WO2016027739A1 - Excavation tool - Google Patents

Excavation tool Download PDF

Info

Publication number
WO2016027739A1
WO2016027739A1 PCT/JP2015/072799 JP2015072799W WO2016027739A1 WO 2016027739 A1 WO2016027739 A1 WO 2016027739A1 JP 2015072799 W JP2015072799 W JP 2015072799W WO 2016027739 A1 WO2016027739 A1 WO 2016027739A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
casing pipe
diameter
axis
head
Prior art date
Application number
PCT/JP2015/072799
Other languages
French (fr)
Japanese (ja)
Inventor
中村 和由
裕貴 高月
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020177002997A priority Critical patent/KR20170042568A/en
Priority to CN201580041990.6A priority patent/CN106661924A/en
Priority to EP15833073.8A priority patent/EP3184729B1/en
Priority to AU2015304423A priority patent/AU2015304423A1/en
Priority to CA2957394A priority patent/CA2957394A1/en
Priority to US15/501,975 priority patent/US20170234075A1/en
Publication of WO2016027739A1 publication Critical patent/WO2016027739A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/26Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers
    • E21B10/32Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with expansible cutting tools
    • E21B10/327Drill bits with leading portion, i.e. drill bits with a pilot cutter; Drill bits for enlarging the borehole, e.g. reamers with expansible cutting tools the cutter being pivoted about a longitudinal axis
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/62Drill bits characterised by parts, e.g. cutting elements, which are detachable or adjustable
    • E21B10/627Drill bits characterised by parts, e.g. cutting elements, which are detachable or adjustable with plural detachable cutting elements

Definitions

  • the present invention relates to a so-called double-pipe excavation tool that performs excavation using a ring bit disposed on the front end side of a casing pipe and a pilot bit inserted into the casing pipe.
  • Patent Document 1 discloses that a ring bit is inserted at the tip of a casing pipe so that the inner and outer peripheral surfaces of the ring bit are opposed to each other, and is inserted into the casing pipe.
  • An inner bit is attached to the tip of the transmission member, and the inner bit applies a striking force and thrust to the casing pipe and a rotational force in addition to the ring bit to drill the hole, forming a drilling hole to a predetermined depth After that, it has been proposed to remove the ring bit from the casing pipe and leave it in the excavation hole.
  • a diameter expansion bit is attached to the outer periphery of the tip of a shank device that is rotated about an axis, and the diameter expansion bit is positioned in an expanded state during excavation and protrudes to the front end of the casing pipe.
  • a so-called underreaming bit is described in which a drilling hole having a predetermined inner diameter is formed, and after completion of drilling, the diameter-enlarged bit is reduced and the shank device is collected through the casing pipe.
  • the outer diameter of the ring bit is increased. Since the outer peripheral surface of the end portion is rotatably inserted with the outer peripheral surface of the casing pipe facing the inner peripheral surface of the casing pipe, the inner diameter of the ring bit does not change, and the radial dimension increases. And since this ring bit is not collect
  • the present invention has been made under such a background.
  • An object of the present invention is to provide a drilling tool capable of preventing an increase in the size of the drilling tool.
  • the present invention provides a cylindrical casing pipe centering on the axis and a casing pipe coaxially disposed on the tip side of the casing pipe.
  • a bit head is provided on the outer periphery of the tip of the pilot bit, and the bit head is rotatable around a center line eccentric from the axis, and when the pilot bit rotates in the tool rotation direction during excavation.
  • the radius from the axis is enlarged and supported by the pilot bit, and the ring bit is attached to the enlarged bit head.
  • the first contact portion which is contactable to the front end side engaged portion to be engaged with the tool rotating direction and the axis direction during the drilling is provided.
  • the bit head provided at the outer peripheral portion of the tip end of the pilot bit expands during drilling, and the first contact portion provided in the ring bit with respect to the expanded bit head has an axis line Since the ring bit comes into contact with the front end in the direction, the ring bit can be prevented from coming off at the front end. And this ring bit is engaged in the tool rotation direction at the time of excavation with respect to the bit head whose engaged portion is expanded in diameter, so that the rotational force is transmitted from the pilot bit to the ring bit via the bit head. can do.
  • the bit head whose radius from the axis is enlarged and transmitted is transmitted to the ring bit with a sufficient rotational force. Hole performance can be ensured.
  • the ring bit engaged portion is engaged with the bit head whose diameter has been expanded in the tool rotation direction during excavation, so that the outer peripheral surface of the rear end of the ring bit faces the inner peripheral surface of the casing pipe. Since there is no need to insert the ring bit in a rotatable manner, the inner diameter of the ring bit can be increased, that is, the volume of the ring bit can be reduced and the required material can be reduced. Even when the ring bit is left in the excavation hole by rotating in the opposite direction, it is possible to suppress an increase in construction cost.
  • a drill bit having a large inner diameter can be formed by the ring bit even if the radius from the axis of the bit head in the expanded state is not as large as the radius of the drill hole. It is possible to prevent the bit head from being damaged without applying a heavy load. Moreover, the installation amount of the excavation tip in the annular ring bit excavating the outer peripheral side of the excavation hole can be set relatively freely, and it is possible to prevent the drilling performance from being lowered due to the shortage of the tip.
  • the volume of the ring bit can be further reduced, and the construction cost can be further reduced. Suppression can be achieved.
  • the tip end surface of the ring bit adjacent to the recess may be the first contact portion, or a bottom surface facing the tip end in the axial direction is formed in the recess, and this is used as the first contact portion. Also good.
  • the inner periphery of the end of the casing pipe is the same as the excavation tool described in Patent Documents 1 and 2.
  • a small-diameter portion whose inner diameter is reduced by one step is formed on the portion, and a second abutting portion such as a step portion that can abut on the small-diameter portion from the rear end side in the axial direction on the outer peripheral portion of the pilot bit Is formed to transmit the striking force and thrust.
  • the bit head by providing the bit head with a third abutting portion capable of abutting on the surface of the ring bit facing the rear end side in the axial direction in an expanded state, It is no longer necessary to form a small diameter portion having a smaller inner diameter than the small diameter portion of the casing pipe in the bit, so that the construction cost can be more reliably suppressed and the pilot bit can be connected via the third contact portion of this bit head.
  • the maximum radius from the axis of the third contact portion of the expanded bit head is made larger than the radius from the axis of the outer peripheral portion of the tip of the casing pipe.
  • the present invention even when an excavation hole having a larger inner diameter than the outer diameter of the casing pipe is formed, the drilling performance is reduced, the construction cost is increased, or the tool is damaged. Therefore, it is possible to transmit a sufficient rotational force to the ring bit and perform efficient drilling.
  • FIG. 2 is an enlarged front view of a state in which the bit head is reduced in diameter in the embodiment shown in FIG. 1 as viewed from the front end side in the axial direction (however, the casing pipe and the casing top are not shown).
  • FIG. 2 is an enlarged front view of the state in which the diameter of the bit head is increased in the embodiment shown in FIG. 1 as viewed from the axial front end side (however, the casing pipe and the casing top are not shown).
  • It is the enlarged front view which looked at the ring bit of embodiment shown in FIG. 1 from the axial direction front end side. It is ZZ sectional drawing in FIG.
  • the casing pipe 1 is formed in a cylindrical shape centering on the axis O with a metal material such as steel, and at the tip portion (left side portion in FIG. 1) of the casing pipe 1 is also steel or the like.
  • a casing top 1 ⁇ / b> A formed in a multi-stage cylindrical shape is attached.
  • the casing top 1 ⁇ / b> A has a constant inner diameter that is one step smaller than the inner diameter of the casing pipe 1, the outer diameter of the front end is the same as the casing pipe 1, and the outer diameter of the rear end is the casing pipe 1. It is the size which can be inserted in.
  • the casing top 1 ⁇ / b> A is integrated coaxially with the casing pipe 1 by joining the rear end portion of the casing top 1 ⁇ / b> A from the front end side of the casing pipe 1 by welding or the like.
  • a small-diameter portion 1B having a smaller inner diameter is formed on the inner peripheral portion of the tip of the casing pipe 1.
  • the rear end surface of the small-diameter portion 1B is formed in a concave conical surface centered on the axis O that is inclined slightly toward the front end side as it goes toward the inner peripheral side.
  • the pilot bit 2 is inserted into the casing pipe 1 from the rear end side (right side in FIG. 1).
  • the pilot bit 2 is also formed into a cylindrical shape having a multi-stage outer shape with a metal material such as steel, and the rear end portion is a small-diameter shank portion 2A. From the down-the-hole hammer H attached to the shank portion 2A A striking force directed toward the tip side in the direction of the axis O is transmitted.
  • a drill rod (not shown) is connected to the rear end side of the down-the-hole hammer H as necessary, and the last drill rod is attached to the drilling device. From this excavator, the pilot bit 2 is transmitted through the excavating rod and the down-the-hole hammer H with a thrust directed toward the front end side in the axis O direction and a rotational force directed in the tool rotation direction T during excavation.
  • the casing pipe 1 is also added to the rear end side as necessary and inserted into the excavation hole.
  • a step portion having the largest outer diameter is formed on the outer periphery of the pilot bit 2 on the front end side of the shank portion 2A, which is the second contact portion 2B of the present embodiment.
  • the outer diameter of the second contact portion 2B is slightly smaller than the inner diameter of the casing pipe 1, and larger than the inner diameter of the small diameter portion 1B formed by the casing top 1A.
  • the distal end surface of the second contact portion 2B is formed in a convex conical surface shape that is inclined slightly toward the distal end side toward the inner peripheral side, and the inclination angle forms a concave conical surface shape. It is made equal to the inclination angle of the rear end face of the small diameter portion 1B.
  • the pilot bit 2 when the pilot bit 2 is inserted from the rear end side of the casing pipe 1 and the second contact portion 2B contacts the small diameter portion 1B, the pilot bit 2 is coaxial with the casing pipe 1 and the casing top 1A and is in the axis O direction. It can be moved forward integrally with the distal end side, and can rotate relative to the casing pipe 1 and the casing top 1A around the axis O. Further, the outer diameter of the pilot bit 2 on the tip side of the second abutting portion 2B is a constant outer diameter slightly smaller than the inner diameter of the small diameter portion 1B by the casing top 1A. In a state where the contact portion 2B is in contact with the small diameter portion 1B, the tip end portion of the pilot bit 2 is formed so as to largely protrude from the tip end of the casing top 1A.
  • the housing recess 3 is formed on the outer periphery of the tip of the pilot bit 2 protruding from the tip of the casing top 1A so as to be positioned on the tip side of the casing top 1A.
  • the receiving recess 3 is located on the front end side of the casing top 1A and has a bottom surface 3A that is perpendicular to the axis O facing the front end side, and extends from the inner peripheral edge of the bottom surface 3A to the front end side in parallel to the axis O. 2 and a wall surface 3B reaching the distal end surface of the pilot bit 2, and is formed so as to open to the outer peripheral surface and the distal end surface of the distal end portion of the pilot bit 2.
  • a plurality (three) of such accommodating recesses 3 having the same shape and the same size are formed at equal intervals in the circumferential direction.
  • the wall surface 3B of the receiving recess 3 is located on the opposite side of the first wall 3a of the pilot bit 2 to the outer peripheral side of the pilot bit 2 and the tool rotation direction T of the first wall 3a.
  • the second and third wall portions 3b and 3c are formed such that the interval in the circumferential direction becomes larger toward the outer peripheral side, and among these, the second wall portion 3b is closer to the tool rotation direction T side toward the outer peripheral side. It extends to head.
  • the boundary between the first and second walls 3a and 3b and the boundary between the first and third walls 3a and 3c are first and second walls centered on a straight line parallel to the axis O.
  • a concave cylindrical surface-like fourth wall portion 3d in contact with 3a and 3b and a fifth wall portion 3e in contact with the first and third wall portions 3a and 3c are formed, respectively.
  • the radius of the concave cylindrical surface formed by the fourth wall portion 3d formed at the boundary portion between the first and second wall portions 3a and 3b is the fifth radius formed at the boundary portion between the first and third wall portions 3a and 3c. It is made larger than the radius of the concave cylindrical surface which wall part 3e makes.
  • a powder discharge groove 2C is formed.
  • the discharge groove 2C has a substantially square shape in a cross section perpendicular to the axis O and is open to the outer peripheral surface of the tip end portion of the pilot bit 2.
  • the bottom surface of the discharge groove 2C facing the outer peripheral side of the pilot bit 2 is the second
  • a concave curved surface is formed at the rear end of the abutting portion 2B and is slightly cut off to the outer peripheral side.
  • a portion where the bottom surface and the bottom surface 3A of the housing recess 3 intersect with each other intersects at an obtuse angle.
  • the chamfered surface 2D is chamfered.
  • a mounting hole 3C having a circular cross section having a center line C parallel to the axis O is formed on the opposite side of the bottom surface 3A of each receiving recess 3 from the tool rotation direction T.
  • the center line C of the mounting hole 3C is made to coincide with the center line of the concave cylindrical surface formed by the fourth wall portion 3d formed at the boundary between the first and second wall portions 3a and 3b. Is eccentric to the outer peripheral side.
  • the inner diameter (radius) of the mounting hole 3C is set to be approximately equal to or slightly smaller than the radius of the concave cylindrical surface formed by the fourth wall portion 3d.
  • the bit heads 4 are respectively attached to the receiving recesses 3 of the pilot bits 2.
  • a cylindrical shaft portion 4A that is slidably fitted into the mounting hole 3C and a head body 4B on the tip side of the shaft portion 4A are integrally formed of a metal material such as a steel material.
  • the head body 4B is rotatably mounted around the center line C, and as shown in FIG. 2, the head main body 4B comes into contact with the first wall 3a and is housed in the housing recess 3 so that the radius from the axis O is reduced.
  • the head body 4B is positioned in a state where the radius from the axis O is enlarged when the head body 4B comes into contact with the second wall 3b.
  • the rear end surface of the head main body 4B has a planar shape perpendicular to the center line C.
  • the outer periphery of the shaft portion 4A has a semi-oval shape in the cross section along the center line C as shown in FIG. 1, and the cross section perpendicular to the center line C is almost as shown in FIGS. A notch 4C extending in an L shape is formed.
  • the shaft portion 4A is inserted into the mounting hole 3C, the rear end surface of the shaft portion 4A is brought into contact with the bottom surface of the mounting hole 3C, and the rear end surface of the head body 4B is provided.
  • a pin 5 is driven in a direction tangential to the mounting hole 3C in a cross section perpendicular to the axis O at a position facing the notch 4C in the direction of the axis O in a state of being in contact with the bottom surface 3A of the housing recess 3.
  • the peripheral surface of the pin 5 is exposed in the mounting hole 3C and engaged with the notch 4C, so that the bit head 4 can be rotated around the center line C and is prevented from coming off on the tip side.
  • the first side surface 4a located on the extension of the outer peripheral surface of the shaft portion 4A among the side surfaces of the head body 4B is a convex cylinder centered on a center line C having an outer diameter that is flush with or slightly larger than the outer peripheral surface. It is formed in a planar shape and can be slidably contacted with the fourth wall portion 3 d of the wall surface 3 ⁇ / b> B of the housing recess 3. Further, the second and third side surfaces 4b and 4c with the first side surface 4a in between are formed in a flat shape, and the second side surface 4b is a state in which the bit head 4 has a reduced diameter as shown in FIG. The third side surface 4c faces the outer peripheral side of the pilot bit 2 and the third side surface 4c is expanded in diameter by the bit head 4 at this time. In this state, the second side surface 4b is directed in the tool rotation direction T.
  • the fourth side surface 4d located between the second and third side surfaces 4b and 4c on the side opposite to the first side surface 4a is a pilot bit 2 as shown in FIG. It is formed so that it may protrude on the outer periphery of and may be located on the cylindrical surface centering on the axis O.
  • the intersection ridge line portion between the fourth side surface 4d and the third side surface 4c has a diameter slightly smaller than the outer diameter of the tip portion of the pilot bit 2 in a state where the bit head 4 is reduced in diameter as shown in FIG.
  • the head body 4B which is formed to be chamfered by a cylindrical surface with the axis O as the center, is reduced in diameter and accommodated in the accommodation recess 3 is a cylindrical surface formed by the outer peripheral surface of the tip portion of the pilot bit 2. Located inside.
  • the fourth side surface 4d is formed in a multi-stage shape (three stages in the present embodiment) that is uneven on the inner and outer circumferences with respect to the axis O in the direction of the center line C.
  • the end step is protruded from the axis O to the outermost side, and the portion where the end step is formed is the third contact portion 4D in the present embodiment.
  • the third abutting portion 4D has a flat surface perpendicular to the center line C, and a maximum radius R from the axis O when the bit head 4 is expanded. As shown in FIG. 1, it is made larger than the radius r from the axis O of the front-end
  • the intersecting ridge line portion between the fourth side surface 4d and the second side surface 4b where the third contact portion 4D is formed has a radius substantially equal to the concave cylindrical surface formed by the fifth wall portion 3e of the housing recess 3.
  • the bit head 4 is chamfered into a convex cylindrical surface, and is brought into contact with the fifth wall portion 3e in a reduced state.
  • the most advanced step of the fourth side surface 4d is slightly inclined so as to go to the inner peripheral side as it goes to the rear end side in the state where the bit head 4 is expanded.
  • the fourth side surface 4d is formed so as to extend in parallel to the axis O in the middle stage located between the most advanced stage and the last stage where the third contact portion 4D is formed. . Furthermore, at the corner where the fourth side surface 4d and the second side surface 4b intersect in the middle stage, the engagement portion is cut out in a substantially L shape in a cross section perpendicular to the center line C. 4E is formed.
  • the engagement portion 4E faces the first wall surface 4e facing the outer peripheral side in the state where the bit head 4 is expanded, the second wall surface 4f facing the tool rotation direction T, and the distal end side of the third contact portion 4D. It has a bottom surface 4g that is flush with the surface, and a ceiling surface 4h that faces the rear end side in parallel with the bottom surface 4g.
  • the first wall surface 4e is positioned on a cylindrical surface centered on an axis O having an outer diameter slightly larger than the second contact portion 2B of the pilot bit 2 in a state where the diameter of the bit head 4 is expanded.
  • 2 wall surface 4f is formed so that it may go to the tool rotation direction T side slightly toward the outer peripheral side.
  • the intersecting ridge line portion between the foremost step of the fourth side surface 4d and the tip end surface of the head body 4B is centered so as to form a truncated cone surface with the axis O as the center when the bit head 4 is expanded in diameter. It is set as the inclined surface which goes to the front end side as it goes to the line C side. Further, the intersection ridge line portion between the front end surface and the outer peripheral surface of the pilot bit 2 also has a truncated cone surface shape with the axis O as the center, except for the portion notched by the receiving recess 3, and is on the inner peripheral side. It is set as the inclined surface which inclines toward the front end side as it goes.
  • the tip surfaces of the head body 4B of the pilot bit 2 and the bit head 4 excluding these inclined surfaces are flat surfaces perpendicular to the axis O and the center line C, respectively.
  • the length of the head main body 4B in the direction of the center line C is equal to the depth from the bottom surface 3A of the receiving recess 3 to the tip end surface of the pilot bit 2, so that the bit head 4 is received in the receiving recess 3. In this state, the pilot bit 2 and the front end surface of the head body 4B are flush with each other.
  • a plurality (many) of a hard metal or the like harder than the steel material or the like forming the pilot bit 2 or the bit head 4 is provided on the front end surface and each inclined surface of the head body 4B of the pilot bit 2 and the bit head 4.
  • the excavation tip 6 is provided. These excavation tips 6 are formed by integrally forming, for example, a hemispherical head and a cylindrical body protruding from the tip surface and the inclined surface, and are formed perpendicular to the tip surface and the inclined surface, respectively.
  • the body is fixed by press fitting, shrink fitting, cold fitting or brazing into the circular hole.
  • annular ring bit 7 is disposed on the front end side of the casing pipe 1 so as to be coaxial with the axis O thereof.
  • the ring bit 7 is also formed in a circular plate shape from a metal material such as steel, and the front and rear end faces facing the direction of the axis O are perpendicular to the axis O.
  • the intersection ridge line between the tip and the outer peripheral surface is The inclined surface has a truncated cone shape with the axis O as the center.
  • an excavation tip 6 made of a hard material such as a cemented carbide is provided on the outer peripheral portion of the inclined surface and the tip surface so as to protrude vertically.
  • the outer diameter of the ring bit 7 is larger than the outer diameter of the casing pipe 1 and the casing top 1A, and larger than the outer diameter of the expanded bit head 4. Further, the inner diameter of the ring bit 7 is slightly larger than the outer diameter of the second abutting portion 2B of the pilot bit 2, so that it is larger than the inner diameter of the small diameter portion 1B formed in the casing pipe 1 by the casing top 1A. In addition, the outer diameter of the bit head 4 in the expanded state is smaller than the outer diameter of the bit head 4 so that the first wall surface 4e of the engaging portion 4E can be fitted. Further, the thickness of the ring bit 7 in the direction of the axis O is made smaller than the width between the inner and outer diameters and slightly smaller than the distance between the bottom surface 4g of the engaging portion 4E and the ceiling surface 4h. Yes.
  • the inner periphery of the ring bit 7 is formed with three recesses recessed on the outer periphery side at equal intervals in the circumferential direction, the same number as the bit head 4, and these recesses are formed as shown in FIG.
  • the engaged portion 4E and the engaged portion 7A that is engaged in the tool rotation direction T during excavation.
  • the engaged portion 7A includes a first wall surface 7a that recedes from the inner peripheral portion of the ring bit 7 to the outer peripheral side and faces the inner peripheral side, and a tool rotation direction T extending from the first wall surface 7a to the inner peripheral portion.
  • a second wall surface 7b facing the opposite side and a third wall surface 7c facing the tool rotation direction T are provided, and in this embodiment, the ring bit 7 is formed so as to penetrate in the axis O direction.
  • the first wall surface 7a is located on a cylindrical surface centered on the axis O, and the radius from the axis O is the most advanced of the fourth side surfaces 4d facing the outer peripheral side of the expanded bit head 4.
  • the radius is slightly larger than the radius from the axis O of the middle and middle stages, and smaller than the radius R of the third contact portion 4D.
  • the circumferential length of the first wall surface 7a is slightly longer than the length of the middle circumferential length of the fourth side surface 4d excluding the engaging portion 4E.
  • the second and third wall surfaces 7b and 7c extend in the tool rotation direction T toward the outer peripheral side, and the angle formed by the second wall surface 7b with respect to the radial direction with respect to the axis O increases.
  • the second wall surface 4f of the engagement portion 4E of the diameter bit head 4 is made equal to the angle formed with respect to the radial direction with respect to the axis O.
  • the third wall surface 7c has a center line C of the mounting hole 3C in the receiving recess 3 of the pilot bit 2 in a state where the engaged portion 7A is engaged with the engaging portion 4E as shown in FIG. It is formed so as to form a concave cylindrical surface centered on.
  • the pilot bit 2 is provided with a bottomed supply hole 8 along the axis O from the rear end of the shank portion 2A to the center of the receiving recess 3 in the direction of the axis O, and the down-the-hole hammer H Compressed air can be supplied from the side.
  • first to third blow holes 8 A to 8 C each having a smaller diameter than the supply hole 8 are branched obliquely so as to go to the tip side toward the outer peripheral side.
  • the first blow hole 8A opens to the distal end side of the second abutting portion 2B on the outer peripheral surface of the distal end portion of the pilot bit 2, and a fourth blow hole 8D having a smaller diameter extends from the first blow hole 8A. It branches in parallel with O and opens in the center of the bottom surface of the mounting hole 3C. Further, the second blow hole 8B branches from the supply hole 8 on the tip side of the first blow hole 8A, and forms an inclined surface 2D between the bottom surface of the dust discharge groove 2C and the bottom surface 3A of the housing recess 3. It opens almost vertically. Further, the third blow hole 8C has a larger diameter than the first and second blow holes 8A, 8B, branches at the tip of the supply hole 8, and the fifth wall 3e of the first wall 3a of the housing recess 3. Open to the side.
  • the pilot bit 2 is inserted from the rear end side of the casing pipe 1 in a state where the diameter of the bit head 4 is reduced and the head main body 4B is accommodated in the accommodation recess 3, and the second abutting portion 2B Is positioned in the direction of the axis O when it contacts the rear end surface of the casing top 1A.
  • the ring bit 7 is inserted into the distal end portion of the pilot bit 2 from the distal end side by aligning the circumferential position of the engaged portion 7A with the accommodating recess 3 as shown in FIG. In the direction of the axis O, the head main body 4B is disposed at the position of the engaging portion 4E.
  • the portion on the tool rotation direction T side of the engaged portion 7A in the tip surface of the ring bit 7 is slightly on the ceiling surface 4h of the engaging portion 4E.
  • the ring bit 7 is prevented from coming off to the tip side by being able to abut against each other with a gap. That is, in this embodiment, the portion of the engaged portion 7A on the tool rotation direction T side of the front end surface of the ring bit 7 can come into contact with the enlarged bit head 4 on the front end side in the axis O direction.
  • the first contact portion 7B is made.
  • the bottom surface 4g of the engaging portion 4E and the surface facing the front end side of the third abutting portion 4D flush with the engaging portion 4E are in contact with the rear end surface of the ring bit 7 and support the ring bit 7 on the front end side.
  • the casing pipe 1 and the ring bit 7 can be moved forward together with the pilot bit 2 and the bit head 4 in the direction of the axis O.
  • the down-the-hole hammer H transmits the striking force toward the front end side in the direction of the axis O to the pilot bit 2 and the bit head 4 and the ring bit 7 via the third contact portion 4D.
  • Drilling work is carried out by the excavation tip 6 provided on the tip surface of the pilot bit 2, bit head 4 and ring bit 7 by transmitting thrust and rotational force in the tool rotation direction T from the excavator.
  • the casing pipe 1 is inserted into the formed excavation hole.
  • compressed air is ejected from the supply hole 8 through the first to fourth blow holes 8A to 8D, and the dust produced by the excavation tip 6 passes through the casing pipe 1 from the discharge groove 2C. While discharging, the dusting into the mounting hole 3C and the small diameter portion 1B is prevented.
  • the pilot bit 2 is rotated in the direction opposite to the tool rotation direction T during excavation by the excavation device. Then, the diameter of the bit head 4 is reduced as shown in FIG. 2 by friction of the head body 4B with the excavation hole and the third wall surface 7c of the engaged portion 7A.
  • the pilot bit 2 and the bit head 4 can be recovered leaving the ring bit 7 in the excavation hole.
  • the rotational force in the tool rotation direction T is transmitted from the head body 4B of the bit head 4 whose diameter has been expanded to the engaged portion 7A of the ring bit 7.
  • the rotational force can be efficiently transmitted at a position further away from the axis O that is the center of rotation of the bit 2 and the bit head 4. For this reason, even when a drilling hole having a larger inner diameter than the outer diameter of the casing pipe 1 is formed, a sufficient rotational force can be transmitted to the ring bit 7 to ensure drilling performance.
  • the pilot bit 2 and the bit head 4 protrude one step toward the tip side of the ring bit 7, so that the inner periphery is formed by the excavation tip 6 of the pilot bit 2 and the bit head 4.
  • the excavation tip 6 of the ring bit 7 excavates the outer peripheral portion of the excavation hole that has been easily crushed by drilling the portion. For this reason, more efficient drilling can be performed while suppressing the load on the ring bit 7.
  • the front end surface of the pilot bit 2 and the bit head 4 and the front end surface of the ring bit 7 may be flush with each other, and the front end surface of the ring bit 7 protrudes from the front end surface of the pilot bit 2 and the bit head 4. It may be.
  • the outer peripheral side of the excavation hole is drilled by the ring bit 7, in the pilot bit 2 and the bit head 4, it is necessary to increase the radius from the axis O of the enlarged head main body 4B to the inner diameter of the excavation hole. Therefore, the burden on the shaft portion 4A of the bit head 4 and the like can be reduced and damage can be prevented.
  • the ring bit 7 has an annular shape, for example, as shown in FIG. 3, a drilling tip 6 is disposed in addition to the range where the bit head 4 whose diameter is increased in the circumferential direction is located. In addition, the installation amount and position of the excavation tip 6 can be set, and a decrease in drilling performance due to a partial deficiency of the excavation tip 6 can also be prevented.
  • the engaged portion 7A is engaged with the bit head 4 having an enlarged diameter as described above, and is supported so as to be integrally rotatable in the tool rotation direction T, and a rotational force is transmitted. Therefore, it is not necessary to support the casing pipe 1 and the inner diameter can be increased. For this reason, the volume of the ring bit 7 can be reduced to reduce the necessary material such as a steel material, and an increase in construction cost can be suppressed even when the ring bit 7 is left in the excavation hole after the excavation is completed.
  • the inner peripheral portion of the excavation hole is drilled by the excavation tip 6 of the pilot bit 2 and the bit head 4, so that the diameter is increased in the radial direction from the axis O in this embodiment.
  • the recessed part dented toward the outer peripheral side is formed in the inner peripheral part of the ring bit 7, and it is set as the to-be-engaged part 7A.
  • a convex portion as an engaged portion on the front end surface of the ring bit 7 and engage the head body 4B of the bit head 4 whose diameter is enlarged to the convex portion in the tool rotation direction T.
  • the load due to the rotational force may be concentrated on the convex portion to cause damage, and the volume of the ring bit 7 is increased only by the convex portion, thereby increasing the material cost.
  • the rotational force can be received by the ring ring 7 itself, the volume and cost of the ring bit 7 can be further reduced.
  • a portion of the distal end surface of the ring bit 7 adjacent to the tool rotation direction T side of the engaged portion 7A formed as a concave portion recessed from the inner peripheral portion toward the outer peripheral side is engaged.
  • the first abutting portion 7B that can abut on the ceiling surface 4h of the engaging portion 4E on the front end side in the axis O direction is used. Even if the ring bit 7 collides with the ceiling surface 4h by the striking force transmitted through the head 4, the impact can be received by the entire thickness of the ring bit 7, and the occurrence of damage or the like can be prevented.
  • the first contact portion 7B may be formed by forming a bottom surface facing the front end side of the recess so as to face the ceiling surface 4h.
  • the casing pipe 1 is inserted into the excavation hole by the striking force and thrust force applied to the pilot bit 2 in the excavation hole.
  • a casing top 1A is attached to the tip of 1 to form a small diameter portion 1B, and the second contact portion 2B of the pilot bit 2 is brought into contact with this small diameter portion 1B to transmit the striking force and thrust.
  • the inner diameter of the ring bit 7 is increased in this embodiment with respect to the inner diameter of the small-diameter portion 1B, the inner diameter of the ring bit has to be reduced as described above. The construction cost can be surely reduced as compared with the excavation tool.
  • the inner diameter of the ring bit 7 may be equal to the small diameter portion 1B.
  • the casing pipe 1 is provided with the small diameter portion 1B to transmit the striking force and thrust, whereas the pilot bit 2 transmits the striking force and thrust to the ring bit 7.
  • the third contact portion that can contact the rear end surface of the ring bit 7 in a state where the diameter of the bit head 4 is expanded instead of being directly transmitted from the pilot bit 2 as in the excavation tool described in Patent Document 1.
  • 4D is provided to transmit the striking force and the thrust from the third contact portion 4D.
  • the third contact of the bit head 4 in the expanded state is achieved.
  • the maximum radius R from the axis O of the portion 4D is set to be larger than the radius r from the axis O of the outer peripheral end of the casing pipe 1, that is, the radius of the casing top 1A. For this reason, it is possible to more reliably transmit the striking force and thrust to the ring bit 7 on the outer peripheral side where the hole is drilled, and excavation with a larger inner diameter than the outer diameter of the casing pipe 1 as in this embodiment. Even when holes are formed, it is possible to perform even more efficient drilling.
  • the drilling tool of the present invention even when forming a drilling hole having a larger inner diameter than the outer diameter of the casing pipe, the drilling performance is reduced, the construction cost is increased, or the tool is damaged. Therefore, efficient drilling can be performed by transmitting a sufficient rotational force, striking force, and thrust to the ring bit without incurring the above. Therefore, industrial use is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Earth Drilling (AREA)

Abstract

This excavation tool comprises: a casing pipe, a large-diameter ring bit disposed coaxially on a distal end side of the casing pipe, and a pilot bit inserted into the ring bit through the inside of the casing pipe. A bit head that expands in diameter when rotated in a tool rotation direction during excavation is provided to an outer circumferential part at the distal end of the pilot bit. Provided to the ring bit are: an engaging part that engages with the expanded bit head in the tool rotation direction and a first abutting part capable of abutting the bit head in the axial direction.

Description

掘削工具Drilling tools
 本発明は、ケーシングパイプの先端側に配置されたリングビットとケーシングパイプ内に挿通されたパイロットビットにより掘削を行う、いわゆる二重管式の掘削工具に関する。
 本願は、2014年8月20日に、日本に出願された特願2014-167602号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a so-called double-pipe excavation tool that performs excavation using a ring bit disposed on the front end side of a casing pipe and a pilot bit inserted into the casing pipe.
This application claims priority based on Japanese Patent Application No. 2014-167602 for which it applied to Japan on August 20, 2014, and uses the content here.
 このような二重管式の掘削工具として、特許文献1には、ケーシングパイプの先端部にリングビットが互いの内外周面を対向させて回転自在に挿入されるとともに、ケーシングパイプ内に挿入される伝達部材の先端にはインナービットが取り付けられ、このインナービットによってケーシングパイプに打撃力と推力を、リングビットには加えて回転力を伝達して削孔し、所定の深さまで掘削孔を形成した後はリングビットをケーシングパイプから抜脱して掘削孔に残すようにしたものが提案されている。 As such a double-pipe excavation tool, Patent Document 1 discloses that a ring bit is inserted at the tip of a casing pipe so that the inner and outer peripheral surfaces of the ring bit are opposed to each other, and is inserted into the casing pipe. An inner bit is attached to the tip of the transmission member, and the inner bit applies a striking force and thrust to the casing pipe and a rotational force in addition to the ring bit to drill the hole, forming a drilling hole to a predetermined depth After that, it has been proposed to remove the ring bit from the casing pipe and leave it in the excavation hole.
 また、特許文献2には、軸線回りに回転させられるシャンクデバイスの先端部外周に拡径ビットが取り付けられて、掘削時には拡径ビットが拡径した状態で位置決めされてケーシングパイプの先端に突出することにより所定の内径の掘削孔を形成し、掘削終了後は拡径ビットを縮径させてシャンクデバイスごとケーシングパイプ内を通して回収するようにした、いわゆるアンダーリーミングビットが記載されている。 Also, in Patent Document 2, a diameter expansion bit is attached to the outer periphery of the tip of a shank device that is rotated about an axis, and the diameter expansion bit is positioned in an expanded state during excavation and protrudes to the front end of the casing pipe. Thus, a so-called underreaming bit is described in which a drilling hole having a predetermined inner diameter is formed, and after completion of drilling, the diameter-enlarged bit is reduced and the shank device is collected through the casing pipe.
特許第4887857号公報Japanese Patent No. 48878857 特許第4501407号公報Japanese Patent No. 4501407
 ところで、近年このような掘削工具による特定の削孔作業において、ケーシングパイプそのものを挿入するのに十分な内径よりも大きな内径の掘削孔を形成する場合が増えている。例えば、鋼管連壁を埋設する場合には鋼管外周部に継ぎ手が設けられたケーシングパイプを掘削孔に挿入することになり、またケーシングパイプを鋼管外径よりも大きな外径のカップリングによって接続する場合には該カップリングが掘削孔に挿入されるため、継ぎ手やカップリングまでの外径を考慮した内径の掘削孔を形成しなければならない。さらに、水井戸等で止水のために鋼管の周囲をセメンティングする場合にも、鋼管外径に対してより大きな内径の掘削孔が必要となる。 By the way, in recent years, in a specific drilling operation using such a drilling tool, there is an increasing number of cases where a drilling hole having an inner diameter larger than an inner diameter sufficient to insert the casing pipe itself is formed. For example, when a steel pipe connection wall is buried, a casing pipe having a joint on the outer periphery of the steel pipe is inserted into the drilling hole, and the casing pipe is connected by a coupling having an outer diameter larger than the outer diameter of the steel pipe. In some cases, since the coupling is inserted into the excavation hole, an excavation hole having an inner diameter in consideration of the outer diameter up to the joint and the coupling must be formed. Furthermore, when cementing the periphery of a steel pipe to stop water in a water well or the like, a drilling hole having a larger inner diameter than the outer diameter of the steel pipe is required.
 このような内径の大きな掘削孔の形成を、特許文献1に記載された二重管式の掘削工具によって行う場合には、リングビットの外径を大きくするが、上述のようにリングビットはその後端部の外周面をケーシングパイプの内周面に対向させて回転自在に挿入されるため、リングビットの内径は変わることがなく、半径方向の寸法が大きくなる。そして、このリングビットは、最終的には回収されずに掘削孔に残されてしまうため、施工コストの増大を招く。また、リングビットへの回転力はケーシングパイプ内を通してリングビットに挿通されたインナービットにより伝達されるため、リングビットの外径が大きくなると十分な回転力を伝達することができず、削孔性能が低下するおそれもある。 When forming such a drilling hole with a large inner diameter with the double pipe type drilling tool described in Patent Document 1, the outer diameter of the ring bit is increased. Since the outer peripheral surface of the end portion is rotatably inserted with the outer peripheral surface of the casing pipe facing the inner peripheral surface of the casing pipe, the inner diameter of the ring bit does not change, and the radial dimension increases. And since this ring bit is not collect | recovered finally and remains in a digging hole, it causes the increase in construction cost. In addition, since the rotational force to the ring bit is transmitted by the inner bit inserted into the ring bit through the casing pipe, if the outer diameter of the ring bit becomes large, sufficient rotational force cannot be transmitted, and the drilling performance May decrease.
 一方、特許文献2に記載されたアンダーリーミングビットを用いて内径の大きな掘削孔を形成する場合には、拡径した状態の拡径ビットの軸線からの半径を大きくする。しかしながら、掘削終了後に拡径ビットを縮径させてシャンクデバイスごと回収するためには拡径ビットを大きくするにも限度があり、さらに内径の大きな掘削孔を形成するには負荷が大きくなって、拡径ビットを回転自在に支持する軸に損傷が生じるおそれもある。また、拡径ビットに配設される掘削チップの設置量にも限度があり、掘削孔が大径になるほど、やはり削孔性能が低下する。 On the other hand, when forming an excavation hole with a large inner diameter using the underreaming bit described in Patent Document 2, the radius from the axis of the expanded bit in the expanded state is increased. However, in order to reduce the diameter expansion bit after completion of excavation and collect the entire shank device, there is a limit to increasing the diameter expansion bit, and the load is increased to form a drilling hole with a larger inner diameter. There is also a possibility that damage may occur to the shaft that rotatably supports the diameter expanding bit. In addition, there is a limit to the amount of excavation tips installed in the diameter expansion bit, and the drilling performance decreases as the diameter of the excavation hole increases.
 本発明は、このような背景の下になされたもので、ケーシングパイプの外径に対してより大きな内径の掘削孔を削孔する場合に、削孔性能の低下や損傷の発生、及び施工コストの増大を防ぐことが可能な掘削工具を提供することを目的としている。 The present invention has been made under such a background. When a drilling hole having a larger inner diameter than the outer diameter of the casing pipe is drilled, the drilling performance is deteriorated, damage is generated, and the construction cost is increased. An object of the present invention is to provide a drilling tool capable of preventing an increase in the size of the drilling tool.
 上記課題を解決して、このような目的を達成するために、本発明は、軸線を中心とした円筒状のケーシングパイプと、このケーシングパイプの先端側に同軸に配置される上記ケーシングパイプよりも外径の大きな円環状のリングビットと、上記ケーシングパイプ内を通って上記リングビットの内周部に挿通されるパイロットビットとを備え、上記パイロットビットは上記軸線回りに回転可能とされるとともに、このパイロットビットの先端外周部にはビットヘッドが設けられ、上記ビットヘッドは、上記軸線から偏心した中心線回りに回転自在とされて、上記パイロットビットが掘削時の工具回転方向に回転したときに上記軸線からの半径が拡径して上記パイロットビットに支持され、上記リングビットには、拡径した上記ビットヘッドに対して上記掘削時の工具回転方向に係合させられる被係合部と上記軸線方向の先端側に当接可能とされた第1の当接部とが設けられていることを特徴とする。 In order to solve the above-described problems and achieve such an object, the present invention provides a cylindrical casing pipe centering on the axis and a casing pipe coaxially disposed on the tip side of the casing pipe. An annular ring bit having a large outer diameter, and a pilot bit inserted through the casing pipe and into the inner periphery of the ring bit, the pilot bit being rotatable around the axis, A bit head is provided on the outer periphery of the tip of the pilot bit, and the bit head is rotatable around a center line eccentric from the axis, and when the pilot bit rotates in the tool rotation direction during excavation. The radius from the axis is enlarged and supported by the pilot bit, and the ring bit is attached to the enlarged bit head. Characterized in that the first contact portion which is contactable to the front end side engaged portion to be engaged with the tool rotating direction and the axis direction during the drilling is provided.
 このような掘削工具においては、パイロットビットの先端外周部に設けられたビットヘッドが掘削時に拡径し、この拡径したビットヘッドに対してリングビットに設けられた第1の当接部が軸線方向先端側に当接するので、まずリングビットを先端側に抜け止めすることができる。そして、このリングビットは、その被係合部が拡径したビットヘッドに対して掘削時の工具回転方向にも係合させられるので、パイロットビットからビットヘッドを介してリングビットに回転力を伝達することができる。 In such a drilling tool, the bit head provided at the outer peripheral portion of the tip end of the pilot bit expands during drilling, and the first contact portion provided in the ring bit with respect to the expanded bit head has an axis line Since the ring bit comes into contact with the front end in the direction, the ring bit can be prevented from coming off at the front end. And this ring bit is engaged in the tool rotation direction at the time of excavation with respect to the bit head whose engaged portion is expanded in diameter, so that the rotational force is transmitted from the pilot bit to the ring bit via the bit head. can do.
 従って、リングビットの外径をケーシングパイプの外径に対してより大きくしても、軸線からの半径が拡径して大きくなったビットヘッドにより、十分な回転力をリングビットに伝達して削孔性能を確保することができる。また、こうしてリングビットの被係合部が拡径したビットヘッドに対して掘削時の工具回転方向に係合させられることにより、リングビットの後端部外周面をケーシングパイプの内周面に対向させて回転自在に挿入する必要も無くなるため、リングビットの内径を大きくすることができ、すなわちリングビットの体積を小さくして必要な材料を減らすことができるので、掘削終了後にビットヘッドを掘削時とは反対向きに回転させてリングビットを掘削孔に残す場合にも施工コストが増大するのを抑えることができる。 Therefore, even if the outer diameter of the ring bit is made larger than the outer diameter of the casing pipe, the bit head whose radius from the axis is enlarged and transmitted is transmitted to the ring bit with a sufficient rotational force. Hole performance can be ensured. The ring bit engaged portion is engaged with the bit head whose diameter has been expanded in the tool rotation direction during excavation, so that the outer peripheral surface of the rear end of the ring bit faces the inner peripheral surface of the casing pipe. Since there is no need to insert the ring bit in a rotatable manner, the inner diameter of the ring bit can be increased, that is, the volume of the ring bit can be reduced and the required material can be reduced. Even when the ring bit is left in the excavation hole by rotating in the opposite direction, it is possible to suppress an increase in construction cost.
 これに対して、パイロットビットにおいては、拡径した状態のビットヘッドの軸線からの半径を掘削孔の半径ほど大きくしなくても、リングビットによって内径の大きな掘削孔を形成することができ、過大な負荷を作用させることなくビットヘッドの損傷等を防止することができる。また、掘削孔の外周側を掘削する円環状のリングビットにおける掘削チップの設置量は比較的自由に設定することができ、チップ不足による削孔性能の低下も防ぐことが可能となる。 On the other hand, in the pilot bit, a drill bit having a large inner diameter can be formed by the ring bit even if the radius from the axis of the bit head in the expanded state is not as large as the radius of the drill hole. It is possible to prevent the bit head from being damaged without applying a heavy load. Moreover, the installation amount of the excavation tip in the annular ring bit excavating the outer peripheral side of the excavation hole can be set relatively freely, and it is possible to prevent the drilling performance from being lowered due to the shortage of the tip.
 ここで、上記リングビットの内周部に外周側に凹む凹部を形成して、この凹部を上記被係合部とすれば、リングビットの体積を一層削減することができて、さらなる施工コストの抑制を図ることができる。なお、このときには、凹部に隣接するリングビットの先端面を上記第1の当接部としてもよく、また凹部に軸線方向先端側を向く底面を形成して、これを第1の当接部としてもよい。 Here, if a concave portion recessed on the outer peripheral side is formed in the inner peripheral portion of the ring bit and this concave portion is used as the engaged portion, the volume of the ring bit can be further reduced, and the construction cost can be further reduced. Suppression can be achieved. At this time, the tip end surface of the ring bit adjacent to the recess may be the first contact portion, or a bottom surface facing the tip end in the axial direction is formed in the recess, and this is used as the first contact portion. Also good.
 また、パイロットビットに与えられる軸線方向先端側への打撃力と推力によってケーシングパイプを掘削孔に建て込むには、特許文献1、2に記載された掘削工具と同じようにケーシングパイプの先端内周部には内径が一段小さくなる小径部を形成するとともに、パイロットビットの後端外周部には上記小径部に軸線方向の後端側から当接可能な段部のような第2の当接部を形成して打撃力と推力を伝達すればよい。そして、このときには、上記リングビットの内径を上記小径部の内径以上として大きくすることにより、上述のようにリングビットの体積を小さくして確実に施工コストを抑制することができる。 In addition, in order to build the casing pipe in the excavation hole by the striking force and thrust to the axial tip provided to the pilot bit, the inner periphery of the end of the casing pipe is the same as the excavation tool described in Patent Documents 1 and 2. A small-diameter portion whose inner diameter is reduced by one step is formed on the portion, and a second abutting portion such as a step portion that can abut on the small-diameter portion from the rear end side in the axial direction on the outer peripheral portion of the pilot bit Is formed to transmit the striking force and thrust. At this time, by increasing the inner diameter of the ring bit to be equal to or larger than the inner diameter of the small-diameter portion, the volume of the ring bit can be reduced as described above, and the construction cost can be reliably suppressed.
 一方、リングビットに軸線方向先端側への打撃力と推力を伝達するには、特許文献1に記載された掘削工具のようにパイロットビットから直接伝達するようにしてもよいが、その場合に、上述のようにケーシングパイプの先端内周部に小径部を形成してパイロットビットの段部を当接可能としたときには、リングビットにケーシングパイプの小径部よりもさらに内径が小さくなる小径部を形成してパイロットビットに当接させなければならなくなり、上述のようにリングビットの内径を小さくして施工コストを抑制することが困難となるおそれがある。 On the other hand, in order to transmit the striking force and thrust to the axial direction tip side to the ring bit, it may be transmitted directly from the pilot bit as in the excavation tool described in Patent Document 1, As described above, when a small diameter portion is formed on the inner periphery of the tip of the casing pipe so that the step portion of the pilot bit can be contacted, a small diameter portion having a smaller inner diameter than the small diameter portion of the casing pipe is formed on the ring bit. In this case, it is necessary to abut the pilot bit, and as described above, it may be difficult to reduce the inner diameter of the ring bit to reduce the construction cost.
 そこで、特にこのような場合には、上記ビットヘッドに、拡径した状態で上記リングビットの上記軸線方向後端側を向く面に当接可能な第3の当接部を設けることにより、リングビットにケーシングパイプの小径部よりも内径の小さい小径部を形成する必要がなくなって、一層確実に施工コストを抑制することができるとともに、このビットヘッドの第3の当接部を介してパイロットビットから軸線方向先端側への打撃力と推力をリングビットに確実に伝達することが可能になる。 Therefore, particularly in such a case, by providing the bit head with a third abutting portion capable of abutting on the surface of the ring bit facing the rear end side in the axial direction in an expanded state, It is no longer necessary to form a small diameter portion having a smaller inner diameter than the small diameter portion of the casing pipe in the bit, so that the construction cost can be more reliably suppressed and the pilot bit can be connected via the third contact portion of this bit head. Thus, it is possible to reliably transmit the striking force and thrust from the axial direction to the tip end in the axial direction to the ring bit.
 さらに、この場合には、拡径したビットヘッドの上記第3の当接部の軸線からの最大の半径を、ケーシングパイプの先端外周部の軸線からの半径よりも大きくすることにより、リングビットには削孔を行う外周側で打撃力と推力を伝達することができ、ケーシングパイプの外径に対してより大きな内径の掘削孔を形成する場合に、さらに効率的な削孔を行うことが可能となるとともに、リングビットの軸線方向の厚さも薄くすることができて、一層の施工コスト削減を図ることができる。 Furthermore, in this case, the maximum radius from the axis of the third contact portion of the expanded bit head is made larger than the radius from the axis of the outer peripheral portion of the tip of the casing pipe. Can transmit striking force and thrust on the outer circumference side where drilling is performed, and when drilling holes with a larger inner diameter than the outer diameter of the casing pipe are formed, more efficient drilling can be performed At the same time, the thickness of the ring bit in the axial direction can be reduced, and the construction cost can be further reduced.
 以上説明したように、本発明によれば、ケーシングパイプの外径に対してより大きな内径の掘削孔を形成する場合でも、削孔性能の低下や施工コストの増大、あるいは工具の損傷等を招くことなく、リングビットに十分な回転力を伝達して効率的な削孔を行うことが可能となる。 As described above, according to the present invention, even when an excavation hole having a larger inner diameter than the outer diameter of the casing pipe is formed, the drilling performance is reduced, the construction cost is increased, or the tool is damaged. Therefore, it is possible to transmit a sufficient rotational force to the ring bit and perform efficient drilling.
本発明の一実施形態においてビットヘッドが拡径した状態を示す側断面図である。It is a sectional side view which shows the state which the bit head expanded in one Embodiment of this invention. 図1に示す実施形態においてビットヘッドが縮径した状態を軸線方向先端側から見た拡大正面図である(ただし、ケーシングパイプおよびケーシングトップは図示が略されている。)。FIG. 2 is an enlarged front view of a state in which the bit head is reduced in diameter in the embodiment shown in FIG. 1 as viewed from the front end side in the axial direction (however, the casing pipe and the casing top are not shown). 図1に示す実施形態においてビットヘッドが拡径した状態を軸線方向先端側から見た拡大正面図である(ただし、ケーシングパイプおよびケーシングトップは図示が略されている。)。FIG. 2 is an enlarged front view of the state in which the diameter of the bit head is increased in the embodiment shown in FIG. 1 as viewed from the axial front end side (however, the casing pipe and the casing top are not shown). 図1に示す実施形態のリングビットを軸線方向先端側から見た拡大正面図である。It is the enlarged front view which looked at the ring bit of embodiment shown in FIG. 1 from the axial direction front end side. 図4におけるZZ断面図である。It is ZZ sectional drawing in FIG.
 図1ないし図5は、本発明の掘削工具の一実施形態を示すものである。本実施形態において、ケーシングパイプ1は、鋼材等の金属材料により軸線Oを中心とする円筒状に形成されるとともに、このケーシングパイプ1の先端部(図1における左側部分)には、同じく鋼材等の金属材料により多段円筒状に形成されたケーシングトップ1Aが取り付けられている。 1 to 5 show an embodiment of the excavation tool of the present invention. In the present embodiment, the casing pipe 1 is formed in a cylindrical shape centering on the axis O with a metal material such as steel, and at the tip portion (left side portion in FIG. 1) of the casing pipe 1 is also steel or the like. A casing top 1 </ b> A formed in a multi-stage cylindrical shape is attached.
 ケーシングトップ1Aは、その内径がケーシングパイプ1の内径よりも一段小さな一定の内径とされるとともに、先端部の外径はケーシングパイプ1と同径とされ、後端部の外径はケーシングパイプ1内に嵌挿可能な大きさとされている。ケーシングトップ1Aは、この後端部がケーシングパイプ1の先端側から嵌め入れられた上で溶接等によって接合されることにより、ケーシングパイプ1と同軸に一体化されている。 The casing top 1 </ b> A has a constant inner diameter that is one step smaller than the inner diameter of the casing pipe 1, the outer diameter of the front end is the same as the casing pipe 1, and the outer diameter of the rear end is the casing pipe 1. It is the size which can be inserted in. The casing top 1 </ b> A is integrated coaxially with the casing pipe 1 by joining the rear end portion of the casing top 1 </ b> A from the front end side of the casing pipe 1 by welding or the like.
 このようにケーシングトップ1Aが取り付けられることにより、ケーシングパイプ1の先端内周部には、内径が一段小さくなる小径部1Bが形成される。なお、この小径部1Bの後端面は、内周側に向かうに従い僅かに先端側に向かうように傾斜する軸線Oを中心とした凹円錐面状に形成されている。 By attaching the casing top 1A in this way, a small-diameter portion 1B having a smaller inner diameter is formed on the inner peripheral portion of the tip of the casing pipe 1. The rear end surface of the small-diameter portion 1B is formed in a concave conical surface centered on the axis O that is inclined slightly toward the front end side as it goes toward the inner peripheral side.
 ケーシングパイプ1内には、その後端側(図1における右側)からパイロットビット2が挿通される。このパイロットビット2は、やはり鋼材等の金属材料により外形が多段の円柱状に形成されており、その後端部は小径のシャンク部2Aとされていて、このシャンク部2Aに取り付けられるダウンザホールハンマHから軸線O方向先端側に向けた打撃力が伝達される。 The pilot bit 2 is inserted into the casing pipe 1 from the rear end side (right side in FIG. 1). The pilot bit 2 is also formed into a cylindrical shape having a multi-stage outer shape with a metal material such as steel, and the rear end portion is a small-diameter shank portion 2A. From the down-the-hole hammer H attached to the shank portion 2A A striking force directed toward the tip side in the direction of the axis O is transmitted.
 また、このダウンザホールハンマHの後端側には、図示されない掘削ロッドが必要に応じて継ぎ足されて連結されるとともに、最後端の掘削ロッドは掘削装置に取り付けられている。この掘削装置からパイロットビット2には、掘削ロッドおよびダウンザホールハンマHを介して軸線O方向先端側に向けた推力と掘削時の工具回転方向Tに向けた回転力とが伝達される。なお、ケーシングパイプ1も必要に応じて後端側に継ぎ足されて掘削孔に挿入されてゆく。 Further, a drill rod (not shown) is connected to the rear end side of the down-the-hole hammer H as necessary, and the last drill rod is attached to the drilling device. From this excavator, the pilot bit 2 is transmitted through the excavating rod and the down-the-hole hammer H with a thrust directed toward the front end side in the axis O direction and a rotational force directed in the tool rotation direction T during excavation. The casing pipe 1 is also added to the rear end side as necessary and inserted into the excavation hole.
 シャンク部2Aよりも先端側において、パイロットビット2の外周には外径が最大となる段部が形成されて、本実施形態の第2の当接部2Bとされている。この第2の当接部2Bの外径はケーシングパイプ1の内径より僅かに小さく、ケーシングトップ1Aによる小径部1Bの内径よりは大きくされている。さらに、第2の当接部2Bの先端面は、内周側に向かうに従い僅かに先端側に向かうように傾斜する凸円錐面状に形成されており、その傾斜角は凹円錐面状をなす小径部1Bの後端面の傾斜角と等しくされている。 A step portion having the largest outer diameter is formed on the outer periphery of the pilot bit 2 on the front end side of the shank portion 2A, which is the second contact portion 2B of the present embodiment. The outer diameter of the second contact portion 2B is slightly smaller than the inner diameter of the casing pipe 1, and larger than the inner diameter of the small diameter portion 1B formed by the casing top 1A. Further, the distal end surface of the second contact portion 2B is formed in a convex conical surface shape that is inclined slightly toward the distal end side toward the inner peripheral side, and the inclination angle forms a concave conical surface shape. It is made equal to the inclination angle of the rear end face of the small diameter portion 1B.
 従って、パイロットビット2は、ケーシングパイプ1の後端側から挿通されて第2の当接部2Bが小径部1Bに当接したところで、ケーシングパイプ1およびケーシングトップ1Aと同軸とされて軸線O方向先端側に一体に前進可能、かつ軸線O回りにはケーシングパイプ1およびケーシングトップ1Aに対して相対的に回転可能とされる。また、この第2の当接部2Bよりも先端側におけるパイロットビット2の外径は、ケーシングトップ1Aによる小径部1Bの内径よりも僅かに小さな一定の外径とされており、こうして第2の当接部2Bが小径部1Bに当接した状態で、パイロットビット2の先端部はケーシングトップ1Aの先端から大きく突出するように形成されている。 Therefore, when the pilot bit 2 is inserted from the rear end side of the casing pipe 1 and the second contact portion 2B contacts the small diameter portion 1B, the pilot bit 2 is coaxial with the casing pipe 1 and the casing top 1A and is in the axis O direction. It can be moved forward integrally with the distal end side, and can rotate relative to the casing pipe 1 and the casing top 1A around the axis O. Further, the outer diameter of the pilot bit 2 on the tip side of the second abutting portion 2B is a constant outer diameter slightly smaller than the inner diameter of the small diameter portion 1B by the casing top 1A. In a state where the contact portion 2B is in contact with the small diameter portion 1B, the tip end portion of the pilot bit 2 is formed so as to largely protrude from the tip end of the casing top 1A.
 このようにケーシングトップ1Aの先端から突出したパイロットビット2の先端部の外周には、ケーシングトップ1Aよりも先端側に位置するように収容凹所3が形成されている。この収容凹所3は、ケーシングトップ1Aよりも先端側に位置して先端側を向く軸線Oに垂直な底面3Aと、この底面3Aの内周縁から軸線Oに平行に先端側に延びてパイロットビット2の先端面に達する壁面3Bとを備えて、パイロットビット2の先端部の外周面と先端面とに開口するように形成されている。本実施形態では、同形同大のこのような収容凹所3が周方向に等しい間隔をあけて複数(3つ)形成されている。 The housing recess 3 is formed on the outer periphery of the tip of the pilot bit 2 protruding from the tip of the casing top 1A so as to be positioned on the tip side of the casing top 1A. The receiving recess 3 is located on the front end side of the casing top 1A and has a bottom surface 3A that is perpendicular to the axis O facing the front end side, and extends from the inner peripheral edge of the bottom surface 3A to the front end side in parallel to the axis O. 2 and a wall surface 3B reaching the distal end surface of the pilot bit 2, and is formed so as to open to the outer peripheral surface and the distal end surface of the distal end portion of the pilot bit 2. In the present embodiment, a plurality (three) of such accommodating recesses 3 having the same shape and the same size are formed at equal intervals in the circumferential direction.
 この収容凹所3の壁面3Bは、パイロットビット2の外周側を向く平面状の第1壁部3aと、この第1壁部3aの工具回転方向Tとは反対側に位置して工具回転方向Tを向く平面状の第2壁部3bと、第1壁部3aの工具回転方向T側に位置して工具回転方向Tとは反対側を向く平面状の第3壁部3cとを備えている。第2、第3壁部3b、3cは周方向の間隔が外周側に向かうに従い大きくなるように形成されており、このうち第2壁部3bは、外周側に向かうに従い工具回転方向T側に向かうように延びている。 The wall surface 3B of the receiving recess 3 is located on the opposite side of the first wall 3a of the pilot bit 2 to the outer peripheral side of the pilot bit 2 and the tool rotation direction T of the first wall 3a. A planar second wall portion 3b facing T, and a planar third wall portion 3c which is located on the tool rotation direction T side of the first wall portion 3a and faces away from the tool rotation direction T. Yes. The second and third wall portions 3b and 3c are formed such that the interval in the circumferential direction becomes larger toward the outer peripheral side, and among these, the second wall portion 3b is closer to the tool rotation direction T side toward the outer peripheral side. It extends to head.
 また、第1、第2壁部3a、3bの境界部と第1、第3壁部3a、3cの境界部には、軸線Oに平行な直線を中心とした、第1、第2壁部3a、3bに接する凹円筒面状の第4壁部3dと第1、第3壁部3a、3cに接する第5壁部3eとがそれぞれ形成されている。第1、第2壁部3a、3bの境界部に形成される第4壁部3dがなす凹円筒面の半径は、第1、第3壁部3a、3cの境界部に形成される第5壁部3eがなす凹円筒面の半径よりも大きくされている。 Further, the boundary between the first and second walls 3a and 3b and the boundary between the first and third walls 3a and 3c are first and second walls centered on a straight line parallel to the axis O. A concave cylindrical surface-like fourth wall portion 3d in contact with 3a and 3b and a fifth wall portion 3e in contact with the first and third wall portions 3a and 3c are formed, respectively. The radius of the concave cylindrical surface formed by the fourth wall portion 3d formed at the boundary portion between the first and second wall portions 3a and 3b is the fifth radius formed at the boundary portion between the first and third wall portions 3a and 3c. It is made larger than the radius of the concave cylindrical surface which wall part 3e makes.
 さらに、各収容凹所3の底面3Aの工具回転方向T側からは、軸線Oに平行に後端側に延び、上記第2の当接部2Bを越えてシャンク部2Aの外周側に達する繰り粉の排出溝2Cが形成されている。排出溝2Cは、軸線Oに垂直な断面において略方形状をなしてパイロットビット2の先端部外周面に開口しており、パイロットビット2の外周側を向く排出溝2Cの底面は、第2の当接部2Bの後端に達するところで凹曲面状をなして外周側に僅かに切れ上がっているとともに、この底面と収容凹所3の底面3Aとが交差する部分は、両底面に鈍角に交差する傾斜面2Dによって面取りされている。 Furthermore, from the tool rotation direction T side of the bottom surface 3A of each housing recess 3, it extends to the rear end side in parallel to the axis O, and reaches the outer peripheral side of the shank portion 2A beyond the second contact portion 2B. A powder discharge groove 2C is formed. The discharge groove 2C has a substantially square shape in a cross section perpendicular to the axis O and is open to the outer peripheral surface of the tip end portion of the pilot bit 2. The bottom surface of the discharge groove 2C facing the outer peripheral side of the pilot bit 2 is the second A concave curved surface is formed at the rear end of the abutting portion 2B and is slightly cut off to the outer peripheral side. A portion where the bottom surface and the bottom surface 3A of the housing recess 3 intersect with each other intersects at an obtuse angle. The chamfered surface 2D is chamfered.
 一方、各収容凹所3の底面3Aの工具回転方向Tとは反対側には、軸線Oに平行な中心線Cを有する断面円形の取付孔3Cがそれぞれ形成されている。この取付孔3Cの中心線Cは、第1、第2壁部3a、3bの境界部に形成される上記第4壁部3dがなす凹円筒面の中心線と一致させられていて、軸線Oから外周側に偏心している。また、取付孔3Cの内径(半径)は、第4壁部3dがなす凹円筒面の半径と略等しいか、僅かに小さい程度とされている。 On the other hand, on the opposite side of the bottom surface 3A of each receiving recess 3 from the tool rotation direction T, a mounting hole 3C having a circular cross section having a center line C parallel to the axis O is formed. The center line C of the mounting hole 3C is made to coincide with the center line of the concave cylindrical surface formed by the fourth wall portion 3d formed at the boundary between the first and second wall portions 3a and 3b. Is eccentric to the outer peripheral side. Further, the inner diameter (radius) of the mounting hole 3C is set to be approximately equal to or slightly smaller than the radius of the concave cylindrical surface formed by the fourth wall portion 3d.
 このようなパイロットビット2の収容凹所3には、それぞれビットヘッド4が取り付けられる。ビットヘッド4は、上記取付孔3Cに摺動可能に嵌め入れられる円柱状の軸部4Aと、この軸部4Aの先端側のヘッド本体4Bとが鋼材等の金属材料によって一体に形成されていて、上記中心線C回りに回転自在に取り付けられ、図2に示すようにヘッド本体4Bが第1壁部3aに当接したところで収容凹所3内に収容されて軸線Oからの半径が縮径した状態で位置決めされ、図3に示すようにヘッド本体4Bが第2壁部3bに当接したところで軸線Oからの半径が拡径した状態で位置決めされる。ヘッド本体4Bの後端面は中心線Cに垂直な平面状とされている。 The bit heads 4 are respectively attached to the receiving recesses 3 of the pilot bits 2. In the bit head 4, a cylindrical shaft portion 4A that is slidably fitted into the mounting hole 3C and a head body 4B on the tip side of the shaft portion 4A are integrally formed of a metal material such as a steel material. The head body 4B is rotatably mounted around the center line C, and as shown in FIG. 2, the head main body 4B comes into contact with the first wall 3a and is housed in the housing recess 3 so that the radius from the axis O is reduced. As shown in FIG. 3, the head body 4B is positioned in a state where the radius from the axis O is enlarged when the head body 4B comes into contact with the second wall 3b. The rear end surface of the head main body 4B has a planar shape perpendicular to the center line C.
 軸部4Aの外周には、中心線Cに沿った断面においては図1に示すように半長円状をなし、また中心線Cに垂直な断面においては図2および図3に示すように略L字状をなして延びる切欠4Cが形成されている。これに対して、パイロットビット2の先端部には、軸部4Aを取付孔3Cに挿入して該軸部4Aの後端面を取付孔3Cの底面に当接させるとともにヘッド本体4Bの後端面を収容凹所3の底面3Aに当接させた状態で軸線O方向に上記切欠4Cと相対する位置に、軸線Oに直交する断面において取付孔3Cの接線方向にピン5が打ち込まれており、このピン5の周面が取付孔3C内に露出して切欠4Cと係合することにより、ビットヘッド4は中心線C回りに回転自在とされつつ先端側に抜け止めされる。 The outer periphery of the shaft portion 4A has a semi-oval shape in the cross section along the center line C as shown in FIG. 1, and the cross section perpendicular to the center line C is almost as shown in FIGS. A notch 4C extending in an L shape is formed. On the other hand, at the front end portion of the pilot bit 2, the shaft portion 4A is inserted into the mounting hole 3C, the rear end surface of the shaft portion 4A is brought into contact with the bottom surface of the mounting hole 3C, and the rear end surface of the head body 4B is provided. A pin 5 is driven in a direction tangential to the mounting hole 3C in a cross section perpendicular to the axis O at a position facing the notch 4C in the direction of the axis O in a state of being in contact with the bottom surface 3A of the housing recess 3. The peripheral surface of the pin 5 is exposed in the mounting hole 3C and engaged with the notch 4C, so that the bit head 4 can be rotated around the center line C and is prevented from coming off on the tip side.
 また、ヘッド本体4Bの側面のうち上記軸部4Aの外周面の延長上に位置する第1側面4aは、この外周面と面一あるいは僅かに大きな外径の中心線Cを中心とした凸円筒面状に形成され、収容凹所3の壁面3Bの第4壁部3dに摺接可能とされている。さらに、この第1側面4aを間にする第2、第3側面4b、4cは平面状に形成されており、このうち第2側面4bは図2に示すようにビットヘッド4が縮径した状態で収容凹所3の壁面3Bの第1壁部3aに当接させられて、このとき第3側面4cはパイロットビット2の外周側を向き、またこの第3側面4cはビットヘッド4が拡径した状態で第2壁部3bに当接させられて、このとき第2側面4bは工具回転方向Tに向けられる。 Further, the first side surface 4a located on the extension of the outer peripheral surface of the shaft portion 4A among the side surfaces of the head body 4B is a convex cylinder centered on a center line C having an outer diameter that is flush with or slightly larger than the outer peripheral surface. It is formed in a planar shape and can be slidably contacted with the fourth wall portion 3 d of the wall surface 3 </ b> B of the housing recess 3. Further, the second and third side surfaces 4b and 4c with the first side surface 4a in between are formed in a flat shape, and the second side surface 4b is a state in which the bit head 4 has a reduced diameter as shown in FIG. The third side surface 4c faces the outer peripheral side of the pilot bit 2 and the third side surface 4c is expanded in diameter by the bit head 4 at this time. In this state, the second side surface 4b is directed in the tool rotation direction T.
 さらに、第1側面4aとは反対側でこれら第2、第3側面4b、4cの間に位置する第4側面4dは、ビットヘッド4が拡径した状態で図3に示すようにパイロットビット2の外周に突出して軸線Oを中心とした円筒面上に位置するように形成されている。なお、この第4側面4dと第3側面4cとの交差稜線部は、図2に示すようにビットヘッド4が縮径した状態でパイロットビット2の先端部の外径よりも僅かに小さな径の軸線Oを中心とした円筒面により面取りされるように形成されており、これにより縮径して収容凹所3に収容されたヘッド本体4Bはパイロットビット2の先端部の外周面がなす円筒面の内側に位置する。 Further, the fourth side surface 4d located between the second and third side surfaces 4b and 4c on the side opposite to the first side surface 4a is a pilot bit 2 as shown in FIG. It is formed so that it may protrude on the outer periphery of and may be located on the cylindrical surface centering on the axis O. The intersection ridge line portion between the fourth side surface 4d and the third side surface 4c has a diameter slightly smaller than the outer diameter of the tip portion of the pilot bit 2 in a state where the bit head 4 is reduced in diameter as shown in FIG. The head body 4B, which is formed to be chamfered by a cylindrical surface with the axis O as the center, is reduced in diameter and accommodated in the accommodation recess 3 is a cylindrical surface formed by the outer peripheral surface of the tip portion of the pilot bit 2. Located inside.
 また、この第4側面4dは、図1に示すように中心線C方向に向けては軸線Oに対する内外周に凹凸する多段(本実施形態では3段)状に形成されており、このうち最後端の段は軸線Oから最も外周側に突出させられて、この最後端の段が形成された部分が本実施形態における第3の当接部4Dとされている。この第3の当接部4Dは、その先端側を向く面が中心線Cに垂直な平坦面とされるとともに、ビットヘッド4が拡径した状態での軸線Oからの最大の半径Rが図1に示すようにケーシングパイプ1およびケーシングトップ1Aの先端外周部の軸線Oからの半径rよりも大きくなるようにされている。 Further, as shown in FIG. 1, the fourth side surface 4d is formed in a multi-stage shape (three stages in the present embodiment) that is uneven on the inner and outer circumferences with respect to the axis O in the direction of the center line C. The end step is protruded from the axis O to the outermost side, and the portion where the end step is formed is the third contact portion 4D in the present embodiment. The third abutting portion 4D has a flat surface perpendicular to the center line C, and a maximum radius R from the axis O when the bit head 4 is expanded. As shown in FIG. 1, it is made larger than the radius r from the axis O of the front-end | tip outer peripheral part of the casing pipe 1 and the casing top 1A.
 なお、この第3の当接部4Dが形成された第4側面4dと第2側面4bとの交差稜線部は、収容凹所3の第5壁部3eがなす凹円筒面と略等しい半径の凸円筒面状に面取りされ、図2に示すようにビットヘッド4が縮径した状態でこの第5壁部3eに当接させられる。また、上記第4側面4dのうち最先端の段は、ビットヘッド4が拡径した状態で後端側に向かうに従い内周側に向かうように僅かに傾斜している。 The intersecting ridge line portion between the fourth side surface 4d and the second side surface 4b where the third contact portion 4D is formed has a radius substantially equal to the concave cylindrical surface formed by the fifth wall portion 3e of the housing recess 3. As shown in FIG. 2, the bit head 4 is chamfered into a convex cylindrical surface, and is brought into contact with the fifth wall portion 3e in a reduced state. The most advanced step of the fourth side surface 4d is slightly inclined so as to go to the inner peripheral side as it goes to the rear end side in the state where the bit head 4 is expanded.
 さらに、この最先端の段と上記第3の当接部4Dが形成された最後端の段との間に位置する中段において、第4側面4dは軸線Oに平行に延びるように形成されている。さらにまた、この中段における第4側面4dと上記第2側面4bとが交差する角部には、該角部を中心線Cに直交する断面において略L字状に切り欠くようにして係合部4Eが形成されている。 Furthermore, the fourth side surface 4d is formed so as to extend in parallel to the axis O in the middle stage located between the most advanced stage and the last stage where the third contact portion 4D is formed. . Furthermore, at the corner where the fourth side surface 4d and the second side surface 4b intersect in the middle stage, the engagement portion is cut out in a substantially L shape in a cross section perpendicular to the center line C. 4E is formed.
 この係合部4Eは、ビットヘッド4が拡径した状態で外周側を向く第1壁面4eと工具回転方向Tを向く第2壁面4fと、上記第3の当接部4Dの先端側を向く面と面一とされた底面4gと、この底面4gに平行に対向して後端側を向く天井面4hとを有している。
 同じくビットヘッド4が拡径した状態で、第1壁面4eはパイロットビット2の第2の当接部2Bよりも僅かに大きな外径の軸線Oを中心とした円筒面上に位置し、また第2壁面4fは外周側に向かうに従い僅かに工具回転方向T側に向かうように形成されている。
The engagement portion 4E faces the first wall surface 4e facing the outer peripheral side in the state where the bit head 4 is expanded, the second wall surface 4f facing the tool rotation direction T, and the distal end side of the third contact portion 4D. It has a bottom surface 4g that is flush with the surface, and a ceiling surface 4h that faces the rear end side in parallel with the bottom surface 4g.
Similarly, the first wall surface 4e is positioned on a cylindrical surface centered on an axis O having an outer diameter slightly larger than the second contact portion 2B of the pilot bit 2 in a state where the diameter of the bit head 4 is expanded. 2 wall surface 4f is formed so that it may go to the tool rotation direction T side slightly toward the outer peripheral side.
 さらに、上記第4側面4dの最先端の段とヘッド本体4Bの先端面との交差稜線部は、ビットヘッド4が拡径した状態で軸線Oを中心とした円錐台面状をなすようにして中心線C側に向かうに従い先端側に向かう傾斜面とされている。また、パイロットビット2の先端面と外周面との交差稜線部も、収容凹所3によって切り欠かれた部分を除いて、同様に軸線Oを中心とした円錐台面状をなして内周側に向かうに従い先端側に向けて傾斜する傾斜面とされている。 Further, the intersecting ridge line portion between the foremost step of the fourth side surface 4d and the tip end surface of the head body 4B is centered so as to form a truncated cone surface with the axis O as the center when the bit head 4 is expanded in diameter. It is set as the inclined surface which goes to the front end side as it goes to the line C side. Further, the intersection ridge line portion between the front end surface and the outer peripheral surface of the pilot bit 2 also has a truncated cone surface shape with the axis O as the center, except for the portion notched by the receiving recess 3, and is on the inner peripheral side. It is set as the inclined surface which inclines toward the front end side as it goes.
 さらにまた、これら傾斜面とされた部分を除いたパイロットビット2とビットヘッド4のヘッド本体4Bの先端面は、それぞれ軸線Oと中心線Cに垂直な平坦面とされている。
 また、ヘッド本体4Bの中心線C方向の長さは、収容凹所3の底面3Aからパイロットビット2の先端面までの深さと等しくされており、従ってビットヘッド4が収容凹所3に収容された状態でこれらパイロットビット2とヘッド本体4Bの先端面は面一となる。
Furthermore, the tip surfaces of the head body 4B of the pilot bit 2 and the bit head 4 excluding these inclined surfaces are flat surfaces perpendicular to the axis O and the center line C, respectively.
Further, the length of the head main body 4B in the direction of the center line C is equal to the depth from the bottom surface 3A of the receiving recess 3 to the tip end surface of the pilot bit 2, so that the bit head 4 is received in the receiving recess 3. In this state, the pilot bit 2 and the front end surface of the head body 4B are flush with each other.
 そして、これらパイロットビット2とビットヘッド4のヘッド本体4Bの先端面と各傾斜面には、パイロットビット2やビットヘッド4を形成する鋼材等よりも硬質の超硬合金等からなる複数(多数)の掘削チップ6が設けられている。これらの掘削チップ6は、上記先端面および傾斜面から突出する例えば半球状の頭部と円柱状の胴部とが一体形成されたものであって、先端面および傾斜面にそれぞれ垂直に形成された円形孔に上記胴部が圧入、焼き嵌めや冷やし嵌め、あるいはロウ付けされることにより固定される。 A plurality (many) of a hard metal or the like harder than the steel material or the like forming the pilot bit 2 or the bit head 4 is provided on the front end surface and each inclined surface of the head body 4B of the pilot bit 2 and the bit head 4. The excavation tip 6 is provided. These excavation tips 6 are formed by integrally forming, for example, a hemispherical head and a cylindrical body protruding from the tip surface and the inclined surface, and are formed perpendicular to the tip surface and the inclined surface, respectively. The body is fixed by press fitting, shrink fitting, cold fitting or brazing into the circular hole.
 さらに、ケーシングパイプ1の先端側には、その軸線Oと同軸に円環状のリングビット7が配設される。このリングビット7は、やはり鋼材等の金属材料により円環板状に形成されて、その軸線O方向を向く先後端面は軸線Oに垂直とされ、ただし先端面と外周面との交差稜線部は軸線Oを中心とした円錐台状の傾斜面とされている。この傾斜面と先端面の外周部にも、パイロットビット2およびビットヘッド4と同様に、超硬合金等の硬質材料により形成された掘削チップ6が垂直に突出するように設けられている。 Furthermore, an annular ring bit 7 is disposed on the front end side of the casing pipe 1 so as to be coaxial with the axis O thereof. The ring bit 7 is also formed in a circular plate shape from a metal material such as steel, and the front and rear end faces facing the direction of the axis O are perpendicular to the axis O. However, the intersection ridge line between the tip and the outer peripheral surface is The inclined surface has a truncated cone shape with the axis O as the center. Similarly to the pilot bit 2 and the bit head 4, an excavation tip 6 made of a hard material such as a cemented carbide is provided on the outer peripheral portion of the inclined surface and the tip surface so as to protrude vertically.
 また、リングビット7の外径は、ケーシングパイプ1およびケーシングトップ1Aの外径よりも大きく、拡径したビットヘッド4の外径よりも大きくされている。また、リングビット7の内径はパイロットビット2の第2の当接部2Bの外径より僅かに大きく、従ってケーシングトップ1Aによりケーシングパイプ1内に形成される小径部1Bの内径よりも大きくされるとともに、拡径した状態のビットヘッド4の外径よりは小さく、上記係合部4Eの第1壁面4eが嵌め入れ可能な大きさとされている。また、リングビット7の軸線O方向の厚さは、これら内外径の間の幅よりも小さくされるとともに、上記係合部4Eの底面4gと天井面4hとの間隔よりも僅かに小さくされている。 The outer diameter of the ring bit 7 is larger than the outer diameter of the casing pipe 1 and the casing top 1A, and larger than the outer diameter of the expanded bit head 4. Further, the inner diameter of the ring bit 7 is slightly larger than the outer diameter of the second abutting portion 2B of the pilot bit 2, so that it is larger than the inner diameter of the small diameter portion 1B formed in the casing pipe 1 by the casing top 1A. In addition, the outer diameter of the bit head 4 in the expanded state is smaller than the outer diameter of the bit head 4 so that the first wall surface 4e of the engaging portion 4E can be fitted. Further, the thickness of the ring bit 7 in the direction of the axis O is made smaller than the width between the inner and outer diameters and slightly smaller than the distance between the bottom surface 4g of the engaging portion 4E and the ceiling surface 4h. Yes.
 さらに、このリングビット7の内周部には、外周側に凹む凹部が周方向に等間隔にビットヘッド4と同数の3つ形成されていて、この凹部が図3に示すようにビットヘッド4の上記係合部4Eと掘削時の工具回転方向Tに係合させられる被係合部7Aとされている。
 この被係合部7Aは、リングビット7の内周部から一段外周側に後退して内周側を向く第1壁面7aと、この第1壁面7aから内周部に延びる工具回転方向Tの反対側を向く第2壁面7bおよび工具回転方向Tを向く第3壁面7cとを備えて、本実施形態ではリングビット7を軸線O方向に貫通するように形成されている。
Further, the inner periphery of the ring bit 7 is formed with three recesses recessed on the outer periphery side at equal intervals in the circumferential direction, the same number as the bit head 4, and these recesses are formed as shown in FIG. The engaged portion 4E and the engaged portion 7A that is engaged in the tool rotation direction T during excavation.
The engaged portion 7A includes a first wall surface 7a that recedes from the inner peripheral portion of the ring bit 7 to the outer peripheral side and faces the inner peripheral side, and a tool rotation direction T extending from the first wall surface 7a to the inner peripheral portion. A second wall surface 7b facing the opposite side and a third wall surface 7c facing the tool rotation direction T are provided, and in this embodiment, the ring bit 7 is formed so as to penetrate in the axis O direction.
 このうち第1壁面7aは軸線Oを中心とした円筒面上に位置しており、その軸線Oからの半径は、拡径したビットヘッド4の外周側を向く上記第4側面4dのうち最先端の段と中段の軸線Oからの半径よりも僅かに大きくされるとともに第3の当接部4Dの半径Rよりは小さくされている。また、第1壁面7aの周方向の長さは、第4側面4dの中段の周方向の長さのうち係合部4Eを除いた長さより僅かに長くされている。 Of these, the first wall surface 7a is located on a cylindrical surface centered on the axis O, and the radius from the axis O is the most advanced of the fourth side surfaces 4d facing the outer peripheral side of the expanded bit head 4. The radius is slightly larger than the radius from the axis O of the middle and middle stages, and smaller than the radius R of the third contact portion 4D. In addition, the circumferential length of the first wall surface 7a is slightly longer than the length of the middle circumferential length of the fourth side surface 4d excluding the engaging portion 4E.
 また、第2、第3壁面7b、7cは、外周側に向かうに従い工具回転方向Tに向かうように延びており、このうち第2壁面7bが軸線Oに対する半径方向に対してなす角度は、拡径したビットヘッド4の係合部4Eにおける第2壁面4fが軸線Oに対する半径方向に対してなす角度と等しくされている。また、第3壁面7cは、図3に示したように被係合部7Aが係合部4Eに係合させられた状態で、パイロットビット2の収容凹所3における取付孔3Cの中心線Cを中心とした凹円筒面状をなすように形成されている。 The second and third wall surfaces 7b and 7c extend in the tool rotation direction T toward the outer peripheral side, and the angle formed by the second wall surface 7b with respect to the radial direction with respect to the axis O increases. The second wall surface 4f of the engagement portion 4E of the diameter bit head 4 is made equal to the angle formed with respect to the radial direction with respect to the axis O. Further, the third wall surface 7c has a center line C of the mounting hole 3C in the receiving recess 3 of the pilot bit 2 in a state where the engaged portion 7A is engaged with the engaging portion 4E as shown in FIG. It is formed so as to form a concave cylindrical surface centered on.
 なお、パイロットビット2には、シャンク部2Aの後端から軸線Oに沿って有底の供給孔8が該軸線O方向において収容凹所3の中央部辺りまで穿設されており、ダウンザホールハンマH側から圧縮空気が供給可能とされている。この供給孔8からは、該供給孔8より小径の3つずつの第1~第3ブロー孔8A~8Cが外周側に向かうに従い先端側に向かうように斜めに分岐している。 The pilot bit 2 is provided with a bottomed supply hole 8 along the axis O from the rear end of the shank portion 2A to the center of the receiving recess 3 in the direction of the axis O, and the down-the-hole hammer H Compressed air can be supplied from the side. From the supply hole 8, first to third blow holes 8 A to 8 C each having a smaller diameter than the supply hole 8 are branched obliquely so as to go to the tip side toward the outer peripheral side.
 第1ブロー孔8Aはパイロットビット2の先端部の外周面における上記第2の当接部2Bの先端側に開口するとともに、この第1ブロー孔8Aからはさらに小径の第4ブロー孔8Dが軸線Oに平行に分岐して取付孔3Cの底面中央に開口している。また、第2ブロー孔8Bは第1ブロー孔8Aよりも先端側で供給孔8から分岐して、繰り粉の排出溝2Cの底面と収容凹所3の底面3Aとの間の傾斜面2Dに略垂直に開口している。さらに、第3ブロー孔8Cは第1、第2ブロー孔8A、8Bよりも大径とされ、供給孔8の先端で分岐して収容凹所3の第1壁部3aの第5壁部3e側に開口している。 The first blow hole 8A opens to the distal end side of the second abutting portion 2B on the outer peripheral surface of the distal end portion of the pilot bit 2, and a fourth blow hole 8D having a smaller diameter extends from the first blow hole 8A. It branches in parallel with O and opens in the center of the bottom surface of the mounting hole 3C. Further, the second blow hole 8B branches from the supply hole 8 on the tip side of the first blow hole 8A, and forms an inclined surface 2D between the bottom surface of the dust discharge groove 2C and the bottom surface 3A of the housing recess 3. It opens almost vertically. Further, the third blow hole 8C has a larger diameter than the first and second blow holes 8A, 8B, branches at the tip of the supply hole 8, and the fifth wall 3e of the first wall 3a of the housing recess 3. Open to the side.
 このような掘削工具は、ビットヘッド4を縮径してヘッド本体4Bを収容凹所3に収容した状態でパイロットビット2がケーシングパイプ1の後端側から挿入され、第2の当接部2Bがケーシングトップ1Aの後端面に当接したところで軸線O方向に位置決めされる。次いで、ヘッド本体4Bを収容したまま、図2に示すように被係合部7Aの周方向の位置を収容凹所3に合わせて先端側からリングビット7をパイロットビット2の先端部に挿入し、軸線O方向においてヘッド本体4Bの係合部4Eの位置に配置する。 In such an excavation tool, the pilot bit 2 is inserted from the rear end side of the casing pipe 1 in a state where the diameter of the bit head 4 is reduced and the head main body 4B is accommodated in the accommodation recess 3, and the second abutting portion 2B Is positioned in the direction of the axis O when it contacts the rear end surface of the casing top 1A. Next, with the head main body 4B being accommodated, the ring bit 7 is inserted into the distal end portion of the pilot bit 2 from the distal end side by aligning the circumferential position of the engaged portion 7A with the accommodating recess 3 as shown in FIG. In the direction of the axis O, the head main body 4B is disposed at the position of the engaging portion 4E.
 そして、この状態からビットヘッド4を拡径しつつリングビット7を掘削時の工具回転方向Tとは反対側に相対的に回転させると、図3に示すように拡径したビットヘッド4の係合部4Eにおける第2壁面4fがリングビット7の被係合部7Aにおける第2壁面7bに密着して当接することにより被係合部7Aに係合するとともに、ヘッド本体4Bにおける第3側面4cが収容凹所3の第2壁部3bに当接させられて収容凹所3に支持され、パイロットビット2およびビットヘッド4に対してリングビット7が工具回転方向Tに一体に回転可能となる。 Then, if the ring bit 7 is rotated relative to the side opposite to the tool rotation direction T during excavation while the bit head 4 is expanded in diameter from this state, the engagement of the expanded bit head 4 as shown in FIG. The second wall surface 4f in the joint portion 4E is brought into close contact with the second wall surface 7b in the engaged portion 7A of the ring bit 7 to engage with the engaged portion 7A, and the third side surface 4c in the head body 4B. Is brought into contact with the second wall 3b of the receiving recess 3 and supported by the receiving recess 3, so that the ring bit 7 can rotate integrally with the pilot bit 2 and the bit head 4 in the tool rotation direction T. .
 また、軸線O方向においては、図1および図3に示すようにリングビット7の先端面のうち被係合部7Aの工具回転方向T側の部分が係合部4Eの天井面4hに僅かな間隔を開けて対向して当接可能となることにより、リングビット7が先端側に抜け止めされる。すなわち、本実施形態では、リングビット7の先端面のうちこの被係合部7Aの工具回転方向T側の部分が、軸線O方向の先端側において、拡径したビットヘッド4に当接可能とされた第1の当接部7Bとされる。さらに、係合部4Eの底面4gとこれに面一な第3の当接部4Dの先端側を向く面とは、リングビット7の後端面に当接してその先端側においてリングビット7を支持し、これによりケーシングパイプ1およびリングビット7は、パイロットビット2およびビットヘッド4と一体に軸線O方向先端側に前進可能となる。 Further, in the direction of the axis O, as shown in FIGS. 1 and 3, the portion on the tool rotation direction T side of the engaged portion 7A in the tip surface of the ring bit 7 is slightly on the ceiling surface 4h of the engaging portion 4E. The ring bit 7 is prevented from coming off to the tip side by being able to abut against each other with a gap. That is, in this embodiment, the portion of the engaged portion 7A on the tool rotation direction T side of the front end surface of the ring bit 7 can come into contact with the enlarged bit head 4 on the front end side in the axis O direction. The first contact portion 7B is made. Further, the bottom surface 4g of the engaging portion 4E and the surface facing the front end side of the third abutting portion 4D flush with the engaging portion 4E are in contact with the rear end surface of the ring bit 7 and support the ring bit 7 on the front end side. As a result, the casing pipe 1 and the ring bit 7 can be moved forward together with the pilot bit 2 and the bit head 4 in the direction of the axis O.
 従って、この状態からダウンザホールハンマHによってパイロットビット2およびビットヘッド4と、第3の当接部4Dを介してリングビット7とに軸線O方向先端側に向けての打撃力を伝達するとともに、上記掘削装置からは推力と工具回転方向Tに向けた回転力を伝達することにより、これらパイロットビット2、ビットヘッド4、およびリングビット7の先端面に設けられた掘削チップ6によって削孔作業が行われ、また形成された掘削孔にケーシングパイプ1が挿入されてゆく。なお、削孔中は供給孔8から第1~第4のブロー孔8A~8Dを介して圧縮空気が噴出させられ、掘削チップ6によって生成された繰り粉を排出溝2Cからケーシングパイプ1内を通して排出するとともに、取付孔3Cや小径部1B内への繰り粉の噛み込みを防止する。 Accordingly, from this state, the down-the-hole hammer H transmits the striking force toward the front end side in the direction of the axis O to the pilot bit 2 and the bit head 4 and the ring bit 7 via the third contact portion 4D. Drilling work is carried out by the excavation tip 6 provided on the tip surface of the pilot bit 2, bit head 4 and ring bit 7 by transmitting thrust and rotational force in the tool rotation direction T from the excavator. The casing pipe 1 is inserted into the formed excavation hole. During the drilling, compressed air is ejected from the supply hole 8 through the first to fourth blow holes 8A to 8D, and the dust produced by the excavation tip 6 passes through the casing pipe 1 from the discharge groove 2C. While discharging, the dusting into the mounting hole 3C and the small diameter portion 1B is prevented.
 こうして所定の深さまで掘削孔が形成された後は、上記構成の掘削工具では掘削装置によってパイロットビット2を掘削時の工具回転方向Tとは反対側に回転させる。すると、ビットヘッド4はそのヘッド本体4Bが掘削孔との摩擦と被係合部7Aの第3壁面7cに案内されることによって図2に示したように縮径するので、そのままパイロットビット2およびダウンザホールハンマHごとケーシングパイプ1から引き抜くことにより、リングビット7を掘削孔に残してパイロットビット2およびビットヘッド4を回収することができる。 Thus, after the excavation hole is formed to a predetermined depth, in the excavation tool having the above-described configuration, the pilot bit 2 is rotated in the direction opposite to the tool rotation direction T during excavation by the excavation device. Then, the diameter of the bit head 4 is reduced as shown in FIG. 2 by friction of the head body 4B with the excavation hole and the third wall surface 7c of the engaged portion 7A. By pulling the down-the-hole hammer H from the casing pipe 1, the pilot bit 2 and the bit head 4 can be recovered leaving the ring bit 7 in the excavation hole.
 このように、上記構成の掘削工具によれば、拡径した上記ビットヘッド4のヘッド本体4Bからリングビット7の被係合部7Aに工具回転方向Tへの回転力が伝達されるので、パイロットビット2およびビットヘッド4の回転中心となる軸線Oからより離れた位置で効率的に回転力を伝達することができる。このため、ケーシングパイプ1の外径に対してより大きな内径の掘削孔を形成する場合でも、リングビット7に十分な回転力を伝達して削孔性能を確保することができる。 Thus, according to the excavation tool having the above-described configuration, the rotational force in the tool rotation direction T is transmitted from the head body 4B of the bit head 4 whose diameter has been expanded to the engaged portion 7A of the ring bit 7. The rotational force can be efficiently transmitted at a position further away from the axis O that is the center of rotation of the bit 2 and the bit head 4. For this reason, even when a drilling hole having a larger inner diameter than the outer diameter of the casing pipe 1 is formed, a sufficient rotational force can be transmitted to the ring bit 7 to ensure drilling performance.
 しかも、本実施形態では、図1に示したようにパイロットビット2およびビットヘッド4はリングビット7の先端側に一段突出しているため、これらパイロットビット2およびビットヘッド4の掘削チップ6により内周部が削孔されて破砕され易くなった掘削孔の外周部をリングビット7の掘削チップ6が削孔する。このため、リングビット7への負荷を抑えてより効率的な削孔を行うこともできる。ただし、パイロットビット2およびビットヘッド4の先端面とリングビット7の先端面とは面一とされていてもよく、またリングビット7の先端面がパイロットビット2およびビットヘッド4の先端面より突出していてもよい。 In addition, in this embodiment, as shown in FIG. 1, the pilot bit 2 and the bit head 4 protrude one step toward the tip side of the ring bit 7, so that the inner periphery is formed by the excavation tip 6 of the pilot bit 2 and the bit head 4. The excavation tip 6 of the ring bit 7 excavates the outer peripheral portion of the excavation hole that has been easily crushed by drilling the portion. For this reason, more efficient drilling can be performed while suppressing the load on the ring bit 7. However, the front end surface of the pilot bit 2 and the bit head 4 and the front end surface of the ring bit 7 may be flush with each other, and the front end surface of the ring bit 7 protrudes from the front end surface of the pilot bit 2 and the bit head 4. It may be.
 また、掘削孔の外周側はリングビット7によって削孔されるので、パイロットビット2およびビットヘッド4においては、拡径したヘッド本体4Bの軸線Oからの半径を掘削孔の内径ほどは大きくする必要がなく、このためビットヘッド4の軸部4A等への負担を軽減することができて損傷を防止することができる。さらに、リングビット7は円環状をなしているので、例えば図3に示したように周方向において拡径したビットヘッド4が位置する範囲以外にも掘削チップ6を配設するなど、比較的自由に掘削チップ6の設置量や位置を設定することができ、掘削チップ6が部分的に不足することによる削孔性能の低下も防止することができる。 Further, since the outer peripheral side of the excavation hole is drilled by the ring bit 7, in the pilot bit 2 and the bit head 4, it is necessary to increase the radius from the axis O of the enlarged head main body 4B to the inner diameter of the excavation hole. Therefore, the burden on the shaft portion 4A of the bit head 4 and the like can be reduced and damage can be prevented. Further, since the ring bit 7 has an annular shape, for example, as shown in FIG. 3, a drilling tip 6 is disposed in addition to the range where the bit head 4 whose diameter is increased in the circumferential direction is located. In addition, the installation amount and position of the excavation tip 6 can be set, and a decrease in drilling performance due to a partial deficiency of the excavation tip 6 can also be prevented.
 一方、リングビット7においては、上述のようにその被係合部7Aが拡径したビットヘッド4に係合させられて工具回転方向Tに一体に回転可能に支持されるとともに回転力が伝達されるので、ケーシングパイプ1によって支持する必要がなくなって、その内径を大きくすることができる。このため、リングビット7の体積を小さくして必要な鋼材等の材料を削減することができ、掘削終了後にリングビット7を掘削孔に残す場合でも施工コストの増大を抑えることができる。 On the other hand, in the ring bit 7, the engaged portion 7A is engaged with the bit head 4 having an enlarged diameter as described above, and is supported so as to be integrally rotatable in the tool rotation direction T, and a rotational force is transmitted. Therefore, it is not necessary to support the casing pipe 1 and the inner diameter can be increased. For this reason, the volume of the ring bit 7 can be reduced to reduce the necessary material such as a steel material, and an increase in construction cost can be suppressed even when the ring bit 7 is left in the excavation hole after the excavation is completed.
 また、上述のように掘削孔の内周部はパイロットビット2およびビットヘッド4の掘削チップ6により内周部が削孔されるので、本実施形態では軸線Oからの径方向において、拡径したビットヘッド4のヘッド本体4B先端面に掘削チップが設けられた範囲には、図1および図3に示したようにリングビット7に掘削チップ6を設ける必要はない。このため、やはり掘削孔に残されるリングビット7に高価な超硬合金よりなる掘削チップ6が必要以上に多く設けられるのを避けることができて、コスト削減を図ることができる。 Further, as described above, the inner peripheral portion of the excavation hole is drilled by the excavation tip 6 of the pilot bit 2 and the bit head 4, so that the diameter is increased in the radial direction from the axis O in this embodiment. As shown in FIGS. 1 and 3, it is not necessary to provide the excavation tip 6 on the ring bit 7 in the range where the excavation tip is provided on the front end surface of the head body 4 </ b> B of the bit head 4. For this reason, it can be avoided that the ring bit 7 remaining in the excavation hole is provided with more excavation tips 6 made of an expensive cemented carbide than necessary, and the cost can be reduced.
 さらに、本実施形態では、リングビット7の内周部に外周側に向けて凹む凹部が形成されて被係合部7Aとされている。この点、例えばリングビット7の先端面に凸部を被係合部として形成して、この凸部に拡径したビットヘッド4のヘッド本体4Bを工具回転方向Tに係合させることも可能であるが、その場合には凸部に回転力による負荷が集中して損傷を生じるおそれがあるとともに、リングビット7の体積も凸部分だけ大きくなって材料コストが増える。これに対して、本実施形態では、円環状のリングビット7の本体そのもので回転力を受け止めることができるとともに、リングビット7の体積およびコストの一層の削減を図ることができる。 Furthermore, in this embodiment, the recessed part dented toward the outer peripheral side is formed in the inner peripheral part of the ring bit 7, and it is set as the to-be-engaged part 7A. In this regard, for example, it is also possible to form a convex portion as an engaged portion on the front end surface of the ring bit 7 and engage the head body 4B of the bit head 4 whose diameter is enlarged to the convex portion in the tool rotation direction T. However, in that case, the load due to the rotational force may be concentrated on the convex portion to cause damage, and the volume of the ring bit 7 is increased only by the convex portion, thereby increasing the material cost. On the other hand, in this embodiment, while the rotational force can be received by the ring ring 7 itself, the volume and cost of the ring bit 7 can be further reduced.
 なお、本実施形態では、リングビット7の先端面のうちこうして内周部から外周側に向けて凹む凹部として形成された被係合部7Aの工具回転方向T側に隣接した部分が、係合部4Eの天井面4hに対向して、軸線O方向先端側において係合部4Eの天井面4hと当接可能とされた第1の当接部7Bとされており、例えばパイロットビット2からビットヘッド4を介して伝達された打撃力によりリングビット7が上記天井面4hに衝突しても、衝撃をリングビット7の厚さ全体で受け止めることができて損傷等の発生を防止することができる。ただし、この凹部に先端側を向く底面を天井面4hに対向するように形成して第1の当接部7Bとしてもよい。 In the present embodiment, a portion of the distal end surface of the ring bit 7 adjacent to the tool rotation direction T side of the engaged portion 7A formed as a concave portion recessed from the inner peripheral portion toward the outer peripheral side is engaged. Opposite to the ceiling surface 4h of the portion 4E, the first abutting portion 7B that can abut on the ceiling surface 4h of the engaging portion 4E on the front end side in the axis O direction is used. Even if the ring bit 7 collides with the ceiling surface 4h by the striking force transmitted through the head 4, the impact can be received by the entire thickness of the ring bit 7, and the occurrence of damage or the like can be prevented. . However, the first contact portion 7B may be formed by forming a bottom surface facing the front end side of the recess so as to face the ceiling surface 4h.
 一方、本実施形態でも、パイロットビット2に与えられる先端側への打撃力と推力によってケーシングパイプ1を掘削孔に挿入するのに、特許文献1、2に記載された掘削工具と同様にケーシングパイプ1の先端部にケーシングトップ1Aを取り付けて小径部1Bを形成し、この小径部1Bにパイロットビット2の第2の当接部2Bを当接させて打撃力と推力を伝達するようにしている。ただし、この小径部1Bの内径に対して、本実施形態ではリングビット7の内径を大きくしているので、上述のようにリングビットの内径を小さくせざるを得ない特許文献1に記載された掘削工具と比べて確実に施工コストの削減を図ることができる。なお、リングビット7の内径は小径部1Bと等しくてもよい。 On the other hand, also in this embodiment, the casing pipe 1 is inserted into the excavation hole by the striking force and thrust force applied to the pilot bit 2 in the excavation hole. A casing top 1A is attached to the tip of 1 to form a small diameter portion 1B, and the second contact portion 2B of the pilot bit 2 is brought into contact with this small diameter portion 1B to transmit the striking force and thrust. . However, since the inner diameter of the ring bit 7 is increased in this embodiment with respect to the inner diameter of the small-diameter portion 1B, the inner diameter of the ring bit has to be reduced as described above. The construction cost can be surely reduced as compared with the excavation tool. The inner diameter of the ring bit 7 may be equal to the small diameter portion 1B.
 さらにまた、本実施形態では、こうしてケーシングパイプ1に小径部1Bを設けて打撃力と推力を伝達しているのに対して、リングビット7にパイロットビット2から打撃力と推力を伝達するのに、特許文献1に記載された掘削工具のようにパイロットビット2から直接伝達するのではなく、ビットヘッド4に拡径した状態でリングビット7の後端面に当接可能な第3の当接部4Dを設けて、この第3の当接部4Dから打撃力と推力を伝達するようにしている。このため、上述のように小径部1Bを設けた場合に、リングビット7の内径をさらに小さくする必要がなくなって、さらに確実に施工コストの削減を図ることが可能となる。 Furthermore, in this embodiment, the casing pipe 1 is provided with the small diameter portion 1B to transmit the striking force and thrust, whereas the pilot bit 2 transmits the striking force and thrust to the ring bit 7. The third contact portion that can contact the rear end surface of the ring bit 7 in a state where the diameter of the bit head 4 is expanded instead of being directly transmitted from the pilot bit 2 as in the excavation tool described in Patent Document 1. 4D is provided to transmit the striking force and the thrust from the third contact portion 4D. For this reason, when the small diameter portion 1B is provided as described above, it is not necessary to further reduce the inner diameter of the ring bit 7, and the construction cost can be more reliably reduced.
 さらに、本実施形態では、こうしてビットヘッド4に設けた第3の当接部4Dから打撃力と推力をリングビット7に伝達する場合に、拡径した状態のビットヘッド4の第3の当接部4Dの軸線Oからの最大の半径Rが、ケーシングパイプ1の先端外周部の軸線Oからの半径rすなわちケーシングトップ1Aの半径よりも大きくされている。このため、リングビット7には削孔を行うその外周側でより確実に打撃力と推力を伝達することができ、本実施形態のようにケーシングパイプ1の外径に対してより大きな内径の掘削孔を形成する場合でも、さらに一層効率的な削孔を行うことが可能となる。 Further, in the present embodiment, when the impact force and the thrust are transmitted to the ring bit 7 from the third contact portion 4D provided on the bit head 4 in this way, the third contact of the bit head 4 in the expanded state is achieved. The maximum radius R from the axis O of the portion 4D is set to be larger than the radius r from the axis O of the outer peripheral end of the casing pipe 1, that is, the radius of the casing top 1A. For this reason, it is possible to more reliably transmit the striking force and thrust to the ring bit 7 on the outer peripheral side where the hole is drilled, and excavation with a larger inner diameter than the outer diameter of the casing pipe 1 as in this embodiment. Even when holes are formed, it is possible to perform even more efficient drilling.
 そして、このようにリングビット7への打撃力と推力を、ケーシングパイプ1の先端外周部の半径rよりも大きな半径Rで拡径した第3の当接部4Dから伝達する場合には、リングビット7の軸線O方向の厚さを、例えば本実施形態のようにリングビット7の内外径の間の幅より小さくしたとしても、リングビット7の強度や剛性を損なうことなく確実に内径の大きな掘削孔を形成することが可能となる。従って、本実施形態によれば、リングビット7の体積のさらなる削減を図って施工コストの一層の抑制を促すことができる。 When the impact force and thrust on the ring bit 7 are transmitted from the third abutting portion 4D having a radius R larger than the radius r of the outer peripheral portion of the casing pipe 1 as described above, Even if the thickness of the bit 7 in the direction of the axis O is made smaller than the width between the inner and outer diameters of the ring bit 7 as in the present embodiment, for example, the inner diameter is reliably increased without impairing the strength and rigidity of the ring bit 7. Drilling holes can be formed. Therefore, according to the present embodiment, it is possible to further reduce the volume of the ring bit 7 and to further suppress the construction cost.
 以上説明したように、本発明の掘削工具によれば、ケーシングパイプの外径に対してより大きな内径の掘削孔を形成する場合でも、削孔性能の低下や施工コストの増大、あるいは工具の損傷等を招くことなく、リングビットに十分な回転力と打撃力および推力とを伝達して効率的な削孔を行うことが可能となる。従って、産業上の利用が可能である。 As described above, according to the drilling tool of the present invention, even when forming a drilling hole having a larger inner diameter than the outer diameter of the casing pipe, the drilling performance is reduced, the construction cost is increased, or the tool is damaged. Therefore, efficient drilling can be performed by transmitting a sufficient rotational force, striking force, and thrust to the ring bit without incurring the above. Therefore, industrial use is possible.
 1 ケーシングパイプ
 1A ケーシングトップ
 1B 小径部
 2 パイロットビット
 2B 第2の当接部
 2C 排出溝
 3 収容凹所
 3C 取付孔
 4 ビットヘッド
 4A 軸部
 4B ヘッド本体
 4D 第3の当接部
 4E 係合部
 5 ピン
 6 掘削チップ
 7 リングビット
 7A 被係合部
 7B 第1の当接部
 8 供給孔
 O ケーシングパイプ1の軸線
 T 掘削時の工具回転方向
 C 取付孔3Cの中心線
 H ダウンザホールハンマ
 R 拡径したビットヘッド4の第3の当接部4Dの軸線Oからの最大の半径
 r ケーシングパイプ1の先端外周部の軸線Oからの半径
DESCRIPTION OF SYMBOLS 1 Casing pipe 1A Casing top 1B Small diameter part 2 Pilot bit 2B 2nd contact part 2C Discharge groove 3 Accommodating recess 3C Mounting hole 4 Bit head 4A Shaft part 4B Head main body 4D 3rd contact part 4E Engagement part 5 Pin 6 Drilling tip 7 Ring bit 7A Engagement part 7B First contact part 8 Supply hole O Axis line of casing pipe 1 T Tool rotation direction during excavation C Center line of mounting hole 3C H Down-the-hole hammer R Expanded bit The maximum radius from the axis O of the third contact portion 4D of the head 4 r The radius from the axis O of the outer peripheral portion of the tip of the casing pipe 1

Claims (5)

  1.  軸線を中心とした円筒状のケーシングパイプと、このケーシングパイプの先端側に同軸に配置される上記ケーシングパイプよりも外径の大きな円環状のリングビットと、上記ケーシングパイプ内を通って上記リングビットの内周部に挿通されるパイロットビットとを備え、
     上記パイロットビットは上記軸線回りに回転可能とされるとともに、このパイロットビットの先端外周部にはビットヘッドが設けられ、
     上記ビットヘッドは、上記軸線から偏心した中心線回りに回転自在とされて、上記パイロットビットが掘削時の工具回転方向に回転したときに上記軸線からの半径が拡径して上記パイロットビットに支持され、
     上記リングビットには、拡径した上記ビットヘッドに対して上記掘削時の工具回転方向に係合させられる被係合部と上記軸線方向の先端側に当接可能とされた第1の当接部とが設けられていることを特徴とする掘削工具。
    A cylindrical casing pipe centering on the axis, an annular ring bit having an outer diameter larger than that of the casing pipe arranged coaxially on the tip side of the casing pipe, and the ring bit passing through the casing pipe A pilot bit inserted through the inner periphery of the
    The pilot bit is rotatable around the axis, and a bit head is provided on the outer periphery of the pilot bit.
    The bit head is rotatable about a center line that is eccentric from the axis, and when the pilot bit rotates in the tool rotation direction during excavation, the radius from the axis increases and is supported by the pilot bit. And
    The ring bit has a first contact that can be brought into contact with the engaged portion that is engaged with the enlarged bit head in the tool rotation direction during excavation and the tip end side in the axial direction. The excavation tool characterized by being provided with the part.
  2.  上記リングビットの内周部には外周側に凹む凹部が形成されていて、この凹部が上記被係合部とされていることを特徴とする請求項1に記載の掘削工具。 The excavation tool according to claim 1, wherein a concave portion that is recessed toward the outer peripheral side is formed in an inner peripheral portion of the ring bit, and the concave portion is used as the engaged portion.
  3.  上記ケーシングパイプの先端内周部には内径が一段小さくなる小径部が形成されるとともに、上記パイロットビットの後端外周部には上記小径部に上記軸線方向の後端側から当接可能な第2の当接部が形成され、上記リングビットの内径が上記小径部の内径以上とされていることを特徴とする請求項1または請求項2に記載の掘削工具。 A small-diameter portion whose inner diameter is reduced by one step is formed on the inner peripheral portion of the tip of the casing pipe, and a rear end outer peripheral portion of the pilot bit is a first portion that can contact the small-diameter portion from the rear end side in the axial direction. The excavation tool according to claim 1 or 2, wherein two abutting portions are formed, and an inner diameter of the ring bit is equal to or greater than an inner diameter of the small diameter portion.
  4.  上記ビットヘッドには、拡径した状態で上記リングビットの上記軸線方向後端側を向く面に当接可能な第3の当接部が設けられていることを特徴とする請求項1から請求項3のうちいずれか一項に記載の掘削工具。 The bit head is provided with a third abutting portion capable of abutting on a surface of the ring bit facing the rear end side in the axial direction in an expanded state. The excavation tool according to any one of Items 3.
  5.  拡径した上記ビットヘッドの上記第3の当接部の上記軸線からの最大の半径が、上記ケーシングパイプの先端外周部の上記軸線からの半径よりも大きいことを特徴とする請求項4に記載の掘削工具。 The maximum radius from the axis of the third contact portion of the expanded bit head is larger than the radius from the axis of the outer peripheral portion of the tip of the casing pipe. Drilling tools.
PCT/JP2015/072799 2014-08-20 2015-08-11 Excavation tool WO2016027739A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177002997A KR20170042568A (en) 2014-08-20 2015-08-11 Excavation tool
CN201580041990.6A CN106661924A (en) 2014-08-20 2015-08-11 Excavation tool
EP15833073.8A EP3184729B1 (en) 2014-08-20 2015-08-11 Excavation tool
AU2015304423A AU2015304423A1 (en) 2014-08-20 2015-08-11 Excavation tool
CA2957394A CA2957394A1 (en) 2014-08-20 2015-08-11 Drilling tool
US15/501,975 US20170234075A1 (en) 2014-08-20 2015-08-11 Drilling tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014167602A JP6330573B2 (en) 2014-08-20 2014-08-20 Drilling tools
JP2014-167602 2014-08-20

Publications (1)

Publication Number Publication Date
WO2016027739A1 true WO2016027739A1 (en) 2016-02-25

Family

ID=55350684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072799 WO2016027739A1 (en) 2014-08-20 2015-08-11 Excavation tool

Country Status (8)

Country Link
US (1) US20170234075A1 (en)
EP (1) EP3184729B1 (en)
JP (1) JP6330573B2 (en)
KR (1) KR20170042568A (en)
CN (1) CN106661924A (en)
AU (1) AU2015304423A1 (en)
CA (1) CA2957394A1 (en)
WO (1) WO2016027739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055728A1 (en) * 2016-09-23 2018-03-29 三菱マテリアル株式会社 Excavation tool

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5983475B2 (en) * 2013-03-14 2016-08-31 三菱マテリアル株式会社 Drilling tools
CN108868628A (en) * 2017-07-31 2018-11-23 天信国际集团有限公司 Drilling device
CN110603368A (en) * 2017-08-10 2019-12-20 株式会社吴羽 Plug, holding member, and method for drilling well using same
CN107386972B (en) * 2017-08-21 2023-04-07 福建亿钻机械有限公司 Electric shock-proof horizontal directional drilling machine and horizontal directional drilling method
CN107401375B (en) * 2017-08-21 2023-04-07 福建亿钻机械有限公司 Directional drilling machine capable of detecting installation condition of drill rod and drilling method
CN107401376B (en) * 2017-08-21 2023-04-07 福建亿钻机械有限公司 Horizontal directional drilling machine capable of being remotely monitored and horizontal hole drilling method
US20200024906A1 (en) * 2018-07-20 2020-01-23 Baker Hughes, A Ge Company, Llc Passively adjustable elements for earth-boring tools and related tools and methods
CN108979656B (en) * 2018-08-03 2020-07-21 临泉县贝拉蜜家纺有限公司 A dig native machine for push pipe construction
CN108979655B (en) * 2018-08-03 2020-10-30 诸暨市惠中智能科技有限公司 Drilling device for pipe jacking construction
CN111270985A (en) * 2018-12-05 2020-06-12 武穴市金锐精密锻造有限公司 Down-the-hole drill bit with variable diameter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146886A (en) * 1999-11-22 2001-05-29 Mitsubishi Materials Corp Excavating tool
JP2008038444A (en) * 2006-08-04 2008-02-21 Mitsubishi Materials Corp Excavating tool
JP2013122112A (en) * 2011-12-09 2013-06-20 Mitsubishi Materials Corp Excavation tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3750441B2 (en) * 1999-09-27 2006-03-01 三菱マテリアル株式会社 Drilling tools
JP3903876B2 (en) * 2002-08-15 2007-04-11 三菱マテリアル株式会社 Drilling tools
JP4943824B2 (en) * 2006-11-17 2012-05-30 ユニタック株式会社 Formation method of through hole
CN101571031A (en) * 2009-06-17 2009-11-04 北京中煤矿山工程有限公司 Split type reaming bit for large-diameter raising-boring and assembly method thereof
CN203257331U (en) * 2013-04-11 2013-10-30 安徽恒源煤电股份有限公司 Coal mine drilling construction drill bit
CN203499568U (en) * 2013-08-28 2014-03-26 中国地质科学院勘探技术研究所 Split PDC (polycrystalline diamond compact) guide chambering drilling bit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146886A (en) * 1999-11-22 2001-05-29 Mitsubishi Materials Corp Excavating tool
JP2008038444A (en) * 2006-08-04 2008-02-21 Mitsubishi Materials Corp Excavating tool
JP2013122112A (en) * 2011-12-09 2013-06-20 Mitsubishi Materials Corp Excavation tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3184729A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018055728A1 (en) * 2016-09-23 2018-03-29 三菱マテリアル株式会社 Excavation tool
EP3517725A4 (en) * 2016-09-23 2020-05-13 Mitsubishi Materials Corporation Excavation tool

Also Published As

Publication number Publication date
EP3184729B1 (en) 2019-05-08
JP6330573B2 (en) 2018-05-30
EP3184729A1 (en) 2017-06-28
EP3184729A4 (en) 2018-04-18
KR20170042568A (en) 2017-04-19
US20170234075A1 (en) 2017-08-17
CN106661924A (en) 2017-05-10
AU2015304423A1 (en) 2017-03-02
JP2016044415A (en) 2016-04-04
CA2957394A1 (en) 2016-02-25

Similar Documents

Publication Publication Date Title
JP6330573B2 (en) Drilling tools
WO2014142011A1 (en) Digging tool
KR20160138034A (en) Drilling tool
JP4957440B2 (en) Drilling tools
JP4844279B2 (en) Drilling tools
JP2006283516A (en) Excavation tool and excavation method
JP6589374B2 (en) Drilling tools
JP3014349B2 (en) Drilling tool
JP2018062788A (en) Drilling tool
JP5402397B2 (en) Drilling tools
JP2004183471A (en) Excavating tool
JP5152022B2 (en) Drilling tools
JP6447741B2 (en) Drilling tools
JP6759726B2 (en) Drilling tool
JP4007216B2 (en) Double pipe drilling tools
JP2003097176A (en) Excavating tool and excavating construction method
JP2006152602A (en) Excavator
JP6366028B1 (en) Drilling device and assembly method thereof
JP3140908U (en) Multi-drill for ground excavation
WO2018047962A1 (en) Drilling tool
JP4699147B2 (en) Drilling head
WO2017057716A1 (en) Drilling tool
JP2019183624A (en) Excavation tool
WO2018055728A1 (en) Excavation tool
JP2019015020A (en) Drilling tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177002997

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2957394

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2015833073

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015833073

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015304423

Country of ref document: AU

Date of ref document: 20150811

Kind code of ref document: A