WO2016029069A1 - Procédés de production de fructose cellulosique à partir de biomasse lignocellulosique - Google Patents

Procédés de production de fructose cellulosique à partir de biomasse lignocellulosique Download PDF

Info

Publication number
WO2016029069A1
WO2016029069A1 PCT/US2015/046190 US2015046190W WO2016029069A1 WO 2016029069 A1 WO2016029069 A1 WO 2016029069A1 US 2015046190 W US2015046190 W US 2015046190W WO 2016029069 A1 WO2016029069 A1 WO 2016029069A1
Authority
WO
WIPO (PCT)
Prior art keywords
fructose
glucose
lignin
cellulose
liquor
Prior art date
Application number
PCT/US2015/046190
Other languages
English (en)
Inventor
Kimberly Nelson
Vesa Pylkkanen
Theodora Retsina
Ryan O'connor
Original Assignee
Api Intellectual Property Holdings, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/831,827 external-priority patent/US20150361474A1/en
Application filed by Api Intellectual Property Holdings, Llc filed Critical Api Intellectual Property Holdings, Llc
Publication of WO2016029069A1 publication Critical patent/WO2016029069A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/24Preparation of compounds containing saccharide radicals produced by the action of an isomerase, e.g. fructose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K11/00Fructose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/02Pretreatment of the finely-divided materials before digesting with water or steam
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C1/00Pretreatment of the finely-divided materials before digesting
    • D21C1/04Pretreatment of the finely-divided materials before digesting with acid reacting compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C3/00Pulping cellulose-containing materials
    • D21C3/04Pulping cellulose-containing materials with acids, acid salts or acid anhydrides
    • D21C3/06Pulping cellulose-containing materials with acids, acid salts or acid anhydrides sulfur dioxide; sulfurous acid; bisulfites sulfites
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source

Definitions

  • the present invention generally relates to fractionation processes for converting lignocellulosic biomass into fructose and other sugars.
  • Biomass refining (or biorefining) is becoming more prevalent in industry.
  • Cellulose fibers and sugars, hemicellulose sugars, lignin, syngas, and derivatives of these intermediates are being used by many companies for chemical and fuel production.
  • Underutilized lignocellulosic biomass feedstocks have the potential to be much cheaper than petroleum, on a carbon basis, as well as much better from an environmental life-cycle standpoint.
  • Lignocellulosic biomass is the most abundant renewable material on the planet and has long been recognized as a potential feedstock for producing chemicals, fuels, and materials.
  • Lignocellulosic biomass normally comprises primarily cellulose, hemicellulose, and lignin.
  • Cellulose and hemicellulose are natural polymers of sugars, and lignin is an aromatic/aliphatic hydrocarbon polymer reinforcing the entire biomass network.
  • Some forms of biomass e.g., recycled materials do not contain hemicellulose.
  • Cellulose from biomass can be used in industrial cellulose applications directly, such as to make paper or other pulp-derived products.
  • the cellulose can also be subjected to further processing to either modify the cellulose in some way or convert it into glucose.
  • Hemicellulose sugars can be fermented to a variety of products, such as ethanol, or converted to other chemicals.
  • Lignin from biomass has value as a solid fuel and also as an energy feedstock to produce liquid fuels, synthesis gas, or hydrogen; and as an intermediate to make a variety of polymeric compounds. Additionally, minor components such as proteins or rare sugars can be extracted and purified for specialty applications.
  • fractionation is accomplished.
  • An important example is traditional biomass pulping (to produce paper and related goods).
  • Cellulose is recovered in high yields, but lignin is primarily consumed by oxidation and hemicellulose sugars are mostly degraded.
  • Approximately half of the starting biomass is essentially wasted in this manufacturing process.
  • State-of-the-art biomass-pretreatment approaches typically can produce high yields of hemicellulose sugars but suffer from moderate cellulose and lignin yields.
  • thermochemical pathway converts the feedstock into syngas (CO and H 2 ) through gasification or partial oxidation.
  • Another thermochemical pathway converts biomass into liquid bio-oils through pyrolysis and separation. These are both high-temperature processes that intentionally destroy sugars in biomass.
  • Sugars e.g., glucose and xylose
  • sugars are desirable platform molecules because they can be fermented to a wide variety of fuels and chemicals, used to grow organisms or produce enzymes, converted catalytically to chemicals, or recovered and sold to the market.
  • the cellulose and/or the hemicellulose in the biomass must be hydro lyzed into sugars. This is a difficult task because lignin and hemicelluloses are bound to each other by covalent bonds, and the three components are arranged inside the fiber wall in a complex manner. This recalcitrance explains the natural resistance of woody biomass to decomposition, and explains the difficulty to convert biomass to sugars at high yields.
  • Fractionation of biomass into its principle components has several advantages. Fractionation of lignocellulosics leads to release of cellulosic fibers and opens the cell wall structure by dissolution of lignin and hemicellulose between the cellulose microfibrils. The fibers become more accessible for hydrolysis by enzymes. When the sugars in lignocellulosics are used as feedstock for fermentation, the process to open up the cell wall structure is often called “pretreatment.” Pretreatment can significantly impact the production cost of lignocellulosic ethanol.
  • a common chemical pretreatment process employs a dilute acid, usually sulfuric acid, to hydrolyze and extract hemicellulose sugars and some lignin.
  • a common physical pretreatment process employs steam explosion to mechanically disrupt the cellulose fibers and promote some separation of hemicellulose and lignin. Combinations of chemical and physical pretreatments are possible, such as acid pretreatment coupled with mechanical refining. It is difficult to avoid degradation of sugars. In some cases, severe pretreatments (i.e., high temperature and/or low pH) intentionally dehydrate sugars to furfural, levulinic acid, and related chemicals. Also, in common acidic pretreatment approaches, lignin handling is very problematic because acid-condensed lignin precipitates and forms deposits on surfaces throughout the process. [0012] One type of pretreatment that can overcome many of these
  • Organosolv refers to the presence of an organic solvent for lignin, which allows the lignin to remain soluble for better lignin handling.
  • organosolv pretreatment or pulping has employed ethanol-water solutions to extract most of the lignin but leave much of the
  • An acid catalyst can be introduced into organosolv pretreatment to attempt to hydrolyze hemicellulose into monomers while still obtaining the solvent benefit.
  • organosolv wisdom dictates that high delignification can be achieved, but that a substantial fraction of hemicellulose must be left in the solids because any catalyst added to hydrolyze the hemicellulose will necessarily degrade the sugars (e.g., to furfural) during extraction of residual lignin.
  • fractionation with a solution of ethanol (or another solvent for lignin), water, and sulfur dioxide (SO2) can simultaneously achieve several important objectives.
  • the fractionation can be achieved at modest temperatures (e.g., 120-160°C).
  • the SO2 can be easily recovered and reused. This process is able to effectively fractionation many biomass species, including softwoods, hardwoods, agricultural residues, and waste biomass.
  • the SO2 hydro lyzes the hemicelluloses and reduces or eliminates troublesome lignin-based precipitates.
  • ethanol leads to rapid impregnation of the biomass, so that neither a separate impregnation stage nor size reduction smaller than wood chips are needed, thereby avoiding electricity-consuming sizing operations.
  • the dissolved hemicelluloses are neither dehydrated nor oxidized (Iakovlev, "SC -ethanol-water fractionation of lignocellulosics," Ph.D. Thesis, Aalto Univ., Espoo, Finland, 2011). Cellulose is fully retained in the solid phase and can subsequently be hydrolyzed to glucose.
  • the mixture of hemicellulose monomer sugars and cellulose-derived glucose may be used for production of bio fuels and chemicals.
  • the dominant pulping process today is the Kraft process. Kraft pulping does not fractionate lignocellulosic material into its primary components. Instead, hemicellulose is degraded in a strong solution of sodium hydroxide with or without sodium sulfide. The cellulose pulp produced by the Kraft process is high quality, essentially at the expense of both hemicellulose and lignin.
  • hemicelluloses to fermentable sugars and further compounded by sulfite pulping side products, such as furfural, methanol, acetic acid, and others fermentation inhibitors.
  • fructose It would be further desirable to produce fructose or to increase the fructose content of sugar streams produced.
  • fructose for food products, drink products, sweeteners, additives, and so on.
  • fructose is more desired than glucose for chemical conversion to products.
  • Glucose has 70-75% the sweetening strength of sucrose, but fructose is twice as sweet as sucrose.
  • processes for the manufacture of cellulosic fructose would be of considerable interest.
  • the present invention addresses the aforementioned needs in the art.
  • Some variations of the invention provide a process for producing fructose from biomass, the process comprising:
  • the biomass feedstock contains fructose and/or sucrose. In other embodiments, the biomass feedstock does not contain fructose and/or sucrose (sucrose being easily convertible to fructose and glucose).
  • sucrose being easily convertible to fructose and glucose.
  • the acid catalyst includes a sulfur-containing acid.
  • the sulfur-containing acid may be selected from the group consisting of sulfur dioxide, sulfurous acid, sulfur trioxide, sulfuric acid, lignosulfonic acid, and combinations thereof.
  • the acid catalyst does not include a sulfur-containing acid.
  • the solvent for lignin is selected from the group consisting of linear alcohols, cyclic alcohols, aromatic alcohols, polyols, ketones, ethers, ionic liquids, and combinations thereof.
  • Effective hydrolysis conditions in step (d) may include hydrolysis catalyzed by lignosulfonic acids derived from step (b). Alternatively, or additionally, effective hydrolysis conditions in step (d) may include hydrolysis catalyzed by enzymes.
  • the process further comprises recovering the hydrolyzed liquor.
  • the hydrolyzed liquor comprises fructose, in some
  • the hydrolyzed liquor comprises mannose; the process further comprising enzymatically isomerizing at least some of the mannose to fructose using mannose isomerase.
  • the enzymes when enzymes are incorporated in step (d), the enzymes may include glucose isomerase enzymes and/or mannose isomerase enzymes, so that fructose is produced during step (d).
  • step (f) includes enzymatically isomerizing at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or more of the glucose to fructose, using glucose isomerase enzymes or an enzyme cocktail comprising glucose isomerase enzymes or a functionally equivalent thereof.
  • Additives may be used to assist in the enzymatically isomerization, to increase fructose yield, suppress reverse isomerization back to glucose, inhibit side reactions involving lignin or other species present, and so on.
  • step (g) comprises separating the fructose from the glucose.
  • ion-exchange resins may be utilized for separating the fructose from the glucose.
  • ion-exchange resins are incorporated in a simulated moving-bed chromatography system configured for separating the fructose from the glucose.
  • step (g) comprises producing a product stream containing at least 10 wt% fructose, at least 40 wt% fructose, or at least 75 wt% fructose.
  • step (g) comprises producing a product stream containing crystallized fructose, following crystallization and drying.
  • step (g) comprises producing the fructose-glucose solution having a fructose/glucose ratio of from about 0.1 to about 100, such as from about 0.5 to about 10, or from about 0.8 to about 1.3.
  • the process may further comprise incorporating the fructose into a food or beverage product.
  • the fructose may be biologically and/or chemically converted into a chemical or fuel product (e.g., n- butanol, levulinic acid, etc.).
  • Variations of the invention provide systems configured to carry out the processes described herein.
  • Other variations provide a product produced by processes described herein.
  • the product may be fructose, or may include fructose, which beneficially may be identified as "cellulosic fructose.”
  • Other products are those which incorporate the fructose produced as described herein, or derivatives of the fructose produced as described herein.
  • phase consisting of excludes any element, step, or ingredient not specified in the claim.
  • phrase consists of (or variations thereof) appears in a clause of the body of a claim, rather than immediately following the preamble, it limits only the element set forth in that clause; other elements are not excluded from the claim as a whole.
  • phase consisting essentially of limits the scope of a claim to the specified elements or method steps, plus those that do not materially affect the basis and novel characteristic(s) of the claimed subject matter.
  • This disclosure describes processes and apparatus to efficiently fractionate any lignocellulosic-based biomass into its primary major components (cellulose, lignin, and if present, hemicellulose) so that each can be used in potentially distinct processes.
  • An advantage of the process is that it produces cellulose-rich solids while concurrently producing a liquid phase containing a high yield of both hemicellulose sugars and lignin, and low quantities of lignin and hemicellulose degradation products.
  • the flexible fractionation technique enables multiple uses for the products.
  • the cellulose is highly reactive to cellulase enzymes for the
  • the biomass feedstock contains fructose and/or sucrose. In other embodiments, the biomass feedstock does not contain fructose and/or sucrose (sucrose being easily convertible to fructose and glucose).
  • sucrose being easily convertible to fructose and glucose.
  • the acid catalyst includes a sulfur-containing acid.
  • the sulfur-containing acid may be selected from the group consisting of sulfur dioxide, sulfurous acid, sulfur trioxide, sulfuric acid, lignosulfonic acid, and combinations thereof.
  • the acid catalyst does not include a sulfur-containing acid.
  • the solvent for lignin is selected from the group consisting of linear alcohols, cyclic alcohols, aromatic alcohols, polyols, ketones, ethers, ionic liquids, and combinations thereof.
  • Effective hydrolysis conditions in step (d) may include hydrolysis catalyzed by lignosulfonic acids derived from step (b). Alternatively, or additionally, effective hydrolysis conditions in step (d) may include hydrolysis catalyzed by enzymes.
  • the process further comprises recovering the hydrolyzed liquor.
  • the hydrolyzed liquor comprises fructose, in some
  • the starting biomass contains fructose or sucrose, for example.
  • the hydrolyzed liquor comprises mannose; the process further comprising enzymatically isomerizing at least some of the mannose to fructose using mannose isomerase.
  • Isomerization converts glucose which is not very sweet to fructose, the most sweet of the natural sugars. Enzymes can also be used to convert some of the glucose fraction to fructose. Glucose isomerase (EC 5.3.1.18) or D-glucose ketoisomerase causes the isomerization of glucose to fructose. The isomerization of glucose to fructose is part of the glycolysis cycle that converts glucose to pyruvate. In some embodiments, the aldehyde (hemiacetal) glucose is isomerized to the ketone (as a hemiacetal) fructose, make another phosphate ester.
  • the isomerization takes advantage of the ease of breakage of a C-H bond which involves a carbon next to a carbonyl carbon. This is important in the next step which cleaves the bond between carbons three and four of fructose. It is noted that this bond involves the carbon next to the carbonyl carbon of fructose. This cleavage would not have been possible without the isomerization of glucose to fructose, because the carbonyl group of glucose is too far from carbons three and four to make that bond breakable.
  • immobilization of the glucose isomerase enzyme is utilized, so that the same batch of enzymes may be used repeatedly. Since glucose isomerase is formed intracellularly in most strains, commercial processes are preferably carried out with immobilized cells or by the addition of partly broken cells. Also, the enzyme mannose isomerase (EC 5.3.1.7) catalyzes the isomerization of D- mannose to D-fructose.
  • the enzymes when enzymes are incorporated in step (d), the enzymes may include glucose isomerase enzymes and/or mannose isomerase enzymes, so that fructose is produced during step (d).
  • step (f) includes enzymatically isomerizing at least about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, or more of the glucose to fructose, using glucose isomerase enzymes or an enzyme cocktail comprising glucose isomerase enzymes or a functionally equivalent thereof.
  • Additives may be used to assist in the enzymatically isomerization, to increase fructose yield, suppress reverse isomerization back to glucose, inhibit side reactions involving lignin or other species present, and so on.
  • step (g) comprises separating the fructose from the glucose.
  • ion-exchange resins may be utilized for separating the fructose from the glucose.
  • ion-exchange resins are incorporated in a simulated moving-bed chromatography system configured for separating the fructose from the glucose. Ion exchange resins from Dow Chemical (Midland, Michigan, US) can separate the fructose from a fructose-glucose mixture. See, for example, "DOWEXTM MONOSPHERETM Ion Exchange Resins
  • fructose syrup is separated into a high-purity fructose stream and a high-purity glucose stream.
  • Blending the high fructose cut with additional 42% syrup results in a 55% fructose product suitable as a sweetener for soft drink bottlers.
  • fructose concentration can easily be increased to over 90%.
  • the family of DOWEXTM MONOSPHERETM 99 uniform particle size resins may be used in this process.
  • step (g) comprises producing a product stream containing at least 10 wt% fructose, at least 40 wt% fructose, or at least 75 wt% fructose.
  • step (g) comprises producing a product stream containing crystallized fructose (or "crystalline fructose”), following crystallization and drying.
  • crystallized fructose or "crystalline fructose"
  • Conventional crystalline fructose is a processed sweetener derived from corn that is almost entirely fructose. It can also be made from sucrose by splitting the fructose and glucose molecules. Crystalline fructose consists of at least 98% pure fructose, any remainder being water and trace minerals. It is used as a sweetener in beverages and yogurts, where it substitutes for high-fructose corn syrup and table sugar. The fructose is allowed to crystallize out, and is dried and milled to produce crystalline fructose.
  • step (g) comprises producing the fructose-glucose solution having a fructose/glucose ratio of from about 0.1 to about 100, such as from about 0.5 to about 10, or from about 0.8 (preferred for some food and drink applications) to about 1.3 (preferred for certain soft drinks).
  • Some embodiments may be configured to produce a "high-fructose syrup" with various fructose/glucose ratios and water contents.
  • the process may further comprise incorporating the fructose into a food or beverage product.
  • the fructose may be incorporated into a beverage product, a food product, a supplement, a functional food, a nutraceutical, a sweetener, a gum, a powder, or any other consumer product.
  • the fructose may be biologically and/or chemically converted into a chemical or fuel product (e.g., n-butanol, levulinic acid, etc.).
  • a chemical or fuel product e.g., n-butanol, levulinic acid, etc.
  • Variations of the invention provide systems configured to carry out the processes described herein.
  • the product may be fructose, or may include fructose, which beneficially may be identified as "cellulosic fructose.”
  • Other products are those which incorporate the fructose produced as described herein, or derivatives of the fructose produced as described herein.
  • lignocellulosic biomass means any material containing cellulose and lignin. Lignocellulosic biomass may also contain hemicellulose. Mixtures of one or more types of biomass can be used.
  • the biomass feedstock comprises both a
  • the biomass feedstock may include hardwoods, softwoods, forest residues, industrial wastes, pulp and paper wastes, consumer wastes, food crops, waste materials derived from food crops (e.g., orange peels), annual grasses, energy crops, corn stover, corn fiber, wheat straw, sugarcane bagasse, sugarcane straw, rice straw, oat straw, oat hulls, barley straw, miscanthus, energy cane straw/residue, or combinations thereof.
  • a sucrose- containing component e.g., sugarcane or energy cane
  • a starch component e.g., corn, wheat, rice, etc.
  • the biomass feedstock may include hardwoods, softwoods, forest residues, industrial wastes, pulp and paper wastes, consumer wastes, food crops, waste materials derived from food crops (e.g., orange peels), annual grasses, energy crops, corn stover, corn fiber, wheat straw, sugarcane bagasse, sugarcane straw, rice straw, oat straw,
  • whole plants are fed to the process.
  • the entire sugarcane plant could be harvested.
  • the sugarcane need not be crushed to remove sucrose and recover bagasse. Rather, depending on desired feedstock particle size (i.e. some reduction may be desired), the entire sugarcane plant with sucrose syrup, bagasse, and straw may be utilized directly.
  • corn may be harvested along with corn stover and corn cobs, that is, the whole corn stalks may be harvested for directly feeding to the processes disclosed herein.
  • the concept also applies to wheat, rice, potatoes, cassava, milo, sorghum, nypa palm, sugar beets, energy beets, sugar palm, and sweet sorghum, for example.
  • feedstock mixtures may be used in which whole biomass is combined with another feedstock that may not be considered as a whole biomass feedstock containing non-lignocellulosic sugars.
  • a feedstock could be a mixture of whole sugarcane (with the bagasse and/or straw) plus softwood.
  • the softwood does not contain any non-lignocellulosic sugars, by definition, but the sugarcane component does contain non-lignocellulosic sugars (the sucrose).
  • a mixed feedstock is within the meaning of "whole biomass feedstock.”
  • the biomass feedstock need not be, but may be, relatively dry.
  • the biomass is in the form of a particulate or chip, but particle size is not critical in this invention.
  • Reaction conditions and operation sequences may vary widely. Some embodiments employ conditions described in U.S. Patent No. 8,030,039, issued Oct. 4, 2011; U.S. Patent No. 8,038,842, issued Oct. 11, 2011; U.S. Patent No. 8,268,125, issued Sept. 18, 2012; and U.S. Patent App. Nos. 13/004,431; 12/234,286;
  • a first process step is "cooking" (equivalently,
  • hemicelluloses are dissolved and over 50% are completely hydrolyzed; cellulose is separated but remains resistant to hydrolysis; and part of the lignin is sulfonated into water-soluble lignosulfonates.
  • non-lignocellulosic sugars are dissolved in solution and preserved at least to some extent.
  • the non-lignocellulosic sugars include sucrose
  • the sucrose may be converted to glucose and fructose, which retains sugar yield as long as the glucose or fructose do not degrade.
  • the non- lignocellulosic sugars include starch
  • the starch may be converted to glucose, which retains sugar yield as long as the glucose does not degrade.
  • non-lignocellulosic sugars 60%o, 70%
  • 80%o, or 90%> of the non-lignocellulosic sugars are dissolved during cooking.
  • the non-lignocellulosic sugars that are dissolved at least about 50%>, 60%, 70%, 80%, 90%, 95%, or 99% are retained without degradation and ultimately recovered in a fermentable-sugars stream.
  • a fraction of the non-lignocellulosic sugars remains with the cellulose-rich solids as residual non-lignocellulosic sugars.
  • the cellulose-rich solids Upon hydrolysis of the cellulose-rich solids to glucose, at least about 50%>, 60%>, 70%>, 80%>, 90%o, 95%o, or 99%o of the residual non-lignocellulosic sugars are ultimately recovered in a fermentable-sugars stream, typically as additional sucrose, glucose, fructose, or a combination thereof.
  • the lignocellulosic material is processed in a solution (cooking liquor) of aliphatic alcohol, water, and sulfur dioxide.
  • the cooking liquor preferably contains at least 10 wt%, such as at least 20 wt%, 30 wt%, 40 wt%, or 50 wt% of a solvent for lignin.
  • the cooking liquor may contain about 30-70 wt% solvent, such as about 50 wt% solvent.
  • the solvent for lignin may be an aliphatic alcohol, such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol, 1- pentanol, 1-hexanol, or cyclohexanol.
  • the solvent for lignin may be an aromatic alcohol, such as phenol or cresol.
  • Other lignin solvents are possible, such as (but not limited to) glycerol, methyl ethyl ketone, or diethyl ether. Combinations of more than one solvent may be employed.
  • the solvent for lignin may be completely miscible, partially miscible, or immiscible with water, so that there may be more than one liquid phase.
  • Potential process advantages arise when the solvent is miscible with water, and also when the solvent is immiscible with water.
  • the solvent is water-miscible, a single liquid phase forms, so mass transfer of lignin and hemicellulose extraction is enhanced, and the downstream process must only deal with one liquid stream.
  • the solvent is immiscible in water, the extractant mixture readily separates to form liquid phases, so a distinct separation step can be avoided or simplified. This can be advantageous if one liquid phase contains most of the lignin and the other contains most of the hemicellulose sugars, as this facilitates recovering the lignin from the hemicellulose sugars.
  • the cooking liquor preferably contains sulfur dioxide and/or sulfurous acid (H2SO3).
  • the cooking liquor preferably contains SO2, in dissolved or reacted form, in a concentration of at least 3 wt%, preferably at least 6 wt%, more preferably at least 8 wt%, such as about 9 wt%, 10 wt%, 11 wt%, 12 wt%, 13 wt%, 14 wt%, 15 wt%, 20 wt%, 25 wt%, 30 wt% or higher.
  • the cooking liquor may also contain one or more species, separately from SO2, to adjust the pH.
  • the pH of the cooking liquor is typically about 4 or less.
  • Sulfur dioxide is a preferred acid catalyst, because it can be recovered easily from solution after hydrolysis. The majority of the SO2 from the hydrolysate may be stripped and recycled back to the reactor. Recovery and recycling translates to less lime required compared to neutralization of comparable sulfuric acid, less solids to dispose of, and less separation equipment. The increased efficiency owing to the inherent properties of sulfur dioxide mean that less total acid or other catalysts may be required. This has cost advantages, since sulfuric acid can be expensive. Additionally, and quite significantly, less acid usage also will translate into lower costs for a base (e.g., lime) to increase the pH following hydrolysis, for downstream operations. Furthermore, less acid and less base will also mean substantially less generation of waste salts (e.g., gypsum) that may otherwise require disposal.
  • a base e.g., lime
  • an additive may be included in amounts of about 0.1 wt% to 10 wt% or more to increase cellulose viscosity.
  • Exemplary additives include ammonia, ammonia hydroxide, urea, anthraquinone, magnesium oxide, magnesium hydroxide, sodium hydroxide, and their derivatives.
  • the cooking is performed in one or more stages using batch or continuous digestors. Solid and liquid may flow cocurrently or countercurrently, or in any other flow pattern that achieves the desired fractionation.
  • the cooking reactor may be internally agitated, if desired.
  • the cooking conditions are varied, with temperatures from about 65°C to 175°C, for example 75°C, 85°C, 95°C, 105°C, 115°C, 125°C, 130°C, 135°C, 140°C, 145°C, 150°C, 155°C, 165°C or 170°C, and corresponding pressures from about 1 atmosphere to about 15 atmospheres in the liquid or vapor phase.
  • the cooking time of one or more stages may be selected from about 15 minutes to about 720 minutes, such as about 30, 45, 60, 90, 120, 140, 160, 180, 250, 300, 360, 450, 550, 600, or 700 minutes.
  • the cooking liquor to lignocellulosic material ratio may be selected from about 1 to about 10, such as about 2, 3, 4, 5, or 6.
  • biomass is digested in a pressurized vessel with low liquor volume (low ratio of cooking liquor to lignocellulosic material), so that the cooking space is filled with ethanol and sulfur dioxide vapor in equilibrium with moisture.
  • the cooked biomass is washed in alcohol-rich solution to recover lignin and dissolved hemicelluloses, while the remaining pulp is further processed.
  • the process of fractionating lignocellulosic material comprises vapor-phase cooking of
  • lignocellulosic material with aliphatic alcohol (or other solvent for lignin), water, and sulfur dioxide.
  • aliphatic alcohol or other solvent for lignin
  • sulfur dioxide See, for example, U.S. Patent Nos. 8,038,842 and 8,268,125 which are incorporated by reference herein.
  • a portion or all of the sulfur dioxide may be present as sulfurous acid in the extract liquor.
  • sulfur dioxide is generated in situ by introducing sulfurous acid, sulfite ions, bisulfite ions, combinations thereof, or a salt of any of the foregoing. Excess sulfur dioxide, following hydrolysis, may be recovered and reused.
  • sulfur dioxide is saturated in water (or aqueous solution, optionally with an alcohol) at a first temperature, and the hydrolysis is then carried out at a second, generally higher, temperature.
  • sulfur dioxide is sub-saturated.
  • sulfur dioxide is super-saturated.
  • sulfur dioxide concentration is selected to achieve a certain degree of lignin sulfonation, such as 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% sulfur content.
  • SO2 reacts chemically with lignin to form stable lignosulfonic acids which may be present both in the solid and liquid phases.
  • the concentration of sulfur dioxide, additives, and aliphatic alcohol (or other solvent) in the solution and the time of cook may be varied to control the yield of cellulose and hemicellulose in the pulp.
  • the concentration of sulfur dioxide and the time of cook may be varied to control the yield of lignin versus lignosulfonates in the hydrolysate.
  • the concentration of sulfur dioxide, temperature, and the time of cook may be varied to control the yield of fermentable sugars.
  • the liquid and solid phases are separated. Conditions for the separation may be selected to minimize the reprecipitation of the extracted lignin on the solid phase. This is favored by conducting separation or washing at a temperature of at least the glass-transition temperature of lignin (about 120°C).
  • the physical separation can be accomplished either by transferring the entire mixture to a device that can carry out the separation and washing, or by removing only one of the phases from the reactor while keeping the other phase in place.
  • the solid phase can be physically retained by appropriately sized screens through which liquid can pass. The solid is retained on the screens and can be kept there for successive so lid- wash cycles. Alternately, the liquid may be retained and solid phase forced out of the reaction zone, with centrifugal or other forces that can effectively transfer the solids out of the slurry. In a continuous system, countercurrent flow of solids and liquid can accomplish the physical separation.
  • the recovered solids normally will contain a quantity of lignin and sugars, some of which can be removed easily by washing.
  • the washing-liquid composition can be the same as or different than the liquor composition used during fractionation. Multiple washes may be performed to increase effectiveness.
  • one or more washes are performed with a composition including a solvent for lignin, to remove additional lignin from the solids, followed by one or more washes with water to displace residual solvent and sugars from the solids.
  • Recycle streams such as from solvent-recovery operations, may be used to wash the solids.
  • a solid phase and at least one liquid phase are obtained.
  • the solid phase contains substantially undigested cellulose.
  • a single liquid phase is usually obtained when the solvent and the water are miscible in the relative proportions that are present.
  • the liquid phase contains, in dissolved form, most of the lignin originally in the starting lignocellulosic material, as well as soluble monomeric and oligomeric sugars formed in the hydrolysis of any hemicellulose that may have been present.
  • Multiple liquid phases tend to form when the solvent and water are wholly or partially immiscible.
  • the lignin tends to be contained in the liquid phase that contains most of the solvent.
  • Hemicellulose hydrolysis products tend to be present in the liquid phase that contains most of the water.
  • hydro lysate from the cooking step is subjected to pressure reduction.
  • Pressure reduction may be done at the end of a cook in a batch digestor, or in an external flash tank after extraction from a continuous digestor, for example.
  • the flash vapor from the pressure reduction may be collected into a cooking liquor make-up vessel.
  • the flash vapor contains substantially all the unreacted sulfur dioxide which may be directly dissolved into new cooking liquor.
  • the cellulose is then removed to be washed and further treated as desired.
  • a process washing step recovers the hydrolysate from the cellulose.
  • the washed cellulose is pulp that may be used for various purposes (e.g., paper or nanocellulose production).
  • the weak hydrolysate from the washer continues to the final reaction step; in a continuous digestor this weak hydrolysate may be combined with the extracted hydrolysate from the external flash tank.
  • washing and/or separation of hydrolysate and cellulose-rich solids is conducted at a temperature of at least about 100°C, 110°C, or 120°C.
  • the washed cellulose may also be used for glucose production via cellulose hydrolysis with enzymes or acids.
  • the hydrolysate may be further treated in one or multiple steps to hydro lyze the oligomers into monomers. This step may be conducted before, during, or after the removal of solvent and sulfur dioxide.
  • the solution may or may not contain residual solvent (e.g. alcohol).
  • sulfur dioxide is added or allowed to pass through to this step, to assist hydrolysis.
  • an acid such as sulfurous acid or sulfuric acid is introduced to assist with hydrolysis.
  • the hydrolysate is autohydrolyzed by heating under pressure. In some embodiments, no additional acid is introduced, but lignosulfonic acids produced during the initial cooking are effective to catalyze hydrolysis of hemicellulose oligomers to monomers.
  • this step utilizes sulfur dioxide, sulfurous acid, sulfuric acid at a concentration of about 0.01 wt% to 30 wt%, such as about 0.05 wt%, 0.1 wt%, 0.2 wt%, 0.5 wt%, 1 wt%, 2 wt%, 5 wt%, 10 wt%, or 20 wt%.
  • This step may be carried out at a temperature from about 100°C to 220°C, such as about 110°C, 120°C, 130°C, 140°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, or 210°C. Heating may be direct or indirect to reach the selected temperature.
  • the reaction step produces fermentable sugars which can then be concentrated by evaporation to a fermentation feedstock. Concentration by evaporation may be accomplished before, during, or after the treatment to hydrolyze oligomers.
  • the final reaction step may optionally be followed by steam stripping of the resulting hydrolysate to remove and recover sulfur dioxide and alcohol, and for removal of potential fermentation-inhibiting side products.
  • the evaporation process may be under vacuum or pressure, from about -0.1 atmospheres to about 10 atmospheres, such as about 0.1 atm, 0.3 atm, 0.5 atm, 1.0 atm, 1.5 atm, 2 atm, 4 atm, 6 atm, or 8 atm.
  • Recovering and recycling the sulfur dioxide may utilize separations such as, but not limited to, vapor-liquid disengagement (e.g. flashing), steam stripping, extraction, or combinations or multiple stages thereof.
  • Various recycle ratios may be practiced, such as about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, or more.
  • about 90-99% of initially charged SO2 is readily recovered by distillation from the liquid phase, with the remaining 1-10% (e.g., about 3-5%)) of the SO2 primarily bound to dissolved lignin in the form of lignosulfonates.
  • the evaporation step utilizes an integrated alcohol stripper and evaporator.
  • Evaporated vapor streams may be segregated so as to have different concentrations of organic compounds in different streams.
  • Evaporator condensate streams may be segregated so as to have different concentrations of organic compounds in different streams.
  • Alcohol may be recovered from the evaporation process by condensing the exhaust vapor and returning to the cooking liquor make-up vessel in the cooking step. Clean condensate from the evaporation process may be used in the washing step.
  • an integrated alcohol stripper and evaporator system wherein aliphatic alcohol is removed by vapor stripping, the resulting stripper product stream is concentrated by evaporating water from the stream, and evaporated vapor is compressed using vapor compression and is reused to provide thermal energy.
  • the hydrolysate from the evaporation and final reaction step contains mainly fermentable sugars but may also contain lignin depending on the location of lignin separation in the overall process configuration.
  • the hydrolysate may be concentrated to a concentration of about 5 wt% to about 60 wt% solids, such as about 10 wt%, 15 wt%, 20 wt%, 25 wt%, 30 wt%, 35 wt%, 40 wt%, 45 wt%, 50 wt% or 55 wt% solids.
  • the hydrolysate contains fermentable sugars.
  • Fermentable sugars include hydrolysis products of cellulose, galactoglucomannan, glucomannan, arabinoglucuronoxylans, arabinogalactan, and glucuronoxylans into their respective short-chained oligomers and monomer products, i.e., glucose, mannose, galactose, xylose, and arabinose.
  • the fermentable sugars may be recovered in purified form, as a sugar slurry or dry sugar solids, for example. Any known technique may be employed to recover a slurry of sugars or to dry the solution to produce dry sugar solids.
  • Fermentable sugars also include glucose derived from starch, sucrose, and glucose/fructose derived from sucrose.
  • the fermentable sugars are fermented to produce biochemicals or biofuels such as (but by no means limited to) ethanol, isopropanol, acetone, 1-butanol, isobutanol, lactic acid, succinic acid, or any other fermentation products.
  • biochemicals or biofuels such as (but by no means limited to) ethanol, isopropanol, acetone, 1-butanol, isobutanol, lactic acid, succinic acid, or any other fermentation products.
  • Some amount of the fermentation product may be a microorganism or enzymes, which may be recovered if desired.
  • the fermentation will employ bacteria, such as Clostridia bacteria, it is preferable to further process and condition the hydrolysate to raise pH and remove residual SO2 and other fermentation inhibitors.
  • the residual SO2 (i.e., following removal of most of it by stripping) may be catalytically oxidized to convert residual sulfite ions to sulfate ions by oxidation. This oxidation may be accomplished by adding an oxidation catalyst, such as FeS04-7H 2 0, that oxidizes sulfite ions to sulfate ions.
  • the residual SO2 is reduced to less than about 100 ppm, 50 ppm, 25 ppm, 10 ppm, 5 ppm, or 1 ppm.
  • the process further comprises recovering the lignin as a co-product.
  • the sulfonated lignin may also be recovered as a co-product.
  • the process further comprises combusting or gasifying the sulfonated lignin, recovering sulfur contained in the sulfonated lignin in a gas stream comprising reclaimed sulfur dioxide, and then recycling the reclaimed sulfur dioxide for reuse.
  • the process lignin separation step is for the separation of lignin from the hydrolysate and can be located before or after the final reaction step and evaporation. If located after, then lignin will precipitate from the hydrolysate since alcohol has been removed in the evaporation step.
  • the remaining water-soluble lignosulfonates may be precipitated by converting the hydrolysate to an alkaline condition (pH higher than 7) using, for example, an alkaline earth oxide, preferably calcium oxide (lime).
  • the combined lignin and lignosulfonate precipitate may be filtered.
  • the lignin and lignosulfonate filter cake may be dried as a co-product or burned or gasified for energy production.
  • the hydrolysate from filtering may be recovered and sold as a concentrated sugar solution product or further processed in a subsequent fermentation or other reaction step.
  • Native (non- sulfonated) lignin is hydrophobic, while lignosulfonates are hydrophilic. Hydrophilic lignosulfonates may have less propensity to clump, agglomerate, and stick to surfaces. Even lignosulfonates that do undergo some condensation and increase of molecular weight, will still have an HSO3 group that will contribute some solubility (hydrophilic).
  • the soluble lignin precipitates from the hydrolysate after solvent has been removed in the evaporation step.
  • reactive lignosulfonates are selectively precipitated from hydrolysate using excess lime (or other base, such as ammonia) in the presence of aliphatic alcohol.
  • hydrated lime is used to precipitate lignosulfonates.
  • part of the lignin is precipitated in reactive form and the remaining lignin is sulfonated in water-soluble form.
  • the process fermentation and distillation steps are intended for the production of fermentation products, such as alcohols or organic acids.
  • the hydrolysate contains mainly fermentable sugars in water solution from which any fermentation inhibitors have been preferably removed or neutralized.
  • the hydrolysate is fermented to produce dilute alcohol or organic acids, from 1 wt% to 20 wt% concentration.
  • the dilute product is distilled or otherwise purified as is known in the art.
  • alcohol such as ethanol
  • some of it may be used for cooking liquor makeup in the process cooking step.
  • a distillation column stream such as the bottoms, with or without evaporator condensate, may be reused to wash cellulose.
  • lime may be used to dehydrate product alcohol.
  • Side products may be removed and recovered from the hydrolysate. These side products may be isolated by processing the vent from the final reaction step and/or the condensate from the evaporation step. Side products include furfural, hydroxymethyl furfural (HMF), methanol, acetic acid, and lignin-derived compounds, for example.
  • the cellulose-rich material is highly reactive in the presence of industrial cellulase enzymes that efficiently break the cellulose down to glucose monomers. It has been found experimentally that the cellulose-rich material, which generally speaking is highly delignified, rapidly hydrolyzes to glucose with relatively low quantities of enzymes.
  • the cellulose-rich solids may be converted to glucose with at least 80% yield within 24 hours at 50°C and 2 wt% solids, in the presence of a cellulase enzyme mixture in an amount of no more than 15 filter paper units (FPU) per g of the solids. In some embodiments, this same conversion requires no more than 5 FPU per g of the solids.
  • FPU filter paper units
  • the glucose may be fermented to an alcohol, an organic acid, or another fermentation product.
  • the glucose may be used as a sweetener or isomerized to enrich its fructose content.
  • the glucose may be used to produce baker's yeast.
  • the glucose may be catalytically or thermally converted to various organic acids and other materials.
  • the cellulose-rich material is further processed into one more cellulose products.
  • Cellulose products include market pulp, dissolving pulp (also known as a-cellulose), fluff pulp, purified cellulose, paper, paper products, and so on. Further processing may include bleaching, if desired. Further processing may include modification of fiber length or particle size, such as when producing nanocellulose or nanofibrillated or microfibrillated cellulose. It is believed that the cellulose produced by this process is highly amenable to derivatization chemistry for cellulose derivatives and cellulose-based materials such as polymers.
  • hemicellulose When hemicellulose is present in the starting biomass, all or a portion of the liquid phase contains hemicellulose sugars and soluble oligomers. It is preferred to remove most of the lignin from the liquid, as described above, to produce a fermentation broth which will contain water, possibly some of the solvent for lignin, hemicellulose sugars, and various minor components from the digestion process. This fermentation broth can be used directly, combined with one or more other
  • fermentation streams or further treated.
  • Further treatment can include sugar concentration by evaporation; addition of glucose or other sugars (optionally as obtained from cellulose saccharification); addition of various nutrients such as salts, vitamins, or trace elements; pH adjustment; and removal of fermentation inhibitors such as acetic acid and phenolic compounds.
  • the choice of conditioning steps should be specific to the target product(s) and microorganism(s) employed.
  • various sugars are not fermented but rather are recovered and purified, stored, sold, or converted to a specialty product.
  • Xylose for example, can be converted into xylitol.
  • Sucrose could be purified as a food-grade sugar product.
  • a lignin product can be readily obtained from a liquid phase using one or more of several methods.
  • One simple technique is to evaporate off all liquid, resulting in a solid lignin-rich residue. This technique would be especially
  • Another method is to cause the lignin to precipitate out of solution.
  • Some of the ways to precipitate the lignin include (1) removing the solvent for lignin from the liquid phase, but not the water, such as by selectively evaporating the solvent from the liquid phase until the lignin is no longer soluble; (2) diluting the liquid phase with water until the lignin is no longer soluble; and (3) adjusting the temperature and/or pH of the liquid phase. Methods such as centrifugation can then be utilized to capture the lignin.
  • Yet another technique for removing the lignin is continuous liquid-liquid extraction to selectively remove the lignin from the liquid phase, followed by removal of the extraction solvent to recover relatively pure lignin.
  • Lignin produced in accordance with the invention can be used as a fuel.
  • lignin is similar in energy content to coal. Lignin can act as an oxygenated component in liquid fuels, to enhance octane while meeting standards as a renewable fuel.
  • the lignin produced herein can also be used as polymeric material, and as a chemical precursor for producing lignin derivatives.
  • the sulfonated lignin may be sold as a lignosulfonate product, or burned for fuel value.
  • the present invention also provides systems configured for carrying out the disclosed processes, and compositions produced therefrom. Any stream generated by the disclosed processes may be partially or completed recovered, purified or further treated, and/or marketed or sold.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Emergency Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

Certains aspects de l'invention concernent un procédé de production de fructose cellulosique à partir de biomasse cellulosique, consistant : à fractionner une charge de biomasse en présence d'un catalyseur acide, d'un solvant pour lignine et d'eau, afin de produire une liqueur contenant des matières solides riches en cellulose, en lignine et en hémicellulose dissoute ; à retirer les matières solides riches en cellulose de la liqueur ; à hydrolyser l'hémicellulose dissoute contenue dans la liqueur, afin de produire une liqueur hydrolysée contenant des monomères hémicellulosiques ; à hydrolyser les matières solides riches en cellulose pour produire du glucose, au moyen d'enzymes cellulases ou d'un catalyseur d'hydrolyse acide ou basique ; à isomériser par voie enzymatique le glucose en fructose, au moyen d'enzymes glucose isomérases ; et à récupérer le fructose sous une forme purifiée ou dans une solution de fructose-glucose. Le fructose cellulosique produit par les procédés selon l'invention présente de nombreuses utilisations.
PCT/US2015/046190 2014-08-21 2015-08-21 Procédés de production de fructose cellulosique à partir de biomasse lignocellulosique WO2016029069A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462040217P 2014-08-21 2014-08-21
US62/040,217 2014-08-21
US14/831,827 2015-08-20
US14/831,827 US20150361474A1 (en) 2012-12-31 2015-08-20 Processes for producing cellulosic fructose from lignocellulosic biomass

Publications (1)

Publication Number Publication Date
WO2016029069A1 true WO2016029069A1 (fr) 2016-02-25

Family

ID=55351271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/046190 WO2016029069A1 (fr) 2014-08-21 2015-08-21 Procédés de production de fructose cellulosique à partir de biomasse lignocellulosique

Country Status (1)

Country Link
WO (1) WO2016029069A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327131A1 (fr) * 2016-11-28 2018-05-30 Lenzing AG Procédé de traitement pour la preparation d'un composé riche en carbohydrates
US11118017B2 (en) 2019-11-13 2021-09-14 American Process International LLC Process for the production of bioproducts from lignocellulosic material
US11306113B2 (en) 2019-11-13 2022-04-19 American Process International LLC Process for the production of cellulose, lignocellulosic sugars, lignosulfonate, and ethanol
WO2022192136A1 (fr) 2021-03-08 2022-09-15 Hemanext Inc. Procédés de stockage de cellules souches hématopoïétiques

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567142A (en) * 1982-06-30 1986-01-28 Nabisco Brands, Inc. Process for isomerizing glucose
US5049494A (en) * 1989-02-08 1991-09-17 Allied-Signal Inc. Conversion of mannose to fructose
US5656094A (en) * 1987-02-02 1997-08-12 A.E. Staley Manufacturing Company Integrated process for producing crystalline fructose and a high-fructose, liquid phase sweetener
US20140186898A1 (en) * 2012-12-31 2014-07-03 Api Intellectual Property Holdings, Llc Processes for fractionating whole plants to produce fermentable sugars and co-products

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567142A (en) * 1982-06-30 1986-01-28 Nabisco Brands, Inc. Process for isomerizing glucose
US5656094A (en) * 1987-02-02 1997-08-12 A.E. Staley Manufacturing Company Integrated process for producing crystalline fructose and a high-fructose, liquid phase sweetener
US5049494A (en) * 1989-02-08 1991-09-17 Allied-Signal Inc. Conversion of mannose to fructose
US20140186898A1 (en) * 2012-12-31 2014-07-03 Api Intellectual Property Holdings, Llc Processes for fractionating whole plants to produce fermentable sugars and co-products

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GALLEZOT P.: "Conversion of biomass to selected chemical products", CHEM. SOC. REV., vol. 41, 2012, pages 538 - 1558 *
KLATT K.-U.: "Model-based control of a simulated moving bed chromatographic process for the separation of fructose and glucose''.", JOURNAL OF PROCESS CONTROL, vol. 12, 2002, pages 203 - 219 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3327131A1 (fr) * 2016-11-28 2018-05-30 Lenzing AG Procédé de traitement pour la preparation d'un composé riche en carbohydrates
WO2018096181A1 (fr) * 2016-11-28 2018-05-31 Lenzing Ag Procédé de traitement de préparation d'une composition enrichie en glucides
US11118017B2 (en) 2019-11-13 2021-09-14 American Process International LLC Process for the production of bioproducts from lignocellulosic material
US11306113B2 (en) 2019-11-13 2022-04-19 American Process International LLC Process for the production of cellulose, lignocellulosic sugars, lignosulfonate, and ethanol
WO2022192136A1 (fr) 2021-03-08 2022-09-15 Hemanext Inc. Procédés de stockage de cellules souches hématopoïétiques

Similar Documents

Publication Publication Date Title
US9631316B2 (en) Biomass fractionation processes employing sulfur dioxide
US20170190682A1 (en) Processes and apparatus for producing furfural, levulinic acid, and other sugar-derived products from biomass
US20140170713A1 (en) Biomass fractionation processes, apparatus, and products produced therefrom
US11155846B2 (en) Methods for reducing contamination during enzymatic hydrolysis of biomass-derived cellulose
US9856605B2 (en) Integration of non-woody biorefining at pulp and paper plants
US20140182582A1 (en) Processes for making cellulose with very low lignin content for glucose, high-purity cellulose, or cellulose derivatives
WO2014193763A1 (fr) Bioaraffineries intégrées pour la production de sucres, produits de fermentation, et co-produits
US20140186901A1 (en) Processes and apparatus for producing fermentable sugars, cellulose solids, and lignin from lignocellulosic biomass
CA2933806A1 (fr) Procedes de fractionnement de plantes entieres pour produire des sucres fermentables et des co-produits
US20170002387A1 (en) Processes for fermentation of lignocellulosic glucose to aliphatic alcohols or acids
US20150233057A1 (en) Lignin-coated cellulose fibers from lignocellulosic biomass
US20180273695A1 (en) Processes for producing lignin-based enzymatic hydrolysis enhancers, and compositions produced therefrom
US20150136345A1 (en) Methods of washing cellulose-rich solids from biomass fractionation to reduce lignin and ash content
US20160130369A1 (en) Fractionation processes for high-ash lignocellulosic biomass feedstocks
US11236371B2 (en) Processes for fermentation of lignocellulosic glucose to aliphatic alcohols or acids
US20140187759A1 (en) Biorefining processes and apparatus for separating cellulose hemicellulose, and lignin from biomass
WO2016029069A1 (fr) Procédés de production de fructose cellulosique à partir de biomasse lignocellulosique
WO2014105610A1 (fr) Procédés de récupération et de recyclage de sous-produits de type sel dans des procédés de bioraffinage
US20150361474A1 (en) Processes for producing cellulosic fructose from lignocellulosic biomass

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15833229

Country of ref document: EP

Kind code of ref document: A1