation calculation model corresponding to p22 is selected, and the calculated weight coefficient is substituted into the weighted cubic interpolation calculation model to calculate the value of p22:
  • P*Q DS Pixels are respectively calculated to obtain a reduced pixel sample processed image.
  • FIG. 5 is a schematic diagram of functional modules of a display device based on reduced pixel sampling processing in an embodiment of the present invention.
  • the apparatus 20 includes a weighted cubic interpolation calculation unit 21, a pixel theoretical value calculation unit 22, a weight coefficient calculation unit 23, and a DS Pixel calculation unit 24.
  • the weighted cubic interpolation calculation unit 21 is configured to select at least four pixels adjacent to the DS Pixel in at least two directions to obtain at least eight adjacent pixels in the M*N pixels of the original image, and obtain the at least eight adjacent pixels according to the acquired At least eight adjacent pixels are pre-established to calculate a weighted cubic interpolation calculation model for the DS Pixel.
  • the at least two directions are four directions of 0, 45, 90, and 135 degrees with respect to the DS Pixel, that is, the weighted cubic interpolation calculation unit 21 selects M*N of the original image.
  • the pixel is located in the four directions of 0, 45, 90, and 135 degrees of the DS Pixel and adjacent to the 4 pixels of the DS Pixel to obtain 16 adjacent pixels, and the calculation model of the weighted cubic interpolation is established:
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 are cubic interpolation coefficients
  • P h1 to P h4 are the 45* directions of p m in the M*N pixels of the original image.
  • the weighted cubic interpolation calculation unit 21 is further capable of being located at 0, 45, 90, and 135 degrees of p m according to the cubic interpolation coefficients ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , and M*N pixels of the original image, respectively.
  • the four original image pixels in the direction and adjacent to p m can determine the values corresponding to A, B, C, D, E, F, G, H.
  • the weighted cubic interpolation calculation unit 21 determines values of A, B, C, D, E, F, G, and H according to the following formula:
  • the at least two directions are two directions of 45 degrees and 135 degrees with respect to the DS Pixel, that is, the weighted cubic interpolation calculation unit 21 selects the M*N pixels of the original image respectively located in the The DS Pixel's 45 degrees and 135 degrees in two directions and adjacent to the DS Pixel's 4 pixels to obtain 8 adjacent pixels, and establish the calculation model of the weighted cubic interpolation:
  • ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 are cubic interpolation coefficients
  • P h1 ⁇ P h4 are the M*N pixels of the original image located in the 45-degree direction of p m and adjacent to p m four pixels
  • P h5 ⁇ P h8 of the original image of m * N pixels and four pixels adjacent to the 135-degree p m p m of the direction in which.
  • k 45 and k 135 are weight coefficients
  • k 45 +k 135 1.
  • the pixel theoretical value calculation unit 22 is configured to select at least two pixels of the DS Pixel in at least two directions and adjacent to the DS Pixel in the pixel array M*N of the original image to obtain at least four adjacent pixels. And calculating the theoretical value of each of the at least four adjacent pixels by using the cubic interpolation formula (17).
  • the weight coefficient calculation unit 23 is configured to calculate an error between the theoretical value determined by the pixel theoretical value calculation unit 22 and its original value, and further determine a weight coefficient for calculating the corresponding DS Pixel based on the error.
  • the DS Pixel calculation unit 24 is configured to select a corresponding weighted cubic interpolation calculation model and calculate the DS Pixel according to the determined weight coefficient.
  • the display device 20 processes the remaining DS Pixels in the target image as above to obtain a corresponding estimated value, thereby obtaining a reduced pixel sample processed image.
  • the first embodiment of the present invention will be described in detail below by taking DS Pixel as p22 as an example.
  • the weighted cubic interpolation calculation unit 21 establishes a weighted cubic interpolation calculation model for calculating p22 as:
  • P 63 , P 54 , P 45 , and P 36 are the original pixels in the P00 to P911 pixels of the original image, which are located in the 45-degree direction of p22 and adjacent to p22, and P 33 , P 44 , P 55 , and P 66 are original images.
  • the P00 to P911 pixels there are 4 pixels located in the 135-degree direction of p22 and adjacent to p22.
  • the weighted cubic interpolation calculation unit 21 is further located in the four directions of 0, 45, 90, and 135 degrees of p22 according to the cubic interpolation coefficients ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 and the P00 to P911 pixels of the original image.
  • the values of A, B, C, D, E, F, G, and H are determined by the four pixels above and adjacent to p22:
  • the pixel theoretical value calculation unit 22 selects four pixels adjacent to p22 in the M*N pixels of the original image as P44, P45, P54, and P55, respectively, and uses a cubic interpolation formula (17). ) Calculate the theoretical value of each pixel in four directions:
  • P' 45 (45) ⁇ 1 P 63 + ⁇ 2 P 54 + ⁇ 3 P 36 + ⁇ 4 P 27
  • P' 55 (45) ⁇ 1 P 63 + ⁇ 2 P 64 + ⁇ 3 P 46 + ⁇ 4 P 37
  • the weight coefficient calculation unit 23 calculates an error between the theoretical value of P44, P45, P54, P55 and its original value, and further determines the error sum in the directions of 0, 45, 90, and 135 degrees as:
  • Sum_error 45
  • Sum_error 90
  • Sum_error 135
  • the weight coefficient calculation unit 23 is also based on the error and the calculated weight coefficients k 0 , k 45 , k 90 , k 135 :
  • the DS Pixel calculation unit 24 selects a weighted cubic interpolation calculation model corresponding to p22, and substitutes the calculated weight coefficient into the weighted cubic interpolation calculation model to calculate an estimated value of p22:
  • the first embodiment of the present invention will be described in detail below by taking DS Pixel as p22 as an example.
  • the weighted cubic interpolation calculation unit 21 calculates a weighted cubic interpolation calculation model of p22 as:
  • p 22 k 45 ( ⁇ 1 P 63 + ⁇ 2 P 54 + ⁇ 3 P 45 + ⁇ 4 P 36 ) + k 135 ( ⁇ 1 P 33 + ⁇ 2 P 44 + ⁇ 3 P 55 + ⁇ 4 P 66 ) ;
  • P 63 , P 54 , P 45 , and P 36 are the original pixels in the P00 to P911 pixels of the original image, which are located in the 45-degree direction of p22 and adjacent to p22, and P 33 , P 44 , P 55 , and P 66 are original images.
  • the P00 to P911 pixels there are 4 pixels located in the 135-degree direction of p22 and adjacent to p22.
  • the pixel theoretical value calculation unit 22 selects four pixels in the two directions and adjacent to p22 in the pixel array M*N pixels of the original image, respectively, and uses P44, P45, P54, and P55, respectively, and uses the cube.
  • the interpolation formula (17) calculates the theoretical value of each pixel in two directions:
  • P' 45 (45) ⁇ 1 P 63 + ⁇ 2 P 54 + ⁇ 3 P 36 + ⁇ 4 P 27
  • P' 55 (45) ⁇ 1 P 63 + ⁇ 2 P 64 + ⁇ 3 P 46 + ⁇ 4 P 37
  • the weight coefficient calculation unit 23 calculates the error between the theoretical value of P44, P45, P54, P55 and its original value, respectively, and further determines the error sum in the directions of 45 degrees and 135 degrees as:
  • Sum_error 45
  • Sum_error 135
  • the weight coefficient calculation unit 23 is also based on the error and the calculated weight coefficients k 45 , k 135 :
  • the DS Pixel calculation unit 24 selects the weighted cubic interpolation calculation model corresponding to p22, and substitutes the calculated weight coefficient into the weighted cubic interpolation calculation model to calculate the value of p22:
  • P*Q DS Pixels are respectively calculated to obtain a reduced pixel sample processed image.
  • the invention provides a display method and device based on reduced pixel sampling processing, by establishing a weighted cubic interpolation model of a pixel to be calculated DS Pixel, and using the model to calculate an original image pixel adjacent to the pixel to be calculated DS Pixel Theoretical value, then analyze the error between the theoretical value and the original value to get The weighting factor is then fed back into the weighted cubic interpolation model to calculate the DS Pixel.
  • This DS method based on Pixel calculation avoids the phenomenon of color aliasing based on Subpixel-based DS mode, and at the same time, clear images can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Editing Of Facsimile Originals (AREA)

Abstract

一种基于缩减像素采样处理的显示方法和显示设备,该方法包括:获取包括多个像素的输入图像;从多个像素中获取在至少两个方向上邻近待计算像素DS Pixel的至少两个像素以获得至少四个第一相邻像素,并计算每个第一相邻像素在至少两个方向上的理论值;获取理论值与对应原始值间的误差,并根据误差确定用于计算DS Pixel的权重系数;以及根据权重系数和加权立方插值计算模型计算DS Pixel的估计值,并且针对目标图像中其余DS Pixel均采用上述步骤计算得到相应的估计值,以得到缩减像素采样处理图像。该方法避免了基于Subpixel的DS方式颜色混叠的现象,同时可以得到清晰的图像。

Description

一种基于缩减像素采样处理的显示方法及设备 【技术领域】
本发明设计图像处理技术领域,尤其涉及一种基于缩减像素采样处理的显示方法及设备。
【背景技术】
现有的便携式多媒体播放器(PMP)、个人数字助理(PDA),在显示图像时通常都是低解析度的显示。当输入到这些设备的内容为高解析度时,需要对高解析度的内容做DS(缩减像素采样,Downsampling)处理。例如,将解析度为1280*960的内容通过DS处理将解析度降为640*480。
目前的DS方式可分为Pixel-based DS(基于像素的缩减像素采样)和Subpixel-based DS(基于子像素的缩减像素采样),在利用APD(Average Pixel-based DS,基于像素平均值的缩减像素采样)处理时获取诸如4个像素的RGB值并计算平均值而得到一个新的RGB值,这样的DS方式虽然计算简单,但是会导致解析度降低、图像模糊的问题。在利用Subpixel-based DS处理时获取斜角方向的子像素RGB值得到新的图像,这种方式获得图像比经过APD方式获得的图像清晰,但是会出现颜色混叠的问题。
【发明内容】
本发明要解决的技术问题是提供一种基于缩减像素采样处理的显示方法及设备,能够获得清晰的图像以及避免颜色混叠。
本发明提供一种基于缩减像素采样处理的显示方法,其中,所述方法包括:获取输入图像,所述输入图像包括多个像素;从所述输入图像的多个像素中获取在至少两个方向上分别邻近目标图像中待计算像素DS Pixel的至少两个像素以获得至少四个第一相邻像素,并分别计算所述至少四个第一相邻像素中每个像素在所述至少两个方向上的理论值;获取所述至少四个第一相邻像素中每个像素的理论值与对应的原始值之间的误差,并根据所述误差确定用于计算所述 DS Pixel的权重系数;以及根据所述权重系数以及针对所述DS Pixel预先建立的加权立方插值计算模型计算所述DS Pixel的估计值,并且针对所述目标图像中其余DS Pixel,均采用上述步骤计算得到相应的估计值,以得到缩减像素采样处理图像。
其中,所述获取输入图像的步骤之后还包括:从所述输入图像的多个像素中获取在至少两个方向上分别邻近所述DS Pixel的至少四个像素以获得至少八个第二相邻像素,并根据所述至少八个第二相邻像素建立所述加权立方插值计算模型。
其中,所述至少两个方向为相对于所述DS Pixel的0度、45度、90度以及135度的四个方向,并获得16个第二相邻像素,所述加权立方插值的计算模型为:
pm=k01A+λ2B+λ3C+λ4D)+k451Ph12Ph23Ph34Ph4)+k901E+λ2F+λ3G+λ4H)+k1351Ph52Ph63Ph74Ph8);其中,pm为DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4为所述输入图像的多个像素中位于pm的45度方向上且邻近pm的4个像素,Ph5~Ph8为所述输入图像的多个像素中位于pm的135度方向上邻近pm的4个像素;A、B、C、D为所述输入图像的多个像素中位于pm的0度方向上邻近pm的4个像素;E、F、G、H为所述输入图像的多个像素中位于pm的90度方向上邻近pm的4个像素;k0、k45、k90、k135为权重系数,且k0+k45+k90+k135=1。
其中,根据如下公式确定A、B、C、D、E、F、G、H的值:
W1=λ1Pn12Pn23Pn34Pn4(一)
W2=λ1Pm12Pm23Pm34Pm4(二)
其中,分别获取的相对于所述DS Pixel的0度、45度、90度以及135度的四个方向上的4个像素形成4*4像素矩阵,公式(一)用于计算A、B、C、D的值,Pn1、Pn2、Pn3、Pn4为所述像素矩阵中位于每一列的4个像素;公式(二)用于计算E、F、G、H的值,Pm1、Pm2、Pm3、Pm4为所述像素矩阵中位于每一行的4个像素。
其中,所述计算所述至少四个第一相邻像素中每个像素在所述至少两个方向上的理论值包括:将所述至少四个第一相邻像素中的每个像素的原始值代入立方插值公式以计算所述像素在所述至少两个方向上的理论值,其中,所述立方插值公式为:P’j1(x)=λ1Pj22Pj33Pj44Pj5;其中,x为所述方向对应的值, Pj1、Pj2、Pj3、Pj4、Pj5为所述输入图像的多个像素中位于所述DS Pixel的x值对应方向上且邻近所述DS Pixel的像素,且Pj1为Pj2、Pj3、Pj4、Pj5的的插值。
其中,所述至少两个方向为相对于所述DS Pixel的45度以及135度二个方向,并获得8个第二相邻像素,所述加权立方插值的计算模型为:
pm=k451Ph12Ph23Ph34Ph4)+k1351Ph52Ph63Ph74Ph8);其中,pm为DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4为所述输入图像的多个像素中位于pm的45度方向上且邻近pm的4个像素,Ph5~Ph8为所述输入图像的多个像素中中位于pm的135度方向上且邻近pm的4个像素;k45、k135为权重系数,且k45+k135=1。
其中,所述计算所述至少四个第一相邻像素中每个像素在所述至少两个方向上的理论值包括:将所述至少四个第一相邻像素中的每个像素的原始值代入立方插值公式以计算所述像素在所述至少两个方向上的理论值,其中,所述立方插值公式为:P’j1(x)=λ1Pj22Pj33Pj44Pj5;其中,x为所述方向对应的值,Pj1、Pj2、Pj3、Pj4、Pj5为所述输入图像的多个像素中位于所述DS Pixel的x值对应方向上且邻近所述DS Pixel的像素,且Pj1为Pj2、Pj3、Pj4、Pj5的的插值。
为解决上述问题,本发明还提供一种基于缩减像素采样处理的显示设备,输入一包括多个像素的图像,其中,包括:像素理论值计算单元,用于从所述输入图像的多个像素中获取在至少两个方向上分别邻近所述DS Pixel的至少两个相邻像素以获得至少四个第一相邻像素,并分别计算所述至少四个第一相邻像素中每个像素在所述至少两个方向上的理论值;加权立方插值计算单元,用于从所述输入图像的多个像素中获取在至少两个方向上分别邻近目标图像中待计算像素DS Pixel的至少四个像素以获得至少八个第二相邻像素,并根据所述至少八个第二相邻像素预先建立计算所述DS Pixel的加权立方插值计算模型;权重系数计算单元,用于获取所述至少四个第一相邻像素中每个像素的理论值与对应原始值之间的误差,并根据所述误差确定用于计算所述DS Pixel的权重系数;以及DS Pixel计算单元,用于根据所述权重系数选择对应的加权立方插值计算模型计算所述DS Pixel的估计值;其中,所述显示设备对所述目标图像中每一DS Pixel进行相应估计值的计算,以得到缩减像素采样处理图像。
其中,所述至少两个方向为相对于所述DS Pixel的0度、45度、90度以及135度的四个方向,并相应获得16个相邻像素,所述加权立方插值计算单元预先建立的加权立方插值的计算模型为:
pm=k01A+λ2B+λ3C+λ4D)+k451Ph12Ph23Ph34Ph4)+k901E+λ2F+λ3G+λ4H)+k1351Ph52Ph63Ph74Ph8);其中,pm为DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4为所述输入图像的多个像素中位于pm的45度方向上且邻近pm的4个像素,Ph5~Ph8为所述输入图像的多个像素中位于pm的135度方向上邻近pm的4个像素;A、B、C、D为所述输入图像的多个像素中位于pm的0度方向上邻近pm的4个像素;E、F、G、H为所述输入图像的多个像素中位于pm的90度方向上邻近pm的4个像素;k0、k45、k90、k135为权重系数,且k0+k45+k90+k135=1。
其中,所述像素理论值计算单元将所述至少四个第一相邻像素中的每个像素的原始值分别代入立方插值公式以计算所述像素在所述至少两个方向上的理论值,所述立方插值公式为:P’j1(x)=λ1Pj22Pj33Pj44Pj5;其中,x为所述方向对应的值,Pj1、Pj2、Pj3、Pj4、Pj5为所述输入图像的多个像素中位于所述DS Pixel的x值对应方向上且邻近所述DS Pixel的像素,且Pj1为Pj2、Pj3、Pj4、Pj5的的插值。
其中,所述至少两个方向为相对于所述DS Pixel的45度以及135度二个方向,所述加权立方插值计算单元预先建立的加权立方插值的计算模型为:
pm=k451Ph12Ph23Ph34Ph4)+k1351Ph52Ph63Ph74Ph8);其中,pm为DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4为所述输入图像的多个像素中位于pm的45度方向上且邻近pm的4个像素,Ph5~Ph8为所述输入图像的多个像素中中位于pm的135度方向上且邻近pm的4个像素;k45、k135为权重系数,且k45+k135=1。
其中,所述像素理论值计算单元将所述至少四个第一相邻像素中的每个像素的原始值分别代入立方插值公式以计算所述像素在所述至少两个方向上的理论值,所述立方插值公式为:P’j1(x)=λ1Pj22Pj33Pj44Pj5;其中,x为所述方向对应的值,Pj1、Pj2、Pj3、Pj4、Pj5为所述输入图像的多个像素中位于所述DS Pixel的x值对应方向上且邻近所述DS Pixel的像素,且Pj1为Pj2、Pj3、Pj4、Pj5的的插值。
为解决上述问题,本发明还提供一种基于缩减像素采样处理的显示方法,其中,所述方法包括:获取输入图像,所述输入图像包括多个像素;从所述输入图像的多个像素中获取在至少两个方向上分别邻近目标图像中待计算像素DS Pixel的至少四个像素以获得至少八个第二相邻像素,并根据所述至少八个第二 相邻像素建立加权立方插值计算模型;从所述输入图像的多个像素中获取在至少两个方向上分别邻近所述DS Pixel的至少两个像素以获得至少四个第一相邻像素,并分别计算所述至少四个第一相邻像素中每个像素在所述至少两个方向上的理论值;获取所述至少四个第一相邻像素中每个像素的理论值与对应的原始值之间的误差,并根据所述误差确定用于计算所述DS Pixel的权重系数;以及根据所述权重系数以及所述加权立方插值计算模型计算所述DS Pixel的估计值,并且针对所述目标图像中其余DS Pixel,均采用上述步骤计算得到相应的估计值,以得到缩减像素采样处理图像。
本发明提供的一种基于缩减像素采样处理的显示方法及显示设备,通过建立待计算像素DS Pixel的加权立方插值模型,并利用该模型计算与该待计算像素DS Pixel相邻的原始图像像素而得到理论值,然后分析理论值和原值的误差以得到权重系数,进而反馈到该加权立方插值模型中以计算DS Pixel。这种基于Pixel计算的DS方式避免了基于Subpixel的DS方式颜色混叠的现象,同时可以得到清晰的图像。
【附图说明】
图1为本发明实施方式中的一种基于缩减像素采样处理的显示方法的流程图;
图2为本发明第一实施方式中建立加权立方插值模型的像素阵列示意图;
图3为本发明实施方式中计算原始图像像素理论值的像素阵列示意图;
图4为本发明第二实施方式中建立加权立方插值模型的像素阵列示意图;
图5为本发明实施方式中的一种基于缩减像素采样处理的显示设备的功能模块示意图。
元件标号:
显示设备                       20
加权立方插值计算单元           21
像素理论值计算单元             22
权重系数计算单元               23
DS Pixel计算单元               24
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
首先对立方插值系数Bicubic以及立方插值公式的推导原理进行如下说明。
如果已知一个函数f(x)的表达式以及它在x=0、x=1处的导数,那么该函数可以在[0,1]之间插值,当该函数表达式为三次多项式时称之为立方插值。
立方插值系数Bicubic的推导原理具体如下所述。
设定三次多项式f(x)及其导数f’(x)分别为:
f(x)=ax3+bx2+cx+d                   (1)
f’(x)=3ax2+2bx+c                      (2)
该三次多项式f(x)及其导数f’(x)在x=0、x=1时的值分别为:
f(0)=d                             (3)
f(1)=a+b+c+d                    (4)
f’(0)=c                            (5)
f’(1)=3a+2b+c                   (6)
将上述四个等式(3)~(6)进行等价变换为:
a=2f(0)-2f(1)+f’(0)+f’(1)                       (7)
b=-3f(0)+3f(1)-2f’(0)-f’(1)                     (8)
c=f’(0)                                       (9)
d=f(0)                                        (10)
假设,已知四个点P0、P1、P2和P3的值分别为f(-1)、f(0)、f(1)、f(2),则得到如下公式:
f(0)=P1                                (11)
f(1)=P2                                (12)
f’(0)=(P2-P0)/2                       (13)
f’(1)=(P3-P1)/2                       (14)
将公式(11)~(14)代入公式(7)~(10)计算系数a、b、c后得到双立方公式:
Figure PCTCN2014086510-appb-000001
设定插值为x=0.5,并将x=0.5代入公式(15)得到如下公式:
Figure PCTCN2014086510-appb-000002
其中,λ1、λ2、λ3、λ4为立方插值系数,并且,
Figure PCTCN2014086510-appb-000003
Figure PCTCN2014086510-appb-000004
设定x0.5为x-1、x0、x1和x2的插值,因此将公式(16)进一步改写为如下公式(17),即立方插值公式:
f(x0.5)=λ1f(x-1)+λ2f(x0)+λ3f(x1)+λ4f(x2)               (17)
请参阅图1,为本发明实施方式中的一种基于缩减像素采样处理的显示方法的流程图。该方法用于依次计算DS Pixel的从而将包含像素矩阵M*N的原始图像转换为包含像素矩阵P*Q的图像,其中,M、N、P、Q均为自然数,且P≤M,Q≤N。其中,DS Pixel为原始图像的M*N个像素经过DS处理后对应得到的像素,利用该方法分别计算P*Q像素矩阵中的每个DS Pixel从而最终形成解析度低于原始图像的减像素采样处理图像。该方法包括如下步骤:
步骤S10,获取输入图像,该输入图像包括M*N个像素,并依据该M*N个像素获得原始图像。
其中,可以通过摄像机、网络下载、设备之间的相互传输等方法采集到的视频流图像或者图片图像作为当前的输入图像。
步骤S11,在该原始图像的M*N个像素中选取在至少两个方向上分别邻近一待计算像素DS Pixel的至少四个像素以获得至少八个第二相邻像素,并根据该获取到的至少八个第二相邻像素建立计算对应DS Pixel的加权立方插值计算模型。
在第一实施方式中,该至少两个方向为相对于该DS Pixel的0度、45度、90度以及135度的四个方向,该加权立方插值计算模型为0-45-90-135模型。具体地,选取原始图像的M*N个像素中分别位于该DS Pixel的0度、45度、90度以及135度四个方向上且邻近该DS Pixel的4个像素以获得16个第二相邻像素,并利用该16个第二相邻像素建立该加权立方插值的计算模型。
该加权立方插值的计算模型为:
pm=k01A+λ2B+λ3C+λ4D)+k451Ph12Ph23Ph34Ph4)+k901E+λ2F+λ3G+λ4H)+k1351Ph52Ph63Ph74Ph8);
其中,pm为待计算的DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4 为原始图像的M*N个像素中位于pm的45度方向上邻近pm的4个像素,Ph5~Ph8为原始图像的M*N个像素中位于pm的135度方向上且邻近pm的4个原始像素。A、B、C、D为原始图像的M*N个像素位于pm的0度方向上邻近pm的4个像素,E、F、G、H为原始图像的M*N个像素位于pm的90度方向上邻近pm的4个像素。k0、k45、k90、k135为权重系数,且k0+k45+k90+k135=1。
进一步地,根据如下公式确定A、B、C、D、E、F、G、H的值:
W1=λ1Pn12Pn23Pn34Pn4                    (18)
W2=λ1Pm12Pm23Pm34Pm4                   (19)
其中,分别获取的相对于该DS Pixel的0度、45度、90度以及135度的四个方向上的4个像素形成4*4像素矩阵,公式(18)用于计算A、B、C、D的值,Pn1、Pn2、Pn3、Pn4为该像素矩阵中每一列的4个像素;公式(19)用于计算E、F、G、H的值,Pm1、Pm2、Pm3、Pm4为该像素矩阵中每一行的4个像素。
在第二实施方式中,该至少两个方向为相对于该DS Pixel的45度以及135度二个方向,该加权立方插值计算模型为45-135模型。具体地,选取原始图像的M*N个像素中分别位于该DS Pixel的45度以及135度二个方向上且邻近该DS Pixel的4个像素以获得8个第二相邻像素,利用该8个第二相邻像素建立该加权立方插值的计算模型。
该加权立方插值的计算模型为:
pm=k451Ph12Ph23Ph34Ph4)+k1351Ph52Ph63Ph74Ph8);
其中,pm为DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4为原始图像的M*N个像素中位于pm的45度方向上且邻近pm的4个像素,Ph5~Ph8为原始图像的M*N个像素中位于pm的135度方向上且邻近pm的4个像素。k45、k135为权重系数,且k45+k135=1。
步骤S12,在该原始图像的像素阵列M*N中选取与该DS Pixel在至少两个方向上且邻近该DS Pixel的至少两个像素以获得至少4个第一相邻像素,并利用立方插值公式(17)分别计算该至少4个第一相邻像素中每个像素的理论值。
步骤S13,计算该至少4个第一相邻像素中每个像素理论值与其原始值之间的误差,进一步地根据误差确定用于计算对应DS Pixel的权重系数。
步骤S14,选取对应的加权立方插值计算模型,并根据确定的权重系数计算该DS Pixel的估计值。
进一步地,针对目标图像中其余DS Pixel,均采用上述步骤计算得到相应的 估计值,以得到缩减像素采样处理图像。
下面以DS Pixel为p22为例对本发明进行详细说明。
请同时参阅图2,为本发明第一实施方式中建立加权立方插值计算模型的像素阵列示意图。其中,P00~P911为原始图像的像素,p00~p45为待计算的DS Pixel。
如步骤S11所述,计算p22的加权立方插值计算模型为:
p22=k01A+λ2B+λ3C+λ4D)+k451P632P543P454P36)+k901E+λ2F+λ3G+λ4H)+k1351P332P443P554P66);
其中,P63、P54、P45、P36为原始图像的P00~P911像素中位于p22的45度方向且邻近p22的4个像素,P33、P44、P55、P66为原始图像的P00~P911像素中位于p22的135度方向且邻近p22的4个像素。
根据立方插值系数λ1、λ2、λ3、λ4和原始图像的P00~P911像素中分别位于p22的0度、45度、90度以及135度四个方向上的且邻近p22的4个像素分别确定A、B、C、D、E、F、G、H的值为:
A=λ1P332P433P534P63
B=λ1P342P443P544P64
C=λ1P352P453P554P65
D=λ1P362P463P564P66
E=λ1P332P343P354P36
F=λ1P432P443P454P46
G=λ1P532P543P554P56
H=λ1P632P643P654P66
请同时参阅图3,为本发明实施方式中计算像素的理论值的像素阵列示意图。其中,在该原始图像的M*N个像素中选取位于p22的0度、45度、90度和135度四个方向上的且与p22邻近的4个像素分别为P44、P45、P54、P55,并将其原始值代入立方插值公式(17)分别计算出每个像素在四个方向的理论值:
P’44(0)=λ1P422P433P454P46
P’44(45)=λ1P622P533P354P26
P’44(90)=λ1P242P343P544P64
P’44(135)=λ1P222P333P554P66
P’45(0)=λ1P432P443P464P47
P’45(45)=λ1P632P543P364P27
P’45(90)=λ1P252P353P554P65
P’45(135)=λ1P232P343P564P67
P’54(0)=λ1P522P533P554P56
P’54(45)=λ1P722P633P454P36
P’54(90)=λ1P342P443P644P74
P’54(135)=λ1P322P433P654P76
P’55(0)=λ1P532P543P564P57
P’55(45)=λ1P632P643P464P37
P’55(90)=λ1P352P453P654P75
P’55(135)=λ1P332P443P664P77
如步骤S13所述,分别计算P44、P45、P54、P55的理论值与其原始值之间的误差,并进一步地确定在0度、45度、90度以及135度方向上的误差和为:
Sum_error0=|P44-P’44(0)|+|P45-P’45(0)|+|P54-P’54(0)|+|P55-P’55(0)|
Sum_error45=|P44-P’44(45)|+|P45-P’45(45)|+|P54-P’54(45)|+|P55-P’55(45)|
Sum_error90=|P44-P’44(90)|+|P45-P’45(90)|+|P54-P’54(90)|+|P55-P’55(90)|
Sum_error135=|P44-P’44(135)|+|P45-P’45(135)|+|P54-P’54(135)|+|P55-P’55(135)|;
根据误差和计算权重系数k0、k45、k90、k135分别为:
Figure PCTCN2014086510-appb-000005
Figure PCTCN2014086510-appb-000006
Figure PCTCN2014086510-appb-000007
Figure PCTCN2014086510-appb-000008
如步骤S14所述,选取p22对应的加权立方插值计算模型,并将计算得到的权重系数代入该加权立方插值计算模型中计算p22的估计值为:
Figure PCTCN2014086510-appb-000009
Figure PCTCN2014086510-appb-000010
请同时参阅图4,为本发明第二实施方式中建立加权立方插值计算模型的像素阵列示意图。
如步骤S11所述,计算p22的加权立方插值计算模型为:
p22=k451P632P543P454P36)+k1351P332P443P554P66);
其中,P63、P54、P45、P36为原始图像的P00~P911像素中位于p22的45度方向且邻近p22的4个像素,P33、P44、P55、P66为原始图像的P00~P911像素中位于p22的135度方向且邻近p22的4个像素。
同样,在该原始图像的像素阵列M*N个像素中选取与p22邻近的4个像素分别为P44、P45、P54、P55,并利用立方插值公式(17)分别计算出每个像素在两个方向的理论值:
P’44(45)=λ1P622P533P354P26
P’44(135)=λ1P222P333P554P66
P’45(45)=λ1P632P543P364P27
P’45(135)=λ1P232P343P564P67
P’54(45)=λ1P722P633P454P36
P’54(135)=λ1P322P433P654P76
P’55(45)=λ1P632P643P464P37
P’55(135)=λ1P332P443P664P77
如步骤S13所述,分别计算P44、P45、P54、P55的理论值与其原始值之间的误差,并以进一步地确定在45度以及135度方向上的误差和为:
Sum_error45=|P44-P’44(45)|+|P45-P’45(45)|+|P54-P’54(45)|+|P55-P’55(45)|
Sum_error135=|P44-P’44(135)|+|P45-P’45(135)|+|P54-P’54(135)|+|P55-P’55(135)|;
根据误差和计算权重系数k45、k135分别为:
Figure PCTCN2014086510-appb-000011
Figure PCTCN2014086510-appb-000012
如步骤S14所述,选取p22对应的加权立方插值计算模型,并将计算得到的权重系数代入该加权立方插值计算模型中计算p22的值为:
Figure PCTCN2014086510-appb-000013
如上所述,分别计算P*Q个DS Pixel以得到减像素采样处理图像。
请参阅图5,本发明实施方式中的基于缩减像素采样处理的显示设备的功能模块示意图。该设备20包括加权立方插值计算单元21、像素理论值计算单元22、权重系数计算单元23以及DS Pixel计算单元24。
该加权立方插值计算单元21用于在该原始图像的M*N个像素中选取在至少两个方向上邻近该DS Pixel的至少四个像素以获得至少八个相邻像素,并根据该获取到至少八个相邻像素预先建立计算该DS Pixel的加权立方插值计算模型。
在本实施方式中,该至少两个方向为相对于该DS Pixel的0度、45度、90度以及135度四个方向,即,该加权立方插值计算单元21选取原始图像的M*N个像素中分别位于该DS Pixel的0度、45度、90度以及135度四个方向上且邻近该DS Pixel的4个像素以获得16个相邻像素,建立该加权立方插值的计算模型:
pm=k01A+λ2B+λ3C+λ4D)+k451Ph12Ph23Ph34Ph4)+k901E+λ2F+λ3G+λ4H)+k1351Ph52Ph63Ph74Ph8);
其中,pm为待计算的DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4为原始图像的M*N个像素中位于pm的45度方向上邻近pm的4个像素,Ph5~Ph8为原始图像的M*N个像素中位于pm的135度方向上且邻近pm的4个原始像素,A、B、C、D为原始图像的M*N个像素中位于pm的0度方向上邻近pm的4个像素;E、F、G、H为原始图像的M*N个像素中位于pm的90度方向上邻近pm的4个像素。k0、k45、k90、k135为权重系数,且k0+k45+k90+k135=1。该加权立方插值计算单元21还能够根据立方插值系数λ1、λ2、λ3、λ4和原始图像的M*N个像素中分别位于pm的0度、45度、90度以及135度方向上且邻近pm的4个原始图像像素能够确定对应A、B、C、D、E、F、G、H的值。
具体地,该加权立方插值计算单元21根据如下公式确定A、B、C、D、E、F、G、H的值:
W1=λ1Pn12Pn23Pn34Pn4                    (18)
W2=λ1Pm12Pm23Pm34Pm4                 (19)
其中,分别获取的相对于该DS Pixel的0度、45度、90度以及135度的四个方向上的4个像素形成4*4像素矩阵,公式(18)用于计算A、B、C、D的值,Pn1、Pn2、Pn3、Pn4为该像素矩阵中每一列的4个像素;公式(19)用于计算E、F、G、H的值,Pm1、Pm2、Pm3、Pm4为该像素矩阵中每一行的4个像素。
在另一实施方式中,该至少两个方向为相对于该DS Pixel的45度以及135度二个方向,即,该加权立方插值计算单元21选取原始图像的M*N个像素中分别位于该DS Pixel的45度以及135度二个方向上且邻近该DS Pixel的4个像素以获得8个相邻像素,并建立该加权立方插值的计算模型:
pm=k451Ph12Ph23Ph34Ph4)+k1351Ph52Ph63Ph74Ph8);
其中,pm为DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4为原始图像的M*N个像素中位于pm的45度方向上且邻近pm的4个像素,Ph5~Ph8为原始图像的M*N个像素中位于pm的135度方向上且邻近pm的4个像素。k45、k135为权重系数,且k45+k135=1。
该像素理论值计算单元22用于在该原始图像的像素阵列M*N中选取与该DS Pixel在至少两个方向上且邻近该DS Pixel的至少两个像素以获得至少4个相邻像素,并利用立方插值公式(17)分别计算该至少4个相邻像素中每个像素的理论值。
该权重系数计算单元23用于计算该像素理论值计算单元22确定的理论值与其原始值之间的误差,进一步地根据误差确定用于计算对应DS Pixel的权重系数。
该DS Pixel计算单元24用于选取对应的加权立方插值计算模型,并根据确定的权重系数计算该DS Pixel。
进一步地,该显示设备20针对目标图像中其余DS Pixel,均如上处理以得到相应的估计值,从而得到缩减像素采样处理图像。
下面以DS Pixel为p22为例对本发明的第一实施例进行详细说明。
该加权立方插值计算单元21建立计算p22的加权立方插值计算模型为:
p22=k01A+λ2B+λ3C+λ4D)+k451P632P543P454P36)+k901E+λ2F+λ3G+λ4H)+k1351P332P443P554P66);
其中,P63、P54、P45、P36为原始图像的P00~P911像素中位于p22的45度方向且邻近p22的4个像素,P33、P44、P55、P66为原始图像的P00~P911像素中 位于p22的135度方向且邻近p22的4个像素。
该加权立方插值计算单元21还根据立方插值系数λ1、λ2、λ3、λ4和原始图像的P00~P911像素中分别位于p22的0度、45度、90度以及135度四个方向上的且邻近p22的4个像素分别确定A、B、C、D、E、F、G、H的值为:
A=λ1P332P433P534P63
B=λ1P342P443P544P64
C=λ1P352P453P554P65
D=λ1P362P463P564P66
E=λ1P332P343P354P36
F=λ1P432P443P454P46
G=λ1P532P543P554P56
H=λ1P632P643P654P66
该像素理论值计算单元22在该原始图像的M*N个像素中选取在四个方向上的且与p22邻近的4个像素分别为P44、P45、P54、P55,并利用立方插值公式(17)分别计算出每个像素在四个方向的理论值:
P’44(0)=λ1P422P433P454P46
P’44(45)=λ1P622P533P354P26
P’44(90)=λ1P242P343P544P64
P’44(135)=λ1P222P333P554P66
P’45(0)=λ1P432P443P464P47
P’45(45)=λ1P632P543P364P27
P’45(90)=λ1P252P353P554P65
P’45(135)=λ1P232P343P564P67
P’54(0)=λ1P522P533P554P56
P’54(45)=λ1P722P633P454P36
P’54(90)=λ1P342P443P644P74
P’54(135)=λ1P322P433P654P76
P’55(0)=λ1P532P543P564P57
P’55(45)=λ1P632P643P464P37
P’55(90)=λ1P352P453P654P75
P’55(135)=λ1P332P443P664P77
该权重系数计算单元23分别计算P44、P45、P54、P55的理论值与其原始值之间的误差,并进一步地确定在0度、45度、90度以及135度方向上的误差和为:
Sum_error0=|P44-P’44(0)|+|P45-P’45(0)|+|P54-P’54(0)|+|P55-P’55(0)|
Sum_error45=|P44-P’44(45)|+|P45-P’45(45)|+|P54-P’54(45)|+|P55-P’55(45)|
Sum_error90=|P44-P’44(90)|+|P45-P’45(90)|+|P54-P’54(90)|+|P55-P’55(90)|
Sum_error135=|P44-P’44(135)|+|P45-P’45(135)|+|P54-P’54(135)|+|P55-P’55(135)|;
该权重系数计算单元23还根据误差和计算权重系数k0、k45、k90、k135分别为:
Figure PCTCN2014086510-appb-000014
Figure PCTCN2014086510-appb-000015
Figure PCTCN2014086510-appb-000016
Figure PCTCN2014086510-appb-000017
该DS Pixel计算单元24选取p22对应的加权立方插值计算模型,并将计算得到的权重系数代入该加权立方插值计算模型中计算p22的估计值为:
Figure PCTCN2014086510-appb-000018
下面以DS Pixel为p22为例对本发明的第一实施例进行详细说明。
该加权立方插值计算单元21计算p22的加权立方插值计算模型为:
p22=k451P632P543P454P36)+k1351P332P443P554P66);
其中,P63、P54、P45、P36为原始图像的P00~P911像素中位于p22的45度方向且邻近p22的4个像素,P33、P44、P55、P66为原始图像的P00~P911像素中位于p22的135度方向且邻近p22的4个像素。
同样,该像素理论值计算单元22在该原始图像的像素阵列M*N个像素中选取在两个方向上的且与p22邻近的4个像素分别为P44、P45、P54、P55,并利用立方插值公式(17)分别计算出每个像素在两个方向的理论值:
P’44(45)=λ1P622P533P354P26
P’44(135)=λ1P222P333P554P66
P’45(45)=λ1P632P543P364P27
P’45(135)=λ1P232P343P564P67
P’54(45)=λ1P722P633P454P36
P’54(135)=λ1P322P433P654P76
P’55(45)=λ1P632P643P464P37
P’55(135)=λ1P332P443P664P77
该权重系数计算单元23分别计算P44、P45、P54、P55的理论值与其原始值之间的误差,并以进一步地确定在45度以及135度方向上的误差和为:
Sum_error45=|P44-P’44(45)|+|P45-P’45(45)|+|P54-P’54(45)|+|P55-P’55(45)|
Sum_error135=|P44-P’44(135)|+|P45-P’45(135)|+|P54-P’54(135)|+|P55-P’55(135)|;
该权重系数计算单元23还根据误差和计算权重系数k45、k135分别为:
Figure PCTCN2014086510-appb-000019
Figure PCTCN2014086510-appb-000020
该DS Pixel计算单元24选取p22对应的加权立方插值计算模型,并将计算得到的权重系数代入该加权立方插值计算模型中计算p22的值为:
Figure PCTCN2014086510-appb-000021
如上所述,分别计算P*Q个DS Pixel以得到减像素采样处理图像。
本发明提供的一种基于缩减像素采样处理的显示方法及设备,通过建立待计算像素DS Pixel的加权立方插值模型,并利用该模型计算与该待计算像素DS Pixel相邻的原始图像像素而得到理论值,然后分析理论值和原值的误差以得到 权重系数,进而反馈到该加权立方插值模型中以计算DS Pixel。这种基于Pixel计算的DS方式避免了基于Subpixel的DS方式颜色混叠的现象,同时可以得到清晰的图像。
在上述实施例中,仅对本发明进行了示范性描述,但是本领域技术人员在阅读本专利申请后可以在不脱离本发明的精神和范围的情况下对本发明进行各种修改。

Claims (13)

  1. 一种基于缩减像素采样处理的显示方法,其中,所述方法包括:
    获取输入图像,所述输入图像包括多个像素;
    从所述输入图像的多个像素中获取在至少两个方向上分别邻近目标图像中待计算像素DS Pixel的至少两个像素以获得至少四个第一相邻像素,并分别计算所述至少四个第一相邻像素中每个像素在所述至少两个方向上的理论值;
    获取所述至少四个第一相邻像素中每个像素的理论值与对应的原始值之间的误差,并根据所述误差确定用于计算所述DS Pixel的权重系数;以及
    根据所述权重系数以及针对所述DS Pixel预先建立的加权立方插值计算模型计算所述DS Pixel的估计值,并且针对所述目标图像中其余DS Pixel,均采用上述步骤计算得到相应的估计值,以得到缩减像素采样处理图像。
  2. 如权利要求1所述的方法,其中,所述获取输入图像的步骤之后还包括:
    从所述输入图像的多个像素中获取在至少两个方向上分别邻近所述DS Pixel的至少四个像素以获得至少八个第二相邻像素,并根据所述至少八个第二相邻像素建立所述加权立方插值计算模型。
  3. 如权利要求2所述的方法,其中,所述至少两个方向为相对于所述DS Pixel的0度、45度、90度以及135度的四个方向,并获得16个第二相邻像素,所述加权立方插值的计算模型为:
    pm=k01A+λ2B+λ3C+λ4D)+k451Ph12Ph23Ph34Ph4)+k901E+λ2F+λ3G+λ4H)+k1351Ph52Ph63Ph74Ph8);
    其中,pm为DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4为所述输入图像的多个像素中位于pm的45度方向上且邻近pm的4个像素,Ph5~Ph8为所述输入图像的多个像素中位于pm的135度方向上邻近pm的4个像素;A、B、C、D为所述输入图像的多个像素中位于pm的0度方 向上邻近pm的4个像素;E、F、G、H为所述输入图像的多个像素中位于pm的90度方向上邻近pm的4个像素;k0、k45、k90、k135为权重系数,且k0+k45+k90+k135=1。
  4. 如权利要求3所述的方法,其中,根据如下公式确定A、B、C、D、E、F、G、H的值:
    W1=λ1Pn12Pn23Pn34Pn4(一)
    W2=λ1Pm12Pm23Pm34Pm4(二)
    其中,分别获取的相对于所述DS Pixel的0度、45度、90度以及135度的四个方向上的4个像素形成4*4像素矩阵,公式(一)用于计算A、B、C、D的值,Pn1、Pn2、Pn3、Pn4为所述像素矩阵中位于每一列的4个像素;公式(二)用于计算E、F、G、H的值,Pm1、Pm2、Pm3、Pm4为所述像素矩阵中位于每一行的4个像素。
  5. 如权利要求3所述的方法,其中,所述计算所述至少四个第一相邻像素中每个像素在所述至少两个方向上的理论值包括:
    将所述至少四个第一相邻像素中的每个像素的原始值代入立方插值公式以计算所述像素在所述至少两个方向上的理论值,其中,所述立方插值公式为:
    P’j1(x)=λ1Pj22Pj33Pj44Pj5
    其中,x为所述方向对应的值,Pj1、Pj2、Pj3、Pj4、Pj5为所述输入图像的多个像素中位于所述DS Pixel的x值对应方向上且邻近所述DSPixel的像素,且Pj1为Pj2、Pj3、Pj4、Pj5的的插值。
  6. 如权利要求2所述的方法,其中,所述至少两个方向为相对于所述DS Pixel的45度以及135度二个方向,并获得8个第二相邻像素,所述加权立方插值的计算模型为:
    pm=k451Ph12Ph23Ph34Ph4)+k1351Ph52Ph63Ph74Ph8);
    其中,pm为DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4为所述输入图像的多个像素中位于pm的45度方向上且邻近pm的4个像素,Ph5~Ph8为所述输入图像的多个像素中中位于pm的135度方向上且邻近pm的4个像素;k45、k135为权重系数,且k45+k135=1。
  7. 如权利要求6所述的方法,其中,所述计算所述至少四个第一 相邻像素中每个像素在所述至少两个方向上的理论值包括:
    将所述至少四个第一相邻像素中的每个像素的原始值代入立方插值公式以计算所述像素在所述至少两个方向上的理论值,其中,所述立方插值公式为:
    P’j1(x)=λ1Pj22Pj33Pj44Pj5
    其中,x为所述方向对应的值,Pj1、Pj2、Pj3、Pj4、Pj5为所述输入图像的多个像素中位于所述DS Pixel的x值对应方向上且邻近所述DSPixel的像素,且Pj1为Pj2、Pj3、Pj4、Pj5的的插值。
  8. 一种基于缩减像素采样处理的显示设备,输入一包括多个像素的图像,其中,包括:
    像素理论值计算单元,用于从所述输入图像的多个像素中获取在至少两个方向上分别邻近所述DS Pixel的至少两个相邻像素以获得至少四个第一相邻像素,并分别计算所述至少四个第一相邻像素中每个像素在所述至少两个方向上的理论值;
    加权立方插值计算单元,用于从所述输入图像的多个像素中获取在至少两个方向上分别邻近目标图像中待计算像素DS Pixel的至少四个像素以获得至少八个第二相邻像素,并根据所述至少八个第二相邻像素预先建立计算所述DS Pixel的加权立方插值计算模型;
    权重系数计算单元,用于获取所述至少四个第一相邻像素中每个像素的理论值与对应原始值之间的误差,并根据所述误差确定用于计算所述DS Pixel的权重系数;以及
    DS Pixel计算单元,用于根据所述权重系数选择对应的加权立方插值计算模型计算所述DS Pixel的估计值;
    其中,所述显示设备对所述目标图像中每一DS Pixel进行相应估计值的计算,以得到缩减像素采样处理图像。
  9. 如权利要求8所述的显示设备,其中,所述至少两个方向为相对于所述DS Pixel的0度、45度、90度以及135度的四个方向,并相应获得16个相邻像素,所述加权立方插值计算单元预先建立的加权立方插值的计算模型为:
    pm=k01A+λ2B+λ3C+λ4D)+k451Ph12Ph23Ph34Ph4)+k901E+λ2 F+λ3G+λ4H)+k1351Ph52Ph63Ph74Ph8);
    其中,pm为DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4为所述输入图像的多个像素中位于pm的45度方向上且邻近pm的4个像素,Ph5~Ph8为所述输入图像的多个像素中位于pm的135度方向上邻近pm的4个像素;A、B、C、D为所述输入图像的多个像素中位于pm的0度方向上邻近pm的4个像素;E、F、G、H为所述输入图像的多个像素中位于pm的90度方向上邻近pm的4个像素;k0、k45、k90、k135为权重系数,且k0+k45+k90+k135=1。
  10. 如权利要求9所述的显示设备,其中,所述像素理论值计算单元将所述至少四个第一相邻像素中的每个像素的原始值分别代入立方插值公式以计算所述像素在所述至少两个方向上的理论值,所述立方插值公式为:
    P’j1(x)=λ1Pj22Pj33Pj44Pj5
    其中,x为所述方向对应的值,Pj1、Pj2、Pj3、Pj4、Pj5为所述输入图像的多个像素中位于所述DS Pixel的x值对应方向上且邻近所述DSPixel的像素,且Pj1为Pj2、Pj3、Pj4、Pj5的的插值。
  11. 如权利要求8所述的显示设备,其中,所述至少两个方向为相对于所述DS Pixel的45度以及135度二个方向,所述加权立方插值计算单元预先建立的加权立方插值的计算模型为:
    pm=k451Ph12Ph23Ph34Ph4)+k1351Ph52Ph63Ph74Ph8);
    其中,pm为DS Pixel,λ1、λ2、λ3、λ4为立方插值系数,Ph1~Ph4为所述输入图像的多个像素中位于pm的45度方向上且邻近pm的4个像素,Ph5~Ph8为所述输入图像的多个像素中中位于pm的135度方向上且邻近pm的4个像素;k45、k135为权重系数,且k45+k135=1。
  12. 如权利要求11所述的显示设备,其中,所述像素理论值计算单元将所述至少四个第一相邻像素中的每个像素的原始值分别代入立方插值公式以计算所述像素在所述至少两个方向上的理论值,所述立方插值公式为:
    P’j1(x)=λ1Pj22Pj33Pj44Pj5
    其中,x为所述方向对应的值,Pj1、Pj2、Pj3、Pj4、Pj5为所述输入图像的多个像素中位于所述DS Pixel的x值对应方向上且邻近所述DSPixel的像素,且Pj1为Pj2、Pj3、Pj4、Pj5的的插值。
  13. 一种基于缩减像素采样处理的显示方法,其中,所述方法包括:
    获取输入图像,所述输入图像包括多个像素;
    从所述输入图像的多个像素中获取在至少两个方向上分别邻近目标图像中待计算像素DS Pixel的至少四个像素以获得至少八个第二相邻像素,并根据所述至少八个第二相邻像素建立加权立方插值计算模型;
    从所述输入图像的多个像素中获取在至少两个方向上分别邻近所述DS Pixel的至少两个像素以获得至少四个第一相邻像素,并分别计算所述至少四个第一相邻像素中每个像素在所述至少两个方向上的理论值;
    获取所述至少四个第一相邻像素中每个像素的理论值与对应的原始值之间的误差,并根据所述误差确定用于计算所述DS Pixel的权重系数;以及
    根据所述权重系数以及所述加权立方插值计算模型计算所述DSPixel的估计值,并且针对所述目标图像中其余DS Pixel,均采用上述步骤计算得到相应的估计值,以得到缩减像素采样处理图像。
PCT/CN2014/086510 2014-08-27 2014-09-15 一种基于缩减像素采样处理的显示方法及设备 WO2016029515A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/396,057 US9519951B2 (en) 2014-08-27 2014-09-15 Downsampling based display method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410429514.9A CN104184981B (zh) 2014-08-27 2014-08-27 一种基于缩减像素采样处理的低解析度显示方法及设备
CN201410429514.9 2014-08-27

Publications (1)

Publication Number Publication Date
WO2016029515A1 true WO2016029515A1 (zh) 2016-03-03

Family

ID=51965683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086510 WO2016029515A1 (zh) 2014-08-27 2014-09-15 一种基于缩减像素采样处理的显示方法及设备

Country Status (3)

Country Link
US (1) US9519951B2 (zh)
CN (1) CN104184981B (zh)
WO (1) WO2016029515A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106358028B (zh) * 2015-07-13 2018-06-01 西安电子科技大学 基于亚像素下采样的图像处理方法
CN105206215B (zh) * 2015-10-13 2017-12-15 深圳市华星光电技术有限公司 显示设备及其显示方法
US10013908B2 (en) 2015-10-13 2018-07-03 Shenzhen China Star Optoelectronics Technology Co., Ltd Display devices and displaying methods
CN110363235B (zh) * 2019-06-29 2021-08-06 苏州浪潮智能科技有限公司 一种高分辨率图像匹配方法及系统
CN117710189A (zh) * 2022-09-06 2024-03-15 影石创新科技股份有限公司 图像处理方法、装置、计算机设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483036A (zh) * 2008-01-10 2009-07-15 扬智科技股份有限公司 图像缩小装置及其缩小方法
KR20140028516A (ko) * 2012-08-29 2014-03-10 주식회사 실리콘웍스 학습방식의 부화소기반 영상축소방법
CN103782596A (zh) * 2011-06-28 2014-05-07 三星电子株式会社 使用图像的亮度分量的对图像的色度分量的预测方法和设备
US20140125656A1 (en) * 2012-11-01 2014-05-08 Kabushiki Kaisha Toshiba Image processing device, method, computer-readable medium and 3d image display

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6832009B1 (en) * 1999-09-24 2004-12-14 Zoran Corporation Method and apparatus for improved image interpolation
US7956930B2 (en) * 2006-01-06 2011-06-07 Microsoft Corporation Resampling and picture resizing operations for multi-resolution video coding and decoding
CN100563295C (zh) * 2007-11-01 2009-11-25 四川虹微技术有限公司 一种基于线性插值运算中误差估计的图像放大方法
SG162641A1 (en) * 2008-12-31 2010-07-29 St Microelectronics Asia System and process for imate rescaling using adaptive interpolation kernel with sharpness and overshoot control
US8483513B2 (en) * 2010-01-22 2013-07-09 Corel Corporation, Inc. Method of content aware image resizing
CN102629366B (zh) * 2012-03-05 2013-12-25 许丹 图像处理方法及装置
US8922654B2 (en) * 2012-03-22 2014-12-30 Exelis, Inc. Algorithm for adaptive downsampling to an irregular grid
CN102769745B (zh) * 2012-06-21 2014-12-31 哈尔滨工业大学 插值依赖的图像自适应下采样方法
US8907973B2 (en) * 2012-10-22 2014-12-09 Stmicroelectronics International N.V. Content adaptive image restoration, scaling and enhancement for high definition display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101483036A (zh) * 2008-01-10 2009-07-15 扬智科技股份有限公司 图像缩小装置及其缩小方法
CN103782596A (zh) * 2011-06-28 2014-05-07 三星电子株式会社 使用图像的亮度分量的对图像的色度分量的预测方法和设备
KR20140028516A (ko) * 2012-08-29 2014-03-10 주식회사 실리콘웍스 학습방식의 부화소기반 영상축소방법
US20140125656A1 (en) * 2012-11-01 2014-05-08 Kabushiki Kaisha Toshiba Image processing device, method, computer-readable medium and 3d image display

Also Published As

Publication number Publication date
US20160063675A1 (en) 2016-03-03
CN104184981B (zh) 2017-12-15
CN104184981A (zh) 2014-12-03
US9519951B2 (en) 2016-12-13

Similar Documents

Publication Publication Date Title
WO2016029515A1 (zh) 一种基于缩减像素采样处理的显示方法及设备
TWI539406B (zh) 影像插補方法以及應用影像插補方法之影像插補裝置與影像裝置
WO2018161775A1 (zh) 一种用于图像处理的神经网络模型的训练方法、装置和存储介质
JP3837575B2 (ja) 超解像処理の高速化方法
US20140078347A1 (en) Systems and Methods for Reducing Noise in Video Streams
JP2012053602A (ja) 画像補正装置、補正画像生成方法、補正テーブル生成装置、補正テーブル生成方法、補正テーブル生成プログラムおよび補正画像生成プログラム
CN105023260A (zh) 一种全景图像融合方法及融合装置
TWI459325B (zh) 數位影像處理裝置及其處理方法
CN108171735B (zh) 基于深度学习的十亿像素视频对齐方法及系统
WO2022057868A1 (zh) 图像超分方法和电子设备
TW201344629A (zh) 影像處理裝置及其處理方法
TWI544785B (zh) 影像縮減取樣裝置與方法
TWI786906B (zh) 幀處理設備、方法及幀處理器
US20120288215A1 (en) Image processing device and processing method thereof
CN106296614B (zh) 图像处理装置及图像处理方法
JP6532151B2 (ja) 超解像装置およびプログラム
WO2021042641A1 (zh) 一种图像分割方法及装置
WO2017063227A1 (zh) 显示设备及其显示方法
JP6317611B2 (ja) ディスプレイ表示パターン生成装置及びそのプログラム
CN108665410B (zh) 一种图像超分辨率重构方法、装置及系统
US20150213578A1 (en) Method for electronic zoom with sub-pixel offset
CN115170413A (zh) 图像处理方法、装置、电子设备及计算机可读存储介质
US20180158194A1 (en) Determining Optical Flow
CN113808020A (zh) 图像处理方法及设备
CN111340724A (zh) 一种led屏校正过程中的图像去抖方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14396057

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900787

Country of ref document: EP

Kind code of ref document: A1