WO2016027326A1 - 信号処理装置 - Google Patents

信号処理装置 Download PDF

Info

Publication number
WO2016027326A1
WO2016027326A1 PCT/JP2014/071759 JP2014071759W WO2016027326A1 WO 2016027326 A1 WO2016027326 A1 WO 2016027326A1 JP 2014071759 W JP2014071759 W JP 2014071759W WO 2016027326 A1 WO2016027326 A1 WO 2016027326A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
moving target
component
signals
unit
Prior art date
Application number
PCT/JP2014/071759
Other languages
English (en)
French (fr)
Inventor
智也 山岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/071759 priority Critical patent/WO2016027326A1/ja
Priority to EP14900243.8A priority patent/EP3185034B1/en
Priority to JP2016543528A priority patent/JP6275265B2/ja
Priority to CA2958525A priority patent/CA2958525C/en
Priority to US15/504,853 priority patent/US10754006B2/en
Publication of WO2016027326A1 publication Critical patent/WO2016027326A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/53Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi performing filtering on a single spectral line and associated with one or more range gates with a phase detector or a frequency mixer to extract the Doppler information, e.g. pulse Doppler radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9029SAR image post-processing techniques specially adapted for moving target detection within a single SAR image or within multiple SAR images taken at the same time

Definitions

  • the present invention relates to a signal processing apparatus for reproducing a moving target image.
  • a multi-channel synthetic aperture radar has been proposed as a means for achieving higher performance and higher performance of the synthetic aperture radar.
  • multi-channel synthetic aperture radar if the number of transmitting antennas is one, it is necessary to use a plurality of receiving antennas. At this time, if a plurality of receiving antennas are arranged along the orbit direction of the platform on which the radar apparatus is mounted, HRWS (High-Resolution Wide-Swath) disclosed in Non-Patent Document 1 below is realized. be able to.
  • HRWS is a high resolution wide observation width that separates azimuth ambiguities by regarding a plurality of channels of received signals as one channel of received signals.
  • MTI Moving Target Indicator
  • Non-Patent Document 2 can be realized.
  • MTI is processing for detecting a moving target by associating received signals of a plurality of channels and removing clutter.
  • Non-Patent Documents 3 and 4 disclose examination contents for realizing both HRWS and MTI.
  • HRWS when HRWS is realized, a combination of receiving antennas with low correlation between channels is desirable, and MTI is realized. In this case, a combination of receiving antennas that increases the correlation between channels is considered desirable.
  • MTI multiplexing technology
  • a combination of receiving antennas that increases the correlation between channels is considered desirable.
  • the number of channels is increased and the combination of receiving antennas where the correlation between channels becomes low and the correlation between channels is high. It is necessary to select a combination of receiving antennas.
  • the conventional signal processing apparatus is configured as described above, if the number of channels is increased, it is possible to realize both HRWS and MTI that have conflicting demands for correlation between channels, but the number of channels increases. However, there is a problem that the cost, the load amount, the data transfer amount, and the like when mounting on a satellite machine or the like increase.
  • the present invention has been made to solve the above-described problems, and provides a signal processing apparatus capable of increasing the observation width with high resolution and detecting a moving target without increasing the number of channels.
  • the purpose is to obtain.
  • the signal processing device among the signals repeatedly transmitted from the transmission antenna, the signal reflected by the stationary target or the moving target is arranged along the trajectory direction of the platform on which the radar device is mounted.
  • the received signals of multiple receiving antennas are combined and the combined signal is output so that aliasing noise components of stationary targets contained in the received signals of multiple receiving antennas are canceled
  • a signal synthesizing unit that moves the signal and the moving target component included in the synthesized signal by suppressing the stationary target component and the aliasing noise component of the moving target contained in the synthesized signal output from the signal synthesizing unit.
  • a target component extracting unit, and the image reproducing unit reproduces the moving target image from the moving target component extracted by the moving target component extracting unit. Those were.
  • the moving target component contained in the synthesized signal is suppressed by suppressing the stationary target component and the aliasing noise component of the moving target contained in the synthesized signal output from the signal synthesizing means.
  • a target component extraction unit is provided, and the image reproduction unit is configured to reproduce an image of the moving target from the moving target component extracted by the moving target component extraction unit, so that a high resolution wide observation width can be obtained without increasing the number of channels.
  • the moving target can be detected.
  • FIG. 6 is an explanatory diagram showing synthesis of received signals (1) to (2K + 1) in the time domain. It is a block diagram which shows the signal processing apparatus by Embodiment 3 of this invention.
  • FIG. 7 is an explanatory diagram showing synthesis of received signals (1) to (2K) in the time domain.
  • Embodiment 1 FIG.
  • the pulse signal reflected by the stationary target or the moving target is the trajectory direction of the moving target.
  • PRF Pulse Repeat Frequency
  • An example of receiving with two receiving antennas arranged along the line will be described.
  • the pulse repetition period PRF is operated with a half value of the limit Doppler frequency shift in which aliasing components as aliasing noise components do not occur as azimuth ambiguities, two pulses are used.
  • An azimuth ambiguity is generated as an aliasing component in the Doppler frequency signal component in the received signal of the receiving antenna.
  • the two receiving antennas are denoted as receiving antenna ch1 and receiving antenna ch2.
  • FIG. 1 is a block diagram showing a signal processing apparatus according to Embodiment 1 of the present invention.
  • the signal restoration unit 1 receives the reception signal (1) from the reception antenna ch1 and receives the reception signal (2) from the reception antenna ch2, the stationary signal included in the reception signals (1) and (2).
  • the received signal (1) and the received signal (2) are combined so that the target aliasing component is canceled out, and the combined signal is output. That is, the signal restoration unit 1 converts the received signals (1) and (2), which are time domain signals, into frequency domain signals, and outputs the frequency domain signals as Doppler frequency signals (1) and (2).
  • the Doppler frequency signals (1) and (2) output from the signal converter 1a are cyclically shifted by a half of the unit 1a and the pulse repetition period PRF, and the Doppler frequency signals (1) and (2) after the cyclic shift are obtained.
  • a signal synthesizer 1b for synthesizing the Doppler frequency signals (1) and (2) after the cyclic shift and outputting the synthesized signal so that the aliasing component of the stationary target included in .
  • the signal restoration unit 1 constitutes signal synthesis means.
  • the still target image reproduction unit 2 performs a process of reproducing a still target image from the still target component included in the composite signal output from the signal restoration unit 1.
  • the rearrangement unit 3 separates the stationary target component and the moving target aliasing component included in the synthesized signal output from the signal restoration unit 1 and the moving target component included in the synthesized signal in the frequency domain. Then, the spectrum of the synthesized signal is rearranged.
  • the shaping unit 4 suppresses the stationary target component and the aliasing component of the moving target that are included in the combined signal in which the spectrum is rearranged by the rearranging unit 3, and extracts the moving target component that is included in the combined signal. Perform the process.
  • the rearrangement unit 3 and the shaping unit 4 constitute moving target component extraction means.
  • the movement target image reproduction unit 5 performs a process of reproducing an image of the movement target from the movement target component extracted by the shaping unit 4.
  • the still target image reproduction unit 2 and the moving target image reproduction unit 5 constitute an image reproduction unit.
  • each of the signal restoration unit 1, the still target image reproduction unit 2, the rearrangement unit 3, the shaping unit 4, and the moving target image reproduction unit 5 that are components of the signal processing device is dedicated hardware (for example, , A semiconductor integrated circuit on which a CPU is mounted, or a one-chip microcomputer or the like is assumed, but the signal processing apparatus may be configured with a computer.
  • the signal processing apparatus is configured by a computer, a program describing the processing contents of the signal restoration unit 1, the still target image reproduction unit 2, the rearrangement unit 3, the shaping unit 4, and the moving target image reproduction unit 5 is stored in the computer memory.
  • the CPU of the computer executes the program stored in the memory.
  • FIG. 2 is a flowchart showing the processing contents of the signal processing apparatus according to Embodiment 1 of the present invention.
  • transmit and receive antennas ch1, ch2 are arranged along the track direction of the moving target, receiving antenna ch1 is disposed at a position apart [Delta] x 1 from the transmitting antenna, receiving antenna ch2 is transmitted It assumed to be arranged in a position separated by [Delta] x 2 from the antenna.
  • r 0 is a slant range distance that is a distance from the transmitting antenna to the stationary target
  • v plf is a moving speed of the platform on which the radar apparatus is mounted.
  • the propagation distance r i (t) of the pulse signal represented by the equation (1) can be simplified as the following equation (2) when Taylor approximation is introduced.
  • the Doppler frequency signal S i (f) which is the Doppler frequency component of the received signals (1) and (2) of the receiving antennas ch1 and ch2, is subjected to normal monostatic observation as shown in the following equation (3).
  • a phase shift corresponding to a time shift of - ⁇ x i / 2v plf and a distance change of ⁇ x i 2 / 4r 0 is given to U (f) which is a Doppler frequency component of the received signal in the case of Represented as:
  • FIG. 3 is an explanatory diagram showing waveforms of various signals on the frequency domain.
  • the signal component U hat (f) which is a combined signal, is an equivalent and wideband signal to which the aliasing component is canceled and is obtained by monostatic observation.
  • the propagation distance r i (t) of the pulse signal represented by the equation (5) can be simplified as the following equation (6) when Taylor approximation is introduced.
  • the Doppler frequency signal R i (f) which is the Doppler frequency component of the received signals of the receiving antennas ch1 and ch2, is a received signal when normal monostatic observation is performed as shown in the following equation (7).
  • U (f) which is the Doppler frequency component of - ⁇ x i / 2v plf , ⁇ r 0 v tgt / v plf 2 time shift
  • FIG. 4 is an explanatory diagram showing waveforms of various signals on the frequency domain.
  • the thick line indicates the stationary target component
  • the thin line indicates the moving target component.
  • a broken line indicates that the aspect in which the desired signal and aliasing overlap can be confirmed.
  • V hat i (f) is multiplied by the coefficient of sin ⁇ _, so that the aliasing component of the moving target corresponding to the coefficient reflecting the speed of the moving target and the interval between the receiving antennas is obtained. You can see that it remains. Therefore, in the first embodiment, an image in which the moving target component is emphasized while suppressing the stationary target component outside the band so that the aliasing component of the moving target component in the band where the stationary target component is small is imaged. Reproduce.
  • the processing content of the signal processing apparatus will be specifically described.
  • the signal restoration unit 1 receives the signals from the reception antennas ch1 and ch2.
  • Received signals (1) and (2) are acquired.
  • the signal conversion unit 1a of the signal restoration unit 1 acquires the reception signals (1) and (2) of the reception antennas ch1 and ch2
  • the signal conversion unit 1a converts the reception signals (1) and (2) into a frequency domain signal, and the frequency domain Are output as Doppler frequency signals (1) and (2).
  • a method for converting the received signals (1) and (2), which are time domain signals, into a frequency domain signal is not particularly limited. For example, fast Fourier transform processing or discrete Fourier transform on the received signals (1) and (2) is possible. By performing the processing, the signal can be converted into a frequency domain signal.
  • the signal synthesizer 1b obtains signal components U hat (f ⁇ PRF / 2) and U hat (f + PRF / 2) as synthesized signals by performing the synthesis process of Equation (8), and the signal components
  • the U hat (f ⁇ PRF / 2) and U hat (f + PRF / 2) are output to the still target image reproduction unit 2 and the rearrangement unit 3 (step ST1 in FIG. 2).
  • the still target image reproduction unit 2 Upon receiving the signal components U hat (f-PRF / 2) and U hat (f + PRF / 2) from the signal restoration unit 1, the still target image reproduction unit 2 receives the signal component U hat (f-PRF / 2), U The hat (f + PRF / 2) is converted into a time domain signal, and a still target image is reproduced from the time domain signal (step ST2).
  • a method for converting the signal component U hat (f-PRF / 2) and U hat (f + PRF / 2) into a signal in the time domain is not particularly limited.
  • Non-Patent Documents 5 and 6 below disclose methods for reproducing a still target image. For example, a range Doppler method, a chirp scaling method, an ⁇ -K method, a polar format method, a back projection method, or the like is used. Can do.
  • Non-Patent Document 5 Lan G. Cumming and Frank H.
  • the rearrangement unit 3 Upon receiving the signal component U hat (f ⁇ PRF / 2) and U hat (f + PRF / 2) from the signal restoration unit 1, the rearrangement unit 3 receives the signal component U hat (f) as shown in FIG. f-PRF / 2), aliasing component of moving target and moving target included in U hat (f + PRF / 2), and signal components U hat (f-PRF / 2), U hat (f + PRF / 2)
  • the spectrums of the signal components U hat (f ⁇ PRF / 2) and U hat (f + PRF / 2) are rearranged so that the moving target components included in are separated in the frequency domain (step ST3).
  • the rearrangement unit 3 rearranges the spectra of the signal components U hat (f ⁇ PRF / 2) and U hat (f + PRF / 2) as shown in the following equation (12). Note that code conversion is also performed to add the moving target component coherently.
  • a filter bank may be configured by combining filters designed for each Doppler shift, and a plurality of signal components including respective moving speeds may be output. Moreover, you may combine these methods.
  • the movement target image reproduction unit 5 converts the movement target component into a time domain signal, and reproduces the movement target image from the time domain signal (step ST5).
  • the method for converting the moving target component, which is a frequency domain signal, into a time domain signal is not particularly limited. For example, by performing inverse fast Fourier transform processing or inverse discrete Fourier transform processing on the moving target component, Can be converted into a signal.
  • the moving target image reproduction method is not particularly limited. For example, a range Doppler method, a chirp scaling method, an ⁇ -K method, a polar format method, a back projection method, or the like can be used.
  • the moving target image reproducing unit 5 When the moving target image reproducing unit 5 reproduces the moving target image, the moving target image reproducing unit 5 detects a pixel having an amplitude value (signal intensity) larger than a preset threshold value from the pixels constituting the moving target image. A group of one or more detected pixels is specified as a movement target. This threshold value may be determined from, for example, the signal intensity related to the moving target and the signal intensity related to the periphery of the moving target. In addition, the remaining clutter and azimuth ambiguity are suppressed by performing edge detection filter processing on the pixels that make up the moving target image using an edge detection filter or a filter equivalent to them. You may do it. At this time, if an edge detection filter is used for the signal amplitude, 0 may be substituted for the negative output.
  • the moving target image reproducing unit 5 reproduces the moving target image
  • the moving target image and the stationary target image reproduced by the stationary target image reproducing unit 2 are colored differently to adjust the dynamic range. Then, the moving target image and the stationary target image may be superimposed. In this way, by superimposing the moving target image and the stationary target image, it is possible to visually confirm the overlapping target. Note that the movement target image reproduction process by the movement target image reproduction unit 5 and the stationary target image reproduction process by the still target image reproduction unit 2 may be executed in parallel.
  • the moving target component may be extracted by suppressing the stationary target component and the aliasing component of the moving target without performing the spectrum rearrangement.
  • the stationary target component and the moving target component included in the signal component U hat (f ⁇ PRF / 2) and U hat (f + PRF / 2) output from the signal restoration unit 1 are suppressed and moved.
  • the moving target image reproducing unit 5 performs range cell migration processing and azimuth for the signal components U hat (f ⁇ PRF / 2) and U hat (f + PRF / 2) so that the aliasing component of the target component is imaged as a desired signal.
  • the moving target component included in the signal component U hat (f ⁇ PRF / 2) and U hat (f + PRF / 2) is extracted. Since the range cell migration processing and the matched filter processing for azimuth compression are known techniques, detailed description thereof is omitted.
  • the movement target image reproduction unit 5 constitutes movement target component extraction means.
  • the signal restoration unit 1 alternately arranges the reception signals (1) and (2) of the reception antennas ch1 and ch2 in the time domain, and then receives the reception antenna ch1.
  • Ch2 received signals (1) and (2) may be synthesized and the synthesized signal may be output.
  • the receiving antennas ch1 and ch2 are arranged along the trajectory direction of the movement target, as shown in FIG. 5, the received signal (1) of the receiving antenna ch1 is transmitted at times t 1 , t 3 , t 5 ,. If it is received at ⁇ , the reception signal (2) of the reception antenna ch2 is received at times t 2 , t 4 , t 6 ,. At this time, as shown in FIG. 5, the signal restoration unit 1 converts the reception signal (1) and the reception signal (2) so that the reception signal (1) and the reception signal (2) are alternately arranged in the time domain. Synthesize.
  • the pulse signal is radiated from one transmission antenna, but the present invention is applied to a radar device in which a pulse signal is radiated from a plurality of transmission antennas. You may do it.
  • Embodiment 2 the signal processing apparatus that acquires the reception signals of the two reception antennas ch1 and ch2 arranged along the trajectory direction of the movement target and detects the movement target has been described.
  • a signal processing apparatus that acquires reception signals of (2K + 1) reception antennas (odd reception antennas of 3 or more) arranged along the trajectory direction of the platform and detects a movement target.
  • K 1, 2, 3,...
  • the pulse repetition period PRF is operated at 1 / (2K + 1) of the limit Doppler frequency shift in which aliasing components as aliasing noise components do not occur as azimuth ambiguities, (2K + 1) An azimuth ambiguity is generated as an aliasing component in the Doppler frequency signal component in the received signal of the receiving antenna.
  • FIG. 6 is a block diagram showing a signal processing apparatus according to Embodiment 2 of the present invention.
  • the signal restoration unit 11 receives the reception signals (1) to (2K + 1) of (2K + 1) reception antennas arranged along the trajectory direction of the movement target, the signal restoration unit 11 is included in the reception signals (1) to (2K + 1).
  • the received signals (1) to (2K + 1) are synthesized so as to cancel out the aliasing component of the stationary target, and the synthesized signal is output. That is, the signal restoration unit 1 converts the received signals (1) to (2K + 1), which are time domain signals, into frequency domain signals, and outputs the frequency domain signals as Doppler frequency signals (1) to (2K + 1).
  • the signal restoration unit 11 constitutes a signal synthesis unit.
  • the signal restoration unit 11 receives (2K + 1) signals.
  • Received signals (1) to (2K + 1) of the receiving antennas are acquired.
  • the signal conversion unit 11a of the signal restoration unit 11 acquires (2K + 1) reception signals (1) to (2K + 1) from the reception antennas
  • the signal conversion unit 11a converts the reception signals (1) to (2K + 1) into frequency domain signals.
  • the signals in the frequency domain are output as Doppler frequency signals (1) to (2K + 1).
  • a method for converting the received signals (1) to (2K + 1), which are time domain signals, into a frequency domain signal is not particularly limited. For example, fast Fourier transform processing or discrete processing for the received signals (1) to (2K + 1) is possible. By performing the Fourier transform process, the signal can be converted into a frequency domain signal.
  • FIG. 7 is an explanatory diagram showing waveforms of various signals on the frequency domain.
  • a thick line indicates a stationary target component
  • a thin line indicates a moving target component.
  • the bold broken line indicates the aliasing component of the stationary target
  • the thin broken line indicates the aliasing component of the moving target.
  • the signal synthesizing unit 11b performs the synthesizing process of Expression (13) with ⁇ PRF / 2 ⁇ f ⁇ PRF / 2, so that signal components U hat (f ⁇ KPRF) to U hat (f + KPRF) are obtained as synthesized signals. ) And the signal components U hat (f ⁇ KPRF) to U hat (f + KPRF) are output to the still target image reproduction unit 2 and the rearrangement unit 3.
  • the still target image reproduction unit 2 receives the signal component U hat (f-KPRF) as in the first embodiment.
  • U hat (f + KPRF) To U hat (f + KPRF) are converted into a time domain signal, and a still target image is reproduced from the time domain signal.
  • a method for converting the signal components U hat (f-KPRF) to U hat (f + KPRF) into a time domain signal is not particularly limited. For example, the signal components U hat (f-KPRF) to U hat (f + KPRF) are converted.
  • the range Doppler method the chirp scaling method, the ⁇ -K method, the polar format method, the back projection method, and the like can be used as in the first embodiment.
  • the rearrangement unit 3 Upon receiving the signal components U hat (f-KPRF) to U hat (f + KPRF) from the signal restoration unit 11, the rearrangement unit 3 receives the signal component U hat (f-KPRF) as shown in FIG.
  • Frequency domain includes stationary target component and moving target aliasing component included in U hat (f + KPRF) and moving target component included in signal component U hat (f-KPRF) to U hat (f + KPRF)
  • the spectrum of the signal components U hat (f-KPRF) to U hat (f + KPRF) is rearranged.
  • the rearrangement unit 3 rearranges the spectrum of the signal components U hat (f ⁇ KPRF) to U hat (f + KPRF) as shown in the following equation (14).
  • Formula (14) represents shifting to the state of FIG. 7 (i) from the rearrangement of the spectrum, first, as shown in FIG. 7 (h), Signal component U hat (f ⁇ KPRF) to aliasing component of moving target and moving target aliasing component included in U hat (f + KPRF) and moving target component are separated in the frequency domain. After rearranging the spectrum of f-KPRF) to U hat (f + KPRF), as shown in FIG. 7 (i), the remaining frequency components of the stationary target component are collected in the central band. Also good.
  • a filter bank may be configured by combining filters designed for each Doppler shift, and a plurality of signal components including respective moving speeds may be output. Moreover, you may combine these methods. It is assumed that 0 is given to a band where no signal is given. As described above, in the normal restoration process, it is possible to improve the signal-to-clutter ratio by adding a moving target component that is Doppler shifted outside the band where the amount of clutter is small. This is a process achieved by performing signal copying and replacement in the rearrangement unit 3. For example, the signal-to-clutter ratio may be further improved by copying and replacing the signal as shown here.
  • the movement target image reproduction unit 5 converts the movement target component into a time domain signal, as in the first embodiment, and converts the movement target component from the time domain signal. Play the image.
  • the method for converting the moving target component, which is a frequency domain signal, into a time domain signal is not particularly limited. For example, by performing inverse fast Fourier transform processing or inverse discrete Fourier transform processing on the moving target component, Can be converted into a signal.
  • the moving target image reproduction method is not particularly limited. For example, a range Doppler method, a chirp scaling method, an ⁇ -K method, a polar format method, a back projection method, or the like can be used.
  • an amplitude value (signal intensity) larger than a preset threshold is selected from the pixels constituting the moving target image, as in the first embodiment.
  • This threshold value may be determined from, for example, the signal intensity related to the moving target and the signal intensity related to the periphery of the moving target.
  • the remaining clutter and azimuth ambiguity are suppressed by performing edge detection filter processing on the pixels that make up the moving target image using an edge detection filter or a filter equivalent to them. You may do it. At this time, if an edge detection filter is used for the signal amplitude, 0 may be substituted for the negative output.
  • the moving target image reproducing unit 5 reproduces the moving target image
  • the moving target image is converted into the moving target image and the stationary target image reproduced by the stationary target image reproducing unit 2 as in the first embodiment.
  • the moving target image and the stationary target image may be superimposed. In this way, by superimposing the moving target image and the stationary target image, it is possible to visually confirm the overlapping target.
  • the movement target image reproduction process by the movement target image reproduction unit 5 and the stationary target image reproduction process by the still target image reproduction unit 2 may be executed in parallel.
  • the wide observation width can be increased.
  • the moving target component may be extracted by suppressing the stationary target component and the aliasing component of the moving target without performing the spectrum rearrangement.
  • the stationary target component and the moving target component included in the signal components U hat (f ⁇ KPRF) to U hat (f + KPRF) output from the signal restoration unit 1 are suppressed, and aliasing of the moving target component is performed.
  • the moving target image reproduction unit 5 performs range cell migration processing and matched filter processing for azimuth compression on the signal components U hat (f-KPRF) to U hat (f + KPRF) so as to form an image with the components as desired signals.
  • the moving target component included in the signal components U hat (f-KPRF) to U hat (f + KPRF) is extracted. Since the range cell migration processing and the matched filter processing for azimuth compression are known techniques, detailed description thereof is omitted.
  • the signal restoration unit 11 arranges the received signals (1) to (2K + 1) of (2K + 1) reception antennas in order in the time domain, and then The reception signals (1) to (2K + 1) of the reception antenna may be combined and the combined signal may be output.
  • the pulse signal is radiated from one transmission antenna.
  • the second embodiment is applied to a radar device in which pulse signals are radiated from a plurality of transmission antennas. You may do it.
  • Embodiment 3 the signal processing apparatus that acquires the reception signals of the two reception antennas ch1 and ch2 arranged along the trajectory direction of the movement target and detects the movement target has been described.
  • a signal processing apparatus that acquires reception signals of 2K reception antennas (two or more even reception antennas) arranged along the trajectory direction of the platform and detects a moving target will be described.
  • K 1, 2, 3,...
  • the pulse repetition period PRF is operated at 1 / 2K of the limit Doppler frequency shift in which aliasing components as aliasing noise components do not occur as azimuth ambiguities, so that 2K receiving antennas In the Doppler frequency signal component in the received signal, azimuth ambiguity is generated as an aliasing component.
  • the signal restoration unit 11 receives the signals from the 2K receiving antennas.
  • Received signals (1) to (2K) are acquired.
  • the signal conversion unit 11a of the signal restoration unit 11 acquires the reception signals (1) to (2K) of the 2K reception antennas
  • the signal conversion unit 11a converts the reception signals (1) to (2K) into frequency domain signals
  • the frequency domain signals are output as Doppler frequency signals (1) to (2K).
  • a method for converting the received signals (1) to (2K), which are time domain signals, into a frequency domain signal is not particularly limited. For example, fast Fourier transform processing or discrete processing for the received signals (1) to (2K) is possible. By performing the Fourier transform process, the signal can be converted into a frequency domain signal.
  • the signal synthesizer 11b performs the synthesizing process of Expression (15) with -PRF / 2 ⁇ f ⁇ PRF / 2, so that the signal component U hat (f ⁇ (K ⁇ 1 / 2) PRF) ⁇ U hat (f + (K ⁇ 1 / 2) PRF) and its signal component U hat (f ⁇ (K ⁇ 1 / 2) PRF) ⁇ U hat (f + (K ⁇ 1 / 2) PRF) ) To the still target image reproduction unit 2 and the rearrangement unit 3.
  • the still target image reproduction unit 2 When receiving the signal component U hat (f ⁇ (K ⁇ 1 / 2) PRF) to U hat (f + (K ⁇ 1 / 2) PRF) from the signal restoration unit 11, the still target image reproduction unit 2 performs the above-described implementation.
  • the signal components U hat (f ⁇ (K ⁇ 1 / 2) PRF) to U hat (f + (K ⁇ 1 / 2) PRF) are converted into time domain signals, and the time domain Play the still target image from the signal.
  • a method for converting the signal components U hat (f ⁇ (K ⁇ 1 / 2) PRF) to U hat (f + (K ⁇ 1 / 2) PRF) into a time domain signal is not particularly limited.
  • FIG. 4 (f)
  • the moving target component included in the signal component U hat (f ⁇ (K ⁇ 1 / 2) PRF) to U hat (f + (K ⁇ 1 / 2) PRF) are separated in the frequency domain.
  • the spectrum of the signal component U hat (f ⁇ (K ⁇ 1 / 2) PRF) to U hat (f + (K ⁇ 1 / 2) PRF) is rearranged. That is, the rearrangement unit 3 performs signal component U hat (f ⁇ (K ⁇ 1 / 2) PRF) to U hat (f + (K ⁇ 1 / 2) PRF) as shown in the following equation (16). Reorder spectra.
  • a filter bank may be configured by combining filters designed for each Doppler shift, and a plurality of signal components including respective moving speeds may be output. Moreover, you may combine these methods. It is assumed that 0 is given to a band where no signal is given. In this way, it is possible to improve the signal-to-clutter ratio by adding a moving target component that is Doppler shifted outside the band where the amount of clutter is small in normal restoration processing. This is a process achieved by performing signal copying and replacement in the rearrangement unit. For example, the signal-to-clutter ratio may be further improved by copying and replacing the signal as shown here.
  • the movement target image reproduction unit 5 converts the movement target component into a time domain signal, as in the first embodiment, and converts the movement target component from the time domain signal. Play the image.
  • the method for converting the moving target component, which is a frequency domain signal, into a time domain signal is not particularly limited. For example, by performing inverse fast Fourier transform processing or inverse discrete Fourier transform processing on the moving target component, Can be converted into a signal.
  • the moving target image reproduction method is not particularly limited. For example, a range Doppler method, a chirp scaling method, an ⁇ -K method, a polar format method, a back projection method, or the like can be used.
  • an amplitude value (signal intensity) larger than a preset threshold is selected from the pixels constituting the moving target image, as in the first embodiment.
  • This threshold value may be determined from, for example, the signal intensity related to the moving target and the signal intensity related to the periphery of the moving target.
  • the remaining clutter and azimuth ambiguity are suppressed by performing edge detection filter processing on the pixels that make up the moving target image using an edge detection filter or a filter equivalent to them. You may do it. At this time, if an edge detection filter is used for the signal amplitude, 0 may be substituted for the negative output.
  • the moving target image reproducing unit 5 reproduces the moving target image
  • the moving target image is converted into the moving target image and the stationary target image reproduced by the stationary target image reproducing unit 2 as in the first embodiment.
  • the moving target image and the stationary target image may be superimposed. In this way, by superimposing the moving target image and the stationary target image, it is possible to visually confirm the overlapping target.
  • the movement target image reproduction process by the movement target image reproduction unit 5 and the stationary target image reproduction process by the still target image reproduction unit 2 may be executed in parallel.
  • the wide observation width can be increased as in the first embodiment.
  • the moving target component may be extracted by suppressing the stationary target component and the aliasing component of the moving target without performing the spectrum rearrangement.
  • the moving target image reproduction unit 5 suppresses the component and the moving target component, and the moving target image reproducing unit 5 performs the signal component U hat (f ⁇ (K ⁇ 1 / 2)) so that the aliasing component of the moving target component is imaged as a desired signal.
  • the signal component U hat (f ⁇ (K ⁇ 1 / 2) is obtained by performing the range cell migration process and the matched filter process for azimuth compression on the PRF) to U hat (f + (K ⁇ 1 / 2) PRF).
  • the movement target component included in PRF) to U hat (f + (K ⁇ 1 / 2) PRF) is extracted. Since the range cell migration processing and the matched filter processing for azimuth compression are known techniques, detailed description thereof is omitted.
  • the signal restoration unit 11 arranges the reception signals (1) to (2K) of 2K reception antennas in order in the time domain, and then receives the reception antennas.
  • the received signals (1) to (2K) may be combined and the combined signal may be output.
  • the pulse signal is radiated from one transmission antenna.
  • the third embodiment is applied to a radar device in which pulse signals are radiated from a plurality of transmission antennas. You may do it.
  • the signal processing apparatus is suitable for a device that needs to detect a moving target while increasing the observation width with high resolution without increasing the number of channels.
  • 1 signal restoration unit (signal synthesis unit), 1a signal conversion unit, 1b signal synthesis unit, 2 still target image reproduction unit (image reproduction unit), 3 rearrangement unit (movement target component extraction unit), 4 shaping unit (movement target) Component extraction means), 5 moving target image reproduction unit, 11 signal restoration unit (signal synthesis unit), 11a signal conversion unit, 11b signal synthesis unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 信号復元部(1)から出力された信号成分に含まれている静止目標成分及び移動目標のエイリアシング成分と、その信号成分に含まれている移動目標成分とが周波数領域上で分かれるように、その信号成分のスペクトルの並べ替えを行う並べ替え部(3)と、並べ替え部(3)によるスペクトル並べ替え後の信号成分に含まれている静止目標成分及び移動目標のエイリアシング成分を抑圧して、スペクトル並べ替え後の信号成分に含まれている移動目標成分を抽出する整形部(4)とを設け、移動目標画像再生部(5)が、整形部(4)により抽出された移動目標成分から移動目標の画像を再生する。

Description

信号処理装置
 この発明は、移動目標の画像を再生する信号処理装置に関するものである。
 合成開口レーダの高機能化や高性能化を達成する手段として、マルチチャネル合成開口レーダが提案されている。
 マルチチャネル合成開口レーダの場合、送信アンテナの個数が1個であるとすれば、複数の受信アンテナを用いる必要がある。
 このとき、複数の受信アンテナを、レーダ装置を搭載しているプラットフォームの軌道方向に沿って配置すれば、以下の非特許文献1に開示されているHRWS(High-Resolution Wide-Swath)を実現することができる。HRWSは、複数のチャネルの受信信号を1つのチャネルの受信信号とみなして、アジマスアンビギュイティを分離する高分解能広観測幅化のことである。
 また、以下の非特許文献2に開示されているMTI(Moving Target Indicator)を実現することができる。MTIは、複数のチャネルの受信信号を対応させてクラッタを除去することで、移動目標を検出する処理である。
 非特許文献3、4には、HRWSとMTIの双方を実現する検討内容が開示されているが、HRWSを実現する場合、チャネル間の相関が低くなる受信アンテナの組み合わせが望ましく、MTIを実現する場合、チャネル間の相関が高くなる受信アンテナの組み合わせが望ましいとされている。
 このようにチャネル間の相関について、相反する要求があるHRWSとMTIの双方を実現するには、チャネル数を増やして、チャネル間の相関が低くなる受信アンテナの組み合わせと、チャネル間の相関が高くなる受信アンテナの組み合わせとを選択する必要がある。
G. Krieger, N. Gebert and A. Moreira, "Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling", IEEE Geoscience and Remote Sensing Letters, vol.1, no.4, pp.260-264, Oct., 2004. C.E. Livingstone, I. Sikaneta, C.H. Gierull, S. Chiu, A. Beaudoin, J. Campbell, J Beaudoin, S. Gong and T.A. Knight,"An airborne synthetic aperture radar (SAR) experiment to support RADARSAT-2 ground moving target identification (GMTI)", Can. J. Remote Sensing, vol.28, no.6, pp.794-813, 2002. Shuang-Xi Zhang, Meng-Dao Xing, Xiang-Gen Xia, Rui Guo, Yan-Yang Liu and Zheng Bao, "A novel moving target imaging algorithm for HRWS SAE SAR Based on Local Maximum Likelihood Minimum Entropy"IEEE Trans. on Geoscience and Remote Sensing, vol.52, no.9, pp.5333-5347, Sept., 2014.(to be published) Yuxiang Shu, Guisheng Liao and Zhiwei Yang, "Design considerations of PRF for optimizing GMTI performance in azimuth multichannel SAR systems with HRWS imaging capability" IEEE Trans. on Geoscience and Remote Sensing, vol.52, no.4, pp.2048-2063, April, 2014.
 従来の信号処理装置は以上のように構成されているので、チャネル数を増やせば、チャネル間の相関について、相反する要求があるHRWSとMTIの双方を実現することができるが、チャネル数が増えると、衛星機等に搭載する際のコスト、積載量、データ転送量など増大してしまうという課題があった。
 この発明は上記のような課題を解決するためになされたもので、チャネル数を増やすことなく、高分解能広観測幅化を図ることができるとともに、移動目標を検出することができる信号処理装置を得ることを目的とする。
 この発明に係る信号処理装置は、送信アンテナから繰り返し送信された信号のうち、静止目標又は移動目標に反射された信号を、レーダ装置を搭載しているプラットフォームの軌道方向に沿って配置されている複数の受信アンテナが受信すると、複数の受信アンテナの受信信号に含まれている静止目標の折り返し雑音成分が相殺されるように、複数の受信アンテナの受信信号を合成して、その合成信号を出力する信号合成手段と、信号合成手段から出力された合成信号に含まれている静止目標成分及び移動目標の折り返し雑音成分を抑圧して、その合成信号に含まれている移動目標成分を抽出する移動目標成分抽出手段とを設け、画像再生手段が、移動目標成分抽出手段により抽出された移動目標成分から移動目標の画像を再生するようにしたものである。
 この発明によれば、信号合成手段から出力された合成信号に含まれている静止目標成分及び移動目標の折り返し雑音成分を抑圧して、その合成信号に含まれている移動目標成分を抽出する移動目標成分抽出手段と設け、画像再生手段が、移動目標成分抽出手段により抽出された移動目標成分から移動目標の画像を再生するように構成したので、チャネル数を増やすことなく、高分解能広観測幅化を図ることができるとともに、移動目標を検出することができる効果がある。
この発明の実施の形態1による信号処理装置を示す構成図である。 この発明の実施の形態1による信号処理装置の処理内容を示すフローチャートである。 周波数領域上での各種信号の波形を示す説明図である。 周波数領域上での各種信号の波形を示す説明図である。 時間領域上での受信信号(1)(2)の合成を示す説明図である。 この発明の実施の形態2による信号処理装置を示す構成図である。 周波数領域上での各種信号の波形を示す説明図である。 時間領域上での受信信号(1)~(2K+1)の合成を示す説明図である。 この発明の実施の形態3による信号処理装置を示す構成図である。 時間領域上での受信信号(1)~(2K)の合成を示す説明図である。
 以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。
実施の形態1.
 この実施の形態1では、1本の送信アンテナからパルス繰り返し周期PRF(Pulse Repetition Frequency)でパルス信号が放射されたのち、静止目標又は移動目標に反射されたパルス信号が、その移動目標の軌道方向に沿って配置されている2本の受信アンテナで受信される例について説明する。
 なお、この実施の形態1では、上記のパルス繰り返し周期PRFは、折り返し雑音成分であるエイリアシング成分がアジマスアンビギュイティとして発生しない限界のドップラー周波数偏移の半分の値で運用されるため、2本の受信アンテナの受信信号におけるドップラー周波数信号成分には、エイリアシング成分としてアジマスアンビギュイティが発生している。
 以下、2本の受信アンテナを受信アンテナch1、受信アンテナch2のように表記する。
 図1はこの発明の実施の形態1による信号処理装置を示す構成図である。
 図1において、信号復元部1は受信アンテナch1から受信信号(1)を受けて、受信アンテナch2から受信信号(2)を受けると、その受信信号(1)(2)に含まれている静止目標のエイリアシング成分が相殺されるように、その受信信号(1)と受信信号(2)を合成して、その合成信号を出力する処理を実施する。
 即ち、信号復元部1は時間領域の信号である受信信号(1)(2)を周波数領域の信号に変換し、その周波数領域の信号をドップラー周波数信号(1)(2)として出力する信号変換部1aと、パルス繰り返し周期PRFの2分の1だけ、信号変換部1aから出力されたドップラー周波数信号(1)(2)を巡回シフトし、巡回シフト後のドップラー周波数信号(1)(2)に含まれている静止目標のエイリアシング成分が相殺されるように、巡回シフト後のドップラー周波数信号(1)(2)を合成して、その合成信号を出力する信号合成部1bとを備えている。
 なお、信号復元部1は信号合成手段を構成している。
 静止目標画像再生部2は信号復元部1から出力された合成信号に含まれている静止目標成分から静止目標の画像を再生する処理を実施する。
 並べ替え部3は信号復元部1から出力された合成信号に含まれている静止目標成分及び移動目標のエイリアシング成分と、その合成信号に含まれている移動目標成分とが周波数領域上で分かれるように、その合成信号のスペクトルの並べ替えを行う。
 整形部4は並べ替え部3によりスペクトルが並べ替えられた合成信号に含まれている静止目標成分及び移動目標のエイリアシング成分を抑圧して、その合成信号に含まれている移動目標成分を抽出する処理を実施する。
 なお、並べ替え部3及び整形部4から移動目標成分抽出手段が構成されている。
 移動目標画像再生部5は整形部4により抽出された移動目標成分から移動目標の画像を再生する処理を実施する。
 なお、静止目標画像再生部2及び移動目標画像再生部5から画像再生手段が構成されている。
 図1の例では、信号処理装置の構成要素である信号復元部1、静止目標画像再生部2、並べ替え部3、整形部4及び移動目標画像再生部5のそれぞれが専用のハードウェア(例えば、CPUを実装している半導体集積回路、あるいは、ワンチップマイコンなど)で構成されているものを想定しているが、信号処理装置がコンピュータで構成されていてもよい。
 信号処理装置をコンピュータで構成する場合、信号復元部1、静止目標画像再生部2、並べ替え部3、整形部4及び移動目標画像再生部5の処理内容を記述しているプログラムをコンピュータのメモリに格納し、当該コンピュータのCPUが当該メモリに格納されているプログラムを実行するようにすればよい。
 図2はこの発明の実施の形態1による信号処理装置の処理内容を示すフローチャートである。
 次に動作について説明する。
 信号処理装置の処理内容を具体的に説明する前に、静止目標及び移動目標を観測した場合の受信信号の定式化について説明する。最初に、静止目標だけを観測して、移動目標を観測していない場合について説明する。
 ここでは、送信アンテナ及び受信アンテナch1、ch2は、移動目標の軌道方向に沿って配置されており、受信アンテナch1は、送信アンテナからΔxだけ離れた位置に配置され、受信アンテナch2は、送信アンテナからΔxだけ離れた位置に配置されているものとする。
 送信アンテナからパルス繰り返し周期PRFで放射されたパルス信号のうち、静止目標に反射されたパルス信号が、受信アンテナch1、ch2で受信されるが、そのパルス信号の伝搬距離r(t)は、下記の式(1)のように表される。i=1、2である。

Figure JPOXMLDOC01-appb-I000001
 式(1)において、rは送信アンテナから静止目標までの距離であるスラントレンジ距離、vplfはレーダ装置を搭載しているプラットフォームの移動速度である。
 式(1)で表されているパルス信号の伝搬距離r(t)は、テイラー近似を導入すると、下記の式(2)のように簡単化することができる。

Figure JPOXMLDOC01-appb-I000002
 したがって、受信アンテナch1、ch2の受信信号(1)(2)のドップラー周波数成分であるドップラー周波数信号S(f)は、下記の式(3)に示すように、通常のモノスタティック観測が行われた場合の受信信号のドップラー周波数成分であるU(f)に対して、-Δx/2vplfの時間シフトとΔx /4rの距離変化に相当する位相回転が与えられているものとして表される。

Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
 図3は周波数領域上での各種信号の波形を示す説明図である。
Figure JPOXMLDOC01-appb-I000005

Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000007
 合成信号である信号成分Uハット(f)は、エイリアシング成分が相殺されており、モノスタティック観測で得られた信号と等価で広帯域な信号である。

Figure JPOXMLDOC01-appb-I000008
 次に、移動目標を観測した場合の受信信号の定式化について説明する。
 移動目標を観測した場合、上記の式(4)の合成処理を実施しても、移動目標のエイリアシング成分が残余することに本発明は着目する。
 まず、送信アンテナからパルス繰り返し周期PRFで放射されたパルス信号のうち、静止目標又は移動目標に反射されたパルス信号が、受信アンテナch1、ch2で受信された場合、そのパルス信号の伝搬距離r(t)は、下記の式(5)のように表される。i=1、2である。

Figure JPOXMLDOC01-appb-I000009

 式(5)において、vtgtは移動目標のレンジ方向の移動速度である。この実施の形態1では、移動目標がアジマス方向に移動していないものとする。
 式(5)で表されているパルス信号の伝搬距離r(t)は、テイラー近似を導入すると、下記の式(6)のように簡単化することができる。

Figure JPOXMLDOC01-appb-I000010
 したがって、受信アンテナch1、ch2の受信信号のドップラー周波数成分であるドップラー周波数信号R(f)は、下記の式(7)に示すように、通常のモノスタティック観測が行われた場合の受信信号のドップラー周波数成分であるU(f)に対して、
 -Δx/2vplf、-rtgt/vplf の時間シフトと、
 Δx /4r-vtgtΔx/vplf-vtgt /vplf の距離変化に相当する位相回転が与えられているものとして表される。

Figure JPOXMLDOC01-appb-I000011

Figure JPOXMLDOC01-appb-I000012

Figure JPOXMLDOC01-appb-I000013

Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000015
 図4は周波数領域上での各種信号の波形を示す説明図である。

Figure JPOXMLDOC01-appb-I000016
 図4において、太線は静止目標成分を示し、細線は移動目標成分を示している。また、破線によって所望信号とエイリアシングが重複している様相を確認できるように示している。
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000018

Figure JPOXMLDOC01-appb-I000019
 式(8)の合成処理を実施することで、エイリアシング成分が相殺され、下記の式(9)に示すような信号成分Zハット(f)が得られる。

Figure JPOXMLDOC01-appb-I000020
 しかし、式(8)の合成処理では、下記の式(10)に示すようなエイリアシング成分Vハット(f)が残余する。

Figure JPOXMLDOC01-appb-I000021
 式(8)のUハット(f)をZハット(f)とVハット(f)に分割すれば、Vハット(f)の残余量に応じてエイリアシング成分が残余することがわかる。
 式(8)の合成処理を整理すると、下記の式(11)のように表される。

Figure JPOXMLDOC01-appb-I000022

Figure JPOXMLDOC01-appb-I000023

Figure JPOXMLDOC01-appb-I000024
 式(11)において、Vハット(f)には、sinθ_の係数が乗算されていることから、移動目標の速度と、受信アンテナの間隔が反映された係数に応じた移動目標のエイリアシング成分が残余することがわかる。
 そこで、この実施の形態1では、静止目標成分が少ない帯域での移動目標成分のエイリアシング成分が結像するように、帯域外の静止目標成分を抑圧しながら、移動目標成分が強調された画像を再生する。
 以下、信号処理装置の処理内容を具体的に説明する。
 送信アンテナからパルス繰り返し周期PRFで放射されたパルス信号のうち、静止目標又は移動目標に反射されたパルス信号を、受信アンテナch1、ch2が受信すると、信号復元部1が、受信アンテナch1、ch2の受信信号(1)(2)を取得する。
 信号復元部1の信号変換部1aは、受信アンテナch1、ch2の受信信号(1)(2)を取得すると、その受信信号(1)(2)を周波数領域の信号に変換し、その周波数領域の信号をドップラー周波数信号(1)(2)として出力する。

Figure JPOXMLDOC01-appb-I000025

 なお、時間領域の信号である受信信号(1)(2)を周波数領域の信号に変換する手法は特に問わないが、例えば、受信信号(1)(2)に対する高速フーリエ変換処理や離散フーリエ変換処理を行うことで、周波数領域の信号に変換することができる。

Figure JPOXMLDOC01-appb-I000026

Figure JPOXMLDOC01-appb-I000027

 即ち、信号合成部1bは、式(8)の合成処理を実施することで、合成信号として信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)を得て、その信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)を静止目標画像再生部2及び並べ替え部3に出力する(図2のステップST1)。
 静止目標画像再生部2は、信号復元部1から信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)を受けると、その信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)を時間領域の信号に変換し、その時間領域の信号から静止目標の画像を再生する(ステップST2)。
 なお、信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)を時間領域の信号に変換する手法は特に問わないが、例えば、信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)に対する逆高速フーリエ変換処理や逆離散フーリエ変換処理を行うことで、時間領域の信号に変換することができる。
 静止目標画像の再生方法は、例えば、以下の非特許文献5、6に開示されており、例えば、レンジドップラー法、チャープスケーリング法、ω-K法、ポーラフォーマット法、バックプロジェクション法などを用いることができる。
[非特許文献5]
 Lan G. Cumming and Frank H. Wong,“digital processing of SYNTHETIC APERTURE RADAR”, ARTECH HOUSE
[非特許文献6]
 Gharles V. Jakowatz Jr., Daniel E. Wahl, Palu H. Eichel, Dennis C. Ghiglia and Paul A. Thompson, “SPOTLIGHT-MODE SYNTHETIC APERTURE RADAR: A SIGNAL PROCESSING APPROACH”, KLUWER ACADEMIC PUBLISHERS 
 並べ替え部3は、信号復元部1から信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)を受けると、図4(f)に示すように、その信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)に含まれている静止目標成分及び移動目標のエイリアシング成分と、その信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)に含まれている移動目標成分とが周波数領域上で分かれるように、その信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)のスペクトルの並べ替えを行う(ステップST3)。
 即ち、並べ替え部3は、下記の式(12)に示すように、信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)のスペクトルの並べ替えを行う。なお、移動目標成分をコヒーレントに加算するため、符号の変換も行っている。

Figure JPOXMLDOC01-appb-I000028

Figure JPOXMLDOC01-appb-I000029

Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000032

Figure JPOXMLDOC01-appb-I000033

Figure JPOXMLDOC01-appb-I000034
 また、ドップラーシフト毎に設計したフィルタを組み合わせてフィルタバンクを構成し、それぞれの移動速度を含んでいる信号成分を複数出力するようにしてもよい。また、これらの手法を組み合わせてもよい。

Figure JPOXMLDOC01-appb-I000035

Figure JPOXMLDOC01-appb-I000036

 このように、通常の復元処理において、クラッタの存在量が少ない帯域外にドップラーシフトしている移動目標成分を追加することによって信号対クラッタ比を改善することが可能である。これは、並べ替え部3において、信号のコピーと置換を行うことで達成される処理である。例えば、ここで示したように信号のコピーと置換も行って更に信号対クラッタ比を改善してもよい。

Figure JPOXMLDOC01-appb-I000037
 移動目標画像再生部5は、整形部4が移動目標成分を抽出すると、その移動目標成分を時間領域の信号に変換し、その時間領域の信号から移動目標の画像を再生する(ステップST5)。
 なお、周波数領域の信号である移動目標成分を時間領域の信号に変換する手法は特に問わないが、例えば、移動目標成分に対する逆高速フーリエ変換処理や逆離散フーリエ変換処理を行うことで、時間領域の信号に変換することができる。
 また、移動目標画像の再生方法は特に問わないが、例えば、レンジドップラー法、チャープスケーリング法、ω-K法、ポーラフォーマット法、バックプロジェクション法などを用いることができる。
 移動目標画像再生部5は、移動目標の画像を再生すると、その移動目標の画像を構成する画素の中から、予め設定された閾値より大きな振幅値(信号強度)を有する画素を検出し、その検出した1以上の画素の集まりを移動目標として特定する。
 この閾値は、例えば、移動目標に係る信号強度や、移動目標の周囲に係る信号強度から決定してもよい。
 また、エッジ検出フィルタやそれらに準ずるフィルタを用いて、移動目標画像を構成する画素に対して、エッジを検出するフィルタ処理等を行うことで、残余しているクラッタやアジマスアンビギュイティを抑圧するようにしてもよい。このとき、信号振幅に対してエッジ検出フィルタを用いるのであれば、負の出力に対して0を置換してもよい。
 また、移動目標画像再生部5は、移動目標の画像を再生すると、その移動目標の画像と、静止目標画像再生部2により再生された静止目標の画像とに異なる着色を施してダイナミックレンジを調節してから、その移動目標の画像と静止目標の画像とを重ね合わせるようにしてもよい。
 このように、移動目標の画像と静止目標の画像とを重ね合わせることで、重ね合わせての視認が可能になる。
 なお、移動目標画像再生部5による移動目標の画像の再生処理と、静止目標画像再生部2による静止目標の画像の再生処理は、並列に実行するようにしてもよい。
Figure JPOXMLDOC01-appb-I000038

 即ち、2本の受信アンテナch1、ch2を用いるだけで、高分解能広観測幅化と移動目標の検出を実現することができる。
Figure JPOXMLDOC01-appb-I000039

 しかし、これは一例に過ぎず、スペクトルの並べ替えを実施せずに、静止目標成分及び移動目標のエイリアシング成分を抑圧して、移動目標成分を抽出するようにしてもよい。
 具体的には、信号復元部1から出力された信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)に含まれている静止目標成分及び移動目標成分が抑圧されて、移動目標成分のエイリアシング成分を所望信号として結像するように、移動目標画像再生部5が、その信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)に対するレンジセルマイグレーション処理及びアジマス圧縮用の整合フィルタ処理を実施することで、その信号成分Uハット(f-PRF/2)、Uハット(f+PRF/2)に含まれている移動目標成分を抽出する。レンジセルマイグレーション処理及びアジマス圧縮用の整合フィルタ処理自体は、公知の技術であるため詳細な説明を省略する。この場合、移動目標画像再生部5が移動目標成分抽出手段を構成する。
Figure JPOXMLDOC01-appb-I000040

 しかし、これは一例に過ぎず、図5に示すように、信号復元部1が、受信アンテナch1、ch2の受信信号(1)(2)を時間領域上で交互に並べてから、その受信アンテナch1、ch2の受信信号(1)(2)を合成して、その合成信号を出力するようにしてもよい。
 具体的には、以下の通りである。
 受信アンテナch1、ch2が移動目標の軌道方向に沿って配置されているので、図5に示すように、受信アンテナch1の受信信号(1)が、時刻t、t、t、・・・で受信されるとすれば、受信アンテナch2の受信信号(2)は、時刻t、t、t、・・・で受信される。
 このとき、信号復元部1が、図5に示すように、受信信号(1)と受信信号(2)が時間領域上で交互に並ぶように、受信信号(1)と受信信号(2)を合成する。

Figure JPOXMLDOC01-appb-I000041
 また、この実施の形態1では、1本の送信アンテナからパルス信号が放射されるレーダ装置に適用している例を示したが、複数の送信アンテナからパルス信号が放射されるレーダ装置に適用するようにしてもよい。
実施の形態2.
 上記実施の形態1では、移動目標の軌道方向に沿って配置されている2本の受信アンテナch1、ch2の受信信号を取得して、移動目標を検出する信号処理装置について示したが、この実施の形態2では、プラットフォームの軌道方向に沿って配置されている(2K+1)本の受信アンテナ(3以上の奇数本の受信アンテナ)の受信信号を取得して、移動目標を検出する信号処理装置について説明する。K=1、2、3、・・・である。
 この実施の形態2では、パルス繰り返し周期PRFは、折り返し雑音成分であるエイリアシング成分がアジマスアンビギュイティとして発生しない限界のドップラー周波数偏移の1/(2K+1)で運用されるため、(2K+1)本の受信アンテナの受信信号におけるドップラー周波数信号成分には、エイリアシング成分としてアジマスアンビギュイティが発生している。
 図6はこの発明の実施の形態2による信号処理装置を示す構成図であり、図6において、図1と同一符号は同一または相当部分を示すので説明を省略する。
 信号復元部11は移動目標の軌道方向に沿って配置されている(2K+1)本の受信アンテナの受信信号(1)~(2K+1)を受けると、その受信信号(1)~(2K+1)に含まれている静止目標のエイリアシング成分が相殺されるように、その受信信号(1)~(2K+1)を合成して、その合成信号を出力する処理を実施する。
 即ち、信号復元部1は時間領域の信号である受信信号(1)~(2K+1)を周波数領域の信号に変換し、その周波数領域の信号をドップラー周波数信号(1)~(2K+1)として出力する信号変換部11aと、信号変換部11aから出力されたドップラー周波数信号(1)~(2K+1)に含まれている静止目標のエイリアシング成分が相殺されるように、そのドップラー周波数信号(1)~(2K+1)を合成して、その合成信号を出力する信号合成部11bとを備えている。
 なお、信号復元部11は信号合成手段を構成している。
 次に動作について説明する。
 送信アンテナからパルス繰り返し周期PRFで放射されたパルス信号のうち、静止目標又は移動目標に反射されたパルス信号を、(2K+1)本の受信アンテナが受信すると、信号復元部11が、(2K+1)本の受信アンテナの受信信号(1)~(2K+1)を取得する。
 信号復元部11の信号変換部11aは、(2K+1)本の受信アンテナの受信信号(1)~(2K+1)を取得すると、その受信信号(1)~(2K+1)を周波数領域の信号に変換し、その周波数領域の信号をドップラー周波数信号(1)~(2K+1)として出力する。

Figure JPOXMLDOC01-appb-I000042

 なお、時間領域の信号である受信信号(1)~(2K+1)を周波数領域の信号に変換する手法は特に問わないが、例えば、受信信号(1)~(2K+1)に対する高速フーリエ変換処理や離散フーリエ変換処理を行うことで、周波数領域の信号に変換することができる。
 図7は周波数領域上での各種信号の波形を示す説明図である。図7では、K=1の例を示している。

Figure JPOXMLDOC01-appb-I000043

 図7において、太線は静止目標成分を示し、細線は移動目標成分を示している。また、太線の破線は静止目標のエイリアシング成分を示し、細線の破線は移動目標のエイリアシング成分を示している。
Figure JPOXMLDOC01-appb-I000044

Figure JPOXMLDOC01-appb-I000045

 即ち、信号合成部11bは、-PRF/2≦f<PRF/2として、式(13)の合成処理を実施することで、合成信号として信号成分Uハット(f-KPRF)~Uハット(f+KPRF)を得て、その信号成分Uハット(f-KPRF)~Uハット(f+KPRF)を静止目標画像再生部2及び並べ替え部3に出力する。

Figure JPOXMLDOC01-appb-I000046

Figure JPOXMLDOC01-appb-I000047
 静止目標画像再生部2は、信号復元部11から信号成分Uハット(f-KPRF)~Uハット(f+KPRF)を受けると、上記実施の形態1と同様に、その信号成分Uハット(f-KPRF)~Uハット(f+KPRF)を時間領域の信号に変換し、その時間領域の信号から静止目標の画像を再生する。
 なお、信号成分Uハット(f-KPRF)~Uハット(f+KPRF)を時間領域の信号に変換する手法は特に問わないが、例えば、信号成分Uハット(f-KPRF)~Uハット(f+KPRF)に対する逆高速フーリエ変換処理や逆離散フーリエ変換処理を行うことで、時間領域の信号に変換することができる。
 また、静止目標画像の再生方法は、上記実施の形態1と同様に、レンジドップラー法、チャープスケーリング法、ω-K法、ポーラフォーマット法、バックプロジェクション法などを用いることができる。
 並べ替え部3は、信号復元部11から信号成分Uハット(f-KPRF)~Uハット(f+KPRF)を受けると、図7(i)に示すように、その信号成分Uハット(f-KPRF)~Uハット(f+KPRF)に含まれている静止目標成分及び移動目標のエイリアシング成分と、その信号成分Uハット(f-KPRF)~Uハット(f+KPRF)に含まれている移動目標成分とが周波数領域上で分かれるように、その信号成分Uハット(f-KPRF)~Uハット(f+KPRF)のスペクトルの並べ替えを行う。
 即ち、並べ替え部3は、下記の式(14)に示すように、信号成分Uハット(f-KPRF)~Uハット(f+KPRF)のスペクトルの並べ替えを行う。

Figure JPOXMLDOC01-appb-I000048

Figure JPOXMLDOC01-appb-I000049

 なお、式(14)は、スペクトルの並べ替えによって、図7(g)から図7(i)の状態に移行することを表しているが、最初に、図7(h)に示すように、信号成分Uハット(f-KPRF)~Uハット(f+KPRF)に含まれている静止目標成分及び移動目標のエイリアシング成分と、移動目標成分とが周波数領域上で分かれるように、その信号成分Uハット(f-KPRF)~Uハット(f+KPRF)のスペクトルの並べ替えを行ってから、図7(i)に示すように、静止目標成分が残余している周波成分を中心部分の帯域に集めるようにしてもよい。
Figure JPOXMLDOC01-appb-I000050

Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000052

Figure JPOXMLDOC01-appb-I000053

Figure JPOXMLDOC01-appb-I000054

 また、ドップラーシフト毎に設計したフィルタを組み合わせてフィルタバンクを構成し、それぞれの移動速度を含んでいる信号成分を複数出力するようにしてもよい。また、これらの手法を組み合わせてもよい。

Figure JPOXMLDOC01-appb-I000055

Figure JPOXMLDOC01-appb-I000056

 信号が与えられていない帯域には0を与えるものとする。
 このように、通常の復元処理において、クラッタの存在量が少ない帯域外にドップラーシフトしている移動目標成分を追加することによって信号対クラッタ比を改善することが可能である。これは、並べ替え部3において信号のコピーと置換を行うことで達成される処理である。例えば、ここで示したように信号のコピーと置換も行ってさらに信号対クラッタ比を改善してもよい。

Figure JPOXMLDOC01-appb-I000057
 移動目標画像再生部5は、整形部4が移動目標成分を抽出すると、上記実施の形態1と同様に、その移動目標成分を時間領域の信号に変換し、その時間領域の信号から移動目標の画像を再生する。
 なお、周波数領域の信号である移動目標成分を時間領域の信号に変換する手法は特に問わないが、例えば、移動目標成分に対する逆高速フーリエ変換処理や逆離散フーリエ変換処理を行うことで、時間領域の信号に変換することができる。
 また、移動目標画像の再生方法は特に問わないが、例えば、レンジドップラー法、チャープスケーリング法、ω-K法、ポーラフォーマット法、バックプロジェクション法などを用いることができる。
 移動目標画像再生部5は、移動目標の画像を再生すると、上記実施の形態1と同様に、その移動目標の画像を構成する画素の中から、予め設定された閾値より大きな振幅値(信号強度)を有する画素を検出し、その検出した1以上の画素の集まりを移動目標として特定する。
 この閾値は、例えば、移動目標に係る信号強度や、移動目標の周囲に係る信号強度から決定してもよい。
 また、エッジ検出フィルタやそれらに準ずるフィルタを用いて、移動目標画像を構成する画素に対して、エッジを検出するフィルタ処理等を行うことで、残余しているクラッタやアジマスアンビギュイティを抑圧するようにしてもよい。このとき、信号振幅に対してエッジ検出フィルタを用いるのであれば、負の出力に対して0を置換してもよい。
 また、移動目標画像再生部5は、移動目標の画像を再生すると、上記実施の形態1と同様に、その移動目標の画像と、静止目標画像再生部2により再生された静止目標の画像とに異なる着色を施してダイナミックレンジを調節してから、その移動目標の画像と静止目標の画像とを重ね合わせるようにしてもよい。
 このように、移動目標の画像と静止目標の画像とを重ね合わせることで、重ね合わせての視認が可能になる。
 なお、移動目標画像再生部5による移動目標の画像の再生処理と、静止目標画像再生部2による静止目標の画像の再生処理は、並列に実行するようにしてもよい。
 以上で明らかなように、この実施の形態2によれば、受信アンテナの数が3以上の奇数であっても、上記実施の形態1と同様に、高分解能広観測幅化を図ることができるとともに、移動目標を検出することができる効果を奏する。
Figure JPOXMLDOC01-appb-I000058

 しかし、これは一例に過ぎず、スペクトルの並べ替えを実施せずに、静止目標成分及び移動目標のエイリアシング成分を抑圧して、移動目標成分を抽出するようにしてもよい。
 具体的には、信号復元部1から出力された信号成分Uハット(f-KPRF)~Uハット(f+KPRF)に含まれている静止目標成分及び移動目標成分を抑圧して、移動目標成分のエイリアシング成分を所望信号として結像するように移動目標画像再生部5が、その信号成分Uハット(f-KPRF)~Uハット(f+KPRF)に対するレンジセルマイグレーション処理及びアジマス圧縮用の整合フィルタ処理を実施することで、その信号成分Uハット(f-KPRF)~Uハット(f+KPRF)に含まれている移動目標成分を抽出する。レンジセルマイグレーション処理及びアジマス圧縮用の整合フィルタ処理自体は、公知の技術であるため詳細な説明を省略する。
Figure JPOXMLDOC01-appb-I000059

 しかし、これは一例に過ぎず、図8に示すように、信号復元部11が、(2K+1)本の受信アンテナの受信信号(1)~(2K+1)を時間領域上で順番に並べてから、その受信アンテナの受信信号(1)~(2K+1)を合成して、その合成信号を出力するようにしてもよい。
 また、この実施の形態2では、1本の送信アンテナからパルス信号が放射されるレーダ装置に適用している例を示したが、複数の送信アンテナからパルス信号が放射されるレーダ装置に適用するようにしてもよい。
実施の形態3.
 上記実施の形態1では、移動目標の軌道方向に沿って配置されている2本の受信アンテナch1、ch2の受信信号を取得して、移動目標を検出する信号処理装置について示したが、この実施の形態3では、プラットフォームの軌道方向に沿って配置されている2K本の受信アンテナ(2以上の偶数本の受信アンテナ)の受信信号を取得して、移動目標を検出する信号処理装置について説明する。K=1、2、3、・・・である。
 この実施の形態3では、パルス繰り返し周期PRFは、折り返し雑音成分であるエイリアシング成分がアジマスアンビギュイティとして発生しない限界のドップラー周波数偏移の1/2Kで運用されるため、2K本の受信アンテナの受信信号におけるドップラー周波数信号成分には、エイリアシング成分としてアジマスアンビギュイティが発生している。
 次に動作について説明する。
 送信アンテナからパルス繰り返し周期PRFで放射されたパルス信号のうち、静止目標又は移動目標に反射されたパルス信号を、2K本の受信アンテナが受信すると、信号復元部11が、2K本の受信アンテナの受信信号(1)~(2K)を取得する。
 信号復元部11の信号変換部11aは、2K本の受信アンテナの受信信号(1)~(2K)を取得すると、その受信信号(1)~(2K)を周波数領域の信号に変換し、その周波数領域の信号をドップラー周波数信号(1)~(2K)として出力する。

Figure JPOXMLDOC01-appb-I000060

 なお、時間領域の信号である受信信号(1)~(2K)を周波数領域の信号に変換する手法は特に問わないが、例えば、受信信号(1)~(2K)に対する高速フーリエ変換処理や離散フーリエ変換処理を行うことで、周波数領域の信号に変換することができる。
Figure JPOXMLDOC01-appb-I000061

Figure JPOXMLDOC01-appb-I000062

 即ち、信号合成部11bは、-PRF/2≦f<PRF/2として、式(15)の合成処理を実施することで、合成信号として信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)を得て、その信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)を静止目標画像再生部2及び並べ替え部3に出力する。

Figure JPOXMLDOC01-appb-I000063

Figure JPOXMLDOC01-appb-I000064
 静止目標画像再生部2は、信号復元部11から信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)を受けると、上記実施の形態1と同様に、その信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)を時間領域の信号に変換し、その時間領域の信号から静止目標の画像を再生する。
 なお、信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)を時間領域の信号に変換する手法は特に問わないが、例えば、信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)に対する逆高速フーリエ変換処理や逆離散フーリエ変換処理を行うことで、時間領域の信号に変換することができる。
 また、静止目標画像の再生方法は、上記実施の形態1と同様に、レンジドップラー法、チャープスケーリング法、ω-K法、ポーラフォーマット法、バックプロジェクション法などを用いることができる。
 並べ替え部3は、信号復元部11から信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)を受けると、図4(f)に示すように、その信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)に含まれている静止目標成分及び移動目標のエイリアシング成分と、その信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)に含まれている移動目標成分とが周波数領域上で分かれるように、その信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)のスペクトルの並べ替えを行う。
 即ち、並べ替え部3は、下記の式(16)に示すように、信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)のスペクトルの並べ替えを行う。

Figure JPOXMLDOC01-appb-I000065

Figure JPOXMLDOC01-appb-I000066
Figure JPOXMLDOC01-appb-I000067

Figure JPOXMLDOC01-appb-I000068
Figure JPOXMLDOC01-appb-I000069

Figure JPOXMLDOC01-appb-I000070

Figure JPOXMLDOC01-appb-I000071
 また、ドップラーシフト毎に設計したフィルタを組み合わせてフィルタバンクを構成し、それぞれの移動速度を含んでいる信号成分を複数出力するようにしてもよい。また、これらの手法を組み合わせてもよい。

Figure JPOXMLDOC01-appb-I000072

Figure JPOXMLDOC01-appb-I000073
 信号が与えられていない帯域には0を与えるものとする。
 このように、通常の復元処理においてクラッタの存在量が少ない帯域外にドップラーシフトしている移動目標成分を追加することによって信号対クラッタ比を改善することが可能である。これは、並べ替え部において、信号のコピーと置換を行うことで達成される処理である。例えば、ここで示したように信号のコピーと置換も行ってさらに信号対クラッタ比を改善してもよい。

Figure JPOXMLDOC01-appb-I000074
 移動目標画像再生部5は、整形部4が移動目標成分を抽出すると、上記実施の形態1と同様に、その移動目標成分を時間領域の信号に変換し、その時間領域の信号から移動目標の画像を再生する。
 なお、周波数領域の信号である移動目標成分を時間領域の信号に変換する手法は特に問わないが、例えば、移動目標成分に対する逆高速フーリエ変換処理や逆離散フーリエ変換処理を行うことで、時間領域の信号に変換することができる。
 また、移動目標画像の再生方法は特に問わないが、例えば、レンジドップラー法、チャープスケーリング法、ω-K法、ポーラフォーマット法、バックプロジェクション法などを用いることができる。
 移動目標画像再生部5は、移動目標の画像を再生すると、上記実施の形態1と同様に、その移動目標の画像を構成する画素の中から、予め設定された閾値より大きな振幅値(信号強度)を有する画素を検出し、その検出した1以上の画素の集まりを移動目標として特定する。
 この閾値は、例えば、移動目標に係る信号強度や、移動目標の周囲に係る信号強度から決定してもよい。
 また、エッジ検出フィルタやそれらに準ずるフィルタを用いて、移動目標画像を構成する画素に対して、エッジを検出するフィルタ処理等を行うことで、残余しているクラッタやアジマスアンビギュイティを抑圧するようにしてもよい。このとき、信号振幅に対してエッジ検出フィルタを用いるのであれば、負の出力に対して0を置換してもよい。
 また、移動目標画像再生部5は、移動目標の画像を再生すると、上記実施の形態1と同様に、その移動目標の画像と、静止目標画像再生部2により再生された静止目標の画像とに異なる着色を施してダイナミックレンジを調節してから、その移動目標の画像と静止目標の画像とを重ね合わせるようにしてもよい。
 このように、移動目標の画像と静止目標の画像とを重ね合わせることで、重ね合わせての視認が可能になる。
 なお、移動目標画像再生部5による移動目標の画像の再生処理と、静止目標画像再生部2による静止目標の画像の再生処理は、並列に実行するようにしてもよい。
 以上で明らかなように、この実施の形態3によれば、受信アンテナの数が2以上の偶数であっても、上記実施の形態1と同様に、高分解能広観測幅化を図ることができるとともに、移動目標を検出することができる効果を奏する。
Figure JPOXMLDOC01-appb-I000075

 しかし、これは一例に過ぎず、スペクトルの並べ替えを実施せずに、静止目標成分及び移動目標のエイリアシング成分を抑圧して、移動目標成分を抽出するようにしてもよい。
 具体的には、信号復元部1から出力された信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)に含まれている静止目標成分及び移動目標成分を抑圧して、移動目標成分のエイリアシング成分を所望信号として結像されるように、移動目標画像再生部5が、その信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)に対するレンジセルマイグレーション処理及びアジマス圧縮用の整合フィルタ処理を実施することで、その信号成分Uハット(f-(K-1/2)PRF)~Uハット(f+(K-1/2)PRF)に含まれている移動目標成分を抽出する。レンジセルマイグレーション処理及びアジマス圧縮用の整合フィルタ処理自体は、公知の技術であるため詳細な説明を省略する。
Figure JPOXMLDOC01-appb-I000076

 しかし、これは一例に過ぎず、図10に示すように、信号復元部11が、2K本の受信アンテナの受信信号(1)~(2K)を時間領域上で順番に並べてから、その受信アンテナの受信信号(1)~(2K)を合成して、その合成信号を出力するようにしてもよい。
 また、この実施の形態3では、1本の送信アンテナからパルス信号が放射されるレーダ装置に適用している例を示したが、複数の送信アンテからパルス信号が放射されるレーダ装置に適用するようにしてもよい。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る信号処理装置は、チャネル数を増やすことなく、高分解能広観測幅化を図りながら、移動目標を検出する必要があるものに適している。
 1 信号復元部(信号合成手段)、1a 信号変換部、1b 信号合成部、2 静止目標画像再生部(画像再生手段)、3 並べ替え部(移動目標成分抽出手段)、4 整形部(移動目標成分抽出手段)、5 移動目標画像再生部、11 信号復元部(信号合成手段)、11a 信号変換部、11b 信号合成部。

Claims (11)

  1.  送信アンテナから繰り返し送信された信号のうち、静止目標又は移動目標に反射された信号を、レーダ装置を搭載しているプラットフォームの軌道方向に沿って配置されている複数の受信アンテナが受信すると、前記複数の受信アンテナの受信信号に含まれている前記静止目標の折り返し雑音成分が相殺されるように、前記複数の受信アンテナの受信信号を合成して、その合成信号を出力する信号合成手段と、
     前記信号合成手段から出力された合成信号に含まれている静止目標成分及び前記移動目標の折り返し雑音成分を抑圧して、前記合成信号に含まれている移動目標成分を抽出する移動目標成分抽出手段と、
     前記移動目標成分抽出手段により抽出された移動目標成分から前記移動目標の画像を再生する画像再生手段と
     を備えた信号処理装置。
  2.  前記信号合成手段は、前記複数の受信アンテナの受信信号を周波数領域の信号に変換し、前記複数の周波数領域の信号に含まれている前記静止目標の折り返し雑音成分が相殺されるように、前記複数の周波数領域の信号を合成して、その合成信号を出力することを特徴とする請求項1記載の信号処理装置。
  3.  前記信号合成手段は、前記送信アンテナから送信される信号のパルス繰り返し周波数の2分の1だけ、前記複数の周波数領域の信号を巡回シフトし、巡回シフト後の前記複数の周波数領域の信号に含まれている前記静止目標の折り返し雑音成分が相殺されるように、巡回シフト後の前記複数の周波数領域の信号を合成して、その合成信号を出力することを特徴とする請求項2記載の信号処理装置。
  4.  前記信号合成手段は、前記複数の受信アンテナの受信信号を時間領域上で交互に並べてから、前記複数の受信アンテナの受信信号を合成して、その合成信号を出力することを特徴とする請求項1記載の信号処理装置。
  5.  前記移動目標成分抽出手段は、前記信号合成手段から出力された合成信号に含まれている静止目標成分及び前記移動目標の折り返し雑音成分と、前記合成信号に含まれている移動目標成分とが周波数領域上で分かれるように、前記合成信号のスペクトルの並べ替えを行う並べ替え部と、
     前記並べ替え部によりスペクトルが並べ替えられた合成信号に含まれている静止目標成分及び前記移動目標の折り返し雑音成分を抑圧して、前記合成信号に含まれている移動目標成分を抽出する整形部とから構成されていることを特徴とする請求項2記載の信号処理装置。
  6.  前記並べ替え部は、前記合成信号のスペクトルの並べ替えを行う際、前記合成信号に含まれている一部の信号のコピーを行って置換することを特徴とする請求項5記載の信号処理装置。
  7.  前記移動目標成分抽出手段は、前記信号合成手段から出力された合成信号に含まれている静止目標成分及び前記移動目標の折り返し雑音成分が抑圧されるように、前記合成信号に対するレンジセルマイグレーション処理及びアジマス圧縮用の整合フィルタ処理を実施することで、前記合成信号に含まれている移動目標成分を抽出することを特徴とする請求項2記載の信号処理装置。
  8.  前記画像再生手段は、前記移動目標の画像を構成する画素の中から、予め設定された閾値より大きな振幅値を有する画素を検出することで、前記移動目標を検出することを特徴とする請求項1記載の信号処理装置。
  9.  前記画像再生手段は、前記移動目標の画像を構成する画素に対して、エッジを検出するフィルタ処理を行うことを特徴とする請求項1記載の信号処理装置。
  10.  前記画像再生手段は、前記信号合成手段から出力された合成信号に含まれている静止目標成分から前記静止目標の画像を再生することを特徴とする請求項1記載の信号処理装置。
  11.  前記画像再生手段は、前記移動目標の画像と前記静止目標の画像とに異なる着色を施してから、前記移動目標の画像と前記静止目標の画像とを重ね合わせることを特徴とする請求項10記載の信号処理装置。
PCT/JP2014/071759 2014-08-20 2014-08-20 信号処理装置 WO2016027326A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2014/071759 WO2016027326A1 (ja) 2014-08-20 2014-08-20 信号処理装置
EP14900243.8A EP3185034B1 (en) 2014-08-20 2014-08-20 Signal processing device
JP2016543528A JP6275265B2 (ja) 2014-08-20 2014-08-20 信号処理装置
CA2958525A CA2958525C (en) 2014-08-20 2014-08-20 Signal processing device
US15/504,853 US10754006B2 (en) 2014-08-20 2014-08-20 Signal processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/071759 WO2016027326A1 (ja) 2014-08-20 2014-08-20 信号処理装置

Publications (1)

Publication Number Publication Date
WO2016027326A1 true WO2016027326A1 (ja) 2016-02-25

Family

ID=55350305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071759 WO2016027326A1 (ja) 2014-08-20 2014-08-20 信号処理装置

Country Status (5)

Country Link
US (1) US10754006B2 (ja)
EP (1) EP3185034B1 (ja)
JP (1) JP6275265B2 (ja)
CA (1) CA2958525C (ja)
WO (1) WO2016027326A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210231789A1 (en) * 2018-06-28 2021-07-29 Richwave Technology Corp. Doppler signal processing device and method thereof for interference suppression
US20220018953A1 (en) * 2021-07-16 2022-01-20 Ids Georadar S.R.L. Method and apparatus for blurring effect mitigation in ground-based radar images

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060448A (ja) * 2008-09-04 2010-03-18 Mitsubishi Electric Corp レーダ画像再生装置
JP2013181954A (ja) * 2012-03-05 2013-09-12 Mitsubishi Electric Corp 合成開口レーダ装置およびその移動目標検出方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1481414A (en) * 1973-08-21 1977-07-27 Emi Ltd Radar apparatus
US4137533A (en) * 1977-10-12 1979-01-30 United Technologies Corporation Angle/vector processed, phase-accumulated single vector rotation, variable order adaptive MTI processor
US5818383A (en) * 1981-11-27 1998-10-06 Northrop Grumman Corporation Interferometric moving vehicle imaging apparatus and method
US4628318A (en) * 1983-12-02 1986-12-09 Rockwell International Corporation Ground clutter suppression technique
JP5171517B2 (ja) * 2008-09-30 2013-03-27 三菱電機株式会社 画像レーダ装置
DE102012021010B4 (de) * 2012-10-26 2022-02-03 Airbus Defence and Space GmbH Synthetisches Apertur Radar zur gleichzeitigen Bildaufnahme und Bewegtzielerkennung
JP2014119344A (ja) * 2012-12-17 2014-06-30 Mitsubishi Electric Corp 合成開口レーダ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010060448A (ja) * 2008-09-04 2010-03-18 Mitsubishi Electric Corp レーダ画像再生装置
JP2013181954A (ja) * 2012-03-05 2013-09-12 Mitsubishi Electric Corp 合成開口レーダ装置およびその移動目標検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3185034A4 *

Also Published As

Publication number Publication date
US20170269193A1 (en) 2017-09-21
EP3185034A1 (en) 2017-06-28
US10754006B2 (en) 2020-08-25
JP6275265B2 (ja) 2018-02-07
CA2958525C (en) 2018-10-30
EP3185034B1 (en) 2021-09-22
CA2958525A1 (en) 2016-02-25
EP3185034A4 (en) 2018-03-14
JPWO2016027326A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
EP3526622B1 (en) Method and system for obtaining angle-doppler signatures in mimo radars
CA2827279C (en) Synthetic aperture radar for simultaneous imaging and ground moving target indication
Neemat et al. Reconfigurable range-Doppler processing and range resolution improvement for FMCW radar
JP6469317B2 (ja) レーダ処理装置
EP3273265A1 (en) Radar moving image creation device and method
JP6275265B2 (ja) 信号処理装置
CN107102328B (zh) 基于fpga的实时成像信号处理方法及fpga
WO2013067594A1 (en) An apparatus and a method for obtaining information about at least one target
Yang et al. Range ambiguity suppression by azimuth phase coding in multichannel SAR systems
JP6687297B1 (ja) レーダ信号処理装置及びレーダ信号処理方法
CN109001733B (zh) 一种geo星机双基合成孔径雷达频谱模糊抑制方法
JP6184220B2 (ja) レーダシステム、レーダ装置およびレーダ信号処理装置
CN108802706A (zh) 基于位置标定的调频步进雷达信号目标抽取方法
Zheng et al. A deep learning approach for Doppler unfolding in automotive TDM MIMO radar
Gao et al. Improved spectrum reconstruction technique based on chirp rate modulation in stepped-frequency SAR
RU2596229C1 (ru) Способ повышения разрешающей способности по дальности радиолокационной станции
Li et al. Extension and evaluation of PGA in ScanSAR mode using full-aperture approach
JP2007212245A (ja) パルスレーダ装置
JP6735632B2 (ja) 信号処理装置、信号処理方法及び信号処理プログラム
Peng et al. Study on transmitting mode and imaging algorithm of MIMO-SAR
JP6615405B2 (ja) レーダ装置
Wang Bandwidth synthesis for stepped chirp signal: A multichannel sampling prospective
Zhou et al. An Innovative Spaceborne SAR Concept With Low PRF: Using Intra-Pulse Doppler Effects for Doppler Spectrum Recovery
Hu et al. Image reconstruction method for stepped-frequency multichannel bistatic SAR
Guo et al. Range ambiguity suppression for multi-channel SAR system near singular points

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016543528

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2958525

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15504853

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014900243

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014900243

Country of ref document: EP