WO2016027480A1 - Control device for construction vehicle engine - Google Patents

Control device for construction vehicle engine Download PDF

Info

Publication number
WO2016027480A1
WO2016027480A1 PCT/JP2015/054186 JP2015054186W WO2016027480A1 WO 2016027480 A1 WO2016027480 A1 WO 2016027480A1 JP 2015054186 W JP2015054186 W JP 2015054186W WO 2016027480 A1 WO2016027480 A1 WO 2016027480A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
load
value
torque
engine load
Prior art date
Application number
PCT/JP2015/054186
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 真也
星野 雅俊
石川 広二
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Publication of WO2016027480A1 publication Critical patent/WO2016027480A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to an engine control device for a construction machine in which a hydraulic pump is driven by an engine.
  • a hydraulic excavator that is a construction machine generally generates pressure oil by a hydraulic pump that uses an engine that is an internal combustion engine (mainly a diesel engine) as a drive source, and a hydraulic actuator such as a travel motor, a swing motor, and a hydraulic cylinder by the pressure oil. Is driven to perform a desired operation (traveling operation, turning operation, excavating operation, etc.) in the hydraulic excavator.
  • a hydraulic pump that uses an engine that is an internal combustion engine (mainly a diesel engine) as a drive source, and a hydraulic actuator such as a travel motor, a swing motor, and a hydraulic cylinder by the pressure oil.
  • the engine is a driving force for driving a hydraulic pump in a hydraulic excavator, but the hydraulic excavator engine is used in a high-load operation compared to a vehicle engine such as a truck because of the nature of the work, and the frequency of the high-load operation is high.
  • Japanese Unexamined Patent Application Publication No. 2010-121373 discloses a technique for reducing the engine load of a hydraulic excavator.
  • an assist motor is added as a power source of the pump in addition to the engine (so-called hybrid power configuration)
  • the required hydraulic pump power load is separated into a direct current component and an alternating current component, and the direct current component is exchanged with the engine.
  • the transient engine load can be reduced in the method of the above-mentioned document
  • the steady reduction of the engine load is not taken into consideration.
  • the technique of this document allows continuation of high-load operation (steady engine load) in a hydraulic excavator as in the past, and does not take into consideration reducing the frequency and duration. Therefore, the engine load cannot be reduced to the extent that the vehicle engine can be used as the hydraulic excavator engine, and it is still necessary to prepare the hydraulic excavator engine by the above method (1) or (2). In other words, the problem of enormous man-hours and costs for engine development still cannot be solved.
  • An object of the present invention is to use a low-priced engine (for example, a vehicular engine) that is regularly used at a lower load than a construction machine engine and has established a mass production system in a construction machine without any special specification change. There is in making it possible.
  • a low-priced engine for example, a vehicular engine
  • an engine control device for a construction machine calculates an engine load index value indicating an engine driving a hydraulic pump and a time-dependent tendency of parameters related to the engine load.
  • a load index calculation unit and an output adjustment unit that adjusts the output of the engine.
  • the engine operating range defined by the engine speed and load includes a range from no load to full load. 1 operation region and a second operation region that is included in the first operation region and narrower than the first operation region are set, and the output adjustment unit has the engine load index value within the second operation region. The output of the engine is adjusted so as to fall within the range.
  • the frequency and time during which the engine is operated at a high load can be reduced, the engine that is normally used at a lower load than the engine of the construction machine can be used in the construction machine without any special specification change. This can reduce the manufacturing cost of construction machinery.
  • 1 is a diagram showing a system configuration around an engine (first embodiment).
  • FIG. The figure which shows the fundamental view regarding engine load control (1st Embodiment).
  • 1 is a diagram showing a system configuration around an engine (first embodiment).
  • FIG. The figure which shows the time chart at the time of engine load control non-implementation.
  • a construction machine engine control device includes an engine that drives a hydraulic pump and a load that calculates an engine load index value that indicates a tendency of a parameter related to the load of the engine to change over time.
  • An index calculation unit for example, an engine load factor moving average value calculation unit 504 described later
  • an output adjustment unit for example, an engine control unit 103 described later
  • the engine operating region defined by the load includes a first operating region consisting of a region from no load to full load, and a second operating region included in the first operating region and narrower than the first operating region. Is set, and the output adjustment unit adjusts the output of the engine so that the engine load index value falls within the second operation region. It is characterized in.
  • One method of procuring engines to be installed in construction machinery is for engines that are premised on installation on machinery other than construction machinery (for example, vehicles including trucks), and the mass production system has been established and the price is low.
  • an engine used in this method for example, there is an engine for a vehicle such as a truck.
  • the engine load factor the maximum engine torque at a certain rotational speed (N in FIG. 16) (total The distribution of the actual torque (the ratio of T in the figure) to the load) is concentrated in a lower area relatively far from the maximum torque (full load) as shown in FIG.
  • the first operation region and the second operation region are set as the operation region of the engine, and the time change tendency of the parameter related to the load of the engine is shown.
  • the steady engine load is narrower than the first operating region. Since it is restricted on and inside the contour line of the operation region, it is possible to avoid a situation where the engine is frequently used in a state close to the full load.
  • the main purpose of using the engine load index value indicating the temporal change tendency of the parameter related to the engine load for control is to eliminate instantaneous fluctuations (micro fluctuations) of the engine load. This is because the tendency of the engine load change is grasped by paying attention to the macro fluctuation of the engine load.
  • the “trend” of the time change of the parameter rather than the time change of the parameter is used as a criterion for output adjustment, it is acceptable to use the engine load momentarily exceeding the upper limit value of the second operation region. Therefore, it can suppress that work amount and operativity fall notably.
  • a reference value for example, an upper limit value of the second operation region determined in order to continuously use the engine in a predetermined range from no load to less than full load
  • the engine load factor reference value (the truck normal load factor upper limit value), which will be described later, is set, and the reference value is preferably less than the full load.
  • the engine load index value in the above (1) there is one that uses a value obtained by accumulating a time series of parameters related to the engine load as the engine load index value.
  • the reference value in this case is a value that increases in proportion to an increase in time while referring to the accumulated value of the engine load index value when the engine is continuously used at the upper limit value in the predetermined range.
  • the engine output is adjusted so that the engine load index value, which is a time-series cumulative value of the parameter, is held below the reference value.
  • the engine load index value in the above (1) a numerical value obtained by performing a smoothing process on a time series of parameters related to the engine load is used as the engine load index value.
  • the reference value there is a method in which a value less than the value of the parameter when the engine is at full load is set as the reference value.
  • the smoothing process and the engine The output adjustment function allows the engine load to momentarily increase beyond the reference value, but the steady engine load is limited to below the reference value (that is, less than the full load value). It is possible to avoid a situation where the engine is frequently used in a state close to the load (this case will be described in detail in each embodiment described later).
  • the thermal time constant used during the smoothing process for example, the thermal time constant of the engine body can be used in consideration of the responsiveness of the engine temperature accompanying the engine load fluctuation.
  • Specific examples of the smoothing process include a moving average (for example, a simple moving average, a weighted moving average, and a cumulative moving average) and a filter process (for example, a low-pass filter process).
  • the “reference value” in the above (1) is preferably set according to the specifications of the engine mounted on the construction machine, and when the load range (normal range) in which the engine is normally used is generally determined.
  • the reference value is set to the upper limit value of the load range. If the reference value is set in this way, the engine will not be used outside the normal load range. Therefore, the engine is designed and manufactured under the concept that it is not assumed to be used in construction machinery. Even if it is, it can be easily used for construction machinery.
  • there are vehicles such as trucks, etc., where the normal range of the engine is generally determined. However, even if the normal range of the engine is determined, as long as the value is less than the upper limit value of the normal range, the value may be set as the reference value.
  • the “reference value” in the above may be a constant value regardless of the engine speed, or may be changed for each engine speed.
  • the maximum engine torque for each rotation speed is set as a reference value setting reference, and the torque corresponding to what percentage (for example, 70%) of the maximum engine torque at each rotation speed is set as a reference value. There is something.
  • the reference value draws an upward convex curve located below the curve drawn by the maximum torque.
  • engine torque for example, engine torque, engine speed, engine intake pressure, engine cylinder pressure, fuel injection amount, turbine speed in the turbocharger, or
  • engine state parameters indicating the engine state, including the required torque of the hydraulic pump and the like. Two or more of these parameters may be used as the parameter, or other parameters may be used as long as the engine load can be determined directly or indirectly.
  • an engine load or an engine load factor can also be used.
  • the engine load can be estimated from at least one of the above-described engine condition parameters, and can be estimated from, for example, at least one of the engine torque, the fuel injection amount, and the required torque of the hydraulic pump.
  • the engine load factor in the above indicates the ratio of the engine torque to the engine maximum torque at the rotational speed.
  • “parameters related to the engine load” can be acquired from output values of various sensors mounted on the construction machine, calculated values or stored values of a computer (including a microcomputer) mounted on the construction machine.
  • Various means are possible, such as acquisition from.
  • the engine state parameters the engine speed, the engine intake pressure, the engine cylinder pressure, the turbine speed, etc. can be obtained from the output value from the sensor.
  • the fuel injection amount can be calculated by the engine control unit. is there.
  • FIG. 1 is an external view of a hydraulic excavator 1 (hydraulic construction machine, hydraulic working machine) according to an embodiment of the present invention.
  • the hydraulic excavator 1 includes an articulated front working device (working device) 2 including a boom 6, an arm 7, and a bucket 8 that rotate in a vertical direction, and a vehicle body 3 including an upper swing body 4 and a lower traveling body 5.
  • the base end (right end in the figure) of the boom 6 of the front working device 2 is supported by the front portion of the upper swing body 4 so as to be rotatable with respect to the vertical direction.
  • FIG. 2 is an overall system configuration diagram of the excavator 1 according to the first embodiment of the present invention.
  • thick black arrows indicate the flow of pressure oil from the hydraulic pump 24 to the actuators 31, 42, 9, 10, and 11
  • thick white arrows indicate the actuators 31, 42, 9, 10, and 11.
  • 11 shows the flow of return oil from 11 to the pump 24 via the tank 26.
  • the thin black arrow in FIG. 2 has shown the supply direction of motive power or electric power.
  • the hydraulic excavator of the present embodiment is a so-called hybrid hydraulic excavator provided with a diesel engine 21 and a motor 22 as a drive source of the hydraulic pump 24.
  • the diesel engine 21, the assist motor 22, and the hydraulic pump 24 are mechanically connected, and the hydraulic pump 24 is driven by a sum of shaft outputs of the engine 21 and the assist motor 22 (total output).
  • the assist motor 22 is electrically connected to the battery 23, and when the motor 22 is powered, the hydraulic pump 24 is driven by receiving electric power from the battery 23. Note that, when a predetermined condition is satisfied, the assist motor 22 functions as a generator. At that time, the assist motor 22 is driven by the shaft output of the engine 21 to generate electric power, and the electric power at the time of power generation is stored in the battery (power storage device) 23.
  • the hydraulic oil sent from the hydraulic oil tank 26 is compressed into pressure oil and sent to the control valve 25.
  • the control valve 25 is based on an operation command from an operator via an operation lever (not shown), supplied pressure oil to the traveling hydraulic motor 42 required for the traveling operation, and a swing hydraulic motor 31 necessary for the upper swing body operation. Pressure oil supplied to the hydraulic cylinders 9, 10, 11 necessary for the operation of the work device 2, and unnecessary pressure oil is returned to the hydraulic oil tank 26.
  • the swing hydraulic motor 31 uses the pressure oil distributed from the control valve 25 as a power source, and drives the upper swing body 4 via the swing reduction device 32 and the swing gear 33.
  • the traveling hydraulic motor 42 is driven by pressure oil sent from the control valve 25 via the center joint 41, and drives the crawler 44 via the traveling speed reduction device 43.
  • the boom cylinder 9, the arm cylinder 10, and the bucket cylinder 11 are driven based on the pressure oil distributed from the control valve 25. As a result, the boom 6 is driven.
  • Each of the arm 7 and the bucket 8 is controlled in accordance with a desired operation instructed by an operator via an operation lever.
  • FIG. 3 is a diagram showing a hydraulic excavator engine according to the first embodiment and a peripheral system configuration.
  • a diesel engine 21 and an assist motor 22 are directly connected to the hydraulic pump 24 via an output shaft 305 as a power source for driving the hydraulic pump 24, and a battery 23 is electrically connected to the assist motor 22.
  • a main control unit 101 that is a computer that controls the center of the hydraulic excavator 1, a display device that displays the state of the hydraulic excavator toward the operator, and processing related to display on the display device.
  • the power control related input to the main control unit 101 includes a key switch 201 for starting and stopping the engine 21, an engine control dial 202 for an operator to specify the number of revolutions of the engine 21, and the state of the hydraulic excavator 1.
  • Auto idle switch 203 for optimizing the idling speed according to the power
  • power mode switch 204 for the operator to adjust the output of engine 21 (engine 12 and motor 22), traveling operation, upper swing body operation, working device
  • the engine control unit 103 determines whether the engine 21 is operating or abnormal
  • the motor control unit 104 determines whether the assist motor 22 is operating or abnormal
  • the battery control unit 105 indicates the battery 23.
  • Information such as the amount of stored electricity and the presence or absence of abnormality is input to the main control unit 101.
  • the power system upper management such as power distribution of the engine 21 and the assist motor 22 is performed.
  • the engine control unit 103 and the motor control unit 104 control the diesel engine 21 and the assist motor 22, respectively.
  • the main control unit 101 and the engine control unit 103 function as a control device (engine control device) for the diesel engine 21.
  • the engine 21 includes a fuel injection device 301 that injects fuel based on a target fuel injection amount command from the engine control unit 103, an exhaust manifold 302, a turbocharger 303 having a turbine, an exhaust pipe 304, and a DPF device 401. I have.
  • a rotation sensor 306 for detecting the engine speed is attached to the output shaft 305 of the engine 21, and the rotation sensor 306 outputs a detection value to the engine control unit 103.
  • the supercharging pressure sensor 307 detects the supercharging pressure of the turbocharger (supercharger) 303 and outputs it to the engine control unit 103.
  • the DPF device 401 includes an oxidation catalyst 403 and a PM collection filter 403.
  • An intake air temperature sensor 404 is installed between the oxidation catalyst 403 and the PM collection filter 403, and a DPF differential pressure sensor 405 that detects a differential pressure across the PM collection filter 403 is installed. Detection values of both sensors 404 and 405 are output to the engine control unit 103.
  • FIG. 4 shows a basic concept regarding engine load control performed by the hydraulic excavator 1 according to the present invention.
  • the load of the engine 21 is indicated by the engine torque T at the engine speed N at that time.
  • a truck engine is used among vehicle engines such as a passenger car and a freight car (for example, a truck) whose main work is traveling.
  • Vehicle engines, including truck engines, are usually used at low loads compared to the use of engines in construction machinery, and the price is low because mass production systems have been established.
  • the engine 21 is based on a truck engine corresponding to the rated output of the hydraulic pump 24, and switches the power control content according to the strength of the load pattern of the hydraulic pump 24.
  • the purpose of the engine load control performed in the present embodiment is to bring the engine load distribution (engine torque distribution in FIG. 4) during operation of the hydraulic excavator closer to the load distribution of the truck engine. It can be installed as an excavator engine without major specification changes.
  • the first operation region R1 and the second operation region R2 are set as two-dimensional engine operation regions defined by the engine speed and the engine torque.
  • the first operation region R1 is a normal operation region of the hydraulic excavator that is defined in a range from no load (torque zero) to full load (maximum engine torque at each number of turns), and the maximum engine torque (full load at each rotation speed). This corresponds to a point on the line T1 drawn by the set of) and a region located below the line T1.
  • the second operation region R2 is set in consideration of an operation region (normal region) that is normally used in a truck engine, and the second operation region R2 is a predetermined value from no load to less than full load (less than T1).
  • An operation region defined by a range up to (a value on T2), and a region located below the line T2 and a point on the line T2 drawn by a set of predetermined values set to less than T1 at each rotational speed Corresponds to this.
  • the second operation region R2 is included in the first operation region R1, and the area thereof is narrower than that of the first operation region R1. That is, if the engine is operated in the second operation region R2, the engine load can be continuously reduced as compared with the case where the engine is operated in the first operation region R1.
  • the torque line T2 is a set of engine load reference values (details will be described later) at each rotation speed, and in the example of FIG. 4, coincides with the upper limit value of the engine load in the track normal range (track normal load upper limit value).
  • the torque line T2 may be set so as to be included in the track normal range, and it is not always necessary to match the track normal load upper limit value as in the example of FIG.
  • the torque line T2 in the example of FIG. 4 is set to a value that is substantially parallel to the downward movement of the torque line T1, but if the torque line T2 is positioned below the torque line T1 at any number of rotations. It is assumed that it is not limited to the example of FIG. The specific logic of the engine load control performed in this embodiment is shown below.
  • the load of the engine 21 is indicated by the engine torque.
  • the load of the engine 21 is first expressed as a ratio of the engine torque to the engine maximum torque at the engine speed at that time. It is indicated by a certain “engine load factor”. Then, a time-series simple moving average (engine average load factor) of the engine load factor is adopted as an index value (engine load indicator value) indicating the engine load.
  • the “engine load factor reference value” is used in the description of FIG. 5 and the following, and in the following, the engine load index value is held below the engine load factor reference value. A case where engine load control (engine load control) is performed will be described.
  • FIG. 5 shows the distribution of operating points (combinations of engine speed and engine load factor) of the truck engine on a general road.
  • the engine is at full load, and the engine load factor is 100%.
  • the load factor distribution of the engine in the truck can be regarded as a normal distribution, and is almost concentrated in the range of the average value of engine load factor ⁇ 2 ⁇ . Therefore, the range of the engine load factor average value ⁇ 2 ⁇ is regarded as a normal range (load factor normal range) in the truck engine, and the upper limit value is set as the engine load factor reference value.
  • the upper limit value of the engine load factor distribution is statistically frequently found in the engine load factor range of 50 to 70%. Therefore, the engine load factor is preferably set to 70% or less. In other words, in terms of the engine load, it is a guideline to set the engine load factor reference value to a load of 70% or less of the total engine load.
  • An engine load factor reference value determined based on a load factor distribution of a truck engine which is a base of a hydraulic excavator engine is indicated by a broken line.
  • the bold hydraulic pump load factor moving average value and the engine load factor moving average value respond slowly to feedback control and smoothing processing with respect to step changes in the hydraulic pump absorption torque and engine drive torque.
  • FIG. 6 shows, as a comparison target of the first embodiment of the present invention (see FIG. 7), the hydraulic pump load factor (the hydraulic pump absorption torque converted into the load factor) and the engine when engine load control is not performed.
  • the time chart of a load factor (what converted engine drive torque into a load factor) is shown.
  • the engine load factor moving average value exceeds the engine load factor reference value in the sections of time T1 to T3 and T5 to T8.
  • the engine load is high compared to the features of the base engine (truck engine).
  • FIG. 7 shows a time chart of the hydraulic pump load factor and the engine load factor when the engine load control according to the first embodiment is performed.
  • the engine load factor moving average value reaches the engine load factor reference value at time T1 as in the case of non-execution of the engine load control of FIG. 6, but here the engine load control functions to limit the engine torque.
  • the engine load factor is reduced to the engine load factor reference value level.
  • the hydraulic pump load factor and the engine load factor fall below the engine load factor reference value.
  • the battery charge amount is recovered by switching the assist motor 22 from the power running mode to the power generation mode and driving the assist motor 22 with the engine 21. Therefore, in FIG. 7, even when the hydraulic pump load factor decreases at time T2, the engine is continuously driven within the range where the engine load factor reference value is the upper limit, and the assist motor 22 generates power. (Time T2 to T4).
  • power generation is started at time T2 when the hydraulic pump load factor and the engine load factor fall below the engine load factor reference value, and power generation occurs at time T4 when the hydraulic pump load factor and the engine load factor exceed the engine load factor reference value. Ended (suspended).
  • whether or not the engine assist by the assist motor 22 can be performed is determined in consideration of the amount of power stored in the battery 23.
  • the battery 23 storage amount (SOC) is reduced to the lower limit due to engine assist by the assist motor 22 (time T6)
  • the assist motor 22 cannot be driven, so at the time T6.
  • the driving of the assist motor 22 is stopped and the engine is switched to the single operation (time T6 to T7).
  • the engine is continuously driven within the range where the engine load factor reference value is the upper limit, and electric power is generated (time T7 to T7 T9).
  • the battery charge amount that determines whether or not the assist motor 22 can perform the engine assist is set as the “lower limit value”.
  • whether or not the engine assist is performed is determined based on other SOC values. Also good.
  • the hydraulic excavator 1 includes a main control unit 101, a monitor unit 102, an engine control unit 103, a battery control unit 105, a motor control unit 104, a hydraulic pump 24, and the like as control units and actuators related to engine load control. It has.
  • the main control unit 101 includes a target engine speed calculation unit 501, an engine load factor reference value calculation unit 502, an engine load factor calculation unit 503, an engine load factor moving average value calculation unit 504, and a motor drive torque request during power generation.
  • a value calculation unit 505, a hydraulic pump absorption torque request value calculation unit 506, an engine torque limit value calculation unit 507, a motor assist torque basic value calculation unit 508, and a hydraulic pump absorption torque target knowledge calculation unit 509 are provided.
  • the target engine speed calculation unit 501 calculates the target engine speed based on the input of the engine control dial 202 shown in FIG. 3 and transmits the calculation result to the engine control unit 103 and the motor control unit 104. To do. Further, the engine control unit 103 performs feedback control related to the engine speed based on the difference between the received target engine speed and the actual engine speed, and keeps the engine speed at the target value. Further, in the motor control unit 104, when the engine speed does not converge to the target value only by the engine speed feedback control, such as when the engine torque is limited, the target engine speed and the actual engine speed Feedback control based on the motor torque determined using the difference in the numbers as input is performed on the assist motor 22 in parallel to assist the convergence of the engine speed to the target value.
  • the engine load factor reference value calculation unit 502 calculates an engine load factor reference value based on various parameters indicating the engine state input from the engine control unit 103. For example, when the engine load factor reference value is a value that changes according to the engine speed, the engine load factor reference value is calculated based on the engine speed at that time. In addition, when the engine load factor reference value is a constant value, a constant value is output to the engine torque limit value calculation unit 507.
  • the engine load factor calculation unit 503 calculates the engine load factor based on parameter information (for example, fuel injection amount) related to the engine load input from the engine control unit 103. For example, the engine torque is estimated by inputting the fuel injection amount, the maximum engine torque at the engine speed is calculated by inputting the engine speed, and the ratio of the engine torque to the maximum engine torque becomes the engine load factor.
  • parameter information for example, fuel injection amount
  • the engine load factor moving average value calculation unit 504 performs a moving average process on the engine load factor time-series data calculated by the engine load factor calculation unit 503 to obtain an engine load factor moving average value (engine load index value). calculate. By taking the moving average, instantaneous fluctuations in the engine load factor are discarded, and the fluctuation tendency of the engine load factor can be easily grasped.
  • the hydraulic pump absorption torque request value calculation unit 506 is based on the hydraulic lever absorption torque (hydraulic pump) necessary for the hydraulic pump 24 to generate desired pressure oil based on the operation lever signal information 205 shown in FIG. Required torque).
  • the engine torque limit value calculation unit 507 the magnitude relationship between the engine load factor reference value input from the calculation unit 502 and the engine load factor moving average value input from the calculation unit 504, and the motor during power generation input from the calculation unit 505
  • the engine torque limit value is calculated in consideration of information such as the drive torque request value and the hydraulic pump absorption torque request value input from the calculation unit 506, and this is calculated using the engine control unit 103, the monitor unit 102, and the motor assist torque basic value calculation. Transmit to the means 508.
  • the specific contents of the processing executed by the engine torque limit value calculation unit 507 of the present embodiment will be described in detail with reference to FIG.
  • the engine control unit 103 functions as an output adjusting unit that adjusts the output (output) of the engine 21, and includes a feedback control unit 103a and a torque limiting unit 103b.
  • the output of the engine 21 can be quantified by, for example, the engine output proportional to the product of the engine torque and the engine speed, or the engine torque.
  • the feedback control unit 103a of the present embodiment determines the target value of the engine torque by feedback control so that the difference between the target engine speed and the actual engine speed decreases. Then, if the target value of the engine torque input from the feedback control unit 103a is equal to or less than the engine torque limit value input from the engine torque limit value calculation unit 507, the torque limiter 103b sets the engine torque target value as the target fuel. A command value is output to the engine 21 in terms of the injection amount. That is, the torque of the engine 21 is controlled to the target value determined by the feedback control unit 103a.
  • the engine torque limit value is converted into a target fuel injection amount and a command value is output to the engine 21. That is, in this case, the torque of the engine 21 is controlled to be reduced to the engine torque limit value, and becomes a value smaller than the initial target value.
  • the motor assist torque basic value calculation unit 508 calculates a motor assist torque basic value based on the difference between the engine torque limit value and the hydraulic pump absorption torque request value, and transmits it to the motor control unit 104.
  • the hydraulic pump absorption torque target value calculation unit 509 calculates a hydraulic pump absorption torque target value based on the hydraulic pump absorption torque request value from the calculation unit 506, and transmits a command value to the hydraulic pump 24.
  • the engine load factor reference value calculation unit 502 calculates the engine load factor reference value A (see the following formula 1) in calculation step S602.
  • the engine load factor reference value in the present embodiment is a value less than 1, for example, 0.7.
  • the engine torque B (see the following formula 2) is obtained from the engine control unit 103 in calculation step S603.
  • the maximum engine torque C (see Equation 3 below) is obtained from the engine control unit 103 in calculation step S604.
  • the engine load factor calculation unit 503 calculates the engine load factor D (see the following equation 4) from the engine torque B and the maximum engine torque C.
  • the engine load factor moving average value calculation unit 504 performs a moving average process in time series of the engine load factor D, thereby obtaining an engine load factor moving average value E (see Equation 5 below). Calculate.
  • the power generation motor drive torque request value calculation unit 505 generates the power generation motor drive torque request value F (see Equation 6 below) based on the battery SOC or the like obtained from the battery control unit 105. Calculate.
  • the hydraulic pump absorption torque request value calculation unit 506 calculates the hydraulic pump absorption torque request value G (see the following formula 7) based on the operation lever signal and the like.
  • the engine torque limit value calculation unit 507 calculates the engine load factor request value H (described below) from the power generation motor drive torque request value F, the hydraulic pump absorption torque request value G, and the maximum engine torque C. (See equation 8).
  • calculation step S611 it is determined whether or not it is necessary to execute engine load control, which is a feature of the present invention. Specifically, the engine torque limit value calculation unit 507 determines whether or not the engine load factor moving average value E and the engine load factor request value H are higher than the engine load factor reference value A, respectively. Judge whether or not to execute.
  • the battery SOC (I (see the following equation 11)) and the battery SOC lower limit threshold (J (see the following equation 12)) at that time are obtained from the battery control unit 105.
  • step S613 it is determined whether or not the battery SOC (I) is higher than the battery SOC lower limit threshold (J). That is, it is determined whether or not engine assist by the assist motor 22 is possible.
  • the engine torque limit value calculation unit 507 calculates an engine torque limit value K (see the following formula 14).
  • the motor assist torque basic value calculation unit 508 calculates a motor assist torque basic value L (see the following formula 15). That is, a value obtained by subtracting the engine torque limit value K from the hydraulic pump absorption torque request value G is set as the motor assist torque basic value L.
  • the hydraulic pump absorption torque target value calculation unit 509 calculates the hydraulic pump absorption torque target value M (see the following equation 16) based on the hydraulic pump absorption torque request value G.
  • the engine control unit 103 controls the engine torque with the engine torque limit value K
  • the motor control unit 104 controls the motor torque with the motor assist torque basic value L. Motor-assisted cooperative control is performed.
  • calculation step S618 the fact that the engine torque limit control has been performed is transmitted to the monitor unit 102, and that effect (for example, a warning) is displayed on the monitor. Thereafter, the process proceeds to calculation step S631, the engine load control related to the control cycle is terminated, and the process returns to calculation step S601.
  • the fact that the engine torque limit has been executed in the calculation step S618 is displayed on the monitor in the cab of the hydraulic excavator 1.
  • the outside of the hydraulic excavator 1 is displayed. You may transmit to the installed computer.
  • the computer is owned and managed by the owner or management company of the excavator 1, for example, the time when the engine torque limit control is executed can be recorded in the computer. This can be used as an index for determining the maintenance time of the hydraulic excavator.
  • the engine load control content in the first embodiment is that the engine load factor moving average value is always calculated and the engine load factor moving average value exceeds the engine load factor reference value.
  • the engine torque is reduced to lower the engine load factor moving average value to the engine load factor reference value level, and the assist motor 22 is driven for the deficiency with respect to the required hydraulic pump absorption torque, Implement coordinated control of engine and motor.
  • the parameters relating to the load of the engine 21 are not limited to the engine load factor used above, but as alternative parameters, engine torque, engine speed, engine intake pressure, engine cylinder pressure, fuel injection amount, and turbine rotation in the turbocharger At least one of various parameters indicating the engine state (engine state parameter) may be used, and a calculated value related to the engine load calculated from at least one of these parameters is used. You may do it.
  • the smoothing process applied to the engine load factor in time series uses not only the simple moving average process used above, but also other moving average processes including cumulative moving averages and filter processes including low-pass filter processes. May be.
  • the time constant may be determined based on the thermal time constant of the engine body.
  • the upper limit value of the engine load factor for trucks is set as the engine load factor reference value.
  • the upper limit value may be variable according to the soundness of the engine based on this value. For example, when an abnormality relating to engine failure or fuel properties is recognized, the engine load factor reference value may be reduced below a default value (the reference value described above).
  • the hydraulic excavator of the second embodiment is a standard type hydraulic excavator in which the drive source of the hydraulic pump is only an engine.
  • the system configuration will be described focusing on the differences from the hybrid hydraulic excavator of the first embodiment.
  • FIG. 10 is a diagram showing an overall system configuration of the excavator 1 in the second embodiment.
  • the overall system configuration is almost the same as that of the first embodiment, but for the standard excavator, the configuration in which the assist motor 22 and the battery 23 are removed from the configuration diagram of the first embodiment shown in FIG. It has become.
  • FIG. 11 is a diagram showing a hydraulic excavator engine according to the second embodiment and the surrounding system configuration. This is also almost the same configuration as the configuration of the first embodiment shown in FIG. 3, but for a standard hydraulic excavator, it is a hybrid related device (assist motor 22, battery 23) and control unit (motor control unit 104). The battery control unit 105) has been removed.
  • FIG. 12 shows a time chart of the hydraulic pump load factor and the engine load factor when engine load control is not performed as a comparison target of the second embodiment (see FIG. 13) of the present invention.
  • the engine load factor moving average value exceeds the engine load factor reference value at times T1 to T3, and this is a section where the load on the engine is large.
  • FIG. 13 shows a time chart of the hydraulic pump load factor and the engine load factor when the engine load control according to the second embodiment is performed.
  • the engine torque is limited to the engine load factor reference value level by limiting the engine torque from time T1 to time T2 when the engine load factor moving average value reaches the engine load factor reference value.
  • the hydraulic pump absorption torque (hydraulic pump load factor) is reduced to the same level as the engine load factor in synchronization with the engine torque limitation.
  • the engine load factor moving average value can be kept within a desired range, and the engine generated when the hydraulic pump absorption torque is excessive with respect to the engine torque Since the stall is avoided, the minimum operability can be secured.
  • the hydraulic pump absorption torque target value calculation unit 509 is based on the hydraulic pump absorption torque request value output from the hydraulic pump absorption torque request value calculation unit 506 and the engine torque limit value output from the engine torque limit value calculation unit 507. Then, the hydraulic pump absorption torque target value in the hydraulic pump absorption torque limitation synchronized with the engine torque limitation is calculated.
  • the engine load factor reference value A (see the following formula 21) is calculated in calculation step S602.
  • the engine load factor reference value in the present embodiment is a value less than 1, for example, 0.7.
  • the engine torque B (see the following formula 22) is obtained from the engine control unit 103 in calculation step S603.
  • the maximum engine torque C (see Equation 23 below) is obtained from the engine control unit 103 in calculation step S604.
  • the engine load factor calculation unit 503 calculates the engine load factor D (see the following equation 24) from the engine torque B and the maximum engine torque C.
  • the engine load factor moving average value calculation unit 504 performs a moving average process in time series of the engine load factor D, thereby obtaining an engine load factor moving average value E (see the following Expression 25). Calculate.
  • the hydraulic pump absorption torque request value calculation unit 506 calculates the hydraulic pump absorption torque request value G (see the following equation 26) based on the operation lever signal and the like.
  • the engine torque limit value calculation unit 507 calculates the engine load factor request value H (see the following Expression 27) from the hydraulic pump absorption torque request value G and the maximum engine torque C.
  • calculation step S611 it is determined whether or not it is necessary to execute engine load control, which is a feature of the present invention. Specifically, the engine torque limit value calculation unit 507 determines whether or not the engine load factor moving average value E and the engine load factor request value H are higher than the engine load factor reference value A, respectively. Judge whether or not to execute.
  • the engine torque limit value calculation unit 507 calculates the engine torque limit value K. Specifically, the hydraulic pump absorption torque is gradually reduced from the torque value G to a value corresponding to the engine load factor reference value C ⁇ A with time, and more specifically calculated by the following equation (30). To do.
  • the hydraulic pump absorption torque target value calculation unit 509 calculates a hydraulic pump absorption torque target value M (see the following equation 31) based on the engine torque limit value K.
  • the engine control unit 103 controls the engine torque with the engine torque limit value K
  • the hydraulic pump absorption torque target value calculation unit 509 controls the hydraulic pump 24 with the hydraulic pump absorption torque target value M.
  • engine torque limitation and output limitation of the hydraulic pump 24 are performed.
  • calculation step S624 the fact that the engine torque limit control has been performed is transmitted to the monitor unit 102, and that fact (for example, a warning) is displayed on the monitor. Thereafter, the process proceeds to calculation step S631, the engine load control related to the control cycle is terminated, and the process returns to calculation step S601.
  • the engine load control content in the second embodiment is that when the moving average value of the engine load factor is constantly calculated and the engine load factor moving average value exceeds the engine load factor reference value, The engine torque is lowered to lower the engine load factor moving average value to the engine load factor reference value level, and the hydraulic pump absorption torque is reduced in synchronization with the engine torque limit.
  • the engine load factor at the time of excavator operation can be brought close to the engine load factor equivalent to that of a truck engine. It can be installed as an excavator engine without changing specifications.
  • the engine load factor moving average value E (that is, the actual value of the engine load factor) and the engine load factor requirement value H are the engine load factor reference values in the calculation step S611 of FIG. 9 and FIG. It is determined whether or not the engine load control is executed, and it is determined whether or not only the engine load factor moving average value E, which is the actual value of the engine load factor, is higher than the engine load factor reference value A. The effect of the present invention is exhibited even if it is determined whether or not the engine load control is executed. However, as described above, when it is determined whether both the actual value E and the required value H are higher than the reference value A and whether or not the engine load control is executed, the engine load (for example, engine torque) is determined. There is an advantage that hunting can be prevented.
  • a hydraulic excavator has been described as an example of the construction machine.
  • the present invention can also be applied to other construction machines including a wheel loader that drives a hydraulic pump by an engine to drive various hydraulic actuators. It is.
  • the present invention is not limited to the above-described embodiment, and includes various modifications within the scope not departing from the gist thereof.
  • the present invention is not limited to the one having all the configurations described in the above embodiment, and includes a configuration in which a part of the configuration is deleted.
  • part of the configuration according to one embodiment can be added to or replaced with the configuration according to another embodiment.
  • each configuration relating to the above-described computer, functions and execution processing of each configuration, and the like are realized by hardware (for example, logic for executing each function is designed by an integrated circuit). Also good.
  • the configuration related to the computer may be a program (software) in which each function related to the configuration of the computer is realized by being read and executed by an arithmetic processing device (for example, CPU).
  • Information related to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
  • control line and the information line are shown to be understood as necessary for the description of the embodiment, but all the control lines and information lines related to the product are not necessarily included. It does not always indicate. In practice, it can be considered that almost all the components are connected to each other.
  • SYMBOLS 1 Hydraulic excavator, 2 ... Working apparatus, 3 ... Vehicle body, 4 ... Upper turning body, 5 ... Lower traveling body, 6 ... Boom, 7 ... Arm, 8 ... Bucket, 9 ... Boom cylinder, 10 ... Arm cylinder, 11 ... Bucket cylinder, 21 ... diesel engine, 22 ... assist motor, 23 ... battery, 24 ... hydraulic pump, 25 ... control valve, 26 ... hydraulic oil tank, 31 ... turning hydraulic motor, 32 ... turning speed reducer, 33 ... turning gear, DESCRIPTION OF SYMBOLS 41 ... Center joint, 42 ... Travel hydraulic motor, 43 ... Travel reduction device, 44 ... Crawler, 101 ... Main control unit, 102 ...
  • Monitor unit 103 ... Engine control unit, 104 ... Motor control unit, 105 ... Battery control unit, 201 ... Key switch, 202 ... Engine controller Tall dial, 203 ... auto idle switch, 204 ... power mode switch, 205 ... operating lever signal, 301 ... fuel injection device, 302 ... exhaust manifold, 303 ... turbocharger, 304 ... exhaust pipe, 305 ... output shaft, 306 ... rotation Sensor: 307 ... Supercharging pressure sensor, 401 ... DPF device, 402 ... Oxidation catalyst, 403 ... PM collection filter, 404 ... Exhaust temperature sensor, 405 ... DPF differential pressure sensor, 501 ... Target engine speed calculation unit, 502 ...
  • Engine load factor reference value calculation unit 503 ... Engine load factor calculation unit, 504 ... Engine load factor moving average value calculation unit, 505 ... Motor drive torque request value calculation unit during power generation, 506 ... Hydraulic pump absorption torque request value calculation unit, 507 ... Engine torque limit value calculation unit, 508 ... Motor assist torque base Value calculation unit, 509 ... hydraulic pump absorption torque target value calculation unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

A control device for a construction vehicle engine is equipped with: an engine (21) that drives a hydraulic pump (24); a load ratio moving average value calculation unit (504) that calculates a moving average value for the engine load ratio, obtained by executing a process for smoothing a time series of the load ratio of the engine (21); and an engine control unit (103) that adjusts the output of the engine (21). In an operating region of the engine (21) as defined by the rotational frequency and the load of the engine (21), a first operating region (R1), comprising a region from no load to full load, and a second operating region (R2), which is narrower than the first operating region (R1), are set. The engine control unit (103) adjusts the output of the engine (21) such that the moving average value of the engine load ratio remains within the second operating region (R2).

Description

建設機械用エンジン制御装置Engine control device for construction machinery
 本発明はエンジンで油圧ポンプを駆動する建設機械のエンジン制御装置に関する。 The present invention relates to an engine control device for a construction machine in which a hydraulic pump is driven by an engine.
 建設機械である油圧ショベルは、一般に、内燃機関であるエンジン(主にディーゼルエンジン)を駆動源とする油圧ポンプによって圧油を生成し、圧油によって走行モータや旋回モータ、油圧シリンダ等の油圧アクチュエータを駆動することで、油圧ショベルにおける所望の動作(走行動作、旋回動作、掘削動作など)を行う。 A hydraulic excavator that is a construction machine generally generates pressure oil by a hydraulic pump that uses an engine that is an internal combustion engine (mainly a diesel engine) as a drive source, and a hydraulic actuator such as a travel motor, a swing motor, and a hydraulic cylinder by the pressure oil. Is driven to perform a desired operation (traveling operation, turning operation, excavating operation, etc.) in the hydraulic excavator.
 エンジンは油圧ショベルにおける油圧ポンプ駆動の原動力であるが、油圧ショベルのエンジンはその作業の性質上トラック等の車両のエンジンと比較して高負荷運転で利用され、しかも高負荷運転の頻度が高い。 The engine is a driving force for driving a hydraulic pump in a hydraulic excavator, but the hydraulic excavator engine is used in a high-load operation compared to a vehicle engine such as a truck because of the nature of the work, and the frequency of the high-load operation is high.
 例えば、特開2010-121373号公報には、油圧ショベルのエンジン負荷の低減を図った技術が開示されている。当該文献では、ポンプの動力源としてエンジンの他にアシストモータを追加し(所謂ハイブリッド動力構成とし)、要求される油圧ポンプ動力負荷を直流成分と交流成分に分離し、直流成分をエンジンに、交流成分をモータに負担させることで、エンジンへの急激な負荷変動を抑制し、エンジンへの負担を緩和するものである。 For example, Japanese Unexamined Patent Application Publication No. 2010-121373 discloses a technique for reducing the engine load of a hydraulic excavator. In this document, an assist motor is added as a power source of the pump in addition to the engine (so-called hybrid power configuration), the required hydraulic pump power load is separated into a direct current component and an alternating current component, and the direct current component is exchanged with the engine. By causing the component to be borne by the motor, rapid load fluctuations on the engine are suppressed, and the burden on the engine is alleviated.
特開2010-121373号公報JP 2010-121373 A
 油圧ショベルとトラック等の車両とでは、エンジンの利用形態が全く異なり、その結果、必然的にエンジンの設計思想も異なってくる。そのため、仮に上記文献の技術を適用したとしても、車両用のエンジンに特段の仕様変更を加えずに油圧ショベルのエンジンとして流用することは難しい。そこで、通常は、(1)油圧ショベル専用に高負荷運転を前提にしたエンジンを設計するか、または(2)車両用エンジンに高負荷運転に耐え得るような仕様変更を加えてエンジン各部を強化する必要がある。 】 The use form of the engine is completely different between the hydraulic excavator and the vehicle such as a truck, and as a result, the design concept of the engine is inevitably different. Therefore, even if the technique of the above-mentioned document is applied, it is difficult to divert it as an engine of a hydraulic excavator without adding a special specification change to the vehicle engine. Therefore, usually, (1) engine designed exclusively for hydraulic excavators is premised on high load operation, or (2) engine parts are strengthened by changing specifications to withstand high load operation on vehicle engines. There is a need to.
 そのため、油圧ショベルのエンジン製造に関して、上記(2)の方法を用いることなく、車両用のエンジンに特段の仕様変更を加えずに油圧ショベルのエンジンとして流用することが可能となれば、油圧ショベルをはじめとする建設機械の製造コストを大幅に削減する1つの手段たり得る。 Therefore, regarding the manufacture of an excavator engine, if it is possible to divert the excavator as an engine of a hydraulic excavator without using the method (2) above and without making any special specification change, It can be one means of greatly reducing the manufacturing cost of construction machines such as the first.
 この点に関連して、上記文献の方式では、過渡的なエンジン負荷は低減できるものの、定常的なエンジン負荷の低減については考慮されていない。つまり、当該文献の技術は、従来と同様に油圧ショベルにおける高負荷運転の継続(定常的なエンジン負荷)を許容するものであり、その頻度や継続時間を低減することに関しては考慮されていない。したがって、油圧ショベルのエンジンとして車両用のエンジンを流用可能にする程度まではエンジン負荷は低減できず、依然として上記(1)または(2)の方法で油圧ショベル用のエンジンを用意する必要がある。つまり、エンジン開発に多大な工数および費用が掛かるという問題は依然として解決できない。 In connection with this point, although the transient engine load can be reduced in the method of the above-mentioned document, the steady reduction of the engine load is not taken into consideration. In other words, the technique of this document allows continuation of high-load operation (steady engine load) in a hydraulic excavator as in the past, and does not take into consideration reducing the frequency and duration. Therefore, the engine load cannot be reduced to the extent that the vehicle engine can be used as the hydraulic excavator engine, and it is still necessary to prepare the hydraulic excavator engine by the above method (1) or (2). In other words, the problem of enormous man-hours and costs for engine development still cannot be solved.
 本発明の目的は、建設機械のエンジンよりも低負荷で常用され、量産体制が確立された価格の低廉なエンジン(例えば、車両用エンジン)を、特段の仕様変更を加えることなく建設機械で利用可能にすることにある。 An object of the present invention is to use a low-priced engine (for example, a vehicular engine) that is regularly used at a lower load than a construction machine engine and has established a mass production system in a construction machine without any special specification change. There is in making it possible.
 上記目的を達成するために、本発明に係る建設機械用エンジン制御装置は、油圧ポンプを駆動するエンジンと、当該エンジンの負荷に関連するパラメータの時間変化の傾向を示すエンジン負荷指標値を演算する負荷指標演算部と、前記エンジンの出力を調整する出力調整部とを備え、前記エンジンの回転数および負荷によって規定される前記エンジンの運転領域には、無負荷から全負荷までの領域からなる第1運転領域と、当該第1運転領域内に含まれ当該第1運転領域より狭い第2運転領域とが設定されており、前記出力調整部は、前記エンジン負荷指標値が前記第2運転領域内に収まるように、前記エンジンの出力を調整することを特徴とする。 In order to achieve the above object, an engine control device for a construction machine according to the present invention calculates an engine load index value indicating an engine driving a hydraulic pump and a time-dependent tendency of parameters related to the engine load. A load index calculation unit; and an output adjustment unit that adjusts the output of the engine. The engine operating range defined by the engine speed and load includes a range from no load to full load. 1 operation region and a second operation region that is included in the first operation region and narrower than the first operation region are set, and the output adjustment unit has the engine load index value within the second operation region. The output of the engine is adjusted so as to fall within the range.
 本発明によれば、エンジンが高負荷運転される頻度および時間を低減できるので、建設機械のエンジンよりも低負荷で常用されるエンジンを、特段の仕様変更を加えることなく建設機械で利用することが可能となり、建設機械の製造コストを削減できる。 According to the present invention, since the frequency and time during which the engine is operated at a high load can be reduced, the engine that is normally used at a lower load than the engine of the construction machine can be used in the construction machine without any special specification change. This can reduce the manufacturing cost of construction machinery.
油圧ショベルの外観を示す図(第1実施形態)。The figure which shows the external appearance of a hydraulic shovel (1st Embodiment). 油圧ショベルのシステム構成を示す図(第1実施形態)。The figure which shows the system configuration | structure of a hydraulic excavator (1st Embodiment). エンジン周辺のシステム構成を示す図(第1実施形態)。1 is a diagram showing a system configuration around an engine (first embodiment). FIG. エンジン負荷制御に関する基本な考え方を示す図(第1実施形態)。The figure which shows the fundamental view regarding engine load control (1st Embodiment). エンジン負荷制御におけるエンジン負荷率基準値設定に関する考え方を示す図(第1実施形態)。The figure which shows the view regarding the engine load factor reference value setting in engine load control (1st Embodiment). エンジン負荷制御非実施時のタイムチャートを示す図。The figure which shows the time chart at the time of engine load control non-implementation. エンジン負荷制御実施時のタイムチャートを示す図(第1実施形態)。The figure which shows the time chart at the time of engine load control implementation (1st Embodiment). エンジン周辺の制御ロジック構成を示す図(第1実施形態)。The figure which shows the control logic structure around an engine (1st Embodiment). エンジン負荷制御に関する制御フローチャートを示す図(第1実施形態)。The figure which shows the control flowchart regarding engine load control (1st Embodiment). 油圧ショベルのシステム構成を示す図(第1実施形態)。The figure which shows the system configuration | structure of a hydraulic excavator (1st Embodiment). エンジン周辺のシステム構成を示す図(第1実施形態)。1 is a diagram showing a system configuration around an engine (first embodiment). FIG. エンジン負荷制御非実施時のタイムチャートを示す図。The figure which shows the time chart at the time of engine load control non-implementation. エンジン負荷制御実施時のタイムチャートを示す図(第1実施形態)。The figure which shows the time chart at the time of engine load control implementation (1st Embodiment). エンジン周辺の制御ロジック構成を示す図(第1実施形態)。The figure which shows the control logic structure around an engine (1st Embodiment). エンジン負荷制御に関する制御フローチャートを示す図(第1実施形態)。The figure which shows the control flowchart regarding engine load control (1st Embodiment). 車両用エンジンと油圧ショベル用エンジンの負荷率分布の違いを示す図。The figure which shows the difference in the load factor distribution of the engine for vehicles, and the engine for hydraulic excavators.
 本発明の実施の形態を説明する前に、まず、本発明の実施の形態に係るエンジン制御装置および建設機械に含まれる主な特徴について説明する。 Before describing the embodiment of the present invention, first, main features included in the engine control device and the construction machine according to the embodiment of the present invention will be described.
 (1)後述する本実施の形態に係る建設機械用エンジン制御装置は、油圧ポンプを駆動するエンジンと、当該エンジンの負荷に関連するパラメータの時間変化の傾向を示すエンジン負荷指標値を演算する負荷指標演算部(例えば、後述のエンジン負荷率移動平均値演算部504)と、前記エンジンの出力を調整する出力調整部(例えば、後述のエンジンコントロールユニット103)とを備え、前記エンジンの回転数および負荷によって規定される前記エンジンの運転領域には、無負荷から全負荷までの領域からなる第1運転領域と、当該第1運転領域内に含まれ当該第1運転領域より狭い第2運転領域とが設定されており、前記出力調整部は、前記エンジン負荷指標値が前記第2運転領域内に収まるように、前記エンジンの出力を調整することを特徴とする。 (1) A construction machine engine control device according to the present embodiment, which will be described later, includes an engine that drives a hydraulic pump and a load that calculates an engine load index value that indicates a tendency of a parameter related to the load of the engine to change over time. An index calculation unit (for example, an engine load factor moving average value calculation unit 504 described later) and an output adjustment unit (for example, an engine control unit 103 described later) for adjusting the output of the engine; The engine operating region defined by the load includes a first operating region consisting of a region from no load to full load, and a second operating region included in the first operating region and narrower than the first operating region. Is set, and the output adjustment unit adjusts the output of the engine so that the engine load index value falls within the second operation region. It is characterized in.
 建設機械に搭載されるエンジンの調達方法の1つには、建設機械以外の機械(例えば、トラックを含む車両)への搭載を前提としたエンジンであって、量産体制が確立されて価格の低廉なエンジンに対して、建設機械での頻繁な高負荷運転にも耐え得るような仕様変更(エンジン強化)を加えた後に建設機械に搭載する方法がある。この方法に利用されるエンジンとしては、例えば、トラック等の車両用のエンジンがあるが、この種の車両におけるエンジン負荷率(或る回転数(図16中のN)での最大エンジントルク(全負荷)に対する実際のトルク(同図中のT)の割合)の分布は、図16に示すように最大トルク(全負荷)から比較的離れた下方の領域に集中する。これに対して、油圧ショベル(建設機械)におけるエンジン負荷率の分布は、図16に示すように最大トルクの近傍に集中する頻度が多く、車両で利用する場合と比較して高負荷頻度が高くエンジンに作用するストレスが大きい。そのため、上記方法のように車両用のエンジンをベースに油圧ショベルの開発を進める場合には、当該車両用エンジンに対して耐高負荷性能を付加する各種施策が必要であり、それ故に開発期間の長期化とコストの増加に繋がるという課題があった。 One method of procuring engines to be installed in construction machinery is for engines that are premised on installation on machinery other than construction machinery (for example, vehicles including trucks), and the mass production system has been established and the price is low. There is a method of mounting a new engine on a construction machine after changing specifications (engine strengthening) that can withstand frequent heavy load operation on the construction machine. As an engine used in this method, for example, there is an engine for a vehicle such as a truck. The engine load factor (the maximum engine torque at a certain rotational speed (N in FIG. 16) (total The distribution of the actual torque (the ratio of T in the figure) to the load) is concentrated in a lower area relatively far from the maximum torque (full load) as shown in FIG. On the other hand, the distribution of the engine load factor in the hydraulic excavator (construction machine) is frequently concentrated near the maximum torque as shown in FIG. 16, and the high load frequency is higher than that in the case of using in a vehicle. The stress acting on the engine is great. Therefore, when a hydraulic excavator is developed based on a vehicle engine as in the above method, various measures for adding high load resistance to the vehicle engine are necessary. There was a problem that it would lead to longer time and higher costs.
 この種の課題に対して、上記のように、前記第1運転領域と前記第2運転領域を前記エンジンの運転領域として設定し、前記エンジンの負荷に関連するパラメータの時間変化の傾向を示す前記エンジン負荷指標値が前記第2運転領域内に収まるように前記エンジンの出力を調整する構成を建設機械用エンジン制御装置に採用すると、定常的なエンジン負荷は前記第1運転領域より狭い前記第2運転領域の輪郭線上およびその内側に制限されるので、全負荷に近い状態でエンジンが頻繁に利用される事態を回避できる。したがって、主として全負荷未満の所定の範囲の負荷での利用を前提に設計されたエンジンを建設機械に搭載しても、当該エンジンの運転領域を前記第2運転領域以内に限定することで、当該エンジンが当該所定の範囲を逸脱した高負荷で継続利用されることが回避されるので、当該エンジンの建設機械への流用が容易となり、建設機械用エンジンの製造コスト、ひいては建設機械の製造コストを大幅に削減できる。 In response to this type of problem, as described above, the first operation region and the second operation region are set as the operation region of the engine, and the time change tendency of the parameter related to the load of the engine is shown. When a construction for adjusting the engine output so that the engine load index value falls within the second operating region is adopted in the engine control device for construction machinery, the steady engine load is narrower than the first operating region. Since it is restricted on and inside the contour line of the operation region, it is possible to avoid a situation where the engine is frequently used in a state close to the full load. Therefore, even when an engine designed mainly for use in a load within a predetermined range less than the full load is mounted on a construction machine, by limiting the operating range of the engine within the second operating range, Since it is avoided that the engine is continuously used at a high load that deviates from the predetermined range, it is easy to divert the engine to the construction machine, and the manufacturing cost of the engine for the construction machine, and thus the manufacturing cost of the construction machine, can be reduced. It can be greatly reduced.
 本発明において、前記エンジンの負荷に関連するパラメータの時間変化の傾向を示す前記エンジン負荷指標値を制御に利用する主な趣旨は、エンジン負荷の瞬間的な変動(ミクロな変動)を捨象する一方で、エンジン負荷のマクロな変動に着目してエンジン負荷変化の傾向を把握するためである。このように前記パラメータの時間変化そのものではなく当該パラメータの時間変化の“傾向”を出力調整の判断基準にすると、エンジン負荷が瞬間的に前記第2運転領域の上限値を超えるような使い方は許容されるので、仕事量や操作性が顕著に低下することが抑制できる。 In the present invention, the main purpose of using the engine load index value indicating the temporal change tendency of the parameter related to the engine load for control is to eliminate instantaneous fluctuations (micro fluctuations) of the engine load. This is because the tendency of the engine load change is grasped by paying attention to the macro fluctuation of the engine load. As described above, when the “trend” of the time change of the parameter rather than the time change of the parameter is used as a criterion for output adjustment, it is acceptable to use the engine load momentarily exceeding the upper limit value of the second operation region. Therefore, it can suppress that work amount and operativity fall notably.
 上記(1)における前記エンジン負荷指標値には、前記エンジンを無負荷から全負荷未満の所定の範囲で継続的に使用するために定めた前記第2運転領域の上限値である基準値(例えば、後述のエンジン負荷率基準値(トラック常用負荷率上限値))が設定されており、前記基準値は全負荷未満の値とすることが好ましい。これにより、主として全負荷未満の所定の範囲の負荷での利用(例えば前記第2運転領域での利用)を前提に設計されたエンジンを建設機械に搭載しても、当該エンジンの運転領域を前記第2運転領域以内に限定することで、当該エンジンが当該所定の範囲を逸脱した高負荷で継続利用されることが回避される。 In the engine load index value in the above (1), a reference value (for example, an upper limit value of the second operation region determined in order to continuously use the engine in a predetermined range from no load to less than full load) The engine load factor reference value (the truck normal load factor upper limit value), which will be described later, is set, and the reference value is preferably less than the full load. As a result, even if an engine designed mainly for use in a load within a predetermined range less than the full load (for example, use in the second operation region) is mounted on a construction machine, the operation region of the engine is By limiting to the second operating region, it is possible to avoid the engine being continuously used at a high load that deviates from the predetermined range.
 上記(1)における前記エンジン負荷指標値の具体例としては、前記エンジンの負荷に関連するパラメータの時系列を累積した値を前記エンジン負荷指標値として利用するものがある。この場合の前記基準値としては、前記エンジンが前記所定の範囲における上限値で継続的に利用された場合の前記エンジン負荷指標値の累積値を参考にしつつ、時間増加に比例して増加する値(例えば当該値を時間増加とともに単調増加する時間の関数で定義する)となるように前記基準値を設定する方法がある。この場合、前記パラメータの時系列の累積値である前記エンジン負荷指標値が前記基準値以下に保持されるようにエンジン出力が調整される。 As a specific example of the engine load index value in the above (1), there is one that uses a value obtained by accumulating a time series of parameters related to the engine load as the engine load index value. The reference value in this case is a value that increases in proportion to an increase in time while referring to the accumulated value of the engine load index value when the engine is continuously used at the upper limit value in the predetermined range. For example, there is a method of setting the reference value so that the value is defined as a function of time that monotonously increases with time. In this case, the engine output is adjusted so that the engine load index value, which is a time-series cumulative value of the parameter, is held below the reference value.
 また、上記(1)における前記エンジン負荷指標値の他の具体例としては、前記エンジンの負荷に関連するパラメータの時系列に平滑化処理を施して得られる数値を前記エンジン負荷指標値として利用するものがある。この場合の前記基準値としては、前記エンジンが全負荷のときにおける前記パラメータの値未満の値を前記基準値として設定する方法がある。このように、平滑化処理を経て得られるエンジン負荷指標値が前記基準値以下に保持されるように前記エンジンの出力を調整する構成を建設機械用エンジン制御装置に採用すると、平滑化処理とエンジン出力調整の機能により、エンジン負荷が瞬間的に基準値を超えて増加することは許容されるものの、定常的なエンジン負荷は基準値以下(つまり全負荷の値未満)に制限されるので、全負荷に近い状態でエンジンが頻繁に利用される事態が発生することを回避できる(この場合については後述する各実施の形態で詳細に説明する)。 As another specific example of the engine load index value in the above (1), a numerical value obtained by performing a smoothing process on a time series of parameters related to the engine load is used as the engine load index value. There is something. As the reference value in this case, there is a method in which a value less than the value of the parameter when the engine is at full load is set as the reference value. In this way, when the construction for adjusting the engine output so that the engine load index value obtained through the smoothing process is kept below the reference value is adopted in the engine control device for construction machinery, the smoothing process and the engine The output adjustment function allows the engine load to momentarily increase beyond the reference value, but the steady engine load is limited to below the reference value (that is, less than the full load value). It is possible to avoid a situation where the engine is frequently used in a state close to the load (this case will be described in detail in each embodiment described later).
 なお、平滑処理時に利用する時定数としては、エンジン負荷変動に伴うエンジン温度の応答性を考慮して、例えば、エンジン本体の熱時定数を利用することができる。また、平滑化処理の具体例としては、例えば、移動平均(例えば、単純移動平均、加重移動平均、累積移動平均)や、フィルタ処理(例えば、ローパスフィルタ処理)がある。 It should be noted that as the time constant used during the smoothing process, for example, the thermal time constant of the engine body can be used in consideration of the responsiveness of the engine temperature accompanying the engine load fluctuation. Specific examples of the smoothing process include a moving average (for example, a simple moving average, a weighted moving average, and a cumulative moving average) and a filter process (for example, a low-pass filter process).
 (2)上記(1)における「基準値」は、建設機械に搭載するエンジンの仕様に合わせて設定することが好ましく、当該エンジンが常用される負荷範囲(常用域)が概ね決まっている場合には当該負荷範囲の上限値に前記基準値を設定することが好ましい。このように前記基準値を設定すれば、常用される負荷範囲を逸脱してエンジンが利用されることが無くなるので、当該エンジンが建設機械での使用を前提としない思想の下で設計・製造されていたとしても、建設機械への流用が容易になる。なお、エンジンの常用域が概ね決まっているものとしては、トラック等をはじめとする車両がある。ただし、エンジンの常用域が決まっている場合でも、当該常用域の上限値未満の値であれば、その値を前記基準値として設定しても良い。 (2) The “reference value” in the above (1) is preferably set according to the specifications of the engine mounted on the construction machine, and when the load range (normal range) in which the engine is normally used is generally determined. Preferably, the reference value is set to the upper limit value of the load range. If the reference value is set in this way, the engine will not be used outside the normal load range. Therefore, the engine is designed and manufactured under the concept that it is not assumed to be used in construction machinery. Even if it is, it can be easily used for construction machinery. In addition, there are vehicles such as trucks, etc., where the normal range of the engine is generally determined. However, even if the normal range of the engine is determined, as long as the value is less than the upper limit value of the normal range, the value may be set as the reference value.
 また、上記における「基準値」は、エンジン回転数に関わらず一定の値としても良いし、エンジン回転数ごとに変化させても良い。後者の場合の具体例としては、回転数ごとの最大エンジントルクを基準値設定の基準として、各回転数における最大エンジントルクの何割(例えば、7割)に対応するトルクを基準値として設定するものがある。図16の上段のように最大トルクが「上に凸」の曲線を描くときには、基準値は、当該最大トルクが描く曲線の下方に位置する上に凸の曲線を描くことになる。 Further, the “reference value” in the above may be a constant value regardless of the engine speed, or may be changed for each engine speed. As a specific example of the latter case, the maximum engine torque for each rotation speed is set as a reference value setting reference, and the torque corresponding to what percentage (for example, 70%) of the maximum engine torque at each rotation speed is set as a reference value. There is something. When drawing a curve with the maximum torque “convex upward” as shown in the upper part of FIG. 16, the reference value draws an upward convex curve located below the curve drawn by the maximum torque.
 (3)上記(1)における「前記エンジンの負荷に関連するパラメータ」としては、例えば、エンジントルク、エンジン回転数、エンジン吸気圧、エンジン筒内圧、燃料噴射量、ターボチャージャーにおけるタービン回転数、または、前記油圧ポンプの要求トルク等を含む、エンジン状態を示す種々のパラメータ(エンジン状態パラメータ)がある。これらパラメータの2つ以上を前記パラメータとして利用しても良いし、エンジン負荷を直接的または間接的に判断可能なパラメータであれば、他のものでも構わない。 (3) As the “parameter related to the engine load” in (1) above, for example, engine torque, engine speed, engine intake pressure, engine cylinder pressure, fuel injection amount, turbine speed in the turbocharger, or There are various parameters (engine state parameters) indicating the engine state, including the required torque of the hydraulic pump and the like. Two or more of these parameters may be used as the parameter, or other parameters may be used as long as the engine load can be determined directly or indirectly.
 上記(1)における「前記エンジンの負荷に関連するパラメータ」の他の具体例としては、エンジン負荷またはエンジン負荷率も利用可能である。エンジン負荷は、上記のエンジン状態パラメータの少なくとも1つから推定が可能であり、例えば、エンジントルク、燃料噴射量および油圧ポンプの要求トルクの少なくとも1つから推定が可能である。なお、上記におけるエンジン負荷率とは、その回転数におけるエンジン最大トルクに対するエンジントルクの割合を示す。 As another specific example of the “parameter related to the engine load” in the above (1), an engine load or an engine load factor can also be used. The engine load can be estimated from at least one of the above-described engine condition parameters, and can be estimated from, for example, at least one of the engine torque, the fuel injection amount, and the required torque of the hydraulic pump. The engine load factor in the above indicates the ratio of the engine torque to the engine maximum torque at the rotational speed.
 なお、「前記エンジンの負荷に関連するパラメータ」の取得手段としては、建設機械に搭載した各種センサの出力値からの取得、建設機械に搭載されたコンピュータ(マイコンを含む)の算出値や記憶値からの取得など種々の手段が可能である。例えば、上記エンジン状態パラメータのうち、エンジン回転数、エンジン吸気圧、エンジン筒内圧、タービン回転数などはセンサからの出力値から取得でき、例えば燃料噴射量はエンジンコントロールユニットにおける算出値が利用可能である。 Note that “parameters related to the engine load” can be acquired from output values of various sensors mounted on the construction machine, calculated values or stored values of a computer (including a microcomputer) mounted on the construction machine. Various means are possible, such as acquisition from. For example, among the engine state parameters, the engine speed, the engine intake pressure, the engine cylinder pressure, the turbine speed, etc. can be obtained from the output value from the sensor. For example, the fuel injection amount can be calculated by the engine control unit. is there.
 以下、本発明の実施の形態について図面を用いて説明する。図1は、本発明の一実施形態に係わる油圧ショベル1(油圧建設機械、油圧作業機械)の外観図を示す。油圧ショベル1は、垂直方向にそれぞれ回動するブーム6、アーム7及びバケット8からなる多関節型のフロント作業装置(作業装置)2と、上部旋回体4及び下部走行体5からなる車体3とで構成され、フロント作業装置2のブーム6の基端(図中右端)は、上部旋回体4の前部に、垂直方向に対して回動可能に支持されている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an external view of a hydraulic excavator 1 (hydraulic construction machine, hydraulic working machine) according to an embodiment of the present invention. The hydraulic excavator 1 includes an articulated front working device (working device) 2 including a boom 6, an arm 7, and a bucket 8 that rotate in a vertical direction, and a vehicle body 3 including an upper swing body 4 and a lower traveling body 5. The base end (right end in the figure) of the boom 6 of the front working device 2 is supported by the front portion of the upper swing body 4 so as to be rotatable with respect to the vertical direction.
 図2は、本発明の第1の実施の形態に係る油圧ショベル1の全体システム構成図である。なお、図2において、太い黒矢印は、油圧ポンプ24から各アクチュエータ31,42,9,10,11までの圧油の流れを示し、太い白矢印は、各アクチュエータ31,42,9,10,11からタンク26を経由してポンプ24までの戻り油の流れを示している。また、図2中の細い黒矢印は動力または電力の供給方向を示している。 FIG. 2 is an overall system configuration diagram of the excavator 1 according to the first embodiment of the present invention. In FIG. 2, thick black arrows indicate the flow of pressure oil from the hydraulic pump 24 to the actuators 31, 42, 9, 10, and 11, and thick white arrows indicate the actuators 31, 42, 9, 10, and 11. 11 shows the flow of return oil from 11 to the pump 24 via the tank 26. Moreover, the thin black arrow in FIG. 2 has shown the supply direction of motive power or electric power.
 図2から明らかなように、本実施の形態の油圧ショベルは、油圧ポンプ24の駆動源としてディーゼルエンジン21とモータ22を備えた所謂ハイブリッド型の油圧ショベルである。ディーゼルエンジン21とアシストモータ22と油圧ポンプ24は機械的に接続されており、油圧ポンプ24はエンジン21とアシストモータ22の軸出力を合算したもの(合計出力)によって駆動される。 As is clear from FIG. 2, the hydraulic excavator of the present embodiment is a so-called hybrid hydraulic excavator provided with a diesel engine 21 and a motor 22 as a drive source of the hydraulic pump 24. The diesel engine 21, the assist motor 22, and the hydraulic pump 24 are mechanically connected, and the hydraulic pump 24 is driven by a sum of shaft outputs of the engine 21 and the assist motor 22 (total output).
 また、アシストモータ22はバッテリ23に電気的に接続されており、モータ22の力行時にはバッテリ23から電力の供給を受けて油圧ポンプ24を駆動する。なお、所定の条件を満たした場合には、アシストモータ22は発電機として機能する。その際には、アシストモータ22は、エンジン21の軸出力によって駆動されて発電し、その発電時の電力をバッテリ(蓄電装置)23に蓄電する。 Further, the assist motor 22 is electrically connected to the battery 23, and when the motor 22 is powered, the hydraulic pump 24 is driven by receiving electric power from the battery 23. Note that, when a predetermined condition is satisfied, the assist motor 22 functions as a generator. At that time, the assist motor 22 is driven by the shaft output of the engine 21 to generate electric power, and the electric power at the time of power generation is stored in the battery (power storage device) 23.
 油圧ポンプ24では、作動油タンク26から送り込まれる作動油を圧縮して圧油とし、コントロールバルブ25に送り込む。コントロールバルブ25は、オペレータからの操作レバー(図示せず)を介した操作指令を基に、走行動作に必要な走行油圧モータ42への供給圧油、上部旋回体動作に必要な旋回油圧モータ31への供給圧油、作業装置2の動作に必要な油圧シリンダ9,10,11への供給圧油を分配し、不要な圧油については作動油タンク26に戻す機能を有する。 In the hydraulic pump 24, the hydraulic oil sent from the hydraulic oil tank 26 is compressed into pressure oil and sent to the control valve 25. The control valve 25 is based on an operation command from an operator via an operation lever (not shown), supplied pressure oil to the traveling hydraulic motor 42 required for the traveling operation, and a swing hydraulic motor 31 necessary for the upper swing body operation. Pressure oil supplied to the hydraulic cylinders 9, 10, 11 necessary for the operation of the work device 2, and unnecessary pressure oil is returned to the hydraulic oil tank 26.
 旋回油圧モータ31は、コントロールバルブ25から分配された圧油を動力源にし、旋回減速装置32および旋回歯車33を介して上部旋回体4を駆動する。走行油圧モータ42は、センタージョイント41を経由してコントロールバルブ25から送られる圧油でもって駆動され、走行減速装置43を介してクローラ44を駆動する。また、作業装置2(ブーム6、アーム7、バケット8)については、コントロールバルブ25から分配された圧油を基に、ブームシリンダ9、アームシリンダ10、バケットシリンダ11が駆動され、その結果ブーム6、アーム7およびバケット8のそれぞれがオペレータにより操作レバーを介して指示される所望の動作に従って制御される。 The swing hydraulic motor 31 uses the pressure oil distributed from the control valve 25 as a power source, and drives the upper swing body 4 via the swing reduction device 32 and the swing gear 33. The traveling hydraulic motor 42 is driven by pressure oil sent from the control valve 25 via the center joint 41, and drives the crawler 44 via the traveling speed reduction device 43. For the working device 2 (the boom 6, the arm 7, and the bucket 8), the boom cylinder 9, the arm cylinder 10, and the bucket cylinder 11 are driven based on the pressure oil distributed from the control valve 25. As a result, the boom 6 is driven. Each of the arm 7 and the bucket 8 is controlled in accordance with a desired operation instructed by an operator via an operation lever.
 図3は、第1の実施の形態に係る油圧ショベル用のエンジンと、その周辺のシステム構成を示す図である。油圧ポンプ24には、油圧ポンプ24を駆動するための動力源として、出力シャフト305を介してディーゼルエンジン21とアシストモータ22が直結されており、アシストモータ22にはバッテリ23が電気的に接続されている。これらを制御するためのコントロールユニットとして、油圧ショベル1の中枢を司るコンピュータであるメインコントロールユニット101と、油圧ショベルの状態をオペレータに向けて表示する表示装置および当該表示装置への表示に係る処理を実行するコンピュータがユニット化されたモニターユニット102と、エンジン21を制御するコンピュータであるエンジンコントロールユニット103と、アシストモータ22を制御するコンピュータであるモータコントロールユニット104と、バッテリ23の状態監視等を行うコンピュータであるバッテリコントロールユニット105などが存在し、これらのコントロールユニット(コンピュータ)102,103,104,105は、メインコントロールユニット101を中心に、情報ネットワークによって相互に接続されている。 FIG. 3 is a diagram showing a hydraulic excavator engine according to the first embodiment and a peripheral system configuration. A diesel engine 21 and an assist motor 22 are directly connected to the hydraulic pump 24 via an output shaft 305 as a power source for driving the hydraulic pump 24, and a battery 23 is electrically connected to the assist motor 22. ing. As a control unit for controlling these, a main control unit 101 that is a computer that controls the center of the hydraulic excavator 1, a display device that displays the state of the hydraulic excavator toward the operator, and processing related to display on the display device. A monitor unit 102 in which a computer to be executed is unitized, an engine control unit 103 that is a computer that controls the engine 21, a motor control unit 104 that is a computer that controls the assist motor 22, and the state of the battery 23 are monitored. There is a battery control unit 105 or the like that is a computer, and these control units (computers) 102, 103, 104, and 105 are mainly information about the main control unit 101. They are interconnected by Ttowaku.
 メインコントロールユニット101への動力制御関係の入力としては、エンジン21の始動や停止に関わるキースイッチ201と、オペレータがエンジン21の回転数を指定するためのエンジンコントロールダイヤル202と、油圧ショベル1の状況に応じてアイドル回転数を最適化するオートアイドルスイッチ203と、オペレータがエンジン21(エンジン12およびモータ22)の出力を調整するためのパワーモードスイッチ204と、走行動作、上部旋回体動作、作業装置動作を指示する操作レバーから出力される操作レバー信号205等がある。 The power control related input to the main control unit 101 includes a key switch 201 for starting and stopping the engine 21, an engine control dial 202 for an operator to specify the number of revolutions of the engine 21, and the state of the hydraulic excavator 1. Auto idle switch 203 for optimizing the idling speed according to the power, power mode switch 204 for the operator to adjust the output of engine 21 (engine 12 and motor 22), traveling operation, upper swing body operation, working device There is an operation lever signal 205 or the like output from the operation lever that instructs the operation.
 また、周辺コントロールユニットからの情報として、エンジンコントロールユニット103からはエンジン21の運転状況や異常有無、モータコントロールユニット104からはアシストモータ22の運転状況や異常有無、バッテリコントロールユニット105からはバッテリ23の蓄電量や異常有無等の情報がメインコントロールユニット101に入力される。 Further, as information from the peripheral control unit, the engine control unit 103 determines whether the engine 21 is operating or abnormal, the motor control unit 104 determines whether the assist motor 22 is operating or abnormal, and the battery control unit 105 indicates the battery 23. Information such as the amount of stored electricity and the presence or absence of abnormality is input to the main control unit 101.
 メインコントロールユニット101における動力系の機能としては、前記入力情報を基に油圧ポンプ24の出力を制御する他、エンジン21とアシストモータ22の動力配分等の動力系上位マネジメントを実施し、この上位指令を受けて、エンジンコントロールユニット103とモータコントロールユニット104は、ディーゼルエンジン21とアシストモータ22をそれぞれ制御する。これによりメインコントロールユニット101とエンジンコントロールユニット103はディーゼルエンジン21の制御装置(エンジン制御装置)として機能する。 As functions of the power system in the main control unit 101, in addition to controlling the output of the hydraulic pump 24 on the basis of the input information, the power system upper management such as power distribution of the engine 21 and the assist motor 22 is performed. In response, the engine control unit 103 and the motor control unit 104 control the diesel engine 21 and the assist motor 22, respectively. Thereby, the main control unit 101 and the engine control unit 103 function as a control device (engine control device) for the diesel engine 21.
 エンジン21は、エンジンコントロールユニット103からの目標燃料噴射量指令に基づいて燃料を噴射する燃料噴射装置301と、排気マニホールド302と、タービンを有するターボチャージャー303と、排気管304と、DPF装置401を備えている。 The engine 21 includes a fuel injection device 301 that injects fuel based on a target fuel injection amount command from the engine control unit 103, an exhaust manifold 302, a turbocharger 303 having a turbine, an exhaust pipe 304, and a DPF device 401. I have.
 エンジン21の出力軸305には、エンジン回転数を検出するための回転センサ306が取り付けられており、回転センサ306は検出値をエンジンコントロールユニット103に出力している。過給圧センサ307はターボチャージャー(過給器)303の過給圧を検出し、エンジンコントロールユニット103に出力している。 A rotation sensor 306 for detecting the engine speed is attached to the output shaft 305 of the engine 21, and the rotation sensor 306 outputs a detection value to the engine control unit 103. The supercharging pressure sensor 307 detects the supercharging pressure of the turbocharger (supercharger) 303 and outputs it to the engine control unit 103.
 DPF装置401は、酸化触媒403と、PM捕集フィルタ403を備えている。酸化触媒403とPM捕集フィルタ403の間には吸気温度センサ404が設置されており、PM捕集フィルタ403の前後差圧を検出するDPF差圧センサ405が設置されている。両センサ404,405の検出値は、エンジンコントロールユニット103に出力されている。 The DPF device 401 includes an oxidation catalyst 403 and a PM collection filter 403. An intake air temperature sensor 404 is installed between the oxidation catalyst 403 and the PM collection filter 403, and a DPF differential pressure sensor 405 that detects a differential pressure across the PM collection filter 403 is installed. Detection values of both sensors 404 and 405 are output to the engine control unit 103.
 次に、本発明に係る油圧ショベル1で行われるエンジン負荷制御に関する基本的な考え方を図4に示す。図4では、エンジン21の負荷を、その時のエンジン回転数NにおけるエンジントルクTで示している。 Next, FIG. 4 shows a basic concept regarding engine load control performed by the hydraulic excavator 1 according to the present invention. In FIG. 4, the load of the engine 21 is indicated by the engine torque T at the engine speed N at that time.
 本実施の形態では、エンジン21として、走行をメインの作業とする乗用車、貨物車(例えば、トラック等)などの車両用エンジンのうちトラック用エンジンを利用している。トラック用エンジンを含め、車両用エンジンは、通常、建設機械でのエンジンの使用と比較して低負荷で常用され、量産体制が確立されているため価格が低廉である。エンジン21は、油圧ポンプ24の定格出力に対応したトラック用エンジンをベースとし、油圧ポンプ24の負荷パターンの強弱に応じて動力制御の内容を切り換える。 In the present embodiment, as the engine 21, a truck engine is used among vehicle engines such as a passenger car and a freight car (for example, a truck) whose main work is traveling. Vehicle engines, including truck engines, are usually used at low loads compared to the use of engines in construction machinery, and the price is low because mass production systems have been established. The engine 21 is based on a truck engine corresponding to the rated output of the hydraulic pump 24, and switches the power control content according to the strength of the load pattern of the hydraulic pump 24.
 本実施の形態で行うエンジン負荷制御の目的は、油圧ショベル運用時のエンジン負荷分布(図4ではエンジントルク分布)をトラック用エンジンの負荷分布に近づけることにあり、これによって安価なトラック用エンジンを、大きな仕様変更を行うこと無く、ショベル用エンジンとして搭載することが可能となる。 The purpose of the engine load control performed in the present embodiment is to bring the engine load distribution (engine torque distribution in FIG. 4) during operation of the hydraulic excavator closer to the load distribution of the truck engine. It can be installed as an excavator engine without major specification changes.
 そこで、図4では、エンジン回転数とエンジントルクで規定される2次元のエンジン運転領域として第1運転領域R1および第2運転領域R2を設定した。第1運転領域R1は、無負荷(トルクゼロ)から全負荷(各回点数における最大エンジントルク)までの範囲に規定される油圧ショベルの通常の運転領域であり、各回転数における最大エンジントルク(全負荷)の集合によって描かれる線T1上の点および当該線T1より下方に位置する領域がこれに該当する。第2運転領域R2は、トラック用エンジンで常用される運転領域(常用域)を考慮して設定されており、第2運転領域R2は、無負荷から全負荷未満(T1未満)の所定の値(T2上の値)までの範囲に規定される運転領域であり、各回転数においてT1未満に設定された所定値の集合によって描かれる線T2上の点および当該線T2より下方に位置する領域がこれに該当する。これにより第2運転領域R2は第1運転領域R1に内包され、その面積は第1運転領域R1のものより狭くなっている。つまり、第2運転領域R2でエンジンを運転すれば、第1運転領域R1で運転した場合よりもエンジン負荷を継続的に低減できる。 Therefore, in FIG. 4, the first operation region R1 and the second operation region R2 are set as two-dimensional engine operation regions defined by the engine speed and the engine torque. The first operation region R1 is a normal operation region of the hydraulic excavator that is defined in a range from no load (torque zero) to full load (maximum engine torque at each number of turns), and the maximum engine torque (full load at each rotation speed). This corresponds to a point on the line T1 drawn by the set of) and a region located below the line T1. The second operation region R2 is set in consideration of an operation region (normal region) that is normally used in a truck engine, and the second operation region R2 is a predetermined value from no load to less than full load (less than T1). An operation region defined by a range up to (a value on T2), and a region located below the line T2 and a point on the line T2 drawn by a set of predetermined values set to less than T1 at each rotational speed Corresponds to this. As a result, the second operation region R2 is included in the first operation region R1, and the area thereof is narrower than that of the first operation region R1. That is, if the engine is operated in the second operation region R2, the engine load can be continuously reduced as compared with the case where the engine is operated in the first operation region R1.
 トルク線T2は、各回転数におけるエンジン負荷基準値(詳細は後述)の集合であり、図4の例ではトラック常用域におけるエンジン負荷の上限値(トラック常用負荷上限値)に一致している。なお、トルク線T2は、トラック常用域に含まれるように設定すれば良く、図4の例のようにトラック常用負荷上限値と一致させる必要は必ずしも無い。さらに、図4の例におけるトルク線T2はトルク線T1を下方に概ね平行移動したような値に設定されているが、いずれの回転数においてもトルク線T2がトルク線T1の下方に位置すれば良く、図4の例だけに限らないものとする。以下に本実施の形態で行うエンジン負荷制御の具体的なロジックを示す。 The torque line T2 is a set of engine load reference values (details will be described later) at each rotation speed, and in the example of FIG. 4, coincides with the upper limit value of the engine load in the track normal range (track normal load upper limit value). The torque line T2 may be set so as to be included in the track normal range, and it is not always necessary to match the track normal load upper limit value as in the example of FIG. Furthermore, the torque line T2 in the example of FIG. 4 is set to a value that is substantially parallel to the downward movement of the torque line T1, but if the torque line T2 is positioned below the torque line T1 at any number of rotations. It is assumed that it is not limited to the example of FIG. The specific logic of the engine load control performed in this embodiment is shown below.
 (1)軽負荷パターン時
 まず、油圧ポンプ24の負荷(油圧ポンプ吸収トルク)が小さく、エンジン21の平均負荷(エンジン負荷指標値)がトルク線T2上の値以下となる場合(第2運転領域R2に含まれる場合)には、「軽負荷パターン時」と判断し、図4中の下段右下の図に示すように第1運転領域R1内での通常のエンジン負荷制御を行い、油圧ポンプ吸収トルクに応じてエンジン負荷を制御する。このとき、第2運転領域R2内でエンジン負荷が制御され、エンジン21単独で油圧ポンプ吸収トルクの出力が可能であるため、モータ22によるアシストは行われない。
(1) At light load pattern First, when the load of the hydraulic pump 24 (hydraulic pump absorption torque) is small and the average load of the engine 21 (engine load index value) is less than or equal to the value on the torque line T2 (second operation region) (When included in R2), it is determined that the "light load pattern is in effect", and normal engine load control is performed in the first operation region R1 as shown in the lower right diagram in FIG. The engine load is controlled according to the absorption torque. At this time, since the engine load is controlled in the second operation region R2 and the hydraulic pump absorption torque can be output by the engine 21 alone, the assist by the motor 22 is not performed.
 (2)高負荷連続運転時
 次に、油圧ポンプ負荷が大きく、エンジン21の平均負荷(エンジン負荷指標値)がトルク線T2を超える場合には、「高負荷連続運転時」と判断し、図4中の下段上方に示すように、T2を超えるエンジン21への要求トルクに対し、第2運転領域R2の上限値であるエンジン負荷基準値T2のトルクレベルまでエンジントルクを制限する(減少させる)。そして、エンジントルクT1とT2の差分を補填するために、アシストモータ22にてトルクアシストを実施する。この場合、バッテリ23の蓄電量が少ない等の理由でモータ22が使用不可のときは、一時的(例えば、モータ22が使用可能になるまでの間)にエンジン単体運転に切り換える。
(2) During high-load continuous operation Next, when the hydraulic pump load is large and the average load (engine load index value) of the engine 21 exceeds the torque line T2, it is determined that the operation is during high-load continuous operation. 4, the engine torque is limited (reduced) to the torque level of the engine load reference value T2, which is the upper limit value of the second operation region R2, with respect to the required torque for the engine 21 exceeding T2. . Then, in order to compensate for the difference between the engine torques T1 and T2, the assist motor 22 performs torque assist. In this case, when the motor 22 is unusable due to a small amount of power stored in the battery 23, the engine is temporarily switched to the engine single operation (for example, until the motor 22 becomes usable).
 図4ではエンジン21の負荷をエンジントルクで示したが、図5以下の説明では、これに代えて、エンジン21の負荷を、まず、その時のエンジン回転数におけるエンジン最大トルクに対するエンジントルクの割合である「エンジン負荷率」で示す。そして、当該エンジン負荷率の時系列の単純移動平均(エンジン平均負荷率)をエンジン負荷を示す指標値(エンジン負荷指標値)として採用する。さらに、図4のエンジン負荷基準値に代えて、図5以下の説明では「エンジン負荷率基準値」を利用し、以下では、エンジン負荷指標値がエンジン負荷率基準値以下に保持されるようにエンジン負荷の制御(エンジン負荷制御)を行う場合について説明する。 In FIG. 4, the load of the engine 21 is indicated by the engine torque. However, in the description of FIG. 5 and subsequent drawings, the load of the engine 21 is first expressed as a ratio of the engine torque to the engine maximum torque at the engine speed at that time. It is indicated by a certain “engine load factor”. Then, a time-series simple moving average (engine average load factor) of the engine load factor is adopted as an index value (engine load indicator value) indicating the engine load. Furthermore, instead of the engine load reference value of FIG. 4, the “engine load factor reference value” is used in the description of FIG. 5 and the following, and in the following, the engine load index value is held below the engine load factor reference value. A case where engine load control (engine load control) is performed will be described.
 まず、「エンジン負荷率基準値」の設定に関する考え方を、図5を用いて説明する。図5は、一般路におけるトラック用エンジンの動作点(エンジン回転数とエンジン負荷率の組み合わせ)の分布を示すものである。図中の直線「定格トルク」上では、エンジンは全負荷であり、エンジン負荷率は100%となる。 First, the concept regarding the setting of the “engine load factor reference value” will be described with reference to FIG. FIG. 5 shows the distribution of operating points (combinations of engine speed and engine load factor) of the truck engine on a general road. On the straight line “rated torque” in the figure, the engine is at full load, and the engine load factor is 100%.
 この図に示すように、トラックにおけるエンジンの負荷率分布は、ほぼ正規分布と見なすことができ、エンジン負荷率の平均値±2σの範囲内に、ほぼ集中して分布している。そこで、エンジン負荷率の平均値±2σの範囲をトラック用エンジンにおける常用域(負荷率常用域)と見なし、その上限値をエンジン負荷率基準値と設定する。前記エンジンの負荷率分布の上限値については、統計的にエンジン負荷率50~70%の範囲で多く見られることから、エンジン負荷率70%以下を目安に設定するのが好ましい。なお、これをエンジン負荷で換言すると、エンジン全負荷の7割以下の負荷にエンジン負荷率基準値を設定することが目安となる。 As shown in this figure, the load factor distribution of the engine in the truck can be regarded as a normal distribution, and is almost concentrated in the range of the average value of engine load factor ± 2σ. Therefore, the range of the engine load factor average value ± 2σ is regarded as a normal range (load factor normal range) in the truck engine, and the upper limit value is set as the engine load factor reference value. The upper limit value of the engine load factor distribution is statistically frequently found in the engine load factor range of 50 to 70%. Therefore, the engine load factor is preferably set to 70% or less. In other words, in terms of the engine load, it is a guideline to set the engine load factor reference value to a load of 70% or less of the total engine load.
 次に、エンジン負荷制御の具体的な制御内容について、図6および図7に示すタイムチャートを用いて説明する。図6および図7に係る油圧ショベルにおいては、後述するエンジン回転数フィードバック制御によって、油圧ポンプ吸収トルクとエンジン駆動トルクが等しい関係が常時保たれており、油圧ポンプ吸収トルクがステップ状に変化した際には、エンジン駆動トルクも同期して追従するように構成されている。また、図6および図7では、油圧ポンプ負荷率の時系列の移動平均である油圧ポンプ負荷率移動平均値と、エンジン負荷率の時系列の移動平均であるエンジン負荷率移動平均値を太線で示し、油圧用ショベル用エンジンのベースであるトラック用エンジンの負荷率分布を基に定めたエンジン負荷率基準値を破線で示す。油圧ポンプ吸収トルクとエンジン駆動トルクのステップ状の変化に対して、太線の油圧ポンプ負荷率移動平均値とエンジン負荷率移動平均値はフィードバック制御及び平滑化処理により緩やかに応答している。 Next, the specific control contents of the engine load control will be described using the time charts shown in FIGS. In the hydraulic excavator according to FIGS. 6 and 7, the relationship between the hydraulic pump absorption torque and the engine drive torque is always maintained by engine speed feedback control, which will be described later, and the hydraulic pump absorption torque changes stepwise. The engine driving torque is also configured to follow in synchronization. In FIGS. 6 and 7, the hydraulic pump load factor moving average value, which is a time-series moving average of the hydraulic pump load factor, and the engine load factor moving average value, which is the time-series moving average of the engine load factor, are indicated by bold lines. An engine load factor reference value determined based on a load factor distribution of a truck engine which is a base of a hydraulic excavator engine is indicated by a broken line. The bold hydraulic pump load factor moving average value and the engine load factor moving average value respond slowly to feedback control and smoothing processing with respect to step changes in the hydraulic pump absorption torque and engine drive torque.
 図6は、本発明の第1の実施の形態(図7参照)の比較対象として、エンジン負荷制御を実施しない場合における油圧ポンプ負荷率(油圧ポンプ吸収トルクを負荷率に換算したもの)とエンジン負荷率(エンジン駆動トルクを負荷率に換算したもの)のタイムチャートを示している。図6においてエンジン負荷率移動平均値とエンジン負荷率基準値との大小関係に注目すると、時刻T1~T3、およびT5~T8の区間において、エンジン負荷率移動平均値がエンジン負荷率基準値を上回っており、ベースエンジン(トラック用エンジン)の素性に対して、エンジン負荷が高い区間となる。 FIG. 6 shows, as a comparison target of the first embodiment of the present invention (see FIG. 7), the hydraulic pump load factor (the hydraulic pump absorption torque converted into the load factor) and the engine when engine load control is not performed. The time chart of a load factor (what converted engine drive torque into a load factor) is shown. When attention is paid to the magnitude relationship between the engine load factor moving average value and the engine load factor reference value in FIG. 6, the engine load factor moving average value exceeds the engine load factor reference value in the sections of time T1 to T3 and T5 to T8. The engine load is high compared to the features of the base engine (truck engine).
 一方、図7は、第1の実施の形態に係るエンジン負荷制御を実施した際における、油圧ポンプ負荷率とエンジン負荷率のタイムチャートを示している。図6のエンジン負荷制御の非実施時と同様に、時刻T1にてエンジン負荷率移動平均値がエンジン負荷率基準値に到達するが、ここでエンジン負荷制御が機能してエンジントルクに制限を掛けることで、エンジン負荷率をエンジン負荷率基準値レベルまで低下させる。このエンジン負荷制御の結果によりエンジントルク(エンジンのアウトプット(出力))が低下したことで、要求されるポンプ吸収トルクに対して動力不足が生じるのを防ぐために、当該不足相当分の動力についてはアシストモータ22の出力で補填して(つまり、アシストモータ22によるエンジンアシストを実行して)、エンジン21とモータ22の合計出力が要求ポンプ吸収トルクを満たす協調制御を実施することにより、仕事量の低下や操作性の悪化を回避する。 On the other hand, FIG. 7 shows a time chart of the hydraulic pump load factor and the engine load factor when the engine load control according to the first embodiment is performed. The engine load factor moving average value reaches the engine load factor reference value at time T1 as in the case of non-execution of the engine load control of FIG. 6, but here the engine load control functions to limit the engine torque. Thus, the engine load factor is reduced to the engine load factor reference value level. In order to prevent a shortage of power with respect to the required pump absorption torque due to a decrease in engine torque (engine output (output)) as a result of this engine load control, Compensating with the output of the assist motor 22 (that is, executing the engine assist by the assist motor 22), and executing the cooperative control in which the total output of the engine 21 and the motor 22 satisfies the required pump absorption torque, Avoid degradation and deterioration of operability.
 ところで、本実施の形態では、アシストモータ22のエンジンアシストによりバッテリ23の蓄電量(SOC)が目標SOCを下回った場合に、油圧ポンプ負荷率およびエンジン負荷率がエンジン負荷率基準値を下回ったときには、アシストモータ22を力行モードから発電モードに切り替えて、エンジン21にてアシストモータ22を駆動することでバッテリ蓄電量を回復させている。そこで、図7では、時刻T2にて油圧ポンプ負荷率が減少した際にも、エンジン負荷率基準値を上限とする範囲内でエンジンを継続して駆動し、アシストモータ22にて発電を実施している(時刻T2~T4)。具体的には、油圧ポンプ負荷率およびエンジン負荷率がエンジン負荷率基準値を下回る時刻T2で発電が開始され、油圧ポンプ負荷率およびエンジン負荷率がエンジン負荷率基準値を上回る時刻T4で発電が終了(中断)している。 By the way, in the present embodiment, when the storage amount (SOC) of the battery 23 falls below the target SOC by the engine assist of the assist motor 22, the hydraulic pump load factor and the engine load factor fall below the engine load factor reference value. The battery charge amount is recovered by switching the assist motor 22 from the power running mode to the power generation mode and driving the assist motor 22 with the engine 21. Therefore, in FIG. 7, even when the hydraulic pump load factor decreases at time T2, the engine is continuously driven within the range where the engine load factor reference value is the upper limit, and the assist motor 22 generates power. (Time T2 to T4). Specifically, power generation is started at time T2 when the hydraulic pump load factor and the engine load factor fall below the engine load factor reference value, and power generation occurs at time T4 when the hydraulic pump load factor and the engine load factor exceed the engine load factor reference value. Ended (suspended).
 その後、時刻T4からT7にかけて、負荷率の高い油圧ポンプ負荷が再度生じた際には、時刻T1からT2の処理と同様に、エンジン負荷率をエンジン負荷率基準値レベルまで低下させると共に、エンジントルクの不足分については、アシストモータ22でアシストさせて、エンジン21とモータ22による協調制御を実施する。 Thereafter, when a hydraulic pump load with a high load factor is generated again from time T4 to T7, the engine load factor is reduced to the engine load factor reference value level and the engine torque is reduced as in the processing from time T1 to T2. The insufficiency is assisted by the assist motor 22 and the cooperative control by the engine 21 and the motor 22 is performed.
 ところで、アシストモータ22によるエンジンアシストの実施可否は、バッテリ23の蓄電量を加味して判断される。本実施の形態では、アシストモータ22によるエンジンアシストによりバッテリ23蓄電量(SOC)が下限値まで低下した場合には(時刻T6)、アシストモータ22の駆動が不可となるため、時刻T6の時点でアシストモータ22の駆動を停止し、エンジン単独運転に切り替えている(時刻T6~T7)。その後、時刻T2~T4と同様に、バッテリ蓄電量を目標値に回復させる目的で、エンジン負荷率基準値を上限とする範囲内でエンジンを継続して駆動し、発電を実施する(時刻T7~T9)。なお、ここでは、アシストモータ22によるエンジンアシストの実施の可否を決定するバッテリ充電量を「下限値」としたが、その他のSOCの値を基準にしてエンジンアシストの実施/不実施を決定しても良い。 Incidentally, whether or not the engine assist by the assist motor 22 can be performed is determined in consideration of the amount of power stored in the battery 23. In the present embodiment, when the battery 23 storage amount (SOC) is reduced to the lower limit due to engine assist by the assist motor 22 (time T6), the assist motor 22 cannot be driven, so at the time T6. The driving of the assist motor 22 is stopped and the engine is switched to the single operation (time T6 to T7). Thereafter, in the same manner as at times T2 to T4, for the purpose of recovering the battery power storage amount to the target value, the engine is continuously driven within the range where the engine load factor reference value is the upper limit, and electric power is generated (time T7 to T7 T9). Here, the battery charge amount that determines whether or not the assist motor 22 can perform the engine assist is set as the “lower limit value”. However, whether or not the engine assist is performed is determined based on other SOC values. Also good.
 次に、第1の実施の形態に係るエンジン負荷制御を実現するための制御ブロック概要を、図8を用いて説明する。本実施の形態に係る油圧ショベル1は、エンジン負荷制御に関わるコントロールユニットやアクチュエータとして、メインコントロールユニット101、モニターユニット102、エンジンコントロールユニット103、バッテリコントロールユニット105、モータコントロールユニット104、油圧ポンプ24等を備えている。 Next, an outline of a control block for realizing engine load control according to the first embodiment will be described with reference to FIG. The hydraulic excavator 1 according to the present embodiment includes a main control unit 101, a monitor unit 102, an engine control unit 103, a battery control unit 105, a motor control unit 104, a hydraulic pump 24, and the like as control units and actuators related to engine load control. It has.
 ここで、メインコントロールユニット101およびその周辺の演算ブロックについて説明する。メインコントロールユニット101は、目標エンジン回転数演算部501と、エンジン負荷率基準値演算部502と、エンジン負荷率演算部503と、エンジン負荷率移動平均値演算部504と、発電時モータ駆動トルク要求値演算部505と、油圧ポンプ吸収トルク要求値演算部506と、エンジントルク制限値演算部507と、モータアシストトルク基本値演算部508と、油圧ポンプ吸収トルク目標知演算部509を備えている。 Here, the main control unit 101 and its peripheral calculation blocks will be described. The main control unit 101 includes a target engine speed calculation unit 501, an engine load factor reference value calculation unit 502, an engine load factor calculation unit 503, an engine load factor moving average value calculation unit 504, and a motor drive torque request during power generation. A value calculation unit 505, a hydraulic pump absorption torque request value calculation unit 506, an engine torque limit value calculation unit 507, a motor assist torque basic value calculation unit 508, and a hydraulic pump absorption torque target knowledge calculation unit 509 are provided.
 目標エンジン回転数演算部501では、前述の図3で示したエンジンコントロールダイヤル202等の入力を基に目標エンジン回転数を演算し、演算結果をエンジンコントロールユニット103およびモータコントロールユニット104に対して送信する。また、エンジンコントロールユニット103は、受信した目標エンジン回転数と実際のエンジン回転数の差分を基に、エンジン回転数に関するフィードバック制御を実施し、エンジン回転数を目標値に保つ。また、モータコントロールユニット104においては、エンジントルクに制限が掛けられている場合等、上記エンジン回転数フィードバック制御のみではエンジン回転数が目標値に収束しない場合に、目標エンジン回転数と実際のエンジン回転数の差分を入力として決定したモータトルクによるフィードバック制御をアシストモータ22に対して並行して実施し、エンジン回転数の目標値への収束をアシストする。 The target engine speed calculation unit 501 calculates the target engine speed based on the input of the engine control dial 202 shown in FIG. 3 and transmits the calculation result to the engine control unit 103 and the motor control unit 104. To do. Further, the engine control unit 103 performs feedback control related to the engine speed based on the difference between the received target engine speed and the actual engine speed, and keeps the engine speed at the target value. Further, in the motor control unit 104, when the engine speed does not converge to the target value only by the engine speed feedback control, such as when the engine torque is limited, the target engine speed and the actual engine speed Feedback control based on the motor torque determined using the difference in the numbers as input is performed on the assist motor 22 in parallel to assist the convergence of the engine speed to the target value.
 エンジン負荷率基準値演算部502では、エンジンコントロールユニット103から入力されるエンジン状態を示す各種パラメータを基にエンジン負荷率基準値を演算する。例えば、エンジン負荷率基準値がエンジン回転数に応じて変化する値の場合には、その時刻におけるエンジン回転数を基にエンジン負荷率基準値を算出する。また、エンジン負荷率基準値が一定値の場合には一定の値をエンジントルク制限値演算部507に出力する。 The engine load factor reference value calculation unit 502 calculates an engine load factor reference value based on various parameters indicating the engine state input from the engine control unit 103. For example, when the engine load factor reference value is a value that changes according to the engine speed, the engine load factor reference value is calculated based on the engine speed at that time. In addition, when the engine load factor reference value is a constant value, a constant value is output to the engine torque limit value calculation unit 507.
 エンジン負荷率演算部503では、エンジンコントロールユニット103から入力されるエンジン負荷に関連するパラメータ情報(例えば燃料噴射量等)を基にエンジン負荷率を演算する。例えば、燃料噴射量を入力してエンジントルクを推定し、エンジン回転数を入力して当該回転数における最大エンジントルクを算出し、当該最大エンジントルクに対する当該エンジントルクの割合がエンジン負荷率となる。 The engine load factor calculation unit 503 calculates the engine load factor based on parameter information (for example, fuel injection amount) related to the engine load input from the engine control unit 103. For example, the engine torque is estimated by inputting the fuel injection amount, the maximum engine torque at the engine speed is calculated by inputting the engine speed, and the ratio of the engine torque to the maximum engine torque becomes the engine load factor.
 エンジン負荷率移動平均値演算部504では、エンジン負荷率演算部503で算出されるエンジン負荷率の時系列データに対して移動平均処理を行い、エンジン負荷率移動平均値(エンジン負荷指標値)を算出する。移動平均をとることによりエンジン負荷率の瞬間的な変動が捨象され、エンジン負荷率の変動傾向の把握が容易になる。 The engine load factor moving average value calculation unit 504 performs a moving average process on the engine load factor time-series data calculated by the engine load factor calculation unit 503 to obtain an engine load factor moving average value (engine load index value). calculate. By taking the moving average, instantaneous fluctuations in the engine load factor are discarded, and the fluctuation tendency of the engine load factor can be easily grasped.
 発電時モータ駆動トルク要求値演算部505では、バッテリコントロールユニット105から入力されるバッテリ23蓄電量(SOC)に関する情報等を基に、所望の蓄電量を目標にモータ発電を実施するにあたって必要なモータ駆動トルクを算出する。また、油圧ポンプ吸収トルク要求値演算部506では、図3に示した操作レバー信号情報205等を基に、油圧ポンプ24が所望の圧油を生成するのに必要な油圧ポンプ吸収トルク(油圧ポンプの要求トルク)を演算する。 In the power generation motor drive torque request value calculation unit 505, a motor necessary for carrying out motor power generation with the target of a desired charged amount based on information on the charged amount (SOC) of the battery 23 input from the battery control unit 105. Calculate the drive torque. Further, the hydraulic pump absorption torque request value calculation unit 506 is based on the hydraulic lever absorption torque (hydraulic pump) necessary for the hydraulic pump 24 to generate desired pressure oil based on the operation lever signal information 205 shown in FIG. Required torque).
 エンジントルク制限値演算部507では、演算部502から入力されるエンジン負荷率基準値と演算部504から入力されるエンジン負荷率移動平均値の大小関係や、演算部505から入力される発電時モータ駆動トルク要求値、演算部506から入力される油圧ポンプ吸収トルク要求値などの情報を考慮してエンジントルク制限値を算出し、これをエンジンコントロールユニット103、モニターユニット102、モータアシストトルク基本値演算手段508に向けて送信する。なお、本実施の形態のエンジントルク制限値演算部507で実行される処理の具体的内容については図9を用いて詳述する。 In the engine torque limit value calculation unit 507, the magnitude relationship between the engine load factor reference value input from the calculation unit 502 and the engine load factor moving average value input from the calculation unit 504, and the motor during power generation input from the calculation unit 505 The engine torque limit value is calculated in consideration of information such as the drive torque request value and the hydraulic pump absorption torque request value input from the calculation unit 506, and this is calculated using the engine control unit 103, the monitor unit 102, and the motor assist torque basic value calculation. Transmit to the means 508. The specific contents of the processing executed by the engine torque limit value calculation unit 507 of the present embodiment will be described in detail with reference to FIG.
 エンジンコントロールユニット103は、エンジン21のアウトプット(出力)を調整する出力調整部として機能しており、フィードバック制御部103aと、トルク制限部103bを備えている。エンジン21のアウトプットは、例えば、エンジントルクとエンジン回転数の積に比例するエンジン出力や、エンジントルクで定量化できる。 The engine control unit 103 functions as an output adjusting unit that adjusts the output (output) of the engine 21, and includes a feedback control unit 103a and a torque limiting unit 103b. The output of the engine 21 can be quantified by, for example, the engine output proportional to the product of the engine torque and the engine speed, or the engine torque.
 本実施の形態のフィードバック制御部103aは、目標エンジン回転数と実際のエンジン回転数の差分が減少するようにフィードバック制御によりエンジントルクの目標値を決定する。そして、トルク制限部103bは、フィードバック制御部103aから入力されたエンジントルクの目標値がエンジントルク制限値演算部507から入力されたエンジントルク制限値以下であれば、当該エンジントルク目標値を目標燃料噴射量に換算してエンジン21に指令値を出力する。つまり、エンジン21のトルクはフィードバック制御部103aで決定された目標値に制御される。一方、フィードバック制御部103aからエンジントルク目標値がエンジントルク制限値を超える場合には、エンジントルク制限値を目標燃料噴射量に換算してエンジン21に指令値を出力する。つまり、この場合、エンジン21のトルクはエンジントルク制限値にまで低減して制御され、当初の目標値より小さい値となる。 The feedback control unit 103a of the present embodiment determines the target value of the engine torque by feedback control so that the difference between the target engine speed and the actual engine speed decreases. Then, if the target value of the engine torque input from the feedback control unit 103a is equal to or less than the engine torque limit value input from the engine torque limit value calculation unit 507, the torque limiter 103b sets the engine torque target value as the target fuel. A command value is output to the engine 21 in terms of the injection amount. That is, the torque of the engine 21 is controlled to the target value determined by the feedback control unit 103a. On the other hand, when the engine torque target value exceeds the engine torque limit value from the feedback control unit 103a, the engine torque limit value is converted into a target fuel injection amount and a command value is output to the engine 21. That is, in this case, the torque of the engine 21 is controlled to be reduced to the engine torque limit value, and becomes a value smaller than the initial target value.
 モータアシストトルク基本値演算部508では、エンジントルク制限値と油圧ポンプ吸収トルク要求値との差分を基に、モータアシストトルク基本値を算出し、モータコントロールユニット104に向けて送信する。また、油圧ポンプ吸収トルク目標値演算部509では、演算部506からの油圧ポンプ吸収トルク要求値を基に油圧ポンプ吸収トルク目標値を算出し、油圧ポンプ24に向けて指令値を送信する。 The motor assist torque basic value calculation unit 508 calculates a motor assist torque basic value based on the difference between the engine torque limit value and the hydraulic pump absorption torque request value, and transmits it to the motor control unit 104. The hydraulic pump absorption torque target value calculation unit 509 calculates a hydraulic pump absorption torque target value based on the hydraulic pump absorption torque request value from the calculation unit 506, and transmits a command value to the hydraulic pump 24.
 次に、第1の実施の形態に係る油圧ショベルにより実行されるエンジン負荷制御ロジックの演算フローチャートについて、図9を用いて説明する。 Next, a calculation flowchart of the engine load control logic executed by the hydraulic excavator according to the first embodiment will be described with reference to FIG.
 演算ステップS601にて演算を開始後、演算ステップS602にて、エンジン負荷率基準値演算部502はエンジン負荷率基準値A(下記式1参照)を演算する。本実施の形態におけるエンジン負荷率基準値は1未満の値とし、例えば0.7とする。 After the calculation is started in calculation step S601, the engine load factor reference value calculation unit 502 calculates the engine load factor reference value A (see the following formula 1) in calculation step S602. The engine load factor reference value in the present embodiment is a value less than 1, for example, 0.7.
 A = ENGLD_RATIO_REF ・・・・・(1) A = ENGLD_RATIO_REF (1)
 次に、演算ステップS603にて、エンジントルクB(下記式2参照)をエンジンコントロールユニット103より入手する。 Next, the engine torque B (see the following formula 2) is obtained from the engine control unit 103 in calculation step S603.
 B = ENGTRQ ・・・・・(2) B = ENGTRQ (2)
 次に、演算ステップS604にて、最大エンジントルクC(下記式3参照)をエンジンコントロールユニット103より入手する。 Next, the maximum engine torque C (see Equation 3 below) is obtained from the engine control unit 103 in calculation step S604.
 C = ENGTRQ_MAX ・・・・・(3) C = ENGTRQ_MAX (3)
 次に、演算ステップS605にて、エンジン負荷率演算部503は、エンジントルクBと最大エンジントルクCからエンジン負荷率D(下記式4参照)を演算する。 Next, in calculation step S605, the engine load factor calculation unit 503 calculates the engine load factor D (see the following equation 4) from the engine torque B and the maximum engine torque C.
 D = ENGLD_RATIO = B/C ・・・・・(4) D = ENGLD_RATIO = B / C (4)
 次に、演算ステップS606にて、エンジン負荷率移動平均値演算部504は、エンジ
ン負荷率Dの時系列に移動平均処理を行うことで、エンジン負荷率移動平均値E(下記式5参照)を演算する。
Next, in calculation step S606, the engine load factor moving average value calculation unit 504 performs a moving average process in time series of the engine load factor D, thereby obtaining an engine load factor moving average value E (see Equation 5 below). Calculate.
 E = ENGLD_RATIO_AVE = average(D) ・・・・・(5) E = ENGLD_RATIO_AVE = average (D) (5)
 次に、演算ステップS607にて、発電時モータ駆動トルク要求値演算部505は、バッテリコントロールユニット105から入手したバッテリSOC等を基に、発電時モータ駆動トルク要求値F(下記式6参照)を演算する。 Next, in calculation step S607, the power generation motor drive torque request value calculation unit 505 generates the power generation motor drive torque request value F (see Equation 6 below) based on the battery SOC or the like obtained from the battery control unit 105. Calculate.
 F = REQ_GEN_ENGTRQ ・・・・・(6) F = REQ_GEN_ENGTRQ (6)
 次に、演算ステップS608にて、油圧ポンプ吸収トルク要求値演算部506は、操作レバー信号等を基に、油圧ポンプ吸収トルク要求値G(下記式7参照)を演算する。 Next, in calculation step S608, the hydraulic pump absorption torque request value calculation unit 506 calculates the hydraulic pump absorption torque request value G (see the following formula 7) based on the operation lever signal and the like.
 G = REQ_GEN_PMPTRQ ・・・・・(7) G = REQ_GEN_PMPTRQ (7)
 次に、演算ステップS609にて、エンジントルク制限値演算部507は、発電時モータ駆動トルク要求値F、油圧ポンプ吸収トルク要求値G、および最大エンジントルクCから、エンジン負荷率要求値H(下記式8参照)を演算する。 Next, in calculation step S609, the engine torque limit value calculation unit 507 calculates the engine load factor request value H (described below) from the power generation motor drive torque request value F, the hydraulic pump absorption torque request value G, and the maximum engine torque C. (See equation 8).
 H = (F+G)/C ・・・・・(8) H = (F + G) / C (8)
 次に、演算ステップS611にて、本発明の特徴であるエンジン負荷制御の実行の必要性の有無を判定する。具体的には、エンジントルク制限値演算部507は、エンジン負荷率移動平均値Eおよびエンジン負荷率要求値Hが、それぞれエンジン負荷率基準値Aより高いか否かを判定し、エンジン負荷制御の実行の有無を判断する。 Next, in calculation step S611, it is determined whether or not it is necessary to execute engine load control, which is a feature of the present invention. Specifically, the engine torque limit value calculation unit 507 determines whether or not the engine load factor moving average value E and the engine load factor request value H are higher than the engine load factor reference value A, respectively. Judge whether or not to execute.
 E ≧ A ・・・・・(9)
 H ≧ A ・・・・・(10)
E ≧ A (9)
H ≧ A (10)
 ここで、演算ステップS611にて、上記式(9)かつ(10)が非成立の場合(Noの場合)は演算ステップS631に移行する。一方、上記式(9)かつ(10)が成立の場合(Yesの場合)は、演算ステップS612に移行する。 Here, when the above formulas (9) and (10) are not established in the calculation step S611 (in the case of No), the process proceeds to the calculation step S631. On the other hand, when the above equations (9) and (10) are satisfied (in the case of Yes), the process proceeds to calculation step S612.
 演算ステップS612では、その時刻におけるバッテリSOC(I(下記式11参照))と、バッテリSOC下限しきい値(J(下記式12参照))をバッテリコントロールユニット105より入手する。 In calculation step S612, the battery SOC (I (see the following equation 11)) and the battery SOC lower limit threshold (J (see the following equation 12)) at that time are obtained from the battery control unit 105.
 I = BAT_SOC ・・・・・(11)
 J = BAT_SOC_SL ・・・・・(12)
I = BAT_SOC (11)
J = BAT_SOC_SL (12)
 次に、演算ステップS613にて、バッテリSOC(I)がバッテリSOC下限しきい値(J)よりも高いか否かを判定する。すなわち、アシストモータ22によるエンジンアシストが可能であるか否かを判定する。 Next, in calculation step S613, it is determined whether or not the battery SOC (I) is higher than the battery SOC lower limit threshold (J). That is, it is determined whether or not engine assist by the assist motor 22 is possible.
 I ≧ J ・・・・・(13) I ≧ J (13)
 ここで、演算ステップS613にて、演算式(13)が非成立の場合(Noの場合)は演算ステップS631に移行する。演算式(13)が成立の場合(Yesの場合)は、演算ステップS614に移行する。 Here, in the calculation step S613, when the calculation formula (13) is not established (in the case of No), the process proceeds to the calculation step S631. When the calculation formula (13) is satisfied (in the case of Yes), the process proceeds to calculation step S614.
 演算ステップS614では、エンジントルク制限値演算部507は、エンジントルク制限値K(下記式14参照)を演算する。 In calculation step S614, the engine torque limit value calculation unit 507 calculates an engine torque limit value K (see the following formula 14).
 K = C×A ・・・・・(14) K = C x A (14)
 次に、演算ステップS615にて、モータアシストトルク基本値演算部508は、モータアシストトルク基本値L(下記式15参照)を演算する。つまり、油圧ポンプ吸収トルク要求値Gからエンジントルク制限値Kを減じた値をモータアシストトルク基本値Lとする。 Next, in calculation step S615, the motor assist torque basic value calculation unit 508 calculates a motor assist torque basic value L (see the following formula 15). That is, a value obtained by subtracting the engine torque limit value K from the hydraulic pump absorption torque request value G is set as the motor assist torque basic value L.
 L = G-K ・・・・・(15) L = GK (15)
 次に、演算ステップS616にて、油圧ポンプ吸収トルク目標値演算部509は、油圧ポンプ吸収トルク要求値Gを基に油圧ポンプ吸収トルク目標値M(下記式16参照)を演算する。 Next, in calculation step S616, the hydraulic pump absorption torque target value calculation unit 509 calculates the hydraulic pump absorption torque target value M (see the following equation 16) based on the hydraulic pump absorption torque request value G.
 M = G ・・・・・(16) M = G (16)
 次に、演算ステップS617にて、エンジンコントロールユニット103はエンジントルク制限値Kでエンジントルクを制御し、モータコントロールユニット104はモータアシストトルク基本値Lでモータトルクを制御し、これによりエンジントルク制限とモータアシストの協調制御が実施される。 Next, in calculation step S617, the engine control unit 103 controls the engine torque with the engine torque limit value K, and the motor control unit 104 controls the motor torque with the motor assist torque basic value L. Motor-assisted cooperative control is performed.
 次に、演算ステップS618にて、エンジントルク制限制御が実施されたことをモニターユニット102に送信し、モニターにその旨(例えば警告)を表示する。その後、演算ステップS631に移行し、当該制御周期に係るエンジン負荷制御を終了し、演算ステップS601に戻る。 Next, in calculation step S618, the fact that the engine torque limit control has been performed is transmitted to the monitor unit 102, and that effect (for example, a warning) is displayed on the monitor. Thereafter, the process proceeds to calculation step S631, the engine load control related to the control cycle is terminated, and the process returns to calculation step S601.
 なお、図9の例では、演算ステップS618においてエンジントルク制限が実行された旨を油圧ショベル1の運転室内のモニターに表示したが、これに合わせて又はこれに代えて、油圧ショベル1の外部に設置されたコンピュータに送信しても良い。当該コンピュータが、例えば油圧ショベル1のオーナーや管理会社に所有管理されている場合には、当該コンピュータ内にエンジントルク制限制御が実行された時間を記録することができるので、例えばオーナーや管理会社が当該油圧ショベルのメンテナンス時期の決定する際の指標等に活用できる。 In the example of FIG. 9, the fact that the engine torque limit has been executed in the calculation step S618 is displayed on the monitor in the cab of the hydraulic excavator 1. However, in accordance with or instead of this, the outside of the hydraulic excavator 1 is displayed. You may transmit to the installed computer. When the computer is owned and managed by the owner or management company of the excavator 1, for example, the time when the engine torque limit control is executed can be recorded in the computer. This can be used as an index for determining the maintenance time of the hydraulic excavator.
 以上説明したように、第1の実施の形態におけるエンジン負荷制御の内容としては、エンジン負荷率の移動平均値を常時演算し、そのエンジン負荷率移動平均値がエンジン負荷率基準値を超過した際には、エンジントルクを下げて、エンジン負荷率移動平均値をエンジン負荷率基準値レベルまで低下させると共に、要求される油圧ポンプ吸収トルクに対しての不足分については、アシストモータ22を駆動させ、エンジンとモータの協調制御を実施する。 As described above, the engine load control content in the first embodiment is that the engine load factor moving average value is always calculated and the engine load factor moving average value exceeds the engine load factor reference value. The engine torque is reduced to lower the engine load factor moving average value to the engine load factor reference value level, and the assist motor 22 is driven for the deficiency with respect to the required hydraulic pump absorption torque, Implement coordinated control of engine and motor.
 これによって、ショベル運用時のエンジン負荷率がトラック用エンジン相当のエンジン負荷率に近づきエンジンへの負担が低減されるので、トラック用エンジンの流用が容易になる。さらに、油圧ショベルでのエンジン負荷率を、車両用エンジンと同等のレベルにまで低減してコントロールできれば、安価な汎用の車両用エンジンを大きな仕様変更を行うこと無く油圧ショベル用エンジンとして搭載することが可能となり、油圧ショベルの製造コストを大幅に削減できる。また、エンジントルク低下分をアシストモータ22のモータトルクで補うことによって、仕事量の低下や操作性の悪化を回避することが可能となる。 This makes the engine load factor at the time of excavator operation close to the engine load factor equivalent to that of a truck engine and reduces the load on the engine, thereby facilitating the diversion of the truck engine. Furthermore, if the engine load factor of a hydraulic excavator can be reduced and controlled to the same level as a vehicle engine, an inexpensive general-purpose vehicle engine can be installed as a hydraulic excavator engine without major specification changes. This makes it possible to greatly reduce the manufacturing cost of hydraulic excavators. Further, by compensating for the decrease in the engine torque with the motor torque of the assist motor 22, it is possible to avoid a decrease in work and a deterioration in operability.
 なお、エンジン21の負荷に関するパラメータは、上記で利用したエンジン負荷率に限らず、代替パラメータとして、エンジントルク、エンジン回転数、エンジン吸気圧、エンジン筒内圧、燃料噴射量、およびターボチャージャーにおけるタービン回転数等のエンジン状態を示す種々のパラメータ(エンジン状態パラメータ)のうち少なくとも1つのパラメータを利用しても良く、さらに、これらのパラメータの少なくとも1つから算出されるエンジン負荷に関連する計算値を利用しても良い。 The parameters relating to the load of the engine 21 are not limited to the engine load factor used above, but as alternative parameters, engine torque, engine speed, engine intake pressure, engine cylinder pressure, fuel injection amount, and turbine rotation in the turbocharger At least one of various parameters indicating the engine state (engine state parameter) may be used, and a calculated value related to the engine load calculated from at least one of these parameters is used. You may do it.
 また、エンジン負荷率の時系列に施した平滑化処理は、上記で利用した単純移動平均処理のみならず、累積移動平均を含む他の移動平均処理やローパスフィルタ処理を含むフィルタ処理などを使用しても良い。なお、その平滑化処理の際に時定数を利用する場合には、エンジン本体の熱時定数等を基に時定数を決定しても良い。 The smoothing process applied to the engine load factor in time series uses not only the simple moving average process used above, but also other moving average processes including cumulative moving averages and filter processes including low-pass filter processes. May be. In the case where the time constant is used in the smoothing process, the time constant may be determined based on the thermal time constant of the engine body.
 また、第1の実施の形態においては、トラック用エンジン負荷率常用域の上限値をエンジン負荷率基準値と設定したが、本値を基準にエンジンの健全性などに応じて可変としても良い。例えば、エンジン故障や燃料性状に関する異常が認められる際には、エンジン負荷率基準値をデフォルト値(上記説明の基準値)よりも下げるなどの対応をしても良い。 In the first embodiment, the upper limit value of the engine load factor for trucks is set as the engine load factor reference value. However, the upper limit value may be variable according to the soundness of the engine based on this value. For example, when an abnormality relating to engine failure or fuel properties is recognized, the engine load factor reference value may be reduced below a default value (the reference value described above).
 次に、本発明による第2の実施の形態を図10~15を用いて説明する。第2の実施の形態の油圧ショベルは第1の実施の形態のハイブリッド型のものとは異なり、油圧ポンプの駆動源がエンジンのみの標準型油圧ショベルである。以下では、第1の実施の形態のハイブリッド型油圧ショベルとの相違点を中心にシステム構成を説明する。 Next, a second embodiment according to the present invention will be described with reference to FIGS. Unlike the hybrid type of the first embodiment, the hydraulic excavator of the second embodiment is a standard type hydraulic excavator in which the drive source of the hydraulic pump is only an engine. In the following, the system configuration will be described focusing on the differences from the hybrid hydraulic excavator of the first embodiment.
 図10は、第2の実施の形態における、油圧ショベル1の全体システム構成を示す図である。全体システム構成は第1の実施の形態とほぼ同じであるが、標準型油圧ショベルのため、図2に示す第1の実施の形態の構成図からアシストモータ22およびバッテリ23が除かれた構成となっている。 FIG. 10 is a diagram showing an overall system configuration of the excavator 1 in the second embodiment. The overall system configuration is almost the same as that of the first embodiment, but for the standard excavator, the configuration in which the assist motor 22 and the battery 23 are removed from the configuration diagram of the first embodiment shown in FIG. It has become.
 また、図11は、第2の実施の形態に係る油圧ショベル用エンジンと、その周辺のシステム構成を示す図である。こちらも図3に示す第1の実施の形態の構成図とほぼ同じ構成であるが、標準型油圧ショベルのため、ハイブリッド関連のデバイス(アシストモータ22、バッテリ23)およびコントロールユニット(モータコントロールユニット104、バッテリコントロールユニット105)が除かれている。 FIG. 11 is a diagram showing a hydraulic excavator engine according to the second embodiment and the surrounding system configuration. This is also almost the same configuration as the configuration of the first embodiment shown in FIG. 3, but for a standard hydraulic excavator, it is a hybrid related device (assist motor 22, battery 23) and control unit (motor control unit 104). The battery control unit 105) has been removed.
 次に、第2の実施の形態における、エンジン負荷制御の具体的な制御内容について、図12および図13に示すタイムチャートを用いて説明する。図12は、本発明の第2の実施の形態(図13参照)の比較対象として、エンジン負荷制御を実施しない場合における油圧ポンプ負荷率とエンジン負荷率のタイムチャートを示している。エンジン負荷制御を実施しない場合には、時刻T1~T3において、エンジン負荷率移動平均値がエンジン負荷率基準値を上回っており、エンジンへの負担が大きな区間となる。 Next, specific control contents of engine load control in the second embodiment will be described with reference to time charts shown in FIGS. FIG. 12 shows a time chart of the hydraulic pump load factor and the engine load factor when engine load control is not performed as a comparison target of the second embodiment (see FIG. 13) of the present invention. When engine load control is not performed, the engine load factor moving average value exceeds the engine load factor reference value at times T1 to T3, and this is a section where the load on the engine is large.
 一方、図13は、第2の実施の形態に係るエンジン負荷制御を実施した際における、油圧ポンプ負荷率とエンジン負荷率のタイムチャートを示している。第2の実施の形態では、エンジン負荷率移動平均値がエンジン負荷率基準値に到達する時刻T1からT2に掛けてエンジントルクに制限を掛けることで、エンジン負荷率をエンジン負荷率基準値レベルまで低下させるとともに、当該エンジントルクの制限と同期して油圧ポンプ吸収トルク(油圧ポンプ負荷率)をエンジン負荷率と同程度まで減少させる。 On the other hand, FIG. 13 shows a time chart of the hydraulic pump load factor and the engine load factor when the engine load control according to the second embodiment is performed. In the second embodiment, the engine torque is limited to the engine load factor reference value level by limiting the engine torque from time T1 to time T2 when the engine load factor moving average value reaches the engine load factor reference value. At the same time, the hydraulic pump absorption torque (hydraulic pump load factor) is reduced to the same level as the engine load factor in synchronization with the engine torque limitation.
 本制御によって、一時的に仕事量の低下が生じるが、エンジン負荷率移動平均値を所望の範囲内に収めることができると共に、油圧ポンプ吸収トルクがエンジントルクに対して過大な場合に発生するエンジンストールが回避されるので、最低限の操作性は確保できる。 Although this work temporarily reduces the work load, the engine load factor moving average value can be kept within a desired range, and the engine generated when the hydraulic pump absorption torque is excessive with respect to the engine torque Since the stall is avoided, the minimum operability can be secured.
 次に、第2の実施の形態におけるメインコントロールユニット101及びその周辺の演算ブロックについて、図14を用いて説明する。図8に示した第1の実施の形態の演算ブロックとの相違点としては、外部コントロールユニットとして、モータコントロールユニット104、バッテリコントロールユニット105、およびモータアシストトルク基本値演算部508が除かれている。 Next, the main control unit 101 and its peripheral calculation blocks in the second embodiment will be described with reference to FIG. The difference from the calculation block of the first embodiment shown in FIG. 8 is that the motor control unit 104, the battery control unit 105, and the motor assist torque basic value calculation unit 508 are excluded as external control units. .
 油圧ポンプ吸収トルク目標値演算部509では、油圧ポンプ吸収トルク要求値演算部506から出力された油圧ポンプ吸収トルク要求値と、エンジントルク制限値演算部507から出力されたエンジントルク制限値を基に、エンジントルク制限に同期した油圧ポンプ吸収トルク制限における油圧ポンプ吸収トルク目標値を算出する。 The hydraulic pump absorption torque target value calculation unit 509 is based on the hydraulic pump absorption torque request value output from the hydraulic pump absorption torque request value calculation unit 506 and the engine torque limit value output from the engine torque limit value calculation unit 507. Then, the hydraulic pump absorption torque target value in the hydraulic pump absorption torque limitation synchronized with the engine torque limitation is calculated.
 次に、第2の実施の形態に係る油圧ショベルにより実行されるエンジン負荷制御ロジックの演算フローチャートについて、図15を用いて説明する。 Next, a calculation flowchart of the engine load control logic executed by the excavator according to the second embodiment will be described with reference to FIG.
 演算ステップS601にて演算を開始後、演算ステップS602にて、エンジン負荷率基準値A(下記式21参照)を演算する。本実施の形態におけるエンジン負荷率基準値は1未満の値とし、例えば0.7とする。 After the calculation is started in calculation step S601, the engine load factor reference value A (see the following formula 21) is calculated in calculation step S602. The engine load factor reference value in the present embodiment is a value less than 1, for example, 0.7.
 A = ENGLD_RATIO_REF ・・・・・(21) A = ENGLD_RATIO_REF (21)
 次に、演算ステップS603にて、エンジントルクB(下記式22参照)をエンジンコントロールユニット103より入手する。 Next, the engine torque B (see the following formula 22) is obtained from the engine control unit 103 in calculation step S603.
 B = ENGTRQ ・・・・・(22) B = ENGTRQ (22)
 次に、演算ステップS604にて、最大エンジントルクC(下記式23参照)をエンジンコントロールユニット103より入手する。 Next, the maximum engine torque C (see Equation 23 below) is obtained from the engine control unit 103 in calculation step S604.
 C = ENGTRQ_MAX ・・・・・(23) C = ENGTRQ_MAX (23)
 次に、演算ステップS605にて、エンジン負荷率演算部503は、エンジントルクBと最大エンジントルクCからエンジン負荷率D(下記式24参照)を演算する。 Next, in calculation step S605, the engine load factor calculation unit 503 calculates the engine load factor D (see the following equation 24) from the engine torque B and the maximum engine torque C.
 D = ENGLD_RATIO = B/C ・・・・・(24) D = ENGLD_RATIO = B / C (24)
 次に、演算ステップS606にて、エンジン負荷率移動平均値演算部504は、エンジン負荷率Dの時系列に移動平均処理を行うことで、エンジン負荷率移動平均値E(下記式25参照)を演算する。 Next, in calculation step S606, the engine load factor moving average value calculation unit 504 performs a moving average process in time series of the engine load factor D, thereby obtaining an engine load factor moving average value E (see the following Expression 25). Calculate.
 E = ENGLD_RATIO_AVE = average(D) ・・・・・(25) E = ENGLD_RATIO_AVE = average (D) (25)
 次に、演算ステップS608にて、油圧ポンプ吸収トルク要求値演算部506は、操作レバー信号等を基に、油圧ポンプ吸収トルク要求値G(下記式26参照)を演算する。 Next, in calculation step S608, the hydraulic pump absorption torque request value calculation unit 506 calculates the hydraulic pump absorption torque request value G (see the following equation 26) based on the operation lever signal and the like.
 G = REQ_GEN_PMPTRQ ・・・・・(26) G = REQ_GEN_PMPTRQ (26)
 次に、演算ステップS609にて、エンジントルク制限値演算部507は、油圧ポンプ吸収トルク要求値G、および最大エンジントルクCから、エンジン負荷率要求値H(下記式27参照)を演算する。 Next, in calculation step S609, the engine torque limit value calculation unit 507 calculates the engine load factor request value H (see the following Expression 27) from the hydraulic pump absorption torque request value G and the maximum engine torque C.
 H = G/C ・・・・・(27) H = G / C (27)
 次に、演算ステップS611にて、本発明の特徴であるエンジン負荷制御の実行の必要性の有無を判定する。具体的には、エンジントルク制限値演算部507は、エンジン負荷率移動平均値Eおよびエンジン負荷率要求値Hが、それぞれエンジン負荷率基準値Aより高いか否かを判定し、エンジン負荷制御の実行の有無を判断する。 Next, in calculation step S611, it is determined whether or not it is necessary to execute engine load control, which is a feature of the present invention. Specifically, the engine torque limit value calculation unit 507 determines whether or not the engine load factor moving average value E and the engine load factor request value H are higher than the engine load factor reference value A, respectively. Judge whether or not to execute.
 E ≧ A ・・・・・(28)
 H ≧ A ・・・・・(29)
E ≧ A (28)
H ≧ A (29)
 ここで、演算ステップS611にて、上記式(28)かつ(29)が非成立の場合(Noの場合)は演算ステップS631に移行する。一方、上記式(28)かつ(29)が成立の場合(Yesの場合)は、演算ステップS621に移行する。 Here, when the above formulas (28) and (29) are not established in the calculation step S611 (in the case of No), the process proceeds to the calculation step S631. On the other hand, when the above equations (28) and (29) are satisfied (in the case of Yes), the process proceeds to calculation step S621.
 演算ステップS621にて、エンジントルク制限値演算部507は、エンジントルク制限値Kを演算する。具体的には、油圧ポンプ吸収トルクをトルク値Gから時間経過とともにエンジン負荷率基準値C×A相当の値まで除々に低減させた値とし、さらに具体的には下記式(30)にて算出する。 In calculation step S621, the engine torque limit value calculation unit 507 calculates the engine torque limit value K. Specifically, the hydraulic pump absorption torque is gradually reduced from the torque value G to a value corresponding to the engine load factor reference value C × A with time, and more specifically calculated by the following equation (30). To do.
 K = max(G×減少係数、C×A)  ・・・・・(30) K = max (G x reduction factor, C x A) (30)
 次に、演算ステップS622にて、油圧ポンプ吸収トルク目標値演算部509は、エンジントルク制限値Kを基に、油圧ポンプ吸収トルク目標値M(下記式31参照)を演算する。 Next, in calculation step S622, the hydraulic pump absorption torque target value calculation unit 509 calculates a hydraulic pump absorption torque target value M (see the following equation 31) based on the engine torque limit value K.
 M = K ・・・・・(31) M = K (31)
 次に、演算ステップS623にて、エンジンコントロールユニット103はエンジントルク制限値Kでエンジントルクを制御し、油圧ポンプ吸収トルク目標値演算部509は油圧ポンプ吸収トルク目標値Mで油圧ポンプ24を制御し、これによりエンジントルク制限と油圧ポンプ24の出力制限が実施される。 Next, in calculation step S623, the engine control unit 103 controls the engine torque with the engine torque limit value K, and the hydraulic pump absorption torque target value calculation unit 509 controls the hydraulic pump 24 with the hydraulic pump absorption torque target value M. Thus, engine torque limitation and output limitation of the hydraulic pump 24 are performed.
 次に、演算ステップS624にて、エンジントルク制限制御が実施されたことをモニターユニット102に送信し、モニターにその旨(例えば警告)を表示する。その後、演算ステップS631に移行し、当該制御周期に係るエンジン負荷制御を終了し、演算ステップS601に戻る。 Next, in calculation step S624, the fact that the engine torque limit control has been performed is transmitted to the monitor unit 102, and that fact (for example, a warning) is displayed on the monitor. Thereafter, the process proceeds to calculation step S631, the engine load control related to the control cycle is terminated, and the process returns to calculation step S601.
 以上説明したように、第2の実施の形態におけるエンジン負荷制御の内容としては、エンジン負荷率の移動平均値を常時演算し、そのエンジン負荷率移動平均値がエンジン負荷率基準値を超過した際には、エンジントルクを下げて、エンジン負荷率移動平均値をエンジン負荷率基準値レベルまで低下させると共に、エンジントルクの制限と同期して油圧ポンプ吸収トルクを減少させる。 As described above, the engine load control content in the second embodiment is that when the moving average value of the engine load factor is constantly calculated and the engine load factor moving average value exceeds the engine load factor reference value, The engine torque is lowered to lower the engine load factor moving average value to the engine load factor reference value level, and the hydraulic pump absorption torque is reduced in synchronization with the engine torque limit.
 したがって、本実施の形態においても、操作性の悪化を回避しつつ、ショベル運用時のエンジン負荷率をトラック用エンジン相当のエンジン負荷率に近づけることができ、安価な汎用の車両用エンジンを、大きな仕様変更を行うこと無くショベル用エンジンとして搭載することが可能となる。 Therefore, also in this embodiment, while avoiding deterioration in operability, the engine load factor at the time of excavator operation can be brought close to the engine load factor equivalent to that of a truck engine. It can be installed as an excavator engine without changing specifications.
 なお、上記の説明では、図9および図15の演算ステップS611において、エンジン負荷率移動平均値E(すなわち、エンジン負荷率の実値)およびエンジン負荷率要求値Hが、それぞれエンジン負荷率基準値Aより高いか否かを判定し、エンジン負荷制御の実行の有無を判断したが、エンジン負荷率の実値であるエンジン負荷率移動平均値Eのみがエンジン負荷率基準値Aより高いか否かを判定してエンジン負荷制御の実行の有無を判断しても本発明の効果は発揮される。ただし、上記の説明のように実値Eと要求値Hの双方が基準値Aより高いか否かを判定してエンジン負荷制御の実行の有無を判断すると、エンジン負荷(例えば、エンジントルク)にハンチングが発生することを防止できるというメリットがある。 In the above description, the engine load factor moving average value E (that is, the actual value of the engine load factor) and the engine load factor requirement value H are the engine load factor reference values in the calculation step S611 of FIG. 9 and FIG. It is determined whether or not the engine load control is executed, and it is determined whether or not only the engine load factor moving average value E, which is the actual value of the engine load factor, is higher than the engine load factor reference value A. The effect of the present invention is exhibited even if it is determined whether or not the engine load control is executed. However, as described above, when it is determined whether both the actual value E and the required value H are higher than the reference value A and whether or not the engine load control is executed, the engine load (for example, engine torque) is determined. There is an advantage that hunting can be prevented.
 また、上記の説明では、建設機械として油圧ショベルを例に挙げて説明したが、エンジンにより油圧ポンプを駆動して各種油圧アクチュエータを駆動するホイールローダを含む他の建設機械にも本発明は適用可能である。 In the above description, a hydraulic excavator has been described as an example of the construction machine. However, the present invention can also be applied to other construction machines including a wheel loader that drives a hydraulic pump by an engine to drive various hydraulic actuators. It is.
 また、本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。 Further, the present invention is not limited to the above-described embodiment, and includes various modifications within the scope not departing from the gist thereof. For example, the present invention is not limited to the one having all the configurations described in the above embodiment, and includes a configuration in which a part of the configuration is deleted. In addition, part of the configuration according to one embodiment can be added to or replaced with the configuration according to another embodiment.
 また、上記のコンピュータに係る各構成や当該各構成の機能及び実行処理等は、それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また、上記のコンピュータに係る構成は、演算処理装置(例えばCPU)によって読み出し・実行されることで当該コンピュータの構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は、例えば、半導体メモリ(フラッシュメモリ、SSD等)、磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク、光ディスク等)等に記憶することができる。 In addition, each configuration relating to the above-described computer, functions and execution processing of each configuration, and the like are realized by hardware (for example, logic for executing each function is designed by an integrated circuit). Also good. Further, the configuration related to the computer may be a program (software) in which each function related to the configuration of the computer is realized by being read and executed by an arithmetic processing device (for example, CPU). Information related to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
 また、上記の各実施の形態の説明では、制御線や情報線は、当該実施の形態の説明に必要であると解されるものを示したが、必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。 In the above description of each embodiment, the control line and the information line are shown to be understood as necessary for the description of the embodiment, but all the control lines and information lines related to the product are not necessarily included. It does not always indicate. In practice, it can be considered that almost all the components are connected to each other.
 1…油圧ショベル、2…作業装置、3…車体、4…上部旋回体、5…下部走行体、6…ブーム、7…アーム、8…バケット、9…ブームシリンダ、10…アームシリンダ、11…バケットシリンダ、21…ディーゼルエンジン、22…アシストモータ、23…バッテリ、24…油圧ポンプ、25…コントロールバルブ、26…作動油タンク、31…旋回油圧モータ、32…旋回減速装置、33…旋回歯車、41…センタージョイント、42…走行油圧モータ、43…走行減速装置、44…クローラ、101…メインコントロールユニット、102…モニターユニット、103…エンジンコントロールユニット、104…モータコントロールユニット、105…バッテリコントロールユニット、201…キースイッチ、202…エンジンコンロトールダイヤル、203…オートアイドルスイッチ、204…パワーモードスイッチ、205…操作レバー信号、301…燃料噴射装置、302…排気マニホールド、303…ターボチャージャー、304…排気管、305…出力シャフト、306…回転センサ、307…過給圧センサ、401…DPF装置、402…酸化触媒、403…PM捕集フィルタ、404…排気温度センサ、405…DPF差圧センサ、501…目標エンジン回転数演算部、502…エンジン負荷率基準値演算部、503…エンジン負荷率演算部、504…エンジン負荷率移動平均値演算部、505…発電時モータ駆動トルク要求値演算部、506…油圧ポンプ吸収トルク要求値演算部、507…エンジントルク制限値演算部、508…モータアシストトルク基本値演算部、509…油圧ポンプ吸収トルク目標値演算部 DESCRIPTION OF SYMBOLS 1 ... Hydraulic excavator, 2 ... Working apparatus, 3 ... Vehicle body, 4 ... Upper turning body, 5 ... Lower traveling body, 6 ... Boom, 7 ... Arm, 8 ... Bucket, 9 ... Boom cylinder, 10 ... Arm cylinder, 11 ... Bucket cylinder, 21 ... diesel engine, 22 ... assist motor, 23 ... battery, 24 ... hydraulic pump, 25 ... control valve, 26 ... hydraulic oil tank, 31 ... turning hydraulic motor, 32 ... turning speed reducer, 33 ... turning gear, DESCRIPTION OF SYMBOLS 41 ... Center joint, 42 ... Travel hydraulic motor, 43 ... Travel reduction device, 44 ... Crawler, 101 ... Main control unit, 102 ... Monitor unit, 103 ... Engine control unit, 104 ... Motor control unit, 105 ... Battery control unit, 201 ... Key switch, 202 ... Engine controller Tall dial, 203 ... auto idle switch, 204 ... power mode switch, 205 ... operating lever signal, 301 ... fuel injection device, 302 ... exhaust manifold, 303 ... turbocharger, 304 ... exhaust pipe, 305 ... output shaft, 306 ... rotation Sensor: 307 ... Supercharging pressure sensor, 401 ... DPF device, 402 ... Oxidation catalyst, 403 ... PM collection filter, 404 ... Exhaust temperature sensor, 405 ... DPF differential pressure sensor, 501 ... Target engine speed calculation unit, 502 ... Engine load factor reference value calculation unit, 503 ... Engine load factor calculation unit, 504 ... Engine load factor moving average value calculation unit, 505 ... Motor drive torque request value calculation unit during power generation, 506 ... Hydraulic pump absorption torque request value calculation unit, 507 ... Engine torque limit value calculation unit, 508 ... Motor assist torque base Value calculation unit, 509 ... hydraulic pump absorption torque target value calculation unit

Claims (9)

  1.  油圧ポンプを駆動するエンジンと、
     当該エンジンの負荷に関連するパラメータの時間変化の傾向を示すエンジン負荷指標値を演算する負荷指標演算部と、
     前記エンジンの出力を調整する出力調整部とを備え、
     前記エンジンの回転数および負荷によって規定される前記エンジンの運転領域には、無負荷から全負荷までの領域からなる第1運転領域と、当該第1運転領域内に含まれ当該第1運転領域より狭い第2運転領域とが設定されており、
     前記出力調整部は、前記エンジン負荷指標値が前記第2運転領域内に収まるように、前記エンジンの出力を調整することを特徴とする建設機械用エンジン制御装置。
    An engine that drives a hydraulic pump;
    A load index calculation unit for calculating an engine load index value indicating a tendency of time change of a parameter related to the engine load;
    An output adjustment unit for adjusting the output of the engine,
    The engine operating region defined by the engine speed and the load includes a first operating region consisting of a region from no load to full load, and the first operating region included in the first operating region. A narrow second operating range is set,
    The engine control device for a construction machine, wherein the output adjustment unit adjusts the output of the engine so that the engine load index value falls within the second operation region.
  2.  請求項1に記載の建設機械用エンジン制御装置において、
     前記エンジン負荷指標値は、前記エンジンの負荷に関連するパラメータの時系列に平滑化処理を施して得られるものであり、
     前記エンジン負荷指標値には、前記エンジンを全負荷未満の所定の範囲で継続的に使用するために定めた前記第2運転領域の上限値である基準値が設定されており、
     前記基準値は、前記エンジンが全負荷のときにおける前記パラメータの値未満の値に設定されていることを特徴とする建設機械用エンジン制御装置。
    The engine control device for a construction machine according to claim 1,
    The engine load index value is obtained by performing a smoothing process on a time series of parameters related to the engine load,
    The engine load index value is set with a reference value that is an upper limit value of the second operation region that is determined to continuously use the engine in a predetermined range of less than full load.
    The engine control device for a construction machine, wherein the reference value is set to a value less than the value of the parameter when the engine is at full load.
  3.  請求項2に記載の建設機械用エンジン制御装置において、
     前記エンジンは、車両用に設計された車両用エンジンであり、
     前記基準値は、前記車両用エンジンの常用域における前記エンジン負荷指標値の上限値に設定されていることを特徴とする建設機械用エンジン制御装置。
    The construction machine engine control device according to claim 2,
    The engine is a vehicle engine designed for vehicles;
    The engine control apparatus for construction machinery, wherein the reference value is set to an upper limit value of the engine load index value in a normal range of the vehicle engine.
  4.  請求項3に記載の建設機械用エンジン制御装置において、
     前記基準値は、前記エンジンの負荷が全負荷の7割以下のときの値に設定されていることを特徴とする建設機械用エンジン制御装置。
    The construction machine engine control device according to claim 3,
    The engine control apparatus for construction machinery, wherein the reference value is set to a value when the engine load is 70% or less of the total load.
  5.  請求項4に記載の建設機械用エンジン制御装置において、
     前記エンジンの負荷に関連する前記パラメータは、エンジントルク、エンジン回転数、エンジン吸気圧、エンジン筒内圧、燃料噴射量、ターボチャージャーにおけるタービン回転数、前記油圧ポンプの要求トルク、エンジン負荷、およびエンジン負荷率のいずれかであることを特徴とする建設機械用エンジン制御装置。
    The construction machine engine control device according to claim 4,
    The parameters relating to the engine load include engine torque, engine speed, engine intake pressure, engine cylinder pressure, fuel injection amount, turbine speed in the turbocharger, required torque of the hydraulic pump, engine load, and engine load. An engine control device for a construction machine, characterized in that it is one of the ratios.
  6.  請求項4に記載の建設機械用エンジン制御装置において、
     前記平滑化処理は、移動平均またはフィルタ処理によって算出されることを特徴とする建設機械用エンジン制御装置。
    The construction machine engine control device according to claim 4,
    The engine control device for a construction machine, wherein the smoothing process is calculated by a moving average or a filter process.
  7.  請求項1に記載の建設機械用エンジン制御装置において、
     前記エンジンをアシストするモータをさらに備え、
     当該モータは、前記出力調整部による前記エンジンの出力調整によりエンジン出力が低下した場合に、当該エンジン出力低下分を補填することを特徴とする建設機械用エンジン制御装置。
    The engine control device for a construction machine according to claim 1,
    A motor for assisting the engine;
    The construction machine engine control device according to claim 1, wherein the motor compensates for a decrease in the engine output when the engine output decreases due to the output adjustment of the engine by the output adjustment unit.
  8.  請求項1に記載の建設機械用エンジン制御装置において、
     前記油圧ポンプは、前記出力調整部による前記エンジンの出力調整によりエンジン出力が低下した場合に、当該エンジン出力低下分に合わせて出力を低減することを特徴とする建設機械用エンジン制御装置。
    The engine control device for a construction machine according to claim 1,
    The engine control device for a construction machine, wherein the hydraulic pump reduces the output in accordance with the decrease in the engine output when the engine output decreases due to the output adjustment of the engine by the output adjusting unit.
  9.  請求項7に記載の建設機械用エンジン制御装置において、
     前記モータへ供給される電力が蓄積される蓄電装置と、
     前記モータによる前記エンジンのアシストの実施可否は、前記蓄電装置の蓄電量を加味して判断されることを特徴とする建設機械用エンジン制御装置。
    The engine control device for a construction machine according to claim 7,
    A power storage device in which electric power supplied to the motor is stored;
    The engine control device for a construction machine, wherein whether or not the engine can be assisted by the motor is determined in consideration of the amount of power stored in the power storage device.
PCT/JP2015/054186 2014-08-19 2015-02-16 Control device for construction vehicle engine WO2016027480A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014166580A JP6305869B2 (en) 2014-08-19 2014-08-19 Engine control device for construction machinery
JP2014-166580 2014-08-19

Publications (1)

Publication Number Publication Date
WO2016027480A1 true WO2016027480A1 (en) 2016-02-25

Family

ID=55350440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054186 WO2016027480A1 (en) 2014-08-19 2015-02-16 Control device for construction vehicle engine

Country Status (2)

Country Link
JP (1) JP6305869B2 (en)
WO (1) WO2016027480A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11504207B2 (en) * 2015-06-04 2022-11-22 Endomagnetics Ltd Marker materials and forms for magnetic marker localization (MML)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6766731B2 (en) * 2017-03-31 2020-10-14 コベルコ建機株式会社 Failure detection device
JP2020029790A (en) * 2018-08-21 2020-02-27 ヤンマー株式会社 Hybrid construction machine
WO2023195736A1 (en) * 2022-04-04 2023-10-12 현대두산인프라코어(주) Construction machine and control method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548501U (en) * 1991-11-22 1993-06-25 日野自動車工業株式会社 Internal combustion engine for hydraulic excavator
JP2000080941A (en) * 1998-09-04 2000-03-21 Isuzu Motors Ltd Engine controller
JP2000274292A (en) * 1999-03-24 2000-10-03 Kubota Corp Electronic fuel injection engine for work machine
JP2000274280A (en) * 1999-03-24 2000-10-03 Kubota Corp Electronic fuel injection engine for work machine
JP2004190582A (en) * 2002-12-11 2004-07-08 Hitachi Constr Mach Co Ltd Pump torque control method and device of hydraulic construction machine
JP2011032857A (en) * 2009-07-29 2011-02-17 Volvo Construction Equipment Ab System and method for controlling hybrid construction machinery
JP2012211596A (en) * 2012-08-07 2012-11-01 Komatsu Ltd Control apparatus of engine
JP2013536331A (en) * 2010-06-28 2013-09-19 ボルボ コンストラクション イクイップメント アーベー Control system for hybrid excavator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0548501U (en) * 1991-11-22 1993-06-25 日野自動車工業株式会社 Internal combustion engine for hydraulic excavator
JP2000080941A (en) * 1998-09-04 2000-03-21 Isuzu Motors Ltd Engine controller
JP2000274292A (en) * 1999-03-24 2000-10-03 Kubota Corp Electronic fuel injection engine for work machine
JP2000274280A (en) * 1999-03-24 2000-10-03 Kubota Corp Electronic fuel injection engine for work machine
JP2004190582A (en) * 2002-12-11 2004-07-08 Hitachi Constr Mach Co Ltd Pump torque control method and device of hydraulic construction machine
JP2011032857A (en) * 2009-07-29 2011-02-17 Volvo Construction Equipment Ab System and method for controlling hybrid construction machinery
JP2013536331A (en) * 2010-06-28 2013-09-19 ボルボ コンストラクション イクイップメント アーベー Control system for hybrid excavator
JP2012211596A (en) * 2012-08-07 2012-11-01 Komatsu Ltd Control apparatus of engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11504207B2 (en) * 2015-06-04 2022-11-22 Endomagnetics Ltd Marker materials and forms for magnetic marker localization (MML)

Also Published As

Publication number Publication date
JP2016041924A (en) 2016-03-31
JP6305869B2 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP5198661B2 (en) Hybrid type work machine and control method of work machine
US9347389B2 (en) Engine control device of work machine and engine control method therefor
US9255385B2 (en) Hybrid construction machine
JP6122765B2 (en) Work machine
JP6305869B2 (en) Engine control device for construction machinery
WO2012161276A1 (en) Hydraulic machine
JP6255137B2 (en) Control device for hybrid construction machine
WO2013024869A1 (en) Work vehicle
KR101840247B1 (en) Engine control device for work machine, work machine, and method for controlling engine of work machine
KR101714948B1 (en) Construction machine
JP6091444B2 (en) Hybrid construction machinery
JP5974014B2 (en) Hybrid drive hydraulic work machine
JP2014009525A (en) Hydraulic work machine
KR20110086495A (en) Hybrid type working machine
KR101550328B1 (en) A method and a system for operating a working machine
US9273615B2 (en) Control device of internal combustion engine, work machine and control method of internal combustion engine
KR102174769B1 (en) Hybrid working machine
JP2011174468A (en) Engine, hydraulic pump, and control device for generator motor
US20170203748A1 (en) Control device for hybrid work machine, hybrid work machine, and control method for hybrid work machine
KR101703484B1 (en) Power control device and hybrid construction machine provided with same
KR101955843B1 (en) Hybrid construction machine
JP5956386B2 (en) Hybrid work machine
JP2012025249A (en) Hybrid type construction machine
JP5808635B2 (en) Control method of hybrid excavator
JP2015101290A (en) Industrial vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833608

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM XXXX DATED 30/06/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15833608

Country of ref document: EP

Kind code of ref document: A1