WO2016027349A1 - Travel control device and travel control method - Google Patents

Travel control device and travel control method Download PDF

Info

Publication number
WO2016027349A1
WO2016027349A1 PCT/JP2014/071884 JP2014071884W WO2016027349A1 WO 2016027349 A1 WO2016027349 A1 WO 2016027349A1 JP 2014071884 W JP2014071884 W JP 2014071884W WO 2016027349 A1 WO2016027349 A1 WO 2016027349A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
distance
host vehicle
target
control device
Prior art date
Application number
PCT/JP2014/071884
Other languages
French (fr)
Japanese (ja)
Inventor
誠秀 中村
巧樹 嶺岸
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2014/071884 priority Critical patent/WO2016027349A1/en
Priority to JP2016543545A priority patent/JP6229798B2/en
Publication of WO2016027349A1 publication Critical patent/WO2016027349A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering

Definitions

  • the present invention relates to a travel control device and a travel control method for controlling travel of a vehicle.
  • the own vehicle every time the own vehicle overtakes the approaching vehicle, or every time the own vehicle is overtaken by the approaching vehicle, the own vehicle is placed on the side opposite to the side where the approaching vehicle exists on the basis of the traveling direction of the own vehicle. It will be moved. Therefore, when there are a plurality of approaching vehicles on the left and right sides of the own vehicle and there is a preceding vehicle in front of the own vehicle, the driver of the preceding vehicle frequently changes the traveling position to the left and right. In some cases, the driver of the preceding vehicle may feel uncomfortable with respect to the behavior of the host vehicle.
  • the problem to be solved by the present invention is to provide a travel control device that can reduce the uncomfortable feeling given to the driver of the preceding vehicle when the preceding vehicle exists.
  • the present invention relates to a travel control device that moves a host vehicle in a control direction side opposite to a side where the avoidance target exists when the host vehicle passes by a side of the avoidance target.
  • the amount of movement in the control direction is reduced as the distance between the host vehicle and the preceding vehicle is shorter.
  • the shorter the inter-vehicle distance between the host vehicle and the preceding vehicle the smaller the amount of movement in the control direction when the host vehicle passes the side of the avoidance target. It is possible to reduce the driver's uncomfortable feeling with respect to the behavior of the own vehicle when passing the side.
  • the vehicle travel control apparatus according to the present invention is applied to a travel control system mounted on a vehicle
  • the embodiment of the travel control device of the present invention is not limited, and can be applied to a mobile terminal device capable of exchanging information with the vehicle side.
  • the travel control device, the travel control system, and the mobile terminal device are all computers that execute arithmetic processing.
  • FIG. 1 is a diagram showing a block configuration of the travel control system 1.
  • the travel control system 1 of this embodiment is mounted on a vehicle and includes a travel control device 100 and an in-vehicle device 200.
  • the travel control device 100 recognizes the lane in which the host vehicle is traveling, and controls the movement of the host vehicle so that the position of the lane mark on the lane and the position of the host vehicle maintain a predetermined relationship. Lane departure prevention function (lane keep support function).
  • the travel control device 100 of this embodiment controls the movement of the host vehicle so that the host vehicle travels in the center of the lane.
  • the travel control device 100 may control the movement of the host vehicle so that the distance along the road width direction from the lane mark of the lane to the host vehicle falls within a predetermined value range.
  • the lane marker in the present embodiment is not limited as long as it has a function of defining a lane, and may be a diagram drawn on a road surface or planting existing between roads.
  • the travel control device 100 has a communication device 20, the in-vehicle device 200 has a communication device 40, and both devices exchange information with each other by wired communication or wireless communication.
  • the in-vehicle device 200 of the present embodiment includes a detection device 50, a sensor 60, a vehicle controller 70, a drive device 80, a steering device 90, an output device 110, and a navigation device 120.
  • the devices constituting the in-vehicle device 200 are connected by a CAN (Controller Area Network) or other in-vehicle LAN in order to exchange information with each other.
  • CAN Controller Area Network
  • the detection device 50 detects the presence of an avoidance target that should be avoided by the host vehicle and the location of the avoidance target.
  • the detection device 50 of the present embodiment includes a camera 51.
  • the camera 51 of the present embodiment is a camera including an image sensor such as a CCD.
  • the camera 51 of this embodiment is installed in the own vehicle, images the surroundings of the own vehicle, and acquires image data including the avoidance target existing around the own vehicle. A specific example of “avoidance target” described in this embodiment will be described later.
  • the detection device 50 processes the acquired image data and calculates the distance from the own vehicle to the avoidance target based on the position of the avoidance target with respect to the own vehicle.
  • the detection device 50 calculates, as target information, the relative speed between the host vehicle and the avoidance target and the relative acceleration between the host vehicle and the avoidance target from the temporal change in the position of the avoidance target.
  • the method known at the time of filing this application can be used as appropriate.
  • the detection device 50 may analyze the image data and identify the type of the avoidance target based on the analysis result.
  • the detection device 50 can identify whether the avoidance target included in the image data is a vehicle, a pedestrian, or a sign using a pattern matching technique or the like. Further, the detection device 50 extracts an image of the object from the image data, and based on the size and shape of the image, the specific type of the object (four-wheeled vehicle, two-wheeled vehicle, bus, truck, construction vehicle, etc.), vehicle type ( Small cars and large cars). Furthermore, the detection device 50 can identify the type and model of the vehicle from the identifiers written on the license plate included in the image data. This identification information can be used in the target area setting process.
  • the radar apparatus 52 may be used as the detection apparatus 50 of the present embodiment.
  • a system known at the time of filing such as a millimeter wave radar, a laser radar, and an ultrasonic radar can be used.
  • the target information including at least the position of the avoidance target detected in this way is sent to the traveling control device 100 side.
  • the detection device 50 targets information such as relative speed information, relative acceleration information, type information of the avoidance target, and type of vehicle when the avoidance target is a vehicle, which is obtained from a change in the position of the avoidance target. It may be included in the information and sent to the travel control device 100 side.
  • the “avoidance target” in the present embodiment is an object on which the host vehicle should travel avoiding itself (so as not to approach too much).
  • the detection device 50 detects an object having a predetermined positional relationship with the host vehicle as an avoidance object.
  • the detection device 50 can detect an object or the like existing around the host vehicle that is within a predetermined distance from the host vehicle as an avoidance target.
  • the avoidance target of this embodiment includes a stationary object and a moving object.
  • the stationary avoidance targets include other parked vehicles, other parked vehicles, road structures such as sidewalks, median strips, guardrails, road installations such as signs and utility poles, fallen objects and snow removed.
  • An object that obstructs driving of the vehicle, such as an object placed on the road, is included.
  • Other vehicles and pedestrians are included as moving avoidance targets.
  • Other vehicles include vehicles behind the host vehicle and oncoming vehicles. Examples of vehicles include motorcycles such as bicycles and motorcycles, large vehicles such as buses and trucks, and special vehicles such as trailers and crane vehicles.
  • the avoidance targets include objects that the host vehicle should avoid, such as a construction site, a damaged area of a road surface, and a puddle, although there is no object.
  • the avoidance target includes an end portion of a lane in which the host vehicle travels such as a road shoulder or a white line.
  • the sensor 60 of this embodiment includes a steering angle sensor 61 and a vehicle speed sensor 62.
  • the steering angle sensor 61 detects steering information related to the steering of the host vehicle such as the steering amount, the steering speed, and the steering acceleration of the host vehicle, and sends it to the vehicle controller 70 and the travel control device 100.
  • the vehicle speed sensor 62 detects the vehicle speed and acceleration of the host vehicle and sends them to the vehicle controller 70 and the travel control device 100.
  • the vehicle controller 70 of the present embodiment is an in-vehicle computer such as an engine control unit (Engine Control Unit, ECU), and electronically controls the driving state of the vehicle.
  • Examples of the vehicle of the present embodiment include an electric vehicle including an electric motor as a travel drive source, an engine vehicle including an internal combustion engine as a travel drive source, and a hybrid vehicle including both the electric motor and the internal combustion engine as a travel drive source. it can.
  • electric vehicles and hybrid vehicles using an electric motor as a driving source include a type using a secondary battery as a power source for the electric motor and a type using a fuel cell as a power source for the electric motor.
  • the drive device 80 of this embodiment includes a drive mechanism for the host vehicle V1.
  • the drive mechanism includes an electric motor and / or an internal combustion engine that are the above-described travel drive sources, a power transmission device including a drive shaft and an automatic transmission that transmits output from these travel drive sources to the drive wheels, and brakes the wheels.
  • a braking device is included.
  • the drive device 80 generates control signals for these drive mechanisms based on input signals from the driver's accelerator operation and brake operation, and control signals acquired from the vehicle controller 70 or the travel control device 100, and includes acceleration and deceleration of the vehicle. Run control. By sending the command information to the driving device 80, it is possible to automatically perform traveling control including acceleration / deceleration of the vehicle.
  • torque distribution output to each of the electric motor and the internal combustion engine corresponding to the traveling state of the vehicle is also sent to the drive device 80.
  • the steering device 90 of this embodiment includes a steering actuator.
  • the steering actuator includes a motor and the like attached to the column shaft of the steering.
  • the steering device 90 executes turning control of the vehicle based on the control signal acquired from the vehicle controller 70 or the input signal by the driver's steering operation.
  • the vehicle controller 70 executes turn control by sending command information including the steering amount to the steering device 90.
  • the traveling control apparatus 100 may execute the turn control by controlling the braking amount of each wheel of the vehicle. In this case, the vehicle controller 70 executes turn control of the vehicle by sending command information including the braking amount of each wheel to the braking device 81.
  • the navigation device 120 calculates a route from the current position of the host vehicle to the destination, and outputs route guidance information via the output device 110 described later.
  • the navigation device 120 includes a position detection device 121, road type, road width, road shape, and other road information 122, and map information 123 in which the road information 122 is associated with each point.
  • the position detection device 121 of this embodiment includes a global positioning system (Global Positioning System, GPS), and detects a traveling position (latitude / longitude) of a traveling vehicle.
  • the navigation device 120 specifies a road link on which the host vehicle travels based on the current position of the host vehicle detected by the position detection device 121.
  • the road information 122 of the present embodiment stores the road type, road width, road shape, passability (possibility of entry into adjacent lanes), and other road-related information for each road link identification information. .
  • the navigation apparatus 120 acquires the information regarding the road to which the road link where the own vehicle drive
  • the road type, road width, and road shape on which the host vehicle travels are used for calculating a target route on which the host vehicle travels in the travel control process.
  • the navigation device 120 includes an input device 124 for a driver to input information.
  • an input device 124 for example, a device that can be input by a user's manual operation such as a touch panel or a joystick arranged on a display screen, or a device that can be input by a user's spoken voice such as a microphone. Can be mentioned.
  • the output device 110 outputs various types of information related to driving support to the user or a passenger in the surrounding vehicle.
  • the output device 110 includes information according to target information, information according to the position of the target area, information according to the position of the target route, and information according to command information that causes the host vehicle to travel on the target route. Any one or more of them are output.
  • the output device 110 according to the present embodiment includes a display 111, a speaker 112, a vehicle exterior lamp 113, and a vehicle interior lamp 114.
  • the vehicle exterior lamp 113 includes a headlight, a blinker lamp, and a brake lamp.
  • the vehicle interior lamp 114 includes an indicator lighting display, a display 111 lighting indication, other lamps provided on the steering wheel, and lamps provided around the steering wheel.
  • the output device 110 may output various types of information related to driving support to an external device such as an intelligent transportation system (ITS) via the communication device 40.
  • An external device such as an intelligent road traffic system uses information related to travel support including vehicle speed, steering information, travel route, and the like for traffic management of a plurality of vehicles.
  • a specific information output mode will be described by taking as an example a case where there is a parked vehicle to be avoided in front of the left side of the host vehicle.
  • the output device 110 provides the occupant of the own vehicle with the direction and position where the parked vehicle exists as information corresponding to the target information.
  • the display 111 displays the direction and position where the parked vehicle exists in a visible manner.
  • the speaker 112 utters and outputs a text indicating the direction and position of the parked vehicle, such as “There is a parked vehicle in front of the left side”.
  • the lamps provided on the left and right door mirrors that are the vehicle exterior lamps 113 only the left lamp may be blinked to notify the occupant of the host vehicle that a parked vehicle is present in front of the left side.
  • the lamps provided on the left and right in the vicinity of the steering wheel which is the vehicle interior lamp 114, only the left lamp may blink to notify the occupant that there is a parked vehicle in front of the left side.
  • the setting direction and the setting position of the target area may be output via the output device 110 as information corresponding to the position of the target area.
  • the display 111, the speaker 112, the vehicle exterior lamp 113, and the vehicle interior lamp 114 can inform the occupant that the target area is set to the left front.
  • the setting direction and setting position of the target area are output to the outside using the outside lamp 113 from the viewpoint of informing the passengers of other vehicles of the movement of the host vehicle in advance.
  • the traveling direction of the host vehicle is changed to pass the side of the target area (turning is performed).
  • the traveling direction of the host vehicle changes in order to pass the side of the target area.
  • the right turn signal lamp (outside cabin lamp 113) is turned on so that the host vehicle moves to the right side to pass the side of the target area set on the left side. It is possible to notify an external vehicle or the like that the vehicle is moving.
  • the shape of the target route and the position of the curved point can be notified to the occupant by the display 111 and the speaker 112.
  • the display 111 displays the shape of the target route and the like as a visible diagram.
  • the speaker 112 outputs an announcement such as “turn to the right to pass the side of the parked vehicle ahead”.
  • information indicating that the turning operation and acceleration / deceleration are executed as information corresponding to the command information for causing the vehicle to travel on the target route. Inform the passenger of the own vehicle or the passenger of another vehicle in advance.
  • the output device 110 may output the above-described information to an external device of the intelligent transportation system via the communication device 20.
  • crew of another vehicle can respond
  • the travel control device 100 of this embodiment includes a control device 10, a communication device 20, and an output device 30.
  • the communication device 20 exchanges information with the in-vehicle device 200.
  • the output device 30 has the same function as the output device 110 of the in-vehicle device 200 described above.
  • the traveling control device 100 is a computer that can be carried by an occupant, the traveling control device 100 outputs command information for controlling blinking of the exterior lamp 113 and the interior lamp 114 of the in-vehicle device 200 to each device. May be.
  • the control device 10 of the travel control device 100 executes a ROM (Read Only Memory) 12 in which a program for presenting travel control information for controlling the travel of the host vehicle is stored, and a program stored in the ROM 12.
  • the computer includes a CPU (Central Processing Unit) 11 as an operation circuit that functions as the travel control device 100 and a RAM (Random Access Memory) 13 that functions as an accessible storage device.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • the control device 10 of the travel control device 100 includes a host vehicle information acquisition function, a target information acquisition function, a preceding vehicle following function, an inter-vehicle distance setting function, a target area setting function, and a target route setting function. And a control function and a presentation function.
  • the control apparatus 10 of this embodiment performs each function by cooperation of the software for implement
  • the automatic information acquisition function acquires own vehicle information including the position of the own vehicle.
  • the position of the host vehicle can be acquired by the position detection device 121 of the navigation device 120.
  • the own vehicle information includes the vehicle speed and acceleration of the own vehicle.
  • the control device 10 acquires the speed of the host vehicle from the vehicle speed sensor 62.
  • the speed of the host vehicle can also be acquired based on the change over time of the position of the host vehicle.
  • the acceleration of the host vehicle can be obtained from the speed of the host vehicle.
  • the target information acquisition function of the control device 10 will be described.
  • the target information acquisition function acquires target information including a position to be avoided that the host vehicle should avoid.
  • the target information acquisition function acquires target information including the position of the avoidance target detected by the detection device 50.
  • the target information includes the relative position of the avoidance target, the relative speed and the relative acceleration of the host vehicle V1 with respect to the avoidance target.
  • the control device 10 of the host vehicle detects the vehicle speed and acceleration of the other vehicle detected by the vehicle speed sensor of the other vehicle as target information. You may get as Of course, the control device 10 can also acquire target information including the position, speed, and acceleration of other vehicles from an external device of the intelligent transportation system.
  • the preceding vehicle follow-up function of the control device 10 detects the preceding vehicle that travels in the lane in which the host vehicle travels and travels ahead of the host vehicle, and maintains the constant inter-vehicle distance from the preceding vehicle. Control the running of the vehicle.
  • the preceding vehicle following function detects the preceding vehicle by acquiring information including the position and relative speed of the preceding vehicle from the captured image captured by the camera 51 and the detection result by the radar device 52.
  • the preceding vehicle follow-up function controls the vehicle controller 70 based on the relative position and relative speed between the own vehicle and the preceding vehicle so that the preceding vehicle and the own vehicle maintain a constant inter-vehicle distance. Controls the vehicle speed and acceleration / deceleration of the vehicle.
  • the inter-vehicle distance setting function of the control device 10 sets the inter-vehicle distance between the host vehicle and the preceding vehicle when the preceding vehicle is followed by the preceding vehicle following function.
  • the inter-vehicle distance between the host vehicle and the preceding vehicle desired by the driver can be input as the set inter-vehicle distance via the input device 124 of the navigation device 120.
  • the inter-vehicle distance setting function acquires the input set inter-vehicle distance, and the acquired set inter-vehicle distance is determined by the preceding vehicle following function. Set as the inter-vehicle distance when following.
  • the driver can select one of “short distance”, “medium distance”, and “long distance” as the set inter-vehicle distance, and the inter-vehicle distance setting function has one of the set inter-vehicle distances.
  • the distance corresponding to the selected set inter-vehicle distance is set as the inter-vehicle distance when following the preceding vehicle.
  • the preceding vehicle follow-up function controls the traveling of the host vehicle so as to maintain the set inter-vehicle distance set by the inter-vehicle distance setting function.
  • the target area setting function of the control device 10 sets the target area R based on the relationship between the position of the host vehicle and the position to be avoided.
  • FIG. 2 is a diagram illustrating an example of a method for setting the target region R.
  • the traveling direction Vd1 of the host vehicle is the + y direction in the figure, and the extending direction of the traveling lane Ln1 on which the host vehicle travels is also the + y direction in the figure.
  • the scene where the parked vehicle V2 parked on the left shoulder of the lane Ln1 where the host vehicle travels is detected is viewed from above.
  • the host vehicle V1 approaches the parked vehicle V2 from behind, passes through the side of the parked vehicle V2, and travels on the lane Ln1 in the travel direction Vd1.
  • the target area setting function sets a range including the parked vehicle V2 as the target area R when the host vehicle V1 approaches the parked vehicle V2 along the traveling direction Vd1.
  • the target area setting function is a target from the viewpoint of avoiding that the own vehicle V1 and the parked vehicle V2 approach or come into contact with each other when the distance between the host vehicle V1 and the parked vehicle V2 to be avoided is less than a predetermined value.
  • the region R may be set, or the target region R may be set from the viewpoint of keeping an appropriate distance between the host vehicle V1 and the parked vehicle V2.
  • the target region R may have a shape that follows the outer shape of the parked vehicle V2, or may have a shape that includes the parked vehicle V2.
  • the target region R may be a circle, an ellipse, a rectangle, or a polygon that includes the parked vehicle V2.
  • the target area setting function may set the target area R to be narrower by setting the boundary of the target area R to be less than a predetermined distance (A) from the surface (outer edge) of the parked vehicle V2, and the boundary of the target area R may be The target area R may be set wider than a predetermined distance B (B> A) separated from the parked vehicle V2.
  • the target region R has front and rear end portions RL1 and RL2.
  • the front and rear end portions RL1 and RL2 are end lines that define the length of the target region R along the extending direction (+ y) of the lane Ln1 on which the host vehicle travels.
  • the length along the extending direction (+ y) of the lane Ln1 of the target region R shown in FIG. 2 is L0 which is the distance between (y1) of the front and rear end portion RL1 and the front and rear end portion RL2 (y2).
  • a front and rear end portion positioned on the near side (upstream side) when viewed from the host vehicle V1 approaching the target region R is defined as a first end portion RL1.
  • a front and rear end portion located on the far side (downstream side) when viewed from the own vehicle V1 approaching or passing through the target region R is defined as a second end portion RL2.
  • the first end RL1 and the second end RL2 are located on the boundary of the target region R.
  • the target region R has left and right end portions RW1 and RW2 on the left and right sides thereof.
  • the left and right end portions RW1 and RW2 are end lines (end portions) that define a distance along the vehicle width direction from the host vehicle V1.
  • the left and right end portions RW1 and RW2 are end lines that define the length (width) of the target area along the road width direction (X) of the lane Ln1 on which the host vehicle travels.
  • W0 which is the distance between the left and right end portions RW1 (x1) and the left and right end portions RW2 (x2).
  • the host vehicle V1 when viewed from the host vehicle V1 among the left and right end portions RW1 and RW2 of the target region R.
  • the left and right end portions located on the side of the first horizontal end portion RW1.
  • the left and right end portions located on the side (road shoulder side) opposite to the side of the own vehicle V1 when viewed from the own vehicle V1 are defined as the second lateral end portion RW2.
  • the first horizontal end RW1 and the second horizontal end RW2 are located on the boundary of the target region R.
  • the other vehicle V3 when there is another vehicle V3 that faces the opposite lane Ln2 of the lane Ln1 on which the host vehicle V1 travels, the other vehicle V3 is detected as an avoidance target.
  • a range including the other vehicle V3 is set as the target region R by the same method.
  • the target region R is set at a timing when the avoidance target is detected, that is, at a timing before the turning operation of the host vehicle V1 is performed.
  • the target route setting function of the control device 10 calculates the target route RT based on the set boundary position of the target region R.
  • “calculating the target route RT based on the position of the target region R” may calculate the target route RT so that the host vehicle V1 does not enter the target region R.
  • the target route RT may be calculated so that the area where the own vehicle V1 exists is less than a predetermined value, or a position separated from the boundary line of the target region R by a predetermined distance is calculated as the target route RT.
  • the boundary line of the target region R may be calculated as the target route RT.
  • the target region R is set such that the distance between the host vehicle V1 and the avoidance target is not less than a predetermined value, or the distance between the host vehicle V1 and the avoidance target is maintained at a predetermined threshold. Therefore, as a result, the target route RT is also set at a position where the distance between the host vehicle V1 and the avoidance target is not less than a predetermined value, or at a position where the distance between the host vehicle V1 and the avoidance target is maintained at a predetermined threshold. Is done.
  • the target route setting function corrects the target route RT set based on the position of the boundary of the target region R when a preceding vehicle exists in front of the host vehicle.
  • the target route RT is set so that the travel position of the host vehicle V1 is displaced left and right (vehicle width direction).
  • FIG. 3 is a diagram showing an example of the target route RT set when there are a plurality of approaching vehicles, and shows the positions of the vehicles V1, V4 to V7 at each time shown in parentheses.
  • the approaching vehicles V5, V7 traveling on the adjacent lane Ln3 on the left side of the host vehicle V1 have a slower vehicle speed than the host vehicle V1, so the host vehicle V1 overtakes the approaching vehicles V5, V7, Since the approaching vehicle V6 traveling on the adjacent lane Ln2 on the right side of the host vehicle V1 has a higher vehicle speed than the host vehicle V1, the scene where the host vehicle V1 is overtaken by the approaching vehicle V6 is illustrated. Therefore, in the example shown in FIG. 3, when the own vehicle V1 passes the approaching vehicle V5 at the time t1, the own vehicle V1 and the approaching vehicle V5 pass through the side of the approaching vehicle V5.
  • the target route setting function is such that when the host vehicle V1 is overtaken by the approaching vehicle V6 at time 2, the vehicle width of the host vehicle V1 on the side opposite to the approaching vehicle V6 is exceeded.
  • the target route RT is set so as to move to the left side (+ x side) in the direction.
  • the target route setting function sets the target route RT so that the host vehicle V1 moves left and right (vehicle width direction) when approaching an approaching vehicle traveling in an adjacent lane.
  • the traveling position of the host vehicle V1 is displaced to the left and right (vehicle width direction).
  • the driver of the preceding vehicle V4 is suspicious of the behavior of the host vehicle V1, and the driver of the preceding vehicle V4 is asked to May cause extra attention.
  • the traveling position of the host vehicle V1 repeatedly moves left and right (vehicle width direction), so that the driver of the preceding vehicle V4 can In some cases, the vehicle V1 may make the preceding vehicle V4 feel like a so-called “whispering”.
  • the target route setting function is an approach to be avoided as the inter-vehicle distance between the host vehicle V1 and the preceding vehicle V4 is shorter.
  • the target route RT is corrected so that the amount of movement in the vehicle width direction when passing the sides of the vehicles V5 to V7 is small.
  • the detail of the method of the traveling control based on the distance between the own vehicle V1 and the preceding vehicle V4 is mentioned later.
  • the control function of the control device 10 outputs command information for causing the host vehicle V1 to travel on the target route RT to the vehicle controller 70, the drive device 80, and the steering device 90 on the vehicle side.
  • the vehicle controller 70 that has acquired the command information from the control device 10 controls the drive device 80 and the steering device 90 to drive the host vehicle V1 along the target route RT.
  • the vehicle controller 70 uses the road shape detected by the detection device 50 and the lane marker model stored in the road information 122 and the map information 123 of the navigation device 120 to maintain the vehicle in a predetermined lateral position with respect to the lane.
  • the steering device 90 is controlled to travel while traveling.
  • the vehicle controller 70 calculates the turning control amount based on the steering angle acquired from the steering angle sensor 61, the vehicle speed acquired from the vehicle speed sensor 62, and the current of the steering actuator, and sends a current command to the steering actuator. Then, control is performed so that the host vehicle travels in the target lateral position.
  • the driving direction of the host vehicle V1 is determined by the difference in rotational speed between the left and right drive wheels using the driving device 80 and / or the braking device 81. (That is, the lateral position) may be controlled. In that sense, the “turning” of the vehicle includes not only the case of using the steering device 90 but also the case of using the driving device 80 and / or the braking device 81.
  • the host vehicle V1 travels along the target route RT, so that it is possible to appropriately pass through the side of the parked vehicle V2 to be avoided.
  • the target route RT is set so that the host vehicle V1 moves to the opposite side of the approaching vehicles V5 to V7. The travel position is frequently displaced left and right (in the vehicle width direction).
  • the control function controls the traveling of the host vehicle V1 based on the corrected target route RT so that the amount of movement of the host vehicle V1 in the vehicle width direction becomes small.
  • FIG. 4A is a graph showing an example of the distance in the traveling direction between the host vehicle and the approaching vehicle.
  • the distance is “0”
  • the host vehicle and the approaching vehicle are in the vehicle width direction.
  • the approaching vehicle is approaching the host vehicle from behind the host vehicle, and at time t11, the host vehicle and the approaching vehicle are aligned in the vehicle width direction. Then, the scene where an approaching vehicle overtakes the own vehicle is illustrated.
  • FIG. 4B is a graph showing on / off of the travel control processing by the control device 10 in the scene shown in FIG.
  • the traveling control process by the control device 10 is set to off.
  • control for moving the host vehicle in the vehicle width direction in order for the host vehicle to pass the side of the approaching vehicle is not performed.
  • the traveling control process by the control device 10 is set to ON, as shown in FIG.
  • control is performed to move the own vehicle in the vehicle width direction opposite to the approaching vehicle.
  • FIG. 4 (C) is a graph showing the amount of movement of the host vehicle V1 in the vehicle width direction in the scenes shown in FIGS. 4 (A) and 4 (B).
  • D1 represents the amount of movement when the set inter-vehicle distance between the host vehicle and the preceding vehicle is set to “short distance”
  • D2 represents the set inter-vehicle distance between the host vehicle and the preceding vehicle.
  • D3 indicates the amount of movement when the set inter-vehicle distance between the host vehicle and the preceding vehicle is set to “long distance”.
  • the control function starts the travel control process at time t10.
  • the control function sets the own vehicle according to the relative position between the own vehicle and the approaching vehicle. The vehicle is moved in the vehicle width direction opposite to the approaching vehicle.
  • the control function determines the inter-vehicle distance between the host vehicle and the preceding vehicle. Since it is the shortest, the travel of the host vehicle is controlled so that the maximum movement amount when moving the host vehicle in the vehicle width direction is the smallest X11.
  • the control function has a medium distance between the host vehicle and the preceding vehicle when the set inter-vehicle distance is set to “medium distance”.
  • the travel of the host vehicle is controlled so that the maximum movement amount when the host vehicle is moved in the vehicle width direction is the second largest X12.
  • the control function has the longest inter-vehicle distance between the host vehicle and the preceding vehicle. The travel of the host vehicle is controlled so that the maximum amount of movement when moving the vehicle in the vehicle width direction is X13 which is the largest.
  • the control device 10 performs control so that the turning angle or turning angular velocity when changing the traveling position of the host vehicle becomes smaller as the set inter-vehicle distance is shorter. That is, as shown in D1 of FIG. 4C, when the set inter-vehicle distance is set to “short distance”, the control device 10 has the shortest inter-vehicle distance between the host vehicle and the preceding vehicle. The turning angle or turning angular velocity when moving the host vehicle in the vehicle width direction is minimized. Accordingly, as shown in D1 of FIG. 4C, when the set inter-vehicle distance is set to “short distance”, the vehicle moves in the vehicle width direction as compared with other set inter-vehicle distances.
  • the speed can be slowed down (the gradient of the movement amount indicated by D1 in FIG. 4C can be minimized).
  • D2 in FIG. 4C when the set inter-vehicle distance is set to “medium distance”, the control device 10 determines that the inter-vehicle distance between the host vehicle and the preceding vehicle is medium. For this reason, the turning angle or turning angular velocity when moving the host vehicle in the vehicle width direction is made the second smallest.
  • the control device 10 has the longest inter-vehicle distance between the host vehicle and the preceding vehicle. The turning angle or turning angular speed when moving the host vehicle in the vehicle width direction is maximized. Thereby, the own vehicle can be moved slowly in the vehicle width direction as the inter-vehicle distance between the own vehicle and the preceding vehicle is shorter.
  • the presentation function of the control device 10 of this embodiment includes calculated information according to the target information, information according to the position of the target region R, information according to the position of the target route, and information according to command information that causes the host vehicle to travel on the target route.
  • the data is sent to the output device 110 and output to the outside in the manner described above.
  • step S101 the control device 10 acquires host vehicle information including at least the position of the host vehicle V1.
  • the own vehicle information may include the vehicle speed and acceleration of the own vehicle V1.
  • step S102 the control device 10 acquires target information including a position to be avoided that the host vehicle V1 should avoid.
  • the target information may include speed / acceleration to be avoided.
  • step S102 the control device 10 also acquires information including the position and relative speed of the preceding vehicle that travels in the traveling lane of the host vehicle and travels in front of the host vehicle.
  • the control device 10 can acquire information including the position and relative speed of the preceding vehicle from the captured image captured by the camera 51 and the detection result of the radar device 52.
  • step S103 the control device 10 acquires the detection result of the avoidance target from the detection device 50.
  • the detection result of the avoidance target includes information on the position of the avoidance target.
  • step S104 the control device 10 sets the target region R according to the position to be avoided.
  • step S105 the control device 10 calculates a target route RT that avoids the target region R.
  • the target route RT includes one or a plurality of target coordinates on which the host vehicle V1 travels. Each target coordinate includes a target horizontal position (target X coordinate) and a target vertical position (target Y coordinate).
  • the target route RT is obtained by connecting the calculated one or more target coordinates and the current position of the host vehicle V1. The method for calculating the target coordinates shown in step S105 will be described later.
  • step S106 the control device 10 acquires the target lateral position of the target coordinates calculated in step S105.
  • step S107 the control device 10 calculates a feedback gain related to the lateral position based on the comparison result between the current lateral position of the host vehicle V1 and the target lateral position acquired in step S106.
  • step S108 the control device 10 brings the host vehicle V1 onto the target lateral position based on the actual lateral position of the host vehicle V1, the target lateral position corresponding to the current position, and the feedback gain in step S107.
  • a target control value related to the turning angle, turning angular velocity, etc. of the host vehicle V1 necessary for the movement is calculated.
  • step S ⁇ b> 112 the control device 10 outputs the calculated target control value to the in-vehicle device 200. Accordingly, the host vehicle V1 can travel on the target route RT defined by the target lateral position.
  • step S105 When a plurality of target coordinates are calculated in step S105, the processing of steps S106 to S112 is repeated each time the target lateral position is acquired, and the target control value for each of the acquired target lateral positions is obtained as the in-vehicle device 200. Output to.
  • step S109 the control device 10 acquires a target vertical position for one or a plurality of target coordinates calculated in step S105.
  • step S110 the control device 10 determines the current vertical position of the host vehicle V1, the vehicle speed and acceleration / deceleration at the current position, the target vertical position corresponding to the current vertical position, and the vehicle speed and acceleration / deceleration at the target vertical position. Based on the comparison result, a feedback gain related to the vertical position is calculated.
  • step S111 the control device 10 calculates a target control value related to the vertical position based on the vehicle speed and acceleration / deceleration according to the target vertical position and the feedback gain of the vertical position calculated in step S110.
  • the processing in steps S109 to S112 is repeated each time the target vertical position is acquired, similarly to steps S106 to S108 and S112 described above, and the target control value for each of the acquired target vertical positions is output to the in-vehicle device 200.
  • the target control value in the vertical direction means the operation of a drive mechanism for realizing acceleration / deceleration and vehicle speed according to the target vertical position (in the case of an engine vehicle, the operation of an internal combustion engine, in the case of an electric vehicle system).
  • the control function calculates a target intake air amount (target opening of the throttle valve) and a target fuel injection amount based on the calculated values of the current and target acceleration / deceleration and vehicle speed. Then, this is sent to the driving device 80.
  • the control function calculates the acceleration / deceleration and the vehicle speed, and sends them to the vehicle controller 70.
  • the vehicle controller 70 operates the drive mechanism for realizing the acceleration / deceleration and the vehicle speed (in the case of an engine vehicle, an internal combustion engine). Control values for engine operation, electric motor operation in an electric vehicle system, and torque distribution between an internal combustion engine and an electric motor in a hybrid vehicle) and brake operation may be calculated.
  • step S112 the control apparatus 10 outputs the target control value of the vertical direction calculated by step S111 to the vehicle-mounted apparatus 200.
  • FIG. The vehicle controller 70 executes turn control and drive control, and causes the host vehicle to travel on the target route RT defined by the target lateral position and the target vertical position.
  • step S113 the control device 10 causes the output device 110 to present information.
  • the information to be presented to the output device 110 may be the position / velocity of the target area calculated in step S104, the shape of the target route calculated in step S105, or the in-vehicle device in step S112.
  • the target control value output to 200 may be used.
  • step S114 it is determined whether or not the driver has performed a steering operation or the like, and whether or not the driver has intervened. If no driver operation is detected, the process returns to step S101 to repeat the setting of a new target area, calculation of the target route, and travel control. On the other hand, when the driver performs an operation, the process proceeds to step S115, and the traveling control is interrupted. In the next step S116, information indicating that the traveling control has been interrupted is presented.
  • step S105 in the first embodiment will be described based on the flowchart shown in FIG.
  • the target vertical position is calculated by the target route setting function of the control device 10.
  • the target route setting function sets the target vertical position at regular distance intervals on the front side in the traveling direction of the host vehicle V1.
  • step S202 the target route setting function determines whether or not an avoidance target has been detected based on the detection result of the avoidance target acquired in step S103.
  • the process proceeds to step S203, and when the avoidance target is not detected, the process proceeds to step S207.
  • step S207 since it is determined that the avoidance target is not detected, the control function corresponds to each target vertical position calculated in step S201 so that the host vehicle V1 goes straight through the center position of the traveling lane. Each target lateral position is calculated.
  • step S203 the target horizontal position for passing the side to be avoided is set for each target vertical position set in step S201 by the target route setting function.
  • step S204 the target route setting function determines whether or not a preceding vehicle has been detected based on the detection result of the preceding vehicle acquired in step S103. If a preceding vehicle is detected, the process proceeds to step S205. On the other hand, if a preceding vehicle is not detected, the target coordinate calculation process in step S105 is terminated.
  • step S205 the set inter-vehicle distance between the host vehicle and the preceding vehicle is acquired by the target route setting function.
  • the target route setting function acquires the input set inter-vehicle distance from the input device 124 when the driver inputs the set inter-vehicle distance via the input device 124.
  • step S206 the target lateral position calculated in step S203 is corrected based on the set inter-vehicle distance acquired in step S205 by the target route setting function.
  • the target route setting function calculates a target lateral position taking into account the set inter-vehicle distance based on the following formula (1), and each target lateral position calculated in step S203 is expressed by the following formula (1). It changes to each target lateral position calculated based on it.
  • Target lateral position Yset + f ( ⁇ Y) (1)
  • Yset represents the center position of the lane in which the host vehicle travels
  • f ( ⁇ Y) is a function representing a predetermined inclination.
  • f ( ⁇ Y) is a value corresponding to the position of each target lateral position in the traveling direction of the host vehicle.
  • the position of the target lateral position is the traveling direction of the host vehicle.
  • ⁇ Y has a larger value in the order of “short distance”, “medium distance”, and “long distance”.
  • the shorter the inter-vehicle distance between the host vehicle and the preceding vehicle the smaller the amount of movement in the vehicle width direction when passing the side of the approaching vehicle that is the avoidance target, so that the target route is reduced. RT can be corrected.
  • the shorter the distance between the host vehicle V1 and the preceding vehicle V4 the smaller the amount of movement in the vehicle width direction when passing the side of the approaching vehicle. The traveling of the host vehicle is controlled.
  • the shorter the inter-vehicle distance between the host vehicle and the preceding vehicle the longer the host vehicle moves in the vehicle width direction when passing the side of the approaching vehicle. Make it smaller.
  • the travel position of the host vehicle is frequently displaced to the left and right, the driver of the preceding vehicle is given a sense of incongruity with the behavior of the host vehicle, and extra attention is paid to the behavior of the host vehicle V1. May be paid.
  • the tendency becomes stronger as the distance between the host vehicle and the preceding vehicle is shorter.
  • the shorter the inter-vehicle distance between the host vehicle and the preceding vehicle the more the host vehicle moves in the vehicle width direction when passing the side of the approaching vehicle.
  • the driver of the preceding vehicle By reducing the amount of movement of the vehicle, it is possible to effectively prevent the driver of the preceding vehicle from feeling uncomfortable with the behavior of the host vehicle.
  • the host vehicle and the preceding vehicle are relatively close to each other, it can be effectively prevented that the driver of the preceding vehicle feels being beaten by the host vehicle.
  • Second Embodiment the traveling control system 1 shown in FIG. 1 is the same as the first embodiment except that the traveling control system 1 operates as described below. Below, the traveling control system 1 which concerns on 2nd Embodiment is demonstrated.
  • FIG. 7 is a diagram for explaining the relationship between the inter-vehicle distance between the host vehicle and the preceding vehicle and the amount of movement of the host vehicle in the vehicle width direction in the second embodiment.
  • the control apparatus 10 is a vehicle width of the opposite direction to an approaching vehicle. Speed up the movement in the direction. Specifically, as in the first embodiment, the control device 10 moves the host vehicle to the side opposite to the approaching vehicle when the distance in the traveling direction between the host vehicle and the approaching vehicle is equal to or less than a predetermined distance.
  • the predetermined distance for setting the traveling control process to ON is made different according to the inter-vehicle distance between the host vehicle and the preceding vehicle.
  • the control device 10 sets the longest predetermined distance for setting the travel control process to ON. Set to ST1.
  • the control apparatus 10 starts the movement to the vehicle width direction of the own vehicle in order to pass the side of an approaching vehicle in time t21.
  • the control device 10 sets the predetermined distance for setting the traveling control process to ON to the second longest ST2. Set.
  • the inter-vehicle distance in the traveling direction between the host vehicle and the approaching vehicle becomes ST2 or less, and as shown in FIG. Control processing is set on.
  • the control apparatus 10 starts the movement to the vehicle width direction of the own vehicle in order to pass the side of an approaching vehicle in time t22.
  • the control device 10 sets the predetermined distance for setting the traveling control process to ON to the shortest ST3. .
  • the inter-vehicle distance in the traveling direction between the host vehicle and the approaching vehicle becomes ST3 or less at time t21 and t23 later than time t22, as shown in FIG. 7B.
  • the traveling control process is set to ON.
  • the control apparatus 10 starts the movement to the vehicle width direction of the own vehicle in order to pass the side of an approaching vehicle at the time t23.
  • control device 10 turns when the travel position of the host vehicle is changed as the set inter-vehicle distance is shorter. Control is performed so that the angular or turning angular velocity is reduced.
  • step S105 in the second embodiment will be described based on the flowchart shown in FIG.
  • step S306 the turning start position is corrected based on the set inter-vehicle distance acquired in step S305 by the target route setting function.
  • the target route setting function corrects the turning start position as shown in the following equation (2).
  • Turning start position Xset ⁇ X (2)
  • Xset represents the turning start position set in step S301
  • ⁇ X is a correction value of the turning start position
  • the set inter-vehicle distance is “short distance”, “medium distance”, “ It becomes larger in the order of “long distance”. Accordingly, as shown in FIG. 7C, as the set inter-vehicle distance is longer, the turning start position of the own vehicle is set so that the timing for moving the own vehicle in the vehicle width direction opposite to the approaching vehicle is earlier. The position can be corrected to the nearer side.
  • step S307 as in step S206 of the first embodiment, the shorter the inter-vehicle distance between the host vehicle and the preceding vehicle, the vehicle width direction of the host vehicle when passing the side of the approaching vehicle that is the avoidance target.
  • the target lateral position is corrected so that the amount of movement to is small.
  • the longer the inter-vehicle distance between the host vehicle and the preceding vehicle the earlier the timing for moving the host vehicle in the vehicle width direction on the side opposite to the approaching vehicle.
  • the inter-vehicle distance between the host vehicle and the preceding vehicle tends to be longer than that of a general road.
  • the traveling position of the host vehicle is frequently changed to the left and right on a high speed road such as an expressway, it makes the driver of the preceding vehicle feel more strongly that the host vehicle is hitting the preceding vehicle. It tends to end up.
  • the longer the inter-vehicle distance between the host vehicle and the preceding vehicle the earlier the timing of moving the host vehicle in the vehicle width direction on the side opposite to the approaching vehicle, thereby allowing the driver of the preceding vehicle to move.
  • the vehicle can feel as if it is moving slowly in the vehicle width direction.
  • the driver of the preceding vehicle can be reduced from feeling that the host vehicle is scolding the preceding vehicle. It becomes possible.
  • the longer the distance between the host vehicle and the preceding vehicle the more the host vehicle passes the side of the approaching vehicle and then returns the host vehicle to the center position of the traveling lane. It can be configured to delay the timing. That is, in the second embodiment, as shown in FIG. 7C, after the host vehicle passes the side of the approaching vehicle, control is performed to return the host vehicle to the center position of the traveling lane.
  • the longer the inter-vehicle distance between the host vehicle and the preceding vehicle the slower the timing of moving the host vehicle to the center position side of the traveling lane.
  • the controller 10 determines the distance between the host vehicle and the preceding vehicle. The longer the distance is, the longer the predetermined distance is set. Thereby, the timing which moves the own vehicle to the center position side of a driving lane can be delayed, so that the distance between the own vehicle and a preceding vehicle is long. As a result, when the distance between the host vehicle and the preceding vehicle becomes long, such as when the host vehicle is traveling on an expressway, the host vehicle will move more slowly in the vehicle width direction.
  • the predetermined distance (second distance) when moving the host vehicle to the center position side of the traveling lane is the predetermined distance (first distance) when moving the host vehicle in the vehicle width direction opposite to the approaching vehicle.
  • the same distance may be sufficient, or the distance longer than a 1st distance may be sufficient.
  • the traveling control system 1 shown in FIG. 1 is the same as the first embodiment except that the traveling control system 1 operates as described below. Below, the traveling control system 1 which concerns on 3rd Embodiment is demonstrated.
  • FIG. 9 is a diagram for explaining a method for specifying the inter-vehicle distance between the host vehicle and the preceding vehicle in the third embodiment.
  • the control device 10 measures the actual inter-vehicle distance between the host vehicle and the preceding vehicle, and moves when moving the host vehicle to the side opposite to the approaching vehicle based on the measured actual inter-vehicle distance. Determine the amount.
  • a known method can be used to calculate the actual inter-vehicle distance.
  • the control device 10 determines that the inter-vehicle distance between the host vehicle and the preceding vehicle is “ It is determined that the distance is “short distance”, and the maximum amount of movement when moving the host vehicle to the opposite side of the approaching vehicle is set to X11 as indicated by D1 in FIG.
  • the control device 10 determines that the inter-vehicle distance between the host vehicle and the preceding vehicle is “medium distance”, As indicated by D2 in FIG. 4C, the maximum amount of movement when moving the host vehicle to the side opposite to the approaching vehicle is set to X12.
  • the long distance range is also set in advance, and when the measured actual inter-vehicle distance is within the long distance range, the inter-vehicle distance between the host vehicle and the preceding vehicle is “long distance”. And the maximum amount of movement when moving the host vehicle to the side opposite to the approaching vehicle is set to X13, as indicated by D3 in FIG.
  • hysteresis is provided in the intermediate distance range and the short distance range by overlapping a part of the intermediate distance range and the short distance range.
  • the actual inter-vehicle distance between the host vehicle and the preceding vehicle goes back and forth between the middle distance range and the short distance range, so that the amount of movement of the host vehicle in the vehicle width direction repeatedly fluctuates, and the behavior of the host vehicle is It is possible to effectively prevent instability.
  • the middle distance range and the long distance range also partially overlap, and hysteresis is provided also in the middle distance range and the long distance range.
  • step S105 in the third embodiment will be described based on the flowchart shown in FIG.
  • the process proceeds to step S405.
  • step S405 the target distance setting function calculates the actual inter-vehicle distance between the host vehicle and the preceding vehicle based on the information related to the preceding vehicle acquired in step S102.
  • step S406 as shown in FIG. 9, a corresponding inter-vehicle distance range is acquired by the target route setting function based on the actual inter-vehicle distance calculated in step S405.
  • the target route setting function is the inter-vehicle distance range corresponding to the actual inter-vehicle distance between the host vehicle and the preceding vehicle. Is acquired as a “short distance range”.
  • step S407 the target lateral position is corrected by the target route setting function based on the inter-vehicle distance range acquired in step S406. Specifically, in the target route setting function, the shorter the inter-vehicle distance corresponding to the inter-vehicle distance range acquired in step S406 is, in the vehicle width direction of the own vehicle when passing the side of the approaching vehicle to be avoided.
  • the target lateral position is corrected so that the amount of movement is small.
  • the corresponding inter-vehicle distance is the shortest, so that the own vehicle when passing the side of the approaching vehicle
  • the target lateral position is corrected so that the amount of movement in the vehicle width direction becomes the smallest.
  • the actual inter-vehicle distance between the host vehicle and the preceding vehicle is calculated, and based on the actual inter-vehicle distance, in the vehicle width direction of the host vehicle when passing the side of the approaching vehicle. Set the amount of movement.
  • the travel of the own vehicle is appropriately controlled according to the actual inter-vehicle distance between the own vehicle and the preceding vehicle. be able to.
  • the travel control device 100 that constitutes the travel control system 1 together with the in-vehicle device 200 will be described as an example, but the present invention is limited to this. It is not a thing.
  • the configuration in which the inter-vehicle distance between the host vehicle and the preceding vehicle is specified by any one of “short distance”, “medium distance”, and “long distance” is illustrated, but the configuration is limited to this configuration.
  • the inter-vehicle distance may be classified into two or four or more.
  • the target lateral position or turning start position is corrected according to the actual inter-vehicle distance value. Also good.
  • control device 10 performs control to move the host vehicle in the vehicle width direction opposite to the approaching vehicle when the distance between the host vehicle and the approaching vehicle is less than a predetermined distance.
  • the timing for moving the own vehicle in the vehicle width direction opposite to the approaching vehicle as the inter-vehicle distance between the own vehicle and the preceding vehicle is shorter. Can be fast.
  • the control device 10 performs control to return the host vehicle to the center position of the traveling lane when the distance between the host vehicle and the approaching vehicle is equal to or greater than a predetermined distance, the distance between the host vehicle and the preceding vehicle is determined. By setting the predetermined distance longer as the distance is shorter, the timing of moving the host vehicle to the center position side of the traveling lane can be delayed as the inter-vehicle distance between the host vehicle and the preceding vehicle is shorter.
  • a travel control device 100 including a control device 10 that executes a target information acquisition function and a control function will be described as an example.
  • the present invention is not limited to this.
  • the travel control device 100 further including the output devices 30 and 110 will be described as an example.
  • the present invention is not limited to this.

Abstract

A travel control device provided with an acquisition means 10 that acquires information including the positions of an object to be avoided that is present around a host vehicle and a preceding vehicle traveling in the lane of the host vehicle, and a control means 10 for causing the host vehicle, when passing the side of the object to be avoided, to move to a control direction side on the opposite side from the side on which the object to be avoided is present with reference to the direction in which the host vehicle is travelling, characterized in that the control means 10 decreases the amount of movement of the host vehicle to the control direction side as the vehicle-to-vehicle distance between the host vehicle and the preceding vehicle when the host vehicle passes the side of the object to be avoided becomes shorter.

Description

走行制御装置および走行制御方法Travel control device and travel control method
 本発明は、車両の走行を制御する走行制御装置および走行制御方法に関する。 The present invention relates to a travel control device and a travel control method for controlling travel of a vehicle.
 従来より、自車両の左側方または右側方に、自車両に接近する接近車両が存在する場合に、接近車両から離れるように、自車両の進行方向を基準として接近車両が存在する側とは反対側に自車両を移動させる技術が知られている(たとえば特許文献1)。 Conventionally, when there is an approaching vehicle approaching the host vehicle on the left side or the right side of the host vehicle, it is opposite to the side where the approaching vehicle exists based on the traveling direction of the host vehicle so as to leave the approaching vehicle. A technique for moving the host vehicle to the side is known (for example, Patent Document 1).
特開2013-91401号公報JP 2013-91401 A
 しかしながら、従来技術では、自車両が接近車両を追い越す度、あるいは、自車両が接近車両に追い越される度に、自車両の進行方向を基準として接近車両が存在する側とは反対側に自車両を移動させることとなる。そのため、自車両の左右に接近車両が複数存在し、かつ、自車両の前方に先行車両が存在する場合には、先行車両の運転者からは、自車両が走行位置を左右に頻繁に変えているように見えてしまい、先行車両の運転者に、自車両の挙動に対して違和感を与えてしまう場合があった。 However, in the prior art, every time the own vehicle overtakes the approaching vehicle, or every time the own vehicle is overtaken by the approaching vehicle, the own vehicle is placed on the side opposite to the side where the approaching vehicle exists on the basis of the traveling direction of the own vehicle. It will be moved. Therefore, when there are a plurality of approaching vehicles on the left and right sides of the own vehicle and there is a preceding vehicle in front of the own vehicle, the driver of the preceding vehicle frequently changes the traveling position to the left and right. In some cases, the driver of the preceding vehicle may feel uncomfortable with respect to the behavior of the host vehicle.
 本発明が解決しようとする課題は、先行車両が存在する場合に、先行車両の運転者に与える違和感を軽減できる走行制御装置を提供することである。 The problem to be solved by the present invention is to provide a travel control device that can reduce the uncomfortable feeling given to the driver of the preceding vehicle when the preceding vehicle exists.
 本発明は、自車両が回避対象の側方を通過する際に、自車両の進行方向を基準として回避対象が存在する側とは反対側の制御方向側に自車両を移動させる走行制御装置において、自車両が回避対象の側方を通過する際に、自車両と先行車両との車間距離が短いほど、制御方向側への移動量を小さくすることで、上記課題を解決する。 The present invention relates to a travel control device that moves a host vehicle in a control direction side opposite to a side where the avoidance target exists when the host vehicle passes by a side of the avoidance target. When the host vehicle passes by the side to be avoided, the amount of movement in the control direction is reduced as the distance between the host vehicle and the preceding vehicle is shorter.
 本発明によれば、自車両と先行車両との車間距離が短いほど、自車両が回避対象の側方を通過する際の制御方向側への移動量を小さくすることができるため、回避対象の側方を通過する際の自車両の挙動に対する、先行車両の運転者の違和感を軽減することができる。 According to the present invention, the shorter the inter-vehicle distance between the host vehicle and the preceding vehicle, the smaller the amount of movement in the control direction when the host vehicle passes the side of the avoidance target. It is possible to reduce the driver's uncomfortable feeling with respect to the behavior of the own vehicle when passing the side.
本実施形態に係る走行制御システムのブロック構成図である。It is a block block diagram of the traveling control system concerning this embodiment. 対象領域の設定方法を説明するための図である。It is a figure for demonstrating the setting method of an object area | region. 複数の接近車両が存在する場合に設定される目標経路の一例を示す図である。It is a figure which shows an example of the target path | route set when a some approaching vehicle exists. 第1実施形態における、自車両と先行車両との車間距離と、自車両の車幅方向への移動量との関係を説明するための図である。It is a figure for demonstrating the relationship between the distance between the own vehicle and a preceding vehicle, and the moving amount | distance to the vehicle width direction of the own vehicle in 1st Embodiment. 本実施形態に係る走行制御処理を示すフローチャートである。It is a flowchart which shows the traveling control process which concerns on this embodiment. 第1実施形態におけるステップS105の目標座標算出処理を示すフローチャートである。It is a flowchart which shows the target coordinate calculation process of step S105 in 1st Embodiment. 第2実施形態における、自車両と先行車両との車間距離と、自車両の車幅方向への移動量との関係を説明するための図である。It is a figure for demonstrating the relationship between the distance between the own vehicle and the preceding vehicle, and the moving amount | distance to the vehicle width direction of the own vehicle in 2nd Embodiment. 第2実施形態におけるステップS105の目標座標算出処理を示すフローチャートである。It is a flowchart which shows the target coordinate calculation process of step S105 in 2nd Embodiment. 第3実施形態における、自車両と先行車両との車間距離の特定方法を説明するための図である。It is a figure for demonstrating the identification method of the inter-vehicle distance of the own vehicle and a preceding vehicle in 3rd Embodiment. 第3実施形態におけるステップS105の目標座標算出処理を示すフローチャートである。It is a flowchart which shows the target coordinate calculation process of step S105 in 3rd Embodiment.
 以下、本発明の実施形態を図面に基づいて説明する。本実施形態では、本発明に係る車両の走行制御装置を、車両に搭載された走行制御システムに適用した場合を例にして説明する。本発明の走行制御装置の実施の形態は限定されず、車両側と情報の授受が可能な携帯端末装置に適用することもできる。走行制御装置、走行制御システム、及び携帯端末装置は、いずれも演算処理を実行するコンピュータである。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a case where the vehicle travel control apparatus according to the present invention is applied to a travel control system mounted on a vehicle will be described as an example. The embodiment of the travel control device of the present invention is not limited, and can be applied to a mobile terminal device capable of exchanging information with the vehicle side. The travel control device, the travel control system, and the mobile terminal device are all computers that execute arithmetic processing.
 《第1実施形態》
 図1は、走行制御システム1のブロック構成を示す図である。本実施形態の走行制御システム1は、車両に搭載され、走行制御装置100と車載装置200とを備える。
<< First Embodiment >>
FIG. 1 is a diagram showing a block configuration of the travel control system 1. The travel control system 1 of this embodiment is mounted on a vehicle and includes a travel control device 100 and an in-vehicle device 200.
 本実施形態の走行制御装置100は、自車両が走行している車線を認識し、車線のレーンマークの位置と自車両の位置とが所定の関係を維持するように、自車両の動きを制御する車線逸脱防止機能(レーンキープサポート機能)を備える。本実施形態の走行制御装置100は車線の中央を自車両が走行するように、自車両の動きを制御する。走行制御装置100は、車線のレーンマークから自車両までの路幅方向に沿う距離が所定値域となるように、自車両の動きを制御してもよい。
 本実施形態におけるレーンマーカは、車線を規定する機能を有するものであれば限定されず、路面に描かれた線図であってもよいし、道路の間に存在する植栽であってもよいし、道路の路肩側に存在するガードレール、縁石、歩道、二輪車専用道路などの道路構造物であってもよい。また、道路の路肩側に存在する看板、標識、店舗、街路樹などの不動の物体であってもよい。これらのレーンマーカの検出手法は限定されず、本願出願時に知られたパターンマッチングなどの各種の手法を用いることができる。
 走行制御装置100は通信装置20を有し、車載装置200は通信装置40を有し、両装置は有線通信又は無線通信により互いに情報の授受を行う。
The travel control device 100 according to the present embodiment recognizes the lane in which the host vehicle is traveling, and controls the movement of the host vehicle so that the position of the lane mark on the lane and the position of the host vehicle maintain a predetermined relationship. Lane departure prevention function (lane keep support function). The travel control device 100 of this embodiment controls the movement of the host vehicle so that the host vehicle travels in the center of the lane. The travel control device 100 may control the movement of the host vehicle so that the distance along the road width direction from the lane mark of the lane to the host vehicle falls within a predetermined value range.
The lane marker in the present embodiment is not limited as long as it has a function of defining a lane, and may be a diagram drawn on a road surface or planting existing between roads. Further, it may be a road structure such as a guardrail, a curb, a sidewalk, or a motorcycle-only road existing on the shoulder side of the road. Further, it may be a stationary object such as a signboard, a sign, a store, a roadside tree, etc. existing on the shoulder side of the road. The detection method of these lane markers is not limited, and various methods such as pattern matching known at the time of filing this application can be used.
The travel control device 100 has a communication device 20, the in-vehicle device 200 has a communication device 40, and both devices exchange information with each other by wired communication or wireless communication.
 まず、車載装置200について説明する。
 本実施形態の車載装置200は、検出装置50と、センサ60と、車両コントローラ70と、駆動装置80と、操舵装置90と、出力装置110と、ナビゲーション装置120とを備える。車載装置200を構成する各装置は、相互に情報の授受を行うためにCAN(Controller Area Network)その他の車載LANによって接続されている。
First, the in-vehicle device 200 will be described.
The in-vehicle device 200 of the present embodiment includes a detection device 50, a sensor 60, a vehicle controller 70, a drive device 80, a steering device 90, an output device 110, and a navigation device 120. The devices constituting the in-vehicle device 200 are connected by a CAN (Controller Area Network) or other in-vehicle LAN in order to exchange information with each other.
 以下、車載装置200を構成する各装置についてそれぞれ説明する。
 検出装置50は、自車両が回避するべき回避対象の存在及びその存在位置を検出する。特に限定されないが、本実施形態の検出装置50はカメラ51を含む。本実施形態のカメラ51は、例えばCCD等の撮像素子を備えるカメラである。本実施形態のカメラ51は自車両に設置され、自車両の周囲を撮像し、自車両の周囲に存在する回避対象を含む画像データを取得する。なお、本実施形態で説明する「回避対象」の具体例等については後述する。
Hereinafter, each device constituting the in-vehicle device 200 will be described.
The detection device 50 detects the presence of an avoidance target that should be avoided by the host vehicle and the location of the avoidance target. Although not particularly limited, the detection device 50 of the present embodiment includes a camera 51. The camera 51 of the present embodiment is a camera including an image sensor such as a CCD. The camera 51 of this embodiment is installed in the own vehicle, images the surroundings of the own vehicle, and acquires image data including the avoidance target existing around the own vehicle. A specific example of “avoidance target” described in this embodiment will be described later.
 検出装置50は、取得した画像データを処理し、自車両に対する回避対象の位置に基づいて、自車両から回避対象までの距離を算出する。検出装置50は、回避対象の位置の経時的な変化から自車両と回避対象との相対速度、自車両と回避対象との相対加速度を対象情報として算出する。画像データに基づく自車両と他車両との位置関係の導出処理、その経時的な変化量に基づく速度情報の導出処理については、本願出願時に知られている手法を適宜に用いることができる。 The detection device 50 processes the acquired image data and calculates the distance from the own vehicle to the avoidance target based on the position of the avoidance target with respect to the own vehicle. The detection device 50 calculates, as target information, the relative speed between the host vehicle and the avoidance target and the relative acceleration between the host vehicle and the avoidance target from the temporal change in the position of the avoidance target. For the process of deriving the positional relationship between the host vehicle and the other vehicle based on the image data and the process of deriving the speed information based on the change over time, the method known at the time of filing this application can be used as appropriate.
 また、検出装置50は、画像データを解析し、その解析結果に基づいて回避対象の種別を識別してもよい。検出装置50は、パターンマッチング技術などを用いて、画像データに含まれる回避対象が、車両であるか、歩行者であるか、標識であるかを識別できる。また、検出装置50は、画像データから対象物の像を抽出し、その像の大きさや形状から対象物の具体的な種別(四輪車、二輪車、バス、トラック、工事車両など)、車種(小型車、大型車)を識別できる。さらに、検出装置50は、画像データに含まれるナンバープレートに表記された識別子から、その車両の種別、車種を識別することができる。この識別情報は、対象領域の設定処理において用いることができる。 Further, the detection device 50 may analyze the image data and identify the type of the avoidance target based on the analysis result. The detection device 50 can identify whether the avoidance target included in the image data is a vehicle, a pedestrian, or a sign using a pattern matching technique or the like. Further, the detection device 50 extracts an image of the object from the image data, and based on the size and shape of the image, the specific type of the object (four-wheeled vehicle, two-wheeled vehicle, bus, truck, construction vehicle, etc.), vehicle type ( Small cars and large cars). Furthermore, the detection device 50 can identify the type and model of the vehicle from the identifiers written on the license plate included in the image data. This identification information can be used in the target area setting process.
 なお、本実施形態の検出装置50はレーダー装置52を用いてもよい。レーダー装置52としては、ミリ波レーダー、レーザーレーダー、超音波レーダーなどの出願時に知られた方式のものを用いることができる。 Note that the radar apparatus 52 may be used as the detection apparatus 50 of the present embodiment. As the radar device 52, a system known at the time of filing such as a millimeter wave radar, a laser radar, and an ultrasonic radar can be used.
 このように検出された少なくとも回避対象の位置を含む対象情報は、走行制御装置100側へ送出される。検出装置50は、回避対象の位置の変化から求めた自車両と回避対象との相対速度情報、相対加速度情報、回避対象の種別情報、回避対象が車両である場合には車種などの情報を対象情報に含めて、走行制御装置100側へ送出してもよい。 The target information including at least the position of the avoidance target detected in this way is sent to the traveling control device 100 side. The detection device 50 targets information such as relative speed information, relative acceleration information, type information of the avoidance target, and type of vehicle when the avoidance target is a vehicle, which is obtained from a change in the position of the avoidance target. It may be included in the information and sent to the travel control device 100 side.
 なお、本実施形態における「回避対象」は、自車両がそのものを避けて(接近しすぎないように)走行するべき対象である。検出装置50は、自車両と所定の位置関係を有する対象を回避対象として検出する。たとえば、検出装置50は、自車両の周囲に存在する物体等であって、自車両から所定距離以内に存在するものを回避対象として検出することができる。 It should be noted that the “avoidance target” in the present embodiment is an object on which the host vehicle should travel avoiding itself (so as not to approach too much). The detection device 50 detects an object having a predetermined positional relationship with the host vehicle as an avoidance object. For example, the detection device 50 can detect an object or the like existing around the host vehicle that is within a predetermined distance from the host vehicle as an avoidance target.
 本実施形態の回避対象は、静止物と移動物を含む。静止している回避対象としては、駐車中の他車両、停車中の他車両、歩道、中央分離帯、ガードレールなどの道路構造物、標識,電柱などの道路設置物、落下物や除雪された雪などの道路の載置物など、車両の走行の障害となる物体が含まれる。移動する回避対象としては、他車両、歩行者が含まれる。他車両としては、自車両の後方車両、対向車両が含まれる。車両としては、自転車、バイクなどの二輪車、バス,トラックなどの大型車両、トレーラ、クレーン車などの特殊車両が含まれる。さらに、回避対象としては、工事現場、路面の損傷エリア、水溜りなど、物体が存在しないものの自車両が回避すべき対象を含む。また、回避対象には、路肩や白線などの自車両が走行する車線の端部も含まれる。 The avoidance target of this embodiment includes a stationary object and a moving object. The stationary avoidance targets include other parked vehicles, other parked vehicles, road structures such as sidewalks, median strips, guardrails, road installations such as signs and utility poles, fallen objects and snow removed. An object that obstructs driving of the vehicle, such as an object placed on the road, is included. Other vehicles and pedestrians are included as moving avoidance targets. Other vehicles include vehicles behind the host vehicle and oncoming vehicles. Examples of vehicles include motorcycles such as bicycles and motorcycles, large vehicles such as buses and trucks, and special vehicles such as trailers and crane vehicles. Further, the avoidance targets include objects that the host vehicle should avoid, such as a construction site, a damaged area of a road surface, and a puddle, although there is no object. In addition, the avoidance target includes an end portion of a lane in which the host vehicle travels such as a road shoulder or a white line.
 本実施形態のセンサ60は、操舵角センサ61、車速センサ62を備える。操舵角センサ61は、自車両の操舵量、操舵速度、操舵加速度などの自車両の操舵に関する操舵情報を検出し、車両コントローラ70、走行制御装置100へ送出する。車速センサ62は、自車両の車速、加速度を検出し、車両コントローラ70、走行制御装置100へ送出する。 The sensor 60 of this embodiment includes a steering angle sensor 61 and a vehicle speed sensor 62. The steering angle sensor 61 detects steering information related to the steering of the host vehicle such as the steering amount, the steering speed, and the steering acceleration of the host vehicle, and sends it to the vehicle controller 70 and the travel control device 100. The vehicle speed sensor 62 detects the vehicle speed and acceleration of the host vehicle and sends them to the vehicle controller 70 and the travel control device 100.
 本実施形態の車両コントローラ70は、エンジンコントロールユニット(Engine Control Unit, ECU)などの車載コンピュータであり、車両の運転状態を電子的に制御する。本実施形態の車両としては、電動モータを走行駆動源として備える電気自動車、内燃機関を走行駆動源として備えるエンジン自動車、電動モータ及び内燃機関の両方を走行駆動源として備えるハイブリッド自動車を例示することができる。なお、電動モータを走行駆動源とする電気自動車やハイブリッド自動車には、二次電池を電動モータの電源とするタイプや燃料電池を電動モータの電源とするタイプのものも含まれる。 The vehicle controller 70 of the present embodiment is an in-vehicle computer such as an engine control unit (Engine Control Unit, ECU), and electronically controls the driving state of the vehicle. Examples of the vehicle of the present embodiment include an electric vehicle including an electric motor as a travel drive source, an engine vehicle including an internal combustion engine as a travel drive source, and a hybrid vehicle including both the electric motor and the internal combustion engine as a travel drive source. it can. Note that electric vehicles and hybrid vehicles using an electric motor as a driving source include a type using a secondary battery as a power source for the electric motor and a type using a fuel cell as a power source for the electric motor.
 本実施形態の駆動装置80は、自車両V1の駆動機構を備える。駆動機構には、上述した走行駆動源である電動モータ及び/又は内燃機関、これら走行駆動源からの出力を駆動輪に伝達するドライブシャフトや自動変速機を含む動力伝達装置、及び車輪を制動する制動装置などが含まれる。駆動装置80は、運転者のアクセル操作及びブレーキ操作による入力信号、車両コントローラ70又は走行制御装置100から取得した制御信号に基づいてこれら駆動機構の各制御信号を生成し、車両の加減速を含む走行制御を実行する。駆動装置80に指令情報を送出することにより、車両の加減速を含む走行制御を自動的に行うことができる。なお、ハイブリッド自動車の場合には、車両の走行状態に応じた電動モータと内燃機関とのそれぞれに出力するトルク配分も駆動装置80に送出される。 The drive device 80 of this embodiment includes a drive mechanism for the host vehicle V1. The drive mechanism includes an electric motor and / or an internal combustion engine that are the above-described travel drive sources, a power transmission device including a drive shaft and an automatic transmission that transmits output from these travel drive sources to the drive wheels, and brakes the wheels. A braking device is included. The drive device 80 generates control signals for these drive mechanisms based on input signals from the driver's accelerator operation and brake operation, and control signals acquired from the vehicle controller 70 or the travel control device 100, and includes acceleration and deceleration of the vehicle. Run control. By sending the command information to the driving device 80, it is possible to automatically perform traveling control including acceleration / deceleration of the vehicle. In the case of a hybrid vehicle, torque distribution output to each of the electric motor and the internal combustion engine corresponding to the traveling state of the vehicle is also sent to the drive device 80.
 本実施形態の操舵装置90は、ステアリングアクチュエータを備える。ステアリングアクチュエータは、ステアリングのコラムシャフトに取り付けられるモータ等を含む。操舵装置90は、車両コントローラ70から取得した制御信号、又は運転者のステアリング操作により入力信号に基づいて車両の転回制御を実行する。車両コントローラ70は、操舵量を含む指令情報を操舵装置90に送出することにより、転回制御を実行する。また、走行制御装置100は、車両の各輪の制動量をコントロールすることにより転回制御を実行してもよい。この場合、車両コントローラ70は、各輪の制動量を含む指令情報を制動装置81へ送出することにより、車両の転回制御を実行する。 The steering device 90 of this embodiment includes a steering actuator. The steering actuator includes a motor and the like attached to the column shaft of the steering. The steering device 90 executes turning control of the vehicle based on the control signal acquired from the vehicle controller 70 or the input signal by the driver's steering operation. The vehicle controller 70 executes turn control by sending command information including the steering amount to the steering device 90. Moreover, the traveling control apparatus 100 may execute the turn control by controlling the braking amount of each wheel of the vehicle. In this case, the vehicle controller 70 executes turn control of the vehicle by sending command information including the braking amount of each wheel to the braking device 81.
 本実施形態のナビゲーション装置120は、自車両の現在位置から目的地までの経路を算出し、後述する出力装置110を介して経路案内情報を出力する。ナビゲーション装置120は、位置検出装置121と、道路種別、道路幅、道路形状その他の道路情報122と、道路情報122が各地点に対応づけられた地図情報123とを有する。本実施形態の位置検出装置121は、グローバル・ポジショニング・システム(Global Positioning System, GPS)を備え、走行中の車両の走行位置(緯度・経度)を検出する。ナビゲーション装置120は、位置検出装置121により検出された自車両の現在位置に基づいて、自車両が走行する道路リンクを特定する。本実施形態の道路情報122は、各道路リンクの識別情報ごとに、道路種別、道路幅、道路形状、追い越しの可否(隣接車線への進入の可否)その他の道路に関する情報を対応づけて記憶する。そして、ナビゲーション装置120は、道路情報122を参照し、自車両が走行する道路リンクが属する道路に関する情報を取得し、走行制御装置100へ送出する。自車両が走行する道路種別、道路幅、道路形状は、走行制御処理において、自車両が走行する目標経路の算出に用いられる。 The navigation device 120 according to the present embodiment calculates a route from the current position of the host vehicle to the destination, and outputs route guidance information via the output device 110 described later. The navigation device 120 includes a position detection device 121, road type, road width, road shape, and other road information 122, and map information 123 in which the road information 122 is associated with each point. The position detection device 121 of this embodiment includes a global positioning system (Global Positioning System, GPS), and detects a traveling position (latitude / longitude) of a traveling vehicle. The navigation device 120 specifies a road link on which the host vehicle travels based on the current position of the host vehicle detected by the position detection device 121. The road information 122 of the present embodiment stores the road type, road width, road shape, passability (possibility of entry into adjacent lanes), and other road-related information for each road link identification information. . And the navigation apparatus 120 acquires the information regarding the road to which the road link where the own vehicle drive | works refers with reference to the road information 122, and sends it out to the traveling control apparatus 100. The road type, road width, and road shape on which the host vehicle travels are used for calculating a target route on which the host vehicle travels in the travel control process.
 また、本実施形態に係るナビゲーション装置120は、運転者が情報を入力するための入力装置124を備えている。このような入力装置124としては、たとえば、ディスプレイ画面上に配置されるタッチパネルまたはジョイスティックなどのユーザの手操作による入力が可能な装置、あるいは、マイクなどのユーザの発話音声による入力が可能な装置が挙げられる。 Further, the navigation device 120 according to the present embodiment includes an input device 124 for a driver to input information. As such an input device 124, for example, a device that can be input by a user's manual operation such as a touch panel or a joystick arranged on a display screen, or a device that can be input by a user's spoken voice such as a microphone. Can be mentioned.
 本実施形態の出力装置110は、走行支援に関する各種の情報をユーザ又は周囲の車両の乗員に向けて出力する。本実施形態において、出力装置110は、対象情報に応じた情報、対象領域の位置に応じた情報、目標経路の位置に応じた情報、及び目標経路上を自車両に走行させる指令情報に応じる情報のうち、何れか一つ以上を出力する。本実施形態の出力装置110は、ディスプレイ111、スピーカ112、車室外ランプ113、車室内ランプ114を含む。車室外ランプ113は、ヘッドライト、ウィンカランプ、ブレーキランプを含む。車室内ランプ114は、インジケータの点灯表示、ディスプレイ111の点灯表示、その他ステアリングに設けられたランプや、ステアリング周囲に設置されたランプを含む。また、本実施形態の出力装置110は、通信装置40を介して、高度道路交通システム(Intelligent Transport Systems:ITS)などの外部装置に走行支援に関する各種の情報を出力してもよい。高度道路交通システムなどの外部装置は、車両の速度、操舵情報、走行経路などを含む走行支援に関する情報を、複数の車両の交通管理に用いる。 The output device 110 according to the present embodiment outputs various types of information related to driving support to the user or a passenger in the surrounding vehicle. In the present embodiment, the output device 110 includes information according to target information, information according to the position of the target area, information according to the position of the target route, and information according to command information that causes the host vehicle to travel on the target route. Any one or more of them are output. The output device 110 according to the present embodiment includes a display 111, a speaker 112, a vehicle exterior lamp 113, and a vehicle interior lamp 114. The vehicle exterior lamp 113 includes a headlight, a blinker lamp, and a brake lamp. The vehicle interior lamp 114 includes an indicator lighting display, a display 111 lighting indication, other lamps provided on the steering wheel, and lamps provided around the steering wheel. Further, the output device 110 according to the present embodiment may output various types of information related to driving support to an external device such as an intelligent transportation system (ITS) via the communication device 40. An external device such as an intelligent road traffic system uses information related to travel support including vehicle speed, steering information, travel route, and the like for traffic management of a plurality of vehicles.
 情報の具体的な出力態様を、自車両の左側前方に回避対象としての駐車車両が存在する場合を例にして説明する。
 出力装置110は、対象情報に応じた情報として、駐車車両が存在する方向や位置を自車両の乗員に提供する。ディスプレイ111は、駐車車両が存在する方向や位置を視認可能な態様で表示する。スピーカ112は「左側前方に駐車車両が存在します」といった駐車車両が存在する方向や位置を伝えるテキストを発話出力する。車室外ランプ113である左右のドアミラーに設けられたランプのうち、左側のランプのみを点滅させて、左側前方に駐車車両が存在することを自車両の乗員に知らせてもよい。車室内ランプ114であるステアリング近傍の左右に設けられたランプのうち、左側のランプのみを点滅させて、左側前方に駐車車両が存在することを乗員に知らせてもよい。
A specific information output mode will be described by taking as an example a case where there is a parked vehicle to be avoided in front of the left side of the host vehicle.
The output device 110 provides the occupant of the own vehicle with the direction and position where the parked vehicle exists as information corresponding to the target information. The display 111 displays the direction and position where the parked vehicle exists in a visible manner. The speaker 112 utters and outputs a text indicating the direction and position of the parked vehicle, such as “There is a parked vehicle in front of the left side”. Of the lamps provided on the left and right door mirrors that are the vehicle exterior lamps 113, only the left lamp may be blinked to notify the occupant of the host vehicle that a parked vehicle is present in front of the left side. Of the lamps provided on the left and right in the vicinity of the steering wheel, which is the vehicle interior lamp 114, only the left lamp may blink to notify the occupant that there is a parked vehicle in front of the left side.
 また、対象領域の位置に応じた情報として、対象領域の設定方向や設定位置を、出力装置110を介して出力してもよい。先述したように、対象領域が左側前方に設定されたことを、ディスプレイ111、スピーカ112、車室外ランプ113、車室内ランプ114により乗員に知らせることができる。 Further, the setting direction and the setting position of the target area may be output via the output device 110 as information corresponding to the position of the target area. As described above, the display 111, the speaker 112, the vehicle exterior lamp 113, and the vehicle interior lamp 114 can inform the occupant that the target area is set to the left front.
 本実施形態では、自車両の動きを他車両の乗員に予め知らせる観点から、対象領域の設定方向や設定位置を、車室外ランプ113を用いて外部に出力する。対象領域が設定されると、対象領域の側方を通過するために自車両の進行方向が変更される(転回が行われる)。対象領域が設定されたことを外部に知らせることにより、対象領域の側方を通過するために自車両の進行方向が変化することを、他車両のドライバに予告できる。例えば、対象領域が左側前方に設定されたときに、右側のウィンカランプ(車室外ランプ113)を点灯させることにより、左側に設定された対象領域の側方を通過するために自車両が右側に移動することを外部の他車両等に知らせることができる。 In the present embodiment, the setting direction and setting position of the target area are output to the outside using the outside lamp 113 from the viewpoint of informing the passengers of other vehicles of the movement of the host vehicle in advance. When the target area is set, the traveling direction of the host vehicle is changed to pass the side of the target area (turning is performed). By notifying the outside that the target area has been set, it is possible to notify the driver of another vehicle that the traveling direction of the host vehicle changes in order to pass the side of the target area. For example, when the target area is set to the front left side, the right turn signal lamp (outside cabin lamp 113) is turned on so that the host vehicle moves to the right side to pass the side of the target area set on the left side. It is possible to notify an external vehicle or the like that the vehicle is moving.
 さらに、目標経路の位置に応じた情報として、目標経路の形状や曲点の位置をディスプレイ111、スピーカ112により乗員に知らせることができる。ディスプレイ111は、目標経路の形状等を視認可能な線図として表示する。スピーカ112は、「前方の駐車車両の側方を通過するため、右に転回します」などのアナウンスを出力する。 Further, as information corresponding to the position of the target route, the shape of the target route and the position of the curved point can be notified to the occupant by the display 111 and the speaker 112. The display 111 displays the shape of the target route and the like as a visible diagram. The speaker 112 outputs an announcement such as “turn to the right to pass the side of the parked vehicle ahead”.
 さらにまた、目標経路上を自車両に走行させる指令情報に応じた情報として、転回操作や加減速が実行されることをディスプレイ111、スピーカ112、車室外ランプ113、車室内ランプ114を介して、自車両の乗員又は他車両の乗員に予め知らせる。 Furthermore, through the display 111, the speaker 112, the vehicle exterior lamp 113, and the vehicle interior lamp 114, information indicating that the turning operation and acceleration / deceleration are executed as information corresponding to the command information for causing the vehicle to travel on the target route. Inform the passenger of the own vehicle or the passenger of another vehicle in advance.
 このように、対象領域の側方を通過する際の走行制御に関する情報を出力することにより、自車両及び/又は他車両の乗員に自車両の挙動を予め知らせることができる。出力装置110は、上述した情報を通信装置20を介して高度道路交通システムの外部装置に出力してもよい。これにより、自車両の乗員及び/他車両の乗員は、走行制御される自車両の挙動に応じた対応ができる。 As described above, by outputting the information related to the traveling control when passing the side of the target area, it is possible to notify the occupant of the host vehicle and / or another vehicle of the behavior of the host vehicle in advance. The output device 110 may output the above-described information to an external device of the intelligent transportation system via the communication device 20. Thereby, the passenger | crew of the own vehicle and / or the passenger | crew of another vehicle can respond | correspond according to the behavior of the own vehicle by which traveling control is carried out.
 次いで、本実施形態の走行制御装置100について説明する。 Next, the travel control device 100 of this embodiment will be described.
 図1に示すように、本実施形態の走行制御装置100は、制御装置10と、通信装置20と、出力装置30とを備える。通信装置20は、車載装置200との情報の授受を行う。出力装置30は、先述した車載装置200の出力装置110と同様の機能を有する。走行制御装置100が、乗員が持ち運び可能なコンピュータである場合には、走行制御装置100は、車載装置200の車室外ランプ113、車室内ランプ114の点滅を制御する指令情報を、各装置に出力してもよい。 As shown in FIG. 1, the travel control device 100 of this embodiment includes a control device 10, a communication device 20, and an output device 30. The communication device 20 exchanges information with the in-vehicle device 200. The output device 30 has the same function as the output device 110 of the in-vehicle device 200 described above. When the traveling control device 100 is a computer that can be carried by an occupant, the traveling control device 100 outputs command information for controlling blinking of the exterior lamp 113 and the interior lamp 114 of the in-vehicle device 200 to each device. May be.
 走行制御装置100の制御装置10は、自車両の走行を制御する走行制御情報を提示させるプログラムが格納されたROM(Read Only Memory)12と、このROM12に格納されたプログラムを実行することで、走行制御装置100として機能する動作回路としてのCPU(Central Processing Unit)11と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)13と、を備えるコンピュータである。 The control device 10 of the travel control device 100 executes a ROM (Read Only Memory) 12 in which a program for presenting travel control information for controlling the travel of the host vehicle is stored, and a program stored in the ROM 12. The computer includes a CPU (Central Processing Unit) 11 as an operation circuit that functions as the travel control device 100 and a RAM (Random Access Memory) 13 that functions as an accessible storage device.
 本実施形態に係る走行制御装置100の制御装置10は、自車情報取得機能と、対象情報取得機能と、先行車両追従機能と、車間距離設定機能と、対象領域設定機能と、目標経路設定機能と、制御機能と、提示機能とを有する。本実施形態の制御装置10は、上記機能を実現するためのソフトウェアと、上述したハードウェアの協働により各機能を実行する。 The control device 10 of the travel control device 100 according to the present embodiment includes a host vehicle information acquisition function, a target information acquisition function, a preceding vehicle following function, an inter-vehicle distance setting function, a target area setting function, and a target route setting function. And a control function and a presentation function. The control apparatus 10 of this embodiment performs each function by cooperation of the software for implement | achieving the said function, and the hardware mentioned above.
 以下、本実施形態に係る走行制御装置100の各機能について説明する。
 まず、制御装置10の自車情報取得機能について説明する。自動情報取得機能は、自車両の位置を含む自車情報を取得する。自車両の位置は、ナビゲーション装置120の位置検出装置121により取得できる。自車情報は、自車両の車速、加速度を含む。制御装置10は、自車両の速度を車速センサ62から取得する。自車両の速度は、自車両の位置の経時的な変化に基づいて取得することもできる。自車両の加速度は、自車両の速度から求めることができる。
Hereinafter, each function of the traveling control apparatus 100 according to the present embodiment will be described.
First, the own vehicle information acquisition function of the control device 10 will be described. The automatic information acquisition function acquires own vehicle information including the position of the own vehicle. The position of the host vehicle can be acquired by the position detection device 121 of the navigation device 120. The own vehicle information includes the vehicle speed and acceleration of the own vehicle. The control device 10 acquires the speed of the host vehicle from the vehicle speed sensor 62. The speed of the host vehicle can also be acquired based on the change over time of the position of the host vehicle. The acceleration of the host vehicle can be obtained from the speed of the host vehicle.
 制御装置10の対象情報取得機能について説明する。対象情報取得機能は、自車両が回避すべき回避対象の位置を含む対象情報を取得する。対象情報取得機能は、検出装置50により検出された回避対象の位置を含む対象情報を取得する。また、対象情報には、回避対象の相対位置、回避対象に対する自車両V1の相対速度および相対加速度が含まれる。 The target information acquisition function of the control device 10 will be described. The target information acquisition function acquires target information including a position to be avoided that the host vehicle should avoid. The target information acquisition function acquires target information including the position of the avoidance target detected by the detection device 50. The target information includes the relative position of the avoidance target, the relative speed and the relative acceleration of the host vehicle V1 with respect to the avoidance target.
 回避対象が他車両であり、この他車両と自車両とが車車間通信が可能であれば、自車両の制御装置10は、他車両の車速センサが検出した他車両の車速、加速度を対象情報として取得してもよい。もちろん、制御装置10は、高度道路交通システムの外部装置から他車両の位置、速度、加速度を含む対象情報を取得することもできる。 If the avoidance target is another vehicle, and the other vehicle and the host vehicle are capable of inter-vehicle communication, the control device 10 of the host vehicle detects the vehicle speed and acceleration of the other vehicle detected by the vehicle speed sensor of the other vehicle as target information. You may get as Of course, the control device 10 can also acquire target information including the position, speed, and acceleration of other vehicles from an external device of the intelligent transportation system.
 制御装置10の先行車両追従機能は、自車両が走行する車線を走行し、かつ、自車両よりも前方を走行する先行車両を検出し、先行車両から一定の車間距離を維持するように、自車両の走行を制御する。たとえば、先行車両追従機能は、カメラ51により撮像された撮像画像や、レーダー装置52による検知結果から、先行車両の位置および相対速度を含む情報を取得することで、先行車両を検出する。そして、先行車両追従機能は、先行車両と自車両とが一定の車間距離を維持するように、自車両と先行車両との相対位置や相対速度に基づいて車両コントローラ70を制御することで、自車両の車速および加減速度を制御する。 The preceding vehicle follow-up function of the control device 10 detects the preceding vehicle that travels in the lane in which the host vehicle travels and travels ahead of the host vehicle, and maintains the constant inter-vehicle distance from the preceding vehicle. Control the running of the vehicle. For example, the preceding vehicle following function detects the preceding vehicle by acquiring information including the position and relative speed of the preceding vehicle from the captured image captured by the camera 51 and the detection result by the radar device 52. The preceding vehicle follow-up function controls the vehicle controller 70 based on the relative position and relative speed between the own vehicle and the preceding vehicle so that the preceding vehicle and the own vehicle maintain a constant inter-vehicle distance. Controls the vehicle speed and acceleration / deceleration of the vehicle.
 制御装置10の車間距離設定機能は、先行車両追従機能により先行車両を追従する際の、自車両と先行車両との車間距離を設定する。本実施形態では、ナビゲーション装置120の入力装置124を介して、運転者が所望する自車両と先行車両との車間距離を設定車間距離として入力することが可能となっている。そして、運転者が入力装置124を介して設定車間距離を入力した場合に、車間距離設定機能は、入力された設定車間距離を取得し、取得した設定車間距離を、先行車両追従機能により先行車両を追従する際の車間距離として設定する。たとえば、運転者は、設定車間距離として「短距離」、「中距離」、「長距離」のうちから1つを選択することができ、車間距離設定機能は、いずれか1つの設定車間距離が選択された場合に、選択された設定車間距離に応じた距離を、先行車両を追従する際の車間距離として設定する。これにより、先行車両追従機能は、車間距離設定機能により設定された設定車間距離を維持するように、自車両の走行を制御する。 The inter-vehicle distance setting function of the control device 10 sets the inter-vehicle distance between the host vehicle and the preceding vehicle when the preceding vehicle is followed by the preceding vehicle following function. In the present embodiment, the inter-vehicle distance between the host vehicle and the preceding vehicle desired by the driver can be input as the set inter-vehicle distance via the input device 124 of the navigation device 120. When the driver inputs the set inter-vehicle distance via the input device 124, the inter-vehicle distance setting function acquires the input set inter-vehicle distance, and the acquired set inter-vehicle distance is determined by the preceding vehicle following function. Set as the inter-vehicle distance when following. For example, the driver can select one of “short distance”, “medium distance”, and “long distance” as the set inter-vehicle distance, and the inter-vehicle distance setting function has one of the set inter-vehicle distances. When selected, the distance corresponding to the selected set inter-vehicle distance is set as the inter-vehicle distance when following the preceding vehicle. Thereby, the preceding vehicle follow-up function controls the traveling of the host vehicle so as to maintain the set inter-vehicle distance set by the inter-vehicle distance setting function.
 制御装置10の対象領域設定機能は、自車両の位置と回避対象の位置との関係に基づいて対象領域Rを設定する。図2は、対象領域Rの設定手法の一例を示す図である。図2において、自車両の走行方向Vd1は、図中+y方向であり、自車両が走行する走行車線Ln1の延在方向も、図中+y方向である。また、図2では、自車両が走行する車線Ln1の左側の路肩に駐車された駐車車両V2が検出された場面を上方から見ている。なお、図2に示す場面において、自車両V1は、後方から駐車車両V2に接近し、駐車車両V2の側方を通り、車線Ln1上を走行方向Vd1に向かって走行している。 The target area setting function of the control device 10 sets the target area R based on the relationship between the position of the host vehicle and the position to be avoided. FIG. 2 is a diagram illustrating an example of a method for setting the target region R. In FIG. 2, the traveling direction Vd1 of the host vehicle is the + y direction in the figure, and the extending direction of the traveling lane Ln1 on which the host vehicle travels is also the + y direction in the figure. Moreover, in FIG. 2, the scene where the parked vehicle V2 parked on the left shoulder of the lane Ln1 where the host vehicle travels is detected is viewed from above. In the scene shown in FIG. 2, the host vehicle V1 approaches the parked vehicle V2 from behind, passes through the side of the parked vehicle V2, and travels on the lane Ln1 in the travel direction Vd1.
 たとえば図2に示す例において、検出された駐車車両V2は、自車両V1の車線Ln1に存在し、自車両V1の直進を妨げるため、自車両V1の回避するべき回避対象である。そのため、対象領域設定機能は、自車両V1が走行方向Vd1に沿って駐車車両V2に接近するときに、駐車車両V2を含む範囲を対象領域Rとして設定する。なお、対象領域設定機能は、自車両V1と回避対象である駐車車両V2との距離が所定値未満となることで、自車両V1と駐車車両V2とが接近または接触することを避ける観点から対象領域Rを設定してもよいし、あるいは、自車両V1と駐車車両V2とが適切な距離を保つようにする観点から対象領域Rを設定してもよい。 For example, in the example shown in FIG. 2, the detected parked vehicle V2 exists in the lane Ln1 of the host vehicle V1 and prevents the host vehicle V1 from going straight. Therefore, the target area setting function sets a range including the parked vehicle V2 as the target area R when the host vehicle V1 approaches the parked vehicle V2 along the traveling direction Vd1. Note that the target area setting function is a target from the viewpoint of avoiding that the own vehicle V1 and the parked vehicle V2 approach or come into contact with each other when the distance between the host vehicle V1 and the parked vehicle V2 to be avoided is less than a predetermined value. The region R may be set, or the target region R may be set from the viewpoint of keeping an appropriate distance between the host vehicle V1 and the parked vehicle V2.
 また、対象領域Rは、駐車車両V2の外形に沿った形状としてもよいし、駐車車両V2を内包する形状としてもよい。また、対象領域Rは、駐車車両V2を包含する円形、楕円形、矩形、多角形としてもよい。さらに、対象領域設定機能は、対象領域Rの境界を駐車車両V2の表面(外縁)から所定距離(A)未満として、対象領域Rを狭く設定してもよいし、対象領域Rの境界を、駐車車両V2から離隔させた所定距離B(B>A)以上として、対象領域Rを広く設定してもよい。 Further, the target region R may have a shape that follows the outer shape of the parked vehicle V2, or may have a shape that includes the parked vehicle V2. The target region R may be a circle, an ellipse, a rectangle, or a polygon that includes the parked vehicle V2. Furthermore, the target area setting function may set the target area R to be narrower by setting the boundary of the target area R to be less than a predetermined distance (A) from the surface (outer edge) of the parked vehicle V2, and the boundary of the target area R may be The target area R may be set wider than a predetermined distance B (B> A) separated from the parked vehicle V2.
 図2に示すように、自車両の走行方向Vd1を前方とし、その逆方向を後方として定義した場合において、対象領域Rはその前後に前後端部RL1,RL2を有する。この前後端部RL1,RL2は、自車両が走行する車線Ln1の延在方向(+y)に沿う対象領域Rの長さを規定する端線である。図2に示す対象領域Rの車線Ln1の延在方向(+y)に沿う長さは、前後端部RL1の(y1)と前後端部RL2(y2)の間の距離であるL0である。前後端部RL1,RL2のうち、対象領域Rに接近する自車両V1から見て手前側(上流側)に位置する前後端部を第1端部RL1とする。一方、前後端部RL1,RL2のうち、対象領域Rに接近乃至通過する自車両V1から見て奥手側(下流側)に位置する前後端部を第2端部RL2とする。第1端部RL1と第2端部RL2は、対象領域Rの境界上に位置する。 As shown in FIG. 2, in the case where the traveling direction Vd1 of the host vehicle is defined as the front and the opposite direction is defined as the rear, the target region R has front and rear end portions RL1 and RL2. The front and rear end portions RL1 and RL2 are end lines that define the length of the target region R along the extending direction (+ y) of the lane Ln1 on which the host vehicle travels. The length along the extending direction (+ y) of the lane Ln1 of the target region R shown in FIG. 2 is L0 which is the distance between (y1) of the front and rear end portion RL1 and the front and rear end portion RL2 (y2). Of the front and rear end portions RL1 and RL2, a front and rear end portion positioned on the near side (upstream side) when viewed from the host vehicle V1 approaching the target region R is defined as a first end portion RL1. On the other hand, of the front and rear end portions RL1 and RL2, a front and rear end portion located on the far side (downstream side) when viewed from the own vehicle V1 approaching or passing through the target region R is defined as a second end portion RL2. The first end RL1 and the second end RL2 are located on the boundary of the target region R.
 また、図2に示すように、自車両の車幅方向をVw1(図中X方向)として定義した場合において、対象領域Rはその左右のそれぞれに左右端部RW1,RW2を有する。この左右端部RW1,RW2は、自車両V1との車幅方向に沿う距離を規定する端線(端部)である。また、左右端部RW1,RW2は、自車両が走行する車線Ln1の路幅方向(X)に沿う対象領域の長さ(幅)を規定する端線である。図2に示す対象領域Rの路幅方向に(X)沿う長さは、左右端部RW1(x1)と左右端部RW2(x2)との間の距離であるW0である。左右端部RW1,RW2のうち、自車両が車幅方向に沿って回避対象V2に接近するときに、対象領域Rの左右端部RW1,RW2のうち、自車両V1から見てその自車両V1の側方に位置する左右端部を第1横端部RW1とする。一方、左右端部RW1,RW2のうち、自車両V1から見てその自車両V1の側方とは反対の側方(路肩側)に位置する左右端部を第2横端部RW2とする。第1横端部RW1と第2横端部RW2は、対象領域Rの境界上に位置する。 As shown in FIG. 2, when the vehicle width direction of the host vehicle is defined as Vw1 (X direction in the figure), the target region R has left and right end portions RW1 and RW2 on the left and right sides thereof. The left and right end portions RW1 and RW2 are end lines (end portions) that define a distance along the vehicle width direction from the host vehicle V1. The left and right end portions RW1 and RW2 are end lines that define the length (width) of the target area along the road width direction (X) of the lane Ln1 on which the host vehicle travels. The length along (X) in the road width direction of the target region R shown in FIG. 2 is W0 which is the distance between the left and right end portions RW1 (x1) and the left and right end portions RW2 (x2). When the host vehicle approaches the avoidance target V2 along the vehicle width direction among the left and right end portions RW1 and RW2, the host vehicle V1 when viewed from the host vehicle V1 among the left and right end portions RW1 and RW2 of the target region R. The left and right end portions located on the side of the first horizontal end portion RW1. On the other hand, of the left and right end portions RW1 and RW2, the left and right end portions located on the side (road shoulder side) opposite to the side of the own vehicle V1 when viewed from the own vehicle V1 are defined as the second lateral end portion RW2. The first horizontal end RW1 and the second horizontal end RW2 are located on the boundary of the target region R.
 なお、図2に示すように、自車両V1が走行する車線Ln1の対向車線Ln2を対向走行する他車両V3が存在する場合には、他車両V3は回避対象として検出される。同図には示さないが、他車両V3が回避対象として検出された場合には、同様の手法で、他車両V3を含む範囲が対象領域Rとして設定される。また、対象領域Rは、回避対象を検出したタイミング、つまり自車両V1の転回操作が行われるよりも前のタイミングにおいて設定される。 In addition, as shown in FIG. 2, when there is another vehicle V3 that faces the opposite lane Ln2 of the lane Ln1 on which the host vehicle V1 travels, the other vehicle V3 is detected as an avoidance target. Although not shown in the figure, when the other vehicle V3 is detected as an avoidance target, a range including the other vehicle V3 is set as the target region R by the same method. The target region R is set at a timing when the avoidance target is detected, that is, at a timing before the turning operation of the host vehicle V1 is performed.
 制御装置10の目標経路設定機能は、設定された対象領域Rの境界の位置に基づいて目標経路RTを算出する。ここで、「対象領域Rの位置に基づいて目標経路RTを算出する」とは、対象領域R内に自車両V1が進入しないように目標経路RTを算出してもよいし、対象領域Rと自車両V1の存在領域とが重複する面積が所定値未満となるように目標経路RTを算出してもよいし、対象領域Rの境界線から所定距離だけ離隔した位置を目標経路RTとして算出してもよいし、対象領域Rの境界線を目標経路RTとして算出してもよい。先述したように、対象領域Rは、自車両V1と回避対象との距離が所定値未満とならないように、又は、自車両V1と回避対象との距離が所定閾値に保たれるように設定されるので、結果的に、目標経路RTも自車両V1と回避対象との距離が所定値未満とならない位置に、又は、自車両V1と回避対象との距離が所定閾値に保たれる位置に設定される。 The target route setting function of the control device 10 calculates the target route RT based on the set boundary position of the target region R. Here, “calculating the target route RT based on the position of the target region R” may calculate the target route RT so that the host vehicle V1 does not enter the target region R. The target route RT may be calculated so that the area where the own vehicle V1 exists is less than a predetermined value, or a position separated from the boundary line of the target region R by a predetermined distance is calculated as the target route RT. Alternatively, the boundary line of the target region R may be calculated as the target route RT. As described above, the target region R is set such that the distance between the host vehicle V1 and the avoidance target is not less than a predetermined value, or the distance between the host vehicle V1 and the avoidance target is maintained at a predetermined threshold. Therefore, as a result, the target route RT is also set at a position where the distance between the host vehicle V1 and the avoidance target is not less than a predetermined value, or at a position where the distance between the host vehicle V1 and the avoidance target is maintained at a predetermined threshold. Is done.
 さらに、目標経路設定機能は、図3に示すように、自車両の前方に先行車両が存在する場合には、対象領域Rの境界の位置に基づいて設定した目標経路RTを補正する。ここで、図3に示すように、自車両の走行車線Ln1に隣接する隣接車線Ln2,Ln3に、自車両に接近する複数の接近車両V5~V7が存在する場合には、これら接近車両V5~V7がそれぞれ回避対象となる。そのため、自車両V1が接近車両V5~V7に接近する度に、自車両V1の走行位置が左右(車幅方向)に変位するように、目標経路RTが設定されることとなる。なお、図3は、複数の接近車両が存在する場合に設定される目標経路RTの一例を示す図であり、括弧内に示す各時刻における車両V1、V4~V7の位置を示している。 Furthermore, as shown in FIG. 3, the target route setting function corrects the target route RT set based on the position of the boundary of the target region R when a preceding vehicle exists in front of the host vehicle. Here, as shown in FIG. 3, when there are a plurality of approaching vehicles V5 to V7 approaching the host vehicle in adjacent lanes Ln2 and Ln3 adjacent to the traveling lane Ln1 of the host vehicle, these approaching vehicles V5 to Vn V7 is an avoidance target. Therefore, every time the host vehicle V1 approaches the approaching vehicles V5 to V7, the target route RT is set so that the travel position of the host vehicle V1 is displaced left and right (vehicle width direction). FIG. 3 is a diagram showing an example of the target route RT set when there are a plurality of approaching vehicles, and shows the positions of the vehicles V1, V4 to V7 at each time shown in parentheses.
 すなわち、図3に示す例では、自車両V1の左側の隣接車線Ln3を走行する接近車両V5,V7が自車両V1よりも車速が遅いため、自車両V1が接近車両V5,V7を追い越すとともに、自車両V1の右側の隣接車線Ln2を走行する接近車両V6が自車両V1よりも車速が速いため、自車両V1が接近車両V6に追い越される場面を例示している。そのため、図3に示す例において、目標経路設定機能は、時刻t1において自車両V1が接近車両V5を追い越す際に、接近車両V5の側方を通過するために、自車両V1が接近車両V5とは反対側の車幅方向右側(-x側)に移動するように、目標経路RTを設定する。また、目標経路設定機能は、時刻2において自車両V1が接近車両V6に追い越される際に、接近車両V6の側方を通過するために、自車両V1が接近車両V6とは反対側の車幅方向左側(+x側)に移動するように、目標経路RTを設定する。さらに、時刻t3において自車両V1が接近車両V7を追い越す際には、接近車両V7の側方を通過するために、自車両V1が接近車両V7とは反対側の車幅方向左側(-x側)に移動するように、目標経路RTを設定する。同様に、目標経路設定機能は、隣接車線を走行する接近車両と接近する際に、自車両V1が左右(車幅方向)に移動するように、目標経路RTを設定する。 That is, in the example shown in FIG. 3, the approaching vehicles V5, V7 traveling on the adjacent lane Ln3 on the left side of the host vehicle V1 have a slower vehicle speed than the host vehicle V1, so the host vehicle V1 overtakes the approaching vehicles V5, V7, Since the approaching vehicle V6 traveling on the adjacent lane Ln2 on the right side of the host vehicle V1 has a higher vehicle speed than the host vehicle V1, the scene where the host vehicle V1 is overtaken by the approaching vehicle V6 is illustrated. Therefore, in the example shown in FIG. 3, when the own vehicle V1 passes the approaching vehicle V5 at the time t1, the own vehicle V1 and the approaching vehicle V5 pass through the side of the approaching vehicle V5. Sets the target route RT so as to move to the right side (−x side) in the vehicle width direction on the opposite side. Further, the target route setting function is such that when the host vehicle V1 is overtaken by the approaching vehicle V6 at time 2, the vehicle width of the host vehicle V1 on the side opposite to the approaching vehicle V6 is exceeded. The target route RT is set so as to move to the left side (+ x side) in the direction. Further, when the host vehicle V1 passes the approaching vehicle V7 at time t3, the host vehicle V1 passes by the side of the approaching vehicle V7, so that the host vehicle V1 is on the left side in the vehicle width direction (−x side) opposite to the approaching vehicle V7. ) To set the target route RT. Similarly, the target route setting function sets the target route RT so that the host vehicle V1 moves left and right (vehicle width direction) when approaching an approaching vehicle traveling in an adjacent lane.
 これにより、本実施形態では、自車両V1が接近車両と接近するたびに、自車両V1の走行位置が左右(車幅方向)に変位することとなる。一方、このように、自車両V1の走行位置が左右に変位する場合、先行車両V4の運転者は、自車両V1の挙動を不審に思い、先行車両V4の運転者に、自車両V1の挙動に対して余計な注意を払わせてしまう場合がある。また、自車両V1と先行車両V4とが比較的接近している場合には、自車両V1の走行位置が左右(車幅方向)に繰り返し移動することで、先行車両V4の運転者に、自車両V1が先行車両V4を、いわゆる「煽っている」ように感じさせてしまう場合もある。 Thus, in the present embodiment, every time the host vehicle V1 approaches the approaching vehicle, the traveling position of the host vehicle V1 is displaced to the left and right (vehicle width direction). On the other hand, when the travel position of the host vehicle V1 is displaced to the left and right in this way, the driver of the preceding vehicle V4 is suspicious of the behavior of the host vehicle V1, and the driver of the preceding vehicle V4 is asked to May cause extra attention. When the host vehicle V1 and the preceding vehicle V4 are relatively close to each other, the traveling position of the host vehicle V1 repeatedly moves left and right (vehicle width direction), so that the driver of the preceding vehicle V4 can In some cases, the vehicle V1 may make the preceding vehicle V4 feel like a so-called “whispering”.
 そこで、本実施形態において、目標経路設定機能は、図3に示すように、先行車両V4が存在する場合には、自車両V1と先行車両V4との車間距離が短いほど、回避対象である接近車両V5~V7の側方を通過する際の車幅方向への移動量が小さくなるように、目標経路RTを補正する。なお、自車両V1と先行車両V4との車間距離に基づく走行制御の方法の詳細については後述する。 Therefore, in the present embodiment, as shown in FIG. 3, when the preceding vehicle V4 exists, the target route setting function is an approach to be avoided as the inter-vehicle distance between the host vehicle V1 and the preceding vehicle V4 is shorter. The target route RT is corrected so that the amount of movement in the vehicle width direction when passing the sides of the vehicles V5 to V7 is small. In addition, the detail of the method of the traveling control based on the distance between the own vehicle V1 and the preceding vehicle V4 is mentioned later.
 制御装置10の制御機能は、自車両V1に目標経路RTを走行させるための指令情報を、車両側の車両コントローラ70、駆動装置80、および操舵装置90に出力する。制御装置10から指令情報を取得した車両コントローラ70は、駆動装置80及び操舵装置90を制御して、目標経路RTに沿って自車両V1を走行させる。車両コントローラ70は、検出装置50により検出された道路形状や、ナビゲーション装置120の道路情報122及び地図情報123が記憶するレーンマーカモデルを用いて、自車両が車線に対して所定の横位置を維持しながら走行するように操舵装置90の制御を行う。車両コントローラ70は、操舵角センサ61から取得した操舵角、車速センサ62から取得した車速、およびステアリングアクチュエータの電流の情報に基づいて、転回制御量を算出し、ステアリングアクチュエータに電流指令を送ることで、自車両が目標の横位置を走行するように制御を行う。
 なお、自車両V1の横位置を制御する方法として、上述した操舵装置90を用いる他、駆動装置80及び/又は制動装置81を用いて左右の駆動輪の回転速度差により自車両V1の走行方向(すなわち、横位置)を制御してもよい。その意味において、車両の「転回」とは、操舵装置90による場合の他、駆動装置80及び/又は制動装置81による場合も含む趣旨である。
The control function of the control device 10 outputs command information for causing the host vehicle V1 to travel on the target route RT to the vehicle controller 70, the drive device 80, and the steering device 90 on the vehicle side. The vehicle controller 70 that has acquired the command information from the control device 10 controls the drive device 80 and the steering device 90 to drive the host vehicle V1 along the target route RT. The vehicle controller 70 uses the road shape detected by the detection device 50 and the lane marker model stored in the road information 122 and the map information 123 of the navigation device 120 to maintain the vehicle in a predetermined lateral position with respect to the lane. The steering device 90 is controlled to travel while traveling. The vehicle controller 70 calculates the turning control amount based on the steering angle acquired from the steering angle sensor 61, the vehicle speed acquired from the vehicle speed sensor 62, and the current of the steering actuator, and sends a current command to the steering actuator. Then, control is performed so that the host vehicle travels in the target lateral position.
In addition, as a method for controlling the lateral position of the host vehicle V1, in addition to using the steering device 90 described above, the driving direction of the host vehicle V1 is determined by the difference in rotational speed between the left and right drive wheels using the driving device 80 and / or the braking device 81. (That is, the lateral position) may be controlled. In that sense, the “turning” of the vehicle includes not only the case of using the steering device 90 but also the case of using the driving device 80 and / or the braking device 81.
 これにより、たとえば図2に示す例では、自車両V1が、目標経路RTに沿って走行するため、回避対象である駐車車両V2の側方を適切に通過することが可能となる。一方、図3に示すように、自車両の走行車線L1に隣接する隣接車線L2,L3に、自車両に接近する複数の接近車両V5~V7が存在する場合には、これら接近車両V5~V7がそれぞれ回避対象となる。そのため、この場合、接近車両V5~V7と自車両V1とが接近する度に、自車両V1が接近車両V5~V7とは反対側に移動するように目標経路RTが設定され、自車両V1の走行位置は左右(車幅方向)に頻繁に変位することとなる。ただし、上述したように、自車両V1の前方に先行車両V4が存在する場合には、自車両V1と先行車両V4との車間距離が短くなるほど、回避対象である接近車両V5~V7の側方を通過する際に自車両V1が車幅方向に移動する際の移動量が小さくなるように、目標経路RTが補正される。そのため、制御機能は、補正された目標経路RTに基づいて、自車両V1の車幅方向への移動量が小さくなるように、自車両V1の走行を制御する。 Thus, for example, in the example shown in FIG. 2, the host vehicle V1 travels along the target route RT, so that it is possible to appropriately pass through the side of the parked vehicle V2 to be avoided. On the other hand, as shown in FIG. 3, when there are a plurality of approaching vehicles V5 to V7 approaching the host vehicle in adjacent lanes L2 and L3 adjacent to the traveling lane L1 of the host vehicle, these approaching vehicles V5 to V7 Are to be avoided. Therefore, in this case, every time the approaching vehicles V5 to V7 and the host vehicle V1 approach each other, the target route RT is set so that the host vehicle V1 moves to the opposite side of the approaching vehicles V5 to V7. The travel position is frequently displaced left and right (in the vehicle width direction). However, as described above, when the preceding vehicle V4 exists in front of the host vehicle V1, as the inter-vehicle distance between the host vehicle V1 and the preceding vehicle V4 becomes shorter, the side of the approaching vehicles V5 to V7 to be avoided The target route RT is corrected so that the amount of movement when the host vehicle V1 moves in the vehicle width direction when passing the vehicle is reduced. Therefore, the control function controls the traveling of the host vehicle V1 based on the corrected target route RT so that the amount of movement of the host vehicle V1 in the vehicle width direction becomes small.
 ここで、図4(A)は、自車両と接近車両との進行方向における距離の一例を示すグラフであり、距離が“0”である場合には、自車両と接近車両とが車幅方向に並んできる状態を表す。図4(A)に示すように、図4に示す例では、接近車両が自車両の後方から自車両に接近しており、時刻t11において、自車両と接近車両とが車幅方向において並び、その後、接近車両が自車両を追い越す場面を例示している。 Here, FIG. 4A is a graph showing an example of the distance in the traveling direction between the host vehicle and the approaching vehicle. When the distance is “0”, the host vehicle and the approaching vehicle are in the vehicle width direction. The state that can be lined up. As shown in FIG. 4A, in the example shown in FIG. 4, the approaching vehicle is approaching the host vehicle from behind the host vehicle, and at time t11, the host vehicle and the approaching vehicle are aligned in the vehicle width direction. Then, the scene where an approaching vehicle overtakes the own vehicle is illustrated.
 また、図4(B)は、図4(A)に示す場面において、制御装置10による走行制御処理のオンオフを示すグラフである。図4に示す例では、図4(A)に示すように、自車両と接近車両との進行方向における距離が所定距離STよりも大きい場合には、制御装置10による走行制御処理はオフに設定され、自車両が接近車両の側方を通過するために自車両を車幅方向に移動させる制御は行われない。一方、時刻t10において、自車両と接近車両との進行方向における距離が所定距離ST以下となると、制御装置10による走行制御処理がオンに設定され、後述する図4(C)に示すように、自車両が接近車両の側方を通過するために、自車両を接近車両とは反対側の車幅方向に移動させる制御が行われる。 FIG. 4B is a graph showing on / off of the travel control processing by the control device 10 in the scene shown in FIG. In the example illustrated in FIG. 4, as illustrated in FIG. 4A, when the distance in the traveling direction between the host vehicle and the approaching vehicle is greater than the predetermined distance ST, the traveling control process by the control device 10 is set to off. Thus, control for moving the host vehicle in the vehicle width direction in order for the host vehicle to pass the side of the approaching vehicle is not performed. On the other hand, when the distance in the traveling direction between the host vehicle and the approaching vehicle becomes equal to or less than the predetermined distance ST at time t10, the traveling control process by the control device 10 is set to ON, as shown in FIG. In order for the own vehicle to pass the side of the approaching vehicle, control is performed to move the own vehicle in the vehicle width direction opposite to the approaching vehicle.
 図4(C)は、図4(A),(B)に示す場面において、自車両V1の車幅方向への移動量を示すグラフである。なお、図4(C)において、D1は自車両と先行車両との設定車間距離が「短距離」に設定されている場合の移動量を示し、D2は自車両と先行車両との設定車間距離が「中距離」に設定されている場合の移動量を示し、D3は自車両と先行車両との設定車間距離が「長距離」に設定されている場合の移動量を示している。 FIG. 4 (C) is a graph showing the amount of movement of the host vehicle V1 in the vehicle width direction in the scenes shown in FIGS. 4 (A) and 4 (B). In FIG. 4C, D1 represents the amount of movement when the set inter-vehicle distance between the host vehicle and the preceding vehicle is set to “short distance”, and D2 represents the set inter-vehicle distance between the host vehicle and the preceding vehicle. Indicates the amount of movement when “middle distance” is set, and D3 indicates the amount of movement when the set inter-vehicle distance between the host vehicle and the preceding vehicle is set to “long distance”.
 制御機能は、図4(B)に示すように、時刻t10において走行制御処理を開始すると、図4(C)に示すように、自車両と接近車両との相対位置に応じて、自車両を接近車両とは反対側の車幅方向に移動させる。また、本実施形態において、制御機能は、図4(C)のD1に示すように、設定車間距離が「短距離」に設定されている場合には、自車両と先行車両との車間距離が最も短いため、自車両を車幅方向に移動させる際の最大の移動量が最も小さいX11となるように、自車両の走行を制御する。また、制御機能は、図4(C)のD2に示すように、設定車間距離が「中距離」に設定されている場合には、自車両と先行車両との車間距離が中程度のため、自車両を車幅方向に移動させる際の最大の移動量が2番目に大きいX12となるように、自車両の走行を制御する。さらに、制御機能は、図4(C)のD3に示すように、設定車間距離が「長距離」に設定されている場合には、自車両と先行車両との車間距離が最も長いため、自車両を車幅方向に移動させる際の最大の移動量が最も大きいX13となるように、自車両の走行を制御する。 As shown in FIG. 4 (B), the control function starts the travel control process at time t10. As shown in FIG. 4 (C), the control function sets the own vehicle according to the relative position between the own vehicle and the approaching vehicle. The vehicle is moved in the vehicle width direction opposite to the approaching vehicle. In the present embodiment, as shown in D1 of FIG. 4C, when the set inter-vehicle distance is set to “short distance”, the control function determines the inter-vehicle distance between the host vehicle and the preceding vehicle. Since it is the shortest, the travel of the host vehicle is controlled so that the maximum movement amount when moving the host vehicle in the vehicle width direction is the smallest X11. In addition, as shown in D2 of FIG. 4C, the control function has a medium distance between the host vehicle and the preceding vehicle when the set inter-vehicle distance is set to “medium distance”. The travel of the host vehicle is controlled so that the maximum movement amount when the host vehicle is moved in the vehicle width direction is the second largest X12. Furthermore, as shown by D3 in FIG. 4C, when the set inter-vehicle distance is set to “long distance”, the control function has the longest inter-vehicle distance between the host vehicle and the preceding vehicle. The travel of the host vehicle is controlled so that the maximum amount of movement when moving the vehicle in the vehicle width direction is X13 which is the largest.
 また、本実施形態において、制御装置10は、図4に示すように、設定車間距離が短いほど、自車両の走行位置を変化させる際の転回角または転回角速度が小さくなるように制御を行う。すなわち、制御装置10は、図4(C)のD1に示すように、設定車間距離が「短距離」に設定されている場合には、自車両と先行車両との車間距離が最も短いため、自車両を車幅方向に移動させる際の転回角または転回角速度を最も小さくする。これにより、図4(C)のD1に示すように、設定車間距離が「短距離」に設定されている場合には、他の設定車間距離と比べて、自車両の車幅方向への移動速度を最も遅くすることができる(図4(C)のD1に示す移動量の傾きを最も小さくすることができる。)。同様に、制御装置10は、図4(C)のD2に示すように、設定車間距離が「中距離」に設定されている場合には、自車両と先行車両との車間距離が中程度のため、自車両を車幅方向に移動させる際の転回角または転回角速度を2番目に小さくする。さらに、制御装置10は、図4(C)のD3に示すように、設定車間距離が「長距離」に設定されている場合には、自車両と先行車両との車間距離が最も長いため、自車両を車幅方向に移動させる際の転回角または転回角速度を最も大きくする。これにより、自車両と先行車両との車間距離が短いほど、自車両をゆっくりと車幅方向に移動させることができる。 Further, in the present embodiment, as shown in FIG. 4, the control device 10 performs control so that the turning angle or turning angular velocity when changing the traveling position of the host vehicle becomes smaller as the set inter-vehicle distance is shorter. That is, as shown in D1 of FIG. 4C, when the set inter-vehicle distance is set to “short distance”, the control device 10 has the shortest inter-vehicle distance between the host vehicle and the preceding vehicle. The turning angle or turning angular velocity when moving the host vehicle in the vehicle width direction is minimized. Accordingly, as shown in D1 of FIG. 4C, when the set inter-vehicle distance is set to “short distance”, the vehicle moves in the vehicle width direction as compared with other set inter-vehicle distances. The speed can be slowed down (the gradient of the movement amount indicated by D1 in FIG. 4C can be minimized). Similarly, as indicated by D2 in FIG. 4C, when the set inter-vehicle distance is set to “medium distance”, the control device 10 determines that the inter-vehicle distance between the host vehicle and the preceding vehicle is medium. For this reason, the turning angle or turning angular velocity when moving the host vehicle in the vehicle width direction is made the second smallest. Furthermore, as shown in D3 of FIG. 4C, when the set inter-vehicle distance is set to “long distance”, the control device 10 has the longest inter-vehicle distance between the host vehicle and the preceding vehicle. The turning angle or turning angular speed when moving the host vehicle in the vehicle width direction is maximized. Thereby, the own vehicle can be moved slowly in the vehicle width direction as the inter-vehicle distance between the own vehicle and the preceding vehicle is shorter.
 最後に、本実施形態の制御装置10の提示機能について説明する。提示機能は、算出された、対象情報に応じた情報、対象領域Rの位置に応じた情報、目標経路の位置に応じた情報、及び目標経路上を自車両に走行させる指令情報に応じる情報を出力装置110に送出し、上述した態様で外部に出力させる。 Finally, the presentation function of the control device 10 of this embodiment will be described. The presenting function includes calculated information according to the target information, information according to the position of the target region R, information according to the position of the target route, and information according to command information that causes the host vehicle to travel on the target route. The data is sent to the output device 110 and output to the outside in the manner described above.
 続いて、本実施形態に係る走行制御処理を、図5および図6に示すフローチャートに基づいて説明する。 Subsequently, the traveling control process according to the present embodiment will be described based on the flowcharts shown in FIGS. 5 and 6.
 まず、図5に基づいて、走行制御の全体の手順について説明する。 First, the overall procedure of travel control will be described with reference to FIG.
 ステップS101において、制御装置10は、少なくとも自車両V1の位置を含む自車情報を取得する。自車情報は、自車両V1の車速・加速度を含んでもよい。ステップS102において、制御装置10は、自車両V1が回避すべき回避対象の位置を含む対象情報を取得する。対象情報は、回避対象の速度・加速度を含んでもよい。 In step S101, the control device 10 acquires host vehicle information including at least the position of the host vehicle V1. The own vehicle information may include the vehicle speed and acceleration of the own vehicle V1. In step S102, the control device 10 acquires target information including a position to be avoided that the host vehicle V1 should avoid. The target information may include speed / acceleration to be avoided.
 また、ステップS102において、制御装置10は、自車両の走行車線を走行し、かつ、自車両の前方を走行する先行車両の位置および相対速度を含む情報も取得する。たとえば、制御装置10は、カメラ51により撮像された撮像画像や、レーダー装置52による検知結果から、先行車両の位置および相対速度を含む情報を取得することができる。 In step S102, the control device 10 also acquires information including the position and relative speed of the preceding vehicle that travels in the traveling lane of the host vehicle and travels in front of the host vehicle. For example, the control device 10 can acquire information including the position and relative speed of the preceding vehicle from the captured image captured by the camera 51 and the detection result of the radar device 52.
 ステップS103において、制御装置10は、回避対象の検出結果を検出装置50から取得する。回避対象の検出結果は、回避対象の位置の情報を含む。ステップS104において、制御装置10は、回避対象の位置に応じて対象領域Rを設定する。 In step S103, the control device 10 acquires the detection result of the avoidance target from the detection device 50. The detection result of the avoidance target includes information on the position of the avoidance target. In step S104, the control device 10 sets the target region R according to the position to be avoided.
 ステップS105において、制御装置10は、対象領域Rを回避する目標経路RTを算出する。目標経路RTは、自車両V1が走行する一又は複数の目標座標を含む。各目標座標は、目標横位置(目標X座標)と目標縦位置(目標Y座標)とを含む。算出された一又は複数の目標座標と自車両V1の現在位置とを結ぶことにより、目標経路RTを求める。なお、ステップS105に示す目標座標の算出方法については後述する。 In step S105, the control device 10 calculates a target route RT that avoids the target region R. The target route RT includes one or a plurality of target coordinates on which the host vehicle V1 travels. Each target coordinate includes a target horizontal position (target X coordinate) and a target vertical position (target Y coordinate). The target route RT is obtained by connecting the calculated one or more target coordinates and the current position of the host vehicle V1. The method for calculating the target coordinates shown in step S105 will be described later.
 ステップS106において、制御装置10は、ステップS105で算出された目標座標の目標横位置を取得する。また、ステップS107において、制御装置10は、自車両V1の現在の横位置とステップS106で取得した目標横位置との比較結果に基づいて、横位置に関するフィードバックゲインを算出する。 In step S106, the control device 10 acquires the target lateral position of the target coordinates calculated in step S105. In step S107, the control device 10 calculates a feedback gain related to the lateral position based on the comparison result between the current lateral position of the host vehicle V1 and the target lateral position acquired in step S106.
 そして、ステップS108において、制御装置10は、自車両V1の実際の横位置と、現在位置に対応する目標横位置と、ステップS107のフィードバックゲインとに基づいて、自車両V1を目標横位置上に移動させるために必要な自車両V1の転回角や転回角速度等に関する目標制御値を算出する。そして、ステップS112において、制御装置10は、算出した目標制御値を車載装置200に出力する。これにより、自車両V1は、目標横位置により定義される目標経路RT上を走行できる。なお、ステップS105において複数の目標座標が算出された場合には、目標横位置を取得する度にステップS106~S112の処理を繰り返し、取得した目標横位置のそれぞれについての目標制御値を車載装置200に出力する。 In step S108, the control device 10 brings the host vehicle V1 onto the target lateral position based on the actual lateral position of the host vehicle V1, the target lateral position corresponding to the current position, and the feedback gain in step S107. A target control value related to the turning angle, turning angular velocity, etc. of the host vehicle V1 necessary for the movement is calculated. In step S <b> 112, the control device 10 outputs the calculated target control value to the in-vehicle device 200. Accordingly, the host vehicle V1 can travel on the target route RT defined by the target lateral position. When a plurality of target coordinates are calculated in step S105, the processing of steps S106 to S112 is repeated each time the target lateral position is acquired, and the target control value for each of the acquired target lateral positions is obtained as the in-vehicle device 200. Output to.
 ステップS109において、制御装置10は、ステップS105で算出された一又は複数の目標座標についての目標縦位置を取得する。また、ステップS110において、制御装置10は、自車両V1の現在の縦位置、現在位置における車速及び加減速と、現在の縦位置に対応する目標縦位置、その目標縦位置における車速及び加減速との比較結果に基づいて、縦位置に関するフィードバックゲインを算出する。そして、ステップS111において、制御装置10は、目標縦位置に応じた車速および加減速度と、ステップS110で算出された縦位置のフィードバックゲインとに基づいて、縦位置に関する目標制御値が算出される。ステップS109~S112の処理は、先述したステップS106~S108,S112と同様に、目標縦位置を取得する度に繰り返し、取得した目標縦位置のそれぞれについての目標制御値を車載装置200に出力する。 In step S109, the control device 10 acquires a target vertical position for one or a plurality of target coordinates calculated in step S105. In step S110, the control device 10 determines the current vertical position of the host vehicle V1, the vehicle speed and acceleration / deceleration at the current position, the target vertical position corresponding to the current vertical position, and the vehicle speed and acceleration / deceleration at the target vertical position. Based on the comparison result, a feedback gain related to the vertical position is calculated. In step S111, the control device 10 calculates a target control value related to the vertical position based on the vehicle speed and acceleration / deceleration according to the target vertical position and the feedback gain of the vertical position calculated in step S110. The processing in steps S109 to S112 is repeated each time the target vertical position is acquired, similarly to steps S106 to S108 and S112 described above, and the target control value for each of the acquired target vertical positions is output to the in-vehicle device 200.
 ここで、縦方向の目標制御値とは、目標縦位置に応じた加減速度および車速を実現するための駆動機構の動作(エンジン自動車にあっては内燃機関の動作、電気自動車系にあっては電動モータ動作を含み、ハイブリッド自動車にあっては内燃機関と電動モータとのトルク配分も含む)およびブレーキ動作についての制御値である。たとえば、エンジン自動車にあっては、制御機能は、現在および目標とするそれぞれの加減速度および車速の算出値に基づいて、目標吸入空気量(スロットルバルブの目標開度)と目標燃料噴射量を算出し、これを駆動装置80へ送出する。なお、制御機能は、加減速度および車速を算出し、これらを車両コントローラ70へ送出し、車両コントローラ70において、これら加減速度および車速を実現するための駆動機構の動作(エンジン自動車にあっては内燃機関の動作、電気自動車系にあっては電動モータ動作を含み、ハイブリッド自動車にあっては内燃機関と電動モータとのトルク配分も含む)およびブレーキ動作についての制御値をそれぞれ算出してもよい。 Here, the target control value in the vertical direction means the operation of a drive mechanism for realizing acceleration / deceleration and vehicle speed according to the target vertical position (in the case of an engine vehicle, the operation of an internal combustion engine, in the case of an electric vehicle system). This includes the electric motor operation, and in the case of a hybrid vehicle, also includes torque distribution between the internal combustion engine and the electric motor) and the brake operation control values. For example, in an engine vehicle, the control function calculates a target intake air amount (target opening of the throttle valve) and a target fuel injection amount based on the calculated values of the current and target acceleration / deceleration and vehicle speed. Then, this is sent to the driving device 80. The control function calculates the acceleration / deceleration and the vehicle speed, and sends them to the vehicle controller 70. The vehicle controller 70 operates the drive mechanism for realizing the acceleration / deceleration and the vehicle speed (in the case of an engine vehicle, an internal combustion engine). Control values for engine operation, electric motor operation in an electric vehicle system, and torque distribution between an internal combustion engine and an electric motor in a hybrid vehicle) and brake operation may be calculated.
 そして、ステップS112に進み、制御装置10は、ステップS111で算出された縦方向の目標制御値を、車載装置200に出力する。車両コントローラ70は、転回制御及び駆動制御を実行し、自車両に目標横位置及び目標縦位置によって定義される目標経路RT上を走行させる。 And it progresses to step S112 and the control apparatus 10 outputs the target control value of the vertical direction calculated by step S111 to the vehicle-mounted apparatus 200. FIG. The vehicle controller 70 executes turn control and drive control, and causes the host vehicle to travel on the target route RT defined by the target lateral position and the target vertical position.
 ステップS113において、制御装置10は、出力装置110に情報を提示させる。出力装置110に提示させる情報は、ステップS104において算出された対象領域の位置・速度であってもよいし、ステップS105において算出された目標経路の形状であってもよいし、ステップS112において車載装置200へ出力された目標制御値であってもよい。 In step S113, the control device 10 causes the output device 110 to present information. The information to be presented to the output device 110 may be the position / velocity of the target area calculated in step S104, the shape of the target route calculated in step S105, or the in-vehicle device in step S112. The target control value output to 200 may be used.
 ステップS114において、ドライバがステアリング操作等をしたか否か、ドライバの操作介入の有無を判断する。ドライバの操作が検出されなければ、ステップS101へ戻り、新たな対象領域の設定、目標経路の算出及び走行制御を繰り返す。他方、ドライバが操作をした場合には、ステップS115に進み、走行制御を中断する。次のステップS116において、走行制御を中断した旨の情報を提示する。 In step S114, it is determined whether or not the driver has performed a steering operation or the like, and whether or not the driver has intervened. If no driver operation is detected, the process returns to step S101 to repeat the setting of a new target area, calculation of the target route, and travel control. On the other hand, when the driver performs an operation, the process proceeds to step S115, and the traveling control is interrupted. In the next step S116, information indicating that the traveling control has been interrupted is presented.
 続いて、図6に示すフローチャートに基づいて、第1実施形態におけるステップS105の目標座標算出処理について説明する。 Subsequently, the target coordinate calculation process of step S105 in the first embodiment will be described based on the flowchart shown in FIG.
 まず、ステップS201では、制御装置10の目標経路設定機能により、目標縦位置の算出が行われる。たとえば、目標経路設定機能は、自車両V1の走行方向の前方側に、一定の距離間隔で目標縦位置を設定する。 First, in step S201, the target vertical position is calculated by the target route setting function of the control device 10. For example, the target route setting function sets the target vertical position at regular distance intervals on the front side in the traveling direction of the host vehicle V1.
 ステップS202では、目標経路設定機能により、ステップS103で取得した回避対象の検出結果に基づいて、回避対象が検出されたか否かの判断が行われる。回避対象が検出された場合には、ステップS203に進み、一方、回避対象が検出されない場合には、ステップS207に進む。 In step S202, the target route setting function determines whether or not an avoidance target has been detected based on the detection result of the avoidance target acquired in step S103. When the avoidance target is detected, the process proceeds to step S203, and when the avoidance target is not detected, the process proceeds to step S207.
 なお、ステップS207では、回避対象が検出されないと判断されているため、制御機能により、自車両V1が走行車線の中央位置を直進するように、ステップS201で算出された各目標縦位置に対応する各目標横位置が算出される。 In step S207, since it is determined that the avoidance target is not detected, the control function corresponds to each target vertical position calculated in step S201 so that the host vehicle V1 goes straight through the center position of the traveling lane. Each target lateral position is calculated.
 一方、ステップS202で、回避対象が検出されたと判断された場合には、ステップS203に進む。ステップS203では、目標経路設定機能により、回避対象の側方を通過するための目標横位置が、ステップS201で設定した目標縦位置ごとに設定される。 On the other hand, if it is determined in step S202 that an avoidance target has been detected, the process proceeds to step S203. In step S203, the target horizontal position for passing the side to be avoided is set for each target vertical position set in step S201 by the target route setting function.
 ステップS204では、目標経路設定機能により、ステップS103で取得した先行車両の検出結果に基づいて、先行車両が検出されたか否かの判断が行われる。先行車両が検出された場合には、ステップS205に進み、一方、先行車両が検出されない場合には、ステップS105の目標座標算出処理を終了する。 In step S204, the target route setting function determines whether or not a preceding vehicle has been detected based on the detection result of the preceding vehicle acquired in step S103. If a preceding vehicle is detected, the process proceeds to step S205. On the other hand, if a preceding vehicle is not detected, the target coordinate calculation process in step S105 is terminated.
 ステップS205では、目標経路設定機能により、自車両と先行車両との設定車間距離の取得が行われる。たとえば、目標経路設定機能は、運転者が入力装置124を介して設定車間距離を入力した場合に、入力された設定車間距離を入力装置124から取得する。 In step S205, the set inter-vehicle distance between the host vehicle and the preceding vehicle is acquired by the target route setting function. For example, the target route setting function acquires the input set inter-vehicle distance from the input device 124 when the driver inputs the set inter-vehicle distance via the input device 124.
 ステップS206では、目標経路設定機能により、ステップS205で取得された設定車間距離に基づいて、ステップS203で算出した目標横位置の補正が行われる。具体的には、目標経路設定機能は、下記式(1)に基づいて、設定車間距離を加味した目標横位置を算出し、ステップS203で算出した各目標横位置を、下記式(1)に基づいて算出した各目標横位置に変更する。
  目標横位置=Yset+f(ΔY) ・・・(1)
なお、上記式(1)において、Ysetは、自車両が走行する車線の中央位置を表しており、f(ΔY)は、所定の傾きを表す関数である。具体的には、f(ΔY)は、各目標横位置の自車両の進行方向における位置に応じた値となり、図4(C)に示すように、目標横位置の位置が自車両の進行方向の手前側から奥側となるにつれ、0からΔYまで増加した後、ΔYのまま推移し、そして、ΔYから0へと変化する値となる。また、ΔYは、設定車間距離が「短距離」、「中距離」、「長距離」の順に大きな値となる。このように、上記式(1)に基づいて各目標横位置を算出することで、図4(C)のD1~D3に示す車幅方向の移動量に対応する各目標横位置を算出することができる。
In step S206, the target lateral position calculated in step S203 is corrected based on the set inter-vehicle distance acquired in step S205 by the target route setting function. Specifically, the target route setting function calculates a target lateral position taking into account the set inter-vehicle distance based on the following formula (1), and each target lateral position calculated in step S203 is expressed by the following formula (1). It changes to each target lateral position calculated based on it.
Target lateral position = Yset + f (ΔY) (1)
In the above equation (1), Yset represents the center position of the lane in which the host vehicle travels, and f (ΔY) is a function representing a predetermined inclination. Specifically, f (ΔY) is a value corresponding to the position of each target lateral position in the traveling direction of the host vehicle. As shown in FIG. 4C, the position of the target lateral position is the traveling direction of the host vehicle. As it goes from the near side to the far side, after increasing from 0 to ΔY, it changes as ΔY, and changes from ΔY to 0. Further, ΔY has a larger value in the order of “short distance”, “medium distance”, and “long distance”. Thus, by calculating each target lateral position based on the above formula (1), each target lateral position corresponding to the movement amount in the vehicle width direction indicated by D1 to D3 in FIG. 4C can be calculated. Can do.
 これにより、本実施形態では、自車両と先行車両との車間距離が短いほど、回避対象である接近車両の側方を通過する際の車幅方向への移動量が小さくなるように、目標経路RTを補正することができる。その結果、先行車両が存在する場合には、自車両V1と先行車両V4との車間距離が短いほど、接近車両の側方を通過する際の車幅方向への移動量が小さくなるように、自車両の走行が制御されることとなる。 Thus, in the present embodiment, the shorter the inter-vehicle distance between the host vehicle and the preceding vehicle, the smaller the amount of movement in the vehicle width direction when passing the side of the approaching vehicle that is the avoidance target, so that the target route is reduced. RT can be corrected. As a result, when there is a preceding vehicle, the shorter the distance between the host vehicle V1 and the preceding vehicle V4, the smaller the amount of movement in the vehicle width direction when passing the side of the approaching vehicle. The traveling of the host vehicle is controlled.
 以上のように、第1実施形態によれば、自車両と先行車両との車間距離が短いほど、自車両が接近車両の側方を通過する際に自車両を車幅方向に移動させる移動量を小さくする。ここで、自車両の走行位置が左右に頻繁に変位してしまうと、先行車両の運転者に、自車両の挙動に対して違和感を与えてしまい、自車両V1の挙動に対して余計な注意を払わせてしまう場合がある。特に、自車両と先行車両との車間距離が短いほど、その傾向は強くなる。これに対して、本実施形態では、第1実施形態によれば、自車両と先行車両との車間距離が短いほど、自車両が接近車両の側方を通過する際に自車両を車幅方向に移動させる移動量を小さくすることで、先行車両の運転者が、自車両の挙動に対して違和感を覚えてしまうことを有効に防止することができる。また、自車両と先行車両とが比較的接近している場合に、先行車両の運転者が、自車両により煽られていると感じてしまうことを有効に防止することができる。 As described above, according to the first embodiment, the shorter the inter-vehicle distance between the host vehicle and the preceding vehicle, the longer the host vehicle moves in the vehicle width direction when passing the side of the approaching vehicle. Make it smaller. Here, if the travel position of the host vehicle is frequently displaced to the left and right, the driver of the preceding vehicle is given a sense of incongruity with the behavior of the host vehicle, and extra attention is paid to the behavior of the host vehicle V1. May be paid. In particular, the tendency becomes stronger as the distance between the host vehicle and the preceding vehicle is shorter. In contrast, in the present embodiment, according to the first embodiment, the shorter the inter-vehicle distance between the host vehicle and the preceding vehicle, the more the host vehicle moves in the vehicle width direction when passing the side of the approaching vehicle. By reducing the amount of movement of the vehicle, it is possible to effectively prevent the driver of the preceding vehicle from feeling uncomfortable with the behavior of the host vehicle. In addition, when the host vehicle and the preceding vehicle are relatively close to each other, it can be effectively prevented that the driver of the preceding vehicle feels being beaten by the host vehicle.
 《第2実施形態》
 第2実施形態では、図1に示す走行制御システム1において、以下に説明するように、走行制御システム1が動作すること以外は、第1実施形態と同様である。以下に、第2実施形態に係る走行制御システム1について説明する。
<< Second Embodiment >>
In the second embodiment, the traveling control system 1 shown in FIG. 1 is the same as the first embodiment except that the traveling control system 1 operates as described below. Below, the traveling control system 1 which concerns on 2nd Embodiment is demonstrated.
 図7は、第2実施形態における、自車両と先行車両との車間距離と、自車両の車幅方向への移動量との関係を説明するための図である。第2実施形態において、制御装置10は、自車両と先行車両との車間距離が長いほど、自車両が接近車両の側方を通過するために、自車両を接近車両とは反対方向の車幅方向に移動させるタイミングを早くする。具体的には、制御装置10は、第1実施形態と同様に、自車両と接近車両との進行方向における距離が所定距離以下となった場合に、自車両を接近車両とは反対側に移動させる走行制御処理をオンに設定するが、第2実施形態においては、走行制御処理をオンに設定するための上記所定距離を、自車両と先行車両との車間距離に応じて異ならせる。 FIG. 7 is a diagram for explaining the relationship between the inter-vehicle distance between the host vehicle and the preceding vehicle and the amount of movement of the host vehicle in the vehicle width direction in the second embodiment. In 2nd Embodiment, since the own vehicle passes the side of an approaching vehicle, so that the distance between the own vehicle and a preceding vehicle is long, the control apparatus 10 is a vehicle width of the opposite direction to an approaching vehicle. Speed up the movement in the direction. Specifically, as in the first embodiment, the control device 10 moves the host vehicle to the side opposite to the approaching vehicle when the distance in the traveling direction between the host vehicle and the approaching vehicle is equal to or less than a predetermined distance. In the second embodiment, the predetermined distance for setting the traveling control process to ON is made different according to the inter-vehicle distance between the host vehicle and the preceding vehicle.
 より具体的には、制御装置10は、自車両と先行車両との車間距離が「長距離」に設定されている場合には、走行制御処理をオンに設定するための上記所定距離を最も長いST1に設定する。これにより、図7(A)に示すように、時刻t21において、自車両と接近車両との進行方向における車間距離がST1以下になると、図7(B)に示すように、走行制御処理がオンに設定される。これにより、制御装置10は、図7(C)のD3に示すように、時刻t21において、接近車両の側方を通過するために、自車両の車幅方向への移動を開始する。 More specifically, when the inter-vehicle distance between the host vehicle and the preceding vehicle is set to “long distance”, the control device 10 sets the longest predetermined distance for setting the travel control process to ON. Set to ST1. As a result, as shown in FIG. 7A, when the inter-vehicle distance in the traveling direction between the host vehicle and the approaching vehicle becomes equal to or less than ST1 at time t21, as shown in FIG. Set to Thereby, as shown to D3 of FIG.7 (C), the control apparatus 10 starts the movement to the vehicle width direction of the own vehicle in order to pass the side of an approaching vehicle in time t21.
 また、制御装置10は、自車両と先行車両との車間距離が「中距離」に設定されている場合には、走行制御処理をオンに設定するための上記所定距離を2番目に長いST2に設定する。これにより、図7(A)に示すように、時刻t21よりも遅い時刻t22において、自車両と接近車両との進行方向における車間距離がST2以下となり、図7(B)に示すように、走行制御処理がオンに設定される。これにより、制御装置10は、図7(C)のD2に示すように、時刻t22において、接近車両の側方を通過するために、自車両の車幅方向への移動を開始する。 In addition, when the inter-vehicle distance between the host vehicle and the preceding vehicle is set to “medium distance”, the control device 10 sets the predetermined distance for setting the traveling control process to ON to the second longest ST2. Set. As a result, as shown in FIG. 7A, at time t22 later than time t21, the inter-vehicle distance in the traveling direction between the host vehicle and the approaching vehicle becomes ST2 or less, and as shown in FIG. Control processing is set on. Thereby, as shown to D2 of FIG.7 (C), the control apparatus 10 starts the movement to the vehicle width direction of the own vehicle in order to pass the side of an approaching vehicle in time t22.
 さらに、制御装置10は、自車両と先行車両との車間距離が「短距離」に設定されている場合には、走行制御処理をオンに設定するための上記所定距離を最も短いST3に設定する。これにより、図7(A)に示すように、時刻t21および時刻t22よりも遅いt23において、自車両と接近車両との進行方向における車間距離がST3以下となり、図7(B)に示すように、走行制御処理がオンに設定される。これにより、制御装置10は、図7(C)のD1に示すように、時刻t23において、接近車両の側方を通過するために、自車両の車幅方向への移動を開始する。 Furthermore, when the inter-vehicle distance between the host vehicle and the preceding vehicle is set to “short distance”, the control device 10 sets the predetermined distance for setting the traveling control process to ON to the shortest ST3. . As a result, as shown in FIG. 7A, the inter-vehicle distance in the traveling direction between the host vehicle and the approaching vehicle becomes ST3 or less at time t21 and t23 later than time t22, as shown in FIG. 7B. The traveling control process is set to ON. Thereby, as shown to D1 of FIG.7 (C), the control apparatus 10 starts the movement to the vehicle width direction of the own vehicle in order to pass the side of an approaching vehicle at the time t23.
 なお、第2実施形態においても、第1実施形態と同様に、制御装置10は、図7(C)に示すように、設定車間距離が短いほど、自車両の走行位置を変化させる際の転回角または転回角速度が小さくなるように制御を行う。 Also in the second embodiment, as in the first embodiment, as shown in FIG. 7C, the control device 10 turns when the travel position of the host vehicle is changed as the set inter-vehicle distance is shorter. Control is performed so that the angular or turning angular velocity is reduced.
 続いて、図8に示すフローチャートに基づいて、第2実施形態におけるステップS105の目標座標算出処理について説明する。 Subsequently, the target coordinate calculation process of step S105 in the second embodiment will be described based on the flowchart shown in FIG.
 まず、ステップS301~S305,S308では、第1実施形態のステップS201~S205,S207と同様に、目標縦位置が設定され(ステップS301)、回避対象が検出された場合に(ステップS302=Yes)、回避対象の側方を通過するための目標横位置が設定される(ステップS303)。また、回避対象が検出されない場合には(ステップS302=No)、自車両が走行車線の中央位置を直進するように、目標横位置が算出される(ステップS308)。一方、回避対象が検出された場合において(ステップS302=Yes)、先行車両が検出された場合には(ステップS305=Yes)、自車両と先行車両との設定車間距離が取得される(ステップS308)。なお、ステップS301では、目標縦位置の設定とともに、対象領域Rの境界の位置に基づいて、自車両V1が車幅方向への転回を開始する転回開始位置の設定も行われる。 First, in steps S301 to S305 and S308, as in steps S201 to S205 and S207 of the first embodiment, a target vertical position is set (step S301), and when an avoidance target is detected (step S302 = Yes). Then, a target lateral position for passing the side to be avoided is set (step S303). Further, when the avoidance target is not detected (step S302 = No), the target lateral position is calculated so that the host vehicle travels straight through the center position of the traveling lane (step S308). On the other hand, when the avoidance target is detected (step S302 = Yes), when the preceding vehicle is detected (step S305 = Yes), the set inter-vehicle distance between the host vehicle and the preceding vehicle is acquired (step S308). ). In step S301, along with the setting of the target vertical position, the turning start position at which the host vehicle V1 starts turning in the vehicle width direction is also set based on the position of the boundary of the target region R.
 ステップS306では、目標経路設定機能により、ステップS305で取得された設定車間距離に基づいて、転回開始位置の補正が行われる。具体的には、目標経路設定機能は、下記式(2)に示すように、転回開始位置を補正する。
  転回開始位置=Xset-ΔX ・・・(2)
なお、上記式(2)において、XsetはステップS301で設定された転回開始位置を表し、ΔXは、転回開始位置の補正値であり、設定車間距離が「短距離」、「中距離」、「長距離」の順に大きくなる。これにより、図7(C)に示すように、設定車間距離が長いほど、自車両を接近車両とは反対側の車幅方向に移動させるタイミングが早くなるように、転回開始位置を自車両のより手前側の位置に補正することができる。
In step S306, the turning start position is corrected based on the set inter-vehicle distance acquired in step S305 by the target route setting function. Specifically, the target route setting function corrects the turning start position as shown in the following equation (2).
Turning start position = Xset−ΔX (2)
In the above equation (2), Xset represents the turning start position set in step S301, ΔX is a correction value of the turning start position, and the set inter-vehicle distance is “short distance”, “medium distance”, “ It becomes larger in the order of “long distance”. Accordingly, as shown in FIG. 7C, as the set inter-vehicle distance is longer, the turning start position of the own vehicle is set so that the timing for moving the own vehicle in the vehicle width direction opposite to the approaching vehicle is earlier. The position can be corrected to the nearer side.
 そして、ステップS307では、第1実施形態のステップS206と同様に、自車両と先行車両との車間距離が短いほど、回避対象である接近車両の側方を通過する際の自車両の車幅方向への移動量が小さくなるように、目標横位置が補正される。 In step S307, as in step S206 of the first embodiment, the shorter the inter-vehicle distance between the host vehicle and the preceding vehicle, the vehicle width direction of the host vehicle when passing the side of the approaching vehicle that is the avoidance target. The target lateral position is corrected so that the amount of movement to is small.
 以上のように、第2実施形態においては、自車両と先行車両との車間距離が長いほど、自車両を接近車両とは反対側の車幅方向に移動させるタイミングを早くする。ここで、高速道路などの自車両が高速で走行可能な道路では、一般道路と比べて、自車両と先行車両との車間距離は長くなる傾向にある。そして、高速道路などの高速走行可能な道路において、自車両の走行位置を左右に頻繁に変更してしまうと、先行車両の運転者に、自車両が先行車両を煽っているとより強く感じさせてしまう傾向にある。そこで、第2実施形態では、自車両と先行車両との車間距離が長いほど、自車両を接近車両とは反対側の車幅方向に移動させるタイミングを早くすることで、先行車両の運転者に、自車両が車幅方向にゆったりと移動しているように感じさせることができる。これにより、自車両が高速道路などの高速走行可能な道路を走行している場合でも、先行車両の運転者に、自車両が先行車両を煽っていると感じさせてしまうことを軽減することが可能となる。 As described above, in the second embodiment, the longer the inter-vehicle distance between the host vehicle and the preceding vehicle, the earlier the timing for moving the host vehicle in the vehicle width direction on the side opposite to the approaching vehicle. Here, on a road where the host vehicle can travel at high speed, such as an expressway, the inter-vehicle distance between the host vehicle and the preceding vehicle tends to be longer than that of a general road. And if the traveling position of the host vehicle is frequently changed to the left and right on a high speed road such as an expressway, it makes the driver of the preceding vehicle feel more strongly that the host vehicle is hitting the preceding vehicle. It tends to end up. Therefore, in the second embodiment, the longer the inter-vehicle distance between the host vehicle and the preceding vehicle, the earlier the timing of moving the host vehicle in the vehicle width direction on the side opposite to the approaching vehicle, thereby allowing the driver of the preceding vehicle to move. The vehicle can feel as if it is moving slowly in the vehicle width direction. As a result, even when the host vehicle is traveling on a high-speed road such as an expressway, the driver of the preceding vehicle can be reduced from feeling that the host vehicle is scolding the preceding vehicle. It becomes possible.
 なお、上述した第2実施形態の構成に加えて、自車両と先行車両との車間距離が長いほど、自車両が接近車両の側方を通過した後に、自車両を走行車線の中央位置まで戻すタイミングを遅くする構成とすることができる。すなわち、第2実施形態では、図7(C)に示すように、自車両が接近車両の側方を通過した後に、自車両を走行車線の中央位置まで戻す制御を行っているが、この場合に、自車両と先行車両との車間距離が長いほど、自車両を走行車線の中央位置側に移動させるタイミングを遅くする構成とすることができる。たとえば、制御装置10は、自車両と接近車両との距離が所定距離以上となった場合に、自車両を走行車線の中央位置まで戻す制御を行う場合には、自車両と先行車両との車間距離が長いほど上記所定距離を長く設定する。これにより、自車両と先行車両との車間距離が長いほど、自車両を走行車線の中央位置側に移動させるタイミングを遅くすることができる。これにより、自車両が高速道路を走行している場面など、自車両と先行車両との車間距離が長くなる場合には、自車両がよりゆったりと車幅方向に移動することとなるため、先行車両の運転者に、自車両が先行車両を煽っていると感じさせることを軽減することができる。なお、自車両を走行車線の中央位置側に移動させる際の所定距離(第2距離)は、自車両を接近車両とは反対側の車幅方向に移動させる際の所定距離(第1距離)と同じ距離であってもよいし、あるいは、第1距離よりも長い距離であってもよい。 In addition to the configuration of the second embodiment described above, the longer the distance between the host vehicle and the preceding vehicle, the more the host vehicle passes the side of the approaching vehicle and then returns the host vehicle to the center position of the traveling lane. It can be configured to delay the timing. That is, in the second embodiment, as shown in FIG. 7C, after the host vehicle passes the side of the approaching vehicle, control is performed to return the host vehicle to the center position of the traveling lane. In addition, the longer the inter-vehicle distance between the host vehicle and the preceding vehicle, the slower the timing of moving the host vehicle to the center position side of the traveling lane. For example, when the control device 10 performs control to return the host vehicle to the center position of the traveling lane when the distance between the host vehicle and the approaching vehicle is equal to or greater than a predetermined distance, the controller 10 determines the distance between the host vehicle and the preceding vehicle. The longer the distance is, the longer the predetermined distance is set. Thereby, the timing which moves the own vehicle to the center position side of a driving lane can be delayed, so that the distance between the own vehicle and a preceding vehicle is long. As a result, when the distance between the host vehicle and the preceding vehicle becomes long, such as when the host vehicle is traveling on an expressway, the host vehicle will move more slowly in the vehicle width direction. It can be reduced that the driver of the vehicle feels that the host vehicle is scolding the preceding vehicle. The predetermined distance (second distance) when moving the host vehicle to the center position side of the traveling lane is the predetermined distance (first distance) when moving the host vehicle in the vehicle width direction opposite to the approaching vehicle. The same distance may be sufficient, or the distance longer than a 1st distance may be sufficient.
 《第3実施形態》
 第3実施形態では、図1に示す走行制御システム1において、以下に説明するように、走行制御システム1が動作すること以外は、第1実施形態と同様である。以下に、第3実施形態に係る走行制御システム1について説明する。
<< Third Embodiment >>
In the third embodiment, the traveling control system 1 shown in FIG. 1 is the same as the first embodiment except that the traveling control system 1 operates as described below. Below, the traveling control system 1 which concerns on 3rd Embodiment is demonstrated.
 図9は、第3実施形態における、自車両と先行車両との車間距離の特定方法を説明するための図である。第3実施形態において、制御装置10は、自車両と先行車両との実際の車間距離を計測し、計測した実車間距離に基づいて、自車両を接近車両とは反対側に移動させる際の移動量を決定する。なお、実車間距離の算出は、公知の方法を用いることができる。 FIG. 9 is a diagram for explaining a method for specifying the inter-vehicle distance between the host vehicle and the preceding vehicle in the third embodiment. In the third embodiment, the control device 10 measures the actual inter-vehicle distance between the host vehicle and the preceding vehicle, and moves when moving the host vehicle to the side opposite to the approaching vehicle based on the measured actual inter-vehicle distance. Determine the amount. A known method can be used to calculate the actual inter-vehicle distance.
 具体的には、第3実施形態において、制御装置10は、図9に示すように、計測した実車間距離が短距離範囲内である場合には、自車両と先行車両との車間距離は「短距離」であると判断し、図4(C)のD1に示すように、自車両を接近車両とは反対側に移動させる際の最大の移動量をX11に設定する。 Specifically, in the third embodiment, as illustrated in FIG. 9, when the measured actual inter-vehicle distance is within the short distance range, the control device 10 determines that the inter-vehicle distance between the host vehicle and the preceding vehicle is “ It is determined that the distance is “short distance”, and the maximum amount of movement when moving the host vehicle to the opposite side of the approaching vehicle is set to X11 as indicated by D1 in FIG.
 また、制御装置10は、図9に示すように、計測した実車間距離が中距離範囲内である場合には、自車両と先行車両との車間距離は「中距離」であると判断し、図4(C)のD2に示すように、自車両を接近車両とは反対側に移動させる際の最大の移動量をX12に設定する。なお、図9に図示していないが、長距離範囲も予め設定されており、計測した実車間距離が長距離範囲内である場合には、自車両と先行車両との車間距離は「長距離」であると判断し、図4(C)のD3に示すように、自車両を接近車両とは反対側に移動させる際の最大の移動量をX13に設定する。 Further, as shown in FIG. 9, when the measured actual inter-vehicle distance is within the intermediate distance range, the control device 10 determines that the inter-vehicle distance between the host vehicle and the preceding vehicle is “medium distance”, As indicated by D2 in FIG. 4C, the maximum amount of movement when moving the host vehicle to the side opposite to the approaching vehicle is set to X12. Although not shown in FIG. 9, the long distance range is also set in advance, and when the measured actual inter-vehicle distance is within the long distance range, the inter-vehicle distance between the host vehicle and the preceding vehicle is “long distance”. And the maximum amount of movement when moving the host vehicle to the side opposite to the approaching vehicle is set to X13, as indicated by D3 in FIG.
 また、第3実施形態においては、図9に示すように、中距離範囲と短距離範囲との一部を重複させることで、中距離範囲および短距離範囲にヒステリシスを設けている。これにより、自車両と先行車両との実車間距離が中距離範囲と短距離範囲とを行き来してしまうことで、自車両の車幅方向への移動量が繰り返し変動し、自車両の挙動が不安定になってしまうことを有効に防止することができる。なお、図9には図示していないが、中距離範囲および長距離範囲も一部において重複しており、中距離範囲および長距離範囲にもヒステリシスが設けられている。 In the third embodiment, as shown in FIG. 9, hysteresis is provided in the intermediate distance range and the short distance range by overlapping a part of the intermediate distance range and the short distance range. As a result, the actual inter-vehicle distance between the host vehicle and the preceding vehicle goes back and forth between the middle distance range and the short distance range, so that the amount of movement of the host vehicle in the vehicle width direction repeatedly fluctuates, and the behavior of the host vehicle is It is possible to effectively prevent instability. Although not shown in FIG. 9, the middle distance range and the long distance range also partially overlap, and hysteresis is provided also in the middle distance range and the long distance range.
 続いて、図10に示すフローチャートに基づいて、第3実施形態におけるステップS105の目標座標算出処理について説明する。 Subsequently, the target coordinate calculation process of step S105 in the third embodiment will be described based on the flowchart shown in FIG.
 まず、ステップS401~S404,S408では、第1実施形態のステップS201~S204,S207と同様に、目標縦位置が設定され(ステップS401)、回避対象が検出された場合に(ステップS402=Yes)、回避対象の側方を通過するための目標横位置が設定される(ステップS403)。また、回避対象が検出されない場合には(ステップS402=No)、自車両が走行車線の中央位置を直進するように、目標横位置が算出される(ステップS408)。そして、回避対象が検出された場合において(ステップS402=Yes)、先行車両が検出された場合には(ステップS404=Yes)、ステップS405に進む。 First, in steps S401 to S404 and S408, similarly to steps S201 to S204 and S207 of the first embodiment, a target vertical position is set (step S401), and when an avoidance target is detected (step S402 = Yes). Then, a target lateral position for passing the side to be avoided is set (step S403). Further, when the avoidance target is not detected (step S402 = No), the target lateral position is calculated so that the host vehicle goes straight through the center position of the traveling lane (step S408). When the avoidance target is detected (step S402 = Yes), when the preceding vehicle is detected (step S404 = Yes), the process proceeds to step S405.
 ステップS405では、目標経路設定機能により、ステップS102で取得された先行車両に関する情報に基づいて、自車両と先行車両との実車間距離の算出が行われる。そして、ステップS406では、目標経路設定機能により、図9に示すように、ステップS405で算出された実車間距離に基づいて、対応する車間距離範囲が取得される。たとえば、目標経路設定機能は、自車両と先行車両との実車間距離が、図9に示す短距離範囲内である場合には、自車両と先行車両との実車間距離に対応する車間距離範囲を「短距離範囲」として取得する。 In step S405, the target distance setting function calculates the actual inter-vehicle distance between the host vehicle and the preceding vehicle based on the information related to the preceding vehicle acquired in step S102. In step S406, as shown in FIG. 9, a corresponding inter-vehicle distance range is acquired by the target route setting function based on the actual inter-vehicle distance calculated in step S405. For example, when the actual inter-vehicle distance between the host vehicle and the preceding vehicle is within the short distance range shown in FIG. 9, the target route setting function is the inter-vehicle distance range corresponding to the actual inter-vehicle distance between the host vehicle and the preceding vehicle. Is acquired as a “short distance range”.
 ステップS407では、目標経路設定機能により、ステップS406で取得された車間距離範囲に基づいて、目標横位置を補正する。具体的には、目標経路設定機能は、ステップS406で取得された車間距離範囲に対応する車間距離が短いほど、回避対象である接近車両の側方を通過する際の自車両の車幅方向への移動量が小さくなるように、目標横位置を補正する。たとえば、目標経路設定機能は、ステップS406で取得された車間距離範囲が「短距離範囲」である場合には、対応する車間距離が最も短いため、接近車両の側方を通過する際の自車両の車幅方向への移動量が最も小さくなるように、目標横位置を補正する。 In step S407, the target lateral position is corrected by the target route setting function based on the inter-vehicle distance range acquired in step S406. Specifically, in the target route setting function, the shorter the inter-vehicle distance corresponding to the inter-vehicle distance range acquired in step S406 is, in the vehicle width direction of the own vehicle when passing the side of the approaching vehicle to be avoided. The target lateral position is corrected so that the amount of movement is small. For example, in the target route setting function, when the inter-vehicle distance range acquired in step S406 is “short distance range”, the corresponding inter-vehicle distance is the shortest, so that the own vehicle when passing the side of the approaching vehicle The target lateral position is corrected so that the amount of movement in the vehicle width direction becomes the smallest.
 以上のように、第3実施形態においては、自車両と先行車両との実車間距離を算出し、実車間距離に基づいて、接近車両の側方を通過する際の自車両の車幅方向への移動量を設定する。これにより、第1実施形態の効果に加えて、運転者が設定車間距離を設定していない場合でも、自車両と先行車両との実車間距離に応じて、自車両の走行を適切に制御することができる。 As described above, in the third embodiment, the actual inter-vehicle distance between the host vehicle and the preceding vehicle is calculated, and based on the actual inter-vehicle distance, in the vehicle width direction of the host vehicle when passing the side of the approaching vehicle. Set the amount of movement. Thus, in addition to the effects of the first embodiment, even when the driver does not set the set inter-vehicle distance, the travel of the own vehicle is appropriately controlled according to the actual inter-vehicle distance between the own vehicle and the preceding vehicle. be able to.
 なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for easy understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 すなわち、本明細書では、本発明に係る走行制御装置の一態様として、車載装置200ともに走行制御システム1を構成する走行制御装置100を例にして説明するが、本発明はこれに限定されるものではない。 That is, in the present specification, as an example of the travel control device according to the present invention, the travel control device 100 that constitutes the travel control system 1 together with the in-vehicle device 200 will be described as an example, but the present invention is limited to this. It is not a thing.
 また、上述した実施形態では、自車両と先行車両との車間距離を、「短距離」、「中距離」、「長距離」のいずれかで特定する構成を例示したが、この構成に限定されず、たとえば、車間距離を、2あるいは4つ以上に分類する構成としてもよい。また、実際の車間距離の値から目標横位置あるいは転回開始位置の補正値を算出する関数を用いることで、実際の車間距離の値に応じて、目標横位置あるいは転回開始位置を補正する構成としてもよい。 Further, in the above-described embodiment, the configuration in which the inter-vehicle distance between the host vehicle and the preceding vehicle is specified by any one of “short distance”, “medium distance”, and “long distance” is illustrated, but the configuration is limited to this configuration. For example, the inter-vehicle distance may be classified into two or four or more. In addition, by using a function that calculates a correction value for the target lateral position or turning start position from the actual inter-vehicle distance value, the target lateral position or turning start position is corrected according to the actual inter-vehicle distance value. Also good.
 さらに、上述した第2実施形態では、自車両と先行車両との車間距離が長いほど、自車両を接近車両とは反対側の車幅方向に移動させるタイミングを早くする構成としたが、この構成に代えて、自車両と先行車両との車間距離が短いほど、自車両を接近車両とは反対側の車幅方向に移動させるタイミングを早くする構成としてもよい。また、第2実施形態では、自車両と先行車両との車間距離が長いほど、自車両を走行車線の中央位置まで戻すタイミングを遅くする構成を例示したが、この構成に代えて、自車両と先行車両との車間距離が短いほど、自車両を走行車線の中央位置まで戻すタイミングを遅くする構成としてもよい。これにより、自車両と先行車両との車間距離が短いほど、自車両がゆったりと車幅方向に移動するため、自車両と先行車両とが接近している場合に、自車両の挙動に対する、先行車両の運転者の違和感を軽減することができる。 Furthermore, in 2nd Embodiment mentioned above, it was set as the structure which speeds up the timing which moves the own vehicle to the vehicle width direction on the opposite side to an approaching vehicle, so that the inter-vehicle distance of the own vehicle and a preceding vehicle is long. Instead of this, the shorter the inter-vehicle distance between the host vehicle and the preceding vehicle, the faster the timing of moving the host vehicle in the vehicle width direction opposite to the approaching vehicle. Moreover, in 2nd Embodiment, although the structure which delays the timing which returns the own vehicle to the center position of a driving | running | working lane so that the inter-vehicle distance of the own vehicle and a preceding vehicle was long was replaced with this structure, It is good also as a structure which delays the timing which returns the own vehicle to the center position of a driving lane, so that the inter-vehicle distance with a preceding vehicle is short. As a result, the shorter the distance between the host vehicle and the preceding vehicle, the more slowly the host vehicle moves in the vehicle width direction. Therefore, when the host vehicle and the preceding vehicle are approaching, The uncomfortable feeling of the driver of the vehicle can be reduced.
 また、制御装置10が、自車両と接近車両との距離が所定距離未満となった場合に、自車両を接近車両とは反対側の車幅方向に移動させる制御を行う場合に、自車両と先行車両との車間距離が短いほど上記所定距離を長く設定することで、自車両と先行車両との車間距離が短いほど、自車両を接近車両とは反対側の車幅方向に移動させるタイミングを早くすることができる。さらに、制御装置10が、自車両と接近車両との距離が所定距離以上となった場合に、自車両を走行車線の中央位置まで戻す制御を行う場合には、自車両と先行車両との車間距離が短いほど上記所定距離を長く設定することで、自車両と先行車両との車間距離が短いほど、自車両を走行車線の中央位置側に移動させるタイミングを遅くすることができる。 Further, when the control device 10 performs control to move the host vehicle in the vehicle width direction opposite to the approaching vehicle when the distance between the host vehicle and the approaching vehicle is less than a predetermined distance, By setting the predetermined distance longer as the inter-vehicle distance with the preceding vehicle is shorter, the timing for moving the own vehicle in the vehicle width direction opposite to the approaching vehicle as the inter-vehicle distance between the own vehicle and the preceding vehicle is shorter. Can be fast. Further, when the control device 10 performs control to return the host vehicle to the center position of the traveling lane when the distance between the host vehicle and the approaching vehicle is equal to or greater than a predetermined distance, the distance between the host vehicle and the preceding vehicle is determined. By setting the predetermined distance longer as the distance is shorter, the timing of moving the host vehicle to the center position side of the traveling lane can be delayed as the inter-vehicle distance between the host vehicle and the preceding vehicle is shorter.
 本明細書では、対象情報取得手段と、制御手段とを備える走行制御装置の一例として、対象情報取得機能と、制御機能とを実行する制御装置10を備える走行制御装置100を例にして説明するが、これに限定されるものではない。また、本明細書では、出力手段をさらに備える走行制御装置の一例として、出力装置30,110をさらに備える走行制御装置100を例にして説明するが、これに限定されるものではない。 In the present specification, as an example of a travel control device including target information acquisition means and control means, a travel control device 100 including a control device 10 that executes a target information acquisition function and a control function will be described as an example. However, the present invention is not limited to this. In the present specification, as an example of the travel control device further including the output unit, the travel control device 100 further including the output devices 30 and 110 will be described as an example. However, the present invention is not limited to this.
 1…走行制御システム
  100…走行制御装置
   10…制御装置
   20…通信装置
   30…出力装置
  200…車載装置
   40…通信装置
   50…検出装置
   60…センサ
   70…車両コントローラ
   80…駆動装置
   90…操舵装置
   110…出力装置
   120…ナビゲーション装置
DESCRIPTION OF SYMBOLS 1 ... Travel control system 100 ... Travel control apparatus 10 ... Control apparatus 20 ... Communication apparatus 30 ... Output apparatus 200 ... In-vehicle apparatus 40 ... Communication apparatus 50 ... Detection apparatus 60 ... Sensor 70 ... Vehicle controller 80 ... Drive apparatus 90 ... Steering apparatus 110 ... Output device 120 ... Navigation device

Claims (10)

  1.  自車両の周囲に存在する回避対象および自車両の車線を走行する先行車両の位置を含む情報を取得する取得手段と、
     自車両が前記回避対象の側方を通過する際に、自車両の進行方向を基準として前記回避対象が存在する側とは反対側の制御方向側に自車両を移動させる制御手段と、を備え、
     前記制御手段は、自車両が前記回避対象の側方を通過する際に、自車両と先行車両との車間距離が短いほど、自車両の前記制御方向側への移動量を小さくすることを特徴とする走行制御装置。
    An acquisition means for acquiring information including a position to be avoided existing around the host vehicle and a position of a preceding vehicle traveling in the lane of the host vehicle;
    Control means for moving the host vehicle in a control direction side opposite to the side on which the avoidance target exists when the host vehicle passes by the side of the avoidance target. ,
    The control means reduces the amount of movement of the host vehicle in the control direction side as the distance between the host vehicle and the preceding vehicle is shorter when the host vehicle passes the side of the avoidance target. A travel control device.
  2.  請求項1に記載の走行制御装置であって、
     前記車間距離を設定するための設定手段をさらに備え、
     前記制御手段は、前記設定手段により設定された前記車間距離が短いほど、自車両の前記制御方向側への移動量を小さくすることを特徴とする走行制御装置。
    The travel control device according to claim 1,
    Further comprising setting means for setting the inter-vehicle distance;
    The travel control device characterized in that the control means reduces the amount of movement of the host vehicle in the control direction side as the inter-vehicle distance set by the setting means is shorter.
  3.  請求項1または2に記載の走行制御装置であって、
     前記制御手段は、自車両と前記回避対象との距離が所定の第1距離未満となる場合に、自車両を前記制御方向側に移動させ、
     前記制御手段は、前記車間距離が長いほど、前記第1距離を長くすることを特徴とする走行制御装置。
    The travel control device according to claim 1 or 2,
    The control means moves the host vehicle to the control direction side when the distance between the host vehicle and the avoidance target is less than a predetermined first distance,
    The travel control device characterized in that the control means increases the first distance as the inter-vehicle distance increases.
  4.  請求項3に記載の走行制御装置であって、
     前記制御手段は、自車両と前記回避対象との距離が前記第1距離未満となった後に、自車両と前記回避対象との距離が前記第1距離以上または前記第1距離よりも長い第2距離以上となった場合に、自車両を前記制御方向側から自車線の中央位置側に移動させ、
     前記制御手段は、前記車間距離が長いほど、前記第2距離を長くすることを特徴とする走行制御装置。
    The travel control device according to claim 3,
    After the distance between the host vehicle and the avoidance target is less than the first distance, the control means is configured such that the distance between the host vehicle and the avoidance target is equal to or longer than the first distance or longer than the first distance. When the distance is greater than or equal to the distance, the host vehicle is moved from the control direction side to the center position side of the host lane,
    The travel control device characterized in that the control means increases the second distance as the inter-vehicle distance increases.
  5.  請求項1または2に記載の走行制御装置であって、
     前記制御手段は、自車両と前記回避対象との距離が所定の第1距離未満となる場合に、自車両を前記制御方向側に移動させ、
     前記制御手段は、前記車間距離が短いほど、前記第1距離を長くすることを特徴とする走行制御装置。
    The travel control device according to claim 1 or 2,
    The control means moves the host vehicle to the control direction side when the distance between the host vehicle and the avoidance target is less than a predetermined first distance,
    The travel control device characterized in that the control means increases the first distance as the inter-vehicle distance is shorter.
  6.  請求項5に記載の走行制御装置であって、
     前記制御手段は、自車両と前記回避対象との距離が前記第1距離未満となった後に、自車両と前記回避対象との距離が前記第1距離以上または前記第1距離よりも長い第2距離以上となった場合に、自車両を前記制御方向側から自車線の中央位置側に移動させ、
     前記制御手段は、前記車間距離が短いほど、前記第2距離を長くすることを特徴とする走行制御装置。
    The travel control device according to claim 5,
    After the distance between the host vehicle and the avoidance target is less than the first distance, the control means is configured such that the distance between the host vehicle and the avoidance target is equal to or longer than the first distance or longer than the first distance. When the distance is greater than or equal to the distance, the host vehicle is moved from the control direction side to the center position side of the host lane,
    The travel control device characterized in that the control means increases the second distance as the inter-vehicle distance is shorter.
  7.  請求項1~6のいずれかに記載の走行制御装置であって、
     前記制御手段は、前記車間距離が短いほど、自車両を前記制御方向側に移動させる際の移動速度を遅くすることを特徴とする走行制御装置。
    The travel control device according to any one of claims 1 to 6,
    The travel control device characterized in that the control means slows down the moving speed when moving the host vehicle in the control direction side as the inter-vehicle distance is shorter.
  8.  請求項1~7のいずれかに記載の走行制御装置であって、
     前記制御手段は、前記車間距離が短いほど、自車両を前記制御方向側に移動させる際の転回角または転回角速度を小さくすることを特徴とする走行制御装置。
    The travel control device according to any one of claims 1 to 7,
    The travel control device characterized in that the control means decreases a turning angle or turning angular velocity when moving the host vehicle in the control direction side as the inter-vehicle distance is shorter.
  9.  請求項1~8のいずれかに記載の走行制御装置であって、
     前記対象情報に応じた情報、前記回避対象に基づいて設定される対象領域の位置に応じた情報、目標経路の位置に応じた情報、および前記目標経路を自車両に走行させる指令情報に応じる情報のうち、何れか一つ以上の情報を外部に出力する出力手段を、さらに備えることを特徴とする走行制御装置。
    The travel control device according to any one of claims 1 to 8,
    Information according to the target information, information according to the position of the target area set based on the avoidance target, information according to the position of the target route, and information according to command information for causing the host vehicle to travel the target route The travel control device further comprising output means for outputting any one or more information to the outside.
  10.  自車両の走行を制御するための指令情報を出力するコンピュータが実行する車両の走行制御方法であって、
     自車両の周囲に存在する回避対象および自車両の車線を走行する先行車両の位置を含む対象情報を取得する第1ステップと、
     自車両が前記回避対象の側方を通過する際に、自車両の進行方向を基準として前記回避対象が存在する側とは反対側の制御方向側に自車両を移動させる第2ステップと、を有し、
     前記第2ステップにおいて、前記回避対象を回避する際に、自車両と先行車両との車間距離が短いほど、前記制御方向側への移動量を小さくすることを特徴とする走行制御方法。
    A vehicle running control method executed by a computer that outputs command information for controlling the running of the host vehicle,
    A first step of acquiring target information including an avoidance target existing around the host vehicle and a position of a preceding vehicle traveling in the lane of the host vehicle;
    A second step of moving the host vehicle in a control direction side opposite to the side on which the avoidance target exists, based on the traveling direction of the host vehicle when the host vehicle passes by the side of the avoidance target; Have
    In the second step, when the avoidance target is avoided, the travel control method is characterized in that the amount of movement in the control direction is reduced as the inter-vehicle distance between the host vehicle and the preceding vehicle is shorter.
PCT/JP2014/071884 2014-08-21 2014-08-21 Travel control device and travel control method WO2016027349A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/071884 WO2016027349A1 (en) 2014-08-21 2014-08-21 Travel control device and travel control method
JP2016543545A JP6229798B2 (en) 2014-08-21 2014-08-21 Travel control device and travel control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/071884 WO2016027349A1 (en) 2014-08-21 2014-08-21 Travel control device and travel control method

Publications (1)

Publication Number Publication Date
WO2016027349A1 true WO2016027349A1 (en) 2016-02-25

Family

ID=55350326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071884 WO2016027349A1 (en) 2014-08-21 2014-08-21 Travel control device and travel control method

Country Status (2)

Country Link
JP (1) JP6229798B2 (en)
WO (1) WO2016027349A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084981A (en) * 2016-11-24 2018-05-31 日産自動車株式会社 Travel control method and travel controller
WO2018211708A1 (en) * 2017-05-19 2018-11-22 日産自動車株式会社 Driving assistance device and driving assistance method
WO2019058465A1 (en) * 2017-09-20 2019-03-28 本田技研工業株式会社 Vehicle control device, vehicle, and vehicle control method
JP2019098965A (en) * 2017-12-04 2019-06-24 スズキ株式会社 Travel support device
CN112078577A (en) * 2019-05-27 2020-12-15 现代自动车株式会社 Vehicle and control method thereof
CN113815608A (en) * 2021-09-24 2021-12-21 上汽通用五菱汽车股份有限公司 Lane keeping method, apparatus and computer-readable storage medium
WO2021255488A1 (en) * 2020-06-17 2021-12-23 日産自動車株式会社 Travel assistance method and travel assistance device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7372648B2 (en) 2019-07-02 2023-11-01 株式会社品川工業所 Blade body attachment member, blade and device equipped with the blade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274215A (en) * 2001-03-22 2002-09-25 Nissan Motor Co Ltd Vehicle-to-vehicle distance control device
JP2011051570A (en) * 2009-09-04 2011-03-17 Honda Motor Co Ltd Contact avoidance support device for vehicle
JP2013109705A (en) * 2011-11-24 2013-06-06 Toyota Motor Corp Apparatus and method for driving assistance
JP2014080046A (en) * 2012-10-12 2014-05-08 Toyota Motor Corp Running support system, and control unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002274215A (en) * 2001-03-22 2002-09-25 Nissan Motor Co Ltd Vehicle-to-vehicle distance control device
JP2011051570A (en) * 2009-09-04 2011-03-17 Honda Motor Co Ltd Contact avoidance support device for vehicle
JP2013109705A (en) * 2011-11-24 2013-06-06 Toyota Motor Corp Apparatus and method for driving assistance
JP2014080046A (en) * 2012-10-12 2014-05-08 Toyota Motor Corp Running support system, and control unit

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018084981A (en) * 2016-11-24 2018-05-31 日産自動車株式会社 Travel control method and travel controller
US10787172B2 (en) 2017-05-19 2020-09-29 Nissan Motor Co., Ltd. Driving assistance device and driving assistance method
WO2018211708A1 (en) * 2017-05-19 2018-11-22 日産自動車株式会社 Driving assistance device and driving assistance method
RU2738228C1 (en) * 2017-05-19 2020-12-09 Ниссан Мотор Ко., Лтд. Driving assistance device and driving assistance method
CN110662683A (en) * 2017-05-19 2020-01-07 日产自动车株式会社 Driving support device and driving support method
EP3626569A4 (en) * 2017-05-19 2020-10-28 Nissan Motor Co., Ltd. Driving assistance device and driving assistance method
JPWO2019058465A1 (en) * 2017-09-20 2020-11-05 本田技研工業株式会社 Vehicle control device, vehicle and vehicle control method
CN111066073A (en) * 2017-09-20 2020-04-24 本田技研工业株式会社 Vehicle control device, vehicle, and vehicle control method
WO2019058465A1 (en) * 2017-09-20 2019-03-28 本田技研工業株式会社 Vehicle control device, vehicle, and vehicle control method
JP2019098965A (en) * 2017-12-04 2019-06-24 スズキ株式会社 Travel support device
JP7135308B2 (en) 2017-12-04 2022-09-13 スズキ株式会社 Driving support device
CN112078577A (en) * 2019-05-27 2020-12-15 现代自动车株式会社 Vehicle and control method thereof
WO2021255488A1 (en) * 2020-06-17 2021-12-23 日産自動車株式会社 Travel assistance method and travel assistance device
JP7386345B2 (en) 2020-06-17 2023-11-24 日産自動車株式会社 Driving support method and driving support device
CN113815608A (en) * 2021-09-24 2021-12-21 上汽通用五菱汽车股份有限公司 Lane keeping method, apparatus and computer-readable storage medium
CN113815608B (en) * 2021-09-24 2023-08-29 上汽通用五菱汽车股份有限公司 Lane keeping method, apparatus and computer readable storage medium

Also Published As

Publication number Publication date
JPWO2016027349A1 (en) 2017-06-08
JP6229798B2 (en) 2017-11-15

Similar Documents

Publication Publication Date Title
JP6206595B2 (en) Travel control device and travel control method
JP6365672B2 (en) Travel control device and travel control method
JP6296162B2 (en) Vehicle travel control apparatus and method
JP6299872B2 (en) Vehicle travel control apparatus and method
JP6222368B2 (en) Travel control device and travel control method
JP6229798B2 (en) Travel control device and travel control method
JP6304384B2 (en) Vehicle travel control apparatus and method
JP6414221B2 (en) Vehicle travel control apparatus and method
JP6323246B2 (en) Vehicle travel control apparatus and method
JP6288286B2 (en) Travel control device and travel control method
JP6354440B2 (en) Travel control device and travel control method
JP2016037267A (en) Travel control device and travel control method
WO2016027347A1 (en) Vehicle travel control device and method
JP6296161B2 (en) Vehicle travel control apparatus and method
JP6375770B2 (en) Travel control device and travel control method
JP2016038838A (en) Travel control device and travel control method
WO2016024313A1 (en) Travel control device and travel control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900072

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016543545

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14900072

Country of ref document: EP

Kind code of ref document: A1