WO2016027872A1 - Solar heat collection system - Google Patents

Solar heat collection system Download PDF

Info

Publication number
WO2016027872A1
WO2016027872A1 PCT/JP2015/073443 JP2015073443W WO2016027872A1 WO 2016027872 A1 WO2016027872 A1 WO 2016027872A1 JP 2015073443 W JP2015073443 W JP 2015073443W WO 2016027872 A1 WO2016027872 A1 WO 2016027872A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
oil
heated
temperature
heating unit
Prior art date
Application number
PCT/JP2015/073443
Other languages
French (fr)
Japanese (ja)
Inventor
実 湯浅
Original Assignee
千代田化工建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千代田化工建設株式会社 filed Critical 千代田化工建設株式会社
Publication of WO2016027872A1 publication Critical patent/WO2016027872A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • F24S60/30Arrangements for storing heat collected by solar heat collectors storing heat in liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/06Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being molten; Use of molten metal, e.g. zinc, as heat transfer medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/16Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the present invention relates to a solar heat collecting system for collecting solar heat.
  • solar thermal power generation called a trough type
  • sunlight is collected by a trough-shaped mirror surface
  • solar heat is absorbed by a heat medium that circulates inside the heat collecting tube.
  • the power generation is generally performed by a steam turbine that generates steam with a heat medium.
  • a method of generating steam with a heat medium and generating power with a steam turbine is a heat cycle called a Rankine cycle, and the conversion efficiency from heat to power increases as the pressure and temperature of the generated steam increase.
  • FIG. 4 is a diagram showing a schematic configuration of a solar thermal power generation system using one type of heat medium conventionally used.
  • the solar thermal power generation system includes a solar heat collection part A, a heat storage part B, and a power generation part C.
  • the solar heat collector A has a molten salt collector 1.
  • the molten salt collector 1 includes a heat collecting tube through which a molten salt (for example, a mixture of sodium nitrate and potassium nitrate) circulates, and a high temperature (for example, about 550 ° C.) heated by solar heat collected by the heat collecting tube.
  • a molten salt for example, a mixture of sodium nitrate and potassium nitrate
  • the heat storage unit B has a high-temperature molten salt tank 2 and a low-temperature molten salt tank 5.
  • a water circulation passage 15 is formed from the steam turbine 10 through the condenser 11, the feed water pump 12, the boiler feed water preheating system 13, and the steam generator 4 to return to the steam turbine 10.
  • the water pressurized by the feed water pump 12 is supplied to the steam generator 4 through the boiler feed water preheating system 13.
  • the supplied water is heated by the steam generator 4 and changed to steam.
  • the steam flows from the high pressure side of the steam turbine 10, expands inside the steam turbine 10, and decreases in pressure and temperature as it goes toward the low pressure side of the steam turbine 10.
  • the rotating shaft of the steam turbine 10 rotated by the expanding steam is connected to a generator (not shown), and the shaft power of the rotating shaft is transmitted to the generator to generate power.
  • a steam generation system of a solar thermal power generation system includes a solar heat collection system that collects solar heat and heats a heat medium.
  • This steam generation system includes a first heating unit that heats the molten salt with the collected solar heat, and a second heating unit that heats the synthetic oil with the collected solar heat. Then, water or steam is heated by a steam generator by the heat of the synthetic oil heated by the second heating unit, and this heated water or steam is further heated by the heat of the molten salt heated by the first heating unit. I am doing so.
  • a heating medium such as a molten salt is used to generate steam at about 550 ° C.
  • the molten salt is solidified at around 200 ° C to 250 ° C, the molten salt becomes low temperature at the start-up or shutdown of the plant (solar thermal power generation system), causing the problem of solidification clogging in the heat medium circulation system. It is necessary to take measures such as heating.
  • general hot oil synthetic oil
  • as a heat medium does not solidify even at room temperature, so there is no problem like a molten salt, but there is an upper limit to the use temperature.
  • hot oil having the highest use temperature has a limit of 400 ° C., and if it is used at a temperature higher than that, problems such as decomposition and alteration occur. For this reason, when hot oil is used in place of the molten salt, if the inlet temperature of the steam turbine 10 decreases from 550 ° C. to 400 ° C. by 150 ° C., the most important power generation efficiency as a power plant is greatly reduced. The problem also arises. In other words, when a system using only one kind of heat medium is used, the upper limit of the operating temperature is disadvantageous with hot oil, and the problem of blockage of the flow path due to solidification occurs with molten salt. In addition, since the temperature of the molten salt becomes very high, the molten salt storage tank requires special devices and materials.
  • Patent Document 1 has a problem that it is necessary to prepare heat storage equipment necessary for continuously generating power at night with both molten salt and synthetic oil.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a highly efficient solar heat collection system while reducing the solidification of the molten salt by reducing the use range of the molten salt. .
  • a solar heat collecting system is a solar heat collecting system including a molten salt heating unit that heats molten salt by solar heat and an oil heating unit that heats oil by solar heat.
  • a molten salt preheating unit for preheating the molten salt is provided, The molten salt preheated by the molten salt preheating part is heated by the molten salt heating part.
  • the molten salt is preheated in the molten salt preheating part by performing heat exchange between the oil heated by the oil heating part and the molten salt before being heated by the molten salt heating part. Since the preheated molten salt is heated by the molten salt heating unit, that is, the oil heated by solar heat is used for heating the molten salt, the thermal energy required for heating in the molten salt heating unit Can be reduced. Accordingly, it is possible to reduce measures for solidification of the molten salt, and it is not necessary to add a heat storage facility for oil (synthetic oil), so that the facility cost can be reduced as a whole.
  • the high-temperature molten salt tank that stores the high-temperature molten salt heated by the molten salt heating unit, and the low-temperature molten salt tank that stores the molten salt used for heating the heated portion Supplying molten salt stored in the high-temperature molten salt tank to the heated portion;
  • the molten salt stored in the low-temperature molten salt tank may be supplied to the molten salt preheating unit.
  • the molten salt stored in the high-temperature molten salt tank is supplied to a heated portion (for example, a steam generating portion that generates water by heating water using the heat of the molten salt). Therefore, high temperature molten salt can be stably supplied to a heated part. Therefore, it is possible to stably generate steam at the steam generating unit.
  • a heated portion for example, a steam generating portion that generates water by heating water using the heat of the molten salt. Therefore, high temperature molten salt can be stably supplied to a heated part. Therefore, it is possible to stably generate steam at the steam generating unit.
  • the molten salt circulation which circulates molten salt to the said molten salt heating part, the said high temperature molten salt tank, the said to-be-heated part, the said low temperature molten salt tank, and the said molten salt preheating part in these order A flow path;
  • a molten salt bypass passage for circulating and circulating the molten salt from the molten salt heating section to the low-temperature molten salt tank;
  • the molten salt heating unit and the oil heating unit are in a non-operating state at night and during a rest period
  • the molten salt is circulated through the molten salt bypass channel by the molten salt channel switching means.
  • FIG. 1 is a schematic configuration diagram of a solar power generation system including a steam generation system having the solar heat collection system of the present embodiment.
  • the configuration of the power generation unit and the heat storage unit is the same as that of the conventional solar thermal power generation system shown in FIG. 4, and therefore the same components are denoted by the same reference numerals and the description thereof is omitted or simplified. .
  • the steam generation system having the solar heat collection system of the present embodiment includes a molten salt collector (molten salt heating unit) 1 that heats molten salt by the collected solar heat, and heats oil by the collected solar heat.
  • An oil collector (oil heating part) 21 for generating steam and a steam generator (steam generating part) 4 for generating steam are provided.
  • the molten salt collector 1 collects solar heat (radiant heat) by collecting sunlight and heats the molten salt, and the oil collector 21 collects solar heat by collecting sunlight. (Radiant heat) is collected to heat the synthetic oil.
  • the steam generator 4 performs heat exchange between the heated high-temperature molten salt and the water flowing through the water circulation passage 15, that is, changes water into steam by heating the water with the heat of the molten salt. .
  • the solar heat collector A includes a molten salt preheater (molten salt preheater) 22 for preheating the molten salt, and the synthetic oil heated by the oil collector 21 and the molten salt collector 1 After exchanging heat with the molten salt before being heated, the molten salt preheated by the molten salt preheater 22 is heated by the molten salt collector 1, and the heat of the heated high temperature molten salt is obtained. Thus, steam is generated in the steam generating section 4.
  • molten salt preheater 22 for preheating the molten salt
  • the synthetic oil heated by the oil collector 21 and the molten salt collector 1 After exchanging heat with the molten salt before being heated, the molten salt preheated by the molten salt preheater 22 is heated by the molten salt collector 1, and the heat of the heated high temperature molten salt is obtained.
  • steam is generated in the steam generating section 4.
  • the molten salt is preheated by exchanging heat between the synthetic oil heated by the collected solar heat and the molten salt before being heated by the collected solar heat, and this preheated molten
  • the salt is heated by the collected solar heat, and steam is generated by the heat of the heated molten salt.
  • the solar heat collection system of the present invention introduces the molten salt into the molten salt collector 1. Since the molten salt to be heated is heated by the molten salt preheater (molten salt preheating unit) 22, less heat energy is required in the molten salt collector 1. Thereby, it is possible to reduce the molten salt collector 1, and accordingly, it is possible to reduce the equipment and operating costs necessary for solidified clogging of the molten salt in the molten salt collector 1.
  • the steam generation system of this Embodiment is utilized for steam generation by the high temperature molten salt tank 2 which stores the high temperature molten salt heated by the molten salt collector 1, and the steam generator 4, and temperature falls.
  • a low-temperature molten salt tank 5 for storing the molten salt.
  • the molten salt collector 1, the high temperature molten salt tank 2, the steam generator 4, the low temperature molten salt tank 5, and the molten salt preheater 22 are connected by a molten salt circulation channel 25.
  • the molten salt circulates in the order of the molten salt collector 1, the high temperature molten salt tank 2, the steam generator 4, the low temperature molten salt tank 5, the molten salt preheater 22, and the molten salt collector 1. .
  • a pump 3 is provided in the molten salt circulation passage 25 between the high temperature molten salt tank 2 and the steam generator 4, and the molten salt is supplied from the high temperature molten salt tank 2 to the steam generator 4 by this pump 3. Further, the molten salt is supplied from the steam generator 4 toward the low-temperature molten salt tank 5.
  • a pump 23 is provided in the molten salt circulation passage 25 between the low-temperature molten salt tank 5 and the molten salt preheater 22, and the pump 23 causes the molten salt preheater to move from the low-temperature molten salt tank 5. 22 is supplied with molten salt.
  • the pump 23 supplies the molten salt preheated from the molten salt preheater 22 to the molten salt collector 1. Furthermore, high-temperature molten salt is supplied from the molten salt collector 1 to the high-temperature molten salt tank 2 by the pump 23. Further, when a valve 28 described later is closed and the valve 29 is opened, the molten salt is supplied from the molten salt collector 1 to the low-temperature molten salt tank 5 by the pump 23.
  • the steam generation system of the present embodiment includes a molten salt bypass passage 26 for circulating the molten salt from the molten salt collector 1 to the low-temperature molten salt tank 5, and further includes the molten salt collector 1 and the oil collector.
  • a molten salt bypass passage 26 for circulating the molten salt from the molten salt collector 1 to the low-temperature molten salt tank 5, and further includes the molten salt collector 1 and the oil collector.
  • the molten salt flow path switching means 27 includes a valve 28 and a valve 29.
  • the valve 28 is provided in the middle of the molten salt circulation passage 25a between the molten salt collector 1 and the high temperature molten salt tank 2, and is constituted by, for example, an electromagnetic valve.
  • the valve 29 is provided in the middle of the molten salt bypass channel 26, and is configured by, for example, an electromagnetic valve.
  • the steam generation system of the present embodiment includes an oil circulation passage 30 that circulates synthetic oil between the oil collector 21 and the molten salt preheater 22.
  • the oil circulation passage 30 is provided with a synthetic oil expansion tank 31 and a pump 32.
  • the synthetic oil expansion tank 31 is provided in order to absorb the change in the volume of the synthetic oil flowing through the oil circulation passage 30 due to the temperature change.
  • the pump 32 circulates synthetic oil through the oil circulation passage 30.
  • the steam generation system of the present embodiment includes an oil bypass passage 33 that circulates the oil flowing through the oil circulation passage 30 by bypassing it with respect to the molten salt preheater 22.
  • This oil bypass channel 33 is an oil in the middle of the oil circulation channel 30 between the oil collector 21 and the molten salt preheater 22 and between the molten salt preheater 22 and the synthetic oil expansion tank 31. It is provided so as to connect with the middle of the circulation channel 30.
  • an oil flow path switching means 34 that circulates oil through the oil bypass flow path 33 is provided.
  • the oil flow path switching unit 34 includes a valve 35 and a valve 36.
  • the valve 35 is provided in the middle of the oil circulation passage 30 between the oil collector 21 and the molten salt preheater 22, and is constituted by, for example, an electromagnetic valve.
  • the valve 36 is provided in the middle of the oil bypass flow path 33, and is configured by, for example, an electromagnetic valve.
  • the valve 35 When the molten salt collector 1 and the oil collector 21 are in an operating state during daylight, such as in the daytime, the valve 35 is opened and the valve 36 is closed, whereby the synthetic oil is supplied to the oil circulation channel. 30 to circulate.
  • the valve 35 when the temperature of the oil is lower than the molten salt, such as when the molten salt collector 1 and the oil collector 21 are not in operation, etc., during non-sunshine hours such as at night or during a rest period, the valve 35 is closed. By opening the valve 36, the synthetic oil is circulated through the oil bypass passage 33 and circulated to prevent the temperature of the molten salt from decreasing due to heat exchange between the oil and the molten salt.
  • the pipe 25 a constituting the channel from the molten salt collector 1 to the high temperature molten salt tank 2 and the high temperature molten salt tank 2 are used.
  • the pipe 25b constituting the flow path to the steam generator 4 is made of a material that can withstand a high temperature up to about 600 ° C.
  • the pipe constituting the other flow path including the oil circulation flow path 30 is about 400 ° C. It is made of a material that can withstand high temperatures up to.
  • the operation pattern of the steam generation system of the present embodiment described above will be described.
  • the valve 28 of the molten salt flow path switching means 27 is opened and the valve 29 is In addition to closing, the valve 35 of the oil flow path switching means 34 is opened and the valve 36 is closed.
  • the pumps 3, 23 and 32 are started.
  • the molten salt circulates through the molten salt circulation passage 25 and the synthetic oil circulates through the oil circulation passage 30.
  • the molten salt before being heated by the molten salt collector 1 are heat-exchanged by the molten salt preheater 22.
  • the molten salt is preheated to about 390 ° C.
  • the preheated molten salt is further heated to about 550 ° C. by the molten salt collector 1, and the heated molten salt is stored in the high temperature molten salt tank 2.
  • a predetermined amount of high-temperature (for example, about 550 ° C.) molten salt is stored and kept in the high-temperature molten salt tank 2, and this molten salt is supplied to the steam generator 4 by the pump 3, and this high-temperature molten salt is stored. Steam is generated by the steam generator 4 by the heat of the salt.
  • the flow rate of the molten salt supplied from the molten salt collector 1 is larger than the flow rate of the molten salt sent out from the high-temperature molten salt tank 2. Therefore, the high-temperature molten salt stored in the high-temperature molten salt tank 2 increases. However, when the amount of the high-temperature molten salt stored in the high-temperature molten salt tank reaches the maximum value, an amount of molten salt corresponding to the flow rate of the molten salt sent out from the high-temperature molten salt tank 2 is molten salt collecting heat. Supplied from the vessel 1.
  • the molten salt which is used for generating steam by the steam generator 4 and whose temperature is reduced to about 290 ° C., for example, is stored in the low-temperature molten salt tank 5.
  • a predetermined amount of low-temperature (for example, about 290 ° C.) molten salt is stored and kept in this low-temperature molten salt tank 5, and this molten salt is supplied to the molten salt preheater 22 by the pump 23. That is, when the molten salt before being heated by the molten salt collector 1 and the oil heated to about 400 ° C. by the oil collector 21 are heat-exchanged by the molten salt heater 22, the molten salt becomes Preheated to about 390 ° C.
  • a molten salt having a flow rate smaller than the flow rate of the molten salt sent out from the low-temperature molten salt tank 5 is supplied from the steam generator 4 side. Therefore, the low temperature molten salt stored in the low temperature molten salt tank 5 decreases. However, when the amount of the low-temperature molten salt stored in the low-temperature molten salt tank becomes the minimum value, an amount of molten salt corresponding to the flow rate of the molten salt delivered from the low-temperature molten salt tank 5 is generated in the steam generator. Supplied from the 4th side.
  • the molten salt collector 1 and the oil collector 21 are in operation during daylight or the like, synthesis is performed by the molten salt preheater 22 while circulating the molten salt through the molten salt circulation passage 25.
  • the molten salt is preheated using the heat of oil, further heated by the molten salt collector 1, stored in the high temperature molten salt tank 2, and the molten salt stored in the high temperature molten salt tank 2 is generated as steam. Since the high temperature molten salt is stably supplied to the steam generator 4, the high temperature molten salt for continuing the generation of steam during non-sunshine such as at night can be stored. Therefore, steam can be stably generated by the steam generator 4.
  • the valve 29 is opened, the valve 35 of the oil flow switching means 34 is closed, and the valve 36 is opened.
  • the high-temperature molten salt stored in the high-temperature molten salt tank 2 is supplied from the high-temperature molten salt tank 2 to the steam generator 4 by the pump 3, and steam is generated by the steam generator 4 by the heat of the high-temperature molten salt. .
  • the steam generator 4 can continue to generate steam until the high-temperature molten salt stored in the high-temperature molten salt tank 2 disappears. .
  • the molten salt that has been used for generating steam by the steam generator 4 and whose temperature has been lowered is stored in the low-temperature molten salt tank 5.
  • a predetermined amount of low-temperature (for example, about 290 ° C.) molten salt is stored in the low-temperature molten salt tank 5, and this molten salt is supplied to the molten salt preheater 22 by the pump 23, and the molten salt collector 1 And flows through the molten salt bypass passage 26 and returns to the low-temperature molten salt tank 5. That is, during non-sunshine such as at night, the molten salt stored in the low-temperature molten salt tank 5 flows through the molten salt bypass passage 26 and circulates.
  • the circulating molten salt is maintained at a temperature of, for example, 290 ° C. by a heater or the like (not shown). Further, since the synthetic oil circulates through the oil bypass passage 33 and is not supplied to the molten salt preheater 22, there is no heat exchange between the molten salt and the low temperature oil, and the molten salt during non-sunshine such as at night. Can be suppressed.
  • the molten salt preheater 22 between the oil heated by the oil collector 21 and the molten salt before being heated by the molten salt collector 1.
  • the molten salt is preheated by the molten salt preheater 22, and the preheated molten salt is heated by the molten salt collector 1, that is, heated by the oil collector 21. Since the oil is used for heating the molten salt, the range of use of the molten salt required in the molten salt collector 1 can be reduced.
  • about 40% of the solar field can be replaced with oil (synthetic oil), so it is possible to reduce the solidification measures of the molten salt.
  • synthetic oil synthetic oil
  • the high-temperature molten salt stored in the high-temperature molten salt tank 2 is supplied to the steam generator 4, the high-temperature molten salt can be stably supplied to the steam generator 4. Therefore, steam can be stably generated by the steam generator 4.
  • the molten salt collector 1 and the oil collector 21 are not in operation during non-sunlight such as at night or during a rest period, the molten salt is switched by the molten salt channel switching means 27.
  • the oil is circulated through the oil bypass passage 33 and circulated by the oil passage switching means 34, so that the heat exchange between the molten salt and the low-temperature oil does not occur. Accordingly, it is possible to reduce heat loss during non-sunshine such as at night or during a rest period, and it is possible to reduce the load of measures for solidifying molten salt.
  • a pipe 25a constituting a flow path from the molten salt collector 1 to the high temperature molten salt tank 2 and a flow path from the high temperature molten salt tank 2 to the steam generator 4 are constituted.
  • the piping 25b to be formed is made of a material that can withstand high temperatures up to about 600 ° C.
  • the piping that constitutes the other channels including the oil circulation channel 30 is made of a material that can withstand high temperatures up to about 400 ° C. Therefore, the cost for piping can be reduced.
  • the heat collected by the solar heat collection system may be used in addition to power generation, and may be used in addition to steam generation.
  • heated molten salt or oil may be supplied to devices that require heat in various industries, or heated molten salt or oil is supplied to a reactor in which a chemical reaction that requires heating is performed. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

 Provided is a high-efficiency solar heat collection system in which the solidification of molten salt is made easier to address by reducing the extent to which molten salt is used. Heat is exchanged between molten salt prior to being heated by a molten salt heat collector 1 and synthetic oil heated by an oil heat collector 21, whereby the molten salt is preheated in a molten salt preheater 22. Because the preheated molten salt is heated by the molten salt heat collector 1; i.e., the oil heated by solar heat is used to heat the molten salt, heat energy collected by the molten salt heat collector 1 can be reduced. This makes it easier to address molten salt solidification, and obviates having to supply oil heated by an oil heater to a water vapor generator (heated part), thus eliminating the need for a tank to store the heat of the synthetic oil, and making it possible to commensurately reduce overall facility costs and reduce heat loss during downtime and non-sunshine periods such as nighttime.

Description

太陽熱集熱システムSolar heat collection system
 本発明は、太陽熱を集熱する太陽熱集熱システムに関する。 The present invention relates to a solar heat collecting system for collecting solar heat.
 石化燃料の消費削減やCO排出量削減問題を解決する手段の1つとして、太陽熱による発電の利用が考えられている。トラフ型と呼ばれる太陽熱発電では、トラフ形状の鏡面により太陽光を集め、集熱管内部を流通する熱媒に太陽熱を吸収させる。発電は、熱媒により水蒸気を発生させ、蒸気タービンで行う方式が一般的である。
 熱媒により水蒸気を発生させて蒸気タービンで発電する方式は、ランキンサイクルと呼ばれる熱サイクルであり、熱からの動力への変換効率は、発生させる蒸気の圧力と温度が高いほど大きくなる。
As one of means for solving the problem of reducing consumption of fossil fuels and CO 2 emissions, the use of power generation by solar heat is considered. In solar thermal power generation called a trough type, sunlight is collected by a trough-shaped mirror surface, and solar heat is absorbed by a heat medium that circulates inside the heat collecting tube. The power generation is generally performed by a steam turbine that generates steam with a heat medium.
A method of generating steam with a heat medium and generating power with a steam turbine is a heat cycle called a Rankine cycle, and the conversion efficiency from heat to power increases as the pressure and temperature of the generated steam increase.
 図4は、従来から行われている1種類の熱媒を用いた太陽熱発電システムの概略構成を示す図である。図4に示すように太陽熱発電システムは、太陽熱集熱部A、蓄熱部Bおよび発電部Cを備えている。
 太陽熱集熱部Aは溶融塩集熱器1を有している。この溶融塩集熱器1は、溶融塩(例えば硝酸ナトリウムと硝酸カリウムとの混合物)が流通する集熱管を備えており、この集熱管によって集熱された太陽熱によって加熱された高温(例えば550℃程度)の溶融塩は高温溶融塩タンク2に貯留されて蓄熱され、この貯留された高温の溶融塩はポンプ3によって蒸気発生器4に供給される。
 蒸気発生器4で熱交換に利用された後の低温(例えば290℃程度)の溶融塩は、低温溶融塩タンク5に貯留され、この貯留された低温の溶融塩はポンプ6によって、溶融塩集熱器1に供給され、この溶融塩集熱器1で加熱される。なお、蓄熱部Bは高温溶融塩タンク2および低温溶融塩タンク5を有している。
FIG. 4 is a diagram showing a schematic configuration of a solar thermal power generation system using one type of heat medium conventionally used. As shown in FIG. 4, the solar thermal power generation system includes a solar heat collection part A, a heat storage part B, and a power generation part C.
The solar heat collector A has a molten salt collector 1. The molten salt collector 1 includes a heat collecting tube through which a molten salt (for example, a mixture of sodium nitrate and potassium nitrate) circulates, and a high temperature (for example, about 550 ° C.) heated by solar heat collected by the heat collecting tube. ) Is stored in the high-temperature molten salt tank 2 to store heat, and the stored high-temperature molten salt is supplied to the steam generator 4 by the pump 3.
The low-temperature (for example, about 290 ° C.) molten salt after being used for heat exchange in the steam generator 4 is stored in the low-temperature molten salt tank 5, and the stored low-temperature molten salt is collected by the pump 6. It is supplied to the heater 1 and heated by the molten salt collector 1. The heat storage unit B has a high-temperature molten salt tank 2 and a low-temperature molten salt tank 5.
 一方、発電部Cにおいては、蒸気タービン10から、復水器11、給水ポンプ12、ボイラー給水予熱システム13、蒸気発生器4を経て、蒸気タービン10に戻る水循環流路15を構成している。
 給水ポンプ12で昇圧された水は、ボイラー給水予熱システム13を経て、蒸気発生器4へ供給される。供給された水は、蒸気発生器4で加熱され蒸気に変化する。
 この蒸気は、蒸気タービン10の高圧側から流入し、蒸気タービン10の内部にて膨張し、蒸気タービン10の低圧側に向かうにつれて、圧力および温度がともに低下する。膨張していく蒸気によって回転する蒸気タービン10の回転軸は、図示しない発電機に接続され、この回転軸の軸動力が発電機に伝達されて発電が行われる。
On the other hand, in the power generation unit C, a water circulation passage 15 is formed from the steam turbine 10 through the condenser 11, the feed water pump 12, the boiler feed water preheating system 13, and the steam generator 4 to return to the steam turbine 10.
The water pressurized by the feed water pump 12 is supplied to the steam generator 4 through the boiler feed water preheating system 13. The supplied water is heated by the steam generator 4 and changed to steam.
The steam flows from the high pressure side of the steam turbine 10, expands inside the steam turbine 10, and decreases in pressure and temperature as it goes toward the low pressure side of the steam turbine 10. The rotating shaft of the steam turbine 10 rotated by the expanding steam is connected to a generator (not shown), and the shaft power of the rotating shaft is transmitted to the generator to generate power.
 蒸気タービン10から排気されるタービン排気は、復水器11に流入する。タービン排気は、復水器11において冷却されて水になり、給水ポンプ12によって、ボイラー給水予熱システム13を経て、蒸気発生器4へ供給される。
 このように従来の太陽熱発電システムにおける水蒸気発生システムでは、1種類の熱媒(溶融塩)を用いて、蒸気を発生させている。太陽熱発電システムの蒸気発生システムは、太陽熱を集熱して熱媒を加熱する太陽熱集熱システムを備えている。
Turbine exhaust exhausted from the steam turbine 10 flows into the condenser 11. The turbine exhaust is cooled to water by the condenser 11 and supplied to the steam generator 4 by the feed water pump 12 through the boiler feed water preheating system 13.
Thus, in the steam generation system in the conventional solar thermal power generation system, steam is generated using one kind of heat medium (molten salt). A steam generation system of a solar thermal power generation system includes a solar heat collection system that collects solar heat and heats a heat medium.
 一方、溶融塩とホットオイル(合成油)の熱を利用した蒸気発生システムの一例として特許文献1に記載のものが知られている。この蒸気発生システムは、集熱された太陽熱で溶融塩を加熱する第1加熱部と、集熱された太陽熱で合成油を加熱する第2加熱部とを備えている。
 そして、第2加熱部で加熱された合成油の熱によって蒸気発生器で水または蒸気を加熱し、この加熱された水または蒸気をさらに第1加熱部で加熱された溶融塩の熱によって加熱するようにしている。
On the other hand, the thing of patent document 1 is known as an example of the steam generation system using the heat | fever of molten salt and hot oil (synthetic oil). This steam generation system includes a first heating unit that heats the molten salt with the collected solar heat, and a second heating unit that heats the synthetic oil with the collected solar heat.
Then, water or steam is heated by a steam generator by the heat of the synthetic oil heated by the second heating unit, and this heated water or steam is further heated by the heat of the molten salt heated by the first heating unit. I am doing so.
 ところで、図4に示すような太陽熱発電における蒸気発生システムにおいて、550℃程度の蒸気を発生させるために、溶融塩のような熱媒が用いられている。しかし、溶融塩は200℃~250℃程度で固化するため、プラント(太陽熱発電システム)のスタートアップ時やシャットダウン時に、溶融塩が低温となり、熱媒循環系で固化閉塞の問題が生じるので、電気ヒーターなどの加温対策を施す必要がある。
 一方、熱媒として一般的なホットオイル(合成油)は常温でも固化しないので、溶融塩のような問題は生じないが、使用温度に上限がある。現状、最も高い使用温度を持つホットオイルでも400℃が限界であり、それ以上の温度で使用すると、分解や変質などの問題が生じる。このため溶融塩に代えてホットオイルを使用した場合、蒸気タービン10の入口温度が550℃から400℃に150℃も下がってしまうと、発電プラントとして最も重要な発電効率が大幅に低下してしまうという問題も生じる。つまり、1種類の熱媒のみを用いたシステムとした場合、ホットオイルでは、使用温度上限が欠点となり、溶融塩では固化による流路の閉塞という問題が生じる。また、溶融塩はその温度が非常に高温になることから、溶融塩貯蔵タンクは材質、構造に特段の工夫を要することとなる。
By the way, in the steam generation system in the solar thermal power generation as shown in FIG. 4, a heating medium such as a molten salt is used to generate steam at about 550 ° C. However, since the molten salt is solidified at around 200 ° C to 250 ° C, the molten salt becomes low temperature at the start-up or shutdown of the plant (solar thermal power generation system), causing the problem of solidification clogging in the heat medium circulation system. It is necessary to take measures such as heating.
On the other hand, general hot oil (synthetic oil) as a heat medium does not solidify even at room temperature, so there is no problem like a molten salt, but there is an upper limit to the use temperature. At present, even hot oil having the highest use temperature has a limit of 400 ° C., and if it is used at a temperature higher than that, problems such as decomposition and alteration occur. For this reason, when hot oil is used in place of the molten salt, if the inlet temperature of the steam turbine 10 decreases from 550 ° C. to 400 ° C. by 150 ° C., the most important power generation efficiency as a power plant is greatly reduced. The problem also arises. In other words, when a system using only one kind of heat medium is used, the upper limit of the operating temperature is disadvantageous with hot oil, and the problem of blockage of the flow path due to solidification occurs with molten salt. In addition, since the temperature of the molten salt becomes very high, the molten salt storage tank requires special devices and materials.
 また、前記特許文献1に記載の蒸気発生システムでは、夜間に継続して発電するために必要な蓄熱設備を、溶融塩と合成油の双方で用意する必要があるという問題がある。 Also, the steam generation system described in Patent Document 1 has a problem that it is necessary to prepare heat storage equipment necessary for continuously generating power at night with both molten salt and synthetic oil.
特開2013-242070号公報JP 2013-242070 A
 本発明は、前記事情に鑑みてなされたもので、溶融塩の使用範囲を減少させることによって溶融塩の固化対策の軽減を図るとともに、高効率な太陽熱集熱システムを提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object thereof is to provide a highly efficient solar heat collection system while reducing the solidification of the molten salt by reducing the use range of the molten salt. .
 前記目的を達成するために本発明に係る太陽熱集熱システムは、太陽熱によって溶融塩を加熱する溶融塩加熱部と、太陽熱によって油を加熱する油加熱部とを備えた太陽熱集熱システムにおいて、
 前記油加熱部によって加熱された油と、前記溶融塩加熱部によって加熱される前の溶融塩との間で熱交換を行うことによって、当該溶融塩を予熱する溶融塩予熱部を備え、
 この溶融塩予熱部によって予熱された溶融塩を前記溶融塩加熱部によって加熱することを特徴とする。
In order to achieve the above object, a solar heat collecting system according to the present invention is a solar heat collecting system including a molten salt heating unit that heats molten salt by solar heat and an oil heating unit that heats oil by solar heat.
By performing heat exchange between the oil heated by the oil heating unit and the molten salt before being heated by the molten salt heating unit, a molten salt preheating unit for preheating the molten salt is provided,
The molten salt preheated by the molten salt preheating part is heated by the molten salt heating part.
 本発明においては、油加熱部によって加熱された油と、溶融塩加熱部によって加熱される前の溶融塩との間で熱交換を行うことによって、溶融塩予熱部で溶融塩を予熱し、この予熱された溶融塩を溶融塩加熱部によって加熱しているので、つまり、太陽熱により加熱された油を溶融塩の加熱に利用しているので、溶融塩加熱部で加熱に必要とされる熱エネルギーを小さくすることができる。
 したがって、溶融塩の固化対策の軽減を図ることができるとともに、油(合成油)の蓄熱設備を追加する必要が無いので、その分、全体として設備コストの削減を図ることができる。
In the present invention, the molten salt is preheated in the molten salt preheating part by performing heat exchange between the oil heated by the oil heating part and the molten salt before being heated by the molten salt heating part. Since the preheated molten salt is heated by the molten salt heating unit, that is, the oil heated by solar heat is used for heating the molten salt, the thermal energy required for heating in the molten salt heating unit Can be reduced.
Accordingly, it is possible to reduce measures for solidification of the molten salt, and it is not necessary to add a heat storage facility for oil (synthetic oil), so that the facility cost can be reduced as a whole.
 本発明の前記構成において、前記溶融塩加熱部によって加熱された高温溶融塩を貯留する高温溶融塩タンクと、被加熱部の加熱に利用された溶融塩を貯留する低温溶融塩タンクとを備え、
 前記高温溶融塩タンクに貯留されている溶融塩を前記被加熱部に供給し、
 前記低温溶融塩タンクに貯留されている溶融塩を前記溶融塩予熱部に供給するようにしてもよい。
In the configuration of the present invention, the high-temperature molten salt tank that stores the high-temperature molten salt heated by the molten salt heating unit, and the low-temperature molten salt tank that stores the molten salt used for heating the heated portion,
Supplying molten salt stored in the high-temperature molten salt tank to the heated portion;
The molten salt stored in the low-temperature molten salt tank may be supplied to the molten salt preheating unit.
 このような構成によれば、高温溶融塩タンクに貯留されている溶融塩を被加熱部(例えば、溶融塩の熱を利用して水を加熱して蒸気を発生させる蒸気発生部)に供給するので、被加熱部に高温の溶融塩を安定的に供給することができる。したがって、蒸気発生部で安定的に蒸気を発生させることができる。 According to such a configuration, the molten salt stored in the high-temperature molten salt tank is supplied to a heated portion (for example, a steam generating portion that generates water by heating water using the heat of the molten salt). Therefore, high temperature molten salt can be stably supplied to a heated part. Therefore, it is possible to stably generate steam at the steam generating unit.
 また、本発明の前記構成において、前記溶融塩加熱部、前記高温溶融塩タンク、前記被加熱部、前記低温溶融塩タンク、前記溶融塩予熱部にこれらの順で溶融塩を循環させる溶融塩循環流路と、
 前記溶融塩加熱部から前記低温溶融塩タンクに溶融塩を流通して循環させる溶融塩バイパス流路と、
 前記溶融塩加熱部および前記油加熱部が稼働状態の場合に、溶融塩を前記溶融塩循環流路に循環させ、前記溶融塩加熱部および前記油加熱部が非稼働状態の場合に、溶融塩を溶融塩バイパス流路に流通させる溶融塩流路切替手段と、
 前記油加熱部と前記溶融塩予熱部との間で油を循環させる油循環流路と、
 この油循環流路を流通する油を前記溶融塩予熱部に対してバイパスさせて循環させる油バイパス流路と、
 前記溶融塩加熱部および前記油加熱部が稼働状態の場合に、油を前記油循環流路に循環させ、前記溶融塩加熱部および前記油加熱部が非稼働状態の場合に、油を前記油バイパス流路に流通して循環させる油流路切替手段とを備えていてもよい。
Moreover, in the said structure of this invention, the molten salt circulation which circulates molten salt to the said molten salt heating part, the said high temperature molten salt tank, the said to-be-heated part, the said low temperature molten salt tank, and the said molten salt preheating part in these order A flow path;
A molten salt bypass passage for circulating and circulating the molten salt from the molten salt heating section to the low-temperature molten salt tank;
When the molten salt heating unit and the oil heating unit are in an operating state, the molten salt is circulated through the molten salt circulation channel, and when the molten salt heating unit and the oil heating unit are in a non-operating state, the molten salt Molten salt channel switching means for circulating the molten salt bypass channel,
An oil circulation passage for circulating oil between the oil heating section and the molten salt preheating section;
An oil bypass passage for bypassing and circulating the oil circulating through the oil circulation passage to the molten salt preheating portion;
When the molten salt heating unit and the oil heating unit are in an operating state, oil is circulated through the oil circulation channel, and when the molten salt heating unit and the oil heating unit are in a non-operating state, the oil is Oil flow switching means for circulating through the bypass flow channel may be provided.
 このような構成によれば、夜間および休止期間において溶融塩加熱部および油加熱部が非稼働状態の場合に、溶融塩流路切替手段によって、溶融塩を溶融塩バイパス流路に流通して循環させるとともに、油流路切替手段によって油を油バイパス流路に流通して循環させることによって、溶融塩と溶融塩より低温の油とで熱交換を行い、溶融塩の温度を低下させることを防止できる。したがって、夜間等の非日照時および休止期間の熱ロスを軽減できるとともに、溶融塩の固化対策の負荷を軽減することができる。 According to such a configuration, when the molten salt heating unit and the oil heating unit are in a non-operating state at night and during a rest period, the molten salt is circulated through the molten salt bypass channel by the molten salt channel switching means. In addition, it is possible to prevent the temperature of the molten salt from being lowered by exchanging heat between the molten salt and the oil at a lower temperature than the molten salt by circulating the oil through the oil bypass channel by the oil channel switching means. it can. Therefore, it is possible to reduce heat loss during non-sunshine such as at night and during rest periods, and to reduce the load of measures for solidification of molten salt.
 本発明によれば、溶融塩の使用範囲を減少させることによって溶融塩の固化対策の負担軽減を図るとともに、高効率な太陽熱集熱システムを提供できる。 According to the present invention, it is possible to reduce the burden of solidification measures for molten salt by reducing the range of use of molten salt and to provide a highly efficient solar heat collection system.
本発明の実施の形態に係る太陽熱集熱システムを有する蒸気発生システムを備える太陽熱発電システムを示すもので、その概略構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic block diagram which shows a solar thermal power generation system provided with the steam generation system which has the solar thermal collection system which concerns on embodiment of this invention. 同、昼間の運転パターンを説明するための概略構成図である。It is a schematic block diagram for demonstrating a driving pattern in the daytime. 同、夜間の運転パターンを説明するための概略構成図である。It is a schematic block diagram for demonstrating the driving | operation pattern at night. 従来の蒸気発生システムを備える太陽熱発電システムを示す概略構成図である。It is a schematic block diagram which shows a solar thermal power generation system provided with the conventional steam generation system.
 以下、本発明の実施の形態を図面を参照して説明する。
 図1は本実施の形態の太陽熱集熱システムを有する蒸気発生システムを備える太陽熱発電システムの概略構成図である。なお、この太陽熱発電システムでは、発電部および蓄熱部の構成は、図4に示す従来の太陽熱発電システムと同様であるので、同一構成には同一符号を付してその説明を省略ないし簡略化する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a solar power generation system including a steam generation system having the solar heat collection system of the present embodiment. In this solar thermal power generation system, the configuration of the power generation unit and the heat storage unit is the same as that of the conventional solar thermal power generation system shown in FIG. 4, and therefore the same components are denoted by the same reference numerals and the description thereof is omitted or simplified. .
 本実施の形態の太陽熱集熱システムを有する蒸気発生システムは、集熱された太陽熱によって溶融塩を加熱する溶融塩集熱器(溶融塩加熱部)1と、集熱された太陽熱によって油を加熱する油集熱器(油加熱部)21と、蒸気を発生させる蒸気発生器(蒸気発生部)4とを備えている。
 溶融塩集熱器1は、太陽光を集光することによって太陽熱(輻射熱)を集熱して、溶融塩を加熱するものであり、油集熱器21は、太陽光を集光することによって太陽熱(輻射熱)を集熱して、合成油を加熱するものである。
 蒸気発生器4は、加熱された高温の溶融塩と水循環流路15を流れる水との間で熱交換を行う、つまり、水を溶融塩の熱で加熱することで蒸気に変化させるものである。
The steam generation system having the solar heat collection system of the present embodiment includes a molten salt collector (molten salt heating unit) 1 that heats molten salt by the collected solar heat, and heats oil by the collected solar heat. An oil collector (oil heating part) 21 for generating steam and a steam generator (steam generating part) 4 for generating steam are provided.
The molten salt collector 1 collects solar heat (radiant heat) by collecting sunlight and heats the molten salt, and the oil collector 21 collects solar heat by collecting sunlight. (Radiant heat) is collected to heat the synthetic oil.
The steam generator 4 performs heat exchange between the heated high-temperature molten salt and the water flowing through the water circulation passage 15, that is, changes water into steam by heating the water with the heat of the molten salt. .
 また、太陽熱集熱部Aは当該溶融塩を予熱する溶融塩予熱器(溶融塩予熱部)22を備えており、油集熱器21によって加熱された合成油と、溶融塩集熱器1によって加熱される前の溶融塩との間で熱交換を行った後に、この溶融塩予熱器22によって予熱された溶融塩を溶融塩集熱器1によって加熱し、この加熱した高温の溶融塩の熱によって蒸気発生部4で蒸気を発生させるようになっている。つまり、集熱された太陽熱によって加熱された合成油と、集熱された太陽熱によって加熱される前の溶融塩との間で熱交換を行うことによって、溶融塩を予熱し、この予熱された溶融塩を集熱された太陽熱によって加熱し、この加熱した溶融塩の熱によって蒸気を発生させるようになっている。
 溶融塩集熱器1において溶融塩を被加熱部(蒸気発生部4)に導入される温度まで昇温する必要があるが、本発明の太陽熱集熱システムでは、溶融塩集熱器1に導入される溶融塩が溶融塩予熱器(溶融塩予熱部)22により昇温されているため、溶融塩集熱器1において必要な熱エネルギーが少ない。これにより、溶融塩集熱器1を縮小することが可能となり、それに伴い、溶融塩集熱器1における溶融塩の固化閉塞に必要な設備および運用コストを低減することができる。
Further, the solar heat collector A includes a molten salt preheater (molten salt preheater) 22 for preheating the molten salt, and the synthetic oil heated by the oil collector 21 and the molten salt collector 1 After exchanging heat with the molten salt before being heated, the molten salt preheated by the molten salt preheater 22 is heated by the molten salt collector 1, and the heat of the heated high temperature molten salt is obtained. Thus, steam is generated in the steam generating section 4. In other words, the molten salt is preheated by exchanging heat between the synthetic oil heated by the collected solar heat and the molten salt before being heated by the collected solar heat, and this preheated molten The salt is heated by the collected solar heat, and steam is generated by the heat of the heated molten salt.
Although it is necessary to raise the temperature of the molten salt to the temperature at which the molten salt collector 1 is introduced into the heated part (steam generation unit 4), the solar heat collection system of the present invention introduces the molten salt into the molten salt collector 1. Since the molten salt to be heated is heated by the molten salt preheater (molten salt preheating unit) 22, less heat energy is required in the molten salt collector 1. Thereby, it is possible to reduce the molten salt collector 1, and accordingly, it is possible to reduce the equipment and operating costs necessary for solidified clogging of the molten salt in the molten salt collector 1.
 また、本実施の形態の蒸気発生システムは、溶融塩集熱器1によって加熱された高温溶融塩を貯留する高温溶融塩タンク2と、蒸気発生器4で蒸気発生に利用されて、温度が低下した溶融塩を貯留する低温溶融塩タンク5とを備えている。
 溶融塩集熱器1、高温溶融塩タンク2、蒸気発生器4、低温溶融塩タンク5、溶融塩予熱器22は溶融塩循環流路25によって繋がれており、この溶融塩循環流路25によって、溶融塩集熱器1、高温溶融塩タンク2、蒸気発生器4、低温溶融塩タンク5、溶融塩予熱器22、溶融塩集熱器1の順で溶融塩が循環するようになっている。
Moreover, the steam generation system of this Embodiment is utilized for steam generation by the high temperature molten salt tank 2 which stores the high temperature molten salt heated by the molten salt collector 1, and the steam generator 4, and temperature falls. And a low-temperature molten salt tank 5 for storing the molten salt.
The molten salt collector 1, the high temperature molten salt tank 2, the steam generator 4, the low temperature molten salt tank 5, and the molten salt preheater 22 are connected by a molten salt circulation channel 25. The molten salt circulates in the order of the molten salt collector 1, the high temperature molten salt tank 2, the steam generator 4, the low temperature molten salt tank 5, the molten salt preheater 22, and the molten salt collector 1. .
 高温溶融塩タンク2と蒸気発生器4との間にある溶融塩循環流路25には、ポンプ3が設けられており、このポンプ3によって、高温溶融塩タンク2から蒸気発生器4に溶融塩を供給し、さらに、蒸気発生器4から低温溶融塩タンク5に向けて溶融塩を供給するようになっている。
 また、低温溶融塩タンク5と溶融塩予熱器22との間にある溶融塩循環流路25には、ポンプ23が設けられており、このポンプ23によって、低温溶融塩タンク5から溶融塩予熱器22に溶融塩を供給するようになっている。また、このポンプ23によって、溶融塩予熱器22から溶融塩集熱器1に、予熱された溶融塩を供給するようになっている。さらに、同ポンプ23によって、溶融塩集熱器1から高温溶融塩タンク2に高温の溶融塩を供給するようになっている。また、後述するバルブ28が閉でかつバルブ29が開の場合に、ポンプ23によって溶融塩集熱器1から低温溶融塩タンク5に溶融塩を供給するようになっている。
A pump 3 is provided in the molten salt circulation passage 25 between the high temperature molten salt tank 2 and the steam generator 4, and the molten salt is supplied from the high temperature molten salt tank 2 to the steam generator 4 by this pump 3. Further, the molten salt is supplied from the steam generator 4 toward the low-temperature molten salt tank 5.
In addition, a pump 23 is provided in the molten salt circulation passage 25 between the low-temperature molten salt tank 5 and the molten salt preheater 22, and the pump 23 causes the molten salt preheater to move from the low-temperature molten salt tank 5. 22 is supplied with molten salt. Further, the pump 23 supplies the molten salt preheated from the molten salt preheater 22 to the molten salt collector 1. Furthermore, high-temperature molten salt is supplied from the molten salt collector 1 to the high-temperature molten salt tank 2 by the pump 23. Further, when a valve 28 described later is closed and the valve 29 is opened, the molten salt is supplied from the molten salt collector 1 to the low-temperature molten salt tank 5 by the pump 23.
 また、本実施の形態の蒸気発生システムは、溶融塩集熱器1から低温溶融塩タンク5に溶融塩を流通させる溶融塩バイパス流路26を備え、さらに、溶融塩集熱器1および油集熱器21が稼働状態の場合に、溶融塩を溶融塩循環流路25に循環させ、溶融塩集熱器1および油集熱器21が非稼働状態の場合に、溶融塩を溶融塩バイパス流路26に流通して循環させる溶融塩流路切替手段27を備えている。 In addition, the steam generation system of the present embodiment includes a molten salt bypass passage 26 for circulating the molten salt from the molten salt collector 1 to the low-temperature molten salt tank 5, and further includes the molten salt collector 1 and the oil collector. When the heater 21 is in operation, the molten salt is circulated through the molten salt circulation passage 25. When the molten salt collector 1 and the oil collector 21 are not in operation, the molten salt is flown through the molten salt bypass flow. Molten salt flow path switching means 27 that circulates and circulates in the path 26 is provided.
 この溶融塩流路切替手段27は、バルブ28とバルブ29とによって構成されている。バルブ28は溶融塩集熱器1と高温溶融塩タンク2との間にある溶融塩循環流路25aの途中に設けられており、例えば電磁バルブによって構成されている。バルブ29は溶融塩バイパス流路26の途中に設けられており、例えば電磁バルブによって構成されている。
 そして、昼間等の日照時において溶融塩集熱器1および油集熱器21が稼働状態の場合に、バルブ28を開とするとともにバルブ29を閉とすることによって、溶融塩を溶融塩循環流路25に循環させるようになっている。
 また、夜間や休止期間等において溶融塩集熱器1および油集熱器21が非稼働状態の場合に、バルブ28を閉とするとともにバルブ29を開とすることによって、溶融塩を溶融塩バイパス流路26に流通して循環させるようになっている。
The molten salt flow path switching means 27 includes a valve 28 and a valve 29. The valve 28 is provided in the middle of the molten salt circulation passage 25a between the molten salt collector 1 and the high temperature molten salt tank 2, and is constituted by, for example, an electromagnetic valve. The valve 29 is provided in the middle of the molten salt bypass channel 26, and is configured by, for example, an electromagnetic valve.
When the molten salt collector 1 and the oil collector 21 are in operation during daylight hours, the valve 28 is opened and the valve 29 is closed, so that the molten salt is circulated through the molten salt. It is made to circulate through the path 25.
Further, when the molten salt collector 1 and the oil collector 21 are not in operation at night or during a rest period, the molten salt is bypassed by closing the valve 28 and opening the valve 29. It circulates through the flow path 26 and circulates.
 さらに、本実施の形態の蒸気発生システムは、油集熱器21と溶融塩予熱器22との間で合成油を循環させる油循環流路30を備えている。この油循環流路30には、油集熱器21、溶融塩予熱器22の他に、合成油膨張槽31とポンプ32とが設けられている。合成油膨張槽31は、油循環流路30を流れる合成油が温度変化によって体積に変化が生じるので、これを吸収するために設けられたものである。また、ポンプ32によって合成油が油循環流路30を循環するようになっている。 Furthermore, the steam generation system of the present embodiment includes an oil circulation passage 30 that circulates synthetic oil between the oil collector 21 and the molten salt preheater 22. In addition to the oil collector 21 and the molten salt preheater 22, the oil circulation passage 30 is provided with a synthetic oil expansion tank 31 and a pump 32. The synthetic oil expansion tank 31 is provided in order to absorb the change in the volume of the synthetic oil flowing through the oil circulation passage 30 due to the temperature change. The pump 32 circulates synthetic oil through the oil circulation passage 30.
 また、本実施の形態の蒸気発生システムは、油循環流路30を流通する油を溶融塩予熱器22に対してバイパスさせて循環させる油バイパス流路33を備えている。この油バイパス流路33は、油集熱器21と溶融塩予熱器22との間にある油循環流路30の途中と、溶融塩予熱器22と合成油膨張槽31との間にある油循環流路30の途中とを繋ぐようにして設けられている。 Further, the steam generation system of the present embodiment includes an oil bypass passage 33 that circulates the oil flowing through the oil circulation passage 30 by bypassing it with respect to the molten salt preheater 22. This oil bypass channel 33 is an oil in the middle of the oil circulation channel 30 between the oil collector 21 and the molten salt preheater 22 and between the molten salt preheater 22 and the synthetic oil expansion tank 31. It is provided so as to connect with the middle of the circulation channel 30.
 さらに、本実施の形態の蒸気発生システムは、溶融塩集熱器1および油集熱器21が稼働状態の場合に、合成油を油循環流路30に循環させ、溶融塩集熱器1および油集熱器21が非稼働状態の場合に、油を油バイパス流路33に流通して循環させる油流路切替手段34を備えている。
 この油流路切替手段34は、バルブ35とバルブ36とによって構成されている。バルブ35は油集熱器21と溶融塩予熱器22との間にある油循環流路30の途中に設けられており、例えば電磁バルブによって構成されている。バルブ36は油バイパス流路33の途中に設けられており、例えば電磁バルブによって構成されている。
 そして、昼間等の日照時において溶融塩集熱器1および油集熱器21が稼働状態の場合に、バルブ35を開とするとともにバルブ36を閉とすることによって、合成油を油循環流路30に循環させるようになっている。
 また、夜間等の非日照時または休止期間等において溶融塩集熱器1および油集熱器21が非稼働状態等、油の温度が溶融塩より低くなる場合に、バルブ35を閉とするとともにバルブ36を開とすることによって、合成油を油バイパス流路33に流通して循環させ、油と溶融塩の熱交換により溶融塩の温度が低下することを防止するようになっている。
Furthermore, in the steam generation system of the present embodiment, when the molten salt collector 1 and the oil collector 21 are in an operating state, the synthetic oil is circulated through the oil circulation passage 30 and the molten salt collector 1 and When the oil collector 21 is in a non-operating state, an oil flow path switching means 34 that circulates oil through the oil bypass flow path 33 is provided.
The oil flow path switching unit 34 includes a valve 35 and a valve 36. The valve 35 is provided in the middle of the oil circulation passage 30 between the oil collector 21 and the molten salt preheater 22, and is constituted by, for example, an electromagnetic valve. The valve 36 is provided in the middle of the oil bypass flow path 33, and is configured by, for example, an electromagnetic valve.
When the molten salt collector 1 and the oil collector 21 are in an operating state during daylight, such as in the daytime, the valve 35 is opened and the valve 36 is closed, whereby the synthetic oil is supplied to the oil circulation channel. 30 to circulate.
In addition, when the temperature of the oil is lower than the molten salt, such as when the molten salt collector 1 and the oil collector 21 are not in operation, etc., during non-sunshine hours such as at night or during a rest period, the valve 35 is closed. By opening the valve 36, the synthetic oil is circulated through the oil bypass passage 33 and circulated to prevent the temperature of the molten salt from decreasing due to heat exchange between the oil and the molten salt.
 また、本実施の形態の蒸気発生システムでは、溶融塩循環流路25のうち、溶融塩集熱器1から高温溶融塩タンク2までの流路を構成する配管25aと、高温溶融塩タンク2から蒸気発生器4までの流路を構成する配管25bは、600℃程度までの高温に耐え得る材料によって形成されており、油循環流路30を含む他の流路を構成する配管は400℃程度までの高温の耐え得る材料によって形成されている。 Further, in the steam generation system of the present embodiment, among the molten salt circulation channel 25, the pipe 25 a constituting the channel from the molten salt collector 1 to the high temperature molten salt tank 2 and the high temperature molten salt tank 2 are used. The pipe 25b constituting the flow path to the steam generator 4 is made of a material that can withstand a high temperature up to about 600 ° C., and the pipe constituting the other flow path including the oil circulation flow path 30 is about 400 ° C. It is made of a material that can withstand high temperatures up to.
 次に、上述した本実施の形態の蒸気発生システムの運転パターンについて説明する。
 昼間等の日照時において溶融塩集熱器1および油集熱器21が稼働状態の場合には、図2に示すように、溶融塩流路切替手段27のバルブ28を開とし、バルブ29を閉とするとともに、油流路切替手段34のバルブ35を開とし、バルブ36を閉とする。
 そのうえでポンプ3、23、32を起動する。そうすると、溶融塩が溶融塩循環流路25を循環するとともに、合成油が油循環流路30を循環する。
 この際、油集熱器21によって400℃程度まで加熱された油と、溶融塩集熱器1によって加熱される前の290℃程度の溶融塩とが溶融塩予熱器22で熱交換されることによって、当該溶融塩が390℃程度まで予熱される。そして、この予熱された溶融塩が溶融塩集熱器1によってさらに550℃程度まで加熱され、この加熱された溶融塩が高温溶融塩タンク2に貯留される。この高温溶融塩タンク2には所定量の高温(例えば550℃程度)の溶融塩が貯留されるとともに保温されており、この溶融塩がポンプ3によって蒸気発生器4に供給され、この高温の溶融塩の熱によって蒸気発生器4で蒸気を発生させる。
 また、溶融塩集熱器1から供給される溶融塩の流量は、高温溶融塩タンク2から送り出される溶融塩の流量より多い。したがって、この高温溶融塩タンク2に貯留されている高温の溶融塩が増加する。ただし、この高温溶融塩タンクに貯留されている高温の溶融塩の量が最高値となった場合は高温溶融塩タンク2から送り出された溶融塩の流量に見合う量の溶融塩が溶融塩集熱器1から供給される。
Next, the operation pattern of the steam generation system of the present embodiment described above will be described.
When the molten salt collector 1 and the oil collector 21 are in operation during daylight hours, as shown in FIG. 2, the valve 28 of the molten salt flow path switching means 27 is opened and the valve 29 is In addition to closing, the valve 35 of the oil flow path switching means 34 is opened and the valve 36 is closed.
Then, the pumps 3, 23 and 32 are started. Then, the molten salt circulates through the molten salt circulation passage 25 and the synthetic oil circulates through the oil circulation passage 30.
At this time, the oil heated to about 400 ° C. by the oil collector 21 and the molten salt at about 290 ° C. before being heated by the molten salt collector 1 are heat-exchanged by the molten salt preheater 22. Thus, the molten salt is preheated to about 390 ° C. The preheated molten salt is further heated to about 550 ° C. by the molten salt collector 1, and the heated molten salt is stored in the high temperature molten salt tank 2. A predetermined amount of high-temperature (for example, about 550 ° C.) molten salt is stored and kept in the high-temperature molten salt tank 2, and this molten salt is supplied to the steam generator 4 by the pump 3, and this high-temperature molten salt is stored. Steam is generated by the steam generator 4 by the heat of the salt.
The flow rate of the molten salt supplied from the molten salt collector 1 is larger than the flow rate of the molten salt sent out from the high-temperature molten salt tank 2. Therefore, the high-temperature molten salt stored in the high-temperature molten salt tank 2 increases. However, when the amount of the high-temperature molten salt stored in the high-temperature molten salt tank reaches the maximum value, an amount of molten salt corresponding to the flow rate of the molten salt sent out from the high-temperature molten salt tank 2 is molten salt collecting heat. Supplied from the vessel 1.
 また、蒸気発生器4で蒸気発生に利用されて、温度が例えば290℃程度まで低下した溶融塩は低温溶融塩タンク5に貯留される。この低温溶融塩タンク5には所定量の低温(例えば290℃程度)の溶融塩が貯留されるとともに保温されており、この溶融塩がポンプ23によって溶融塩予熱器22に供給され、この溶融塩つまり溶融塩集熱器1によって加熱される前の溶融塩と、油集熱器21によって400℃程度まで加熱された油とが溶融塩加熱器22で熱交換されることによって、当該溶融塩が390℃程度まで予熱される。
 また、低温溶融塩タンク5から送り出された溶融塩の流量より少ない流量の溶融塩が蒸気発生器4側から供給される。したがって、この低温溶融塩タンク5に貯留されている低温の溶融塩は減少していく。ただし、この低温溶融塩タンクに貯留されている低温の溶融塩の量が最低値となった場合は、低温溶融塩タンク5から送り出された溶融塩の流量に見合う量の溶融塩が蒸気発生器4側から供給される。
Further, the molten salt, which is used for generating steam by the steam generator 4 and whose temperature is reduced to about 290 ° C., for example, is stored in the low-temperature molten salt tank 5. A predetermined amount of low-temperature (for example, about 290 ° C.) molten salt is stored and kept in this low-temperature molten salt tank 5, and this molten salt is supplied to the molten salt preheater 22 by the pump 23. That is, when the molten salt before being heated by the molten salt collector 1 and the oil heated to about 400 ° C. by the oil collector 21 are heat-exchanged by the molten salt heater 22, the molten salt becomes Preheated to about 390 ° C.
Also, a molten salt having a flow rate smaller than the flow rate of the molten salt sent out from the low-temperature molten salt tank 5 is supplied from the steam generator 4 side. Therefore, the low temperature molten salt stored in the low temperature molten salt tank 5 decreases. However, when the amount of the low-temperature molten salt stored in the low-temperature molten salt tank becomes the minimum value, an amount of molten salt corresponding to the flow rate of the molten salt delivered from the low-temperature molten salt tank 5 is generated in the steam generator. Supplied from the 4th side.
 このように、昼間等の日照時において溶融塩集熱器1および油集熱器21が稼働状態の場合には、溶融塩循環流路25によって溶融塩を循環させつつ溶融塩予熱器22によって合成油の熱を利用して溶融塩を予熱し、溶融塩集熱器1でさらに加熱して、高温溶融塩タンク2に貯留し、この高温溶融塩タンク2に貯留されている溶融塩を蒸気発生器4に供給するので、蒸気発生器4に高温の溶融塩を安定的に供給するとともに夜間等の非日照時において蒸気発生を継続するための高温の溶融塩を貯留することができる。したがって、蒸気発生器4で安定的に蒸気を発生させることができる。 As described above, when the molten salt collector 1 and the oil collector 21 are in operation during daylight or the like, synthesis is performed by the molten salt preheater 22 while circulating the molten salt through the molten salt circulation passage 25. The molten salt is preheated using the heat of oil, further heated by the molten salt collector 1, stored in the high temperature molten salt tank 2, and the molten salt stored in the high temperature molten salt tank 2 is generated as steam. Since the high temperature molten salt is stably supplied to the steam generator 4, the high temperature molten salt for continuing the generation of steam during non-sunshine such as at night can be stored. Therefore, steam can be stably generated by the steam generator 4.
 一方、夜間等の非日照時または休止期間等において溶融塩集熱器1および油集熱器21が非稼働状態の場合には、図3に示すように、溶融塩流路切替手段27のバルブ28を閉とし、バルブ29を開とするとともに、油流路切替手段34のバルブ35を閉とし、バルブ36を開とする。
 また、高温溶融塩タンク2に貯留された高温の溶融塩は高温溶融塩タンク2からポンプ3によって蒸気発生器4に供給され、この高温の溶融塩の熱によって蒸気発生器4で蒸気を発生させる。高温溶融塩タンク2への高温の溶融塩の供給は無くなるが、高温溶融塩タンク2内に貯留された高温の溶融塩が無くなるまでは、蒸気発生器4で蒸気の発生を継続させることができる。
On the other hand, when the molten salt collector 1 and the oil collector 21 are in a non-operating state during non-sunlight such as at night or during a rest period, as shown in FIG. 28 is closed, the valve 29 is opened, the valve 35 of the oil flow switching means 34 is closed, and the valve 36 is opened.
The high-temperature molten salt stored in the high-temperature molten salt tank 2 is supplied from the high-temperature molten salt tank 2 to the steam generator 4 by the pump 3, and steam is generated by the steam generator 4 by the heat of the high-temperature molten salt. . Although the supply of the high-temperature molten salt to the high-temperature molten salt tank 2 is eliminated, the steam generator 4 can continue to generate steam until the high-temperature molten salt stored in the high-temperature molten salt tank 2 disappears. .
 また、蒸気発生器4で蒸気発生に利用されて、温度が低下した溶融塩は低温溶融塩タンク5に貯留される。この低温溶融塩タンク5には所定量の低温(例えば290℃程度)の溶融塩が貯留されており、この溶融塩がポンプ23によって溶融塩予熱器22に供給され、さらに溶融塩集熱器1に供給され、溶融塩バイパス流路26を流れて低温溶融塩タンク5に戻る。つまり、夜間等の非日照時においては低温溶融塩タンク5に貯留されている溶融塩は溶融塩バイパス流路26を流れて循環する。循環する溶融塩は図示していないヒーター等によって例えば290℃に温度が保持されている。
 また、合成油は油バイパス流路33を流れて循環し、溶融塩予熱器22に供給されないので、溶融塩と低温の油とで熱交換することが無く、夜間等の非日照時における溶融塩の温度低下を抑制できる。
Further, the molten salt that has been used for generating steam by the steam generator 4 and whose temperature has been lowered is stored in the low-temperature molten salt tank 5. A predetermined amount of low-temperature (for example, about 290 ° C.) molten salt is stored in the low-temperature molten salt tank 5, and this molten salt is supplied to the molten salt preheater 22 by the pump 23, and the molten salt collector 1 And flows through the molten salt bypass passage 26 and returns to the low-temperature molten salt tank 5. That is, during non-sunshine such as at night, the molten salt stored in the low-temperature molten salt tank 5 flows through the molten salt bypass passage 26 and circulates. The circulating molten salt is maintained at a temperature of, for example, 290 ° C. by a heater or the like (not shown).
Further, since the synthetic oil circulates through the oil bypass passage 33 and is not supplied to the molten salt preheater 22, there is no heat exchange between the molten salt and the low temperature oil, and the molten salt during non-sunshine such as at night. Can be suppressed.
 以上説明したように、本実施の形態によれば、油集熱器21によって加熱された油と、溶融塩集熱器1によって加熱される前の溶融塩との間で溶融塩予熱器22によって熱交換を行うことによって、当該溶融塩予熱器22で溶融塩を予熱し、この予熱された溶融塩を溶融塩集熱器1によって加熱しているので、つまり、油集熱器21により加熱された油を溶融塩の加熱に利用しているので、溶融塩集熱器1で必要とされる溶融塩の使用範囲を低減することができる。
 具体的には、従来の溶融塩単独での蒸気発生システムに比べ、ソーラーフィールドの4割程度をオイル(合成油)に置き換えることができるため、溶融塩の固化対策の軽減を図ることができるとともに、合成油の蓄熱タンクを追加しないことによって、合成油の追加に関する設備を最小限にとどめ、全体として設備コストの削減を図ることができる。
As described above, according to the present embodiment, the molten salt preheater 22 between the oil heated by the oil collector 21 and the molten salt before being heated by the molten salt collector 1. By performing heat exchange, the molten salt is preheated by the molten salt preheater 22, and the preheated molten salt is heated by the molten salt collector 1, that is, heated by the oil collector 21. Since the oil is used for heating the molten salt, the range of use of the molten salt required in the molten salt collector 1 can be reduced.
Specifically, compared to the conventional steam generation system using only a molten salt, about 40% of the solar field can be replaced with oil (synthetic oil), so it is possible to reduce the solidification measures of the molten salt. By not adding a heat storage tank for synthetic oil, facilities related to the addition of synthetic oil can be minimized, and the overall equipment cost can be reduced.
 また、高温溶融塩タンク2に貯留されている溶融塩を蒸気発生器4に供給するので、蒸気発生器4に高温の溶融塩を安定的に供給することができる。したがって、蒸気発生器4で安定的に蒸気を発生させることができる。 Moreover, since the molten salt stored in the high-temperature molten salt tank 2 is supplied to the steam generator 4, the high-temperature molten salt can be stably supplied to the steam generator 4. Therefore, steam can be stably generated by the steam generator 4.
 さらに、夜間等の非日照時または休止期間において溶融塩集熱器1および油集熱器21が非稼働状態の場合に、溶融塩流路切替手段27によって、溶融塩を溶融塩バイパス流路26に流通して循環させるとともに、油流路切替手段34によって油を油バイパス流路33に流通して循環させることによって、溶融塩と低温の油とで熱交換することがない。したがって、夜間等の非日照時または休止期間の熱ロスを軽減できるとともに、溶融塩の固化対策の負荷を軽減することができる。 Further, when the molten salt collector 1 and the oil collector 21 are not in operation during non-sunlight such as at night or during a rest period, the molten salt is switched by the molten salt channel switching means 27. In addition, the oil is circulated through the oil bypass passage 33 and circulated by the oil passage switching means 34, so that the heat exchange between the molten salt and the low-temperature oil does not occur. Accordingly, it is possible to reduce heat loss during non-sunshine such as at night or during a rest period, and it is possible to reduce the load of measures for solidifying molten salt.
 また、溶融塩循環流路25のうち、溶融塩集熱器1から高温溶融塩タンク2までの流路を構成する配管25aと、高温溶融塩タンク2から蒸気発生器4までの流路を構成する配管25bは、600℃程度までの高温に耐え得る材料によって形成されており、油循環流路30を含む他の流路を構成する配管は400℃程度までの高温の耐え得る材料によって形成されているので、配管にかかるコストを低減できる。
 なお、太陽熱集熱システムで集熱された熱を発電以外に利用してもよく、さらに蒸気発生以外に利用してもよい。例えば、各種産業で熱を必要とする装置に加熱された溶融塩や油を供給してもよく、また加熱を必要とする化学反応が行われる反応器に加熱された溶融塩や油を供給してもよい。
Further, in the molten salt circulation flow path 25, a pipe 25a constituting a flow path from the molten salt collector 1 to the high temperature molten salt tank 2 and a flow path from the high temperature molten salt tank 2 to the steam generator 4 are constituted. The piping 25b to be formed is made of a material that can withstand high temperatures up to about 600 ° C., and the piping that constitutes the other channels including the oil circulation channel 30 is made of a material that can withstand high temperatures up to about 400 ° C. Therefore, the cost for piping can be reduced.
Note that the heat collected by the solar heat collection system may be used in addition to power generation, and may be used in addition to steam generation. For example, heated molten salt or oil may be supplied to devices that require heat in various industries, or heated molten salt or oil is supplied to a reactor in which a chemical reaction that requires heating is performed. May be.
1 溶融塩集熱器(溶融塩加熱部)
2 高温溶融塩タンク
4 蒸気発生器(蒸気発生部)
5 低温溶融塩タンク
21 油集熱器(油加熱部)
22 溶融塩予熱器(溶融塩予熱部)
25 溶融塩循環流路
26 溶融塩バイパス流路
27 溶融塩流路切替手段
30 油循環流路
33 油バイパス流路
34 油流路切替手段
1 Molten salt collector (molten salt heating part)
2 High-temperature molten salt tank 4 Steam generator (steam generator)
5 Low temperature molten salt tank 21 Oil collector (oil heating part)
22 Molten salt preheater (molten salt preheating part)
25 Molten salt circulation passage 26 Molten salt bypass passage 27 Molten salt passage switching means 30 Oil circulation passage 33 Oil bypass passage 34 Oil passage switching means

Claims (3)

  1.  太陽熱によって溶融塩を加熱する溶融塩加熱部と、太陽熱によって油を加熱する油加熱部とを備えた太陽熱集熱システムにおいて、
     前記油加熱部によって加熱された油と、前記溶融塩加熱部によって加熱される前の溶融塩との間で熱交換を行うことによって、当該溶融塩を予熱する溶融塩予熱部を備え、
     この溶融塩予熱部によって予熱された溶融塩を前記溶融塩加熱部によって加熱することを特徴とする太陽熱集熱システム。
    In a solar heat collecting system including a molten salt heating unit that heats molten salt by solar heat and an oil heating unit that heats oil by solar heat,
    By performing heat exchange between the oil heated by the oil heating unit and the molten salt before being heated by the molten salt heating unit, a molten salt preheating unit for preheating the molten salt is provided,
    A solar heat collecting system, wherein the molten salt preheated by the molten salt preheating unit is heated by the molten salt heating unit.
  2.  前記溶融塩加熱部によって加熱された高温溶融塩を貯留する高温溶融塩タンクと、被加熱部の加熱に利用された溶融塩を貯留する低温溶融塩タンクとを備え、
     前記高温溶融塩タンクに貯留されている溶融塩を前記被加熱部に供給し、
     前記低温溶融塩タンクに貯留されている溶融塩を前記溶融塩予熱部に供給することを特徴とする請求項1に記載の太陽熱集熱システム。
    A high-temperature molten salt tank that stores the high-temperature molten salt heated by the molten salt heating unit, and a low-temperature molten salt tank that stores the molten salt used for heating the heated portion,
    Supplying molten salt stored in the high-temperature molten salt tank to the heated portion;
    The solar heat collection system according to claim 1, wherein the molten salt stored in the low-temperature molten salt tank is supplied to the molten salt preheating unit.
  3.  前記溶融塩加熱部、前記高温溶融塩タンク、前記被加熱部、前記低温溶融塩タンク、前記溶融塩予熱部にこれらの順で溶融塩を循環させる溶融塩循環流路と、
     前記溶融塩加熱部から前記低温溶融塩タンクに溶融塩を流通して循環させる溶融塩バイパス流路と、
     前記溶融塩加熱部および前記油加熱部が稼働状態の場合に、溶融塩を前記溶融塩循環流路に循環させ、前記溶融塩加熱部および前記油加熱部が非稼働状態の場合に、溶融塩を溶融塩バイパス流路に流通させる溶融塩流路切替手段と、
     前記油加熱部と前記溶融塩予熱部との間で油を循環させる油循環流路と、
     この油循環流路を流通する油を前記溶融塩予熱部に対してバイパスさせて循環させる油バイパス流路と、
     前記溶融塩加熱部および前記油加熱部が稼働状態の場合に、油を前記油循環流路に循環させ、前記溶融塩加熱部および前記油加熱部が非稼働状態の場合に、油を前記油バイパス流路に流通して循環させる油流路切替手段とを備えていることを請求項2に記載の太陽熱集熱システム。
    A molten salt circulation channel for circulating the molten salt in the order of the molten salt heating unit, the high temperature molten salt tank, the heated portion, the low temperature molten salt tank, and the molten salt preheating unit;
    A molten salt bypass passage for circulating and circulating the molten salt from the molten salt heating section to the low-temperature molten salt tank;
    When the molten salt heating unit and the oil heating unit are in an operating state, the molten salt is circulated through the molten salt circulation channel, and when the molten salt heating unit and the oil heating unit are in a non-operating state, the molten salt Molten salt channel switching means for circulating the molten salt bypass channel,
    An oil circulation passage for circulating oil between the oil heating section and the molten salt preheating section;
    An oil bypass passage for bypassing and circulating the oil circulating through the oil circulation passage to the molten salt preheating portion;
    When the molten salt heating unit and the oil heating unit are in an operating state, oil is circulated through the oil circulation channel, and when the molten salt heating unit and the oil heating unit are in a non-operating state, the oil is The solar heat collection system according to claim 2, further comprising an oil flow path switching unit that circulates and circulates in the bypass flow path.
PCT/JP2015/073443 2014-08-21 2015-08-20 Solar heat collection system WO2016027872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014168274A JP2017180843A (en) 2014-08-21 2014-08-21 Steam generation system
JP2014-168274 2014-08-21

Publications (1)

Publication Number Publication Date
WO2016027872A1 true WO2016027872A1 (en) 2016-02-25

Family

ID=55350812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073443 WO2016027872A1 (en) 2014-08-21 2015-08-20 Solar heat collection system

Country Status (2)

Country Link
JP (1) JP2017180843A (en)
WO (1) WO2016027872A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949445A (en) * 2017-04-26 2017-07-14 西安西热节能技术有限公司 A kind of Thermal generation unit fuse salt heat storage type peak regulation system and method
CN107120628A (en) * 2017-06-06 2017-09-01 上海海事大学 A kind of thermal and electric two way system and its application method based on hydrated salt chemical heat accumulation
CN110319606A (en) * 2019-06-06 2019-10-11 山东电力建设第三工程有限公司 Photo-thermal power station heat reservoir fused salt tank pre-heating mean
CN112178961A (en) * 2020-09-16 2021-01-05 西安交通大学 Electricity generation, heat supply, refrigeration and water taking combined system and method based on chemical heat storage
CN113847586A (en) * 2021-10-26 2021-12-28 西安热工研究院有限公司 System using fused salt of thermal power as backup heat source of backpressure machine
CN114076416A (en) * 2021-11-18 2022-02-22 西安西热节能技术有限公司 Thermoelectric comprehensive energy storage system for solar-thermal power generation and molten salt combined hydrogen production
CN114777183A (en) * 2022-04-07 2022-07-22 中国大唐集团科学技术研究院有限公司西北电力试验研究院 Complementary auxiliary heat supply unit degree of depth peak regulation system of light and heat
CN116734230A (en) * 2023-08-14 2023-09-12 西安热工研究院有限公司 Fused salt steam storage system for improving safety of high-temperature gas cooled reactor generator set

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108679585B (en) * 2018-06-15 2023-08-01 大连华锐重工集团股份有限公司 Combined type industrial hot gas co-production system and control method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130133324A1 (en) * 2011-11-30 2013-05-30 Gossamer Space Frames Hybrid solar power plant
WO2013169111A1 (en) * 2012-05-10 2013-11-14 Stamicarbon B.V. Acting Under The Name Of Mt Innovation Center Method for modifying a solar thermal power plant operating on conventional oil based technology into a hybrid solar thermal power plant and such a hybrid solar thermal power plant
JP2013545064A (en) * 2010-09-30 2013-12-19 ダウ グローバル テクノロジーズ エルエルシー Method for producing superheated steam from a concentrating solar power plant

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545064A (en) * 2010-09-30 2013-12-19 ダウ グローバル テクノロジーズ エルエルシー Method for producing superheated steam from a concentrating solar power plant
US20130133324A1 (en) * 2011-11-30 2013-05-30 Gossamer Space Frames Hybrid solar power plant
WO2013169111A1 (en) * 2012-05-10 2013-11-14 Stamicarbon B.V. Acting Under The Name Of Mt Innovation Center Method for modifying a solar thermal power plant operating on conventional oil based technology into a hybrid solar thermal power plant and such a hybrid solar thermal power plant

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949445B (en) * 2017-04-26 2022-11-15 西安西热节能技术有限公司 Fused salt heat storage type peak regulation system and method for coal-fired power generating unit
CN106949445A (en) * 2017-04-26 2017-07-14 西安西热节能技术有限公司 A kind of Thermal generation unit fuse salt heat storage type peak regulation system and method
CN107120628A (en) * 2017-06-06 2017-09-01 上海海事大学 A kind of thermal and electric two way system and its application method based on hydrated salt chemical heat accumulation
CN110319606A (en) * 2019-06-06 2019-10-11 山东电力建设第三工程有限公司 Photo-thermal power station heat reservoir fused salt tank pre-heating mean
CN112178961A (en) * 2020-09-16 2021-01-05 西安交通大学 Electricity generation, heat supply, refrigeration and water taking combined system and method based on chemical heat storage
CN112178961B (en) * 2020-09-16 2021-07-06 西安交通大学 Electricity generation, heat supply, refrigeration and water taking combined system and method based on chemical heat storage
CN113847586A (en) * 2021-10-26 2021-12-28 西安热工研究院有限公司 System using fused salt of thermal power as backup heat source of backpressure machine
CN114076416A (en) * 2021-11-18 2022-02-22 西安西热节能技术有限公司 Thermoelectric comprehensive energy storage system for solar-thermal power generation and molten salt combined hydrogen production
CN114076416B (en) * 2021-11-18 2024-04-26 西安西热节能技术有限公司 Thermoelectric integrated energy storage system for photo-thermal power generation and hydrogen production by combining molten salt
CN114777183A (en) * 2022-04-07 2022-07-22 中国大唐集团科学技术研究院有限公司西北电力试验研究院 Complementary auxiliary heat supply unit degree of depth peak regulation system of light and heat
CN114777183B (en) * 2022-04-07 2023-10-17 中国大唐集团科学技术研究院有限公司西北电力试验研究院 Photo-thermal complementary auxiliary heating unit depth peak regulation system
CN116734230A (en) * 2023-08-14 2023-09-12 西安热工研究院有限公司 Fused salt steam storage system for improving safety of high-temperature gas cooled reactor generator set
CN116734230B (en) * 2023-08-14 2024-01-23 西安热工研究院有限公司 Fused salt steam storage system for improving safety of high-temperature gas cooled reactor generator set

Also Published As

Publication number Publication date
JP2017180843A (en) 2017-10-05

Similar Documents

Publication Publication Date Title
WO2016027872A1 (en) Solar heat collection system
US7685820B2 (en) Supercritical CO2 turbine for use in solar power plants
US9541070B2 (en) Plant for energy production
US10012113B2 (en) Combined cycle plant with thermal energy storage
EP2647841B1 (en) Solar thermal power system
JP4724848B2 (en) Combined Brayton cycle power generation system using nuclear heat
US20160115945A1 (en) Solar thermal energy storage system
JP2014092086A (en) Solar heat power plant, and solar heat storage and radiation apparatus
JP7308042B2 (en) Thermal storage device, power plant, and operation control method during fast cutback
US10401022B2 (en) Molten salt once-through steam generator
RU2019120653A (en) POWER PLANT BASED ON A SMALL MODULAR REACTOR WITH POSSIBILITIES OF LOAD TRACKING AND COMBINED GENERATION OF ELECTRICITY AND HEAT AND METHODS OF USE
CN103375926A (en) Solar power system and method of operation
JP7334480B2 (en) HTGR system
Orumiyehei et al. Transient simulation of hybridized system: waste heat recovery system integrated to ORC and Linear Fresnel collectors from energy and exergy viewpoint
JP2014503045A (en) Method and assembly for converting sunlight into mechanical power
EP2834476B1 (en) A solar thermal power plant and a method for operating a solar thermal power plant
US20150007567A1 (en) Plant and method for increasing the efficiency of electric energy production
JP2016044851A (en) Steam generation system
WO2015159310A1 (en) Improvement and control of the high pressure superheated steam directly produced by a solar field. description
JP2015161284A (en) control system and heat supply method
DK3234353T3 (en) STORAGE DEVICE INTENDED FOR A HEATING POWER PLANT AND PROCEDURE FOR USING THE SAME
JP2022139945A (en) Steam generation system combined with heat storage and power generation system combined with heat storage
CN116164301A (en) Boiler flue gas heat storage system and operation mode switching method
Litwin et al. Supercritical CO2 turbine for use in solar power plants
JP2020067017A (en) Steam turbine plant and its operation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15833354

Country of ref document: EP

Kind code of ref document: A1