WO2016027966A1 - Failure monitoring system and failure monitoring method for optoelectronic cable assembly - Google Patents

Failure monitoring system and failure monitoring method for optoelectronic cable assembly Download PDF

Info

Publication number
WO2016027966A1
WO2016027966A1 PCT/KR2015/005462 KR2015005462W WO2016027966A1 WO 2016027966 A1 WO2016027966 A1 WO 2016027966A1 KR 2015005462 W KR2015005462 W KR 2015005462W WO 2016027966 A1 WO2016027966 A1 WO 2016027966A1
Authority
WO
WIPO (PCT)
Prior art keywords
power line
failure
unit
optical fiber
line unit
Prior art date
Application number
PCT/KR2015/005462
Other languages
French (fr)
Korean (ko)
Inventor
박지상
박래혁
양은정
주형준
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140166223A external-priority patent/KR102244743B1/en
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Publication of WO2016027966A1 publication Critical patent/WO2016027966A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the present invention relates to a failure monitoring system and a failure monitoring method for an optical cable assembly, and more particularly, in an optical cable assembly including a power line unit and an optical fiber unit, the failure of the power line unit and the location of the failure occurs in the optical fiber unit.
  • the present invention relates to a failure monitoring system and a method for monitoring the failure.
  • cables used as power and / or communication transmission means require immediate recovery in the event of a failure during their installation or after use.
  • obstacles may occur during the construction of the submarine cable, and during the use of the submarine cable, such as fishing activities or submarine earthquake, etc.
  • Environmental factors can cause the submarine cable to fail.
  • Optical time domain reflectometer is widely used as a monitoring system for detecting the failure.
  • the OTDR system can detect a location where a failure occurs with a very high level of accuracy, but it can be applied to an optical fiber with optical fiber because it uses scattered light of supervisory light, and can not be applied to other power lines.
  • a so-called 'Thumping method' as a way of detecting the location of the failure relatively accurately.
  • the method detects an acoustic signal caused by a magnetic change or a partial discharge generated at a fault point of the power line when a high voltage is applied to the power line.
  • a magnetic sensor for sensing the magnetic force change or a microphone for detecting the magnetic force change is applied by applying a relatively high voltage to the power line and the cable is installed to detect the magnetic force change or the acoustic signal. Determine the point of failure.
  • the thumping method is relatively easy to detect the point of failure occurs in the case of the underground line is installed on the land, but the detection is not easy when the power line is installed across the sea.
  • a diver may detect a magnetic sensor or a microphone by moving the magnetic sensor or microphone along the submarine cable in order to detect a failure point by the above method, or by applying the magnetic sensor or the microphone to a robot moving the submarine. Can be installed and detected.
  • a detection method is significantly higher in cost and time than the detection of underground ships, and is accompanied by a problem that the detection is very difficult due to the seabed environment such as currents and depths.
  • the voltage applied to the power line is increased to facilitate the detection of a magnetic force change or an acoustic signal on the seabed, the power line may be damaged.
  • An object of the present invention is to provide a failure monitoring system and a failure monitoring method capable of accurately detecting a failure point of the power line in order to solve the above problems.
  • an object of the present invention is to provide a failure monitoring system and a failure monitoring method in which the cost and time are significantly reduced when a monitoring system for detecting a failure point of the power line is constructed.
  • an object of the present invention is to provide a failure monitoring system and a failure monitoring method that can detect the failure point of the power line significantly faster and more accurately than the conventional cost and time.
  • An object of the present invention as described above is in the fault monitoring system for an optical cable assembly having a power line unit having a conductor and an optical fiber unit provided adjacent to the power line unit and having at least one optical fiber, wherein the conductor is selectively A voltage supply unit connected to supply a voltage equal to or greater than a predetermined value, and a monitoring device for detecting a failure of the power line unit and a location of the failure by detecting an acoustic signal generated by the power line unit by an optical signal of the at least one optical fiber. It is achieved by a failure monitoring system of the photoelectric cable assembly characterized in that it comprises a.
  • the voltage supply unit may supply a voltage having a predetermined pattern.
  • the voltage supply unit may intermittently supply a waveform corresponding to the second voltage value having a relatively larger value than the predetermined first voltage value.
  • the voltage supply unit may increase the supplied voltage in a predetermined unit when the failure is not detected by the monitoring apparatus.
  • the monitoring apparatus may include an OTDR for inputting monitoring light into the optical fiber and receiving the scattered monitoring light, and an analysis device for detecting whether a failure occurs and a location where the failure occurs by analyzing a waveform of the received monitoring light.
  • the OTDR may inject the monitoring light having a wavelength of a relatively narrow band into the optical fiber.
  • the analysis device detects the change in the intensity of the monitoring light received from the optical fiber by the acoustic signal generated by the power line unit may determine that the failure occurs when the intensity change is more than a predetermined reference value.
  • the analysis apparatus stores distance information indicating a relative relationship between the distance of the photoelectric cable assembly and the distance of the optical fiber unit when the optical cable assembly is installed, and the distance determined by the optical fiber unit when the failure occurs. May be converted into a distance of the photoelectric cable assembly according to the distance information.
  • optical fiber unit and the power line unit may form a photoelectric composite cable.
  • the object of the present invention as described above in the fault monitoring method of the photoelectric cable assembly comprising a power line unit having a conductor and an optical fiber unit provided adjacent to the power line unit and having at least one optical fiber, the power line unit Applying a voltage to a conductor of the light source, injecting monitoring light into the optical fiber unit to detect an acoustic signal generated by the power line unit, and receiving the scattered monitoring light, analyzing a waveform of the scattered monitoring light, and analyzing the power line
  • a failure monitoring method of the photoelectric cable assembly comprising the step of determining whether a failure of the unit and the step of detecting the failure occurs when it is determined that the failure has occurred.
  • the method may further include setting a voltage initial value supplied to the conductor of the power line unit.
  • the method may further include increasing the voltage applied to the conductor of the power line unit in a predetermined unit.
  • a voltage having a predetermined pattern may be supplied to the conductor of the power line unit.
  • applying the voltage to the conductor of the power line unit may intermittently supply a waveform corresponding to the second voltage value having a relatively larger value than the predetermined first voltage value.
  • the step of determining whether or not the failure occurs may determine whether the failure occurs by analyzing the waveform of the received monitoring light.
  • the monitoring light having a wavelength of a relatively narrow band can be incident to the optical fiber.
  • the step of determining whether or not the occurrence of the failure may detect the change in intensity due to the phase change of the received monitoring light may determine that the failure occurs when the change in intensity is greater than a predetermined reference value.
  • the opto-optic cable assembly further comprises the step of storing in advance the distance information showing the relative relationship between the distance of the photoelectric cable assembly and the distance of the optical fiber unit, and in case of detecting the location of the failure
  • the distance determined by the optical fiber unit may be converted into the distance of the photoelectric cable assembly according to the distance information.
  • optical fiber unit and the power line unit may form a photoelectric composite cable.
  • the optical fiber unit provided adjacent to the power line unit
  • by utilizing the optical fiber unit it is possible to significantly reduce the time and cost used to monitor the failure of the power line unit compared with the conventional.
  • the present invention can accurately and quickly determine the failure point by detecting the acoustic signal generated at the failure point of the power line unit by the optical fiber unit.
  • FIG. 1 is a cross-sectional view showing the structure of a photoelectric composite cable which is one of the photoelectric cable assemblies;
  • FIG. 2 is a cross-sectional view showing a binding cable in which a power line unit and an optical fiber unit are simply bound as one of the photoelectric cable assemblies;
  • FIG. 3 is a schematic diagram showing a schematic configuration of an OTDR system
  • FIG. 4 is a graph showing the intensity of the monitoring light according to the distance in FIG.
  • FIG. 5 is a schematic diagram showing the configuration of a failure monitoring system for monitoring a failure of an optoelectronic cable assembly according to the present invention
  • FIG. 6 is a schematic diagram illustrating a change in monitoring light of an optical fiber unit due to an acoustic signal generated in the power line unit in FIG. 5;
  • FIG. 7 is a graph showing waveforms of monitoring light analyzed by the monitoring apparatus in FIG. 5;
  • FIG. 8 is a graph illustrating a pattern of a voltage supplied to the power line unit in FIG. 5;
  • FIG. 9 is a flowchart illustrating a fault monitoring method for fault monitoring of an optoelectronic cable assembly according to the present invention.
  • FIG. 10 is a schematic diagram showing a relative arrangement of an optical fiber unit and a power line unit in the optoelectronic cable assembly
  • FIG. 11 is a schematic diagram showing a method of detecting a relative length of the optical fiber unit and the optical cable assembly by the monitoring apparatus when the optical cable assembly is embedded in the seabed;
  • the optical fiber unit disposed adjacent to the power line unit is used. That is, in the present invention, the fault position of the power line unit is sensed using a so-called 'photoelectric cable assembly' in which the power line unit and the optical fiber unit are disposed adjacent to each other.
  • the term 'optical fiber and power line aggregated cable' refers to the optical fiber unit and the optical fiber unit together with the optical fiber and power line composite cable connected to the optical fiber unit and the power line unit by a filler.
  • the power line unit is defined as including all binding cables simply bound by taping or the like.
  • FIG. 1 and 2 are cross-sectional views illustrating the configuration of an optical cable assembly having an optical fiber unit 100 and a power line unit 300.
  • FIG. 1 is a cross-sectional view showing the configuration of a photoelectric composite cable 1000 in the photoelectric cable assembly.
  • the photoelectric composite cable 1000 is illustrated as an example of a three-phase cable having three power line units 300, but is not limited thereto and may be applied to a single-core cable having one power line unit.
  • the power line unit 300 includes a conductor 310 made of a conductive material such as copper and aluminum, and wraps the conductor 310 and removes the air layer between the conductor 310 and the insulating layer 320 described later. Insulation surrounding the inner semiconducting layer 330 and the inner semiconducting layer 330, which suppresses partial discharge at an interface with the panel and mitigates local electric field concentration in the insulating layer 320.
  • the layer 320 includes an outer semiconducting layer 340 that surrounds the insulating layer 320 and serves to shield the cable and to apply an even electric field to the insulating layer 320.
  • the power line unit 300 may further include a metal sheath 350 and a polymer sheath 360 surrounding the metal sheath 350 on the outside of the outer semiconducting layer 340.
  • materials and specifications of the conductor 310, the inner semiconducting layer 330, the insulating layer 320, the outer semiconducting layer 340, the metal sheath 350 and the polymer sheath 360 of the power line unit 300 may be used.
  • Silver may vary depending on the use of the photoelectric composite cable, transmission voltage and the like.
  • the optical fiber unit 100 is provided adjacent to one or more power line units 300.
  • the optical fiber unit 100 may include at least one optical fiber 111 and a tube 112 for receiving the optical fiber 111.
  • Each of the optical fiber units 100 includes a predetermined number of optical fibers 111 mounted together with the filler 113 in the tube 112, and the tube may be made of a rigid material such as stainless steel.
  • the optical fiber unit 100 may further include a sheath 130 surrounding the tube 112.
  • the photoelectric composite cable 1000 is made of a subsea photoelectric composite cable installed across a seabed such as the sea, for example, various protective layers for protecting internal components even in harsh environments such as seawater, salt, etc. in the sea. It may be provided.
  • PP polypropylene
  • the optical composite power cable 1000 may include a filler 400 to protect the power line unit 300 and the optical fiber unit 100 inside the bedding layer 700.
  • FIG. 2 is a cross-sectional view illustrating a binding cable 1000 ′ in which the optical fiber unit 100 and the power line unit 300 are simply bound by taping or the like in the optical cable assembly.
  • the binding cable 1000 ′ has a structure in which the optical fiber unit 100 and the power line unit 300 are connected by taping 800 or the like.
  • the structures of the optical fiber unit 100 and the power line unit 300 are similar to those of the embodiment of FIG. 1 described above, and thus repeated descriptions thereof will be omitted.
  • Figure 3 shows a monitoring system 10 using the OTDR to detect the failure position when a failure occurs in the P2MP type optical path formed by the optical fiber unit.
  • OLT supplier-side optical line terminal 12
  • CO central office
  • ONT Optical Network Terminal
  • the provider terminal 12 is provided in a central base station such as a telephone station to generate signal light having a plurality of wavelengths different from each other, and multiplex it to be transmitted to the consumer terminal 40 through the splitter module 20.
  • the splitter module 20 splits the multiplexed signal light provided from the supplier side terminal 12 for each wavelength and transmits the multiplexed signal light to the consumer side terminal 40.
  • the monitoring system 10 may be provided with a monitoring device 50 that is selectively connected to the optical fiber unit of the optical path.
  • the monitoring device 50 may include an analyzer 80 described later together with an optical time domain reflectometery (OTDR) sensor or an OTDR unit.
  • OTDR optical time domain reflectometery
  • the OTDR unit generates monitoring light having a wavelength different from that of the supplier-side terminal 12. That is, the monitoring device 50 uses monitoring light having a different band from the signal light. This prevents the wavelengths of the signal light and the supervisor from overlapping each other so that the signal light is not affected by the supervisory light.
  • the wavelength of the signal light is approximately 1600 nm or less and may have a wavelength of 1310 nm, 1490 nm, 1550 nm, or the like.
  • the wavelength of the monitoring light may be about 1600 nm or more, and specifically, the wavelength of the monitoring light may be about 1625 or 1650 nm.
  • the distance to the point of failure can be measured.
  • the monitoring device 50 including the OTDR unit is connected to the optical fiber of each optical path through the WDM coupler 14.
  • the monitoring light generated and transmitted by the OTDR unit is combined with the signal light via the WDM coupler 14.
  • the incident monitoring light is received scattered or reflected, the peak according to the length of each line branched from one supplier side terminal is shown at different distances in the OTDR unit. Therefore, the operator can determine which line peak is by checking the distance of the peak along each line in the OTDR unit.
  • reflecting means for example, the filter unit 60, may be provided to reflect only the monitoring light while passing the signal light through the input terminal of each consumer-side terminal 40 to reflect the monitoring light.
  • the filter unit 60 may be provided in a connector connecting the consumer side terminal 40 and the optical path. As such, when the filter unit 60 is provided, the peak signal reflected at the end of the optical path, that is, at the input terminal of the consumer side terminal 40 becomes larger, so that peak detection through the OTDR unit can be more easily performed.
  • the monitoring device 50 having the above-described OTDR unit may be connected to the WDM coupler 14 through an optical switching unit 70.
  • the optical switching unit 70 may connect the plurality of WDM couplers 14 and the monitoring device 50 to each other. That is, the plurality of WDM coupler 14 is connected to the monitoring device 50 through one optical switching unit 70 can reduce the installation cost, installation time and installation space.
  • FIG. 4 is a graph from which a waveform of monitoring light is derived from the above-described monitoring device.
  • the horizontal axis shows distance (km) and the vertical axis shows light intensity (dB).
  • the monitoring light measured by the monitoring device suffers a certain loss (dB / km) per distance of the optical fiber and is reduced to a predetermined slope as shown in the drawing.
  • the waveform of the monitoring light as shown in the figure includes a predetermined noise.
  • the waveform of the monitoring light may generate an abnormal waveform in the form of peaks and steps, and compares the abnormal waveform with a normal case where no failure occurs, and determines whether there is a failure, and further, the distance to the abnormal waveform is determined by the speed of light In the case of failure due to the inversion through the arrival time, the distance to the point where the peak of the input terminal of the consumer side occurs can be identified.
  • the conventional monitoring system using the OTDR has the advantage that it is easy to determine the failure of the optical fiber unit having an optical fiber, it is possible to detect the failure position relatively accurately and quickly.
  • the conventional monitoring system can be used only for the fault determination of the optical fiber unit having the optical fiber as described above, for example, there is a problem that can not be applied to the fault determination and fault position detection of the power line unit.
  • a failure monitoring system and a failure monitoring method for monitoring a failure of the power line unit using the optical fiber unit in an optical fiber assembly having an optical fiber unit and a power line unit will be described.
  • FIG. 5 illustrates a configuration of a failure monitoring system for monitoring a failure of the power line unit using the optical fiber unit 100 in the photoelectric cable assembly having the optical fiber unit 100 and the power line unit 300 according to the present invention.
  • the monitoring system is selectively connected to the conductor 310 of the power line unit 300 to supply a voltage equal to or greater than a predetermined value, and the sound generated from the power line unit 300.
  • a monitoring device 2000 for detecting the signal 304 by the optical signal of the one or more optical fibers 111 and determining whether the power line unit 300 has a failure and the location where the failure has occurred.
  • the failure monitoring system applies a so-called 'Thumping method' for detecting a sound signal generated at the failure point 302 of the power line unit 300 by supplying a voltage to the power line unit 300, the sound
  • the optical fiber 111 of the optical fiber unit 100 provided adjacent to the power line unit 300 is used.
  • the monitoring device 2000 analyzes the waveform of the monitoring light in the OTDR 2100 and the optical fiber 111 which enters the monitoring light into the optical fiber 111 and receives the scattered monitoring light, and whether or not a failure occurs. It may be provided with an analysis device 2200 for detecting the location of the failure.
  • an analysis device 2200 for detecting the location of the failure.
  • FIG. 6 is a schematic diagram illustrating a change in monitoring light scattered from the optical fiber 111 by an acoustic signal generated at a failure point of the power line unit 300.
  • the acoustic signal 304 affects the monitoring light 115 of the optical fiber 111 of the adjacent optical fiber unit 100. That is, the change of the medium such as the density of the optical fiber 111 is generated by the acoustic signal 304, whereby the monitoring light 115A of the optical fiber 111 affected by the acoustic signal 304 is Compared to the monitoring light 115 of the other region of the optical fiber 111 is a phase change occurs.
  • the phase change of the optical fiber 111 may be sensed through the OTDR 2100 and the analyzer 2200 of the monitoring device 2000.
  • FIG. 7 shows a graph in which the monitoring light in which the phase change has occurred is measured by the OTDR 2100.
  • the above-described analyzer 2200 detects an intensity change caused by a phase change of monitoring light scattered from the optical fiber 111 by an acoustic signal propagated due to a failure in the power line unit, and the intensity change is greater than or equal to a predetermined reference value. It is determined that the failure has occurred to detect the location of the failure.
  • the phase change occurs in the monitoring light by the acoustic signal
  • the change occurs in the waveform of the monitoring light as shown in FIG. 7, for example, to form a predetermined peak as shown in the drawing. do. Therefore, it may be determined that the power line unit 300 has a failure when the peak is compared with a predetermined reference value. Furthermore, it is possible to detect the distance of the point where the failure occurred through the position of the peak.
  • the voltage supply unit 3000 when the voltage supply unit 3000 supplies the voltage to the power line unit 300, the voltage supply unit 3000 to more easily detect the sound signal generated at the point of occurrence of the failure A voltage having a predetermined pattern can be supplied. 8 illustrates a pattern according to an example of a voltage supplied to the power line unit by the voltage supply unit 3000.
  • the supplied voltage pattern may intermittently supply a waveform corresponding to a second voltage value having a relatively larger value than a predetermined first voltage value.
  • the change in the acoustic signal generated at the point of failure of the power line unit 300 becomes clearer than the case of supplying a voltage having a flat waveform, whereby the noise and the point of failure are caused.
  • the pattern of the voltage supplied from the voltage supply unit 3000 is not limited to the above-described pattern of FIG. 8 and may be modified in various forms.
  • the OTDR 2100 may use a so-called 'Coherent OTDR' using supervisory light having a narrow wavelength band, that is, supervisory light having a narrow band wavelength, in order to detect a phase change of an optical signal.
  • a so-called 'Coherent OTDR' using supervisory light having a narrow wavelength band, that is, supervisory light having a narrow band wavelength, in order to detect a phase change of an optical signal.
  • the voltage supply unit 3000 when the voltage is applied by the voltage supply unit 3000, the higher the voltage can be more easily detect the acoustic signal generated at the point of failure of the power line unit 300.
  • the voltage supply unit 3000 when the voltage supplied to the power line unit 300 becomes high, damage may occur to the power line unit 300 by a partial discharge occurring at a failure point of the power line unit 300. Therefore, in the present embodiment, when the failure of the power line unit 300 is suspected, the voltage supply unit 3000 may increase the voltage supplied to the power line unit 300 in a predetermined unit. That is, when a failure of the power line unit 300 is suspected due to a power drop of the power line unit 300 or the like, the voltage supply unit 3000 sets a relatively low voltage initial value and supplies the power line unit 300 to the power line unit 300. Done.
  • the monitoring light is measured and analyzed by the OTDR 2100 and the analyzer 2200 to determine whether there is a failure and to detect a location of the failure.
  • the voltage supply unit 3000 increases the voltage supplied to the power line unit 300 in a predetermined unit. Will be supplied. That is, when a failure of the power line unit 300 is suspected but the failure is not detected, the voltage value supplied to the power line unit 300 is increased in a predetermined unit and supplied.
  • the acoustic signal generated at the point of occurrence of the failure of the power line unit 300 can be detected more clearly, so that the failure determination and the position detection can be facilitated.
  • the voltage value supplied to the power line unit 300 is raised to a predetermined value or more, as described above, the power line unit 300 may be damaged by the supplied voltage itself. Therefore, the upper limit of the voltage supplied to the power line unit 300 may be determined to be an appropriate value that does not cause damage to the power line unit 300.
  • FIG. 9 is a flowchart illustrating a fault monitoring method for fault monitoring of an optoelectronic cable assembly according to the present invention.
  • the fault monitoring method includes applying a voltage to the conductor 310 of the power line unit 300 (S910), and detecting the sound signal generated by the power line unit 300. Injecting the monitoring light into the optical fiber of 100 and receiving the scattered monitoring light (S930), and analyzing the waveform of the scattered monitoring light to determine whether the power line unit has a failure (S950) and that the failure has occurred If it is determined whether or not detecting the failure location includes a step (S970).
  • the voltage supply unit 3000 supplies a voltage to the power line unit 300 (S910).
  • the voltage may be supplied with a predetermined pattern. Since it has been described above with reference to FIG. 8, repeated description thereof will be omitted.
  • the voltage supply unit 3000 may set an initial voltage value to be supplied before supplying a voltage to the conductor 310 of the power line unit 300. As described above, the voltage initial value may be set relatively low.
  • the monitoring system according to the present invention is very sensitive because it detects the occurrence of the failure and the location of the power line unit 300 by the optical fiber 111 of the optical fiber unit 100. Therefore, the failure of the power line unit 300 can be sufficiently detected even at a relatively lower voltage value than the conventional method.
  • the monitoring light is incident on the optical fiber of the optical fiber unit 100 and the scattered monitoring light is received (S930).
  • the OTDR 2100 enters the monitoring light into the optical fiber 111 of the optical fiber unit 100 and receives the scattered monitoring light. In this case, when the OTDR 2100 enters the monitoring light, the OTDR 2100 enters the monitoring light having the narrow band wavelength.
  • the analyzer 2200 analyzes a waveform of the monitoring light to detect whether a failure occurs (S950) and a location where the failure occurs (S970).
  • the analyzer 2200 detects a change in intensity of the monitoring light due to a phase change of the monitoring light scattered from the optical fiber 111.
  • the intensity change will be shown in the form of a predetermined peak in the waveform of the monitoring light. Therefore, the intensity change (peak) is compared with a predetermined reference value to determine whether a failure occurs (S950), and if it is determined that a failure occurs, the location where the failure occurs is detected (S970).
  • the voltage supply unit 3000 Increases the voltage supplied to the power line unit 300 in a predetermined unit (S955) and supplies the voltage to the power line unit 300.
  • the increasing of the voltage in a predetermined unit may be performed for a plurality of predetermined times or until the voltage value is increased to an appropriate upper limit that does not cause damage to the power line unit 300.
  • an embodiment of the present invention can reduce the error rate.
  • FIG. 10 is a schematic diagram illustrating a relative distance between the photoelectric composite cable 1000 and the optical fiber unit 100 when the photoelectric composite cable 1000 of FIG. 1 is installed.
  • the optical fiber unit 100 when the photoelectric composite cable 1000 is installed, the optical fiber unit 100 is arranged in a curved shape rather than a straight shape as shown in FIG. 10. Can be. Therefore, an error may occur between the distance L cable of the photoelectric composite cable 1000 and the distance of the optical fiber unit L optical fiber . In particular, as the length of the photoelectric composite cable 1000 increases, such as a submarine cable, The error becomes even larger.
  • the photoelectric composite cable Since it is applied to the distance of 1000, due to the difference in distance between the photoelectric composite cable 1000 and the optical fiber unit 100 may not accurately detect the point of failure occurs, an error may occur.
  • the photoelectric composite cable 1000 when the photoelectric composite cable 1000 is installed as shown in FIG. 11, for example, when the photoelectric composite cable 1000 is installed on the sea floor by the ship 4000, the above-described monitoring is performed.
  • the relative distance between the photoelectric composite cable 1000 and the optical fiber unit 100 may be measured using the system. That is, when the photoelectric composite cable 1000 is installed, the installation distance of the photoelectric composite cable 1000 may be calculated by measuring in real time the length of the cable installed toward the seabed in the vessel 4000.
  • an acoustic signal is generated by artificially impacting the photoelectric composite cable at a specific position of the ship, and at the same time, the base position of the optical fiber at the acoustic signal generating point using the fault monitoring system. Recognizing and mapping the position of the photonic composite cable position and the optical fiber (mapping) can be improved the problem position error problem due to the mismatch of the optical fiber length and the photonic composite cable length.
  • the distance of the optical fiber unit 100 disposed inside the photoelectric composite cable 1000 is the monitoring light to the optical fiber unit 100 by the monitoring device 2000 when the photoelectric composite cable 1000 is installed
  • the incident distance of the optical fiber unit 100 may be measured by measuring the monitoring light.
  • the monitoring light may be incident at a predetermined period or may be incident with a predetermined waveform.
  • FIG. 12 is a graph showing the distance of the photoelectric composite cable 1000 and the length of the optical fiber 111 of the optical fiber unit 100 by the above-described method.
  • distance information as shown in FIG. 12 showing a relative relationship between the installation distance of the photoelectric composite cable 1000 and the distance of the optical fiber unit 100 is shown in the graph or table.
  • it may be stored in the analysis device 2200 of the above-described monitoring device 2000.
  • the actual failure occurs and the distance is measured by the optical fiber unit 100 and the distance is converted to the distance of the photoelectric composite cable 1000 by measuring the distance shown in FIG. It can be converted using a graph or a table.
  • the distance of the point where the failure occurs more accurately can be detected by the photoelectric composite cable 1000.
  • the optical fiber unit provided adjacent to the power line unit
  • by utilizing the optical fiber unit it is possible to significantly reduce the time and cost used to monitor the failure of the power line unit compared with the conventional.
  • the present invention can accurately and quickly determine the failure point by detecting the acoustic signal generated at the failure point of the power line unit by the optical fiber unit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Locating Faults (AREA)

Abstract

The present invention relates to a failure monitoring system and a failure monitoring method for an optoelectronic cable assembly. The failure monitoring system for an optoelectronic cable assembly according to the present invention comprises a power line unit having a conductor, and an optical fiber unit provided adjacent to the power line unit and having one or more optical fibers, and the failure monitoring system is characterised by comprising: a voltage supply unit selectively connected to the conductor to thus supply a voltage having a predetermined value or more; and a monitoring device for sensing, by optical signals of the one or more optical fibers, acoustic signals generated from the power line unit and thus determining whether or not a failure in the power line unit occurs and determining the location where the failure occurs.

Description

광전케이블집합체의 장애감시시스템 및 장애감시방법 Fault Monitoring System and Fault Monitoring Method for Photoelectric Cable Assemblies
본 발명은 광전케이블집합체의 장애감시시스템 및 장애감시방법에 관한 것으로서, 보다 구체적으로 전력선유닛과 광섬유유닛을 구비한 광전케이블집합체에 있어서 상기 전력선유닛의 장애발생여부 및 장애발생위치를 상기 광섬유유닛을 통해 보다 빠르고 정확하게 판단할 수 있는 장애감시시스템 및 그 장애감시방법에 관한 것이다.The present invention relates to a failure monitoring system and a failure monitoring method for an optical cable assembly, and more particularly, in an optical cable assembly including a power line unit and an optical fiber unit, the failure of the power line unit and the location of the failure occurs in the optical fiber unit. The present invention relates to a failure monitoring system and a method for monitoring the failure.
일반적으로 전력 및/또는 통신 전달 수단으로서 사용되는 케이블은 그 설치 중, 또는 설치 후의 사용 중에 장애가 발생하는 경우에 즉각적인 복구가 필요하게 된다. 특히, 바다를 가로질러 설치되는 해저케이블의 경우에 매우 정교하고 고도화된 시공기술이 적용된다고 하여도 상기 해저케이블의 시공 중에 장애가 발생할 수 있으며, 또한 상기 해저케이블의 사용 중에 어업 활동 또는 해저지진 등과 같은 주변 환경 요인으로 인해 상기 해저케이블에 장애가 발생할 수 있다.In general, cables used as power and / or communication transmission means require immediate recovery in the event of a failure during their installation or after use. In particular, even if a very sophisticated and advanced construction technology is applied in the case of the submarine cable installed across the sea, obstacles may occur during the construction of the submarine cable, and during the use of the submarine cable, such as fishing activities or submarine earthquake, etc. Environmental factors can cause the submarine cable to fail.
상기 케이블에 발생한 장애를 복구하기 위해서는 상기 장애가 발생한 위치를 정확하게 탐지하는 것이 매우 중요하다. 특히, 해저케이블의 경우에 바다속을 통해 설치되므로 상기 장애가 발생한 위치를 정확하게 오차 없이 탐지해야 상기 복구 공정을 수행하는 경우에 소요되는 많은 비용 및 시간을 줄일 수 있게 된다.In order to recover from the failure of the cable, it is very important to accurately detect the location of the failure. In particular, since the submarine cable is installed through the sea, it is necessary to accurately detect the location of the failure without error, thereby reducing the cost and time required to perform the recovery process.
상기 장애를 감지하는 감시시스템으로는 OTDR(optical time domain reflectometery)이 많이 사용된다. 상기 OTDR 시스템은 장애가 발생한 위치를 매우 높은 수준의 정확도로 감지할 수 있지만, 감시광의 산란광을 이용하기 때문에 광섬유를 구비한 광선로에 적용될 수 있으며, 그 이외의 전력선 등에 적용할 수 없다는 문제점을 수반한다.Optical time domain reflectometer (OTDR) is widely used as a monitoring system for detecting the failure. The OTDR system can detect a location where a failure occurs with a very high level of accuracy, but it can be applied to an optical fiber with optical fiber because it uses scattered light of supervisory light, and can not be applied to other power lines.
또한, OTDR과 유사한 TDR의 경우에 전력선의 장애감지가 가능하지만, 상기 OTDR에 비해 그 정확도가 많이 떨어지는 문제점을 수반한다.In addition, in the case of a TDR similar to the OTDR, it is possible to detect a failure of a power line, but it is accompanied with a problem that its accuracy is much lower than that of the OTDR.
나아가, 장애발생지점까지의 저항값에 의해 거리를 판단하는 머레이 루프(Murray loop) 방식의 경우에도 오차율이 상당히 큰 것으로 알려져 있다.Furthermore, even in the Murray loop method which determines the distance by the resistance value up to the point of failure, the error rate is known to be quite large.
전력선에 장애가 발생한 경우에 상기 장애가 발생한 위치를 비교적 정확하게 감지할 수 있는 방법으로는 소위 'Thumping 방식'이 있다. 상기 방식은 전력선에 상대적으로 고전압을 인가한 경우에 상기 전력선의 장애발생지점에서 발생하는 자력(magnetic) 변화 또는 상기 장애발생지점의 부분방전에 의한 음향(acoustic) 신호를 감지하는 방식이다. 상기 방식에 따르면 상기 전력선에 비교적 고전압을 인가하고 상기 케이블이 설치된 경로를 따라 상기 자력변화를 감지하는 매그네틱 센서나 상기 음향신호를 감지하는 마이크로폰을 이동시켜 상기 자력변화나 음향신호를 감지하여 상기 장애발생지점을 판단하게 된다.In the case of a power line failure, there is a so-called 'Thumping method' as a way of detecting the location of the failure relatively accurately. The method detects an acoustic signal caused by a magnetic change or a partial discharge generated at a fault point of the power line when a high voltage is applied to the power line. According to the method, a magnetic sensor for sensing the magnetic force change or a microphone for detecting the magnetic force change is applied by applying a relatively high voltage to the power line and the cable is installed to detect the magnetic force change or the acoustic signal. Determine the point of failure.
그런데, 상기 Thumping 방식은 상기 전력선이 육지에 설치된 지중선의 경우에는 비교적 장애발생지점을 탐지하는 것이 상대적으로 용이하지만, 상기 전력선이 바다속을 가로질러 설치된 경우에 그 탐지가 쉽지 않다는 문제점을 수반한다. 해저 케이블의 경우에 상기 방식에 의해 장애발생지점을 탐지하기 위해서는 잠수부가 매그네틱 센서나 마이크로폰을 상기 해저케이블을 따라 이동시키면서 탐지하거나, 또는 해저를 이동하는 로봇에 상기 매그네틱 센서나 마이크로폰을 장착하여 탐지할 수 있다. 하지만, 이러한 탐지방식은 지중선의 탐지에 비해 그 비용 및 시간이 현저히 높은 수준이며, 해류, 수심 등의 해저환경에 의해 그 탐지가 매우 어렵다는 문제점을 수반한다. 나아가, 해저에서 자력변화 또는 음향신호의 감지를 용이하게 하기 위하여 상기 전력선에 인가되는 전압을 높이게 되면 상기 전력선이 오히려 파손될 수 있다는 문제점을 수반한다.By the way, the thumping method is relatively easy to detect the point of failure occurs in the case of the underground line is installed on the land, but the detection is not easy when the power line is installed across the sea. In the case of a submarine cable, a diver may detect a magnetic sensor or a microphone by moving the magnetic sensor or microphone along the submarine cable in order to detect a failure point by the above method, or by applying the magnetic sensor or the microphone to a robot moving the submarine. Can be installed and detected. However, such a detection method is significantly higher in cost and time than the detection of underground ships, and is accompanied by a problem that the detection is very difficult due to the seabed environment such as currents and depths. Furthermore, when the voltage applied to the power line is increased to facilitate the detection of a magnetic force change or an acoustic signal on the seabed, the power line may be damaged.
본 발명은 상기와 같은 문제점을 해결하기 위하여 전력선의 장애발생지점을 정확하게 감지할 수 있는 장애감시시스템 및 장애감시방법을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a failure monitoring system and a failure monitoring method capable of accurately detecting a failure point of the power line in order to solve the above problems.
또한, 본 발명은 상기 전력선의 장애발생지점을 감지하는 감시시스템을 구축하는 경우에 그 비용 및 시간이 현저히 줄어든 장애감시시스템 및 장애감시방법을 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a failure monitoring system and a failure monitoring method in which the cost and time are significantly reduced when a monitoring system for detecting a failure point of the power line is constructed.
나아가, 본 발명은 상기 전력선의 장애발생지점을 감지하는 경우에 종래에 비해 현저히 줄어든 비용 및 시간을 소요하고 보다 빠르고 정확하게 감지할 수 있는 장애감시시스템 및 장애감시방법을 제공하는 것을 목적으로 한다.Furthermore, an object of the present invention is to provide a failure monitoring system and a failure monitoring method that can detect the failure point of the power line significantly faster and more accurately than the conventional cost and time.
상기와 같은 본 발명의 목적은 도체를 구비하는 전력선유닛과, 상기 전력선유닛과 인접하여 구비되며 하나 이상의 광섬유를 구비하는 광섬유유닛을 구비하는 광전케이블집합체의 장애감시시스템에 있어서, 상기 도체에 선택적으로 연결되어 미리 결정된 값 이상의 전압을 공급하는 전압공급부 및 상기 전력선유닛에서 발생하는 음향신호를 상기 하나 이상의 광섬유의 광신호에 의해 감지하여 상기 전력선유닛의 장애 발생 여부 및 상기 장애가 발생한 위치를 판단하는 감시장치를 구비하는 것을 특징으로 하는 광전케이블집합체의 장애감시시스템에 의해 달성된다.An object of the present invention as described above is in the fault monitoring system for an optical cable assembly having a power line unit having a conductor and an optical fiber unit provided adjacent to the power line unit and having at least one optical fiber, wherein the conductor is selectively A voltage supply unit connected to supply a voltage equal to or greater than a predetermined value, and a monitoring device for detecting a failure of the power line unit and a location of the failure by detecting an acoustic signal generated by the power line unit by an optical signal of the at least one optical fiber. It is achieved by a failure monitoring system of the photoelectric cable assembly characterized in that it comprises a.
여기서, 상기 전압공급부는 미리 결정된 패턴을 가지는 전압을 공급할 수 있다. 또한, 상기 전압공급부는 미리 결정된 제1 전압값에 비해 상대적으로 큰 값을 가지는 제2 전압값에 해당하는 파형을 단속적으로 공급할 수 있다.Here, the voltage supply unit may supply a voltage having a predetermined pattern. In addition, the voltage supply unit may intermittently supply a waveform corresponding to the second voltage value having a relatively larger value than the predetermined first voltage value.
한편, 상기 전압공급부는 상기 감시장치에 의해 상기 장애가 감지되지 않은 경우에 상기 공급되는 전압을 미리 결정된 단위로 증가시킬 수 있다.The voltage supply unit may increase the supplied voltage in a predetermined unit when the failure is not detected by the monitoring apparatus.
나아가, 상기 감시장치는 상기 광섬유에 감시광을 입사하고 산란된 상기 감시광을 수신하는 OTDR 및 상기 수신된 감시광의 파형을 해석하여 장애발생여부 및 상기 장애가 발생한 위치를 감지하는 해석장치를 구비할 수 있다.Furthermore, the monitoring apparatus may include an OTDR for inputting monitoring light into the optical fiber and receiving the scattered monitoring light, and an analysis device for detecting whether a failure occurs and a location where the failure occurs by analyzing a waveform of the received monitoring light. have.
여기서, 상기 OTDR은 상기 광섬유로 상대적으로 좁은 대역의 파장을 가지는 감시광을 입사시킬 수 있다.Here, the OTDR may inject the monitoring light having a wavelength of a relatively narrow band into the optical fiber.
한편, 상기 해석장치는 상기 전력선유닛에서 발생하는 음향신호에 의해 상기 광섬유에서 수신된 상기 감시광의 세기변화를 감지하여 상기 세기변화가 미리 결정된 기준치 이상인 경우에 상기 장애가 발생한 것으로 판단할 수 있다.On the other hand, the analysis device detects the change in the intensity of the monitoring light received from the optical fiber by the acoustic signal generated by the power line unit may determine that the failure occurs when the intensity change is more than a predetermined reference value.
또한, 상기 해석장치에는 상기 광전케이블집합체를 설치하는 경우에 상기 광전케이블집합체의 거리와 상기 광섬유유닛의 거리의 상대적인 관계를 나타내는 거리정보가 저장되며, 상기 장애가 발생한 경우에 상기 광섬유유닛에서 판단된 거리를 상기 거리정보에 따라 상기 광전케이블집합체의 거리로 환산할 수 있다.In addition, the analysis apparatus stores distance information indicating a relative relationship between the distance of the photoelectric cable assembly and the distance of the optical fiber unit when the optical cable assembly is installed, and the distance determined by the optical fiber unit when the failure occurs. May be converted into a distance of the photoelectric cable assembly according to the distance information.
나아가, 상기 광섬유유닛과 전력선유닛은 광전복합케이블을 형성할 수 있다.Furthermore, the optical fiber unit and the power line unit may form a photoelectric composite cable.
한편, 상기와 같은 본 발명의 목적은 도체를 구비하는 전력선유닛과, 상기 전력선유닛과 인접하여 구비되며 하나 이상의 광섬유를 구비하는 광섬유유닛을 구비하는 광전케이블집합체의 장애감시방법에 있어서, 상기 전력선유닛의 도체로 전압을 인가하는 단계, 상기 전력선유닛에서 발생하는 음향신호를 감지하도록 상기 광섬유유닛으로 감시광을 입사시키고 산란된 상기 감시광을 수신하는 단계, 상기 산란된 감시광의 파형을 분석하여 상기 전력선 유닛의 장애발생여부를 판단하는 단계 및 상기 장애가 발생한 것으로 판단되는 경우에 상기 장애발생위치를 감지하는 단계를 포함하는 것을 특징으로 하는 광전케이블집합체의 장애감시방법에 의해 달성된다.On the other hand, the object of the present invention as described above in the fault monitoring method of the photoelectric cable assembly comprising a power line unit having a conductor and an optical fiber unit provided adjacent to the power line unit and having at least one optical fiber, the power line unit Applying a voltage to a conductor of the light source, injecting monitoring light into the optical fiber unit to detect an acoustic signal generated by the power line unit, and receiving the scattered monitoring light, analyzing a waveform of the scattered monitoring light, and analyzing the power line It is achieved by a failure monitoring method of the photoelectric cable assembly comprising the step of determining whether a failure of the unit and the step of detecting the failure occurs when it is determined that the failure has occurred.
여기서, 상기 전력선유닛의 도체로 공급되는 전압 초기값을 설정하는 단계를 더 구비할 수 있다.The method may further include setting a voltage initial value supplied to the conductor of the power line unit.
한편, 상기 장애가 발생하지 않은 것으로 판단되는 경우에 상기 전력선유닛의 도체로 인가되는 전압을 소정 단위로 증가시키는 단계를 더 구비할 수 있다.Meanwhile, when it is determined that the failure does not occur, the method may further include increasing the voltage applied to the conductor of the power line unit in a predetermined unit.
나아가, 상기 전력선유닛의 도체로 전압을 인가하는 단계는 상기 전력선유닛의 도체로 미리 결정된 패턴을 가지는 전압을 공급할 수 있다. 이 때, 상기 전력선유닛의 도체로 전압을 인가하는 단계는 미리 결정된 제1 전압값에 비해 상대적으로 큰 값을 가지는 제2 전압값에 해당하는 파형을 단속적으로 공급할 수 있다.Furthermore, in the step of applying a voltage to the conductor of the power line unit, a voltage having a predetermined pattern may be supplied to the conductor of the power line unit. In this case, applying the voltage to the conductor of the power line unit may intermittently supply a waveform corresponding to the second voltage value having a relatively larger value than the predetermined first voltage value.
한편, 상기 장애 발생여부를 판단하는 단계는 상기 수신된 감시광의 파형을 해석하여 장애발생여부를 판단할 수 있다. On the other hand, the step of determining whether or not the failure occurs may determine whether the failure occurs by analyzing the waveform of the received monitoring light.
이 때, 상기 광섬유로 상대적으로 좁은 대역의 파장을 가지는 감시광을 입사시킬 수 있다.At this time, the monitoring light having a wavelength of a relatively narrow band can be incident to the optical fiber.
한편, 상기 장애 발생여부를 판단하는 단계는 상기 수신된 감시광의 위상변화에 의한 세기변화를 감지하여 상기 세기변화가 미리 결정된 기준치 이상인 경우에 상기 장애가 발생한 것으로 판단할 수 있다.On the other hand, the step of determining whether or not the occurrence of the failure may detect the change in intensity due to the phase change of the received monitoring light may determine that the failure occurs when the change in intensity is greater than a predetermined reference value.
한편, 상기 광전케이블집합체를 설치하는 경우에 상기 광전케이블집합체의 거리와 상기 광섬유유닛의 거리의 상대적인 관계를 도시한 거리정보가 미리 저장되는 단계를 더 포함하고, 상기 장애가 발생한 위치를 감지하는 경우에 상기 광섬유유닛에서 판단된 거리를 상기 거리정보에 따라 상기 광전케이블집합체의 거리로 환산할 수 있다.On the other hand, in the case of installing the opto-optic cable assembly further comprises the step of storing in advance the distance information showing the relative relationship between the distance of the photoelectric cable assembly and the distance of the optical fiber unit, and in case of detecting the location of the failure The distance determined by the optical fiber unit may be converted into the distance of the photoelectric cable assembly according to the distance information.
나아가, 상기 광섬유유닛과 전력선유닛은 광전복합케이블을 형성할 수 있다.Furthermore, the optical fiber unit and the power line unit may form a photoelectric composite cable.
상기와 같은 본 발명에 따르면 전력선유닛에 장애가 발생한 경우에 상기 장애발생지점을 정확하고 빠르게 감지할 수 있다.According to the present invention as described above it is possible to detect the point of failure accurately and quickly when a failure occurs in the power line unit.
또한, 본 발명에 따르면 상기 전력선유닛의 장애발생지점을 감지하는 경우에 상기 전력선유닛과 인접하게 구비된 광섬유유닛을 사용함으로써, 상기 장애감시를 위한 추가적인 설비가 필요 없게 되어 상기 감시시스템을 구축하는데 소요되는 비용 및 시간을 현저히 줄일 수 있다. 또한, 상기 광섬유유닛을 활용함으로써 상기 전력선유닛의 장애를 감시하는데 소용되는 시간 및 비용을 종래에 비해 현저히 감소시킬 수 있다.In addition, according to the present invention, when detecting a failure point of the power line unit by using the optical fiber unit provided adjacent to the power line unit, it is necessary to build the monitoring system by eliminating the additional equipment for the failure monitoring Costs and time can be significantly reduced. In addition, by utilizing the optical fiber unit it is possible to significantly reduce the time and cost used to monitor the failure of the power line unit compared with the conventional.
나아가, 본 발명은 상기 광섬유유닛에 의해 상기 전력선유닛의 장애발생지점에서 발생하는 음향신호를 감지함으로써 상기 장애발생지점을 정확하고 빠르게 판단할 수 있다.Furthermore, the present invention can accurately and quickly determine the failure point by detecting the acoustic signal generated at the failure point of the power line unit by the optical fiber unit.
도 1은 광전케이블집합체의 하나인 광전복합케이블의 구조를 도시한 단면도,1 is a cross-sectional view showing the structure of a photoelectric composite cable which is one of the photoelectric cable assemblies;
도 2는 광전케이블집합체의 하나로써 전력선유닛과 광섬유유닛이 단순히 바인딩된 바인딩케이블을 도시한 단면도,2 is a cross-sectional view showing a binding cable in which a power line unit and an optical fiber unit are simply bound as one of the photoelectric cable assemblies;
도 3은 OTDR 시스템의 개략적인 구성을 도시한 개략도,3 is a schematic diagram showing a schematic configuration of an OTDR system;
도 4는 도 3에서 거리에 따른 감시광의 세기를 도시한 그래프,4 is a graph showing the intensity of the monitoring light according to the distance in FIG.
도 5는 본 발명에 따른 광전케이블집합체의 장애를 감시하기 위한 장애감시시스템의 구성을 도시한 개략도,5 is a schematic diagram showing the configuration of a failure monitoring system for monitoring a failure of an optoelectronic cable assembly according to the present invention;
도 6은 도 5에서 상기 전력선유닛에서 발생하는 음향신호에 의한 광섬유유닛의 감시광 변화를 도시한 개략도,FIG. 6 is a schematic diagram illustrating a change in monitoring light of an optical fiber unit due to an acoustic signal generated in the power line unit in FIG. 5;
도 7은 도 5에서 감시장치에 의해 분석된 감시광의 파형을 도시한 그래프,7 is a graph showing waveforms of monitoring light analyzed by the monitoring apparatus in FIG. 5;
도 8은 도 5에서 상기 전력선유닛으로 공급되는 전압의 패턴을 도시한 그래프,FIG. 8 is a graph illustrating a pattern of a voltage supplied to the power line unit in FIG. 5;
도 9는 본 발명에 따른 광전케이블집합체의 장애감시를 위한 장애감시방법을 도시한 순서도,9 is a flowchart illustrating a fault monitoring method for fault monitoring of an optoelectronic cable assembly according to the present invention;
도 10은 광전케이블집합체에 있어서 광섬유유닛과 전력선유닛의 상대적인 배치를 도시한 개략도,10 is a schematic diagram showing a relative arrangement of an optical fiber unit and a power line unit in the optoelectronic cable assembly;
도 11은 상기 광전케이블집합체를 해저에 매설하는 경우에 상기 감시장치에 의해 상기 광섬유유닛과 광전케이블집합체의 상대적인 길이를 감지하는 방법을 도시한 개략도,FIG. 11 is a schematic diagram showing a method of detecting a relative length of the optical fiber unit and the optical cable assembly by the monitoring apparatus when the optical cable assembly is embedded in the seabed; FIG.
도 12는 상기 광섬유유닛과 광전케이블집합체의 상대적인 길이를 도시한 그래프이다.12 is a graph showing the relative lengths of the optical fiber unit and the optical cable assembly.
이하, 도면을 참조하여 본 발명의 다양한 실시예들에 대해서 상세히 살펴보도록 한다.Hereinafter, various embodiments of the present invention will be described in detail with reference to the accompanying drawings.
전술한 바와 같이, 파워를 전달하는 전력선유닛에 장애가 발생하여 상기 장애발생위치를 감지하기 위해 상기 전력선유닛에 전압을 공급하는 경우, 상기 전력선유닛의 장애발생지점에서 발생하는 음향신호를 정확하고 빠르게 감지하기 위하여 본 발명에서는 상기 전력선유닛과 인접하여 배치된 광섬유유닛을 사용하게 된다. 즉, 본 발명에서는 전력선유닛과 광섬유유닛이 인접하여 배치된 소위 '광전케이블집합체'를 이용하여 상기 전력선유닛의 장애위치를 감지하게 된다. 본 명세서에서 사용되는 '광전케이블집합체(optical fiber and power line aggregated cable)'의 용어는 광섬유유닛과 전력선유닛이 충진재 등에 의해 연결된 광전복합케이블(optical fiber and power line composite cable)과 함께 상기 광섬유유닛과 전력선유닛이 테이핑 등에 의해 단순히 바인딩된 바인딩케이블을 모두 포함하는 의미로 정의된다. 이하, 상기 광전복합케이블의 구조에 대해서 살펴보고 이하, 장애감시시스템 및 장애감시방법에 대해서 살펴보기로 한다.As described above, when a power failure occurs in the power line unit that delivers power, and a voltage is supplied to the power line unit to detect the location of the failure, the acoustic signal generated at the failure point of the power line unit can be detected accurately and quickly. In the present invention, the optical fiber unit disposed adjacent to the power line unit is used. That is, in the present invention, the fault position of the power line unit is sensed using a so-called 'photoelectric cable assembly' in which the power line unit and the optical fiber unit are disposed adjacent to each other. As used herein, the term 'optical fiber and power line aggregated cable' refers to the optical fiber unit and the optical fiber unit together with the optical fiber and power line composite cable connected to the optical fiber unit and the power line unit by a filler. The power line unit is defined as including all binding cables simply bound by taping or the like. Hereinafter, the structure of the photoelectric composite cable will be described and the fault monitoring system and fault monitoring method will be described below.
도 1 및 도 2는 광섬유유닛(100)과 전력선유닛(300)을 구비한 광전케이블집합체의 구성을 도시한 단면도이다. 1 and 2 are cross-sectional views illustrating the configuration of an optical cable assembly having an optical fiber unit 100 and a power line unit 300.
도 1은 광전케이블집합체에 있어서, 광전복합케이블(1000)의 구성을 도시한 단면도이다.1 is a cross-sectional view showing the configuration of a photoelectric composite cable 1000 in the photoelectric cable assembly.
도 1을 참조하면, 광전복합케이블(1000)은 전력선 유닛(300)을 3개 구비한 3상 케이블을 예로 들어 도시하지만, 이에 한정되지 않으며 상기 전력선 유닛을 1개 구비한 단심 케이블에도 적용될 수 있다. 상기 전력선 유닛(300)은 구리, 알루미늄 등의 전도성 물질로 이루어진 도체(310), 상기 도체(310)를 감싸며 상기 도체(310)와 후술하는 절연층(320) 사이의 공기층을 없애는 등 도체(310)와의 계면에서의 부분방전을 억제하고, 상기 절연층(320)에서의 국부적인 전계집중을 완화시켜 주는 등의 역할을 수행하는 내부 반도전층(330), 상기 내부 반도전층(330)을 감싸는 절연층(320), 상기 절연층(320)을 감싸고 케이블의 차폐 역할 및 절연층(320)에 균등한 전계가 걸리도록 하는 역할을 수행하는 외부 반도전층(340)을 포함한다.Referring to FIG. 1, the photoelectric composite cable 1000 is illustrated as an example of a three-phase cable having three power line units 300, but is not limited thereto and may be applied to a single-core cable having one power line unit. . The power line unit 300 includes a conductor 310 made of a conductive material such as copper and aluminum, and wraps the conductor 310 and removes the air layer between the conductor 310 and the insulating layer 320 described later. Insulation surrounding the inner semiconducting layer 330 and the inner semiconducting layer 330, which suppresses partial discharge at an interface with the panel and mitigates local electric field concentration in the insulating layer 320. The layer 320 includes an outer semiconducting layer 340 that surrounds the insulating layer 320 and serves to shield the cable and to apply an even electric field to the insulating layer 320.
또한, 상기 전력선 유닛(300)은 상기 외부 반도전층(340)의 외부에 금속 시스(350) 및 상기 금속 시스(350)를 감싸는 고분자 시스(360)를 더 구비할 수 있다.In addition, the power line unit 300 may further include a metal sheath 350 and a polymer sheath 360 surrounding the metal sheath 350 on the outside of the outer semiconducting layer 340.
여기서, 상기 전력선 유닛(300)의 도체(310), 내부 반도전층(330), 절연층(320), 외부 반도전층(340), 금속 시스(350) 및 고분자 시스(360) 등의 재질 및 규격은 광전복합케이블의 용도, 송전압 등에 따라 다양할 수 있다.Herein, materials and specifications of the conductor 310, the inner semiconducting layer 330, the insulating layer 320, the outer semiconducting layer 340, the metal sheath 350 and the polymer sheath 360 of the power line unit 300 may be used. Silver may vary depending on the use of the photoelectric composite cable, transmission voltage and the like.
한편, 상기 광섬유 유닛(100)은 하나 이상의 전력선 유닛(300)에 인접하여 구비된다. 상기 광섬유 유닛(100은 적어도 하나의 광섬유(111)와, 상기 광섬유(111)를 수용하는 튜브(112)를 구비할 수 있다.Meanwhile, the optical fiber unit 100 is provided adjacent to one or more power line units 300. The optical fiber unit 100 may include at least one optical fiber 111 and a tube 112 for receiving the optical fiber 111.
상기 각 광섬유 유닛(100)은 튜브(112) 내에 충진재(113)와 함께 실장시킨 소정 갯수의 광섬유(111)를 구비하며, 상기 튜브는 스테인레스 스틸과 같은 강성이 있는 재질을 사용할 수 있다. 상기 광섬유 유닛(100)은 상기 튜브(112)를 감싸는 시스(130)를 더 구비할 수 있다.Each of the optical fiber units 100 includes a predetermined number of optical fibers 111 mounted together with the filler 113 in the tube 112, and the tube may be made of a rigid material such as stainless steel. The optical fiber unit 100 may further include a sheath 130 surrounding the tube 112.
한편, 광전복합케이블(1000)이 예를 들어, 바다와 같은 해저를 가로질러 설치되는 해저 광전복합케이블로 이루어지는 경우에 바다 속의 해수, 염분 등과 같은 가혹한 환경에서도 내부 구성요소를 보호하기 위한 각종 보호층을 구비할 수 있다. 예를 들어, 도 1에 도시된 바와 같이 상기 전력선 유닛(300)과 광섬유 유닛(100)을 감싸는 폴리프로필렌(PP : Polypropylene) 얀 등으로 구성되는 베딩층(700)과, 상기 베딩층(700)의 바깥쪽에 구비되어 상기 광복합 전력케이블(1000)의 기계적 강도를 향상시키는 철선 외장(710) 및 상기 철선 외장(710)의 외부에 구비되는 쟈켓(720)을 구비할 수 있다. 또한, 상기 광복합 전력케이블(1000)은 상기 베딩층(700) 내부의 전력선 유닛(300)과 광섬유 유닛(100)을 보호하기 위하여 충진재(400)를 구비할 수 있다.On the other hand, when the photoelectric composite cable 1000 is made of a subsea photoelectric composite cable installed across a seabed such as the sea, for example, various protective layers for protecting internal components even in harsh environments such as seawater, salt, etc. in the sea. It may be provided. For example, as shown in FIG. 1, a bedding layer 700 including a polypropylene (PP) yarn or the like surrounding the power line unit 300 and the optical fiber unit 100, and the bedding layer 700. Is provided on the outside of the wire sheath 710 to improve the mechanical strength of the optical composite power cable 1000 and the jacket 720 provided on the outside of the wire sheath 710 may be provided. In addition, the optical composite power cable 1000 may include a filler 400 to protect the power line unit 300 and the optical fiber unit 100 inside the bedding layer 700.
도 2는 광전케이블집합체에 있어서, 상기 광섬유유닛(100)과 전력선유닛(300)이 테이핑 등에 의해 단순히 바인딩된 바인딩케이블(1000')을 도시한 단면도이다.2 is a cross-sectional view illustrating a binding cable 1000 ′ in which the optical fiber unit 100 and the power line unit 300 are simply bound by taping or the like in the optical cable assembly.
도 2를 참조하면, 상기 바인딩케이블(1000')은 상기 광섬유유닛(100)과 전력선유닛(300)이 테이핑(800) 등에 의해 연결된 구조를 가지게 된다. 상기 광섬유유닛(100)과 전력선유닛(300)의 구조에 대해서는 전술한 도 1의 실시예와 유사하므로 반복적인 설명은 생략한다.Referring to FIG. 2, the binding cable 1000 ′ has a structure in which the optical fiber unit 100 and the power line unit 300 are connected by taping 800 or the like. The structures of the optical fiber unit 100 and the power line unit 300 are similar to those of the embodiment of FIG. 1 described above, and thus repeated descriptions thereof will be omitted.
한편, 도 3은 광섬유유닛에 의해 형성된 P2MP 형태의 광선로에 장애가 발생한 경우에 상기 장애위치를 감지하는 OTDR을 이용한 감시시스템(10)을 도시한다.On the other hand, Figure 3 shows a monitoring system 10 using the OTDR to detect the failure position when a failure occurs in the P2MP type optical path formed by the optical fiber unit.
도 3을 참조하면, 중앙기지국(CO : Central Office)에 설치되는 공급자측 광선로 터미널(12)(OLT : Optical Line terminal)(이하, '공급자측 터미널'이라고 함)과, 광선로가 분기되는 적어도 하나의 스플리터 모듈(splitter module)(20) 및 광선로가 연결되는 수요자측 터미널(ONT : Optical Network Terminal)(40)을 구비한다.Referring to FIG. 3, at the supplier-side optical line terminal 12 (OLT: hereinafter referred to as a 'provider-side terminal') installed at a central office (CO) and at least a branch at which the optical path is branched One splitter module 20 and a consumer side terminal (ONT: Optical Network Terminal) 40 to which an optical path is connected are provided.
공급자측 터미널(12)은 전화국 등과 같은 중앙 기지국에 구비되어 서로 다른 여러 개의 파장을 가지는 신호광을 생성하고 이를 다중화하여 스플리터 모듈(20)을 통해 수요자측 터미널(40)로 전송한다.The provider terminal 12 is provided in a central base station such as a telephone station to generate signal light having a plurality of wavelengths different from each other, and multiplex it to be transmitted to the consumer terminal 40 through the splitter module 20.
스플리터 모듈(20)은 공급자측 터미널(12)에서 제공되는 다중화된 신호광을 각 파장별로 분기하여 수요자측 터미널(40)로 전송하게 된다.The splitter module 20 splits the multiplexed signal light provided from the supplier side terminal 12 for each wavelength and transmits the multiplexed signal light to the consumer side terminal 40.
한편, 상기 감시시스템(10)은 광선로의 광섬유유닛에 선택적으로 접속되는 감시장치(50)를 구비할 수 있다. 감시장치(50)는 OTDR(optical time domain reflectometery) 센서 또는 OTDR 유닛과 함께 후술하는 해석장치(80)를 구비할 수 있다.On the other hand, the monitoring system 10 may be provided with a monitoring device 50 that is selectively connected to the optical fiber unit of the optical path. The monitoring device 50 may include an analyzer 80 described later together with an optical time domain reflectometery (OTDR) sensor or an OTDR unit.
전술한 OTDR 유닛을 구비한 감시장치(50)에 대해서 좀더 살펴보면, OTDR 유닛은 공급자측 터미널(12)의 신호광과 다른 파장을 가지는 감시광을 생성한다. 즉, 감시장치(50)는 신호광과 상이한 대역을 가지는 감시광을 사용한다. 이에 의해 신호광과 감시과의 파장이 서로 중첩되는 것을 방지하여 감시광에 의해 신호광이 영향을 받지 않도록 한다. 예를 들어, 신호광의 파장은 대략 1600nm 이하이며 1310nm, 1490nm, 1550nm 등의 파장을 가질 수 있다. 이에 반해서 감시광의 파장은 대략 1600nm 이상일 수 있으며, 구체적으로 감시광의 파장은 대략 1625 나 1650 nm 일 수 있다. 이러한 감시광을 광선로에 입사시켜 광선로 길이 방향을 따라 각 지점에서 반사 및 산란되어 되돌아오는 광량의 거리 분포를 해석해 광선로의 손실, 수요자측 터미널의 접속점까지의 거리, 접속 손실 및 접속점으로부터의 반사량, 광선로에 장애가 발생한 경우에 장애 발생 지점까지의 거리를 측정할 수 있다.Looking more closely at the monitoring device 50 provided with the OTDR unit described above, the OTDR unit generates monitoring light having a wavelength different from that of the supplier-side terminal 12. That is, the monitoring device 50 uses monitoring light having a different band from the signal light. This prevents the wavelengths of the signal light and the supervisor from overlapping each other so that the signal light is not affected by the supervisory light. For example, the wavelength of the signal light is approximately 1600 nm or less and may have a wavelength of 1310 nm, 1490 nm, 1550 nm, or the like. On the contrary, the wavelength of the monitoring light may be about 1600 nm or more, and specifically, the wavelength of the monitoring light may be about 1625 or 1650 nm. By injecting such monitoring light into the optical path and analyzing the distance distribution of the amount of light reflected and scattered at each point along the longitudinal direction of the optical path, the loss of the optical path, the distance to the connection point of the consumer terminal, the connection loss and the amount of reflection from the connection point, In the event of a failure in the optical path, the distance to the point of failure can be measured.
구체적으로 OTDR 유닛을 포함하는 감시장치(50)는 WDM 커플러(14)를 통하여 각 광선로의 광섬유에 접속된다. 이 경우, OTDR 유닛에서 생성되어 전송되는 감시광은 WDM 커플러(14)를 통하여 신호광과 결합된다. 한편, 입사된 감시광이 산란 또는 반사되어 수신되는 경우, 하나의 공급자측 터미널에서 분기된 각 선로의 길이에 따른 피크가 OTDR 유닛에서 거리를 달리하여 도시된다. 따라서, 작업자는 OTDR 유닛에서 각 선로에 따른 피크의 거리를 확인하여 어느 선로의 피크인지를 파악할 수 있게 된다. 나아가, 감시광의 반사를 위하여 각 수요자측 터미널(40)의 입력단에 신호광은 통과시키며 감시광만을 반사시키는 반사수단, 예를 들어 필터부(60)를 구비할 수 있다. 이러한 필터부(60)는 수요자측 터미널(40)과 광선로를 연결시키는 커넥터에 구비될 수 있다. 이와 같이, 필터부(60)를 구비하게 되면, 광선로의 종단, 즉 수요자측 터미널(40)의 입력단에서 반사되는 피크 신호가 더욱 커지게 되어 OTDR 유닛을 통한 피크 검출이 보다 용이하게 이루어질 수 있다.Specifically, the monitoring device 50 including the OTDR unit is connected to the optical fiber of each optical path through the WDM coupler 14. In this case, the monitoring light generated and transmitted by the OTDR unit is combined with the signal light via the WDM coupler 14. On the other hand, when the incident monitoring light is received scattered or reflected, the peak according to the length of each line branched from one supplier side terminal is shown at different distances in the OTDR unit. Therefore, the operator can determine which line peak is by checking the distance of the peak along each line in the OTDR unit. In addition, reflecting means, for example, the filter unit 60, may be provided to reflect only the monitoring light while passing the signal light through the input terminal of each consumer-side terminal 40 to reflect the monitoring light. The filter unit 60 may be provided in a connector connecting the consumer side terminal 40 and the optical path. As such, when the filter unit 60 is provided, the peak signal reflected at the end of the optical path, that is, at the input terminal of the consumer side terminal 40 becomes larger, so that peak detection through the OTDR unit can be more easily performed.
한편, 전술한 OTDR 유닛을 구비하는 감시장치(50)는 광 스위칭 유닛(optical switching unit)(70)을 통하여 WDM 커플러(14)에 연결될 수 있다. 이 경우, 광 스위칭 유닛(70)은 복수개의 WDM 커플러(14)와 감시장치(50)를 서로 연결시킬 수 있다. 즉, 복수개의 WDM 커플러(14)가 하나의 광 스위칭 유닛(70)을 통하여 감시장치(50)에 연결됨으로써 설치비, 설치시간 및 설치공간을 줄일 수 있다.Meanwhile, the monitoring device 50 having the above-described OTDR unit may be connected to the WDM coupler 14 through an optical switching unit 70. In this case, the optical switching unit 70 may connect the plurality of WDM couplers 14 and the monitoring device 50 to each other. That is, the plurality of WDM coupler 14 is connected to the monitoring device 50 through one optical switching unit 70 can reduce the installation cost, installation time and installation space.
도 4는 전술한 감시장치에서 감시광의 파형이 도출된 그래프이다. 그래프에서 가로축은 거리(km)를 도시하며, 세로축은 광의 세기(dB)를 도시한다.4 is a graph from which a waveform of monitoring light is derived from the above-described monitoring device. In the graph, the horizontal axis shows distance (km) and the vertical axis shows light intensity (dB).
도 4를 참조하면, 감시장치에서 측정된 감시광은 광섬유의 거리당 일정 손실(dB/km)을 겪게 되며, 도면과 같이 소정의 기울기로 줄어들게 된다. 상기 감시광의 파형을 보게 되면, 도면에 도시된 바와 같이 소정의 노이즈를 포함하게 된다. 한편, 상기 감시광의 파형에는 피크 및 단차 형태의 이상 파형이 발생할 수 있으며, 상기 이상 파형을 장애가 발생하지 않은 정상의 경우와 비교하여 장애 여부를 판단하고, 나아가 상기 이상 파형까지의 거리를 빛의 속도와 도달 시간을 통해 역산하여 장애가 발생한 경우에 수요자측 터미널의 입력단의 피크가 발생하는 지점까지의 거리를 파악할 수 있게 된다.Referring to FIG. 4, the monitoring light measured by the monitoring device suffers a certain loss (dB / km) per distance of the optical fiber and is reduced to a predetermined slope as shown in the drawing. Looking at the waveform of the monitoring light, as shown in the figure includes a predetermined noise. On the other hand, the waveform of the monitoring light may generate an abnormal waveform in the form of peaks and steps, and compares the abnormal waveform with a normal case where no failure occurs, and determines whether there is a failure, and further, the distance to the abnormal waveform is determined by the speed of light In the case of failure due to the inversion through the arrival time, the distance to the point where the peak of the input terminal of the consumer side occurs can be identified.
그런데, 상기 OTDR을 이용한 종래의 감시시스템은 광섬유를 구비한 광섬유유닛의 장애판단에 용이하고, 상기 장애위치를 비교적 정확하고 빠르게 감지할 수 있다는 장점을 가진다. 하지만, 종래의 감시시스템은 전술한 바와 같이 광섬유를 구비한 광섬유유닛의 장애판단에만 사용될 수 있으며, 예를 들어 전력선유닛의 장애판단 및 장애위치감지에는 적용될 수 없다는 문제점을 가진다. 이하에서는, 광섬유유닛과 전력선유닛을 구비한 광전케이블집합체에서 상기 광섬유유닛을 이용하여 상기 전력선유닛의 장애를 감시하는 장애감시시스템 및 장애감시방법에 대해서 살펴보기로 한다.By the way, the conventional monitoring system using the OTDR has the advantage that it is easy to determine the failure of the optical fiber unit having an optical fiber, it is possible to detect the failure position relatively accurately and quickly. However, the conventional monitoring system can be used only for the fault determination of the optical fiber unit having the optical fiber as described above, for example, there is a problem that can not be applied to the fault determination and fault position detection of the power line unit. Hereinafter, a failure monitoring system and a failure monitoring method for monitoring a failure of the power line unit using the optical fiber unit in an optical fiber assembly having an optical fiber unit and a power line unit will be described.
도 5는 본 발명에 따라 광섬유유닛(100)과 전력선유닛(300)을 구비한 광전케이블집합체에서 상기 광섬유유닛(100)을 이용하여 상기 전력선유닛의 장애를 감시하는 장애감시시스템의 구성을 도시한 개략도이다.5 illustrates a configuration of a failure monitoring system for monitoring a failure of the power line unit using the optical fiber unit 100 in the photoelectric cable assembly having the optical fiber unit 100 and the power line unit 300 according to the present invention. Schematic diagram.
도 5를 참조하면, 상기 감시시스템은 상기 전력선유닛(300)의 도체(310)에 선택적으로 연결되어 미리 결정된 값 이상의 전압을 공급하는 전압공급부(3000) 및 상기 전력선유닛(300)에서 발생하는 음향신호(304)를 상기 하나 이상의 광섬유(111)의 광신호에 의해 감지하고, 상기 전력선유닛(300)의 장애 발생 여부 및 상기 장애가 발생한 위치를 판단하는 감시장치(2000)를 구비한다.Referring to FIG. 5, the monitoring system is selectively connected to the conductor 310 of the power line unit 300 to supply a voltage equal to or greater than a predetermined value, and the sound generated from the power line unit 300. And a monitoring device 2000 for detecting the signal 304 by the optical signal of the one or more optical fibers 111 and determining whether the power line unit 300 has a failure and the location where the failure has occurred.
본 발명에서 장애감시시스템은 상기 전력선유닛(300)으로 전압을 공급하여 상기 전력선유닛(300)의 장애발생지점(302)에서 발생하는 음향신호를 감지하는 소위 'Thumping 방식'을 적용하되, 상기 음향신호를 감지하기 위하여 상기 전력선유닛(300)에 인접하여 구비된 상기 광섬유유닛(100)의 광섬유(111)를 사용하게 된다.In the present invention, the failure monitoring system applies a so-called 'Thumping method' for detecting a sound signal generated at the failure point 302 of the power line unit 300 by supplying a voltage to the power line unit 300, the sound In order to detect a signal, the optical fiber 111 of the optical fiber unit 100 provided adjacent to the power line unit 300 is used.
이 경우, 상기 감시장치(2000)는 상기 광섬유(111)에 감시광을 입사하고 상기 산란된 감시광을 수신하는 OTDR(2100) 및 상기 광섬유(111)에서 감시광의 파형을 해석하여 장애발생여부 및 상기 장애가 발생한 위치를 감지하는 해석장치(2200)를 구비할 수 있다. 상기 OTDR(2100)의 구성에 대해서는 상술한 바와 같이 이미 신호광이 사용되고 있는 선로에 대해서는 상기 신호광과 다른 파장의 감시광을 사용하여 모니터링을 하는 구성과 운용되고 있지 않은 광선로의 경우에는 신호광의 운용 파장을 포함한 감시광의 파장을 활용하여 모니터링하는 구성이 있으며, 구성에 대한 반복적인 설명은 생략한다.In this case, the monitoring device 2000 analyzes the waveform of the monitoring light in the OTDR 2100 and the optical fiber 111 which enters the monitoring light into the optical fiber 111 and receives the scattered monitoring light, and whether or not a failure occurs. It may be provided with an analysis device 2200 for detecting the location of the failure. As described above with respect to the configuration of the OTDR 2100, a configuration in which a monitoring light having a wavelength different from that of the signal light is monitored for a line already using the signal light, and in the case of a light path that is not in operation, sets an operating wavelength of the signal light. There is a configuration that monitors the wavelength of the included monitoring light, and repeated description of the configuration is omitted.
도 6은 전력선유닛(300)의 장애발생지점에서 발생한 음향신호에 의해 상기 광섬유(111)에서 산란되는 감시광의 변화를 도시한 개략도이다.FIG. 6 is a schematic diagram illustrating a change in monitoring light scattered from the optical fiber 111 by an acoustic signal generated at a failure point of the power line unit 300.
도 5 및 도 6을 참조하면, 상기 전압공급부(3000)에 의해 상기 전력선유닛(300)으로 미리 결정된 값의 전압을 공급하는 경우, 상기 전력선유닛(300)에 장애(302)가 있게 되면 상기 장애지점(302)의 부분방전에 의해 음향(acoustic) 신호(304)가 발생하게 된다. 이러한 음향신호(304)는 인접한 광섬유유닛(100)의 광섬유(111)의 감시광(115)에 영향을 미치게 된다. 즉, 상기 음향신호(304)에 의해 상기 광섬유(111)의 밀도 등과 같은 매질 변화가 발생하게 되며, 이에 의해 상기 음향신호(304)에 의해 영향을 받은 광섬유(111)의 감시광(115A)은 상기 광섬유(111)의 다른 영역의 감시광(115)에 비해 위상변화가 발생하게 된다. 이러한 광섬유(111)의 위상변화는 감시장치(2000)의 OTDR(2100) 및 해석장치(2200)를 통해 감지될 수 있다.5 and 6, when a voltage of a predetermined value is supplied to the power line unit 300 by the voltage supply unit 3000, the failure occurs when the power line unit 300 has a fault 302. A partial discharge of the point 302 results in an acoustic signal 304. The acoustic signal 304 affects the monitoring light 115 of the optical fiber 111 of the adjacent optical fiber unit 100. That is, the change of the medium such as the density of the optical fiber 111 is generated by the acoustic signal 304, whereby the monitoring light 115A of the optical fiber 111 affected by the acoustic signal 304 is Compared to the monitoring light 115 of the other region of the optical fiber 111 is a phase change occurs. The phase change of the optical fiber 111 may be sensed through the OTDR 2100 and the analyzer 2200 of the monitoring device 2000.
도 7은 상기 위상변화가 발생한 감시광을 상기 OTDR(2100)에 의해 측정한 그래프를 도시한다. 7 shows a graph in which the monitoring light in which the phase change has occurred is measured by the OTDR 2100.
전술한 해석장치(2200)는 상기 전력선유닛에서 장애가 발생하여 전파되는 음향신호에 의해 상기 광섬유(111)에서 산란된 감시광의 위상변화에 의한 세기변화를 감지하여 상기 세기변화가 미리 결정된 기준치 이상인 경우에 상기 장애가 발생한 것으로 판단하여 상기 장애가 발생한 위치를 감지하게 된다.The above-described analyzer 2200 detects an intensity change caused by a phase change of monitoring light scattered from the optical fiber 111 by an acoustic signal propagated due to a failure in the power line unit, and the intensity change is greater than or equal to a predetermined reference value. It is determined that the failure has occurred to detect the location of the failure.
구체적으로, 상기 감시광에 상기 음향신호에 의해 위상변화가 발생하게 되면 도 7에 도시된 바와 같이 감시광의 파형에 변화가 발생하게 되며, 예를 들어 도면에 도시된 바와 같이 소정의 피크를 형성하게 된다. 따라서, 상기 피크를 미리 설정된 소정의 기준치와 비교하여 상기 기준치 이상인 경우에 상기 전력선유닛(300)에 장애가 발생한 것으로 판단할 수 있다. 나아가, 상기 피크의 위치를 통해 상기 장애가 발생한 지점의 거리를 감지할 수 있게 된다.Specifically, when the phase change occurs in the monitoring light by the acoustic signal, the change occurs in the waveform of the monitoring light as shown in FIG. 7, for example, to form a predetermined peak as shown in the drawing. do. Therefore, it may be determined that the power line unit 300 has a failure when the peak is compared with a predetermined reference value. Furthermore, it is possible to detect the distance of the point where the failure occurred through the position of the peak.
한편, 전술한 바와 같이 상기 전압공급부(3000)에 의해 상기 전력선유닛(300)으로 전압을 공급하는 경우에 상기 장애발생지점에서 발생하는 음향신호의 감지를 보다 용이하게 하도록 상기 전압공급부(3000)는 미리 결정된 패턴을 가지는 전압을 공급할 수 있다. 도 8은 상기 전압공급부(3000)에 의해 상기 전력선유닛으로 공급되는 전압의 일예에 따른 패턴을 도시한다.On the other hand, as described above, when the voltage supply unit 3000 supplies the voltage to the power line unit 300, the voltage supply unit 3000 to more easily detect the sound signal generated at the point of occurrence of the failure A voltage having a predetermined pattern can be supplied. 8 illustrates a pattern according to an example of a voltage supplied to the power line unit by the voltage supply unit 3000.
도 8에 도시된 바와 같이, 상기 공급되는 전압의 패턴은 미리 결정된 제1 전압치에 비해 상대적으로 큰 값을 가지는 제2 전압치에 해당하는 파형을 단속적으로 공급할 수 있다. 이러한 패턴에 따른 전압을 공급하게 되면 평탄한 파형의 전압을 공급하는 경우에 비해 상기 전력선유닛(300)의 장애발생지점에서 발생하는 음향신호의 변화가 보다 명확해지며, 이에 의해 노이즈와 상기 장애발생지점에서 발생하는 음향신호의 변화를 보다 용이하게 구분할 수 있다는 장점이 있다. 상기 전압공급부(3000)에서 공급되는 전압의 패턴은 전술한 도 8의 패턴에 한정되지 않으며 다양한 형태로 변형될 수 있음은 물론이다.As illustrated in FIG. 8, the supplied voltage pattern may intermittently supply a waveform corresponding to a second voltage value having a relatively larger value than a predetermined first voltage value. When the voltage according to the pattern is supplied, the change in the acoustic signal generated at the point of failure of the power line unit 300 becomes clearer than the case of supplying a voltage having a flat waveform, whereby the noise and the point of failure are caused. There is an advantage in that it is possible to more easily distinguish the change in the acoustic signal that occurs in. The pattern of the voltage supplied from the voltage supply unit 3000 is not limited to the above-described pattern of FIG. 8 and may be modified in various forms.
한편, OTDR(2100)은 광신호의 위상변화를 감지하기 위하여 파장 대역이 좁은 감시광, 즉 협대역의 파장을 가지는 감시광을 사용하는 소위 'Coherent OTDR'이 사용될 수 있다. 전술한 바와 같이 장애발생지점에서 발생하는 음향신호에 의해 자극이 부여될 경우에 광섬유 내부에 매질 변화 등이 발생하게 되며, 이는 광신호의 위상변화를 유발시키게 된다. 이 경우, 상기 위상 변화로 인해 광신호를 수신하는 수신부에서 간섭광의 크기 변화가 발생하는데, 이를 위해서는 빛의 위치, 시간에 따라 위상이 일정한 패턴으로 발생하는 소위 'coherent' 특성이 있어야 하기 때문이다. 이러한 'Coherent OTDR'을 사용함으로써 음향 신호 검출이 용이하게 되며 장애판단 및 위치검출이 보다 용이하게 이루어질 수 있다.On the other hand, the OTDR 2100 may use a so-called 'Coherent OTDR' using supervisory light having a narrow wavelength band, that is, supervisory light having a narrow band wavelength, in order to detect a phase change of an optical signal. As described above, when a stimulus is applied by an acoustic signal generated at the point of failure, a medium change occurs inside the optical fiber, which causes a phase change of the optical signal. In this case, a change in the size of the interference light occurs in the receiver that receives the optical signal due to the phase change, because there is a so-called 'coherent' characteristic that occurs in a pattern with a constant phase according to the position and time of the light. By using the 'Coherent OTDR', the acoustic signal can be easily detected, and the fault determination and the position detection can be made more easily.
한편, 상기 전압공급부(3000)에 의해 전압을 인가하는 경우에 상기 전압이 높을수록 상기 전력선유닛(300)의 장애발생지점에서 발생하는 음향신호를 보다 용이하게 검출할 수 있게 된다. 하지만, 상기 전력선유닛(300)에 공급되는 전압이 높아지게 되면 상기 전력선유닛(300)의 장애발생지점에서 발생하는 부분방전에 의해 상기 전력선유닛(300)에 파손을 유발할 수 있다. 따라서, 본 실시예의 경우, 상기 전력선유닛(300)의 장애가 의심되는 경우에 상기 전압공급부(3000)는 상기 전력선유닛(300)으로 공급되는 전압을 미리 결정된 단위로 증가시킬 수 있다. 즉, 전력선유닛(300)의 파워 저하 등의 이유로 인해 상기 전력선유닛(300)의 장애가 의심되는 경우에 상기 전압공급부(3000)는 상대적으로 낮은 전압 초기값을 설정하여 상기 전력선유닛(300)으로 공급하게 된다.On the other hand, when the voltage is applied by the voltage supply unit 3000, the higher the voltage can be more easily detect the acoustic signal generated at the point of failure of the power line unit 300. However, when the voltage supplied to the power line unit 300 becomes high, damage may occur to the power line unit 300 by a partial discharge occurring at a failure point of the power line unit 300. Therefore, in the present embodiment, when the failure of the power line unit 300 is suspected, the voltage supply unit 3000 may increase the voltage supplied to the power line unit 300 in a predetermined unit. That is, when a failure of the power line unit 300 is suspected due to a power drop of the power line unit 300 or the like, the voltage supply unit 3000 sets a relatively low voltage initial value and supplies the power line unit 300 to the power line unit 300. Done.
이 경우, 상기 OTDR(2100) 및 해석장치(2200)에 의해 감시광을 측정하고 분석하여 장애여부를 판단하고 장애위치를 감지하게 된다. 그런데, 상기 전압 초기값에 의해 전압을 공급한 경우에 상기 전력선유닛(300)에서 장애가 판단되지 않는 경우에 상기 전압공급부(3000)는 상기 전력선유닛(300)으로 공급되는 전압을 미리 결정된 단위로 증가시켜 공급하게 된다. 즉, 전력선유닛(300)의 장애가 의심되지만 장애가 검출되지 않는 경우에 상기 전력선유닛(300)으로 공급되는 전압값을 미리 결정된 단위로 증가시켜 공급하게 된다. 상기 전력선유닛(300)으로 공급되는 전압값을 증가시키게 되면 상기 전력선유닛(300)의 장애발생지점에서 발생하는 음향신호를 보다 명확하게 검출할 수 있게 되므로 장애 판단 및 위치 검출이 용이해진다. 하지만, 상기 전력선유닛(300)으로 공급되는 전압값을 소정치 이상으로 키우게 되면 전술한 바와 같이 상기 공급되는 전압 자체에 의해 상기 전력선유닛(300)의 파손을 유발할 수 있다. 따라서, 상기 전력선유닛(300)으로 공급되는 전압의 상한값은 상기 전력선유닛(300)에 파손을 유발하지 않는 적절한 값으로 결정될 수 있다.In this case, the monitoring light is measured and analyzed by the OTDR 2100 and the analyzer 2200 to determine whether there is a failure and to detect a location of the failure. However, when the voltage is supplied by the initial voltage value, when the failure is not determined by the power line unit 300, the voltage supply unit 3000 increases the voltage supplied to the power line unit 300 in a predetermined unit. Will be supplied. That is, when a failure of the power line unit 300 is suspected but the failure is not detected, the voltage value supplied to the power line unit 300 is increased in a predetermined unit and supplied. When the voltage value supplied to the power line unit 300 is increased, the acoustic signal generated at the point of occurrence of the failure of the power line unit 300 can be detected more clearly, so that the failure determination and the position detection can be facilitated. However, when the voltage value supplied to the power line unit 300 is raised to a predetermined value or more, as described above, the power line unit 300 may be damaged by the supplied voltage itself. Therefore, the upper limit of the voltage supplied to the power line unit 300 may be determined to be an appropriate value that does not cause damage to the power line unit 300.
도 9는 본 발명에 따른 광전케이블집합체의 장애감시를 위한 장애감시방법을 도시한 순서도이다.9 is a flowchart illustrating a fault monitoring method for fault monitoring of an optoelectronic cable assembly according to the present invention.
도 9를 참조하면, 상기 장애감시방법은 상기 전력선유닛(300)의 도체(310)로 전압을 인가하는 단계(S910), 상기 전력선유닛(300)에서 발생하는 음향신호를 감지하도록 상기 광섬유유닛(100)의 광섬유로 감시광을 입사시키고 산란된 감시광을 수신하는 단계(S930), 상기 산란된 감시광의 파형을 분석하여 상기 전력선 유닛의 장애발생여부를 판단하는 단계(S950) 및 상기 장애가 발생한 것으로 판단되는 경우에 상기 장애발생위치를 감지하든 단계(S970)를 포함한다.Referring to FIG. 9, the fault monitoring method includes applying a voltage to the conductor 310 of the power line unit 300 (S910), and detecting the sound signal generated by the power line unit 300. Injecting the monitoring light into the optical fiber of 100 and receiving the scattered monitoring light (S930), and analyzing the waveform of the scattered monitoring light to determine whether the power line unit has a failure (S950) and that the failure has occurred If it is determined whether or not detecting the failure location includes a step (S970).
먼저, 상기 전압공급부(3000)는 상기 전력선유닛(300)으로 전압을 공급한다(S910). 이 경우에 도 8에서 설명한 바와 같이 상기 전압은 미리 결정된 패턴을 가지고 공급될 수 있다. 이에 대해서는 도 8에 대한 설명에서 상술하였으므로 반복적인 설명은 생략한다.First, the voltage supply unit 3000 supplies a voltage to the power line unit 300 (S910). In this case, as described in FIG. 8, the voltage may be supplied with a predetermined pattern. Since it has been described above with reference to FIG. 8, repeated description thereof will be omitted.
한편, 상기 전압공급부(3000)는 상기 전력선유닛(300)의 도체(310)로 전압을 공급하기 전에 공급할 전압 초기값을 설정할 수 있다. 전술한 바와 같이, 상기 전압 초기값은 상대적으로 낮게 설정될 수 있다. 본 발명에 따른 감시시스템은 광섬유유닛(100)의 광섬유(111)에 의해 상기 전력선유닛(300)의 장애발생여부 및 장애위치를 감지하게 되므로 민감도가 매우 높다. 따라서, 종래의 방법에 비해 상대적으로 더 낮은 전압값에서도 상기 전력선유닛(300)의 장애를 충분히 감지할 수 있게 된다.The voltage supply unit 3000 may set an initial voltage value to be supplied before supplying a voltage to the conductor 310 of the power line unit 300. As described above, the voltage initial value may be set relatively low. The monitoring system according to the present invention is very sensitive because it detects the occurrence of the failure and the location of the power line unit 300 by the optical fiber 111 of the optical fiber unit 100. Therefore, the failure of the power line unit 300 can be sufficiently detected even at a relatively lower voltage value than the conventional method.
이어서, 상기 전력선유닛(300)의 장애발생지점에서 발생하는 음향신호를 감지하도록 상기 광섬유유닛(100)의 광섬유에 감시광을 입사시키고 산란된 감시광을 수신한다(S930). 전술한 바와 같이, 상기 OTDR(2100)은 상기 광섬유유닛(100)의 광섬유(111)에 감시광을 입사하고, 상기 산란된 감시광을 수신하게 된다. 이 경우, 상기 OTDR(2100)은 감시광을 입사하는 경우에 협대역의 파장을 가지는 감시광을 입사시키게 된다.Subsequently, in order to detect an acoustic signal generated at the point of failure of the power line unit 300, the monitoring light is incident on the optical fiber of the optical fiber unit 100 and the scattered monitoring light is received (S930). As described above, the OTDR 2100 enters the monitoring light into the optical fiber 111 of the optical fiber unit 100 and receives the scattered monitoring light. In this case, when the OTDR 2100 enters the monitoring light, the OTDR 2100 enters the monitoring light having the narrow band wavelength.
상기 OTDR(2100)에 의해 상기 산란된 감시광이 수신된 후, 상기 해석장치(2200)는 상기 감시광의 파형을 해석하여 장애발생여부(S950) 및 상기 장애가 발생한 위치를 감지(S970)하게 된다.After the scattered monitoring light is received by the OTDR 2100, the analyzer 2200 analyzes a waveform of the monitoring light to detect whether a failure occurs (S950) and a location where the failure occurs (S970).
상기 해석장치(2200)는 상기 광섬유(111)에서 산란되는 감시광의 위상변화에 의한 감시광의 세기변화를 감지하게 된다. 여기서, 상기 세기변화는 상기 감시광의 파형에서 소정의 피크 형태로 도시될 것이다. 따라서, 상기 세기변화(피크)를 미리 결정된 기준치와 비교하여 장애 발생 여부를 확인(S950)하고, 장애가 발생한 것으로 판단되면 상기 장애가 발생한 위치를 감지하게 된다(S970).The analyzer 2200 detects a change in intensity of the monitoring light due to a phase change of the monitoring light scattered from the optical fiber 111. Here, the intensity change will be shown in the form of a predetermined peak in the waveform of the monitoring light. Therefore, the intensity change (peak) is compared with a predetermined reference value to determine whether a failure occurs (S950), and if it is determined that a failure occurs, the location where the failure occurs is detected (S970).
한편, 상기 해석장치(2200)의 분석에 의해 상기 전력선유닛(300)에 장애가 발생하지 않은 것으로 판단되는 경우에 상기 장애발생지점에서 발생하는 음향신호가 정확히 감지되지 않은 것을 고려하여 상기 전압공급부(3000)는 상기 전력선유닛(300)으로 공급되는 전압을 미리 결정된 단위로 증가시켜(S955) 상기 전력선유닛(300)으로 공급하게 된다. 상기 전압을 미리 결정된 단위로 증가시키는 단계는 미리 정해진 복수회에 걸쳐 수행되거나, 또는 상기 전력선유닛(300)에 파손을 유발하지 않는 적절한 상한값까지 상기 전압값을 상승시킬 때까지 수행될 수 있다.On the other hand, when it is determined that the failure of the power line unit 300 by the analysis of the analysis device 2200 in consideration of the fact that the acoustic signal generated at the point of failure is not accurately detected the voltage supply unit 3000 ) Increases the voltage supplied to the power line unit 300 in a predetermined unit (S955) and supplies the voltage to the power line unit 300. The increasing of the voltage in a predetermined unit may be performed for a plurality of predetermined times or until the voltage value is increased to an appropriate upper limit that does not cause damage to the power line unit 300.
한편, 앞서 살펴본 감시시스템은 장애가 발생한 경우에 장애판단과 더불어 장애가 발생한 위치를 감지하는 것이 매우 중요하다. 하지만, 전술한 바와 같이 각종 감시시스템은 다양한 이유로 인해 어느 정도 오차율을 가지게 되며, 상기 오차율을 줄이기 위한 각종 노력이 수행되고 있다. 이하, 상기 오차율을 줄일 수 있는 본 발명의 실시예를 살펴보도록 한다.On the other hand, in the case of the surveillance system described above, it is very important to detect the location where the failure occurred in addition to the failure determination. However, as described above, various monitoring systems have an error rate to some extent for various reasons, and various efforts have been made to reduce the error rate. Hereinafter, an embodiment of the present invention can reduce the error rate.
도 10은 도 1의 광전복합케이블(1000)을 설치하는 경우에 상기 광전복합케이블(1000)과 광섬유유닛(100)의 상대적인 거리를 도시한 개략도이다.FIG. 10 is a schematic diagram illustrating a relative distance between the photoelectric composite cable 1000 and the optical fiber unit 100 when the photoelectric composite cable 1000 of FIG. 1 is installed.
도 10을 참조하면, 상기 광전복합케이블(1000)을 설치하는 경우에 상기 광전복합케이블(1000)의 내부에서 상기 광섬유유닛(100)은 도 10에 도시된 바와 같이 직선 형태가 아니라 곡선 형태로 배치될 수 있다. 따라서, 상기 광전복합케이블(1000)의 거리(Lcable)와 상기 광섬유유닛(L광섬유)의 거리 사이에 오차가 발생할 수 있으며, 특히 해저케이블과 같이 상기 광전복합케이블(1000)의 길이가 증가할수록 그 오차는 더욱 커지게 된다.Referring to FIG. 10, when the photoelectric composite cable 1000 is installed, the optical fiber unit 100 is arranged in a curved shape rather than a straight shape as shown in FIG. 10. Can be. Therefore, an error may occur between the distance L cable of the photoelectric composite cable 1000 and the distance of the optical fiber unit L optical fiber . In particular, as the length of the photoelectric composite cable 1000 increases, such as a submarine cable, The error becomes even larger.
따라서, 상기 광섬유유닛(100)의 광섬유(111)로 감시광을 입사시키고 상기 감시광에 의해 거리를 측정하는 기존의 OTDR 방식의 경우, 상기 광섬유유닛(100)의 거리를 그대로 상기 광전복합케이블(1000)의 거리로 적용하기 때문에 상기 광전복합케이블(1000)과 광섬유유닛(100)의 거리 차이에 의해 장애 발생 지점을 정확하게 감지하지 못하고 오차가 발생할 수 있다.Therefore, in the conventional OTDR method of injecting the monitoring light into the optical fiber 111 of the optical fiber unit 100 and measuring the distance by the monitoring light, the photoelectric composite cable ( Since it is applied to the distance of 1000, due to the difference in distance between the photoelectric composite cable 1000 and the optical fiber unit 100 may not accurately detect the point of failure occurs, an error may occur.
이를 방지하기 위하여, 본 실시예에서는 도 11과 같이 광전복합케이블(1000)을 설치하는 경우, 예를 들어 상기 광전복합케이블(1000)을 선박(4000)에 의해 해저에 설치하는 경우에 전술한 감시시스템을 활용하여 상기 광전복합케이블(1000)과 광섬유유닛(100)의 상대적인 거리를 측정할 수 있다. 즉, 광전복합케이블(1000)을 설치하는 경우에 상기 광전복합케이블(1000)의 설치거리는 상기 선박(4000)에서 해저를 향해 설치되는 케이블의 길이를 실시간으로 측정하여 계산될 수 있다. 예를 들어 상기 광전복합케이블을 포설하는 과정에서 선박의 특정 위치에서 인위적으로 광전복합케이블에 충격을 가하여 음향 신호를 생성하고, 동시에 본 장애감시시스템을 이용하여 상기 음향 신호 발생 지점의 광섬유의 기반 위치를 인식하고, 상기 광전복합케이블 위치와 상기 광섬유의 위치를 맵핑(mapping)할 경우 상기 광섬유 길이와 광전복합케이블 길이 불일치에 따른 문제 위치 오차 문제는 개선할 수 있다.In order to prevent this, in the present embodiment, when the photoelectric composite cable 1000 is installed as shown in FIG. 11, for example, when the photoelectric composite cable 1000 is installed on the sea floor by the ship 4000, the above-described monitoring is performed. The relative distance between the photoelectric composite cable 1000 and the optical fiber unit 100 may be measured using the system. That is, when the photoelectric composite cable 1000 is installed, the installation distance of the photoelectric composite cable 1000 may be calculated by measuring in real time the length of the cable installed toward the seabed in the vessel 4000. For example, in the process of laying the photoelectric composite cable, an acoustic signal is generated by artificially impacting the photoelectric composite cable at a specific position of the ship, and at the same time, the base position of the optical fiber at the acoustic signal generating point using the fault monitoring system. Recognizing and mapping the position of the photonic composite cable position and the optical fiber (mapping) can be improved the problem position error problem due to the mismatch of the optical fiber length and the photonic composite cable length.
한편, 상기 광전복합케이블(1000)의 내측에 배치된 광섬유유닛(100)의 거리는 상기 광전복합케이블(1000)이 설치되는 경우에 상기 감시장치(2000)에 의해 상기 광섬유유닛(100)으로 감시광을 입사시키고 상기 감시광을 측정하여 광섬유유닛(100)의 거리를 측정할 수 있다. 이 경우, 상기 감시광은 소정의 주기로 입사되거나, 또는 소정의 파형을 가지면서 입사될 수 있다.On the other hand, the distance of the optical fiber unit 100 disposed inside the photoelectric composite cable 1000 is the monitoring light to the optical fiber unit 100 by the monitoring device 2000 when the photoelectric composite cable 1000 is installed The incident distance of the optical fiber unit 100 may be measured by measuring the monitoring light. In this case, the monitoring light may be incident at a predetermined period or may be incident with a predetermined waveform.
도 12는 전술한 방법에 의해 광전복합케이블(1000)의 거리와 상기 광섬유유닛(100)의 광섬유(111)의 길이를 상대적으로 도시한 그래프이다.FIG. 12 is a graph showing the distance of the photoelectric composite cable 1000 and the length of the optical fiber 111 of the optical fiber unit 100 by the above-described method.
도 12를 참조하면, 상기 광전복합케이블(1000)을 설치하는 경우에 이상적인 경우와 같이 상기 광전복합케이블(1000)의 내측에서 상기 광섬유유닛(100)이 직선 형태로 배치되면 상기 광전복합케이블(1000)의 거리(Lcable)와 상기 광섬유유닛(100)의 거리(L광섬유)가 동일하게 되어 도 12에서 "A" 형태의 정비례적인 관계를 나타나게 된다. 이 경우에는 상기 광섬유유닛(100)에 의해 장애가 발생한 지점의 거리를 측정(L1)하여 이를 상기 광전복합케이블(1000)에 그대로 적용하여도 동일한 거리(L1)를 가지게 되어 거리에 오차가 발생하지 않는다.Referring to FIG. 12, when the optical fiber unit 100 is disposed in a straight line shape inside the photoelectric composite cable 1000, as in the case where the photoelectric composite cable 1000 is installed, the photoelectric composite cable 1000 is installed. ) Distance (L cable ) and the distance (L optical fiber) of the optical fiber unit 100 is the same to show a direct relationship in the form of "A" in FIG. In this case, the distance of the point where the failure occurs by the optical fiber unit 100 is measured (L 1 ) and even if it is applied to the photoelectric composite cable 1000 as it has the same distance (L 1 ), an error occurs in the distance. I never do that.
하지만, 전술한 바와 같이 상기 광전복합케이블(1000)의 내측에서 상기 광섬유유닛(100)이 곡선 형태로 배치되면, 도 12에서 "B" 형태와 같이 임의의 형태를 가지는 관계 그래프가 형성된다. 이 경우에는 상기 광섬유유닛(100)에 의해 장애가 발생한 거리를 측정(L1)하여 이를 상기 광전복합케이블(1000)에 전환하는 경우에 상기 광전복합케이블(1000)에서 장애가 발생한 거리는 'L1' 이 아니라 'L2'의 거리에 해당하게 된다. 따라서, 광전복합케이블(1000)의 거리에 있어서 "A" 형태의 관계그래프와 비교해볼 때 "B" 형태의 관계그래프에서는 광전복합케이블(1000)에 있어서 장애가 발생한 거리가 'L1-L2' 만큼 변화하게 된다.However, when the optical fiber unit 100 is arranged in a curved shape inside the photoelectric composite cable 1000 as described above, a relationship graph having an arbitrary shape as shown in FIG. 12 is formed. In this case, the distance in which the failure occurs by the optical fiber unit 100 is measured (L 1 ), and when it is converted into the photoelectric composite cable 1000, the distance in which the failure occurs in the photoelectric composite cable 1000 is 'L 1 '. Rather, it corresponds to the distance of 'L 2 '. Therefore, when comparing the relationship graph of "A" type in the distance of the photoelectric composite cable 1000, in the relationship graph of "B" type, the distance where the failure occurs in the photoelectric composite cable 1000 is "L 1 -L 2 ". Will change as much.
따라서, 광전복합케이블(1000)을 설치하는 경우에 상기 광전복합케이블(1000)의 설치 거리와 상기 광섬유유닛(100)의 거리의 상대적인 관계를 도시한 상기 도 12와 같은 거리정보가 그래프 또는 테이블과 같은 형태로 전술한 감시장치(2000)의 해석장치(2200)에 저장될 수 있다. 이 경우, 실제 장애가 발생하여 상기 광섬유유닛(100)에 의해 상기 장애가 발생한 지점의 거리를 측정하여 상기 거리를 광전복합케이블(1000)의 거리로 전환하는 경우에 상기 도 12와 같은 거리정보를 도시한 그래프, 또는 테이블을 이용하여 환산할 수 있다. 이에 의해 보다 정확하게 장애가 발생한 지점의 거리를 광전복합케이블(1000)에서 감지할 수 있게 된다.Therefore, when the photoelectric composite cable 1000 is installed, distance information as shown in FIG. 12 showing a relative relationship between the installation distance of the photoelectric composite cable 1000 and the distance of the optical fiber unit 100 is shown in the graph or table. In the same manner it may be stored in the analysis device 2200 of the above-described monitoring device 2000. In this case, when the actual failure occurs and the distance is measured by the optical fiber unit 100 and the distance is converted to the distance of the photoelectric composite cable 1000 by measuring the distance shown in FIG. It can be converted using a graph or a table. As a result, the distance of the point where the failure occurs more accurately can be detected by the photoelectric composite cable 1000.
한편, 전술한 도 10 내지 도 12의 설명은 광전복합케이블을 예로 들어 설명하였으나, 이에 한정되지 않으며 전력선유닛에 인접하여 광섬유유닛이 배치되는 다른 형태의 케이블, 예를 들어 도 2와 같이 단순히 바인딩되는 바인딩케이블을 포함한 광전케이블집합체에도 물론 적용이 가능하다.On the other hand, the above description of Figures 10 to 12 described as an example of the photoelectric composite cable, but is not limited to this is another type of cable in which the optical fiber unit is disposed adjacent to the power line unit, for example simply bound as shown in FIG. It is of course also applicable to optoelectronic cable assemblies including binding cables.
상기와 같은 본 발명에 따르면 전력선유닛에 장애가 발생한 경우에 상기 장애발생지점을 정확하고 빠르게 감지할 수 있다.According to the present invention as described above it is possible to detect the point of failure accurately and quickly when a failure occurs in the power line unit.
또한, 본 발명에 따르면 상기 전력선유닛의 장애발생지점을 감지하는 경우에 상기 전력선유닛과 인접하게 구비된 광섬유유닛을 사용함으로써, 상기 장애감시를 위한 추가적인 설비가 필요 없게 되어 상기 감시시스템을 구축하는데 소요되는 비용 및 시간을 현저히 줄일 수 있다. 또한, 상기 광섬유유닛을 활용함으로써 상기 전력선유닛의 장애를 감시하는데 소용되는 시간 및 비용을 종래에 비해 현저히 감소시킬 수 있다.In addition, according to the present invention, when detecting a failure point of the power line unit by using the optical fiber unit provided adjacent to the power line unit, it is necessary to build the monitoring system by eliminating the additional equipment for the failure monitoring Costs and time can be significantly reduced. In addition, by utilizing the optical fiber unit it is possible to significantly reduce the time and cost used to monitor the failure of the power line unit compared with the conventional.
나아가, 본 발명은 상기 광섬유유닛에 의해 상기 전력선유닛의 장애발생지점에서 발생하는 음향신호를 감지함으로써 상기 장애발생지점을 정확하고 빠르게 판단할 수 있다.Furthermore, the present invention can accurately and quickly determine the failure point by detecting the acoustic signal generated at the failure point of the power line unit by the optical fiber unit.

Claims (19)

  1. 도체를 구비하는 전력선유닛과, 상기 전력선유닛과 인접하여 구비되며 하나 이상의 광섬유를 구비하는 광섬유유닛을 구비하는 광전케이블집합체의 장애감시시스템에 있어서,In the fault monitoring system of a photoelectric cable assembly comprising a power line unit having a conductor and an optical fiber unit provided adjacent to the power line unit and having at least one optical fiber,
    상기 도체에 선택적으로 연결되어 미리 결정된 값 이상의 전압을 공급하는 전압공급부; 및A voltage supply unit selectively connected to the conductor to supply a voltage equal to or greater than a predetermined value; And
    상기 전력선유닛에서 발생하는 음향신호를 상기 하나 이상의 광섬유의 광신호에 의해 감지하여 상기 전력선유닛의 장애 발생 여부 및 상기 장애가 발생한 위치를 판단하는 감시장치;를 구비하는 것을 특징으로 하는 광전케이블집합체의 장애감시시스템.And a monitoring device that detects an acoustic signal generated by the power line unit by an optical signal of the at least one optical fiber and determines whether the power line unit has a failure and a location where the failure has occurred. Surveillance system.
  2. 제1항에 있어서,The method of claim 1,
    상기 전압공급부는 미리 결정된 패턴을 가지는 전압을 공급하는 것을 특징으로 하는 광전케이블집합체의 장애감시시스템.The voltage supply unit fault monitoring system for an optical cable assembly, characterized in that for supplying a voltage having a predetermined pattern.
  3. 제2항에 있어서,The method of claim 2,
    상기 전압공급부는 미리 결정된 제1 전압값에 비해 상대적으로 큰 값을 가지는 제2 전압값에 해당하는 파형을 단속적으로 공급하는 것을 특징으로 하는 광전케이블집합체의 장애감시시스템.And the voltage supply unit intermittently supplies a waveform corresponding to a second voltage value having a relatively larger value than a predetermined first voltage value.
  4. 제2항에 있어서,The method of claim 2,
    상기 전압공급부는 상기 감시장치에 의해 상기 장애가 감지되지 않은 경우에 상기 공급되는 전압을 미리 결정된 단위로 증가시키는 것을 특징으로 하는 광전케이블집합체의 장애감시시스템.And the voltage supply unit increases the supplied voltage by a predetermined unit when the failure is not detected by the monitoring device.
  5. 제1항에 있어서,The method of claim 1,
    상기 감시장치는The monitoring device
    상기 광섬유에 감시광을 입사하고 산란된 상기 감시광을 수신하는 OTDR; 및An OTDR for injecting surveillance light into the optical fiber and receiving scattered surveillance light; And
    상기 수신된 감시광의 파형을 해석하여 장애발생여부 및 상기 장애가 발생한 위치를 감지하는 해석장치;를 구비하는 것을 특징으로 하는 광전케이블집합체의 장애감시시스템.And an analysis device for analyzing whether the failure occurs and detecting a location of the failure by analyzing the waveform of the received monitoring light.
  6. 제5항에 있어서,The method of claim 5,
    상기 OTDR은 상기 광섬유로 상대적으로 좁은 대역의 파장을 가지는 감시광을 입사시키는 것을 특징으로 하는 광전케이블집합체의 장애감시시스템.The OTDR is a failure monitoring system for the optical cable assembly, characterized in that for entering the monitoring light having a relatively narrow band wavelength to the optical fiber.
  7. 제5항에 있어서,The method of claim 5,
    상기 해석장치는 상기 전력선유닛에서 발생하는 음향신호에 의해 상기 광섬유에서 수신된 상기 감시광의 세기변화를 감지하여 상기 세기변화가 미리 결정된 기준치 이상인 경우에 상기 장애가 발생한 것으로 판단하는 것을 특징으로 하는 광전케이블집합체의 장애감시시스템.The analyzing apparatus detects a change in intensity of the monitoring light received from the optical fiber by an acoustic signal generated by the power line unit, and determines that the failure occurs when the change in intensity exceeds a predetermined reference value. Fault monitoring system.
  8. 제7항에 있어서,The method of claim 7, wherein
    상기 해석장치에는 상기 광전케이블집합체를 설치하는 경우에 상기 광전케이블집합체의 거리와 상기 광섬유유닛의 거리의 상대적인 관계를 나타내는 거리정보가 저장되며, 상기 장애가 발생한 경우에 상기 광섬유유닛에서 판단된 거리를 상기 거리정보에 따라 상기 광전케이블집합체의 거리로 환산하는 것을 특징으로 하는 광전케이블집합체의 장애감시시스템.The analysis apparatus stores distance information indicating a relative relationship between the distance of the photoelectric cable assembly and the distance of the optical fiber unit when the optical cable assembly is installed, and the distance determined by the optical fiber unit when the failure occurs. Disability monitoring system for an optical cable assembly, characterized in that converted to the distance of the optical cable assembly according to the distance information.
  9. 제1항에 있어서,The method of claim 1,
    상기 광섬유유닛과 전력선유닛은 광전복합케이블을 형성하는 것을 특징으로 하는 광전케이블집합체의 장애감시시스템.And the optical fiber unit and the power line unit form a photoelectric composite cable.
  10. 도체를 구비하는 전력선유닛과, 상기 전력선유닛과 인접하여 구비되며 하나 이상의 광섬유를 구비하는 광섬유유닛을 구비하는 광전케이블집합체의 장애감시방법에 있어서,In the fault monitoring method of the photoelectric cable assembly comprising a power line unit having a conductor and an optical fiber unit provided adjacent to the power line unit and having at least one optical fiber,
    상기 전력선유닛의 도체로 전압을 인가하는 단계;Applying a voltage to a conductor of the power line unit;
    상기 전력선유닛에서 발생하는 음향신호를 감지하도록 상기 광섬유유닛으로 감시광을 입사시키고 산란된 상기 감시광을 수신하는 단계;Injecting monitoring light into the optical fiber unit and detecting the scattered monitoring light to detect an acoustic signal generated by the power line unit;
    상기 산란된 감시광의 파형을 분석하여 상기 전력선 유닛의 장애발생여부를 판단하는 단계; 및Analyzing the waveform of the scattered monitoring light to determine whether the power line unit has a failure; And
    상기 장애가 발생한 것으로 판단되는 경우에 상기 장애발생위치를 감지하는 단계를 포함하는 것을 특징으로 하는 광전케이블집합체의 장애감시방법.And detecting the failure location when the failure is determined to occur.
  11. 제10항에 있어서,The method of claim 10,
    상기 전력선유닛의 도체로 공급되는 전압 초기값을 설정하는 단계를 더 구비하는 것을 특징으로 하는 광전케이블집합체의 장애감시방법.And setting a voltage initial value supplied to the conductor of the power line unit.
  12. 제11항에 있어서,The method of claim 11,
    상기 장애가 발생하지 않은 것으로 판단되는 경우에 상기 전력선유닛의 도체로 인가되는 전압을 미리 결정된 단위로 증가시키는 단계를 더 구비하는 것을 특징으로 하는 광전케이블집합체의 장애감시방법.And if it is determined that the failure does not occur, increasing the voltage applied to the conductor of the power line unit in a predetermined unit.
  13. 제10항에 있어서,The method of claim 10,
    상기 전력선유닛의 도체로 전압을 인가하는 단계는The step of applying a voltage to the conductor of the power line unit
    상기 전력선유닛의 도체로 미리 결정된 패턴을 가지는 전압을 공급하는 것을 특징으로 하는 광전케이블집합체의 장애감시방법.And a voltage having a predetermined pattern is supplied to the conductor of the power line unit.
  14. 제13항에 있어서,The method of claim 13,
    상기 전력선유닛의 도체로 전압을 인가하는 단계는The step of applying a voltage to the conductor of the power line unit
    미리 결정된 제1 전압값에 비해 상대적으로 큰 값을 가지는 제2 전압값에 해당하는 파형을 단속적으로 공급하는 것을 특징으로 하는 광전케이블집합체의 장애감시방법.A method for monitoring a failure of an opto-optic cable assembly, characterized in that an intermittent supply of a waveform corresponding to a second voltage value having a relatively larger value than a first predetermined voltage value is performed.
  15. 제10항에 있어서,The method of claim 10,
    상기 장애 발생여부를 판단하는 단계는Determining whether or not the failure occurs
    상기 수신된 감시광의 파형을 해석하여 장애발생여부를 판단하는 것을 특징으로 하는 광전케이블집합체의 장애감시방법.And analyzing the waveform of the received monitoring light to determine whether a failure occurs.
  16. 제15항에 있어서,The method of claim 15,
    상기 광섬유로 상대적으로 좁은 대역의 파장을 가지는 감시광을 입사시키는 것을 특징으로 하는 광전케이블집합체의 장애감시방법.And monitoring light having a relatively narrow band of wavelengths into said optical fiber.
  17. 제16항에 있어서,The method of claim 16,
    상기 장애 발생여부를 판단하는 단계는Determining whether or not the failure occurs
    상기 수신된 감시광의 위상변화에 의한 세기변화를 감지하여 상기 세기변화가 미리 결정된 기준치 이상인 경우에 상기 장애가 발생한 것으로 판단하는 것을 특징으로 하는 광전케이블집합체의 장애감시방법.And detecting a change in intensity due to a phase change of the received monitoring light and determining that the failure has occurred when the change in intensity is greater than or equal to a predetermined reference value.
  18. 제10항에 있어서,The method of claim 10,
    상기 광전케이블집합체를 설치하는 경우에 상기 광전케이블집합체의 거리와 상기 광섬유유닛의 거리의 상대적인 관계를 도시한 거리정보가 미리 저장되는 단계를 더 포함하고,In the case of installing the opto-optic cable assembly further comprises the step of storing in advance the distance information showing the relative relationship between the distance of the photoelectric cable assembly and the distance of the optical fiber unit,
    상기 장애가 발생한 위치를 감지하는 경우에 상기 광섬유유닛에서 판단된 거리를 상기 거리정보에 따라 상기 광전케이블집합체의 거리로 환산하는 것을 특징으로 하는 광전케이블집합체의 장애감시방법.And detecting the distance determined by the optical fiber unit to the distance of the photoelectric cable assembly according to the distance information when detecting the location of the failure.
  19. 제10항에 있어서,The method of claim 10,
    상기 광섬유유닛과 전력선유닛은 광전복합케이블을 형성하는 것을 특징으로 하는 광전케이블집합체의 장애감시방법.And the optical fiber unit and the power line unit form a photoelectric composite cable.
PCT/KR2015/005462 2014-08-19 2015-06-01 Failure monitoring system and failure monitoring method for optoelectronic cable assembly WO2016027966A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2014-0107489 2014-08-19
KR20140107489 2014-08-19
KR10-2014-0166223 2014-11-26
KR1020140166223A KR102244743B1 (en) 2014-08-19 2014-11-26 Monitoring system for optical fiber and power line aggregated cable and monitoring method therefor

Publications (1)

Publication Number Publication Date
WO2016027966A1 true WO2016027966A1 (en) 2016-02-25

Family

ID=55350886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/005462 WO2016027966A1 (en) 2014-08-19 2015-06-01 Failure monitoring system and failure monitoring method for optoelectronic cable assembly

Country Status (1)

Country Link
WO (1) WO2016027966A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066404A1 (en) * 2022-09-29 2024-04-04 华为技术有限公司 Optical cable sag recognition method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038079A1 (en) * 2008-08-15 2010-02-18 Schlumberger Technology Corporation Determining a status in a wellbore based on acoustic events detected by an optical fiber mechanism
KR100983561B1 (en) * 2009-10-30 2010-09-27 한국전력공사 System and method for fault location search in sea cable
US20120006117A1 (en) * 2010-07-10 2012-01-12 Kordon Ulrich Method and Apparatus for Locating Cable Faults
JP2013079906A (en) * 2011-10-05 2013-05-02 Neubrex Co Ltd Distribution type optical fiber acoustic wave detection device
KR20140052439A (en) * 2012-10-24 2014-05-07 엘에스전선 주식회사 Optical line monitoring device, optical line monitoring system having the same and controlling method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100038079A1 (en) * 2008-08-15 2010-02-18 Schlumberger Technology Corporation Determining a status in a wellbore based on acoustic events detected by an optical fiber mechanism
KR100983561B1 (en) * 2009-10-30 2010-09-27 한국전력공사 System and method for fault location search in sea cable
US20120006117A1 (en) * 2010-07-10 2012-01-12 Kordon Ulrich Method and Apparatus for Locating Cable Faults
JP2013079906A (en) * 2011-10-05 2013-05-02 Neubrex Co Ltd Distribution type optical fiber acoustic wave detection device
KR20140052439A (en) * 2012-10-24 2014-05-07 엘에스전선 주식회사 Optical line monitoring device, optical line monitoring system having the same and controlling method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066404A1 (en) * 2022-09-29 2024-04-04 华为技术有限公司 Optical cable sag recognition method and device

Similar Documents

Publication Publication Date Title
JP2898549B2 (en) Device for detecting occurrence of optical fiber disturbance
US7389010B2 (en) Method and apparatus for monitoring the security of an optical cable link during installation
WO2011052890A2 (en) System and method for detecting location of a fault in an undersea cable
US10139433B2 (en) Method of measuring current distribution in high and medium voltage cables
WO2016178447A1 (en) Cable fault diagnosing method and system
US10784969B2 (en) Secured fiber link system
WO2020060305A1 (en) Apparatus for detecting fault location of underground cable, and method therefor
WO2010041806A1 (en) Pipeline monitoring system and method
WO2015199266A1 (en) Optical communication line monitoring apparatus and method
WO2012036338A1 (en) Apparatus and method for monitoring an underground optical composite power distribution cable
US11789060B2 (en) Grounded socket and method for insulation fault location in an ungrounded power supply system including insulation monitoring
WO2016027966A1 (en) Failure monitoring system and failure monitoring method for optoelectronic cable assembly
KR20130003424A (en) System and method for detecting fault point of electrical power transmission line
CN111095704B (en) Cable auxiliary equipment and submarine cable auxiliary system
KR102258907B1 (en) Monitoring system for optical fiber and power line aggregated cable and monitoring method therefor
KR102244743B1 (en) Monitoring system for optical fiber and power line aggregated cable and monitoring method therefor
JP5344673B2 (en) Wired distribution line remote monitoring control cable fault point or route search device
WO2013176505A1 (en) Optical line monitoring device, optical line monitoring system including the optical line monitoring device, and method of controlling the optical line monitoring system
Cen et al. Advanced fault-monitoring scheme for ring-based long-reach optical access networks
CN104901262A (en) Insulating bush and switching cabinet
CN111863332A (en) Intelligent loss measuring cable
JPH0340280B2 (en)
KR20150012758A (en) Monitoring system for installing submarine cable and monitoring method for installing submarine cable
CN220290299U (en) Auxiliary alarm device for cable bridge
KR100219320B1 (en) Cable bonding examining apparatus with direct touching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15834117

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15834117

Country of ref document: EP

Kind code of ref document: A1