WO2016026848A1 - Pesticidally active heterocyclic derivatives with sulphur containing substituents - Google Patents

Pesticidally active heterocyclic derivatives with sulphur containing substituents Download PDF

Info

Publication number
WO2016026848A1
WO2016026848A1 PCT/EP2015/068928 EP2015068928W WO2016026848A1 WO 2016026848 A1 WO2016026848 A1 WO 2016026848A1 EP 2015068928 W EP2015068928 W EP 2015068928W WO 2016026848 A1 WO2016026848 A1 WO 2016026848A1
Authority
WO
WIPO (PCT)
Prior art keywords
spp
formula
alkyl
compounds
haloalkyl
Prior art date
Application number
PCT/EP2015/068928
Other languages
French (fr)
Inventor
André Stoller
André Jeanguenat
Andrew Edmunds
Pierre Joseph Marcel Jung
Daniel EMERY
Michel Muehlebach
Peter Renold
Original Assignee
Syngenta Participations Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Participations Ag filed Critical Syngenta Participations Ag
Priority to BR112017003168-0A priority Critical patent/BR112017003168B1/en
Priority to US15/504,688 priority patent/US10081641B2/en
Priority to CN201580044808.2A priority patent/CN106573891B/en
Priority to EP15753672.3A priority patent/EP3183245B1/en
Priority to JP2017510336A priority patent/JP6695326B2/en
Priority to ES15753672T priority patent/ES2701859T3/en
Publication of WO2016026848A1 publication Critical patent/WO2016026848A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • A01N55/08Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur containing boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds

Definitions

  • the present invention relates to pesticidally active, in particular insecticidally active heterocyclic derivatives containing sulphur substituents, to intermediates for the preparation of those compounds, to compositions comprising those compounds, and to their use for controlling animal pests (including arthropods and in particular insects or representatives of the order Acarina).
  • Heterocyclic compounds with pesticidal action are known and described, for example, in
  • the present invention accordingly relates to compounds of formula I,
  • A represents CH or N
  • Q is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C 4 alkyl, Ci-C 4 haloalkyl, C 3 -C 6 cycloalkyl and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C 4 alkyl, Ci-C 4 haloalkyl, Ci-C 4 haloalkoxy, Ci-C 4 alkoxy, Ci-C 4 haloalkylsulfanyl, Ci-C 4 halo-alkylsulfinyl, Ci-C 4 haloalkylsulfonyl and -C(0)Ci-C 4 haloalkyl; or
  • Q is C 2 -C 6 alkenyl, or C 2 -C 6 alkenyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C 4 alkyl, Ci-C 4 haloalkyl, C 3 -C 6 cycloalkyl and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C 4 alkyl, Ci-C 4 haloalkyl, Ci-C 4 haloalkoxy, Ci-C 4 alkoxy, Ci-C 4 haloalkylsulfanyl, Ci-C 4 halo- alkylsulfinyl, Ci-C 4 haloalkylsulfonyl and -C(0)Ci-C 4 haloalkyl; or
  • Q is C 2 -C 6 alkynyl, or C 2 -C 6 alkynyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C 4 alkyl, Ci-C 4 haloalkyl, C 3 -C 6 cycloalkyl, tri(Ci-C 4 alkyl)silyl and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C 4 alkyl, Ci-C 4 haloalkyl, Ci-C 4 haloalkoxy, Ci-C 4 alkoxy, Ci-C 4 halo- alkylsulfanyl, Ci-C 4 haloalkylsulfinyl, Ci-C 4 haloalkylsulfonyl and -C(0)Ci-C 4 haloalkyl;
  • X is S, SO or S0 2 ;
  • Ri is Ci-C 4 alkyl, Ci-C 4 haloalkyl, C 3 -C 6 cycloalkyl, C 3 -C 6 cycloalkyl-Ci-C 4 alkyl or C 3 -C 6 cycloalkyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano and
  • Ci-C 4 alkyl or
  • Ri is C 3 -C 6 cycloalkyl-Ci-C 4 alkyl mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano and Ci-C 4 alkyl; or
  • Ri is C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl or C 2 -C 6 alkynyl;
  • R 2 is halogen, cyano, Ci-C 6 haloalkyl or Ci-C 6 haloalkyl substituted by one or two substituents selected from the group consisting of hydroxyl, methoxy and cyano; or
  • R 2 is Ci-C 4 haloalkylsulfanyl, Ci-C 4 haloalkylsulfinyl, Ci-C 4 haloalkylsulfonyl, 0(Ci-C 4 haloalkyl), or -C(0)d-C 4 haloalkyl; or
  • R 2 is C 3 -C 6 cycloalkyl which can be mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano and Ci-C 4 alkyl;
  • Xi is O, S or NR 3 , wherein R 3 is hydrogen, Ci-C 4 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C-i-C 4 alkoxy- Ci-C 4 alkyl or C 3 -C 6 cycloalkyl;
  • Compounds of formula I which have at least one basic centre can form, for example, acid addition salts, for example with strong inorganic acids such as mineral acids, for example perchloric acid, sulfuric acid, nitric acid, nitrous acid, a phosphorus acid or a hydrohalic acid, with strong organic carboxylic acids, such as Ci-C 4 alkanecarboxylic acids which are unsubstituted or substituted, for example by halogen, for example acetic acid, such as saturated or unsaturated dicarboxylic acids, for example oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid or phthalic acid, such as hydroxycarboxylic acids, for example ascorbic acid, lactic acid, malic acid, tartaric acid or citric acid, or such as benzoic acid, or with organic sulfonic acids, such as Ci-C 4 alkane- or arylsulfonic acids which are unsubstituted or substituted, for example by
  • Compounds of formula I which have at least one acidic group can form, for example, salts with bases, for example mineral salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower-alkylamine, for example ethyl-, diethyl-, triethyl- or dimethylpropylamine, or a mono-, di- or trihydroxy-lower-alkylamine, for example mono-, di- or triethanolamine.
  • bases for example mineral salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts
  • salts with ammonia or an organic amine such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower-alkylamine, for example ethyl-, diethy
  • alkyl groups occurring in the definitions of the substituents can be straight-chain or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, hexyl, nonyl, decyl and their branched isomers.
  • Alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, alkoxy, alkenyl and alkynyl radicals are derived from the alkyl radicals mentioned.
  • the alkenyl and alkynyl groups can be mono- or polyunsaturated.
  • Halogen is generally fluorine, chlorine, bromine or iodine. This also applies, correspondingly, to halogen in combination with other meanings, such as haloalkyl or halophenyl.
  • HaloalkyI groups preferably have a chain length of from 1 to 6 carbon atoms.
  • Haloalkyl is, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2- trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1 ,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3- tetrafluoroethyl and 2,2,2-trichloroethyl.
  • Alkoxy groups preferably have a preferred chain length of from 1 to 6 carbon atoms.
  • Alkoxy is, for example, methoxy, ethoxy, propoxy, i-propoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy and also the isomeric pentyloxy and hexyloxy radicals.
  • Alkoxyalkyl groups preferably have a chain length of 1 to 6 carbon atoms.
  • Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, n- propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl.
  • Alkoxycarbonyl is for example methoxycarbonyl (which is Cialkoxycarbonyl), ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, tert-butoxycarbonyl, n-pentoxycarbonyl or hexoxycarbonyl.
  • the cycloalkyl groups preferably have from 3 to 6 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • mono- to polysubstituted in the definition of the substituents, means typically, depending on the chemical structure of the substituents, monosubstituted to seven-times substituted, preferably monosubstituted to five-times substituted, more preferably mono-, double- or triple-substituted.
  • Free radicals represent methyl groups.
  • the compounds of formula I according to the invention also include hydrates which may be formed during the salt formation.
  • a preferred group of compounds of formula I is represented by the compounds of formula 1-1
  • R 2 and Q are as defined under formula I above; and wherein Xa- ⁇ is S, SO or S0 2 ; Ra- ⁇ is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds.
  • Q is preferably C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl monosubstituted or disubstituted by substituents selected from the group consisting of cyano, Ci-C 4 haloalkyl and halogen; in particular C 3 -C 6 cycloalkyl; R 2 is preferably Ci-C 4 haloalkyl, Xa- ⁇ is preferably S0 2 and Ra- ⁇ is preferably ethyl.
  • a further preferred group of compounds of formula I is represented by the compounds of formula I-2
  • R 2 and Q are as defined under formula I above; and wherein Xa 2 is S, SO or S0 2 ; Ra 2 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds.
  • Q is preferably C 3 -C 6 cycloalkyl, or is C 3 -C 6 cycloalkyl monosubstituted or disubstituted by substituents selected from the group consisting of cyano, Ci-C 4 haloalkyl and halogen; in particular C 3 -C 6 cycloalkyl; R 2 is preferably Ci-C 4 haloalkyl, Xa- ⁇ is preferably S0 2 and Ra- ⁇ is preferably ethyl.
  • a further preferred group of compounds of formula I is represented by the compounds of formula I-3
  • R 2 and Q are as defined under formula I above; and wherein Xa 3 is S, SO or S0 2 ; Ra 3 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds.
  • Q is preferably C 2 -C 6 alkenyl, or C 2 -C 6 alkenyl monosubstituted or disubstituted by substituents selected from the group consisting of Ci-C 4 alkyl, C 3 -C 6 cycloalkyl, Ci-C 4 haloalkyl, phenyl and phenyl monosubstituted by Ci-C 4 haloalkyl;
  • R 2 is preferably Ci-C 4 haloalkyl,
  • Xa 3 is preferably S0 2 and Ra 3 is preferably ethyl.
  • a further preferred group of compounds of formula I is represented by the compounds of formula I-4
  • R 2 and Q are as defined under formula I above; and wherein Xa 4 is S, SO or S0 2 ; Ra 4 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds.
  • Q is preferably C 2 -C 6 alkenyl, or C 2 -C 6 alkenyl monosubstituted or disubstituted by substituents selected from the group consisting of Ci-C 4 alkyl, C 3 -C 6 cycloalkyl, Ci-C 4 haloalkyl, phenyl and phenyl monosubstituted by Ci-C 4 haloalkyl;
  • R 2 is preferably Ci-C 4 haloalkyl,
  • Xa 4 is preferably S0 2 and Ra 4 is preferably ethyl.
  • a further preferred group of compounds of formula I is represented by the compounds of formula I-5
  • R 2 and Q are as defined under formula I above; and wherein Xa 5 is S, SO or S0 2 ; Ra 5 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds.
  • Q is preferably C 2 -C 6 alkynyl, or C 2 -C 6 alkynyl monosubstituted by substituents selected from the group consisting of tri(CrC 4 alkyl)silyl, Ci-C 4 haloalkyl and phenyl, or phenyl which can be monosubstituted by substituents selected from the group consisting of halogen, Ci-C 4 alkyl and Ci-C 4 haloalkyl; R 2 is preferably Ci-C 4 haloalkyl, Xa 5 is preferably S0 2 and Ra 5 is preferably ethyl.
  • a further preferred group of compounds of formula I is represented by the compounds of formula 1-6
  • R 2 and Q are as defined under formula I above; and wherein Xa 6 is S, SO or S0 2 ; Ra 6 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds.
  • Q is preferably C 2 -C 6 alkynyl, or C 2 -C 6 alkynyl monosubstituted by substituents selected from the group consisting of tri(CrC 4 alkyl)silyl, Ci-C 4 haloalkyl and phenyl, or phenyl which can be monosubstituted by substituents selected from the group consisting of halogen, Ci-C 4 alkyl and Ci-C 4 haloalkyl; R 2 is preferably Ci-C 4 haloalkyl, Xa 6 is preferably S0 2 and Ra 6 is preferably ethyl.
  • a further preferred group of compounds of formula I is represented by the compounds of formula 1-10
  • R 2 and Q are as defined under formula I in claim 1 ;
  • Ra- ⁇ is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl.
  • Preferred compounds of formula 1-10 are those, wherein
  • Q is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl mono- or disubstituted by substituents selected from the group consisting of cyano, Ci-C 4 haloalkyl and halogen; or Q is C 2 -C 6 alkenyl, or C 2 -C 6 alkenyl mono- or disubstituted by substituents selected from the group consisting of Ci-C 4 alkyl, C 3 -C 6 cycloalkyl, Ci-C 4 haloalkyl, phenyl, or phenyl monosubstituted by Ci-C 4 haloalkyl; or Q is C 2 -C 6 alkynyl, or
  • R 2 and Q are as defined under formula I in claim 1 ;
  • Xa 20 is S, SO or S0 2 ;
  • Ra 2 o is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl.
  • Preferred compounds of formula I-20 are those, wherein
  • Q is C 3 -C 6 cycloalkyl, or C 3 -C 6 cycloalkyl mono- or disubstituted by substituents selected from the group consisting of cyano, Ci-C 4 haloalkyl and halogen; or Q is C 2 -C 6 alkenyl, or C 2 -C 6 alkenyl mono- or disubstituted by substituents selected from the group consisting of Ci-C 4 alkyl or C 3 -C 6 cycloalkyl, d- C 4 haloalkyl, phenyl, or phenyl monosubstituted by Ci-C 4 haloalkyl; or Q is C 2 -C 6 alkynyl, or
  • C 2 -C 6 alkynyl monosubstituted by substituents selected from the group consisting of tri(C 1 -C 4 alkyl)silyl, Ci-C 4 haloalkyl, phenyl, said phenyl can be monosubstituted by substituents selected from the group consisting of halogen, Ci-C 4 alkyl or Ci-C 4 haloalkyl.
  • X 2 is S0 2 ;
  • X 3 is N-(d-C 4 alkyl);
  • R 4 is Ci-C 4 alkyl
  • Q a is C 3 -C 6 cycloalkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, or is C 3 -C 6 cycloalkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl each mono- or disubstituted by substituents selected from the group consisting of halogen, Ci-C 4 alkyl, Ci-C 4 haloalkyl, cyano, C 3 -C 6 cycloalkyl, tri(Ci-C 4 alkyl)silyl and phenyl, said phenyl can be mono- substituted by halogen or Ci-C 4 haloalkyl; or Q a is C 3 -C 6 cycloalkenyl which itself can be mono- or disubstituted by Ci-C 4 alkyl; and R 6 is Ci-C 4 haloalkyl.
  • Q a is preferably C 3 -C 6 cycloalkyl which can be mono- or disubstituted by substituents selected from the group consisting of halogen, Ci-C 4 haloalkyl and cyano; or Q a is C 3 - C 6 cycloalkenyl which itself can be mono- or di-substituted by Ci-C 4 alkyl.
  • X 2b is S0 2 ;
  • X 3b is N-(d-C 4 alkyl);
  • R 4b is Ci-C 4 alkyl
  • Q b is C 3 -C 6 cycloalkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl, or is C 3 -C 6 cycloalkyl, C 2 -C 6 alkenyl or C 2 -C 6 alkynyl each mono- or disubstituted by substituents selected from the group consisting of halogen, Ci-C 4 alkyl, Ci-C 4 haloalkyl, cyano, C 3 -C 6 cycloalkyl, tri(Ci-C 4 alkyl)silyl and phenyl, said phenyl can be mono- substituted by halogen or Ci-C 4 haloalkyl; and
  • R 6b is Ci-C 4 haloalkyl.
  • Q b is preferably C 3 -C 6 cycloalkyl which can be mono- or disubstituted by substituents selected from the group consisting of halogen, Ci-C 4 haloalkyl and cyano; or Q b is C 3 - C 6 cycloalkenyl which itself can be mono- or di-substituted by Ci-C 4 alkyl.
  • compounds of formula I can be prepared (as depicted in scheme 1 ) by reacting compounds of formula II with compounds of formula III, wherein X b i can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate and Y b i can be a boron-derived functional group, as for example B(OH) 2 or B(OR b i) 2 wherein R b i can be a Ci-C 6 alkyl group or the two groups OR b i can form together with the boron atom a five- or six-membered ring, as for example a pinacol boronic ester (such five- or six- membered boronic ester reagents of formula III are, for example, 4,4,5,5-tetramethyl-2-
  • A, X-i, R-i, R 2 , X and Q are as described in formula I.
  • the reaction can be catalyzed by a palladium based catalyst, for example tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine) palladium(ll) dichloride, chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1 ,1 '-biphenyl)[2-(2'-amino- 1 ,1'-biphenyl)]palladium(ll) (XPhos palladacycle), or (1 ,1 'bis(diphenylphosphino)-ferrocene) dichloropalladium-dichloromethane (1 :1 complex), in presence of a base, like sodium carbonate, tripotassium phosphate or cesium fluoride, in a solvent (such as to
  • a particular case of compounds of formula I is represented by compounds of formula l-b, wherein A, R-i , R 2 , X and X-i are as described in formula I and Q is a 1-alk nyl group of the structure C ⁇ C-Qb:
  • Qb is hydrogen, halogen, cyano, Ci-C 4 alkyl, Ci-C 4 haloalkyl, C 3 -C 6 cycloalkyl, tri(Ci- C 4 alkyl)silyl or phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C 4 alkyl, Ci-C 4 haloalkyl, Ci-C 4 haloalkoxy, Ci-C 4 alkoxy, Ci-C 4 halo-alkylsulfanyl, Ci-C 4 haloalkylsulfinyl, Ci-C 4 haloalkylsulfonyl and -C(0)Ci-C 4 haloalkyl.
  • Compounds of the formula l-b can be prepared, for example, by reacting compounds of formula II with terminal alkynes of formula H-C ⁇ C-Qb (scheme 1a), wherein X b1 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate.
  • X b1 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate.
  • A, X, X-i , R-i , R 2 and Qb are as described above in formula l-b. This type of reaction is well known to a person skilled in the art and commonly described as the Sonogashira cross-coupling reaction.
  • the substituted aromatic component of formula II is reacted with the terminal alkyne of formula H-C ⁇ C-Qb in the presence of a copper(l) salt, like Cul, preferably in catalytic amount, and in the presence of a palladium based catalyst, for example bis(triphenylphosphine)- palladium dichloride or (1 ,1 'bis(diphenylphosphino)-ferrocene)dichloropalladium-dichloromethane (1 :1 complex), preferably in catalytic amount, and in the presence of a base, such as a tertiary amine, for example triethylamine or Hiinig's base ( ⁇ , ⁇ -diisopropylethylamine), preferably in equivalent amount or in excess.
  • a copper(l) salt like Cul
  • a palladium based catalyst for example bis(triphenylphosphine)- palladium dichloride or (1 ,1 'bis(diphen
  • reaction can be performed in the amine as solvent or another compatible solvent can be used as dilutant, as for example an ether, like tetrahydrofurane.
  • dilutant as for example an ether, like tetrahydrofurane.
  • the reaction is best performed under inert atmosphere and can take place at temperatures in the range from below 0°C to the boiling point of the reaction mixture.
  • the compound of formula l-b, wherein Qb is tri(Ci-C 4 alkyl)silyl is treated with a base, such as potassium carbonate, or sodium- or potassium hydroxide, in a protic solvent, such as an alcohol, preferably methanol or ethanol, at temperatures between 0°C and 50°C.
  • a base such as potassium carbonate, or sodium- or potassium hydroxide
  • a protic solvent such as an alcohol, preferably methanol or ethanol
  • compound of formula l-b, wherein Qb is tri(Ci-C 4 alkyl)silyl may also be treated with a fluoride source, such as for example, tetrabutyl ammonium fluoride or potassium fluoride, in solvents such as tetrahydrofuran or dioxane, at temperatures between 0°C and 50°C.
  • a fluoride source such as for example, tetrabutyl ammonium fluoride or potassium fluoride
  • Compounds of formula I can also be made (as depicted in scheme 2) by reacting compounds of formula IV with compounds of formula V, wherein X b2 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate and Y b2 can be a boron- derived functional group, as for example B(OH) 2 or B(OR b2 ) 2 wherein R b2 can be a d-C 6 alkyl group or the two groups OR b2 can form together with the boron atom a five- or six-membered ring, as for example a pinacol boronic ester.
  • A, X-i , R-i , R 2 , X and Q are as described in formula I.
  • the reaction can be catalyzed by a palladium based catalyst, for example
  • reaction temperature can preferentially range from room temperature to the boiling point of the reaction mixture, or alternatively heating may be performed under microwave irradiation.
  • R-i , R 2 , X, Xi and A are as defined under formula I above, and Yb 2 is -B(OH) 2 or Yb 2 is
  • the reaction can be performed with reagents like, for example, a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide, as for example, hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a monoperoxo-disulfate salt or potassium permanganate.
  • reagents like, for example, a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide, as for example, hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a monoperoxo-disulfate salt or potassium permanganate.
  • Compounds of formula l-a1 may also be prepared (scheme 4) by reacting a compound of the formula VI with a compound of the formula VII, wherein A, R-i , R 2 , Xi and Q have the values defined in formula I and X is sulphur and M is a metal or non-metal cation.
  • the cation M is assumed to be monovalent, but polyvalent cations associated with more than one S-Ri group can also be considered.
  • Prefered cations are, for example lithium, sodium, potassium or cesium.
  • Xb 3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate, but many other leaving groups could be considered.
  • the reaction can be performed in a solvent, preferably aprotic, at temperatures below 0°C or up to boiling temperature of the reaction mixture.
  • Xb 3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, or any other similar leaving group
  • Xb4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine
  • Y b4 can be a boron- derived functional group, as for example B(OH) 2 or B(OR b 4)2 wherein R b4 can be a d-C 6 alkyl group or the two groups OR b4 can form together with the boron atom a five- or six-membered ring, as for example a pin
  • reaction can be catalyzed by a palladium based catalyst, for example tetrakis(triphenyl- phosphine)palladium(O), bis(triphenylphosphine) palladium(ll) dichloride or (1 ,1 'bis(diphenyl- phosphino)-ferrocene)dichloropalladium-dichloromethane (1 : 1 complex), in presence of a base, like sodium carbonate, tripotassium phosphate or cesium fluoride, in a solvent (such as toluene, 1 ,2- dimethoxy-ethane DME, tetrahydrofuran or dioxane) or a solvent mixture, like, for example a mixture of 1 ,2-dimethoxyethane and water, or of dioxane and water, preferably under inert atmosphere.
  • a palladium based catalyst for example tetrakis(triphenyl- phosphin
  • compounds of formula VI can also be prepared by reacting compounds of formula X, wherein Xb 3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, or any other similar leaving group, with compounds of formula XI, wherein X b5 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, and Y b5 can be a boron-derived functional group, as for example B(OH) 2 or
  • R b5 can be a Ci-C 6 alkyl group or the two groups OR b5 can form together with the boron atom a five- or six-membered ring, as for example a pinacol boronic ester.
  • R b5 can be a Ci-C 6 alkyl group or the two groups OR b5 can form together with the boron atom a five- or six-membered ring, as for example a pinacol boronic ester.
  • X and XI, A, X-i , R 2 and Q are as described in formula I.
  • the reaction can be catalyzed by a palladium based catalyst, for example tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine) palladium(ll) dichloride or (1 ,1 'bis(diphenylphosphino)-ferrocene)dichloropalladium-dichloromethane (1 : 1 complex), in presence of a base, like sodium carbonate, tripotassium phosphate or cesium fluoride, in a solvent (such as toluene, 1 ,2-dimethoxy-ethane DME, tetrahydrofuran or dioxane) or a solvent mixture, like, for example a mixture of 1 ,2-dimethoxyethane and water, or of dioxane and water, preferably under inert atmosphere.
  • the reaction temperature can preferentially range from ambient temperature to the boiling point of the reaction mixture, or alternatively heating may be performed under microwave
  • Compounds of formula I can also be prepared (scheme 7) by reacting compounds of formula XIII and compounds of formula XIV under various formal dehydration conditions, wherein A, R-i , R 2 , X, Xi and Q have the values defined in formula I.
  • These methods are known to those skilled in the art or described for example in WO 2009/131237, WO 201 1/043404, WO 201 1/040629, WO 2010/125985, WO 2012/086848, WO 2013/018928, WO 2013/191 1 13, WO 2013/180193 and WO 2013/180194.
  • compounds of formula I can be prepared by treatment of compounds of formula XIV with dicyclohexyl carbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) to give the activated species XlV-a, wherein X 0 is Xoi and X 02 respectively, in an inert solvent, e.g. pyridine, or tetrahydrofuran (THF) optionally in the presence of a base, e.g. triethylamine, at temperatures between 50-180 °C.
  • DCC dicyclohexyl carbodiimide
  • EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
  • THF tetrahydrofuran
  • R-i is ethyl or methylene-cyclopropyl
  • A is nitrogen or methine
  • Rooi is hydrogen or d-C 4 alkyl
  • R 0002 is cyano; are novel and especially developed for the preparation of the compounds according to the present invention.
  • the compounds of formula XVI-b therefore constitute a further object of the invention.
  • compounds of formula XV can be converted to compounds of formula I (wherein X-i is O) using triphenylphosphine, di-isopropyl azodicarboxylate in an inert solvent such as THF at temperatures between 25-50°C.
  • THF inert solvent
  • compounds of formula VI wherein Xb 3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethane- sulfonate, or any other similar leaving group, can be prepared by reacting compounds of formula XVI, wherein A and Q have the values defined for formula I, with an activating agent, like, for example oxalyl chloride or thionyl chloride or a carbodiimid reagent to generate the activated species XVI-a, followed by reaction with compounds of formula XIII, wherein R 2 and X-i are as described in formula I.
  • the intermediate compounds of formula XVII may be isolated, but are preferentially converted into the compounds of formula VI in a similar way as described above for the transformation of compounds XV into compounds of formula I.
  • compounds of formula VIII can be prepared as described in scheme 10, by reacting compounds of formula XVIII, respectively an activated form XVIII-a of compounds of formula XVIII, wherein A is carbon or nitrogen, and X b3 is a leaving group like, for example fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethane- sulfonate, and X b4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, with compounds of the formula XIII, wherein X-i and R 2 are as defined in formula I.
  • the intermediate compounds of formula XIX may be isolated, but are preferentially converted into the compounds of formula VIII in a similar way as described above (transformation of compounds XV into
  • Compounds of formula XXI can be prepared as described in scheme 10a, by reacting compounds of formula XX, wherein A is carbon CH or nitrogen, and X b3a is a leaving group like, for example nitro, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, and X b4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, with a compound of formula VII, wherein R-i is as defined in formula I, and M is a metal or non-metal cation.
  • R-i is as defined in formula I
  • M is a metal or non-metal cation.
  • the cation M is assumed to be monovalent, but polyvalent cations associated with more than one S-Ri group can also be considered.
  • Prefered cations are, for example lithium, sodium, potassium or cesium.
  • the reaction can be performed in a solvent, preferably polar aprotic, such as THF, N,N-dimethylformamide or MeCN, at temperatures between -78°C and the boiling temperature of the reaction mixture.
  • Compounds of formula XVIII-c can be prepared by hydrolysis of compounds of formula XXI under acidic (e.g. HCI or H 2 S0 4 ) or basic conditions (e.g. NaOH or KOH) as described in scheme 10a, under conditions known to a person skilled in the art.
  • Compounds of formula Il-a2 can be prepared, as described in scheme 10a, by reacting compounds of formula XVIII-c respectively an activated form XVIII-d of compounds of formula XVIII-c with compounds of formula XIII, wherein X-i and R 2 are as defined in formula I.
  • the intermediate compounds of formula XXII may be isolated, but are preferentially converted into the compounds of formula M-a2 in a similar way as described above (transformation of compounds XV into compounds of formula I).
  • X can be S, SO or S0 2 .
  • the reaction can be performed with reagents like, for example a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide as for example hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a mono-peroxodisulfate salt or potassium permanganate, preferentially meta- chloroperbenzoic acid.
  • reagents like, for example a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide as for example hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a mono-peroxodisulfate salt or potassium permanganate, preferentially meta- chloroperbenzoic acid.
  • a compound of formula XVIII-c, wherein X is S, SO or S0 2 can alternatively be prepared by analogous methods to those described in the literature (scheme 10b).
  • a compound of formula XVIII- c, wherein X is S may be prepared by saponification of a compound of formula XXIV, wherein R LG is Ci-C 4 alkyl, under conditions known to a person skilled in the art (R-i is as defined in formula I, A is N or CH, and X b4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine).
  • XXIV-a Compounds of formula XXIV, wherein R LG is Ci-C 4 alkyl, may be prepared by treatment of compounds of formula XXIII, wherein Xb 3 a is a leaving group like, for example nitro, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, and wherein R LG is Ci-C 4 alkyl, with a reagent M-S-R-i, wherein R-i is as defined in formula I and M is a metal or non-metal cation, under conditions described above.
  • Xb 3 a is a leaving group like, for example nitro, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate
  • R LG Ci-C 4 alkyl
  • Compounds of formula Il-a1 wherein X is sulfur, can be prepared (scheme 1 1 ) by reacting a compound of the formula VIII, wherein A, R 2 and X-i are as defined in formula I, and wherein X b3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, preferentially fluorine or chlorine, and wherein X b4 is a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, with a compound of the formula VII, wherein R-i is as defined in formula I, and M is a metal or non-metal cation.
  • X b3 is a leaving group like, for example, fluorine, chlorine, bro
  • the cation M is assumed to be monovalent, but polyvalent cations associated with more than one S-Ri group can also be considered.
  • Prefered cations are, for example lithium, sodium, potassium or cesium.
  • the reaction can be performed in a solvent, preferably polar aprotic, at temperatures below 0°C or up to boiling temperature of the reaction mixture.
  • the reaction can be performed with reagents like, for example a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide as for example hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a mono-peroxodisulfate salt or potassium permanganate, preferentially meta-chloroperbenzoic acid.
  • reagents like, for example a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide as for example hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a mono-peroxodisulfate salt or potassium permanganate, preferentially meta-chloroperbenzoic acid.
  • compounds of formula M-a2 wherein A, R-i , R 2 and X-i have the values defined in formula I, and X is -SO-, and wherein X b4 is a halogen, preferentially chlorine, bromine or iodine, or a sulfonate like for example a trifluoromethanesulfonate, can be prepared by oxidation of compounds of formula Il-a1 , wherein A, R-i , R 2 and X-i have the values defined in formula I, and X is -S-, and wherein X b4 is a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate.
  • These reactions can be performed in various organic or aqueous solvents compatible to these conditions, by temperatures from below 0°C up to the boiling point of the solvent system.
  • step A hydrogen abstraction on a compound of the formula lll-a wherein Zb- ⁇ is hydrogen, with a strong base (step A), like butyllithium or lithium diisopropylamide or (i-PrMgCI, LiCI), followed by reaction of the metallated intermediate of the formula lll-b, wherein Zb 2 is a metal such as Li + or MgCI + for example, with, for example, a trialkylborate (step B).
  • Another way to access an organometal intermediate of the formula lll-b is from a compound of the formula lll-a wherein Zb- ⁇ is chlorine, bromine or iodine, via metal-halogen exchange with an organometallic species (step C), like butyllithium or an organomagnesium compound, or direct metallation with a metal, like magnesium.
  • organometallic species like butyllithium or an organomagnesium compound, or direct metallation with a metal, like magnesium.
  • This reaction is preferentially performed in an anhydrous aprotic solvent, such as THF, at low temperature (between -120°C and 0°C), preferentially between -1 10°C and -60°C).
  • the intermediate organometal compound of formula ll-a is preferably directly converted into compound of formula IV by reaction with a boronate compound B(OR b 2)3, wherein R b2 is a Ci-C 6 alkyl group.
  • the boronic acid IV wherein Yb 2 is -B(OH) 2
  • a dialkylboronate IV wherein Yb 2 is -B(OR b2 ) 2
  • [1 , 1 '-Bis(diphenylphosphino)ferrocene]dichloropalladium(ll), also known as palladium dppf dichloride or Pd(dppf)CI 2 is a common catalyst for this type of reaction.
  • the temperature of the reaction is preferably comprised between 0°C and the boiling point of the reaction mixture.
  • Compounds of formula XXV can be treated with compounds of formula XXVI, wherein Qx is a direct bond or (CH 2 ) n and n is 1 ,2 or 3, in the presence of a base such as sodium hydride, K 2 C0 3 , or Cs 2 C0 3 , in an inert solvent such as DMF, acetone, or acetonitrile, to give compounds of formula laa.
  • a base such as sodium hydride, K 2 C0 3 , or Cs 2 C0 3
  • an inert solvent such as DMF, acetone, or acetonitrile
  • compounds of formula laa can be prepared directly from compounds of formula II by treatment with compounds of formula XXVII, wherein Qx is is as described in XXVI, with Pd 2 (dba) 3 , a ligand, such as BINAP , a strong base such as LiHMDS, in an inert solvent such as THF at temperatures between 40-70 °C.
  • a ligand such as BINAP
  • LiHMDS lithium tertane
  • THF inert solvent
  • Compounds of the formula laa may further be utilized for the preparation of compounds of formula lab. Indeed, compounds of formula laa, wherein A, R-i , X-i and R 2 are as defined in formula I, and wherein Qx is a direct bond or (CH2) n and n is 1 ,2 or 3, may be hydrolyzed, under conditions known to a person skilled in the art (see scheme 10a), to compounds of formula XXVIII. Treatment of compounds of formula XXVIII with reagents such as SF 4 or Fluolead (4-tert-butyl-2, 6-dimethyl phenylsulfur trifluoride), optionally in the presence of HF, leads to compounds of formula lab.
  • reagents such as SF 4 or Fluolead (4-tert-butyl-2, 6-dimethyl phenylsulfur trifluoride
  • XVIII-f The chemistry shown in scheme 17 has previously been described in detail in, for example, scheme 10a. This chemistry involves forming an activated species XVIII-g, followed by amide coupling with a compound of formula XIII, to give the intermediate XXII-a. This intermediate can be cyclised to compounds of formula laa by the methods described under, for example, scheme 10a.
  • R 02 is halogen, preferably fluorine, chlorine or bromine.
  • SO or S02 SO or S02 may be prepared, for example, by reacting compounds of formula l-d-1, wherein A, R-i , R 2 and X-i are as described in formula I, with chloroform CHCI 3 or bromoform CHBr 3 (possibly acting as reagent and solvent) in presence of concentrated aqueous sodium or potassium hydroxide, optionally in presence of a phase transfer catalyst PTC, such as for example tetrabutyl ammonium bromide or triethyl benzyl ammonium chloride, optionally in the presence of an additional solvent such as dichloromethane, preferably at temperatures around 0°C to 30°C.
  • a phase transfer catalyst PTC such as for example tetrabutyl ammonium bromide or triethyl benzyl ammonium chloride, optionally in the presence of an additional solvent such as dichloromethane, preferably at temperatures around 0°C to 30°C.
  • compounds of formula l-c-2 wherein X is SO or S0 2
  • compounds of formula l-c-2 may be prepared from the sulfide compounds of formula l-d-1 by involving the same chemistry as described above, but by changing the order of the steps (i.e. by running the sequence l-d-1 to l-d-2 via oxidation, followed by a dihalo cyclopropanation step to form l-c-2, wherein X is SO or S0 2 ).
  • Preparation of those compounds of formula l-d-1 and 1-d-2 was detailed above. The reactants can be reacted in the presence of a base.
  • suitable bases are alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal hydrides, alkali metal or alkaline earth metal amides, alkali metal or alkaline earth metal alkoxides, alkali metal or alkaline earth metal acetates, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal dialkylamides or alkali metal or alkaline earth metal alkylsilylamides, alkylamines, alkylenediamines, free or N-alkylated saturated or unsaturated cycloalkylamines, basic heterocycles, ammonium hydroxides and carbocyclic amines.
  • sodium hydroxide sodium hydride, sodium amide, sodium methoxide, sodium acetate, sodium carbonate, potassium tert- butoxide, potassium hydroxide, potassium carbonate, potassium hydride, lithium diisopropylamide, potassium bis(trimethylsilyl)amide, calcium hydride, triethylamine, diisopropylethylamine,
  • the reactants can be reacted with each other as such, i.e. without adding a solvent or diluent. In most cases, however, it is advantageous to add an inert solvent or diluent or a mixture of these. If the reaction is carried out in the presence of a base, bases which are employed in excess, such as triethylamine, pyridine, N-methylmorpholine or ⁇ , ⁇ -diethylaniline, may also act as solvents or diluents.
  • the reaction is advantageously carried out in a temperature range from approximately -80°C to approximately +140°C, preferably from approximately -30°C to approximately +100°C, in many cases in the range between ambient temperature and approximately +80°C.
  • a compound of formula I can be converted in a manner known per se into another compound of formula I by replacing one or more substituents of the starting compound of formula I in the customary manner by (an)other substituent(s) according to the invention.
  • Salts of compounds of formula I can be prepared in a manner known per se.
  • acid addition salts of compounds of formula I are obtained by treatment with a suitable acid or a suitable ion exchanger reagent and salts with bases are obtained by treatment with a suitable base or with a suitable ion exchanger reagent.
  • Salts of compounds of formula I can be converted in the customary manner into the free compounds I, acid addition salts, for example, by treatment with a suitable basic compound or with a suitable ion exchanger reagent and salts with bases, for example, by treatment with a suitable acid or with a suitable ion exchanger reagent.
  • Salts of compounds of formula I can be converted in a manner known per se into other salts of compounds of formula I, acid addition salts, for example, into other acid addition salts, for example by treatment of a salt of inorganic acid such as hydrochloride with a suitable metal salt such as a sodium, barium or silver salt, of an acid, for example with silver acetate, in a suitable solvent in which an inorganic salt which forms, for example silver chloride, is insoluble and thus precipitates from the reaction mixture.
  • a salt of inorganic acid such as hydrochloride
  • a suitable metal salt such as a sodium, barium or silver salt
  • the compounds of formula I which have salt- forming properties can be obtained in free form or in the form of salts.
  • the compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can be present in the form of one of the isomers which are possible or as a mixture of these, for example in the form of pure isomers, such as antipodes and/or diastereomers, or as isomer mixtures, such as enantiomer mixtures, for example racemates, diastereomer mixtures or racemate mixtures, depending on the number, absolute and relative configuration of asymmetric carbon atoms which occur in the molecule and/or depending on the configuration of non-aromatic double bonds which occur in the molecule; the invention relates to the pure isomers and also to all isomer mixtures which are possible and is to be understood in each case in this sense hereinabove and hereinbelow, even when stereochemical details are not mentioned specifically in each case.
  • Diastereomer mixtures or racemate mixtures of compounds of formula I, in free form or in salt form, which can be obtained depending on which starting materials and procedures have been chosen can be separated in a known manner into the pure diasteromers or racemates on the basis of the physicochemical differences of the components, for example by fractional crystallization, distillation and/or chromatography.
  • Enantiomer mixtures such as racemates, which can be obtained in a similar manner can be resolved into the optical antipodes by known methods, for example by recrystallization from an optically active solvent, by chromatography on chiral adsorbents, for example high-performance liquid
  • N-oxides can be prepared by reacting a compound of the formula I with a suitable oxidizing agent, for example the H 2 0 2 /urea adduct in the presence of an acid anhydride, e.g. trifluoroacetic anhydride.
  • a suitable oxidizing agent for example the H 2 0 2 /urea adduct
  • an acid anhydride e.g. trifluoroacetic anhydride
  • the compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can, if appropriate, also be obtained in the form of hydrates and/or include other solvents, for example those which may have been used for the crystallization of compounds which are present in solid form.
  • the compounds according to the following Tables 1 to 18 below can be prepared according to the methods described above. The examples which follow are intended to illustrate the invention and show preferred compounds of formula I.
  • Ra- ⁇ , R 2 , G-i , G 2 , G 3 , G 4 and G 5 are as defined below:
  • Ph represents the phenyl group
  • cyclo-C3 is the cyclopropyl group.
  • Table 1 discloses the 15 compounds 1.001 to 1.015 of the formula l-1a, wherein Xa- ⁇ is S, and Ra- ⁇ , R 2 , G-i , G 2 , G 3 , G 4 and G 5 are as defined in Table X.
  • compound No. 1 .001 has the following structure:
  • Table 2 This table discloses the 15 compounds 2.001 to 2.015 of the formula l-1a, wherein Xa- ⁇ is SO, and Ra- ⁇ , R 2 , G-i, G 2 , G 3 , G 4 and G 5 are as defined in Table X.
  • Table 3 This table discloses the 15 compounds 3.001 to 3.015 of the formula l-1a, wherein Xa- ⁇ is S0 2 , and Ra- ⁇ , R 2 , Gi, G 2 , G 3 , G 4 and G 5 are as defined in Table X.
  • Table Y This table discloses 15 substituent definitions Y.001 to Y.015 of the formula l-2a:
  • Ra 2 , R 2 , G-i, G 2 , G 3 , G 4 and G 5 are as defined below:
  • Table 5 This table discloses the 15 compounds 5.001 to 5.015 of the formula l-2a, wherein Xa 2 is SO, and Ra 2 , R 2 , G-i, G 2 , G 3 , G 4 and G 5 are as defined in Table Y.
  • Table 6 This table discloses the 15 compounds 6.001 to 6.015 of the formula l-2a, wherein Xa 2 is S0 2 , and Ra 2 , R 2 , G-i, G 2 , G 3 , G 4 and G 5 are as defined in Table Y.
  • Table Z This table discloses 18 substituent definitions Z.001 to Z.018 of the formula l-3a:
  • Ra 3 , R 2 , G-i , G 2 and G 3 are as defined below:
  • Ph represents the phenyl group
  • cyclo-C6 is the cyclohexyl group.
  • Table 7 This table discloses the 18 compounds 7.001 to 7.018 of the formula l-3a, wherein Xa 3 is S, and Ra 3 , R 2 , G-i, G 2 and G 3 are as defined in Table Z.
  • Table 8 This table discloses the 18 compounds 8.001 to 8.018 of the formula l-3a, wherein Xa 3 is SO, and Ra 3 , R 2 , G-i, G 2 and G 3 are as defined in Table Z.
  • Table 9 This table discloses the 18 compounds 9.001 to 9.018 of the formula l-3a, wherein Xa 3 is S0 2 , and Ra 3 , R 2 , G-i, G 2 and G 3 are as defined in Table Z.
  • Table U This table discloses 18 substituent definitions U.001 to U.018 of the formula l-4a:
  • Ra 4 , R 2 , Gi, G 2 and G 3 are as defined below:
  • Table 1 1 discloses the 18 compounds 1 1.001 to 1 1.018 of the formula l-4a, wherein Xa 4 is SO, and Ra 4 , R 2 , G-i , G 2 and G 3 are as defined in Table U.
  • Table 12 This table discloses the 18 compounds 12.001 to 12.018 of the formula l-4a, wherein Xa 4 is S0 2 , and Ra 4 , R 2 , G-i , G 2 and G 3 are as defined in Table U.
  • Table V This table discloses 8 substituent definitions V.001 to V.008 of the formula l-5a:
  • Ra 5 , R 2 and Gi are as defined below:
  • Ph represents the phenyl group.
  • Table 13 This table discloses the 8 compounds 13.001 to 13.008 of the formula l-5a, wherein Xa 5 is S, and Ra 5 , R 2 and Gi are as defined in Table V.
  • Table 14 This table discloses the 8 compounds 14.001 to 14.008 of the formula l-5a, wherein Xa 5 is SO, and Ra 5 , R 2 and Gi are as defined in Table V.
  • Table 15 This table discloses the 8 compounds 15.001 to 15.008 of the formula l-5a, wherein Xa 5 is S0 2 , and Ra 5 , R 2 and Gi are as defined in Table V.
  • Table W This table discloses 8 substituent definitions W.001 to W.008 of the formula l-6a:
  • Ra 6 , R 2 and d are as defined below:
  • Ph represents the phenyl group.
  • Table 16 This table discloses the 8 compounds 16.001 to 16.008 of the formula l-6a, wherein Xa 6 S, and Ra 6 , R 2 and d are as defined in Table W.
  • Table 17 This table discloses the 8 compounds 17.001 to 17.008 of the formula l-6a, wherein Xa 6 SO, and Ra 6 , R 2 and Gi are as defined in Table W.
  • Table 18 discloses the 8 compounds 18.001 to 18.008 of the formula l-6a, wherein Xa 6 S0 2 , and Ra 6 , R 2 and Gi are as defined in Table W.
  • the compounds of formula I according to the invention are preventively and/or curatively valuable active ingredients in the field of pest control, even at low rates of application, which have a very favorable biocidal spectrum and are well tolerated by warm-blooded species, fish and plants.
  • the active ingredients according to the invention act against all or individual developmental stages of normally sensitive, but also resistant, animal pests, such as insects or representatives of the order Acarina.
  • the insecticidal or acaricidal activity of the active ingredients according to the invention can manifest itself directly, i. e.
  • Hyalomma spp. Ixodes spp., Olygonychus spp, Ornithodoros spp., Polyphagotarsone latus,
  • Panonychus spp. Phyllocoptruta oleivora, Phytonemus spp, Polyphagotarsonemus spp, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Steneotarsonemus spp, Tarsonemus spp. and Tetranychus spp.;
  • Haematopinus spp. Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.;
  • Agriotes spp. Amphimallon majale, Anomala orientalis, Anthonomus spp., Aphodius spp, Astylus atromaculatus, Ataenius spp, Atomaria linearis, Chaetocnema tibialis, Cerotoma spp, Conoderus spp, Cosmopolites spp., Cotinis nitida, Curculio spp., Cyclocephala spp, Dermestes spp., Diabrotica spp., Diloboderus abderus, Epilachna spp., Eremnus spp., Heteronychus arator, Hypothenemus hampei, Lagria vilosa, Leptinotarsa decemLineata, Lissorhoptrus spp., Liogenys spp, Maecolaspis spp, Maladera castanea, Megas
  • Acyrthosium pisum Adalges spp, Agalliana ensigera, Agonoscena targionii, Aleurodicus spp, Aleurocanthus spp, Aleurolobus barodensis, Aleurothrixus floccosus, Aleyrodes brassicae, Amarasca biguttula, Amritodus atkinsoni, Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Aulacorthum solani, Bactericera cockerelli, Bemisia spp, Brachycaudus spp, Brevicoryne brassicae, Cacopsylla spp, Cavariella aegopodii Scop., Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Cicadella spp, Cofana spec
  • Macrosiphum spp. Mahanarva spp, Metcalfa pruinosa, Metopolophium dirhodum, Myndus crudus, Myzus spp., Neotoxoptera sp, Nephotettix spp., Nilaparvata spp., Nippolachnus piri Mats, Odonaspis ruthae, Oregma lanigera Zehnter, Parabemisia myricae, Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., Peregrinus maidis, Perkinsiella spp, Phorodon humuli, Phylloxera spp, Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., Pseudatomoscelis seriatus, Psylla spp., Pulvinaria
  • Coptotermes spp Corniternes cumulans, Incisitermes spp, Macrotermes spp, Mastotermes spp, Microtermes spp, Reticulitermes spp.; Solenopsis geminate
  • Blatta spp. Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Neocurtilla hexadactyla, Periplaneta spp. , Scapteriscus spp, and Schistocerca spp.;
  • Thysanura for example, Lepisma saccharina.
  • the active ingredients according to the invention can be used for controlling, i. e. containing or destroying, pests of the abovementioned type which occur in particular on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forests, or on organs, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, and in some cases even plant organs which are formed at a later point in time remain protected against these pests.
  • Suitable target crops are, in particular, cereals, such as wheat, barley, rye, oats, rice, maize or sorghum; beet, such as sugar or fodder beet; fruit, for example pomaceous fruit, stone fruit or soft fruit, such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries or blackberries; leguminous crops, such as beans, lentils, peas or soya; oil crops, such as oilseed rape, mustard, poppies, olives, sunflowers, coconut, castor, cocoa or ground nuts; cucurbits, such as pumpkins, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or tangerines; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes or bell peppers; Lauraceae, such as avocado, Cinnamonium or camphor; and also tobacco, nuts,
  • compositions and/or methods of the present invention may be also used on any ornamental and/or vegetable crops, including flowers, shrubs, broad-leaved trees and evergreens.
  • the invention may be used on any of the following ornamental species: Ageratum spp., Alonsoa spp., Anemone spp., Anisodontea capsenisis, Anthemis spp., Antirrhinum spp., Aster spp., Begonia spp. (e.g. B. elatior, B. semperflorens, B. tubereux), Bougainvillea spp., Brachycome spp., Brassica spp.
  • Ageratum spp. Ageratum spp., Alonsoa spp., Anemone spp., Anisodontea capsenisis, Anthemis spp., Antirrhinum spp., Aster spp., Begonia spp. (e.g. B. elatior, B. semperflorens, B. tubereux), Bougainvillea spp., Brachycome spp.
  • Calceolaria spp. (ornamental), Calceolaria spp., Capsicum annuum, Catharanthus roseus, Canna spp., Centaurea spp., Chrysanthemum spp., Cineraria spp. (C. maritime), Coreopsis spp., Crassula coccinea, Cuphea ignea, Dahlia spp., Delphinium spp., Dicentra spectabilis, Dorotheantus spp., Eustoma grandiflorum, Forsythia spp., Fuchsia spp., Geranium gnaphalium, Gerbera spp.,
  • Gomphrena globosa Heliotropium spp., Helianthus spp., Hibiscus spp., Hortensia spp., Hydrangea spp., Hypoestes phyllostachya, Impatiens spp. (/. Walleriana), Iresines spp., Kalanchoe spp., Lantana camara, Lavatera trimestris, Leonotis leonurus, Lilium spp., Mesembryanthemum spp., Mimulus spp., Monarda spp., Nemesia spp., Tagetes spp., Dianthus spp.
  • Plecthranthus spp. Poinsettia spp., Parthenocissus spp. CP- quinquefolia, P. tricuspidata), Primula spp., Ranunculus spp., Rhododendron spp., Rosa spp. (rose), Rudbeckia spp., Saintpaulia spp., Sa/w ' a spp., Scaevola aemola, Schizanthus wisetonensis, Sedum spp., Solanum spp., Surfinia spp., Tagetes spp., Nicotinia spp., Verbena spp., Zinnia spp. and other bedding plants.
  • the invention may be used on any of the following vegetable species: Allium spp. (A sativum, A., cepa, A. oschaninii, A. Porrum, A. ascalonicum, A. fistulosum), Anthriscus cerefolium, Apium graveolus, Asparagus officinalis, Beta vulgarus, Brassica spp. (B. Oleracea, B. Pekinensis, B. rapa), Capsicum annuum, Cicer arietinum, Cichorium endivia, Cichorum spp. (C. intybus, C. endivia), Citrillus lanatus, Cucumis spp. (C. sativus, C.
  • Preferred ornamental species include African violet, Begonia, Dahlia, Gerbera, Hydrangea, Verbena, Rosa, Kalanchoe, Poinsettia, Aster, Centaurea, Coreopsis, Delphinium, Monarda, Phlox, Rudbeckia, Sedum, Petunia, Viola, Impatiens, Geranium, Chrysanthemum, Ranunculus, Fuchsia, Salvia, Hortensia, rosemary, sage, St. Johnswort, mint, sweet pepper, tomato and cucumber.
  • the active ingredients according to the invention are especially suitable for controlling Aphis craccivora, Diabrotica balteata, Heliothis virescens, Myzus persicae, Plutella xylostella and
  • the active ingredients according to the invention are further especially suitable for controlling Mamestra (preferably in vegetables), Cydia pomonella (preferably in apples), Empoasca(preferably in vegetables, vineyards), Leptinotarsa (preferably in potatos) and Chilo supressalis (preferably in rice).
  • the active ingredients according to the invention are especially suitable for controlling Aphis craccivora, Diabrotica balteata, Heliothis virescens, Myzus persicae, Plutella xylostella and
  • the active ingredients according to the invention are further especially suitable for controlling Mamestra (preferably in vegetables), Cydia pomonella (preferably in apples), Empoasca(preferably in vegetables, vineyards), Leptinotarsa (preferably in potatos) and Chilo supressalis (preferably in rice).
  • the invention may also relate to a method of controlling damage to plant and parts thereof by plant parasitic nematodes (Endoparasitic-, Semiendoparasitic- and Ectoparasitic nematodes), especially plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, Meloidogyne arenaria and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolai
  • Needle nematodes Longidorus elongatus and other Longidorus species; Pin nematodes,
  • Pratylenchus species Lesion nematodes, Pratylenchus neglectus, Pratylenchus penetrans,
  • the compounds of the invention may also have activity against the molluscs.
  • examples of which include, for example, Ampullariidae; Arion (A. ater, A. circumscriptus, A. hortensis, A. rufus);
  • Bradybaenidae (Bradybaena fruticum); Cepaea (C. hortensis, C. Nemoralis); ochlodina; Deroceras (D. agrestis, D. empiricorum, D. laeve, D. reticulatum); Discus (D. rotundatus); Euomphalia; Galba (G. trunculata); Helicelia (H. itala, H. obvia); Helicidae Helicigona arbustorum); Helicodiscus; Helix (H. aperta); Limax (L. cinereoniger, L. flavus, L. marginatus, L. maximus, L. tenellus); Lymnaea; Milax (M. gagates, M. marginatus, M. sowerbyi); Opeas; Pomacea (P. canaticulata); Vallonia and Zanitoides.
  • crops is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
  • Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins, for example insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as ⁇ -endotoxins, e.g. CrylAb, CrylAc, Cryl F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1 , Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp. or
  • Xenorhabdus spp. such as Photorhabdus luminescens, Xenorhabdus nematophilus
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins
  • toxins produced by fungi such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins
  • agglutinins proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors
  • ribosome-inactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecd
  • ⁇ -endotoxins for example CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1 , Vip2, Vip3 or Vip3A, expressly also hybrid toxins, truncated toxins and modified toxins.
  • Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701 ).
  • Truncated toxins for example a truncated CrylAb, are known.
  • modified toxins one or more amino acids of the naturally occurring toxin are replaced.
  • preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G-recognition sequence is inserted into a Cry3A toxin (see WO 03/018810).
  • Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073.
  • deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.
  • the toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects.
  • insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and moths (Lepidoptera).
  • Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylAb toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a CrylAb and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylAc toxin); Bollgard I® (cotton variety that expresses a
  • transgenic crops are:
  • Bt11 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a truncated CrylAb toxin. Bt1 1 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
  • MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G- protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
  • MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1 150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.
  • NK603 * MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1 150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810.
  • NK603 * MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a Cry1 Ab toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain
  • Lepidoptera include the European corn borer.
  • crops is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called "pathogenesis-related proteins" (PRPs, see e.g. EP-A-0 392 225).
  • PRPs pathogenesis-related proteins
  • Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 95/33818 and EP-A-0 353 191.
  • the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Crops may also be modified for enhanced resistance to fungal (for example Fusarium, Anthracnose, or Phytophthora), bacterial (for example Pseudomonas) or viral (for example potato leafroll virus, tomato spotted wilt virus, cucumber mosaic virus) pathogens.
  • fungal for example Fusarium, Anthracnose, or Phytophthora
  • bacterial for example Pseudomonas
  • viral for example potato leafroll virus, tomato spotted wilt virus, cucumber mosaic virus
  • Crops also include those that have enhanced resistance to nematodes, such as the soybean cyst nematode.
  • Crops that are tolerance to abiotic stress include those that have enhanced tolerance to drought, high salt, high temperature, chill, frost, or light radiation, for example through expression of NF-YB or other proteins known in the art.
  • Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1 , KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called "pathogenesis-related proteins" (PRPs; see e.g. EP-A-0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g. WO 95/33818) or protein or polypeptide factors involved in plant pathogen defence (so-called "plant disease resistance genes", as described in WO 03/000906).
  • ion channel blockers such as blockers for sodium and calcium channels
  • the viral KP1 , KP4 or KP6 toxins stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called
  • compositions according to the invention are the protection of stored goods and store rooms and the protection of raw materials, such as wood, textiles, floor coverings or buildings, and also in the hygiene sector, especially the protection of humans, domestic animals and productive livestock against pests of the mentioned type.
  • the present invention also provides a method for controlling pests (such as mosquitoes and other disease vectors; see also http://www.who.int/malaria/vector_control/irs/en/).
  • the method for controlling pests comprises applying the compositions of the invention to the target pests, to their locus or to a surface or substrate by brushing, rolling, spraying, spreading or dipping.
  • an IRS (indoor residual spraying) application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention.
  • a substrate such as non-woven or a fabric material in the form of (or which can be used in the manufacture of) netting, clothing, bedding, curtains and tents.
  • the method for controlling such pests comprises applying a pesticidally effective amount of the compositions of the invention to the target pests, to their locus, or to a surface or substrate so as to provide effective residual pesticidal activity on the surface or substrate.
  • Such application may be made by brushing, rolling, spraying, spreading or dipping the pesticidal composition of the invention.
  • an IRS application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention so as to provide effective residual pesticidal activity on the surface.
  • a substrate such as a fabric material in the form of (or which can be used in the manufacture of) netting, clothing, bedding, curtains and tents.
  • Substrates including non-woven, fabrics or netting to be treated may be made of natural fibres such as cotton, raffia, jute, flax, sisal, hessian, or wool, or synthetic fibres such as polyamide, polyester, polypropylene, polyacrylonitrile or the like.
  • the polyesters are particularly suitable.
  • compositions according to the invention are the field of tree injection/trunk treatment for all ornamental trees as well all sort of fruit and nut trees.
  • the compounds according to the present invention are especially suitable against wood-boring insects from the order Lepidoptera as mentioned above and from the order Coleoptera, especially against woodborers listed in the following tables A and B:
  • Agrilus sayi Bayberry, Sweetfern
  • Rhododendron Rhadodendron, Azalea, Laurel, Poplar, Willow, Mulberry
  • Phloeotribus liminaris Peach, Cherry, Plum, Black cherry,
  • the present invention may be also used to control any insect pests that may be present in turfgrass, including for example beetles, caterpillars, fire ants, ground pearls, millipedes, sow bugs, mites, mole crickets, scales, mealybugs ticks, spittlebugs, southern chinch bugs and white grubs.
  • the present invention may be used to control insect pests at various stages of their life cycle, including eggs, larvae, nymphs and adults.
  • the present invention may be used to control insect pests that feed on the roots of turfgrass including white grubs (such as Cyclocephala spp. (e.g. masked chafer, C. lurida),
  • white grubs such as Cyclocephala spp. (e.g. masked chafer, C. lurida)
  • Rhizotrogus spp. e.g. European chafer, R. majalis
  • Cotinus spp. e.g. Green June beetle, C. nitida
  • Popillia spp. e.g. Japanese beetle, P. japonica
  • Phyllophaga spp. e.g. May/June beetle
  • Ataenius spp. e.g. Black turfgrass ataenius, A. spretulus
  • Maladera spp. e.g. Asiatic garden beetle, M.
  • the present invention may also be used to control insect pests of turfgrass that are thatch dwelling, including armyworms (such as fall armyworm Spodoptera frugiperda, and common armyworm Pseudaletia unipuncta), cutworms, billbugs (Sphenophorus spp. , such as S. venatus verstitus and S. parvulus), and sod webworms (such as Crambus spp. and the tropical sod webworm, Herpetogramma phaeopteralis).
  • armyworms such as fall armyworm Spodoptera frugiperda, and common armyworm Pseudaletia unipuncta
  • cutworms such as S. venatus verstitus and S. parvulus
  • sod webworms such as Crambus spp. and the tropical sod webworm, Herpetogramma phaeopteralis.
  • the present invention may also be used to control insect pests of turfgrass that live above the ground and feed on the turfgrass leaves, including chinch bugs (such as southern chinch bugs, Blissus insularis), Bermudagrass mite (Eriophyes cynodoniensis), rhodesgrass mealybug (Antonina graminis), two-lined spittlebug (Propsapia bicincta), leafhoppers, cutworms (Noctuidae family), and greenbugs.
  • the present invention may also be used to control other pests of turfgrass such as red imported fire ants (Solenopsis invicta) that create ant mounds in turf.
  • compositions according to the invention are active against ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.
  • ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.
  • Anoplurida Haematopinus spp., Linognathus spp., Pediculus spp. and Phtirus spp., Solenopotes spp..
  • Nematocerina and Brachycerina for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fanni
  • Siphonaptrida for example Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp..
  • Heteropterida for example Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..
  • Actinedida Prostigmata
  • Acaridida Acaridida
  • Acarapis spp. Cheyletiella spp., Ornitrocheyletia spp., Myobia spp., Psorergatesspp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp.,
  • Pterolichus spp. Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp. and Laminosioptes spp..
  • compositions according to the invention are also suitable for protecting against insect infestation in the case of materials such as wood, textiles, plastics, adhesives, glues, paints, paper and card, leather, floor coverings and buildings.
  • compositions according to the invention can be used, for example, against the following pests: beetles such as Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium
  • rufovillosum Ptilinuspecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthesrugicollis, Xyleborus spec.,Tryptodendron spec, Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec, and Dinoderus minutus, and also hymenopterans such as Sirex juvencus, Urocerus gigas, Urocerus gigas taignus and Urocerus augur, and termites such as Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes,
  • Reticulitermes santonensis Reticulitermes lucifugus
  • Mastotermes darwiniensis Zootermopsis nevadensis and Coptotermes formosanus
  • bristletails such as Lepisma saccharina.
  • the compounds according to the invention can be used as pesticidal agents in unmodified form, but they are generally formulated into compositions in various ways using formulation adjuvants, such as carriers, solvents and surface-active substances.
  • formulation adjuvants such as carriers, solvents and surface-active substances.
  • the formulations can be in various physical forms, e.g.
  • Such formulations can either be used directly or diluted prior to use.
  • the dilutions can be made, for example, with water, liquid fertilisers, micronutrients, biological organisms, oil or solvents.
  • the formulations can be prepared e.g. by mixing the active ingredient with the formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions.
  • the active ingredients can also be formulated with other adjuvants, such as finely divided solids, mineral oils, oils of vegetable or animal origin, modified oils of vegetable or animal origin, organic solvents, water, surface-active substances or combinations thereof.
  • the active ingredients can also be contained in very fine microcapsules.
  • Microcapsules contain the active ingredients in a porous carrier. This enables the active ingredients to be released into the environment in controlled amounts (e.g. slow-release).
  • Microcapsules usually have a diameter of from 0.1 to 500 microns. They contain active ingredients in an amount of about from 25 to 95 % by weight of the capsule weight.
  • the active ingredients can be in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution.
  • the encapsulating membranes can comprise, for example, natural or synthetic rubbers, cellulose, styrene/butadiene copolymers, polyacrylonitrile, polyacrylate, polyesters, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers that are known to the person skilled in the art.
  • very fine microcapsules can be formed in which the active ingredient is contained in the form of finely divided particles in a solid matrix of base substance, but the
  • microcapsules are not themselves encapsulated.
  • liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, butylene carbonate, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1 ,2-dichloropropane, diethanolamine, p- diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, A/,A/-dimethylformamide, dimethyl sulfoxide, 1 ,4- dioxane, di
  • Suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montmorillonite, cottonseed husks, wheat flour, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar substances.
  • a large number of surface-active substances can advantageously be used in both solid and liquid formulations, especially in those formulations which can be diluted with a carrier prior to use.
  • Surface- active substances may be anionic, cationic, non-ionic or polymeric and they can be used as emulsifiers, wetting agents or suspending agents or for other purposes.
  • Typical surface-active substances include, for example, salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, such as calcium dodecylbenzenesulfonate; alkylphenol/alkylene oxide addition products, such as nonylphenol ethoxylate; alcohol/alkylene oxide addition products, such as tridecylalcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonat.es, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2- ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryltrimethylammonium chloride, polyethylene glycol est
  • Further adjuvants that can be used in pesticidal formulations include crystallisation inhibitors, viscosity modifiers, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing auxiliaries, antifoams, complexing agents, neutralising or pH-modifying substances and buffers, corrosion inhibitors, fragrances, wetting agents, take-up enhancers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, antifreezes, microbicides, and liquid and solid fertilisers.
  • compositions according to the invention can include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters of such oils or mixtures of such oils and oil derivatives.
  • the amount of oil additive in the composition according to the invention is generally from 0.01 to 10 %, based on the mixture to be applied.
  • the oil additive can be added to a spray tank in the desired concentration after a spray mixture has been prepared.
  • Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow.
  • Preferred oil additives comprise alkyl esters of C 8 -C 2 2 fatty acids, especially the methyl derivatives of Ci 2 -Ci 8 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid (methyl laurate, methyl palmitate and methyl oleate, respectively).
  • Many oil derivatives are known from the Compendium of Herbicide Adjuvants, 10 th Edition, Southern Illinois University, 2010.
  • the inventive compositions generally comprise from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of compounds of the present invention and from 1 to 99.9 % by weight of a formulation adjuvant which preferably includes from 0 to 25 % by weight of a surface-active substance.
  • the rates of application vary within wide limits and depend on the nature of the soil, the method of application, the crop plant, the pest to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop.
  • a general guideline compounds may be applied at a rate of from 1 to 2000 l/ha, especially from 10 to 1000 l/ha.
  • Preferred formulations can have the following compositions (weight %):
  • Emulsifiable concentrates are:
  • active ingredient 1 to 95 %, preferably 60 to 90 %
  • surface-active agent 1 to 30 %, preferably 5 to 20 %
  • liquid carrier 1 to 80 %, preferably 1 to 35 %
  • active ingredient 0.1 to 10 %, preferably 0.1 to 5 %
  • solid carrier 99.9 to 90 %, preferably 99.9 to 99 %
  • active ingredient 5 to 75 %, preferably 10 to 50 %
  • surface-active agent 1 to 40 %, preferably 2 to 30 %
  • active ingredient 0.5 to 90 %, preferably 1 to 80 %
  • surface-active agent 0.5 to 20 %, preferably 1 to 15 %
  • solid carrier 5 to 95 %, preferably 15 to 90 %
  • active ingredient 0.1 to 30 %, preferably 0.1 to 15 %
  • solid carrier 99.5 to 70 %, preferably 97 to 85 %
  • Wettable powders a) b) c) active ingredients 25 % 50 % 75 % sodium lignosulfonate 5 % 5 % - sodium lauryl sulfate 3 % - 5 % sodium diisobutylnaphthalenesulfonate - 6 % 10 % phenol polyethylene glycol ether (7-8 mol of ethylene 2 %
  • Kaolin 62 % 27 % - The combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with water to give suspensions of the desired concentration.
  • the combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
  • Emulsions of any required dilution which can be used in plant protection, can be obtained from this concentrate by dilution with water.
  • Ready-for-use dusts are obtained by mixing the combination with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
  • the combination is mixed and ground with the adjuvants, and the mixture is moistened with water.
  • the mixture is extruded and then dried in a stream of air.
  • polyethylene glycol (mol. wt. 200) 3 % Kaolin 89 %
  • the finely ground combination is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol.
  • Non-dusty coated granules are obtained in this manner.
  • the finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • the finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • 28 parts of the combination are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8: 1 ).
  • This mixture is emulsified in a mixture of 1 .2 parts of polyvinylalcohol, 0.05 parts of a defoamer and 51 .6 parts of water until the desired particle size is achieved.
  • To this emulsion a mixture of 2.8 parts 1 ,6-diaminohexane in 5.3 parts of water is added. The mixture is agitated until the polymerization reaction is completed.
  • the obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent.
  • the capsule suspension formulation contains 28% of the active ingredients.
  • the medium capsule diameter is 8-15 microns.
  • the resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
  • Formulation types include an emulsion concentrate (EC), a suspension concentrate (SC), a suspo- emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK), a dispersible concentrate (DC), a wettable powder (WP), a soluble granule (SG) or any technically feasible formulation in combination with agricultural
  • Mp melting point in °C. Free radicals represent methyl groups. H NMR measurements were recorded on a Brucker 400MHz spectrometer, chemical shifts are given in ppm relevant to a TMS standard. Spectra measured in deuterated solvents as indicated. Either one of the LCMS methods below was used to characterize the compounds. The characteristic LCMS values obtained for each compound were the retention time ("Rt", recorded in minutes) and the measured molecular ion (M+H) + or (M-H) " .
  • Solvent degasser binary pump, heated column compartment and diode-array detector.
  • Step A-2 Preparation of tert-butyl N-[4-amino- -(trifluoromethyl)-3-pyridyl]-N-methyl-carbamate
  • Step A-3 Preparation of N3-methyl-6-(trifl ine-3,4-diamine
  • Step B-1 Preparation of methyl 5-bromo-3-eth lsulfanyl-pyridine-2-carboxylate
  • Step B-2 Preparation of 5-bromo-3-ethylsulfanyl-pyridine-2-carboxylic acid
  • Step C-1 Preparation of 2-(5-bromo-3-ethylsulfanyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5- c]pyridine:
  • the solution was neutralized by addition of a saturated aqueous solution of sodium bicarbonate and the product was extracted twice with ethyl acetate.
  • the organic solution was dried over sodium sulfate and evaporated under reduced pressure to yield the crude product as a dark brown gum.
  • This gum was taken-up into meia-xylene (10 ml), para-toluenesulfonic acid (mono hydrate) (2.032 g, 1 equiv.) was added and the mixture was heated up to 150°C for 8 hours. The reaction mixture was then poured onto water (300 ml) and extracted twice with ethyl acetate.
  • 2-(4-bromo-2-ethylsulfanyl-phenyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (solid, mp 1 13-1 14°C) may be obtained from 4-bromo-2-ethylsulfanyl-benzoic acid and N3-methyl-6-
  • 2-(4-bromo-2-ethylsulfonyl-phenyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (solid, mp 180-181 °C) may be obtained from 2-(4-bromo-2-ethylsulfanyl-phenyl)-3-methyl-6-(trifluoromethyl) imidazo[4,5-c]pyridine.
  • LCMS (method 1 ): 448/450 (M+H) + ; retention time: 0.95 min.
  • Step C-3 Preparation of 2-[5-ethylsulfonyl-6-[3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridin-2-yl]-3- pyridyl]ethynyl-trimethyl-silane (compound P1 ):
  • Step 1 Preparation of 5-bromo-3-ethylsulfanyl-pyridine-2-carbonitrile
  • Step 2 Preparation of 5-bromo-3-ethylsulfan l-pyridine-2-carboxylic acid
  • Step 4 Preparation of 2-(5-bromo-3-ethylsulfonyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5- c] pyridine
  • Step 5 Preparation of 2-(5-cyclopropyl-3-ethylsulfonyl-2-pyridyl)-3-methyl-6-(trifluoromethyl) imidazo[4,5-c]pyridine (compound P7
  • Step 2 Preparation of 1-[3-ethylsulfonyl-4-[3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridin-2- yl henyl]cyclopropanecarbonitrile (compound P15)
  • Step 1 Preparation of 2-(3-ethylsulfanyl-5-vinyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo
  • Step 2 Preparation of 2-[5-(2,2-difluorocyclopropyl)-3-ethylsulfanyl-2-pyridyl]-3-methyl-6- (trifluoromethyl)imidazo[4,5-c]pyridine compound P20)
  • the dark reaction mixture was diluted with water (20 ml) and extracted twice with ethyl acetate.
  • the combined organic phases were dried over sodium sulfate and concentrated under reduced pressure.
  • the dark brown gum was taken up in diethyl ether and filtered through a pad of celite®.
  • the filtrate was extracted with a mixture of water (5 ml) and 1 N aqueous sodium hydroxide (0.2 ml), and then the aqueous phase was treated with 1 N-aqueous hydrochloric acid (0.3 ml).
  • the precipitated solid was extracted twice with diethyl ether.
  • Step 1 Preparation of methyl 5-bromo-3-ethylsulfonyl-pyridine-2-carboxylate
  • Step 2 Preparation of methyl 5-(cyanomethyl)-3-ethylsulfonyl-pyridine-2-carboxylate
  • Step 3 Preparation of methyl 5-(1-cyanocyclopropyl)-3-ethylsulfonyl-pyridine-2-carboxylate
  • TX means "one compound selected from the group consisting of the compounds described in Tables 1 to 18 and P1 of the present invention":
  • an adjuvant selected from the group of substances consisting of petroleum oils (alternative name) (628) + TX,
  • an acaricide selected from the group of substances consisting of 1 , 1 -bis(4-chlorophenyl)-2- ethoxyethanol (lUPAC name) (910) + TX, 2,4-dichlorophenyl benzenesulfonate (lUPAC/Chemical Abstracts name) (1059) + TX, 2-fluoro-A/-methyl-A/-1 -naphthylacetamide (lUPAC name) (1295) + TX, 4-chlorophenyl phenyl sulfone (lUPAC name) (981 ) + TX, abamectin (1 ) + TX, acequinocyl (3) + TX, acetoprole [CCN] + TX, acrinathrin (9) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, alpha- cypermethrin (202) + TX, amidithion (870) + T
  • an algicide selected from the group of substances consisting of bethoxazin [CCN] + TX, copper dioctanoate (lUPAC name) (170) + TX, copper sulfate (172) + TX, cybutryne [CCN] + TX, dichlone (1052) + TX, dichlorophen (232) + TX, endothal (295) + TX, fentin (347) + TX, hyd rated lime [CCN] + TX, nabam (566) + TX, quinoclamine (714) + TX, quinonamid (1379) + TX, simazine (730) + TX, triphenyltin acetate (lUPAC name) (347) and triphenyltin hydroxide (lUPAC name) (347) + TX,
  • an anthelmintic selected from the group of substances consisting of abamectin (1 ) + TX, crufomate (101 1 ) + TX, doramectin (alternative name) [CCN] + TX, emamectin (291 ) + TX, emamectin benzoate (291 ) + TX, eprinomectin (alternative name) [CCN] + TX, ivermectin (alternative name) [CCN] + TX, milbemycin oxime (alternative name) [CCN] + TX, moxidectin (alternative name) [CCN] + TX, piperazine [CCN] + TX, selamectin (alternative name) [CCN] + TX, spinosad (737) and thiophanate (1435) + TX,
  • an avicide selected from the group of substances consisting of chloralose (127) + TX, endrin (1 122) + TX, fenthion (346) + TX, pyridin-4-amine (lUPAC name) (23) and strychnine (745) + TX, a bactericide selected from the group of substances consisting of 1-hydroxy-1 /-/-pyridine-2-thione (lUPAC name) (1222) + TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (lUPAC name) (748) + TX, 8-hydroxyquinoline sulfate (446) + TX, bronopol (97) + TX, copper dioctanoate (lUPAC name) (170) + TX, copper hydroxide (lUPAC name) (169) + TX, cresol [CCN] + TX, dichlorophen (232) + TX, dipyrithione (1 105) + TX, dodicin (1 1 12) + T
  • a biological agent selected from the group of substances consisting of Adoxophyes orana GV
  • Phytoseiulus persimilis (alternative name) (644) + TX, Spodoptera exigua multicapsid nuclear polyhedrosis virus (scientific name) (741 ) + TX, Steinernema bibionis (alternative name) (742) + TX, Steinernema carpocapsae (alternative name) (742) + TX, Steinernema feltiae (alternative name) (742) + TX, Steinernema glaseri (alternative name) (742) + TX, Steinernema riobrave (alternative name) (742) + TX, Steinernema riobravis (alternative name) (742) + TX, Steinernema scapterisci (alternative name) (742) + TX, Steinernema spp.
  • a chemosterilant selected from the group of substances consisting of apholate [CCN] + TX, bisazir (alternative name) [CCN] + TX, busulfan (alternative name) [CCN] + TX, diflubenzuron (250) + TX, dimatif (alternative name) [CCN] + TX, hemel [CCN] + TX, hempa [CCN] + TX, metepa [CCN] + TX, methiotepa [CCN] + TX, methyl apholate [CCN] + TX, morzid [CCN] + TX, penfluron
  • an insect pheromone selected from the group of substances consisting of (E)-dec-5-en-1-yl acetate with (E)-dec-5-en-1-ol (lUPAC name) (222) + TX, (E)-tridec-4-en-1-yl acetate (lUPAC name) (829) + TX, (E)-6-methylhept-2-en-4-ol (lUPAC name) (541 ) + TX, (E,Z)-tetradeca-4, 10-dien-1-yl acetate (lUPAC name) (779) + TX, (Z)-dodec-7-en-1-yl acetate (lUPAC name) (285) + TX, (Z)-hexadec-l 1- enal (lUPAC name) (436) + TX, (Z)-hexadec-l 1-en-1-yl acetate (lUPAC name) (437) + TX, (Z)- hexade
  • an insect repellent selected from the group of substances consisting of 2-(octylthio)ethanol (lUPAC name) (591 ) + TX, butopyronoxyl (933) + TX, butoxy(polypropylene glycol) (936) + TX, dibutyl adipate (lUPAC name) (1046) + TX, dibutyl phthalate (1047) + TX, dibutyl succinate (lUPAC name) (1048) + TX, diethyltoluamide [CCN] + TX, dimethyl carbate [CCN] + TX, dimethyl phthalate [CCN] + TX, ethyl hexanediol (1 137) + TX, hexamide [CCN] + TX, methoquin-butyl (1276) + TX, methylneodecanamide [CCN] + TX, oxamate [CCN] and picaridin [CCN] + TX,
  • an insecticide selected from the group of substances consisting of 1-dichloro-1-nitroethane
  • dimethylvinphos (265) + TX, dimetilan (1086) + TX, dinex (1089) + TX, dinex-diclexine (1089) + TX, dinoprop (1093) + TX, dinosam (1094) + TX, dinoseb (1095) + TX, dinotefuran (271 ) + TX, diofenolan (1099) + TX, dioxabenzofos (1 100) + TX, dioxacarb (1 101 ) + TX, dioxathion (1 102) + TX, disulfoton (278) + TX, dithicrofos (1 108) + TX, DNOC (282) + TX, doramectin (alternative name) [CCN] + TX, DSP (1 1 15) + TX, ecdysterone (alternative name) [CCN] + TX, El 1642 (development code) (1 1 18) + TX, emamectin (291
  • flucythrinate (367) + TX, fluenetil (1 169) + TX, flufenerim [CCN] + TX, flufenoxuron (370) + TX, flufenprox (1 171 ) + TX, flumethrin (372) + TX, fluvalinate (1 184) + TX, FMC 1 137 (development code) (1 185) + TX, fonofos (1 191 ) + TX, formetanate (405) + TX, formetanate hydrochloride (405) + TX, formothion (1 192) + TX, formparanate (1 193) + TX, fosmethilan (1 194) + TX, fospirate (1 195) + TX, fosthiazate (408) + TX, fosthietan (1 196) + TX, furathiocarb (412) + TX, furethrin (1200) + TX, gamma-cyhalothrin (197) + TX
  • iodomethane (lUPAC name) (542) + TX, IPSP (1229) + TX, isazofos (1231 ) + TX, isobenzan (1232) + TX, isocarbophos (alternative name) (473) + TX, isodrin (1235) + TX, isofenphos (1236) + TX, isolane (1237) + TX, isoprocarb (472) + TX, isopropyl 0-(methoxy- aminothiophosphoryl)salicylate (lUPAC name) (473) + TX, isoprothiolane (474) + TX, isothioate (1244) + TX, isoxathion (480) + TX, ivermectin (alternative name) [CCN] + TX, jasmolin I (696) + TX, jasmolin II (696) + TX, jodfenphos (1248) + TX, juvenile hormone I (alter
  • TX, nitrilacarb 1 :1 zinc chloride complex (1313) + TX, NNI-0101 (compound code) + TX, NNI-0250 (compound code) + TX, nornicotine (traditional name) (1319) + TX, novaluron (585) + TX, noviflumuron (586) + TX, 0-5-dichloro-4-iodophenyl O-ethyl ethylphosphonothioate (lUPAC name) (1057) + TX, 0,0-diethyl 0-4-methyl-2-oxo-2H-chromen-7-yl phosphorothioate (lUPAC name) (1074) + TX, ⁇ , ⁇ -diethyl 0-6-methyl-2-propylpyrimidin-4-yl phosphorothioate (lUPAC name) (1075) + TX, 0,0, 0', ⁇ '-tetrapropyl dithiopyrophosphate (l
  • development code (development code) (1382) + TX, rafoxanide (alternative name) [CCN] + TX, resmethrin (719) + TX, rotenone (722) + TX, RU 15525 (development code) (723) + TX, RU 25475 (development code) (1386) + TX, ryania (alternative name) (1387) + TX, ryanodine (traditional name) (1387) + TX, sabadilla (alternative name) (725) + TX, schradan (1389) + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, SI-0009 (compound code) + TX, SI-0205 (compound code) + TX, SI-0404 (compound code) + TX, SI-0405 (compound code) + TX, silafluofen (728) + TX, SN 72129
  • hexafluorosilicate (1400) + TX, sodium pentachlorophenoxide (623) + TX, sodium selenate (lUPAC name) (1401 ) + TX, sodium thiocyanate [CCN] + TX, sophamide (1402) + TX, spinosad (737) + TX, spiromesifen (739) + TX, spirotetrmat (CCN) + TX, sulcofuron (746) + TX, sulcofuron-sodium (746) + TX, sulfluramid (750) + TX, sulfotep (753) + TX, sulfuryl fluoride (756) + TX, sulprofos
  • a molluscicide selected from the group of substances consisting of bis(tributyltin) oxide (lUPAC name) (913) + TX, bromoacetamide [CCN] + TX, calcium arsenate [CCN] + TX, cloethocarb (999) + TX, copper acetoarsenite [CCN] + TX, copper sulfate (172) + TX, fentin (347) + TX, ferric phosphate (lUPAC name) (352) + TX, metaldehyde (518) + TX, methiocarb (530) + TX, niclosamide (576) + TX, niclosamide-olamine (576) + TX, pentachlorophenol (623) + TX, sodium pentachlorophenoxide (623) + TX, tazimcarb (1412) + TX, thiodicarb (799) + TX, tributyltin oxide (913)
  • a nematicide selected from the group of substances consisting of AKD-3088 (compound code) + TX, 1 ,2-dibromo-3-chloropropane (lUPAC/Chemical Abstracts name) (1045) + TX, 1 ,2-dichloropropane (lUPAC/ Chemical Abstracts name) (1062) + TX, 1 ,2-dichloropropane with 1 ,3-dichloropropene
  • phosphamidon (639) + TX, phosphocarb [CCN] + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, spinosad (737) + TX, terbam (alternative name) + TX, terbufos (773) + TX, tetrachlorothiophene (lUPAC/ Chemical Abstracts name) (1422) + TX, thiafenox (alternative name) + TX, thionazin (1434) + TX, triazophos (820) + TX, triazuron (alternative name) + TX, xylenols [CCN] + TX, YI-5302 (compound code) and zeatin (alternative name) (210) + TX, fluensulfone [318290-98-1] + TX,
  • a nitrification inhibitor selected from the group of substances consisting of potassium ethylxanthate [CCN] and nitrapyrin (580) + TX,
  • a plant activator selected from the group of substances consisting of acibenzolar (6) + TX, acibenzolar-S-methyl (6) + TX, probenazole (658) and Reynoutria sachalinensis extract (alternative name) (720) + TX,
  • a rodenticide selected from the group of substances consisting of 2-isovalerylindan-1 ,3-dione (lUPAC name) (1246) + TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (lUPAC name) (748) + TX, alpha- chlorohydrin [CCN] + TX, aluminium phosphide (640) + TX, antu (880) + TX, arsenous oxide (882) + TX, barium carbonate (891 ) + TX, bisthiosemi (912) + TX, brodifacoum (89) + TX,
  • a synergist selected from the group of substances consisting of 2-(2-butoxyethoxy)ethyl piperonylate (lUPAC name) (934) + TX, 5-(1 ,3-benzodioxol-5-yl)-3-hexylcyclohex-2-enone (lUPAC name) (903) + TX, farnesol with nerolidol (alternative name) (324) + TX, MB-599 (development code) (498) + TX, MGK 264 (development code) (296) + TX, piperonyl butoxide (649) + TX, piprotal (1343) + TX, propyl isomer (1358) + TX, S421 (development code) (724) + TX, sesamex (1393) + TX, sesasmolin (1394) and sulfoxide (1406) + TX,
  • an animal repellent selected from the group of substances consisting of anthraquinone (32) + TX, chloralose (127) + TX, copper naphthenate [CCN] + TX, copper oxychloride (171 ) + TX, diazinon (227) + TX, dicyclopentadiene (chemical name) (1069) + TX, guazatine (422) + TX, guazatine acetates (422) + TX, methiocarb (530) + TX, pyridin-4-amine (lUPAC name) (23) + TX, thiram (804) + TX, trimethacarb (840) + TX, zinc naphthenate [CCN] and ziram (856) + TX,
  • a virucide selected from the group of substances consisting of imanin (alternative name) [CCN] and ribavirin (alternative name) [CCN] + TX,
  • a wound protectant selected from the group of substances consisting of mercuric oxide (512) + TX, octhilinone (590) and thiophanate-methyl (802) + TX, and biologically active compounds selected from the group consisting of azaconazole (60207-31-0] + TX, bitertanol [70585-36-3] + TX, bromuconazole [1 16255-48-2] + TX, cyproconazole [94361-06-5] + TX, difenoconazole [1 19446-68-3] + TX, diniconazole [83657-24-3] + TX, epoxiconazole
  • Acinetobacter Iwoffii + TX Acremonium alternatum + TX + TX, Acremonium cephalosporium + TX + TX, Acremonium diospyri + TX, Acremonium obclavatum + TX, Adoxophyes orana granulovirus (AdoxGV) (Capex®) + TX, Agrobacterium radiobacter strain K84 (Galltrol-A®) + TX, Alternaria alternate + TX, Alternaria cassia + TX, Alternaria destruens (Smolder®) + TX,
  • Ampelomyces quisqualis (AQ10®) + TX, Aspergillus flavus AF36 (AF36®) + TX, Aspergillus flavus NRRL 21882 (Aflaguard®) + TX, Aspergillus spp. + TX, Aureobasidium pullulans + TX, Azospirillum + TX, (MicroAZ® + TX, TAZO B®) + TX, Azotobacter + TX, Azotobacter chroocuccum (Azotomeal®) + TX, Azotobacter cysts (Bionatural Blooming Blossoms®) + TX, Bacillus amyloliquefaciens + TX,
  • Bacillus cereus + TX Bacillus chitinosporus strain CM-1 + TX, Bacillus chitinosporus strain AQ746 + TX, Bacillus licheniformis strain HB-2 (BiostartTM Rhizoboost®) + TX, Bacillus licheniformis strain 3086 (EcoGuard® + TX, Green Releaf®) + TX, Bacillus circulans + TX, Bacillus firmus (BioSafe® + TX, BioNem-WP® + TX, VOTiVO®) + TX, Bacillus firmus strain 1-1582 + TX, Bacillus macerans + TX, Bacillus marismortui + TX, Bacillus megaterium + TX, Bacillus mycoides strain AQ726 + TX, Bacillus papillae (Milky Spore Powder®) + TX, Bacillus pumilus spp.
  • Bacillus subtilis strain AQ178 + TX Bacillus subtilis strain QST 713 (CEASE® + TX, Serenade® + TX, Rhapsody®) + TX, Bacillus subtilis strain QST 714 (JAZZ®) + TX, Bacillus subtilis strain AQ153 + TX, Bacillus subtilis strain AQ743 + TX, Bacillus subtilis strain QST3002 + TX, Bacillus subtilis strain QST3004 + TX, Bacillus subtilis var.
  • amyloliquefaciens strain FZB24 (Taegro® + TX, Rhizopro®) + TX, Bacillus thuringiensis Cry 2Ae + TX, Bacillus thuringiensis Cry1 Ab + TX, Bacillus thuringiensis aizawai GC 91 (Agree®) + TX, Bacillus thuringiensis israelensis (BMP123® + TX, Aquabac® + TX, VectoBac®) + TX, Bacillus thuringiensis kurstaki (Javelin® + TX, Deliver® + TX, CryMax® + TX, Bonide® + TX, Scutella WP® + TX, Turilav WP ® + TX, Astuto® + TX, Dipel WP® + TX, Biobit® + TX, Foray®) + TX, Bacillus thuringiensis kurstaki BMP 123 (Baritone
  • aizawai (XenTari® + TX, DiPel®) + TX, bacteria spp. (GROWMEND® + TX, GROWSWEET® + TX, Shootup®) + TX, bacteriophage of Clavipacter michiganensis (AgriPhage®) + TX, Bakflor® + TX, Beauveria bassiana (Beaugenic® + TX, Brocaril WP®) + TX, Beauveria bassiana GHA (Mycotrol ES® + TX, Mycotrol O® + TX, BotaniGuard®) + TX, Beauveria brongniartii (Engerlingspilz® + TX, Schweizer Beauveria® + TX, Melocont®) + TX, Beauveria spp. + TX, Botrytis cineria + TX,
  • Bradyrhizobium japonicum (TerraMax®) + TX, Brevibacillus brevis + TX, Bacillus thuringiensis tenebrionis (Novodor®) + TX, BtBooster + TX, Burkholderia cepacia (Deny® + TX, Intercept® + TX, Blue Circle®) + TX, Burkholderia gladii + TX, Burkholderia gladioli + TX, Burkholderia spp.
  • TX Canadian thistle fungus (CBH Canadian Bioherbicide®) + TX, Candida butyri + TX, Candida famata + TX, Candida fructus + TX, Candida glabrata + TX, Candida guilliermondii + TX, Candida melibiosica + TX, Candida oleophila strain O + TX, Candida parapsilosis + TX, Candida pelliculosa + TX, Candida pulcherrima + TX, Candida reuêtii + TX, Candida saitoana (Bio-Coat® + TX, Biocure®) + TX, Candida sake + TX, Candida spp.
  • TX Cladosporium tenuissimum + TX, Clonostachys rosea (EndoFine®) + TX, Colletotrichum acutatum + TX, Coniothyrium minitans (Cotans WG®) + TX, Coniothyrium spp. + TX, Cryptococcus albidus (YIELDPLUS®) + TX, Cryptococcus humicola + TX, Cryptococcus infirmo-miniatus + TX,
  • Cryptococcus laurentii + TX TX
  • Cupriavidus campinensis + TX Cydia pomonella granulovirus (CYD-X®) + TX
  • Drechslera hawaiinensis + TX Enterobacter cloacae + TX
  • Enterobacteriaceae + TX Entomophtora virulenta (Vektor®) + TX
  • Epicoccum nigrum + TX Epicoccum purpurascens + TX
  • TX Filobasidium floriforme + TX, Fusarium acuminatum + TX, Fusarium chlamydosporum + TX, Fusarium oxysporum (Fusaclean® / Biofox C®) + TX, Fusarium proliferatum + TX, Fusarium spp. + TX, Galactomyces geotrichum + TX, Gliocladium catenulatum (Primastop® + TX, Prestop®) + TX, Gliocladium roseum + TX, Gliocladium spp. (SoilGard®) + TX, Gliocladium virens (Soilgard®) + TX, Granulovirus
  • Pseudomonas chlororaphis AtEze® + TX
  • Pseudomonas corrugate + TX Pseudomonas fluorescens strain A506 (BlightBan A506®) + TX
  • Pseudomonas putida + TX Pseudomonas reactans + TX
  • TX Scytalidium uredinicola + TX, Spodoptera exigua nuclear polyhedrosis virus (Spod-X® + TX, Spexit®) + TX, Serratia marcescens + TX, Serratia plymuthica + TX, Serratia spp. + TX, Sordaria fimicola + TX, Spodoptera littoralis nucleopolyhedrovirus (Littovir®) + TX,
  • Trichoderma asperellum T34 Biocontrol®
  • Trichoderma gamsii TX
  • Trichoderma atroviride Plantmate®
  • Trichoderma harzianum rifai Mycostar®
  • Trichoderma harzianum T-22 Trianum- P® + TX, PlantShield HC® + TX, RootShield® + TX, Trianum-G®) + TX, Trichoderma harzianum T-39 (Trichodex®) + TX, Trichoderma inhamatum + TX, Trichoderma koningii + TX, Trichoderma spp.
  • LC 52 (Sentinel®) + TX, Trichoderma lignorum + TX, Trichoderma longibrachiatum + TX, Trichoderma polysporum (Binab T®) + TX, Trichoderma taxi + TX, Trichoderma virens + TX, Trichoderma virens (formerly Gliocladium virens GL-21 ) (SoilGuard®) + TX, Trichoderma viride + TX, Trichoderma viride strain ICC 080 (Remedier®) + TX, Trichosporon pullulans + TX, Trichosporon spp. + TX,
  • Plant extracts including: pine oil (Retenol®) + TX, azadirachtin (Plasma Neem Oil® + TX, AzaGuard® + TX, MeemAzal® + TX, Molt-X® + TX, Botanical IGR (Neemazad® + TX, Neemix®) + TX, canola oil (Lilly Miller Vegol®) + TX, Chenopodium ambrosioides near ambrosioides (Requiem®) + TX, Chrysanthemum extract (Crisant®) + TX, extract of neem oil (Trilogy®) + TX, essentials oils of Labiatae (Botania®) + TX, extracts of clove rosemary peppermint and thyme oil (Garden insect killer®) + TX, Glycinebetaine (Greenstim®) + TX, garlic + TX, lemongrass oil (GreenMatch®) + TX, neem oil +
  • pheromones including: blackheaded fireworm pheromone (3M Sprayable Blackheaded Fireworm Pheromone®) + TX, Codling Moth Pheromone (Paramount dispenser-(CM)/ Isomate C-Plus®) + TX, Grape Berry Moth Pheromone (3M MEC-GBM Sprayable Pheromone®) + TX, Leafroller pheromone (3M MEC - LR Sprayable Pheromone®) + TX, Muscamone (Snip7 Fly Bait® + TX, Starbar Premium Fly Bait®) + TX, Oriental Fruit Moth Pheromone (3M oriental fruit moth sprayable pheromone®) + TX, Peachtree Borer Pheromone (Isomate-P®) + TX, Tomato Pinworm Pheromone (3M Sprayable pheromone®) + TX, Entostat powder (extract from palm tree) (Exosex CM®) + TX, (E + ⁇ , ⁇ +
  • Macrobials including: Aphelinus abdominalis + TX, Aphidius ervi (Aphelinus-System®) + TX,
  • TX Coccidoxenoides perminutus (Planopar®) + TX, Coccophagus cowperi + TX, Coccophagus lycimnia + TX, Cotesia flavipes + TX, Cotesia plutellae + TX, Cryptolaemus montrouzieri (Cryptobug® + TX, Cryptoline®) + TX, Cybocephalus nipponicus + TX, Dacnusa sibirica + TX, Dacnusa sibirica
  • Diglyphus isaea (Diminex®) + TX, Delphastus catalinae (Delphastus®) + TX, Delphastus pusillus + TX, Diachasmimorpha krausii + TX, Diachasmimorpha longicaudata + TX, Diaparsis jucunda + TX, Diaphorencyrtus aligarhensis + TX, Diglyphus isaea + TX, Diglyphus isaea (Miglyphus® + TX, Digline®) + TX, Dacnusa sibirica (DacDigline® + TX, Minex®) + TX, Diversinervus spp.
  • TX Steinernematid spp. (Guardian Nematodes®) + TX, Stethorus punctillum (Stethorus®) + TX, Tamarixia radiate + TX, Tetrastichus setifer + TX, Thripobius semiluteus + TX, Torymus sinensis + TX, Trichogramma brassicae (Tricholine b®) + TX, Trichogramma brassicae (Tricho-Strip®) + TX, Trichogramma evanescens + TX, Trichogramma minutum + TX, Trichogramma ostriniae + TX, Trichogramma platneri + TX, Trichogramma pretiosum + TX, Xanthopimpla stemmator; and
  • the active ingredient mixture of the compounds of formula I selected from Tables 1 to 18 and P1 with active ingredients described above comprises a compound selected from Tables 1 to 18 and P1 and an active ingredient as described above preferably in a mixing ratio of from 100: 1 to 1 :6000, especially from 50: 1 to 1 :50, more especially in a ratio of from 20: 1 to 1 :20, even more especially from 10:1 to 1 : 10, very especially from 5: 1 and 1 :5, special preference being given to a ratio of from 2: 1 to 1 :2, and a ratio of from 4:1 to 2:1 being likewise preferred, above all in a ratio of 1 : 1 , or 5:1 , or 5:2, or 5:3, or 5:4, or 4: 1 , or 4:2, or 4:3, or 3: 1 , or 3:2, or 2:1 , or 1 :5, or 2:5, or 3:5, or 4:5, or 1 :4, or 2:4, or 3:4, or 1 :3, or 2:3, or 1 :2, or 1 :
  • the mixtures as described above can be used in a method for controlling pests, which comprises applying a composition comprising a mixture as described above to the pests or their environment, with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.
  • the mixtures comprising a compound of formula I selected from Tables 1 to 18 and P1 and one or more active ingredients as described above can be applied, for example, in a single "ready-mix” form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a "tank-mix", and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days.
  • the order of applying the compounds of formula I selected from Tables 1 to 18 and P1 and the active ingredients as described above is not essential for working the present invention.
  • compositions according to the invention can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.
  • auxiliaries such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides
  • compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • compositions that is the methods of controlling pests of the abovementioned type, such as spraying, atomizing, dusting, brushing on, dressing, scattering or pouring - which are to be selected to suit the intended aims of the prevailing circumstances - and the use of the compositions for controlling pests of the abovementioned type are other subjects of the invention.
  • Typical rates of concentration are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm, of active ingredient.
  • the rate of application per hectare is generally 1 to 2000 g of active ingredient per hectare, in particular 10 to 1000 g/ha, preferably 10 to 600 g/ha.
  • a preferred method of application in the field of crop protection is application to the foliage of the plants (foliar application), it being possible to select frequency and rate of application to match the danger of infestation with the pest in question.
  • the active ingredient can reach the plants via the root system (systemic action), by drenching the locus of the plants with a liquid composition or by incorporating the active ingredient in solid form into the locus of the plants, for example into the soil, for example in the form of granules (soil application). In the case of paddy rice crops, such granules can be metered into the flooded paddy-field.
  • the compounds of the invention and compositions thereof are also be suitable for the protection of plant propagation material, for example seeds, such as fruit, tubers or kernels, or nursery plants, against pests of the abovementioned type.
  • the propagation material can be treated with the compound prior to planting, for example seed can be treated prior to sowing.
  • the compound can be applied to seed kernels (coating), either by soaking the kernels in a liquid composition or by applying a layer of a solid composition. It is also possible to apply the compositions when the propagation material is planted to the site of application, for example into the seed furrow during drilling.
  • Typical treatment rates would depend on the plant and pest/fungi to be controlled and are generally between 1 to 200 grams per 100 kg of seeds, preferably between 5 to 150 grams per 100 kg of seeds, such as between 10 to 100 grams per 100 kg of seeds.
  • seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corns, bulbs, fruit, tubers, grains, rhizomes, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
  • the present invention also comprises seeds coated or treated with or containing a compound of formula I.
  • coated or treated with and/or containing generally signifies that the active ingredient is for the most part on the surface of the seed at the time of application, although a greater or lesser part of the ingredient may penetrate into the seed material, depending on the method of application.
  • the seed product When the said seed product is (re)planted, it may absorb the active ingredient.
  • the present invention makes available a plant propagation material adhered thereto with a compound of formula (I). Further, it is hereby made available, a composition comprising a plant propagation material treated with a compound of formula (I).
  • Seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting.
  • the seed treatment application of the compound formula (I) can be carried out by any known methods, such as spraying or by dusting the seeds before sowing or during the sowing/planting of the seeds.
  • Example B1 Spodoptera littoralis (Egyptian cotton leaf worm)
  • Cotton leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions. After drying, the leaf discs were infested with five L1 larvae. The samples were assessed for mortality, anti-feedant effect, and growth inhibition in comparison to untreated samples 3 days after infestation. Control of Spodoptera littoralis by a test sample is when at least one of mortality, anti-feedant effect, and growth inhibition is higher than the untreated sample.
  • Example B2 Spodoptera littoralis (Egyptian cotton leaf worm)
  • Test compounds were applied by pipette from 10 ⁇ 00 ppm DMSO stock solutions into 24-well plates and mixed with agar. Lettuce seeds were placed on the agar and the multi well plate was closed by another plate which contains also agar. After 7 days the roots have absorbed the compound and the lettuce has grown into the lid plate. The lettuce leafs were now cut off into the lid plate. Spodoptera eggs were pipetted through a plastic stencil on a humid gel blotting paper and the plate closed with it. The samples were assessed for mortality, anti-feedant effect and growth inhibition in comparison to untreated samples 6 days after infestation.
  • the following compounds gave an effect of at least 80% in at least one of the three categories (mortality, anti-feedancy, or growth inhibition) at a test rate of 12.5 ppm: P6, P7, P8, P13, P15 and P16.
  • Example B3 Plutella xylostella (Diamond back moth)
  • 24-well microtiter plates with artificial diet were treated with agueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions by pipetting. After drying, the plates were infested with L2 larvae (10 to 15 per well). The samples were assessed for mortality and growth inhibition in comparison to untreated samples 5 days after infestation.
  • the following compounds gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm: P1 , P2, P3, P4, P5, P6, P7, P8, P10, P1 1 , P12, P13, P14, P15 and P16.
  • Example B4 Diabrotica balteata (Corn root worm)
  • Maize sprouts, placed on an agar layer in 24-well microtiter plates were treated with agueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions by spraying. After drying, the plates were infested with L2 larvae (6 to 10 per well). The samples were assessed for mortality and growth inhibition in comparison to untreated samples 4 days after infestation.
  • Sunflower leaf discs were placed on agar in a 24-well microtiter plate and sprayed with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions. After drying, the leaf discs were infested with an aphid population of mixed ages. The samples were assessed for mortality 6 days after infestation.
  • Example B6 Myzus persicae (Green peach aphid)
  • Roots of pea seedlings infested with an aphid population of mixed ages were placed directly in the aqueous test solutions prepared from 10 ⁇ 00 DMSO stock solutions. The samples were assessed for mortality 6 days after placing seedlings in test solutions.
  • Example B7 Bemisia tabaci (Cotton white fly)
  • Cotton leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions. After drying the leaf discs were infested with adult white flies. The samples were checked for mortality 6 days after incubation.
  • the following compounds resulted in at least 80% mortality at an application rate of 200 ppm: P5, P8, P12, P15 and P16.
  • Example B8 Euschistus heros (Neotropical Brown Stink Bug)
  • Soybean leaf on agar in 24-well microtiter plates were sprayed with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions. After drying the leaf were infested with N-2 nymphs. The samples were assessed for mortality 5 days after infestation.
  • the following compounds resulted in at least 80% mortality at an application rate of 200 ppm: P6, P7, P8, P10, P1 1 , P12, P15 and P16.
  • Example B9 Aedes aegypti (Yellow fever mosquito)
  • Test solutions at an application rate of 200ppm in ethanol, were applied to 12 well tissue culture plates. Once the deposits were dry, five, two to five day old adult female Aedes aegypti were added to each well, and sustained with a 10% sucrose solution in a cotton wool plug. Assessment of knockdown was made one hour after introduction, and mortality was assessed at 24 and 48 hours after introduction.
  • Bean leaf discs on agar in 24-well microtiter plates were sprayed with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions. After drying the leaf discs were infested with a mite population of mixed ages. The samples were assessed for mortality on mixed population (mobile stages) 8 days after infestation.
  • Example B1 1 Thrips tabaci (Onion thrips)
  • Sunflower leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions. After drying the leaf discs were infested with a thrips population of mixed ages. The samples were assessed for mortality 6 days after infestation.
  • the following compound resulted in at least 80% mortality at an application rate of 200 ppm: P16.
  • Example B12 Frankliniella occidentalis (Western flower thrips)
  • Sunflower leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10 ⁇ 00 DMSO stock solutions. After drying the leaf discs were infested with a Frankliniella population of mixed ages. The samples were assessed for mortality 7 days after infestation.
  • the following compounds resulted in at least 80% mortality at an application rate of 200 ppm: P15 and P16.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Catching Or Destruction (AREA)

Abstract

Compounds of formula (I), wherein the substituents are as defined in claim 1, and the agrochemically acceptable salts salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds, can be used as insecticides and can be prepared in a manner known per se.

Description

Pesticidally active heterocyclic derivatives with sulphur containing substituents
The present invention relates to pesticidally active, in particular insecticidally active heterocyclic derivatives containing sulphur substituents, to intermediates for the preparation of those compounds, to compositions comprising those compounds, and to their use for controlling animal pests (including arthropods and in particular insects or representatives of the order Acarina).
Heterocyclic compounds with pesticidal action are known and described, for example, in
WO 2012/086848 and WO 2013/018928.
There have now been found novel pesticidally active heterocyclic 6/5-bicyclic ring derivatives with sulphur containing phenyl and pyridyl substituents.
The present invention accordingly relates to compounds of formula I,
Figure imgf000002_0001
wherein
A represents CH or N;
Q is C3-C6cycloalkyl, or C3-C6cycloalkyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, C3-C6cycloalkyl and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, Ci-C4haloalkoxy, Ci-C4alkoxy, Ci-C4haloalkylsulfanyl, Ci-C4halo-alkylsulfinyl, Ci-C4haloalkylsulfonyl and -C(0)Ci-C4haloalkyl; or
Q is C2-C6alkenyl, or C2-C6alkenyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, C3-C6cycloalkyl and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, Ci-C4haloalkoxy, Ci-C4alkoxy, Ci-C4haloalkylsulfanyl, Ci-C4halo- alkylsulfinyl, Ci-C4haloalkylsulfonyl and -C(0)Ci-C4haloalkyl; or
Q is C2-C6alkynyl, or C2-C6alkynyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, C3-C6cycloalkyl, tri(Ci-C4alkyl)silyl and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, Ci-C4haloalkoxy, Ci-C4alkoxy, Ci-C4halo- alkylsulfanyl, Ci-C4haloalkylsulfinyl, Ci-C4haloalkylsulfonyl and -C(0)Ci-C4haloalkyl;
X is S, SO or S02; Ri is Ci-C4alkyl, Ci-C4haloalkyl, C3-C6cycloalkyl, C3-C6cycloalkyl-Ci-C4alkyl or C3-C6cycloalkyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano and
Ci-C4alkyl; or
Ri is C3-C6cycloalkyl-Ci-C4alkyl mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano and Ci-C4alkyl; or
Ri is C2-C6alkenyl, C2-C6haloalkenyl or C2-C6alkynyl;
R2 is halogen, cyano, Ci-C6haloalkyl or Ci-C6haloalkyl substituted by one or two substituents selected from the group consisting of hydroxyl, methoxy and cyano; or
R2 is Ci-C4haloalkylsulfanyl, Ci-C4haloalkylsulfinyl, Ci-C4haloalkylsulfonyl, 0(Ci-C4haloalkyl), or -C(0)d-C4haloalkyl; or
R2 is C3-C6cycloalkyl which can be mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano and Ci-C4alkyl;
Xi is O, S or NR3, wherein R3 is hydrogen, Ci-C4alkyl, C2-C6alkenyl, C2-C6alkynyl, C-i-C4alkoxy- Ci-C4alkyl or C3-C6cycloalkyl;
and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds.
Compounds of formula I which have at least one basic centre can form, for example, acid addition salts, for example with strong inorganic acids such as mineral acids, for example perchloric acid, sulfuric acid, nitric acid, nitrous acid, a phosphorus acid or a hydrohalic acid, with strong organic carboxylic acids, such as Ci-C4alkanecarboxylic acids which are unsubstituted or substituted, for example by halogen, for example acetic acid, such as saturated or unsaturated dicarboxylic acids, for example oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid or phthalic acid, such as hydroxycarboxylic acids, for example ascorbic acid, lactic acid, malic acid, tartaric acid or citric acid, or such as benzoic acid, or with organic sulfonic acids, such as Ci-C4alkane- or arylsulfonic acids which are unsubstituted or substituted, for example by halogen, for example methane- or p-toluenesulfonic acid. Compounds of formula I which have at least one acidic group can form, for example, salts with bases, for example mineral salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower-alkylamine, for example ethyl-, diethyl-, triethyl- or dimethylpropylamine, or a mono-, di- or trihydroxy-lower-alkylamine, for example mono-, di- or triethanolamine.
The alkyl groups occurring in the definitions of the substituents can be straight-chain or branched and are, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, hexyl, nonyl, decyl and their branched isomers. Alkylsulfanyl, alkylsulfinyl, alkylsulfonyl, alkoxy, alkenyl and alkynyl radicals are derived from the alkyl radicals mentioned. The alkenyl and alkynyl groups can be mono- or polyunsaturated. Halogen is generally fluorine, chlorine, bromine or iodine. This also applies, correspondingly, to halogen in combination with other meanings, such as haloalkyl or halophenyl.
HaloalkyI groups preferably have a chain length of from 1 to 6 carbon atoms. Haloalkyl is, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2,2,2- trifluoroethyl, 2-fluoroethyl, 2-chloroethyl, pentafluoroethyl, 1 ,1-difluoro-2,2,2-trichloroethyl, 2,2,3,3- tetrafluoroethyl and 2,2,2-trichloroethyl.
Alkoxy groups preferably have a preferred chain length of from 1 to 6 carbon atoms. Alkoxy is, for example, methoxy, ethoxy, propoxy, i-propoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy and also the isomeric pentyloxy and hexyloxy radicals.
Alkoxyalkyl groups preferably have a chain length of 1 to 6 carbon atoms.
Alkoxyalkyl is, for example, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, n- propoxymethyl, n-propoxyethyl, isopropoxymethyl or isopropoxyethyl.
Alkoxycarbonyl is for example methoxycarbonyl (which is Cialkoxycarbonyl), ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, tert-butoxycarbonyl, n-pentoxycarbonyl or hexoxycarbonyl.
The cycloalkyl groups preferably have from 3 to 6 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
In the context of this invention "mono- to polysubstituted" in the definition of the substituents, means typically, depending on the chemical structure of the substituents, monosubstituted to seven-times substituted, preferably monosubstituted to five-times substituted, more preferably mono-, double- or triple-substituted.
Free radicals represent methyl groups.
The compounds of formula I according to the invention also include hydrates which may be formed during the salt formation.
A preferred group of compounds of formula I is represented by the compounds of formula 1-1
Figure imgf000005_0001
wherein R2 and Q are as defined under formula I above; and wherein Xa-ι is S, SO or S02; Ra-ι is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds. In this preferred group of compounds of formula 1-1 , Q is preferably C3-C6cycloalkyl, or C3-C6cycloalkyl monosubstituted or disubstituted by substituents selected from the group consisting of cyano, Ci-C4haloalkyl and halogen; in particular C3-C6cycloalkyl; R2 is preferably Ci-C4haloalkyl, Xa-ι is preferably S02 and Ra-ι is preferably ethyl. A further preferred group of compounds of formula I is represented by the compounds of formula I-2
Figure imgf000005_0002
wherein R2 and Q are as defined under formula I above; and wherein Xa2 is S, SO or S02; Ra2 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds. In this preferred group of compounds of formula I-2, Q is preferably C3-C6cycloalkyl, or is C3-C6cycloalkyl monosubstituted or disubstituted by substituents selected from the group consisting of cyano, Ci-C4haloalkyl and halogen; in particular C3-C6cycloalkyl; R2 is preferably Ci-C4haloalkyl, Xa-ι is preferably S02 and Ra-ι is preferably ethyl. A further preferred group of compounds of formula I is represented by the compounds of formula I-3
Figure imgf000005_0003
wherein R2 and Q are as defined under formula I above; and wherein Xa3 is S, SO or S02; Ra3 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds. In this further preferred group of compounds of formula 1-3, Q is preferably C2-C6alkenyl, or C2-C6alkenyl monosubstituted or disubstituted by substituents selected from the group consisting of Ci-C4alkyl, C3-C6cycloalkyl, Ci-C4haloalkyl, phenyl and phenyl monosubstituted by Ci-C4haloalkyl; R2 is preferably Ci-C4haloalkyl, Xa3 is preferably S02 and Ra3 is preferably ethyl.
A further preferred group of compounds of formula I is represented by the compounds of formula I-4
Figure imgf000006_0001
wherein R2 and Q are as defined under formula I above; and wherein Xa4 is S, SO or S02; Ra4 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds. In this further preferred group of compounds of formula I-4, Q is preferably C2-C6alkenyl, or C2-C6alkenyl monosubstituted or disubstituted by substituents selected from the group consisting of Ci-C4alkyl, C3-C6cycloalkyl, Ci-C4haloalkyl, phenyl and phenyl monosubstituted by Ci-C4haloalkyl; R2 is preferably Ci-C4haloalkyl, Xa4 is preferably S02 and Ra4 is preferably ethyl.
A further preferred group of compounds of formula I is represented by the compounds of formula I-5
Figure imgf000006_0002
wherein R2 and Q are as defined under formula I above; and wherein Xa5 is S, SO or S02; Ra5 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds. In this further preferred group of compounds of formula I-5, Q is preferably C2-C6alkynyl, or C2-C6alkynyl monosubstituted by substituents selected from the group consisting of tri(CrC4alkyl)silyl, Ci-C4haloalkyl and phenyl, or phenyl which can be monosubstituted by substituents selected from the group consisting of halogen, Ci-C4alkyl and Ci-C4haloalkyl; R2 is preferably Ci-C4haloalkyl, Xa5 is preferably S02 and Ra5 is preferably ethyl. A further preferred group of compounds of formula I is represented by the compounds of formula 1-6
Figure imgf000007_0001
wherein R2 and Q are as defined under formula I above; and wherein Xa6 is S, SO or S02; Ra6 is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds. In this further preferred group of compounds of formula 1-6, Q is preferably C2-C6alkynyl, or C2-C6alkynyl monosubstituted by substituents selected from the group consisting of tri(CrC4alkyl)silyl, Ci-C4haloalkyl and phenyl, or phenyl which can be monosubstituted by substituents selected from the group consisting of halogen, Ci-C4alkyl and Ci-C4haloalkyl; R2 is preferably Ci-C4haloalkyl, Xa6 is preferably S02 and Ra6 is preferably ethyl.
A further preferred group of compounds of formula I is represented by the compounds of formula 1-10
Figure imgf000007_0002
wherein
R2 and Q are as defined under formula I in claim 1 ;
Figure imgf000007_0003
Ra-ιο is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl.
Preferred compounds of formula 1-10 are those, wherein
Q is C3-C6cycloalkyl, or C3-C6cycloalkyl mono- or disubstituted by substituents selected from the group consisting of cyano, Ci-C4haloalkyl and halogen; or Q is C2-C6alkenyl, or C2-C6alkenyl mono- or disubstituted by substituents selected from the group consisting of Ci-C4alkyl, C3-C6cycloalkyl, Ci-C4haloalkyl, phenyl, or phenyl monosubstituted by Ci-C4haloalkyl; or Q is C2-C6alkynyl, or
C2-C6alkynyl monosubstituted by substituents selected from the group consisting of tri(C1-C4alkyl)silyl, Ci-C4haloalkyl, phenyl, said phenyl can be monosubstituted by substituents selected from the group consisting of halogen, Ci-C4alkyl or Ci-C4haloalkyl. A further preferred group of compounds of formula I is represented by the compounds of formula 1-20
Figure imgf000008_0001
wherein
R2 and Q are as defined under formula I in claim 1 ;
Xa20 is S, SO or S02; and
Ra2o is methyl, ethyl, n-propyl, i-propyl or cyclopropylmethyl.
Preferred compounds of formula I-20 are those, wherein
Q is C3-C6cycloalkyl, or C3-C6cycloalkyl mono- or disubstituted by substituents selected from the group consisting of cyano, Ci-C4haloalkyl and halogen; or Q is C2-C6alkenyl, or C2-C6alkenyl mono- or disubstituted by substituents selected from the group consisting of Ci-C4alkyl or C3-C6cycloalkyl, d- C4haloalkyl, phenyl, or phenyl monosubstituted by Ci-C4haloalkyl; or Q is C2-C6alkynyl, or
C2-C6alkynyl monosubstituted by substituents selected from the group consisting of tri(C1-C4alkyl)silyl, Ci-C4haloalkyl, phenyl, said phenyl can be monosubstituted by substituents selected from the group consisting of halogen, Ci-C4alkyl or Ci-C4haloalkyl.
Especially preferred compounds of formula I are represented by the compounds of formula la
Figure imgf000008_0002
wherein
X2 is S02;
X3 is N-(d-C4alkyl);
R4 is Ci-C4alkyl;
Qa is C3-C6cycloalkyl, C2-C6alkenyl or C2-C6alkynyl, or is C3-C6cycloalkyl, C2-C6alkenyl or C2-C6alkynyl each mono- or disubstituted by substituents selected from the group consisting of halogen, Ci-C4alkyl, Ci-C4haloalkyl, cyano, C3-C6cycloalkyl, tri(Ci-C4alkyl)silyl and phenyl, said phenyl can be mono- substituted by halogen or Ci-C4haloalkyl; or Qa is C3-C6cycloalkenyl which itself can be mono- or disubstituted by Ci-C4alkyl; and R6 is Ci-C4haloalkyl.
In the compounds of formula la, Qa is preferably C3-C6cycloalkyl which can be mono- or disubstituted by substituents selected from the group consisting of halogen, Ci-C4haloalkyl and cyano; or Qa is C3- C6cycloalkenyl which itself can be mono- or di-substituted by Ci-C4alkyl.
Especially preferred compounds of formula I are represented by the compounds of formula lb
Figure imgf000009_0001
wherein
X2b is S02;
X3b is N-(d-C4alkyl);
R4b is Ci-C4alkyl;
Qb is C3-C6cycloalkyl, C2-C6alkenyl or C2-C6alkynyl, or is C3-C6cycloalkyl, C2-C6alkenyl or C2-C6alkynyl each mono- or disubstituted by substituents selected from the group consisting of halogen, Ci-C4alkyl, Ci-C4haloalkyl, cyano, C3-C6cycloalkyl, tri(Ci-C4alkyl)silyl and phenyl, said phenyl can be mono- substituted by halogen or Ci-C4haloalkyl; and
R6b is Ci-C4haloalkyl.
In the compounds of formula lb, Qb is preferably C3-C6cycloalkyl which can be mono- or disubstituted by substituents selected from the group consisting of halogen, Ci-C4haloalkyl and cyano; or Qb is C3- C6cycloalkenyl which itself can be mono- or di-substituted by Ci-C4alkyl.
The process according to the invention for preparing compounds of formula I is carried out by methods known to those skilled in the art. More specifically, compounds of formula I can be prepared (as depicted in scheme 1 ) by reacting compounds of formula II with compounds of formula III, wherein Xbi can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate and Ybi can be a boron-derived functional group, as for example B(OH)2 or B(ORbi)2 wherein Rbi can be a Ci-C6alkyl group or the two groups ORbi can form together with the boron atom a five- or six-membered ring, as for example a pinacol boronic ester (such five- or six- membered boronic ester reagents of formula III are, for example, 4,4,5,5-tetramethyl-2-vinyl-1 ,3,2- dioxaborolane or 4,4,6-trimethyl-2-[1-(trifluoromethyl)vinyl]-1 ,3,2-dioxaborinane). In formula II and III, A, X-i, R-i, R2, X and Q are as described in formula I. The reaction can be catalyzed by a palladium based catalyst, for example tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine) palladium(ll) dichloride, chloro(2-dicyclohexylphosphino-2',4',6'-triisopropyl-1 ,1 '-biphenyl)[2-(2'-amino- 1 ,1'-biphenyl)]palladium(ll) (XPhos palladacycle), or (1 ,1 'bis(diphenylphosphino)-ferrocene) dichloropalladium-dichloromethane (1 :1 complex), in presence of a base, like sodium carbonate, tripotassium phosphate or cesium fluoride, in a solvent (such as toluene, 1 ,2-dimethoxy-ethane DME, tetrahydrofuran or dioxane) or a solvent mixture, like, for example a mixture of 1 ,2-dimethoxy-ethane and water, or of dioxane and water, preferably under inert atmosphere. The reaction temperature can preferentially range from room temperature to the boiling point of the reaction mixture, or alternatively heating may be performed under microwave irradiation.
Scheme 1 :
Figure imgf000010_0001
II III I
A particular case of compounds of formula I is represented by compounds of formula l-b, wherein A, R-i , R2, X and X-i are as described in formula I and Q is a 1-alk nyl group of the structure C≡C-Qb:
Figure imgf000010_0002
wherein Qb is hydrogen, halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, C3-C6cycloalkyl, tri(Ci- C4alkyl)silyl or phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, Ci-C4haloalkoxy, Ci-C4alkoxy, Ci-C4halo-alkylsulfanyl, Ci-C4haloalkylsulfinyl, Ci-C4haloalkylsulfonyl and -C(0)Ci-C4haloalkyl.
Compounds of the formula l-b can be prepared, for example, by reacting compounds of formula II with terminal alkynes of formula H-C≡C-Qb (scheme 1a), wherein Xb1 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate. In formula II and H-C≡C-Qb, A, X, X-i , R-i , R2 and Qb are as described above in formula l-b. This type of reaction is well known to a person skilled in the art and commonly described as the Sonogashira cross-coupling reaction. In this reaction, the substituted aromatic component of formula II is reacted with the terminal alkyne of formula H-C≡C-Qb in the presence of a copper(l) salt, like Cul, preferably in catalytic amount, and in the presence of a palladium based catalyst, for example bis(triphenylphosphine)- palladium dichloride or (1 ,1 'bis(diphenylphosphino)-ferrocene)dichloropalladium-dichloromethane (1 :1 complex), preferably in catalytic amount, and in the presence of a base, such as a tertiary amine, for example triethylamine or Hiinig's base (Ν,Ν-diisopropylethylamine), preferably in equivalent amount or in excess. The reaction can be performed in the amine as solvent or another compatible solvent can be used as dilutant, as for example an ether, like tetrahydrofurane. The reaction is best performed under inert atmosphere and can take place at temperatures in the range from below 0°C to the boiling point of the reaction mixture. Scheme 1a:
Figure imgf000011_0001
ll l-b
Compounds of formula l-b, wherein A, R-i , R2, X and X-i are as described in formula I, and in which Qb is tri(Ci-C4alkyl)silyl may be transformed into compounds of formula l-b, wherein A, R-i, R2, X and X-i are as described in formula I, and in which Qb is hydrogen, by means of a deprotection step (e.g. trimethylsilyl cleavage, when Ci-C4alkyl is methyl). Typically, the compound of formula l-b, wherein Qb is tri(Ci-C4alkyl)silyl, is treated with a base, such as potassium carbonate, or sodium- or potassium hydroxide, in a protic solvent, such as an alcohol, preferably methanol or ethanol, at temperatures between 0°C and 50°C. Alternatively, compound of formula l-b, wherein Qb is tri(Ci-C4alkyl)silyl, may also be treated with a fluoride source, such as for example, tetrabutyl ammonium fluoride or potassium fluoride, in solvents such as tetrahydrofuran or dioxane, at temperatures between 0°C and 50°C.
Compounds of formula II, wherein A, X-i , R-i, R2 and X are as described in formula I, and wherein Xb1 is a halogen, preferably chlorine, bromine or iodine, may be prepared in analogy to descriptions found in W015/000715.
Compounds of formula I can also be made (as depicted in scheme 2) by reacting compounds of formula IV with compounds of formula V, wherein Xb2 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate and Yb2 can be a boron- derived functional group, as for example B(OH)2 or B(ORb2)2 wherein Rb2 can be a d-C6alkyl group or the two groups ORb2 can form together with the boron atom a five- or six-membered ring, as for example a pinacol boronic ester. In formula IV and V, A, X-i , R-i , R2, X and Q are as described in formula I. The reaction can be catalyzed by a palladium based catalyst, for example
tetrakis(triphenylphosphine)-palladium, bis(triphenylphosphine) palladium(ll) dichloride or
(1 , 1 'bis(diphenylphosphino)-ferrocene)dichloropalladium-dichloromethane (1 : 1 complex), in presence of a base, like sodium carbonate, tripotassium phosphate or cesium fluoride, in a solvent (such as toluene, 1 ,2-dimethoxy-ethane DME, tetrahydrofuran or dioxane) or a solvent mixture, like, for example a mixture of 1 ,2-dimethoxyethane and water, or of dioxane and water, preferably under inert atmosphere. The reaction temperature can preferentially range from room temperature to the boiling point of the reaction mixture, or alternatively heating may be performed under microwave irradiation.
Scheme 2
Figure imgf000012_0001
IV V
The compounds of formula IV
Figure imgf000012_0002
wherein
R-i , R2, X, Xi and A are as defined under formula I above, and Yb2 is -B(OH)2 or Yb2 is
Figure imgf000012_0003
(a
4,4,5,5-tetramethyl-1 ,3,2-dioxaborolane group), are novel, especially developed for the preparation of the compounds of formula I according to the invention and therefore represent a further object of the invention. Preferred substituent meanings for the substituents R-i , R2, X, X-i and A mentioned under formula I, 1-1 , I-2, I-3, I-4, I-5, I-6, 1-10, I-20 and la above are also valid for the compound of formula IV.
Compounds of formula l-a3, wherein A, R-i , R2, X-i and Q have the values defined in formula I, and X is -S02- can be prepared by oxidation of compounds of formula l-a2, wherein A, R-i , R2, X-i and Q have the values defined in formula I, and X is -SO-. The reaction can be performed with reagents like, for example, a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide, as for example, hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a monoperoxo-disulfate salt or potassium permanganate. In a similar way, compounds of formula l-a2, wherein A, R-i, R2, X-i and Q have the values defined in formula I, and X is -SO-, can be prepared by oxidation of compounds of formula l-a1 , wherein A, R-i , R2, X-i and Q have the values defined in formula I, and X is -S-, under analogous conditions described above. These reactions can be performed in various organic or aqueous solvents compatible to these conditions, by temperatures from below 0°C up to the boiling point of the solvent system. The transformation of compounds of the formula 1-a1 into compounds of the formula 1-a2 and 1-a3 is represented in scheme 3.
Scheme 3
Figure imgf000013_0001
l-a2 x = -S(O)-
Compounds of formula l-a1 may also be prepared (scheme 4) by reacting a compound of the formula VI with a compound of the formula VII, wherein A, R-i , R2, Xi and Q have the values defined in formula I and X is sulphur and M is a metal or non-metal cation. In the scheme 4, the cation M is assumed to be monovalent, but polyvalent cations associated with more than one S-Ri group can also be considered. Prefered cations are, for example lithium, sodium, potassium or cesium. For this transformation to work, Xb3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate, but many other leaving groups could be considered. The reaction can be performed in a solvent, preferably aprotic, at temperatures below 0°C or up to boiling temperature of the reaction mixture.
Scheme 4
Figure imgf000013_0002
Compounds of formula VI, wherein Xb3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, or any other similar leaving group, can be prepared (scheme 5) by reacting compounds of formula VIII with compounds of formula IX, wherein Xb4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine and Yb4 can be a boron- derived functional group, as for example B(OH)2 or B(ORb4)2 wherein Rb4 can be a d-C6alkyl group or the two groups ORb4 can form together with the boron atom a five- or six-membered ring, as for example a pinacol boronic ester. In formula VI, VIII and IX, A, X-i , R2 and Q are as described in formula I. The reaction can be catalyzed by a palladium based catalyst, for example tetrakis(triphenyl- phosphine)palladium(O), bis(triphenylphosphine) palladium(ll) dichloride or (1 ,1 'bis(diphenyl- phosphino)-ferrocene)dichloropalladium-dichloromethane (1 : 1 complex), in presence of a base, like sodium carbonate, tripotassium phosphate or cesium fluoride, in a solvent (such as toluene, 1 ,2- dimethoxy-ethane DME, tetrahydrofuran or dioxane) or a solvent mixture, like, for example a mixture of 1 ,2-dimethoxyethane and water, or of dioxane and water, preferably under inert atmosphere. The reaction temperature can preferentially range from ambient temperature to the boiling point of the reaction mixture, or alternatively heating may be performed under microwave irradiation.
Scheme 5
Figure imgf000014_0001
VIII IX VI
In an alternative way depicted in scheme 6, compounds of formula VI can also be prepared by reacting compounds of formula X, wherein Xb3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, or any other similar leaving group, with compounds of formula XI, wherein Xb5 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, and Yb5 can be a boron-derived functional group, as for example B(OH)2 or
B(ORb5)2 wherein Rb5 can be a Ci-C6alkyl group or the two groups ORb5 can form together with the boron atom a five- or six-membered ring, as for example a pinacol boronic ester. In formula VI, X and XI, A, X-i , R2 and Q are as described in formula I. The reaction can be catalyzed by a palladium based catalyst, for example tetrakis(triphenylphosphine)palladium(0), bis(triphenylphosphine) palladium(ll) dichloride or (1 ,1 'bis(diphenylphosphino)-ferrocene)dichloropalladium-dichloromethane (1 : 1 complex), in presence of a base, like sodium carbonate, tripotassium phosphate or cesium fluoride, in a solvent (such as toluene, 1 ,2-dimethoxy-ethane DME, tetrahydrofuran or dioxane) or a solvent mixture, like, for example a mixture of 1 ,2-dimethoxyethane and water, or of dioxane and water, preferably under inert atmosphere. The reaction temperature can preferentially range from ambient temperature to the boiling point of the reaction mixture, or alternatively heating may be performed under microwave irradiation.
Scheme 6
Figure imgf000014_0002
x xi VI
Compounds of formula I can also be prepared (scheme 7) by reacting compounds of formula XIII and compounds of formula XIV under various formal dehydration conditions, wherein A, R-i , R2, X, Xi and Q have the values defined in formula I. These methods are known to those skilled in the art or described for example in WO 2009/131237, WO 201 1/043404, WO 201 1/040629, WO 2010/125985, WO 2012/086848, WO 2013/018928, WO 2013/191 1 13, WO 2013/180193 and WO 2013/180194. Such processes are well known and have been described for example in WO 201 1/040629 or WO 2009131237 (X, is oxygen), WO 201 1088990 or Inorg. Chimica Acta, 358(9), 2701-2710; 2005 (X^ is sulfur) and J. Am. Chem. Soc, 132(5), 1545-1557, 2010 or WO 2008128968 (X, is NR3). The preparation of compounds of formula XIII, wherein X-i and R2 are as defined above, is detailed, for example, in W015/000715.
Scheme 7
Figure imgf000015_0001
Figure imgf000015_0002
The process describing the reaction between compounds of formula XIII and compounds of formula XIV towards compounds of formula I is summarized in more details in scheme 8:
Scheme 8
Figure imgf000015_0003
Compounds of formula XIV, wherein A, R-i , X and Q are as previously described, are activated (scheme 8) to compounds of formula XlV-a by methods known to those skilled in the art and described in for example Tetrahedron, 61 (46), 10827-10852, 2005. For example compounds where X0 is chlorine are formed by treatment with for example, oxalyl chloride or thionyl chloride in the presence of catalytic quantities of DMF in inert solvents such as methylene chloride or THF at temperatures between 20 °C to 100 °C, preferably 25 °C. Treatment of XlV-a with compounds of formula XIII, wherein R2 and X-i are as described in formula I, optionally in the presence of a base, e.g. triethylamine or pyridine, leads to compounds of formula XV. Alternatively, compounds of formula I can be prepared by treatment of compounds of formula XIV with dicyclohexyl carbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) to give the activated species XlV-a, wherein X0 is Xoi and X02 respectively, in an inert solvent, e.g. pyridine, or tetrahydrofuran (THF) optionally in the presence of a base, e.g. triethylamine, at temperatures between 50-180 °C.
Figure imgf000016_0001
wherein X is S02;
R-i is ethyl or methylene-cyclopropyl;
A is nitrogen or methine;
Rooi is hydrogen or d-C4alkyl;
Q is a group:
Figure imgf000016_0002
wherein R0002 is cyano; are novel and especially developed for the preparation of the compounds according to the present invention. The compounds of formula XVI-b therefore constitute a further object of the invention.
Compounds of formula XV so obtained can then be converted to compounds of formula I by dehydration, eg. by heating the compounds under microwave irradiation, in the presence of an acid catalyst, for example methanesulfonic acid, or para-toluenesulfonic acid, in an inert solvent such as N- methyl pyrrolidone at temperatures between 25-180 °C, preferably 130-170 °C. Such processes have been described previously in WO 2010/125985. Alternatively, compounds of formula XV can be converted to compounds of formula I (wherein X-i is O) using triphenylphosphine, di-isopropyl azodicarboxylate in an inert solvent such as THF at temperatures between 25-50°C. Such Mitsunobu conditions have been previously described for such transformations (see WO 2009/131237).
In an analogous way (scheme 9), compounds of formula VI, wherein Xb3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethane- sulfonate, or any other similar leaving group, can be prepared by reacting compounds of formula XVI, wherein A and Q have the values defined for formula I, with an activating agent, like, for example oxalyl chloride or thionyl chloride or a carbodiimid reagent to generate the activated species XVI-a, followed by reaction with compounds of formula XIII, wherein R2 and X-i are as described in formula I. The intermediate compounds of formula XVII may be isolated, but are preferentially converted into the compounds of formula VI in a similar way as described above for the transformation of compounds XV into compounds of formula I.
Scheme 9
Figure imgf000017_0001
In a similar way as described above, compounds of formula VIII can be prepared as described in scheme 10, by reacting compounds of formula XVIII, respectively an activated form XVIII-a of compounds of formula XVIII, wherein A is carbon or nitrogen, and Xb3 is a leaving group like, for example fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethane- sulfonate, and Xb4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, with compounds of the formula XIII, wherein X-i and R2 are as defined in formula I. The intermediate compounds of formula XIX may be isolated, but are preferentially converted into the compounds of formula VIII in a similar way as described above (transformation of compounds XV into compounds of formula I).
Scheme 10
Figure imgf000018_0001
Figure imgf000018_0002
Compounds of formula XXI can be prepared as described in scheme 10a, by reacting compounds of formula XX, wherein A is carbon CH or nitrogen, and Xb3a is a leaving group like, for example nitro, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, and Xb4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, with a compound of formula VII, wherein R-i is as defined in formula I, and M is a metal or non-metal cation. In scheme 10a, the cation M is assumed to be monovalent, but polyvalent cations associated with more than one S-Ri group can also be considered. Prefered cations are, for example lithium, sodium, potassium or cesium. The reaction can be performed in a solvent, preferably polar aprotic, such as THF, N,N-dimethylformamide or MeCN, at temperatures between -78°C and the boiling temperature of the reaction mixture.
Compounds of formula XVIII-c can be prepared by hydrolysis of compounds of formula XXI under acidic (e.g. HCI or H2S04) or basic conditions (e.g. NaOH or KOH) as described in scheme 10a, under conditions known to a person skilled in the art. Compounds of formula Il-a2 can be prepared, as described in scheme 10a, by reacting compounds of formula XVIII-c respectively an activated form XVIII-d of compounds of formula XVIII-c with compounds of formula XIII, wherein X-i and R2 are as defined in formula I. The intermediate compounds of formula XXII may be isolated, but are preferentially converted into the compounds of formula M-a2 in a similar way as described above (transformation of compounds XV into compounds of formula I). In compounds of formula XXI, XVIII-c, XVIII-d, XXII and Il-a2, X can be S, SO or S02. The appropriate oxidation forms of the sulfur atom in compounds of formula XXI, XVIII-c, XVIII-d, XXII and Il-a2 wherein X is SO or S02, can be prepared by oxidation of compounds of formula XXI, XVIII-c, XVIII-d, XXII and Il-a2 wherein X is S. The reaction can be performed with reagents like, for example a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide as for example hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a mono-peroxodisulfate salt or potassium permanganate, preferentially meta- chloroperbenzoic acid.
Scheme 10a
Figure imgf000019_0001
XX XVIII-c
XVIII-d
Figure imgf000019_0002
Compounds of formula XVIII-c, wherein X is S, SO or S02, can alternatively be prepared by analogous methods to those described in the literature (scheme 10b). For example, a compound of formula XVIII- c, wherein X is S, may be prepared by saponification of a compound of formula XXIV, wherein RLG is Ci-C4alkyl, under conditions known to a person skilled in the art (R-i is as defined in formula I, A is N or CH, and Xb4 can be a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine).
Scheme 10b
Figure imgf000019_0003
XVIII-c wherein X is S
Figure imgf000019_0004
or KOH in methanol
XVIII-c wherein X is SO or SO2
XXIV-a Compounds of formula XXIV, wherein RLG is Ci-C4alkyl, may be prepared by treatment of compounds of formula XXIII, wherein Xb3a is a leaving group like, for example nitro, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, and wherein RLG is Ci-C4alkyl, with a reagent M-S-R-i, wherein R-i is as defined in formula I and M is a metal or non-metal cation, under conditions described above. Such processes involving for example sodium methane- or ethanethiolate as reagents M-S-Ri are well known and have been described previously in, for example, WO2014/152738. Compounds of formula XXIV can be oxidised to compounds of formula XXIV-a using methods known to those skilled in the art and described for example in Scheme 12, and then saponified to compounds of formula XVIII-c, wherein X is SO or S02. Alternatively compounds of formula XXIV can be first saponified to compounds of formula XVIII-c, wherein X is S, and then oxidised to compounds of formula XVIII-c, wherein X is SO or S02. Compounds of formula XXIII are either commercial or have been described in WO 2012/086848.
Compounds of formula Il-a1 , wherein X is sulfur, can be prepared (scheme 1 1 ) by reacting a compound of the formula VIII, wherein A, R2 and X-i are as defined in formula I, and wherein Xb3 is a leaving group like, for example, fluorine, chlorine, bromine or iodine, or an aryl- or alkylsulfonate such as trifluoromethanesulfonate, preferentially fluorine or chlorine, and wherein Xb4 is a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, most preferably bromine or iodine, with a compound of the formula VII, wherein R-i is as defined in formula I, and M is a metal or non-metal cation. In scheme 1 1 , the cation M is assumed to be monovalent, but polyvalent cations associated with more than one S-Ri group can also be considered. Prefered cations are, for example lithium, sodium, potassium or cesium. The reaction can be performed in a solvent, preferably polar aprotic, at temperatures below 0°C or up to boiling temperature of the reaction mixture.
Scheme 1 1
Figure imgf000020_0001
Compounds of formula M-a3, wherein A, R-i , R2 and X-i have the values defined in formula I, and X is -S02- and wherein Xb4 is a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate, can be prepared (scheme 12) by oxidation of compounds of formula M-a2, wherein A, R-i , R2 and X-i have the values defined in formula I, and X is -SO- and wherein Xb4 is a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate. The reaction can be performed with reagents like, for example a peracid as peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide as for example hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, like a mono-peroxodisulfate salt or potassium permanganate, preferentially meta-chloroperbenzoic acid. In a similar way, compounds of formula M-a2, wherein A, R-i , R2 and X-i have the values defined in formula I, and X is -SO-, and wherein Xb4 is a halogen, preferentially chlorine, bromine or iodine, or a sulfonate like for example a trifluoromethanesulfonate, can be prepared by oxidation of compounds of formula Il-a1 , wherein A, R-i , R2 and X-i have the values defined in formula I, and X is -S-, and wherein Xb4 is a halogen, preferentially chlorine, bromine or iodine, or a sulfonate, like for example a trifluoromethanesulfonate. These reactions can be performed in various organic or aqueous solvents compatible to these conditions, by temperatures from below 0°C up to the boiling point of the solvent system.
Scheme 12
Figure imgf000021_0001
Many compounds of the formula V and XI, wherein Q has the values defined in formula I, and wherein Xb2 and Xb5 are as defined above, are commercially available or can be accessible to the person skilled in the art, by analogy to procedures described in the literature.
A large number of compounds of the formula III are commercially available or can be prepared by those skilled in the art. Many chemical transformations, well known by those skilled in the art, can be used to access boronic acid derivatives of formula III, starting from various and easily available starting materials, as for example, to cite only a few (scheme 13), hydrogen abstraction on a compound of the formula lll-a wherein Zb-ι is hydrogen, with a strong base (step A), like butyllithium or lithium diisopropylamide or (i-PrMgCI, LiCI), followed by reaction of the metallated intermediate of the formula lll-b, wherein Zb2 is a metal such as Li+ or MgCI+ for example, with, for example, a trialkylborate (step B). Another way to access an organometal intermediate of the formula lll-b is from a compound of the formula lll-a wherein Zb-ι is chlorine, bromine or iodine, via metal-halogen exchange with an organometallic species (step C), like butyllithium or an organomagnesium compound, or direct metallation with a metal, like magnesium.
Introduction of a pinacolborate functional group via a palladium catalyzed reaction with bispinacol diborane on a compound of the formula lll-a, wherein Zb-ι is chlorine, bromine, iodine or triflate, is another common strategy (scheme 13, step D). In the compounds of formula lll-a, lll-b and III within scheme 13, Q has the values defined for the formula I. A person skilled in the art will be able to select an adequate preparation method to access compounds of formula III from lll-a depending on the values of Q.
Scheme 13
Figure imgf000022_0001
Figure imgf000022_0002
The very same preparation methods described in scheme 13 may be applied for the synthesis of intermediates of the formula IX.
Compounds of formula IV, wherein A, X, X-i , R-i and R2 are as described in formula I, can be prepared from compounds of formula II (scheme 14), wherein A, X, X-i , R-i and R2 are as described in formula I. Indeed, compounds of formula II, wherein Xb-ι is chlorine, bromine or iodine, can be treated with an organometallic species like, for example, butyllithium or an organomagnesium compound, to generate an intermediate compound of the formula ll-a, wherein Zb3 is as defined in the scheme, via metal- halogen exchange. This reaction is preferentially performed in an anhydrous aprotic solvent, such as THF, at low temperature (between -120°C and 0°C), preferentially between -1 10°C and -60°C). The intermediate organometal compound of formula ll-a is preferably directly converted into compound of formula IV by reaction with a boronate compound B(ORb2)3, wherein Rb2 is a Ci-C6alkyl group.
Depending on the nature of the boronate, the reaction treatment conditions and the workup conditions, the boronic acid IV, wherein Yb2 is -B(OH)2, or a dialkylboronate IV, wherein Yb2 is -B(ORb2)2, can be formed.
Introduction of a pinacolborate functional group via a palladium catalyzed reaction with bispinacol diborane B2Pin2 on a compound of the formula II, wherein A, X, X-i , R-i and R2 are as described in formula I, and wherein Xb-ι is chlorine, bromine, iodine or triflate, is another common strategy. This reaction, generating a cyclic boronate IV, wherein Yb2 is - , can be performed in an aprotic solvent, in presence of a base, preferentially a weak base, such as potassium acetate KOAc.
[1 , 1 '-Bis(diphenylphosphino)ferrocene]dichloropalladium(ll), also known as palladium dppf dichloride or Pd(dppf)CI2, is a common catalyst for this type of reaction. The temperature of the reaction is preferably comprised between 0°C and the boiling point of the reaction mixture.
Figure imgf000023_0001
Compounds of formula I wherein Q is C3-C6cycloalkyl, mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4haloalkyl, and phenyl, may be prepared by methods described above. For the special case of compounds of formula I wherein Q is cycloalkyl substituted by cyano (e.g. compounds laa) and Ci-C4haloalkyl (e.g. compounds lab), the compounds can be prepared by the methods shown in scheme 15.
Scheme 15
Figure imgf000023_0002
As shown in scheme 15, treatment of compounds of formula II, where X is S02, and wherein Xb-ι is preferably halogen (even more preferably chlorine, bromine or iodine), with trimethylsilyl-acetonitrile TMSCN, in the presence of zinc(ll)fluoride, and a palladium(0)catalyst such as
tris(dibenzylideneacetone)dipalladium(0)-chloroform adduct (Pd2(dba)3), a ligand, for example Xantphos, in an inert solvent, such as DMF at temperatures between 100-160 °C, optionally under microwave heating, leads to compounds of formula XXV. Such chemistry has been described in the literature, e.g. in Org. Lett, 16(24), 6314-6317; 2014. Compounds of formula XXV can be treated with compounds of formula XXVI, wherein Qx is a direct bond or (CH2)n and n is 1 ,2 or 3, in the presence of a base such as sodium hydride, K2C03, or Cs2C03, in an inert solvent such as DMF, acetone, or acetonitrile, to give compounds of formula laa. Alternatively, compounds of formula laa can be prepared directly from compounds of formula II by treatment with compounds of formula XXVII, wherein Qx is is as described in XXVI, with Pd2(dba)3, a ligand, such as BINAP , a strong base such as LiHMDS, in an inert solvent such as THF at temperatures between 40-70 °C. Such chemistry has been described in, for example, J. Am. Chem. Soc, 127(45), 15824-15832; 2005.
Compounds of the formula laa may further be utilized for the preparation of compounds of formula lab. Indeed, compounds of formula laa, wherein A, R-i , X-i and R2 are as defined in formula I, and wherein Qx is a direct bond or (CH2)n and n is 1 ,2 or 3, may be hydrolyzed, under conditions known to a person skilled in the art (see scheme 10a), to compounds of formula XXVIII. Treatment of compounds of formula XXVIII with reagents such as SF4 or Fluolead (4-tert-butyl-2, 6-dimethyl phenylsulfur trifluoride), optionally in the presence of HF, leads to compounds of formula lab.
Alternatively compounds of formula laa can be prepared as shown in schemes 16 and 17. As shown in scheme 16, the chemistry used is identical to that described in scheme 15, it is just that the substrates for the reactions are different. Thus, reaction of the previously described compound XXIV-a with TMS- acetonitrile as described in scheme 15, leads to compounds of formula XXIV-b. These are converted in compounds of formula XXIV-c by reacting with compounds of formula XXVI as described in scheme 15. Similarly, compounds XXIV-c can be prepared directly from XXIV-a by the chemistry discussed in scheme 15. Compounds of formula XXIV-c are readily hydrolysed by methods known to those skilled in the art to give compounds of formula XVIII-f.
Scheme 16
Figure imgf000024_0001
XVIII-f The chemistry shown in scheme 17 has previously been described in detail in, for example, scheme 10a. This chemistry involves forming an activated species XVIII-g, followed by amide coupling with a compound of formula XIII, to give the intermediate XXII-a. This intermediate can be cyclised to compounds of formula laa by the methods described under, for example, scheme 10a.
Scheme 17
Figure imgf000025_0001
Compounds of formula I, where Q is substituted C3-cycloalkyl, can be prepared from compounds of formula I wherein Q is C2-C6alkenyl by the chemistry illustrated in scheme 18.
Scheme 18
Figure imgf000025_0002
-3
Figure imgf000025_0003
In scheme 18, compounds of formula l-d-3, wherein R-i , R2, Xi and A are as previously defined, and wherein R0i is halogen, cyano, d-C4alkyl, Ci-C4haloalkyl, C3-C6cycloalkyl or phenyl, are treated with diazomethane CH2N2 in the presence a catalyst, such as Pd(OAc)2 or bis(benzonitrile)palladium(ll) dichloride, in an inert solvent such as methylene chloride or ether, at room temperature or below, to form compounds of formula lac. Such chemistry has been described in the literature (see for example Org. Biomol. Chem. 2, 2471 , 2004, WO03/064418, or Med. Chem. Letts., 4, 514-516, 2013).
Compounds of formula l-d-3, wherein A, R-i , R2 and X-i are as described in formula I, constitute a particular subset of compounds of formula I, wherein Q is C2-C6alkenyl. Preparation of those compounds of formula l-d-3 was detailed above.
Another particular case of compounds of formula I is represented by compounds of formula l-c, wherein A, R-i , R2, X and X-i are as described in formula I and Q is a C3-cycloalkyl disubstituted by halogen:
Figure imgf000026_0001
wherein R02 is halogen, preferably fluorine, chlorine or bromine.
Compounds of the formula l-c-1 (a particular subset of compounds l-c wherein X is S (sulfide)), wherein A, R-i , R2 and X-i are as described in formula I and in which R02 is chlorine or bromine, dihalo cyclopropanation
e.g. CHCI3, aq. NaOH cone, optional PTC (R02 is CI)
-or- sodium chlorodifluoro-acetate (CICF2C02Na)
or sodium bromodifluoro-acetate (BrCF2C02Na)
diglyme, 150-200°C (R02 is F) l-c-1 Oxidation dihalo cyclopropanation
e.g. CHCI3, aq. NaOH cone, optional PTC (R02 is CI)
-or- sodium chlorodifluoro-acetate (CICF2C02Na)
or sodium bromodifluoro-acetate (BrCF2C02Na)
diglyme, 150-200°C (R02 is F)
Figure imgf000026_0002
l-d-2 l-c-2
SO or S02 SO or S02 may be prepared, for example, by reacting compounds of formula l-d-1, wherein A, R-i , R2 and X-i are as described in formula I, with chloroform CHCI3 or bromoform CHBr3 (possibly acting as reagent and solvent) in presence of concentrated aqueous sodium or potassium hydroxide, optionally in presence of a phase transfer catalyst PTC, such as for example tetrabutyl ammonium bromide or triethyl benzyl ammonium chloride, optionally in the presence of an additional solvent such as dichloromethane, preferably at temperatures around 0°C to 30°C. Such chemistry has been described in the literature (see for example Science of Synthesis, 34, 245-265, 2006). Alternatively, compounds of the formula I- c-1 , wherein A, R-i , R2 and X-i are as described in formula I and in which R02 is fluorine, may be prepared, for example, by reacting compounds of formula l-d-l, wherein A, R-i , R2 and X-i are as described in formula I, with reagents such as sodium chlorodifluoro-acetate (CICF2C02Na), sodium bromodifluoro-acetate (BrCF2C02Na) or sodium trifluoro-acetate (CF3C02Na) in solvents such as diglyme, tetrahydrofuran, dioxane or dimethoxyethane, at temperatures between 100 and 200°C (preferably in the range 150-200°C). Such chemistry has been described in the literature (see for example Synthesis, 2080-2084, 2010).
Oxidation of compounds of formula l-c-1 , wherein A, R-i , R2 and X-i are as described in formula I, and wherein R02 is halogen, preferably fluorine, chlorine or bromine, with a suitable oxidizing agent, into compounds of formula l-c-2, wherein A, R-i , R2 and X-i are as described in formula I, and wherein R02 is halogen, preferably fluorine, chlorine or bromine, and in which X is SO or S02 may be achieved under conditions already described above.
Alternatively, compounds of formula l-c-2, wherein X is SO or S02, may be prepared from the sulfide compounds of formula l-d-1 by involving the same chemistry as described above, but by changing the order of the steps (i.e. by running the sequence l-d-1 to l-d-2 via oxidation, followed by a dihalo cyclopropanation step to form l-c-2, wherein X is SO or S02).
Vinyl compounds of formula l-d-1 and 1-d-2, wherein A, R-i , R2, X and X-i are as described in formula I, constitute a particular subset of compounds of formula I, wherein Q is C2-C6alkenyl. Preparation of those compounds of formula l-d-1 and 1-d-2 was detailed above. The reactants can be reacted in the presence of a base. Examples of suitable bases are alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal hydrides, alkali metal or alkaline earth metal amides, alkali metal or alkaline earth metal alkoxides, alkali metal or alkaline earth metal acetates, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal dialkylamides or alkali metal or alkaline earth metal alkylsilylamides, alkylamines, alkylenediamines, free or N-alkylated saturated or unsaturated cycloalkylamines, basic heterocycles, ammonium hydroxides and carbocyclic amines. Examples which may be mentioned are sodium hydroxide, sodium hydride, sodium amide, sodium methoxide, sodium acetate, sodium carbonate, potassium tert- butoxide, potassium hydroxide, potassium carbonate, potassium hydride, lithium diisopropylamide, potassium bis(trimethylsilyl)amide, calcium hydride, triethylamine, diisopropylethylamine,
triethylenediamine, cyclohexylamine, N-cyclohexyl-N,N-dimethylamine, Ν,Ν-diethylaniline, pyridine, 4- (N,N-dimethylamino)pyridine, quinuclidine, N-methylmorpholine, benzyltrimethylammonium hydroxide and 1 ,8-diazabicyclo[5.4.0]undec-7-ene (DBU).
The reactants can be reacted with each other as such, i.e. without adding a solvent or diluent. In most cases, however, it is advantageous to add an inert solvent or diluent or a mixture of these. If the reaction is carried out in the presence of a base, bases which are employed in excess, such as triethylamine, pyridine, N-methylmorpholine or Ν,Ν-diethylaniline, may also act as solvents or diluents. The reaction is advantageously carried out in a temperature range from approximately -80°C to approximately +140°C, preferably from approximately -30°C to approximately +100°C, in many cases in the range between ambient temperature and approximately +80°C. A compound of formula I can be converted in a manner known per se into another compound of formula I by replacing one or more substituents of the starting compound of formula I in the customary manner by (an)other substituent(s) according to the invention.
Depending on the choice of the reaction conditions and starting materials which are suitable in each case, it is possible, for example, in one reaction step only to replace one substituent by another substituent according to the invention, or a plurality of substituents can be replaced by other substituents according to the invention in the same reaction step.
Salts of compounds of formula I can be prepared in a manner known per se. Thus, for example, acid addition salts of compounds of formula I are obtained by treatment with a suitable acid or a suitable ion exchanger reagent and salts with bases are obtained by treatment with a suitable base or with a suitable ion exchanger reagent.
Salts of compounds of formula I can be converted in the customary manner into the free compounds I, acid addition salts, for example, by treatment with a suitable basic compound or with a suitable ion exchanger reagent and salts with bases, for example, by treatment with a suitable acid or with a suitable ion exchanger reagent.
Salts of compounds of formula I can be converted in a manner known per se into other salts of compounds of formula I, acid addition salts, for example, into other acid addition salts, for example by treatment of a salt of inorganic acid such as hydrochloride with a suitable metal salt such as a sodium, barium or silver salt, of an acid, for example with silver acetate, in a suitable solvent in which an inorganic salt which forms, for example silver chloride, is insoluble and thus precipitates from the reaction mixture.
Depending on the procedure or the reaction conditions, the compounds of formula I, which have salt- forming properties can be obtained in free form or in the form of salts.
The compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can be present in the form of one of the isomers which are possible or as a mixture of these, for example in the form of pure isomers, such as antipodes and/or diastereomers, or as isomer mixtures, such as enantiomer mixtures, for example racemates, diastereomer mixtures or racemate mixtures, depending on the number, absolute and relative configuration of asymmetric carbon atoms which occur in the molecule and/or depending on the configuration of non-aromatic double bonds which occur in the molecule; the invention relates to the pure isomers and also to all isomer mixtures which are possible and is to be understood in each case in this sense hereinabove and hereinbelow, even when stereochemical details are not mentioned specifically in each case. Diastereomer mixtures or racemate mixtures of compounds of formula I, in free form or in salt form, which can be obtained depending on which starting materials and procedures have been chosen can be separated in a known manner into the pure diasteromers or racemates on the basis of the physicochemical differences of the components, for example by fractional crystallization, distillation and/or chromatography.
Enantiomer mixtures, such as racemates, which can be obtained in a similar manner can be resolved into the optical antipodes by known methods, for example by recrystallization from an optically active solvent, by chromatography on chiral adsorbents, for example high-performance liquid
chromatography (HPLC) on acetyl celulose, with the aid of suitable microorganisms, by cleavage with specific, immobilized enzymes, via the formation of inclusion compounds, for example using chiral crown ethers, where only one enantiomer is complexed, or by conversion into diastereomeric salts, for example by reacting a basic end-product racemate with an optically active acid, such as a carboxylic acid, for example camphor, tartaric or malic acid, or sulfonic acid, for example camphorsulfonic acid, and separating the diastereomer mixture which can be obtained in this manner, for example by fractional crystallization based on their differing solubilities, to give the diastereomers, from which the desired enantiomer can be set free by the action of suitable agents, for example basic agents.
Pure diastereomers or enantiomers can be obtained according to the invention not only by separating suitable isomer mixtures, but also by generally known methods of diastereoselective or
enantioselective synthesis, for example by carrying out the process according to the invention with starting materials of a suitable stereochemistry.
N-oxides can be prepared by reacting a compound of the formula I with a suitable oxidizing agent, for example the H202/urea adduct in the presence of an acid anhydride, e.g. trifluoroacetic anhydride. Such oxidations are known from the literature, for example from J. Med. Chem., 32 (12), 2561-73, 1989 or WO 00/15615.
It is advantageous to isolate or synthesize in each case the biologically more effective isomer, for example enantiomer or diastereomer, or isomer mixture, for example enantiomer mixture or diastereomer mixture, if the individual components have a different biological activity.
The compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can, if appropriate, also be obtained in the form of hydrates and/or include other solvents, for example those which may have been used for the crystallization of compounds which are present in solid form. The compounds according to the following Tables 1 to 18 below can be prepared according to the methods described above. The examples which follow are intended to illustrate the invention and show preferred compounds of formula I.
Figure imgf000030_0001
wherein Ra-ι , R2, G-i , G2, G3, G4 and G5 are as defined below:
Table X:
Figure imgf000030_0002
and the N-oxides of the compounds of Table X. Ph represents the phenyl group, cyclo-C3 is the cyclopropyl group.
Table 1 : This table discloses the 15 compounds 1.001 to 1.015 of the formula l-1a, wherein Xa-ι is S, and Ra-ι , R2, G-i , G2, G3, G4 and G5 are as defined in Table X. For example, compound No. 1 .001 has the following structure:
Figure imgf000031_0001
Table 2: This table discloses the 15 compounds 2.001 to 2.015 of the formula l-1a, wherein Xa-ι is SO, and Ra-ι , R2, G-i, G2, G3, G4 and G5 are as defined in Table X.
Table 3: This table discloses the 15 compounds 3.001 to 3.015 of the formula l-1a, wherein Xa-ι is S02, and Ra-ι , R2, Gi, G2, G3, G4 and G5 are as defined in Table X.
Table Y: This table discloses 15 substituent definitions Y.001 to Y.015 of the formula l-2a:
Figure imgf000031_0002
wherein Ra2, R2, G-i, G2, G3, G4 and G5 are as defined below:
Table Y:
Figure imgf000031_0003
and the N-oxides of the compounds of Table Y. Ph represents the phenyl group, cyclo-C3 is the cyclopropyl group. Table 4: This table discloses the 15 compounds 4.001 to 4.015 of the formula l-2a, wherein Xa2 is S, and Ra2, R2, Gi , G2, G3, G4 and G5 are as defined in Table Y.
Table 5: This table discloses the 15 compounds 5.001 to 5.015 of the formula l-2a, wherein Xa2 is SO, and Ra2, R2, G-i, G2, G3, G4 and G5 are as defined in Table Y.
Table 6: This table discloses the 15 compounds 6.001 to 6.015 of the formula l-2a, wherein Xa2 is S02, and Ra2, R2, G-i, G2, G3, G4 and G5 are as defined in Table Y.
Table Z: This table discloses 18 substituent definitions Z.001 to Z.018 of the formula l-3a:
Figure imgf000032_0001
wherein Ra3, R2, G-i , G2 and G3 are as defined below:
Table Z:
Figure imgf000032_0002
and the N-oxides of the compounds of Table Z. Ph represents the phenyl group, cyclo-C6 is the cyclohexyl group.
Table 7: This table discloses the 18 compounds 7.001 to 7.018 of the formula l-3a, wherein Xa3 is S, and Ra3, R2, G-i, G2 and G3 are as defined in Table Z.
Table 8: This table discloses the 18 compounds 8.001 to 8.018 of the formula l-3a, wherein Xa3 is SO, and Ra3, R2, G-i, G2 and G3 are as defined in Table Z.
Table 9: This table discloses the 18 compounds 9.001 to 9.018 of the formula l-3a, wherein Xa3 is S02, and Ra3, R2, G-i, G2 and G3 are as defined in Table Z.
Table U: This table discloses 18 substituent definitions U.001 to U.018 of the formula l-4a:
Figure imgf000033_0001
wherein Ra4, R2, Gi, G2 and G3 are as defined below:
Table U:
Figure imgf000033_0002
and the N-oxides of the compounds of Table U. Ph represents the phenyl group, cyclo-C6 is the cyclohexyl group. Table 10: This table discloses the 18 compounds 10.001 to 10.018 of the formula l-4a, wherein Xa4 is S, and Ra4, R2, G-i , G2 and G3 are as defined in Table U.
Table 1 1 : This table discloses the 18 compounds 1 1.001 to 1 1.018 of the formula l-4a, wherein Xa4 is SO, and Ra4, R2, G-i , G2 and G3 are as defined in Table U.
Table 12: This table discloses the 18 compounds 12.001 to 12.018 of the formula l-4a, wherein Xa4 is S02, and Ra4, R2, G-i , G2 and G3 are as defined in Table U.
Table V: This table discloses 8 substituent definitions V.001 to V.008 of the formula l-5a:
Figure imgf000034_0001
wherein Ra5, R2 and Gi are as defined below:
Table V:
Figure imgf000034_0002
and the N-oxides of the compounds of Table V. Ph represents the phenyl group.
Table 13: This table discloses the 8 compounds 13.001 to 13.008 of the formula l-5a, wherein Xa5 is S, and Ra5, R2 and Gi are as defined in Table V.
Table 14: This table discloses the 8 compounds 14.001 to 14.008 of the formula l-5a, wherein Xa5 is SO, and Ra5, R2 and Gi are as defined in Table V.
Table 15: This table discloses the 8 compounds 15.001 to 15.008 of the formula l-5a, wherein Xa5 is S02, and Ra5, R2 and Gi are as defined in Table V.
Table W: This table discloses 8 substituent definitions W.001 to W.008 of the formula l-6a:
Figure imgf000035_0001
wherein Ra6, R2 and d are as defined below:
Table W:
Figure imgf000035_0002
and the N-oxides of the compounds of Table W. Ph represents the phenyl group.
Table 16: This table discloses the 8 compounds 16.001 to 16.008 of the formula l-6a, wherein Xa6 S, and Ra6, R2 and d are as defined in Table W.
Table 17: This table discloses the 8 compounds 17.001 to 17.008 of the formula l-6a, wherein Xa6 SO, and Ra6, R2 and Gi are as defined in Table W.
Table 18: This table discloses the 8 compounds 18.001 to 18.008 of the formula l-6a, wherein Xa6 S02, and Ra6, R2 and Gi are as defined in Table W. The compounds of formula I according to the invention are preventively and/or curatively valuable active ingredients in the field of pest control, even at low rates of application, which have a very favorable biocidal spectrum and are well tolerated by warm-blooded species, fish and plants. The active ingredients according to the invention act against all or individual developmental stages of normally sensitive, but also resistant, animal pests, such as insects or representatives of the order Acarina. The insecticidal or acaricidal activity of the active ingredients according to the invention can manifest itself directly, i. e. in destruction of the pests, which takes place either immediately or only after some time has elapsed, for example during ecdysis, or indirectly, for example in a reduced oviposition and/or hatching rate. Examples of the abovementioned animal pests are:
from the order Acarina, for example,
Acalitus spp, Aculus spp, Acaricalus spp, Aceria spp, Acarus siro, Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., Bryobia spp, Calipitrimerus spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides spp, Eotetranychus spp, Eriophyes spp., Hemitarsonemus spp,
Hyalomma spp., Ixodes spp., Olygonychus spp, Ornithodoros spp., Polyphagotarsone latus,
Panonychus spp., Phyllocoptruta oleivora, Phytonemus spp, Polyphagotarsonemus spp, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Steneotarsonemus spp, Tarsonemus spp. and Tetranychus spp.;
from the order Anoplura, for example,
Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.;
from the order Coleoptera, for example,
Agriotes spp., Amphimallon majale, Anomala orientalis, Anthonomus spp., Aphodius spp, Astylus atromaculatus, Ataenius spp, Atomaria linearis, Chaetocnema tibialis, Cerotoma spp, Conoderus spp, Cosmopolites spp., Cotinis nitida, Curculio spp., Cyclocephala spp, Dermestes spp., Diabrotica spp., Diloboderus abderus, Epilachna spp., Eremnus spp., Heteronychus arator, Hypothenemus hampei, Lagria vilosa, Leptinotarsa decemLineata, Lissorhoptrus spp., Liogenys spp, Maecolaspis spp, Maladera castanea, Megascelis spp, Melighetes aeneus, Melolontha spp., Myochrous armatus, Orycaephilus spp., Otiorhynchus spp., Phyllophaga spp, Phlyctinus spp., Popillia spp., Psylliodes spp., Rhyssomatus aubtilis, Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Somaticus spp, Sphenophorus spp, Sternechus subsignatus, Tenebrio spp., Tribolium spp. and Trogoderma spp.; from the order Diptera, for example,
Aedes spp., Anopheles spp, Antherigona soccata,Bactrocea oleae, Bibio hortulanus, Bradysia spp, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Delia spp, Drosophila melanogaster, Fannia spp., Gastrophilus spp., Geomyza tripunctata, Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp., Orseolia spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis spp, Rivelia quadrifasciata, Scatella spp, Sciara spp., Stomoxys spp., Tabanus spp., Tannia spp. and Tipula spp.;
from the order Hemiptera, for example,
Acanthocoris scabrator, Acrosternum spp, Adelphocoris lineolatus, Amblypelta nitida, Bathycoelia thalassina, Blissus spp, Cimex spp., Clavigralla tomentosicollis, Creontiades spp, Distantiella theobroma, Dichelops furcatus, Dysdercus spp., Edessa spp, Euchistus spp., Eurydema pulchrum, Eurygaster spp., Halyomorpha halys, Horcias nobilellus, Leptocorisa spp., Lygus spp, Margarodes spp, Murgantia histrionic, Neomegalotomus spp, Nesidiocoris tenuis, Nezara spp., Nysius simulans, Oebalus insularis, Piesma spp., Piezodorus spp, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotinophara spp. , Thyanta spp , Triatoma spp., Vatiga illudens;
Acyrthosium pisum, Adalges spp, Agalliana ensigera, Agonoscena targionii, Aleurodicus spp, Aleurocanthus spp, Aleurolobus barodensis, Aleurothrixus floccosus, Aleyrodes brassicae, Amarasca biguttula, Amritodus atkinsoni, Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Aulacorthum solani, Bactericera cockerelli, Bemisia spp, Brachycaudus spp, Brevicoryne brassicae, Cacopsylla spp, Cavariella aegopodii Scop., Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Cicadella spp, Cofana spectra, Cryptomyzus spp, Cicadulina spp, Coccus hesperidum, Dalbulus maidis, Dialeurodes spp, Diaphorina citri, Diuraphis noxia, Dysaphis spp, Empoasca spp., Eriosoma larigerum, Erythroneura spp., Gascardia spp., Glycaspis brimblecombei, Hyadaphis pseudobrassicae, Hyalopterus spp, Hyperomyzus pallidus, Idioscopus clypealis, Jacobiasca lybica, Laodelphax spp., Lecanium corni, Lepidosaphes spp., Lopaphis erysimi, Lyogenys maidis,
Macrosiphum spp., Mahanarva spp, Metcalfa pruinosa, Metopolophium dirhodum, Myndus crudus, Myzus spp., Neotoxoptera sp, Nephotettix spp., Nilaparvata spp., Nippolachnus piri Mats, Odonaspis ruthae, Oregma lanigera Zehnter, Parabemisia myricae, Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., Peregrinus maidis, Perkinsiella spp, Phorodon humuli, Phylloxera spp, Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., Pseudatomoscelis seriatus, Psylla spp., Pulvinaria aethiopica, Quadraspidiotus spp., Quesada gigas, Recilia dorsalis, Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis spp., Sitobion spp., Sogatella furcifera, Spissistilus festinus,
Tarophagus Proserpina, Toxoptera spp, Trialeurodes spp, Tridiscus sporoboli, Trionymus spp, Trioza erytreae , Unaspis citri, Zygina flammigera, Zyginidia scutellaris, ;
from the order Hymenoptera, for example,
Acromyrmex, Arge spp, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplo- campa spp., Lasius spp., Monomorium pharaonis, Neodiprion spp., Pogonomyrmex spp, Slenopsis invicta, Solenopsis spp. and Vespa spp.;
from the order Isoptera, for example,
Coptotermes spp, Corniternes cumulans, Incisitermes spp, Macrotermes spp, Mastotermes spp, Microtermes spp, Reticulitermes spp.; Solenopsis geminate
from the order Lepidoptera, for example,
Acleris spp., Adoxophyes spp., Aegeria spp., Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyresthia spp, Argyrotaenia spp., Autographa spp., Bucculatrix thurberiella, Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Chrysoteuchia topiaria, Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Colias lesbia, Cosmophila flava, Crambus spp, Crocidolomia binotalis, Cryptophlebia leucotreta, Cydalima perspectalis, Cydia spp., Diaphania perspectalis, Diatraea spp., Diparopsis castanea, Earias spp., Eldana saccharina, Ephestia spp., Epinotia spp, Estigmene acrea, Etiella zinckinella, Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Feltia jaculiferia, Gra- pholita spp., Hedya nubiferana, Heliothis spp., Hellula undalis, Herpetogramma spp, Hyphantria cunea, Keiferia lycopersicella, Lasmopalpus lignosellus, Leucoptera scitella, Lithocollethis spp., Lobesia botrana, Loxostege bifidalis, Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Mythimna spp, Noctua spp, Operophtera spp., Orniodes indica, Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Papaipema nebris, Pectinophora gossypi- ela, Perileucoptera coffeella, Pseudaletia unipuncta, Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Pseudoplusia spp, Rachiplusia nu, Richia albicosta, Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodoptera spp., Sylepta derogate, Synanthedon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni, Tuta absoluta, and Yponomeuta spp.;
from the order Mallophaga, for example,
Damalinea spp. and Trichodectes spp.;
from the order Orthoptera, for example,
Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Neocurtilla hexadactyla, Periplaneta spp. , Scapteriscus spp, and Schistocerca spp.;
from the order Psocoptera, for example,
Liposcelis spp.;
from the order Siphonaptera, for example,
Ceratophyllus spp., Ctenocephalides spp. and Xenopsylla cheopis; from the order Thysanoptera, for example,
Calliothrips phaseoli, Frankliniella spp., Heliothrips spp, Hercinothrips spp., Parthenothrips spp, Scirtothrips aurantii, Sericothrips variabilis, Taeniothrips spp., Thrips spp;
from the order Thysanura, for example, Lepisma saccharina.
The active ingredients according to the invention can be used for controlling, i. e. containing or destroying, pests of the abovementioned type which occur in particular on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forests, or on organs, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, and in some cases even plant organs which are formed at a later point in time remain protected against these pests. Suitable target crops are, in particular, cereals, such as wheat, barley, rye, oats, rice, maize or sorghum; beet, such as sugar or fodder beet; fruit, for example pomaceous fruit, stone fruit or soft fruit, such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries or blackberries; leguminous crops, such as beans, lentils, peas or soya; oil crops, such as oilseed rape, mustard, poppies, olives, sunflowers, coconut, castor, cocoa or ground nuts; cucurbits, such as pumpkins, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or tangerines; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes or bell peppers; Lauraceae, such as avocado, Cinnamonium or camphor; and also tobacco, nuts, coffee, eggplants, sugarcane, tea, pepper, grapevines, hops, the plantain family and latex plants.
The compositions and/or methods of the present invention may be also used on any ornamental and/or vegetable crops, including flowers, shrubs, broad-leaved trees and evergreens.
For example the invention may be used on any of the following ornamental species: Ageratum spp., Alonsoa spp., Anemone spp., Anisodontea capsenisis, Anthemis spp., Antirrhinum spp., Aster spp., Begonia spp. (e.g. B. elatior, B. semperflorens, B. tubereux), Bougainvillea spp., Brachycome spp., Brassica spp. (ornamental), Calceolaria spp., Capsicum annuum, Catharanthus roseus, Canna spp., Centaurea spp., Chrysanthemum spp., Cineraria spp. (C. maritime), Coreopsis spp., Crassula coccinea, Cuphea ignea, Dahlia spp., Delphinium spp., Dicentra spectabilis, Dorotheantus spp., Eustoma grandiflorum, Forsythia spp., Fuchsia spp., Geranium gnaphalium, Gerbera spp.,
Gomphrena globosa, Heliotropium spp., Helianthus spp., Hibiscus spp., Hortensia spp., Hydrangea spp., Hypoestes phyllostachya, Impatiens spp. (/. Walleriana), Iresines spp., Kalanchoe spp., Lantana camara, Lavatera trimestris, Leonotis leonurus, Lilium spp., Mesembryanthemum spp., Mimulus spp., Monarda spp., Nemesia spp., Tagetes spp., Dianthus spp. (carnation), Canna spp., Oxalis spp., Be//;'s spp., Pelargonium spp. CP. peltatum, P. Zonale), Viola spp. (pansy), Petunia spp., PWox spp.,
Plecthranthus spp., Poinsettia spp., Parthenocissus spp. CP- quinquefolia, P. tricuspidata), Primula spp., Ranunculus spp., Rhododendron spp., Rosa spp. (rose), Rudbeckia spp., Saintpaulia spp., Sa/w'a spp., Scaevola aemola, Schizanthus wisetonensis, Sedum spp., Solanum spp., Surfinia spp., Tagetes spp., Nicotinia spp., Verbena spp., Zinnia spp. and other bedding plants.
For example the invention may be used on any of the following vegetable species: Allium spp. (A sativum, A., cepa, A. oschaninii, A. Porrum, A. ascalonicum, A. fistulosum), Anthriscus cerefolium, Apium graveolus, Asparagus officinalis, Beta vulgarus, Brassica spp. (B. Oleracea, B. Pekinensis, B. rapa), Capsicum annuum, Cicer arietinum, Cichorium endivia, Cichorum spp. (C. intybus, C. endivia), Citrillus lanatus, Cucumis spp. (C. sativus, C. melo), Cucurbita spp. (C. pepo, C. maxima), Cyanara spp. (C. scolymus, C. cardunculus), Daucus carota, Foeniculum vulgare, Hypericum spp., Lactuca sativa, Lycopersicon spp. (L esculentum, L. lycopersicum), Mentha spp., Ocimum basilicum, Petroselinum crispum, Phaseolus spp. (P. vulgaris, P. coccineus), Pisum sativum, Raphanus sativus, Rheum rhaponticum, Rosemarinus spp., Salvia spp., Scorzonera hispanica, Solanum melongena, Spinacea oleracea, Valerianella spp. (V. locusta, V. eriocarpa) and V/c/a /aba.
Preferred ornamental species include African violet, Begonia, Dahlia, Gerbera, Hydrangea, Verbena, Rosa, Kalanchoe, Poinsettia, Aster, Centaurea, Coreopsis, Delphinium, Monarda, Phlox, Rudbeckia, Sedum, Petunia, Viola, Impatiens, Geranium, Chrysanthemum, Ranunculus, Fuchsia, Salvia, Hortensia, rosemary, sage, St. Johnswort, mint, sweet pepper, tomato and cucumber.
The active ingredients according to the invention are especially suitable for controlling Aphis craccivora, Diabrotica balteata, Heliothis virescens, Myzus persicae, Plutella xylostella and
Spodoptera littoralis in cotton, vegetable, maize, rice and soya crops. The active ingredients according to the invention are further especially suitable for controlling Mamestra (preferably in vegetables), Cydia pomonella (preferably in apples), Empoasca(preferably in vegetables, vineyards), Leptinotarsa (preferably in potatos) and Chilo supressalis (preferably in rice).
The active ingredients according to the invention are especially suitable for controlling Aphis craccivora, Diabrotica balteata, Heliothis virescens, Myzus persicae, Plutella xylostella and
Spodoptera littoralis in cotton, vegetable, maize, rice and soya crops. The active ingredients according to the invention are further especially suitable for controlling Mamestra (preferably in vegetables), Cydia pomonella (preferably in apples), Empoasca(preferably in vegetables, vineyards), Leptinotarsa (preferably in potatos) and Chilo supressalis (preferably in rice).
In a further aspect, the invention may also relate to a method of controlling damage to plant and parts thereof by plant parasitic nematodes (Endoparasitic-, Semiendoparasitic- and Ectoparasitic nematodes), especially plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, Meloidogyne arenaria and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolaimus longicaudatus and other Belonolaimus species; Pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; Ring nematodes, Criconema species, Criconemella species, Criconemoides species, Mesocriconema species; Stem and bulb nematodes, Ditylenchus destructor, Ditylenchus dipsaci and other Ditylenchus species; Awl nematodes, Dolichodorus species; Spiral nematodes, Heliocotylenchus multicinctus and other Helicotylenchus species; Sheath and sheathoid nematodes, Hemicycliophora species and Hemicriconemoides species; Hirshmanniella species; Lance nematodes, Hoploaimus species; false rootknot nematodes, Nacobbus species;
Needle nematodes, Longidorus elongatus and other Longidorus species; Pin nematodes,
Pratylenchus species; Lesion nematodes, Pratylenchus neglectus, Pratylenchus penetrans,
Pratylenchus curvitatus, Pratylenchus goodeyi and other Pratylenchus species; Burrowing nematodes, Radopholus similis and other Radopholus species; Reniform nematodes, Rotylenchus robustus, Rotylenchus reniformis and other Rotylenchus species; Scutellonema species; Stubby root nematodes, Trichodorus primitivus and other Trichodorus species, Paratrichodorus species; Stunt nematodes, Tylenchorhynchus claytoni, Tylenchorhynchus dubius and other Tylenchorhynchus species; Citrus nematodes, Tylenchulus species; Dagger nematodes, Xiphinema species; and other plant parasitic nematode species, such as Subanguina spp., Hypsoperine spp., Macroposthonia spp., Melinius spp., Punctodera spp., and Quinisulcius spp..
The compounds of the invention may also have activity against the molluscs. Examples of which include, for example, Ampullariidae; Arion (A. ater, A. circumscriptus, A. hortensis, A. rufus);
Bradybaenidae (Bradybaena fruticum); Cepaea (C. hortensis, C. Nemoralis); ochlodina; Deroceras (D. agrestis, D. empiricorum, D. laeve, D. reticulatum); Discus (D. rotundatus); Euomphalia; Galba (G. trunculata); Helicelia (H. itala, H. obvia); Helicidae Helicigona arbustorum); Helicodiscus; Helix (H. aperta); Limax (L. cinereoniger, L. flavus, L. marginatus, L. maximus, L. tenellus); Lymnaea; Milax (M. gagates, M. marginatus, M. sowerbyi); Opeas; Pomacea (P. canaticulata); Vallonia and Zanitoides.
The term "crops" is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins, for example insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as δ-endotoxins, e.g. CrylAb, CrylAc, Cryl F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1 , Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp. or
Xenorhabdus spp., such as Photorhabdus luminescens, Xenorhabdus nematophilus; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins produced by fungi, such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COA-reductase, ion channel blockers, such as blockers of sodium or calcium channels, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.
In the context of the present invention there are to be understood by δ-endotoxins, for example CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1 , Vip2, Vip3 or Vip3A, expressly also hybrid toxins, truncated toxins and modified toxins. Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701 ). Truncated toxins, for example a truncated CrylAb, are known. In the case of modified toxins, one or more amino acids of the naturally occurring toxin are replaced. In such amino acid replacements, preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G-recognition sequence is inserted into a Cry3A toxin (see WO 03/018810). Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073.
The processes for the preparation of such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Cryl-type
deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.
The toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects. Such insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and moths (Lepidoptera).
Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylAb toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a CrylAb and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylAc toxin); Bollgard I® (cotton variety that expresses a CrylAc toxin); Bollgard II® (cotton variety that expresses a CrylAc and a Cry2Ab toxin); VipCot® (cotton variety that expresses a Vip3A and a CrylAb toxin); NewLeaf® (potato variety that expresses a Cry3A toxin); NatureGard®, Agrisure® GT Advantage (GA21 glyphosate-tolerant trait), Agrisure® CB Advantage (Bt1 1 corn borer (CB) trait) and Protecta®.
Further examples of such transgenic crops are:
1. Bt11 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a truncated CrylAb toxin. Bt1 1 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
2. Bt176 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a CrylAb toxin. Bt176 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
3. MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G- protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
4. MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1 150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.
5. IPC 531 Cotton from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1 150 Brussels, Belgium, registration number C/ES/96/02.
6. 1507 Maize from Pioneer Overseas Corporation, Avenue Tedesco, 7 B-1 160 Brussels, Belgium, registration number C/NL/00/10. Genetically modified maize for the expression of the protein Cry1 F for achieving resistance to certain Lepidoptera insects and of the PAT protein for achieving tolerance to the herbicide glufosinate ammonium.
7. NK603 * MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1 150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810. NK603 * MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a Cry1 Ab toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain
Lepidoptera, include the European corn borer.
Transgenic crops of insect-resistant plants are also described in BATS (Zentrum fur Biosicherheit und Nachhaltigkeit, Zentrum BATS, Clarastrasse 13, 4058 Basel, Switzerland) Report 2003,
(http://bats.ch).
The term "crops" is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called "pathogenesis-related proteins" (PRPs, see e.g. EP-A-0 392 225). Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 95/33818 and EP-A-0 353 191. The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
Crops may also be modified for enhanced resistance to fungal (for example Fusarium, Anthracnose, or Phytophthora), bacterial (for example Pseudomonas) or viral (for example potato leafroll virus, tomato spotted wilt virus, cucumber mosaic virus) pathogens.
Crops also include those that have enhanced resistance to nematodes, such as the soybean cyst nematode.
Crops that are tolerance to abiotic stress include those that have enhanced tolerance to drought, high salt, high temperature, chill, frost, or light radiation, for example through expression of NF-YB or other proteins known in the art.
Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1 , KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called "pathogenesis-related proteins" (PRPs; see e.g. EP-A-0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g. WO 95/33818) or protein or polypeptide factors involved in plant pathogen defence (so-called "plant disease resistance genes", as described in WO 03/000906). Further areas of use of the compositions according to the invention are the protection of stored goods and store rooms and the protection of raw materials, such as wood, textiles, floor coverings or buildings, and also in the hygiene sector, especially the protection of humans, domestic animals and productive livestock against pests of the mentioned type. The present invention also provides a method for controlling pests (such as mosquitoes and other disease vectors; see also http://www.who.int/malaria/vector_control/irs/en/). In one embodiment, the method for controlling pests comprises applying the compositions of the invention to the target pests, to their locus or to a surface or substrate by brushing, rolling, spraying, spreading or dipping. By way of example, an IRS (indoor residual spraying) application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention. In another embodiment, it is contemplated to apply such compositions to a substrate such as non-woven or a fabric material in the form of (or which can be used in the manufacture of) netting, clothing, bedding, curtains and tents. In one embodiment, the method for controlling such pests comprises applying a pesticidally effective amount of the compositions of the invention to the target pests, to their locus, or to a surface or substrate so as to provide effective residual pesticidal activity on the surface or substrate. Such application may be made by brushing, rolling, spraying, spreading or dipping the pesticidal composition of the invention. By way of example, an IRS application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention so as to provide effective residual pesticidal activity on the surface. In another embodiment, it is contemplated to apply such compositions for residual control of pests on a substrate such as a fabric material in the form of (or which can be used in the manufacture of) netting, clothing, bedding, curtains and tents. Substrates including non-woven, fabrics or netting to be treated may be made of natural fibres such as cotton, raffia, jute, flax, sisal, hessian, or wool, or synthetic fibres such as polyamide, polyester, polypropylene, polyacrylonitrile or the like. The polyesters are particularly suitable. The methods of textile treatment are known, e.g. WO 2008/151984, WO 2003/034823, US 5631072, WO 2005/64072, WO2006/128870, EP 1724392, WO 20051 13886 or WO 2007/090739.
Further areas of use of the compositions according to the invention are the field of tree injection/trunk treatment for all ornamental trees as well all sort of fruit and nut trees.
In the field of tree injection/trunk treatment, the compounds according to the present invention are especially suitable against wood-boring insects from the order Lepidoptera as mentioned above and from the order Coleoptera, especially against woodborers listed in the following tables A and B:
Table A. Examples of exotic woodborers of economic importance.
Family Species Host or Crop Infested
Buprestidae Agrilus planipennis Ash
Cerambycidae Anoplura glabripennis Hardwoods
Scolytidae Xylosandrus crassiusculus Hardwoods X. mutilatus Hardwoods
Tomicus piniperda Conifers
Table B. Examples of native woodborers of economic importance.
Family Species Host or Crop Infested
Agrilus anxius Birch
Agrilus politus Willow, Maple
Agrilus sayi Bayberry, Sweetfern
Agrilus vittaticolllis Apple, Pear, Cranberry,
Serviceberry, Hawthorn
Chrysobothris femorata Apple, Apricot, Beech, Boxelder,
Buprestidae Cherry, Chestnut, Currant, Elm,
Hawthorn, Hackberry, Hickory, Horsechestnut, Linden, Maple, Mountain-ash, Oak, Pecan, Pear, Peach, Persimmon, Plum, Poplar, Quince, Redbud, Serviceberry, Sycamore, Walnut, Willow
Texania campestris Basswood, Beech, Maple, Oak,
Sycamore, Willow, Yellow-poplar
Goes pulverulentus Beech, Elm, Nuttall, Willow, Black oak, Cherrybark oak, Water oak, Sycamore
Goes tigrinus Oak
Cerambycidae Neoclytus acuminatus Ash, Hickory, Oak, Walnut, Birch,
Beech, Maple, Eastern
hophornbeam, Dogwood,
Persimmon, Redbud, Holly, Hackberry, Black locust,
Honeylocust, Yellow-poplar, Chestnut, Osage-orange, Sassafras, Family Species Host or Crop Infested
Lilac, Mountain-mahogany, Pear, Cherry, Plum, Peach, Apple, Elm, Basswood, Sweetgum
Neoptychodes trilineatus Fig, Alder, Mulberry, Willow, Netleaf hackberry
Oberea ocellata Sumac, Apple, Peach, Plum, Pear,
Currant, Blackberry
Oberea tripunctata Dogwood, Viburnum, Elm,
Sourwood, Blueberry,
Rhododendron, Azalea, Laurel, Poplar, Willow, Mulberry
Oncideres cingulata Hickory, Pecan, Persimmon, Elm,
Sourwood, Basswood, Honeylocust, Dogwood, Eucalyptus, Oak, Hackberry, Maple, Fruit trees
Saperda calcarata Poplar
Strophiona nitens Chestnut, Oak, Hickory, Walnut,
Beech, Maple
Corthylus columbianus Maple, Oak, Yellow-poplar, Beech,
Boxelder, Sycamore, Birch, Basswood, Chestnut, Elm
Dendroctonus frontalis Pine
Dryocoetes betulae Birch, Sweetgum, Wild cherry,
Scolytidae Beech, Pear
Monarthrum fasciatum Oak, Maple, Birch, Chestnut,
Sweetgum, Blackgum, Poplar, Hickory, Mimosa, Apple, Peach, Pine
Phloeotribus liminaris Peach, Cherry, Plum, Black cherry,
Elm, Mulberry, Mountain-ash Family Species Host or Crop Infested
Pseudopityophthorus pruinosus Oak, American beech, Black cherry,
Chickasaw plum, Chestnut, Maple,
Hickory, Hornbeam, Hophornbeam
Paranthrene simulans Oak, American chestnut
Sannina uroceriformis Persimmon
Synanthedon exitiosa Peach, Plum, Nectarine, Cherry,
Apricot, Almond, Black cherry
Synanthedon pictipes Peach, Plum, Cherry, Beach, Black
Cherry
Sesiidae
Synanthedon rubrofascia Tupelo
Synanthedon scitula Dogwood, Pecan, Hickory, Oak,
Chestnut, Beech, Birch, Black cherry,
Elm, Mountain-ash, Viburnum,
Willow, Apple, Loquat, Ninebark,
Bayberry
Vitacea polistiformis Grape
The present invention may be also used to control any insect pests that may be present in turfgrass, including for example beetles, caterpillars, fire ants, ground pearls, millipedes, sow bugs, mites, mole crickets, scales, mealybugs ticks, spittlebugs, southern chinch bugs and white grubs. The present invention may be used to control insect pests at various stages of their life cycle, including eggs, larvae, nymphs and adults.
In particular, the present invention may be used to control insect pests that feed on the roots of turfgrass including white grubs (such as Cyclocephala spp. (e.g. masked chafer, C. lurida),
Rhizotrogus spp. (e.g. European chafer, R. majalis), Cotinus spp. (e.g. Green June beetle, C. nitida), Popillia spp. (e.g. Japanese beetle, P. japonica), Phyllophaga spp. (e.g. May/June beetle), Ataenius spp. (e.g. Black turfgrass ataenius, A. spretulus), Maladera spp. (e.g. Asiatic garden beetle, M. castanea) and Tomarus spp.), ground pearls (Margarodes spp.), mole crickets (tawny, southern, and short-winged; Scapteriscus spp., Gryllotalpa africana) and leatherjackets (European crane fly, Tipula spp.).
The present invention may also be used to control insect pests of turfgrass that are thatch dwelling, including armyworms (such as fall armyworm Spodoptera frugiperda, and common armyworm Pseudaletia unipuncta), cutworms, billbugs (Sphenophorus spp. , such as S. venatus verstitus and S. parvulus), and sod webworms (such as Crambus spp. and the tropical sod webworm, Herpetogramma phaeopteralis).
The present invention may also be used to control insect pests of turfgrass that live above the ground and feed on the turfgrass leaves, including chinch bugs (such as southern chinch bugs, Blissus insularis), Bermudagrass mite (Eriophyes cynodoniensis), rhodesgrass mealybug (Antonina graminis), two-lined spittlebug (Propsapia bicincta), leafhoppers, cutworms (Noctuidae family), and greenbugs. The present invention may also be used to control other pests of turfgrass such as red imported fire ants (Solenopsis invicta) that create ant mounds in turf. In the hygiene sector, the compositions according to the invention are active against ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.
Examples of such parasites are:
Of the order Anoplurida: Haematopinus spp., Linognathus spp., Pediculus spp. and Phtirus spp., Solenopotes spp..
Of the order Mallophagida: Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp.,
Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp. and Felicola spp.. Of the order Diptera and the suborders Nematocerina and Brachycerina, for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp. and Melophagus spp..
Of the order Siphonapterida, for example Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp..
Of the order Heteropterida, for example Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..
Of the order Blattarida, for example Blatta orientalis, Periplaneta americana, Blattelagermanica and Supella spp..
Of the subclass Acaria (Acarida) and the orders Meta- and Meso-stigmata, for example Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp. and Varroa spp..
Of the orders Actinedida (Prostigmata) and Acaridida (Astigmata), for example Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergatesspp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp.,
Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp. and Laminosioptes spp..
The compositions according to the invention are also suitable for protecting against insect infestation in the case of materials such as wood, textiles, plastics, adhesives, glues, paints, paper and card, leather, floor coverings and buildings.
The compositions according to the invention can be used, for example, against the following pests: beetles such as Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium
rufovillosum, Ptilinuspecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthesrugicollis, Xyleborus spec.,Tryptodendron spec, Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec, and Dinoderus minutus, and also hymenopterans such as Sirex juvencus, Urocerus gigas, Urocerus gigas taignus and Urocerus augur, and termites such as Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes,
Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis and Coptotermes formosanus, and bristletails such as Lepisma saccharina.
The compounds according to the invention can be used as pesticidal agents in unmodified form, but they are generally formulated into compositions in various ways using formulation adjuvants, such as carriers, solvents and surface-active substances. The formulations can be in various physical forms, e.g. in the form of dusting powders, gels, wettable powders, water-dispersible granules, water- dispersible tablets, effervescent pellets, emulsifiable concentrates, microemulsifiable concentrates, oil- in-water emulsions, oil-flowables, aqueous dispersions, oily dispersions, suspo-emulsions, capsule suspensions, emulsifiable granules, soluble liquids, water-soluble concentrates (with water or a water- miscible organic solvent as carrier), impregnated polymer films or in other forms known e.g. from the Manual on Development and Use of FAO and WHO Specifications for Pesticides, United Nations, First Edition, Second Revision (2010). Such formulations can either be used directly or diluted prior to use. The dilutions can be made, for example, with water, liquid fertilisers, micronutrients, biological organisms, oil or solvents.
The formulations can be prepared e.g. by mixing the active ingredient with the formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions. The active ingredients can also be formulated with other adjuvants, such as finely divided solids, mineral oils, oils of vegetable or animal origin, modified oils of vegetable or animal origin, organic solvents, water, surface-active substances or combinations thereof.
The active ingredients can also be contained in very fine microcapsules. Microcapsules contain the active ingredients in a porous carrier. This enables the active ingredients to be released into the environment in controlled amounts (e.g. slow-release). Microcapsules usually have a diameter of from 0.1 to 500 microns. They contain active ingredients in an amount of about from 25 to 95 % by weight of the capsule weight. The active ingredients can be in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution. The encapsulating membranes can comprise, for example, natural or synthetic rubbers, cellulose, styrene/butadiene copolymers, polyacrylonitrile, polyacrylate, polyesters, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers that are known to the person skilled in the art. Alternatively, very fine microcapsules can be formed in which the active ingredient is contained in the form of finely divided particles in a solid matrix of base substance, but the
microcapsules are not themselves encapsulated.
The formulation adjuvants that are suitable for the preparation of the compositions according to the invention are known per se. As liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, butylene carbonate, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1 ,2-dichloropropane, diethanolamine, p- diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, A/,A/-dimethylformamide, dimethyl sulfoxide, 1 ,4- dioxane, dipropylene glycol, dipropylene glycol methyl ether, dipropylene glycol dibenzoate, diproxitol, alkylpyrrolidone, ethyl acetate, 2-ethylhexanol, ethylene carbonate, 1 ,1 , 1-trichloroethane, 2- heptanone, alpha-pinene, d-limonene, ethyl lactate, ethylene glycol, ethylene glycol butyl ether, ethylene glycol methyl ether, gamma-butyrolactone, glycerol, glycerol acetate, glycerol diacetate, glycerol triacetate, hexadecane, hexylene glycol, isoamyl acetate, isobornyl acetate, isooctane, isophorone, isopropylbenzene, isopropyl myristate, lactic acid, laurylamine, mesityl oxide, methoxy- propanol, methyl isoamyl ketone, methyl isobutyl ketone, methyl laurate, methyl octanoate, methyl oleate, methylene chloride, m-xylene, n-hexane, n-octylamine, octadecanoic acid, octylamine acetate, oleic acid, oleylamine, o-xylene, phenol, polyethylene glycol, propionic acid, propyl lactate, propylene carbonate, propylene glycol, propylene glycol methyl ether, p-xylene, toluene, triethyl phosphate, triethylene glycol, xylenesulfonic acid, paraffin, mineral oil, trichloroethylene, perchloroethylene, ethyl acetate, amyl acetate, butyl acetate, propylene glycol methyl ether, diethylene glycol methyl ether, methanol, ethanol, isopropanol, and alcohols of higher molecular weight, such as amyl alcohol, tetrahydrofurfuryl alcohol, hexanol, octanol, ethylene glycol, propylene glycol, glycerol, A/-methyl-2- pyrrolidone and the like.
Suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montmorillonite, cottonseed husks, wheat flour, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar substances. A large number of surface-active substances can advantageously be used in both solid and liquid formulations, especially in those formulations which can be diluted with a carrier prior to use. Surface- active substances may be anionic, cationic, non-ionic or polymeric and they can be used as emulsifiers, wetting agents or suspending agents or for other purposes. Typical surface-active substances include, for example, salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, such as calcium dodecylbenzenesulfonate; alkylphenol/alkylene oxide addition products, such as nonylphenol ethoxylate; alcohol/alkylene oxide addition products, such as tridecylalcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonat.es, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2- ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryltrimethylammonium chloride, polyethylene glycol esters of fatty acids, such as polyethylene glycol stearate; block copolymers of ethylene oxide and propylene oxide; and salts of mono- and di- alkylphosphate esters; and also further substances described e.g. in McCutcheon's Detergents and Emulsifiers Annual, MC Publishing Corp., Ridgewood New Jersey (1981 ).
Further adjuvants that can be used in pesticidal formulations include crystallisation inhibitors, viscosity modifiers, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing auxiliaries, antifoams, complexing agents, neutralising or pH-modifying substances and buffers, corrosion inhibitors, fragrances, wetting agents, take-up enhancers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, antifreezes, microbicides, and liquid and solid fertilisers.
The compositions according to the invention can include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters of such oils or mixtures of such oils and oil derivatives. The amount of oil additive in the composition according to the invention is generally from 0.01 to 10 %, based on the mixture to be applied. For example, the oil additive can be added to a spray tank in the desired concentration after a spray mixture has been prepared. Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow. Preferred oil additives comprise alkyl esters of C8-C22 fatty acids, especially the methyl derivatives of Ci2-Ci8 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid (methyl laurate, methyl palmitate and methyl oleate, respectively). Many oil derivatives are known from the Compendium of Herbicide Adjuvants, 10th Edition, Southern Illinois University, 2010.
The inventive compositions generally comprise from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of compounds of the present invention and from 1 to 99.9 % by weight of a formulation adjuvant which preferably includes from 0 to 25 % by weight of a surface-active substance.
Whereas commercial products may preferably be formulated as concentrates, the end user will normally employ dilute formulations.
The rates of application vary within wide limits and depend on the nature of the soil, the method of application, the crop plant, the pest to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop. As a general guideline compounds may be applied at a rate of from 1 to 2000 l/ha, especially from 10 to 1000 l/ha.
Preferred formulations can have the following compositions (weight %):
Emulsifiable concentrates:
active ingredient: 1 to 95 %, preferably 60 to 90 %
surface-active agent: 1 to 30 %, preferably 5 to 20 %
liquid carrier: 1 to 80 %, preferably 1 to 35 %
Dusts:
active ingredient: 0.1 to 10 %, preferably 0.1 to 5 %
solid carrier: 99.9 to 90 %, preferably 99.9 to 99 %
Suspension concentrates:
active ingredient: 5 to 75 %, preferably 10 to 50 %
water: 94 to 24 %, preferably 88 to 30 %
surface-active agent: 1 to 40 %, preferably 2 to 30 %
Wettable powders:
active ingredient: 0.5 to 90 %, preferably 1 to 80 %
surface-active agent: 0.5 to 20 %, preferably 1 to 15 %
solid carrier: 5 to 95 %, preferably 15 to 90 %
Granules:
active ingredient: 0.1 to 30 %, preferably 0.1 to 15 %
solid carrier: 99.5 to 70 %, preferably 97 to 85 %
The following Examples further illustrate, but do not limit, the invention.
Wettable powders a) b) c) active ingredients 25 % 50 % 75 % sodium lignosulfonate 5 % 5 % - sodium lauryl sulfate 3 % - 5 % sodium diisobutylnaphthalenesulfonate - 6 % 10 % phenol polyethylene glycol ether (7-8 mol of ethylene 2 %
oxide)
highly dispersed silicic acid 5 % 10 % 10 %
Kaolin 62 % 27 % - The combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with water to give suspensions of the desired concentration.
Figure imgf000053_0001
The combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
Figure imgf000053_0002
Emulsions of any required dilution, which can be used in plant protection, can be obtained from this concentrate by dilution with water.
Figure imgf000053_0003
Ready-for-use dusts are obtained by mixing the combination with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
Figure imgf000053_0004
The combination is mixed and ground with the adjuvants, and the mixture is moistened with water. The mixture is extruded and then dried in a stream of air.
Coated qranules
Active ingredients 8 %
polyethylene glycol (mol. wt. 200) 3 % Kaolin 89 %
The finely ground combination is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.
Figure imgf000054_0001
The finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Using such dilutions, living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
Flowable concentrate for seed treatment
Figure imgf000054_0002
The finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Using such dilutions, living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
Slow Release Capsule Suspension
28 parts of the combination are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8: 1 ). This mixture is emulsified in a mixture of 1 .2 parts of polyvinylalcohol, 0.05 parts of a defoamer and 51 .6 parts of water until the desired particle size is achieved. To this emulsion a mixture of 2.8 parts 1 ,6-diaminohexane in 5.3 parts of water is added. The mixture is agitated until the polymerization reaction is completed. The obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent. The capsule suspension formulation contains 28% of the active ingredients. The medium capsule diameter is 8-15 microns. The resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose. Formulation types include an emulsion concentrate (EC), a suspension concentrate (SC), a suspo- emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK), a dispersible concentrate (DC), a wettable powder (WP), a soluble granule (SG) or any technically feasible formulation in combination with agriculturally acceptable adjuvants.
Preparatory Examples:
"Mp" means melting point in °C. Free radicals represent methyl groups. H NMR measurements were recorded on a Brucker 400MHz spectrometer, chemical shifts are given in ppm relevant to a TMS standard. Spectra measured in deuterated solvents as indicated. Either one of the LCMS methods below was used to characterize the compounds. The characteristic LCMS values obtained for each compound were the retention time ("Rt", recorded in minutes) and the measured molecular ion (M+H)+ or (M-H)".
LCMS Methods:
Method 1÷
Spectra were recorded on a Mass Spectrometer from Waters (ZQ Single quadrupole mass spectrometer) equipped with an electrospray source (Polarity: positive or negative ions, Capillary: 3.00 kV, Cone range: 30-60 V, Extractor: 2.00 V, Source Temperature: 150°C, Desolvation Temperature:
350°C, Cone Gas Flow: 0 L/Hr, Desolvation Gas Flow: 650 L/Hr, Mass range: 100 to 900 Da) and an
Acquity UPLC from Waters: Binary pump, heated column compartment and diode-array detector.
Solvent degasser, binary pump, heated column compartment and diode-array detector. Column: Waters UPLC HSS T3 , 1.8 μηη, 30 x 2.1 mm, Temp: 60 °C, DAD Wavelength range (nm): 210 to 500,
Solvent Gradient: A = water + 5% MeOH + 0.05 % HCOOH, B= Acetonitrile + 0.05 % HCOOH;
gradient: 0 min 0% B, 100% A; 2.7-3.0 min 100% B; Flow (ml/min) 0.85.
Method 2:
Spectra were recorded on an ACQUITY SQD Mass Spectrometer from Waters (Single quadrupole mass spectrometer), lonisation method: Electrospray, Polarity: positive ions, Capillary (kV) 3.00, Cone (V) 20.00, Extractor (V) 3.00, Source Temperature (°C) 150, Desolvation Temperature (°C) 400, Cone Gas Flow (L/Hr) 60, Desolvation Gas Flow (L/Hr) 700, Mass range: 100 to 800 Da, DAD Wavelength range (nm): 210 to 400. Method Waters ACQUITY UPLC with the following HPLC gradient conditions (Solvent A: Water/Methanol 9: 1 ,0.1 % formic acid and Solvent B: Acetonitrile,0.1 % formic acid )
Time (minutes) A (%) B (%) Flow rate (ml/min)
0 100 0 0.75
2.5 0 100 0.75
2.8 0 100 0.75 3.0 100 0 0.75
Type of column: Waters ACQUITY UPLC HSS T3; Column length: 30 mm; Internal diameter of column: 2.1 mm; Particle Size: 1 .8 micron; Temperature: 60°C. EXAMPLE P1 : Preparation of 2-[5-ethylsulfonyl-6-[3-methyl-6-(trifluoromethvnimidazo[4,5-clpyridin-2- yll-3-pyridyllethvnyl-trimethyl-silane (compound P1 )
Figure imgf000056_0001
Preparation of tert-butyl N-[4-amino-6- trifluoromethyl)-3-pyridyl]carbamate
Figure imgf000056_0002
To a solution of 6-(trifluoromethyl)pyridine-3,4-diamine (3.140 g, 17.73 mmol)(commercially available) in tetrahydrofuran (50 ml), was added tert-butoxycarbonyl tert-butyl carbonate (4.643 g, 1.2 equiv.). The reaction mixture was stirred at 50°C for 20 hours, after which time, more tert-butoxycarbonyl tert- butyl carbonate (1.1 g, 0.3 equiv.) was added. After 20 more hours stirring, the reaction mixture was evaporated under reduced pressure to leave a solid residue which was taken-up in dichloromethane, cooled to 0°C and the resulting suspension filtered. The crystalline residue was tert-butyl N-[4-amino- 6-(trifluoromethyl)-3-pyridyl]carbamate. LCMS (method 1 ): 278 (M+H)+; retention time: 0.79 min. H NMR (400 MHz, CD3CN) δ ppm: 8.28 (s, 1 H); 7.09 (s, 1 H); 6.94 (br. s, 1 H); 5.24 (br. s, 2 H); 1.50 (s, 9H).
Step A-2: Preparation of tert-butyl N-[4-amino- -(trifluoromethyl)-3-pyridyl]-N-methyl-carbamate
Figure imgf000056_0003
A solution of tert-butyl N-[4-amino-6-(trifluoromethyl)-3-pyridyl]carbamate (synthesis described here above) (3.920 g, 14.14 mmol) in N,N-dimethylformamide (20 ml) was added to a stirred suspension of sodium hydride (0.648 g, 1.05 equiv.) in N,N-dimethylformamide (30 ml) over 20 minutes at 20-25°C. Fifteen minutes after the gas evolution ceased, iodomethane (2.21 g, 1.1 equiv.) was added. The temperature rose to 30°C and was kept at this level for 30 minutes. The reaction mixture was then poured cautiously onto water (200 ml) and the product was extracted twice with ethyl acetate. The organic phase was washed with brine, dried over sodium sulfate and evaporated under reduced pressure. The obtained pale brown solid was purified by column chromatography over silica gel, eluting with a mixture of ethyl acetate and heptanes. After recrystallization from ethyl acetate- heptanes, the tert-butyl N-[4-amino-6-(trifluoromethyl)-3-pyridyl]-N-methyl-carbamate was isolated as colorless crystals. LCMS (method 1 ): 292 (M+H)+; retention time: 0.85 min. H NMR (400 MHz, CDCI3) δ ppm: 8.21 (s, 1 H); 7.00 (s, 1 H); 5.58 (br. s, 2 H); 3.18 (s, 3H); 1.43 (s, 9H).
Step A-3: Preparation of N3-methyl-6-(trifl ine-3,4-diamine
Figure imgf000057_0001
A solution of tert-butyl N-[4-amino-6-(trifluoromethyl)-3-pyridyl]-N-methyl-carbamate (3.530 g, 12.12 mmol) (preparation described here above) in 1 ,4-dioxane (50 ml) was treated with 2N aqueous HCI solution (18.18 ml, 3 equiv.) and the resulting mixture was heated. Gas evolution started at around 70°C until the reaction mixture had boiled for 20 minutes. Most of the dioxane was then removed under reduced pressure and the residual solution was treated with sodium bicarbonate (3.1 g, 36.9 mmol) after cooling down to 20°C. There was formation of a thick slurry that was extracted with ethyl acetate. The organic phase was washed with brine, dried over sodium sulfate and concentrated under reduced pressure. The title compound was obtained as colorless crystals. LCMS (method 1 ): 192 (M+H)+; retention time: 0.25 min. H NMR (400 MHz, CDCI3) δ ppm: 7.90 (s, 1 H); 6.93 (s, 1 H); 4.09 (br s, 2 H); 3.40 (br s, 1 H); 2.95 (s, 3 H).
Step B-1 : Preparation of methyl 5-bromo-3-eth lsulfanyl-pyridine-2-carboxylate
Figure imgf000057_0002
To a solution of methyl 5-bromo-3-chloro-pyridine-2-carboxylate (0.100 g, 0.399 mmol) (commercial product) in tetrahydrofurane, stirred at 0°C, was added ethylsulfanylsodium (0.034 g, 1 equiv.). After 1 hour at that temperature, the ice bath was removed and stirring was continued for 20 hours. The reaction mixture was then poured onto water (15 ml) and extracted twice with ethyl acetate. The organic phases were dried over sodium sulfate and the solvent was removed. The residue was submitted to flash chromatography over silica gel and the selected fractions evaporated to yield methyl 5-bromo-3-ethylsulfanyl-pyridine-2-carboxylate as a colorless solid. LCMS (method 1 ): 276, 278 (M+H)+; retention time: 0.92 min. H NMR (400 MHz, CDCI3) δ ppm: 8.46 (s, 1 H); 7.79 (s, 1 H); 4.00 (s, 3 H); 2.94 (q, J = 7.4 Hz, 2H); 1.42 (t, J= 7.4 Hz, 3H).
Step B-2: Preparation of 5-bromo-3-ethylsulfanyl-pyridine-2-carboxylic acid
Figure imgf000058_0001
A solution of methyl 5-bromo-3-ethylsulfanyl-pyridine-2-carboxylate (3.900 g, 14.12 mmol)
(preparation described here above) in a mixture of methyl alcohol (75 ml) and water (20 ml) stirred at 20°C was treated with 2N aqueous sodium hydroxide solution (7.04 ml, 1.05 equiv.). The mixture was stirred for two hours, then most of the alcohol was eliminated under reduced pressure. The residue was then treated with 2N aqueous HCI solution and the resulting precipitate was filtered off, washed with water and dried under vacuum. The title compound was obtained as a colorless solid. LCMS (method 1 ): 260, 262 (M-H)~; retention time: 0.77 min. H NMR (400 MHz, d6-DMSO) δ ppm: 13.4 (br s, 1 H); 8.50 (s, 1 H); 8.07 (s, 1 H); 3.04 (q, J=7.53 Hz, 2 H); 1.27 (t, J=7.53 Hz, 3 H).
Step C-1 : Preparation of 2-(5-bromo-3-ethylsulfanyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5- c]pyridine:
Figure imgf000058_0002
To a suspension of 5-bromo-3-ethylsulfanyl-pyridine-2-carboxylic acid (2.800 g, 10.68 mmol) in dichloromethane (10 ml) was added one drop of Ν,Ν-dimethylformamide, followed by oxalyl chloride (2.034 g, 1.400 ml, 1.5 equiv.). After the end of gas evolution, the reaction mixture was a pale red solution. The latter was evaporated under reduced pressure at a bath temperature of 60°C. The residue formed dark red crystals of 5-bromo-3-ethylsulfanyl-pyridine-2-carbonyl chloride.
To a clear solution of N3-methyl-6-(trifluoromethyl)pyridine-3,4-diamine (2.042 g, 10.68 mmol) in tetrahydrofurane (30 ml) was added a solution of the 5-bromo-3-ethylsulfanyl-pyridine-2-carbonyl chloride (described here above) dissolved in tetrahydrofurane (20 ml). The resulting mixture was heated to reflux temperature. A bulky white precipitate formed. After cooling to 20°C, the mixture was filtered and the filtrate evaporated under reduced pressure. The residue and the filter cake were combined and dissolved into water. The solution was neutralized by addition of a saturated aqueous solution of sodium bicarbonate and the product was extracted twice with ethyl acetate. The organic solution was dried over sodium sulfate and evaporated under reduced pressure to yield the crude product as a dark brown gum. This gum was taken-up into meia-xylene (10 ml), para-toluenesulfonic acid (mono hydrate) (2.032 g, 1 equiv.) was added and the mixture was heated up to 150°C for 8 hours. The reaction mixture was then poured onto water (300 ml) and extracted twice with ethyl acetate. The crude dark brown product, after evaporation of the solvent under reduced pressure, was purified by column chromatography over silica gel, eluting with ethyl acetate in heptanes. The selected fractions were evaporated to yield the title compound as a colorless solid. LCMS (method 1 ): 417, 419 (M+H)+; retention time: 1.04 min. H NMR (400 MHz, CDCI3) δ ppm: 8.96 (s, 1 H); 8.56 (s, 1 H); 8.20 (s, 1 H); 7.88 (s, 1 H); 4.07 (s, 3 H); 2.98 (q, J= 7.44 Hz, 2 H); 1.38 (t, J= 7.44 Hz, 3H).
Similarly, 2-(4-bromo-2-ethylsulfanyl-phenyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (solid, mp 1 13-1 14°C) may be obtained from 4-bromo-2-ethylsulfanyl-benzoic acid and N3-methyl-6-
(trifluoromethyl)pyridine-3,4-diamine. LCMS (method 1 ): 417, 419 (M+H)+; retention time: 1.04 min. H NMR (400 MHz, CDCI3) δ ppm: 8.96 (s, 1 H); 8.56 (s, 1 H); 8.20 (s, 1 H); 7.88 (s, 1 H); 4.07 (s, 3 H); 2.98 (q, J= 7.44 Hz, 2 H); 1.38 (t, J= 7.44 Hz, 3H). Step C-2: Preparation of 2-(5-bromo-3-ethylsulfonyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5- c] pyridine
Figure imgf000059_0001
A solution of 2-(5-bromo-3-ethylsulfanyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (2.000 g, 4.79 mmol) in dichloromethane (50 ml) was stirred in an ice bath and meia-chloroperbenzoic acid (2.54 g, 70% purity, 2.5 equiv.) was added in portions, in such a way that the temperature of the reaction mixture was kept below 10°C. The bath was then removed and the mixture was stirred 4 further hours at 20°C. After completion of the reaction, the mixture was stirred with saturated aqueous sodium bicarbonate solution. The phases were separated and the aqueous phase was extracted with dichloromethane. The organic layers were combined, dried over sodium sulfate and evaporated. The residue was subjected to column chromatography over silica gel, eluting with ethyl acetate in heptanes. The selected fractions were evaporated and the residue was triturated with heptanes to yield the title compound as colorless solid. LCMS (method 1 ): 449, 451 (M+H)+; retention time: 0.95 min. H NMR (400 MHz, CDCI3) δ ppm: 9.06 (s, 1 H); 9.00 (s, 1 H); 8.68 (s, 1 H); 8.1 1 (s, 1 H); 3.90 (s, 3 H); 3.82 (q, 2 H); 1.38 (t, 3H).
Similarly, 2-(4-bromo-2-ethylsulfonyl-phenyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (solid, mp 180-181 °C) may be obtained from 2-(4-bromo-2-ethylsulfanyl-phenyl)-3-methyl-6-(trifluoromethyl) imidazo[4,5-c]pyridine. LCMS (method 1 ): 448/450 (M+H)+; retention time: 0.95 min. H NMR (400 MHz, CDCI3) δ ppm: 1.27 (t, 3H), 3.38 (q, 2H), 3.74 (s, 3H), 7.43 (d, 1 H), 7.98 (dd, 1 H), 8.09 (d, 1 H), 8.37 (d, 1 H), 8.95 (s, 1 H).
Step C-3: Preparation of 2-[5-ethylsulfonyl-6-[3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridin-2-yl]-3- pyridyl]ethynyl-trimethyl-silane (compound P1 ):
Figure imgf000060_0001
A mixture of 2-(5-bromo-3-ethylsulfonyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (0.100 g, 0.223 mmol), N-ethyl-N-isopropyl-propan-2-amine (0.1 16 g, 4.0 equiv.), trimethylsilyl- acetylene (0.066 g, 3.0 equiv.) and copper(l) iodide (0.004 g, 0.1 equiv.) in tetrahydrofuran (4.0 ml) was charged in a vial equipped with a magnetic stirring bar. Argon was bubbled through it for a few minutes, then bis triphenylphosphine palladium dichloride (0.016 g, 0.1 equiv.) was added. The reaction mixture turned from light yellow to light brown within a few minutes. The reaction mixture was stirred at 20°C under inert atmosphere for 22 hours. The reaction was followed by TLC analysis on silica gel, until the consumptium of the starting bromide. The reaction mixture was then diluted with ethyl acetate and washed with 1 N aqueous HCI, then dried over sodium sulfate. After evaporation of the solvent under reduced pressure, the residue was submitted to flash chromatography over silica gel, eluting with a mixture of ethyl acetate and heptanes. Evaporation of the selected fractions yielded the title compound P1 as a solid. LCMS (method 1 ): 468 (M+H)+; retention time: 1.17 min. H NMR (400 MHz, CDCI3) δ ppm: 8.92 (s, 2 H); 8.54 (s, 1 H); 8.10 (s, 1 H); 3.79 (s, 3 H); 3.80 (q, J = 7.66 Hz, 2 H); 1.38 (t, J = 7.66 Hz, 3H); 0.34 (s, 9H).
EXAMPLE P2: Preparation of 2-(3-ethylsulfonyl-5-ethvnyl-2-pyridyl)-3-methyl-6- (trifluoromethyl)imidazo[4,5-clpyridine compound P2):
Figure imgf000060_0002
A solution of 2-[5-ethylsulfonyl-6-[3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridin-2-yl]-3- pyridyl]ethynyl-trimethyl-silane (compound Pldescribed above) (0.064 g, 0.137 mmol) in methyl alcohol (2.0 ml) was treated with potassium carbonate (0.048 g, 2.5 equiv.). The reaction mixture turned brown within a few minutes and was stirred at 20°C until disappearance of the starting material (LC-MS analysis). The reaction mixture was then poured onto a 1 N aqueous solution of HCI (20 ml) and the resulting mixture was extracted twice with ethyl acetate. The combined organic phases were successively washed with water, brine and dried over sodium sulfate. After removal of the solvent under reduced pressure, the residue was subjected to flash chromatography over silica gel, eluting with a mixture of ethyl acetate and heptanes. Evaporation of the selected fractions yielded the title compound P2 as a colorless solid. LCMS (method 1 ): 395 (M+H)+; retention time: 0.91 min. H NMR (400 MHz, CDCI3) δ ppm: 9.04 (s, 1 H); 8.99 (s, 1 H); 8.58 (s, 1 H); 8.1 1 (s, 1 H); 3.91 (s, 3 H); 3.82 (q, J = 7.66 Hz, 2 H); 3.54 (s, 1 H); 1.38 (t, J = 7.66 Hz, 3H). EXAMPLE P3: Preparation of 2-(3-ethylsulfonyl-5-vinyl-2-pyridyl)-3-methyl-6- (trifluoromethyl)imidazo[4,5-clpyridine compound P3):
Figure imgf000061_0001
To a solution of 2-(5-bromo-3-ethylsulfonyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (preparation described above) (0.051 g, 0.1 13 mmol) in a mixture of 1 ,4-dioxane (2.0 ml) and water (0.6 ml), in a vial equipped with a magnetic stirring bar, was added cesium fluoride (0.035 g, 2.0 equiv.). The mixture was flushed with argon, then 4,4,5,5-tetramethyl-2-vinyl-1 ,3,2-dioxaborolane (0.026 g, 1.5 equiv.) was added, followed by (1 , 1 'bis(diphenylphosphino)ferrocene)dichloropalladium- dichloromethane (1 :1 complex) (0.005 g, 0.05 equiv.). After stirring for 20 hours at 90°C under argon atmosphere, the reaction mixture was cooled down to room temperature and poured on water (20 ml). The resulting mixture was extracted twice with ethyl acetate and the combined organic phases were successively washed with brine and dried over sodium sulfate. After removal of the solvent under reduced pressure, the residue was subjected to flash chromatography over silica gel, eluting with a mixture of ethyl acetate and heptanes. Evaporation of the selected fractions yielded the title compound P3 as a colorless gum. LCMS (method 1 ): 397 (M+H)+; retention time: 0.92 min. H NMR (400 MHz,
CDCI3) δ ppm: 8.98 (s, 1 H); 8.96 (s, 1 H); 8.50 (s, 1 H); 8.10 (s, 1 H); 6.87 (dd, J-i = 17.6 Hz, J2 = 10.8 Hz, 1 H); 6.14 (d, J = 17.6 Hz, 1 H); 5.72 (d, J = 10.8 Hz, 1 H); 3.89 (s, 3 H); 3.70 (q, J = 7.66 Hz, 2 H); 1.37 (t, J = 7.66 Hz, 3H). EXAMPLE P4: Preparation of 2-(5-cvclopropyl-3-ethylsulfonyl-2-pyridyl)-3-methyl-6- (trifluoromethyl)imidazo[4,5-clpyridine (compound P7):
Figure imgf000061_0002
Step 1 : Preparation of 5-bromo-3-ethylsulfanyl-pyridine-2-carbonitrile
Figure imgf000061_0003
To a solution of 5-bromo-2-cyano-3-nitropyridine (58. Og, 242mmol, 1.0 eq.) in 1000ml N,N-dimethyl- formamide under argon, sodium ethanethiolate (23.7g, 254 mmol, 1 .05 eq.) was slowly added at temperature between -40 and -50°C. The dark mixture was allowed to stir at rt overnight. After dilution with ieri-butylmethyether, the mixture was quenched with water. The organic layer was washed with water and brine, dried over sodium sulfate, filtrated and evaporated. The crude brown oil was purified by column chromatography, eluting with ethyl acetate/cyclohexane to give a light orange solid. H NMR (400 MHz, CDCI3) δ ppm: 8.50 (s, 1 H); 7.81 (s, 1 H); 3.06 (q, 2 H); 1.40 (t, 3H).
Step 2: Preparation of 5-bromo-3-ethylsulfan l-pyridine-2-carboxylic acid
Figure imgf000062_0001
A solution of 5-bromo-3-ethylsulfanyl-pyridine-2-carbonitrile (43g, 170 mmol, 1.0 eq.) in 800ml aqueous hydrogen chloride HCI 32% was heated to 60°C overnight. Dioxane (100ml) was added and the mixture was further stirred at 60°C for 48h. The reaction mixture was cooled to 0-5°C, treated with an aqueous sodium hydroxide solution (NaOH 30%) until pH1 1 and washed with 2x200ml tert- butymethylether. The water phase was acidified with HCI 10% back to pH4, the resulting solid was filtrated, washed with water and dried in vacuo. LCMS (method 1 ): 262, 264 (M+H)+; retention time: 0.77 min. H NMR (400 MHz, CDCI3) δ ppm: 8.50 (s, 1 H); 8.06 (s, 1 H); 3.03 (q, 2 H); 1.24 (t, 3H). Step 3: Preparation of 2-(5-bromo-3-ethylsulfanyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5- c] pyridine
Figure imgf000062_0002
Preparation according to EXAMPLE P1 , step C-1 above.
Step 4: Preparation of 2-(5-bromo-3-ethylsulfonyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5- c] pyridine
Figure imgf000062_0003
Preparation according to EXAMPLE P1 , step C-2 above.
Step 5: Preparation of 2-(5-cyclopropyl-3-ethylsulfonyl-2-pyridyl)-3-methyl-6-(trifluoromethyl) imidazo[4,5-c]pyridine (compound P7
Figure imgf000062_0004
A solution of 2-(5-bromo-3-ethylsulfonyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine
(preparation described above) (100 mg, 0.21 1 mmol), 2M aqueous sodium carbonate (0.317 ml, 0.634 mmol) and cyclopropylboronic acid (47.8 mg, 0.529 mmol) in toluene (2 ml) was purged with argon for 10 minutes. X-Phos aminobiphenyl palladium chloride precatalyst (17 mg, 0.1 eq.) was added and the mixture heated at 90°C overnight. The mixture was diluted with water, extracted with tert-butyl methyl (3x), the combined organic phase washed with brine, dried over sodium sulfate, filtrated and evaporated. The residue was purified by column chromatography over silica gel (0-70% gradient of ethyl acetate in cyclohexane) to afford the title compound P7 as a solid, mp 185-186°C. LCMS (method 2): 41 1 (M+H)+; retention time: 1.44 min. H NMR (400 MHz, CDCI3) δ ppm: 0.97 (m, 2H), 1.30 (m, 2H), 1.34 (t, 3H), 2.13 (m, 1 H), 3.74 (q, 2H), 3.86 (s, 3H), 8.07 (d, 1 H), 8.10 (s, 1 H), 8.75 (d, 1 H), 8.96 (s, 1 H). Example P5: Preparation of 1-[3-ethylsulfonyl-4-[3-methyl-6-(trifluoromethvnimidazo[4,5-clpyridin-2- yllphenyllcyclopropanecarbonitrile (compound P15):
Figure imgf000063_0001
(compound P15) Stepl : Preparation of 2-[3-ethylsulfonyl-4-[3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridin-2- yl]phenyl]acetonitrile
Figure imgf000063_0002
A solution of 2-(4-bromo-2-ethylsulfonyl-phenyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (0.50 g, 1.1 mmol, prepared as described in WO 2015/000715) in DMF (2 mL) was placed in a 5 mL microwave vial. Under argon, trimethylsilyl acetonitrile (0.19 g, 0.23 mL, 1.7 mmol), difluorozinc (0.069 g, 0.67 mmol), XANTPHOS (0.013 g, 0.022 mmol) and Pd2(dba)3 (0.01 1 g, 0.01 1 mmol) were added, the vial was capped, and heated at 140 °C for 30 min in the microwave. LC/MS after this time showed reaction completion. The reaction mixture was diluted with tert-butyl methyl ether, and then washed with water (3X) and once with brine. The organic layer was dried over Na2S04, filtered and concentrated in vacuo to give the crude product. Purification over a silica gel cartridge (Rf200), eluting with Cyclohexane / EtOAc gave the title compound as a beige solid, mp. 253-254°C.
LCMS (method 1 ): 409 (M+H)+; retention time: 0.8 min. H NMR (400 MHz, CDCI3) δ ppm: 1 .26 (t, J=7.3 Hz, 3 H), 3.39 (br. q, J=7.3 Hz, 2 H), 3.74 (s, 3 H), 4.01 (s, 2 H), 7.63 (d, J=7.7 Hz, 1 H), 7.90 (dd, J=7.70, 1.83 Hz, 1 H), 8.10 (s, 1 H), 8.17 (d, J=1 .83 Hz, 1 H), 8.96 (s, 1 H). Step 2: Preparation of 1-[3-ethylsulfonyl-4-[3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridin-2- yl henyl]cyclopropanecarbonitrile (compound P15)
Figure imgf000064_0001
(compound P15)
A solution of 2-[3-ethylsulfonyl-4-[3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridin-2- yl]phenyl]acetonitrile (0.27 g, 0.66 mmol) in acetonitrile (10 mL) and treated with cesium carbonate (0.65 g, 2.0 mmol) and then 1 ,2-dibromoethane (0.25 g, 0.12 mL, 1.3 mmol). The brown solution was stirred at 80°C. LC/MS after 50min showed consumption of starting material and mainly desired product at Rt=0.92min. The reaction mixture was concentrated in vacuo, and the residue was dissolved in EtOAc and diluted with water The organic layer was decanted, washed with water and brine, dried over Na2S04, filtered and concentrated in vacuo. The crude product was purified over a silica gel cartridge (Rf200), eluting with CH2CI2/EtOAc, to give the title product as a white solid, mp. 220-221 °C.
LCMS (method 1 ): 435 (M+H)+; retention time: 0.92 min. H NMR (400 MHz, CDCI3) δ ppm: 1.24 (t, J=7.5 Hz, 3 H), 1.60 - 1.66 (m, 2 H), 1.94 - 2.01 (m, 2 H), 3.39 (q, J=7.5 Hz, 2 H), 3.74 (s, 3 H), 7.59 (d, J=7.7 Hz, 1 H), 7.88 - 7.97 (m, 2 H), 8.09 (s, 1 H), 8.94 (s, 1 H).
Example P6: Preparation of 2-[3-ethylsulfonyl-5-[1-(trifluoromethyl)vinyll-2-pyridyll-3-methyl-6-
(trifluoromethyl)imidazo[4,5-clpyridine (compound P17):
Figure imgf000064_0002
(compound P17)
A mixture of (2-(5-bromo-3-ethylsulfonyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (0.60 g, 1.3 mmol, prepared according to Example P1 , step C-2 above ), 4,4,6-trimethyl-2-[1- (trifluoromethyl)vinyl]-1 ,3,2-dioxaborinane (0.61 g, 2.7 mmol), Na2C032M (2.0 mL, 4.0 mmol) and
PdCI2(PPh3)2 (0.16 g, 0.23 mmol) were dissolved in DME (12 mL, 1 10 mmol) in a microwave vial. The vial was sealed and the reaction mixture was stirred at 1 10°C for 30min in a microwave. LC/MS detected desired mass at Rt=1.07 min. The reaction mixture was diluted with EtOAc, washed successively with NaOH 1 M, water, and the organic phase was dried over Na2S04, filtered and concentrated in vacuo. The crude product was dissolved in DCM and adsorbed onto TEFLON BULK SORBENTS. Purification over a silica gel cartridge (Rf200), eluting with Cyclohexane /EtOAc, gave the title compound as a beige solid with mp. 142-143°C.
LCMS (method 1 ): 465(M+H)+; retention time: 1.04 min. H NMR (400 MHz, CDCI3) δ ppm: 1 .39 (t, J=7.3 Hz, 3 H), 3.84 (q, J=7.3Hz, 2 H), 3.94 (s, 3 H), 6.14 (s, 1 H), 6.35 (s, 1 H), 8.12 (s, 1 H), 8.58 (d, J=2.20 Hz, 1 H), 9.01 (s, 1 H), 9.06 (d, J=2.20 Hz, 1 H).
Example P7: Preparation of 2-[3-ethylsulfonyl-5-[1-(trifluoromethvncvclopropyll-2-pyridyll-3-methyl-6- (trifluoromethyl)imidazo[4,5-clpyridine (compound P18):
Figure imgf000065_0001
(compound 18)
A solution of 2-[3-ethylsulfonyl-5-[1-(trifluoromethyl)vinyl]-2-pyridyl]-3-methyl-6- (trifluoromethyl)imidazo[4,5-c]pyridine (100mg, 0.215 mmol) in CH2CI2 (2 mL) containing
bis(benzonitrile)palladium(ll)dichloride (4.3 mg, 0.001 1 mmol) was treated dropwise with freshly prepared ethanol containing ethereal solution of diazomethane (WARNING! diazomethane is toxic and potentially explosive!). The diazomethane was prepared from DIAZALD® as described Sigma-Aldrich in a mini Diazald® Apparatus. The reaction mixture was allowed to stir over night, treated with a few drops of acetic acid and concentrated in vacuo. LCMS analysis showed the title product.
LCMS (method 1 ): 479 (M+H)+; retention time: 1.07 min.
EXAMPLE P8: Preparation of 2-[5-(2,2-difluorocvclopropyl)-3-ethylsulfonyl-2-pyridyll-3-methyl-6-
(trifluoromethyl)imidazo[4,5-clpyridine (compound P21 ):
Figure imgf000065_0002
Step 1 : Preparation of 2-(3-ethylsulfanyl-5-vinyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo
[4,5-c]pyridine (compound P19)
Figure imgf000065_0003
A solution of 2-(5-bromo-3-ethylsulfanyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (preparation described above) (500 mg, 1.198 mmol) and cesium fluoride (364 mg, 2.397 mmol) in a mixture of 1 ,4-dioxane (9 ml) and water (3 ml) was flushed with argon. Then, 4,4,5,5-tetramethyl-2- vinyl-1 ,3,2-dioxaborolane (369 mg, 2.397 mmol) was added, followed by (1 , 1 'bis(diphenylphosphino) ferrocene)dichloropalladium-dichloromethane (1 :1 complex) (48.9 mg, 0.060 mmol) and the reaction mixture was heated at 85°C in the microwave for 2 hours. The mixture was diluted with water and extracted with tert-butyl methyl ether (5x). The combined organic layers were washed with water and brine, dried over sodium sulfate, filtered and concentrated in vacuo to afford the title compound P19 as a solid. This material was used without further purification. LCMS (method 1 ): 365 (M+H)+; retention time: 1.05 min. H NMR (400 MHz, CDCI3) δ ppm: 1.36 (t, J=7.34 Hz, 3 H), 2.99 (q, J=7.34 Hz, 2 H), 4.06 (s, 3 H), 5.57 (d, J=1 1.00 Hz, 1 H), 5.99 (d, J=17.61 Hz, 1 H), 6.78 (dd, J=17.61 Hz, J=1 1.00 Hz, 1 H), 7.76 (d, J=1 .8 Hz, 1 H), 8.20 (s, 1 H), 8.55 (d, J=1.8 Hz, 1 H), 8.95 (s, 1 H).
Step 2: Preparation of 2-[5-(2,2-difluorocyclopropyl)-3-ethylsulfanyl-2-pyridyl]-3-methyl-6- (trifluoromethyl)imidazo[4,5-c]pyridine compound P20)
Figure imgf000066_0001
To a solution of 2-(3-ethylsulfanyl-5-vinyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (100 mg, 0.274 mmol) in diglyme (2 ml) was added a diglyme solution (6 ml) of sodium chlorodifluoro- acetate (CICF2C02Na; 2.09 g, 13.72 mmol) dropwise for 30 minutes at 180°C. Then, the reaction mixture was stirred at 180°C overnight. Another portion of sodium chlorodifluoroacetate (420 mg) was added and the mixture stirred at 180°C for a total of 40 hours. After cooling, the reaction mixture was concentrated in vacuo and the residue treated with diethyl ether (20 ml) under stirring. The suspension was filtered (salts removal) and the filtrate dried over sodium sulfate, filtered and concentrated under reduced pressure to afford the title compound P20 as a gum. This material was used without further purification. LCMS (method 1 ): 415 (M+H)+; retention time: 1.06 min. Step 3: Preparation of 2-[5-(2,2-difluorocyclopropyl)-3-ethylsulfonyl-2-pyridyl]-3-methyl-6- (trifluoromethyl)imidazo[4,5-c]p ridine (compound P21 )
Figure imgf000066_0002
Obtained from crude 2-[5-(2,2-difluorocyclopropyl)-3-ethylsulfanyl-2-pyridyl]-3-methyl-6- (trifluoromethyl)imidazo[4,5-c]pyridine (preparation described above) (40 mg, 0.097 mmol) and meta- chloroperbenzoic acid (45.5 mg, 0.198 mmol, 75%) in dichloromethane (1.5 ml) according to procedure EXAMPLE P1 , step C-2. The mixture was stirred at 5°C for one hour. After dilution with tert- butyl methyl ether, the reaction mixture was successively washed with a sat. aqueous sodium bisulfite solution, a sat. aqueous NaHC03 solution and brine. The organic layer was dried over sodium sulfate and concentrated under reduced pressure. LCMS analysis of the residue indicated the title product P21. LCMS (method 1 ): 447 (M+H)+; retention time: 1.01 min. Table P1 : Examples of compounds of formula (I)
Compound Melting
Structures MS/NMR
No. Point
LCMS (method 1 ): 468 (M+H)+
P1 175-178°C Rt = 1 .17 min
LCMS (method 1 ): 395 (M+H)+
P2 193-195°C Rt = 0.91 min
Figure imgf000067_0001
LCMS (method 1 ): 397 (M+H)+ Rt = 0.92 min
H NMR (400 MHz, CDCI3) δ ppm: 8.98 (s, 1 H); 8.96 (s, 1 H); 8.50 (s, 1 H); 8.10 (s, 1 H); 6.87 (dd, J-i =
P3
17.6 Hz, J2 = 10.8 Hz, 1 H); 6.14 (d, J = 17.6 Hz, 1 H); 5.72 (d, J = 10.8 Hz, 1 H); 3.89 (s, 3 H); 3.70 (q, J = 7.66 Hz, 2 H); 1.37 (t, J = 7.66 Hz, 3H).
LCMS (method 1 ): 505, 507
P4 182-184°C (M+H)+
Rt = 1 .17 min
LCMS (method 2): 479 (M+H)+
P5
Rt = 2.03 min Compound Melting
Structures MS/NMR
No. Point
LCMS (method 2): 41 1 (M+H)+
P6
Rt = 1 .53 min
LCMS (method 2): 41 1 (M+H)+
P7 185-186°C
Rt = 1 .44 min
Table P1 (continued): Examples of compounds of formula (I)
Figure imgf000068_0001
Figure imgf000069_0001
EXAMPLE 11 : Preparation of intermediate 2-[3-ethylsulfonyl-5-(4,4,5,5-tetramethyl-1 ,3,2- dioxaborolan-2-yl)-2-pyridvn-3-methyl-6-(trifluoromethyl)imidazo[4,5-clpyridine (compound 11 ):
Figure imgf000069_0002
A mixture of 2-(5-bromo-3-ethylsulfonyl-2-pyridyl)-3-methyl-6-(trifluoromethyl)imidazo[4,5-c]pyridine (preparation described above) (0.050 g, 0.1 1 1 mmol), potassium acetate (0.027 g, 2.5 equiv.) and 4,4,5,5-tetramethyl-2-(4,4,5,5-tetramethyl-1 ,3,2-dioxaborolan-2-yl)-1 ,3,2-dioxaborolane (0.042 g, 1.5 equiv.) in 1 ,2-dimethoxyethane (3 ml) was gently flushed with argon, then 1 , 1 '-bis(diphenylphosphino)- ferrocene)dichloropalladium-dichloromethane (1 : 1 ) complex (0.005 g, 0.05 equiv.) was added and the pale yellow mixture was stirred under inert atmosphere, while heated to 90°C. After consumption of the starting bromide, the dark reaction mixture was diluted with water (20 ml) and extracted twice with ethyl acetate. The combined organic phases were dried over sodium sulfate and concentrated under reduced pressure. The dark brown gum was taken up in diethyl ether and filtered through a pad of celite®. The filtrate was extracted with a mixture of water (5 ml) and 1 N aqueous sodium hydroxide (0.2 ml), and then the aqueous phase was treated with 1 N-aqueous hydrochloric acid (0.3 ml). The precipitated solid was extracted twice with diethyl ether. The organic phase was washed with brine, dried over sodium sulfate and evaporated under reduced pressure to yield the title compound as a colorless solid. ). H NMR (400 MHz, CDCI3) δ ppm: 9.28 (s, 1 H); 8.99 (s, 1 H); 8.87 (s, 1 H); 8.1 1 (s, 1 H); 3.88 (s, 3 H); 3.76 (q, J = 7.4 Hz, 2 H); 1 .41 (s, 12 H); 1.38 (t, J = 7.4 Hz, 3 H).
LCMS (method 1 ): 413 (M-H)~; 827 (2M-H)~; 415 (M+H)+ for the corresponding boronic acid; retention time: 0.77 min (in this case, M corresponds to the corresponding boronic acid and not the pinacol ester, but the NMR shows the pinacol part). Example I2: Preparation of methyl 5-(1-cvanocvclopropyl)-3-ethylsulfonyl-pyridine-2-carboxylate (compound I2):
Figure imgf000070_0001
Step 1 : Preparation of methyl 5-bromo-3-ethylsulfonyl-pyridine-2-carboxylate
Figure imgf000070_0002
Methyl 5-bromo-3-ethylsulfanyl-pyridine-2-carboxylate (24.4 g, 88.4 mmol, step B1 from Example P1 ) was suspended in dichloromethane (250 mL), cooled to 0°C, and treated portion wise with mCPBA (37.6 g, 185.7 mmol). The mixture was stirred at ambient temperature for 18 hours. The mixture was diluted with water and dichloromethane, the aqueous phase was back extracted with dichloromethane (2X), and the combined organic phases washed with Na2S204, dried over Na2S04. Partial concentration of the solvent, led to a solid (the desired title compound) that was filtered. The filtrate was evaporated to dryness, which was purified by chromatography on silica to give further pure title compound as white solid.
LCMS (method 1 ): 308/310 (M+H)+; retention time: 0.76 min. H NMR (c^-DMSO, 400 MHz): 9.08 (d, J=2.4Hz, 1 H), 8.58 (d, J=2.4Hz, 1 H), 3.87 (s, 3H), 3.52 (q, J=7.8Hz, 2H), 1.18 (t, J=7.8Hz, 3H).
Step 2: Preparation of methyl 5-(cyanomethyl)-3-ethylsulfonyl-pyridine-2-carboxylate
Figure imgf000071_0001
A solution of methyl 5-bromo-3-ethylsulfonyl-pyridine-2-carboxylate, (2.00 g, 6.49 mmol) in DMF (13.0 mL) was treated with TMS-acetonitrile (2.25 g, 2.71 mL, 19.5 mmol), difluorozinc (0.403 g, 3.89 mmol), XANTPHOS (0.153 g, 0.260 mmol) and Pd2(dba)3 (0.1 19 g, 0.130 mmol) under argon. The resulting mixture was stirred for 5 hours at 100°C. LCMS after this time showed no further reaction progression. The mixture was cooled, diluted with EtOAc, and filtered over hyflo. The filtrate was washed with water/NH4CI, brine, dried over Na2S04, filtered and concentrated in vacuo. The crude product was purified by combi flash chromatography with a column of 40 g and a gradient cyclohexane + 0-50 % ethylacetate. This gave the title compound as yellow oil.
LCMS (method 1 ): 269 (M+H)+; retention time: 0.58 min. H NMR (400 MHz, CDCI3) δ ppm: 1.38 (t, J=7.5 Hz, 3 H), 3.58 (q, J=7.5 Hz, 2 H), 3.95 (s, 2 H), 4.06 (s, 3 H), 8.37 (d, J=2.20 Hz, 1 H), 8.86 (d, J=2.20 Hz, 1 H).
Step 3: Preparation of methyl 5-(1-cyanocyclopropyl)-3-ethylsulfonyl-pyridine-2-carboxylate
Figure imgf000071_0002
Methyl 5-(cyanomethyl)-3-ethylsulfonyl-pyridine-2-carboxylate (0.63 g, 2.3 mmol) was dissolved in acetonitrile (19 mL) and cesium carbonate (2.3 g, 7.0 mmol) was added to the colourless solution (solution darkened), followed by addition of 1 ,2-dibromoethane (0.90 g, 0.41 mL, 4.7 mmol) The brown solution was stirred at 80°C bath temperature. LC/MS detected desired mass at Rt=0.73 min after 1.5h. The reaction mixture was concentrated in vacuo and diluted with EtOAc and water. The organic layer was separated, washed successively with water and brine, dried over Na2S04, filtered and concentrated in vacuo. The crude product was dissolved in dichloromethane and adsorbed onto TEFLON BULK SORBENTS. Purification over a silica gel cartridge (Rf200) eluting with Cyclohexane /EtOAc, gave the title compound as a beige resin.
LCMS (method 1 ): 295 (M+H)+; retention time: 0.72 min. H NMR (400 MHz, CDCI3) δ ppm: 1.36 (t, J=7.5 Hz, 3 H), 1.57 - 1.62 (m, 2 H), 1.95 - 2.00 (m, 2 H), 2.05 (s, 2 H), 4.04 (s, 4 H), 8.13 (d, J=2.20 Hz, 1 H), 8.87 (d, J=2.20 Hz, 1 H).
Example I3: Preparation of 5-(1-cvanocvclopropyl)-3-ethylsulfonyl-pyridine-2-carboxylic acid
(compound I3):
Figure imgf000072_0001
A solution of methyl 5-(1-cyanocyclopropyl)-3-ethylsulfonyl-pyridine-2-carboxylate (0.27 g, 0.92 mmol) was dissolved in THF (4mL) and water (1.5 mL) (red solution), and then treated with LiOH«H20 (0.058 g, 1.4 mmol). The mixture was stirred at ambient temperature for 2 hours by which time LCMS analysis showed reaction completion (only desired product at Rt=0.32 min, method 1 ). The THF was evaporated in vacuo and the residue was acidified with 1 M HCI and extracted with EtOAc. The organic layer was washed with brine, dried over Na2S04 filtrated and concentrated in vacuo to give pure title product as a beige solid.
LCMS (method 1 ): 281 (M+H)+; retention time: 0.30 min. H NMR (400 MHz, methanol-c/4) δ ppm: 1.31 (t, J=7.3 Hz,3H), 1.71 - 1.78 (m, 2 H), 1.92 - 1.98 (m, 2 H), 3.60 (q, J=7.3 Hz, 2 H), 8.28 (d, J=2.20 Hz, 1 H), 8.83 (d, J=2.20 Hz, 1 H).
Table 11 : Examples of intermediate compounds of formula (IV), (XXIV-c) and (XVIII-f):
Compound Melting
Structures MS/NMR
No. Point
LCMS (method 1 ): 415 (M+H)+ Rt = 0.77 min
M consistent with the
11 corresponding boronic acid: Compound Melting
Structures MS/NMR
No. Point
LCMS (method 1 ): 295 (M+H)+; o o=s=o
12 retention time: 0.72 min.
o o=s=o
LCMS (method 1 ): 281 (M+H)+;
13
retention time: 0.30 min.
The following mixtures of the compounds of formula I with active ingredients are preferred (the abbreviation "TX" means "one compound selected from the group consisting of the compounds described in Tables 1 to 18 and P1 of the present invention"):
an adjuvant selected from the group of substances consisting of petroleum oils (alternative name) (628) + TX,
an acaricide selected from the group of substances consisting of 1 , 1 -bis(4-chlorophenyl)-2- ethoxyethanol (lUPAC name) (910) + TX, 2,4-dichlorophenyl benzenesulfonate (lUPAC/Chemical Abstracts name) (1059) + TX, 2-fluoro-A/-methyl-A/-1 -naphthylacetamide (lUPAC name) (1295) + TX, 4-chlorophenyl phenyl sulfone (lUPAC name) (981 ) + TX, abamectin (1 ) + TX, acequinocyl (3) + TX, acetoprole [CCN] + TX, acrinathrin (9) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, alpha- cypermethrin (202) + TX, amidithion (870) + TX, amidoflumet [CCN] + TX, amidothioate (872) + TX, amiton (875) + TX, amiton hydrogen oxalate (875) + TX, amitraz (24) + TX, aramite (881 ) + TX, arsenous oxide (882) + TX, AVI 382 (compound code) + TX, AZ 60541 (compound code) + TX, azinphos-ethyl (44) + TX, azinphos-methyl (45) + TX, azobenzene (lUPAC name) (888) + TX, azocyclotin (46) + TX, azothoate (889) + TX, benomyl (62) + TX, benoxafos (alternative name) [CCN] + TX, benzoximate (71 ) + TX, benzyl benzoate (lUPAC name) [CCN] + TX, bifenazate (74) + TX, bifenthrin (76) + TX, binapacryl (907) + TX, brofenvalerate (alternative name) + TX, bromo- cyclen (918) + TX, bromophos (920) + TX, bromophos-ethyl (921 ) + TX, bromopropylate (94) + TX, buprofezin (99) + TX, butocarboxim (103) + TX, butoxycarboxim (104) + TX, butylpyridaben (alternative name) + TX, calcium polysulfide (lUPAC name) (1 1 1 ) + TX, camphechlor (941 ) + TX, carbanolate (943) + TX, carbaryl (1 15) + TX, carbofuran (1 18) + TX, carbophenothion (947) + TX, CGA 50'439 (development code) (125) + TX, chinomethionat (126) + TX, chlorbenside (959) + TX, chlordimeform (964) + TX, chlordimeform hydrochloride (964) + TX, chlorfenapyr (130) + TX, chlorfenethol (968) + TX, chlorfenson (970) + TX, chlorfensulfide (971 ) + TX, chlorfenvinphos
(131 ) + TX, chlorobenzilate (975) + TX, chloromebuform (977) + TX, chloromethiuron (978) + TX, chloropropylate (983) + TX, chlorpyrifos (145) + TX, chlorpyrifos-methyl (146) + TX, chlorthiophos (994) + TX, cinerin I (696) + TX, cinerin II (696) + TX, cinerins (696) + TX, clofentezine (158) + TX, closantel (alternative name) [CCN] + TX, coumaphos (174) + TX, crotamiton (alternative name) [CCN] + TX, crotoxyphos (1010) + TX, cufraneb (1013) + TX, cyanthoate (1020) + TX, cyflumetofen (CAS Reg. No.: 400882-07-7) + TX, cyhalothrin (196) + TX, cyhexatin (199) + TX, cypermethrin (201 ) + TX, DCPM (1032) + TX, DDT (219) + TX, demephion (1037) + TX, demephion-0 (1037) + TX, demephion-S (1037) + TX, demeton (1038) + TX, demeton-methyl (224) + TX, demeton-O (1038) + TX, demeton-O-methyl (224) + TX, demeton-S (1038) + TX, demeton-S-methyl (224) + TX, demeton-S-methylsulfon (1039) + TX, diafenthiuron (226) + TX, dialifos (1042) + TX, diazinon (227) + TX, dichlofluanid (230) + TX, dichlorvos (236) + TX, dicliphos (alternative name) + TX, dicofol (242) + TX, dicrotophos (243) + TX, dienochlor (1071 ) + TX, dimefox (1081 ) + TX, dimethoate (262) + TX, dinactin (alternative name) (653) + TX, dinex (1089) + TX, dinex-diclexine (1089) + TX, dinobuton (269) + TX, dinocap (270) + TX, dinocap-4 [CCN] + TX, dinocap-6 [CCN] + TX, dinocton (1090) + TX, dinopenton (1092) + TX, dinosulfon (1097) + TX, dinoterbon (1098) + TX, dioxathion (1 102) + TX, diphenyl sulfone (lUPAC name) (1 103) + TX, disulfiram (alternative name) [CCN] + TX, disulfoton (278) + TX, DNOC (282) + TX, dofenapyn (1 1 13) + TX, doramectin (alternative name) [CCN] + TX, endosulfan (294) + TX, endothion (1 121 ) + TX, EPN (297) + TX, eprinomectin (alternative name) [CCN] + TX, ethion (309) + TX, ethoate-methyl (1 134) + TX, etoxazole (320) + TX, etrimfos (1 142) + TX, fenazaflor (1 147) + TX, fenazaquin (328) + TX, fenbutatin oxide (330) + TX, fenothiocarb (337) + TX, fenpropathrin (342) + TX, fenpyrad (alternative name) + TX, fenpyroximate (345) + TX, fenson (1 157) + TX, fentrifanil (1 161 ) + TX, fenvalerate (349) + TX, fipronil (354) + TX, fluacrypyrim (360) + TX, fluazuron (1 166) + TX, flubenzimine (1 167) + TX, flucycloxuron (366) + TX, flucythrinate (367) + TX, fluenetil (1 169) + TX, flufenoxuron (370) + TX, flumethrin (372) + TX, fluorbenside (1 174) + TX, fluvalinate (1 184) + TX, FMC 1 137 (development code) (1 185) + TX, formetanate (405) + TX, formetanate hydrochloride (405) + TX, formothion (1 192) + TX, formparanate (1 193) + TX, gamma-HCH (430) + TX, glyodin (1205) + TX, halfenprox (424) + TX, heptenophos (432) + TX, hexadecyl cyclopropanecarboxylate (lUPAC/Chemical Abstracts name) (1216) + TX, hexythiazox (441 ) + TX, iodomethane (lUPAC name) (542) + TX, isocarbophos (alternative name) (473) + TX, isopropyl 0-(methoxyaminothiophosphoryl)salicylate (lUPAC name) (473) + TX, ivermectin
(alternative name) [CCN] + TX, jasmolin I (696) + TX, jasmolin II (696) + TX, jodfenphos (1248) + TX, lindane (430) + TX, lufenuron (490) + TX, malathion (492) + TX, malonoben (1254) + TX, mecarbam (502) + TX, mephosfolan (1261 ) + TX, mesulfen (alternative name) [CCN] + TX, methacrifos (1266) + TX, methamidophos (527) + TX, methidathion (529) + TX, methiocarb (530) + TX, methomyl (531 ) + TX, methyl bromide (537) + TX, metolcarb (550) + TX, mevinphos (556) + TX, mexacarbate (1290) + TX, milbemectin (557) + TX, milbemycin oxime (alternative name) [CCN] + TX, mipafox (1293) + TX, monocrotophos (561 ) + TX, morphothion (1300) + TX, moxidectin (alternative name) [CCN] + TX, naled (567) + TX, NC-184 (compound code) + TX, NC- 512 (compound code) + TX, nifluridide (1309) + TX, nikkomycins (alternative name) [CCN] + TX, nitrilacarb (1313) + TX, nitrilacarb 1 :1 zinc chloride complex (1313) + TX, NNI-0101 (compound code) + TX, NNI-0250 (compound code) + TX, omethoate (594) + TX, oxamyl (602) + TX, oxydeprofos (1324) + TX, oxydisulfoton (1325) + TX, pp'-DDT (219) + TX, parathion (615) + TX, permethrin (626) + TX, petroleum oils (alternative name) (628) + TX, phenkapton (1330) + TX, phenthoate (631 ) + TX, phorate (636) + TX, phosalone (637) + TX, phosfolan (1338) + TX, phosmet (638) + TX, phosphamidon (639) + TX, phoxim (642) + TX, pirimiphos-methyl (652) + TX, polychloroterpenes (traditional name) (1347) + TX, polynactins (alternative name) (653) + TX, proclonol (1350) + TX, profenofos (662) + TX, promacyl (1354) + TX, propargite (671 ) + TX, propetamphos (673) + TX, propoxur (678) + TX, prothidathion (1360) + TX, prothoate (1362) + TX, pyrethrin I (696) + TX, pyrethrin II (696) + TX, pyrethrins (696) + TX, pyridaben (699) + TX, pyridaphenthion (701 ) + TX, pyrimidifen (706) + TX, pyrimitate (1370) + TX, quinalphos (71 1 ) + TX, quintiofos (1381 ) + TX, R-1492 (development code) (1382) + TX, RA-17 (development code) (1383) + TX, rotenone (722) + TX, schradan (1389) + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, SI-0009 (compound code) + TX, sophamide (1402) + TX, spirodiclofen (738) + TX, spiromesifen (739) + TX, SSI-121 (development code) (1404) + TX, sulfiram (alternative name) [CCN] + TX, sulfluramid (750) + TX, sulfotep (753) + TX, sulfur (754) + TX, SZI-121 (development code) (757) + TX, tau-fluvalinate (398) + TX, tebufenpyrad (763) + TX, TEPP (1417) + TX, terbam (alternative name) + TX, tetrachlorvinphos (777) + TX, tetradifon (786) + TX, tetranactin (alternative name) (653) + TX, tetrasul (1425) + TX, thiafenox (alternative name) + TX, thiocarboxime (1431 ) + TX, thiofanox (800) + TX, thiometon (801 ) + TX, thioquinox (1436) + TX, thuringiensin (alternative name) [CCN] + TX, triamiphos (1441 ) + TX, triarathene (1443) + TX, triazophos (820) + TX, triazuron (alternative name) + TX, trichlorfon (824) + TX, trifenofos (1455) + TX, trinactin (alternative name) (653) + TX, vamidothion (847) + TX, vaniliprole [CCN] and YI-5302 (compound code) + TX,
an algicide selected from the group of substances consisting of bethoxazin [CCN] + TX, copper dioctanoate (lUPAC name) (170) + TX, copper sulfate (172) + TX, cybutryne [CCN] + TX, dichlone (1052) + TX, dichlorophen (232) + TX, endothal (295) + TX, fentin (347) + TX, hyd rated lime [CCN] + TX, nabam (566) + TX, quinoclamine (714) + TX, quinonamid (1379) + TX, simazine (730) + TX, triphenyltin acetate (lUPAC name) (347) and triphenyltin hydroxide (lUPAC name) (347) + TX,
an anthelmintic selected from the group of substances consisting of abamectin (1 ) + TX, crufomate (101 1 ) + TX, doramectin (alternative name) [CCN] + TX, emamectin (291 ) + TX, emamectin benzoate (291 ) + TX, eprinomectin (alternative name) [CCN] + TX, ivermectin (alternative name) [CCN] + TX, milbemycin oxime (alternative name) [CCN] + TX, moxidectin (alternative name) [CCN] + TX, piperazine [CCN] + TX, selamectin (alternative name) [CCN] + TX, spinosad (737) and thiophanate (1435) + TX,
an avicide selected from the group of substances consisting of chloralose (127) + TX, endrin (1 122) + TX, fenthion (346) + TX, pyridin-4-amine (lUPAC name) (23) and strychnine (745) + TX, a bactericide selected from the group of substances consisting of 1-hydroxy-1 /-/-pyridine-2-thione (lUPAC name) (1222) + TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (lUPAC name) (748) + TX, 8-hydroxyquinoline sulfate (446) + TX, bronopol (97) + TX, copper dioctanoate (lUPAC name) (170) + TX, copper hydroxide (lUPAC name) (169) + TX, cresol [CCN] + TX, dichlorophen (232) + TX, dipyrithione (1 105) + TX, dodicin (1 1 12) + TX, fenaminosulf (1 144) + TX, formaldehyde (404) + TX, hydrargaphen (alternative name) [CCN] + TX, kasugamycin (483) + TX, kasugamycin hydrochloride hydrate (483) + TX, nickel bis(dimethyldithiocarbamate) (lUPAC name) (1308) + TX, nitrapyrin (580) + TX, octhilinone (590) + TX, oxolinic acid (606) + TX, oxytetracycline (61 1 ) + TX, potassium hydroxyquinoline sulfate (446) + TX, probenazole (658) + TX, streptomycin (744) + TX, streptomycin sesquisulfate (744) + TX, tecloftalam (766) + TX, and thiomersal (alternative name) [CCN] + TX,
a biological agent selected from the group of substances consisting of Adoxophyes orana GV
(alternative name) (12) + TX, Agrobacterium radiobacter (alternative name) (13) + TX, Amblyseius spp. (alternative name) (19) + TX, Anagrapha falcifera NPV (alternative name) (28) + TX, Anagrus atomus (alternative name) (29) + TX, Aphelinus abdominalis (alternative name) (33) + TX, Aphidius colemani (alternative name) (34) + TX, Aphidoletes aphidimyza (alternative name) (35) + TX, Autographa californica NPV (alternative name) (38) + TX, Bacillus firmus (alternative name) (48) + TX, Bacillus sphaericus Neide (scientific name) (49) + TX, Bacillus thuringiensis Berliner (scientific name) (51 ) + TX, Bacillus thuringiensis subsp. aizawai (scientific name) (51 ) + TX, Bacillus thuringiensis subsp. israelensis (scientific name) (51 ) + TX, Bacillus thuringiensis subsp. japonensis (scientific name) (51 ) + TX, Bacillus thuringiensis subsp. kurstaki (scientific name) (51 ) + TX, Bacillus thuringiensis subsp. tenebrionis (scientific name) (51 ) + TX, Beauveria bassiana (alternative name) (53) + TX, Beauveria brongniartii (alternative name) (54) + TX, Chrysoperla carnea
(alternative name) (151 ) + TX, Cryptolaemus montrouzieri (alternative name) (178) + TX, Cydia pomonella GV (alternative name) (191 ) + TX, Dacnusa sibirica (alternative name) (212) + TX, Diglyphus isaea (alternative name) (254) + TX, Encarsia formosa (scientific name) (293) + TX, Eretmocerus eremicus (alternative name) (300) + TX, Helicoverpa zea NPV (alternative name) (431 ) + TX, Heterorhabditis bacteriophora and H. megidis (alternative name) (433) + TX, Hippodamia convergens (alternative name) (442) + TX, Leptomastix dactylopii (alternative name) (488) + TX, Macrolophus caliginosus (alternative name) (491 ) + TX, Mamestra brassicae NPV (alternative name) (494) + TX, Metaphycus helvolus (alternative name) (522) + TX, Metarhizium anisopliae var.
acridum (scientific name) (523) + TX, Metarhizium anisopliae var. anisopliae (scientific name) (523) + TX, Neodiprion sertifer NPV and N. lecontei NPV (alternative name) (575) + TX, Orius spp.
(alternative name) (596) + TX, Paecilomyces fumosoroseus (alternative name) (613) + TX,
Phytoseiulus persimilis (alternative name) (644) + TX, Spodoptera exigua multicapsid nuclear polyhedrosis virus (scientific name) (741 ) + TX, Steinernema bibionis (alternative name) (742) + TX, Steinernema carpocapsae (alternative name) (742) + TX, Steinernema feltiae (alternative name) (742) + TX, Steinernema glaseri (alternative name) (742) + TX, Steinernema riobrave (alternative name) (742) + TX, Steinernema riobravis (alternative name) (742) + TX, Steinernema scapterisci (alternative name) (742) + TX, Steinernema spp. (alternative name) (742) + TX, Trichogramma spp. (alternative name) (826) + TX, Typhlodromus occidentalis (alternative name) (844) and Verticillium lecanii (alternative name) (848) + TX, a soil sterilant selected from the group of substances consisting of iodomethane (lUPAC name) (542) and methyl bromide (537) + TX,
a chemosterilant selected from the group of substances consisting of apholate [CCN] + TX, bisazir (alternative name) [CCN] + TX, busulfan (alternative name) [CCN] + TX, diflubenzuron (250) + TX, dimatif (alternative name) [CCN] + TX, hemel [CCN] + TX, hempa [CCN] + TX, metepa [CCN] + TX, methiotepa [CCN] + TX, methyl apholate [CCN] + TX, morzid [CCN] + TX, penfluron
(alternative name) [CCN] + TX, tepa [CCN] + TX, thiohempa (alternative name) [CCN] + TX, thiotepa (alternative name) [CCN] + TX, tretamine (alternative name) [CCN] and uredepa (alternative name) [CCN] + TX,
an insect pheromone selected from the group of substances consisting of (E)-dec-5-en-1-yl acetate with (E)-dec-5-en-1-ol (lUPAC name) (222) + TX, (E)-tridec-4-en-1-yl acetate (lUPAC name) (829) + TX, (E)-6-methylhept-2-en-4-ol (lUPAC name) (541 ) + TX, (E,Z)-tetradeca-4, 10-dien-1-yl acetate (lUPAC name) (779) + TX, (Z)-dodec-7-en-1-yl acetate (lUPAC name) (285) + TX, (Z)-hexadec-l 1- enal (lUPAC name) (436) + TX, (Z)-hexadec-l 1-en-1-yl acetate (lUPAC name) (437) + TX, (Z)- hexadec-13-en-1 1-yn-1-yl acetate (lUPAC name) (438) + TX, (Z)-icos-13-en-10-one (lUPAC name) (448) + TX, (Z)-tetradec-7-en-1-al (lUPAC name) (782) + TX, (Z)-tetradec-9-en-1-ol (lUPAC name) (783) + TX, (Z)-tetradec-9-en-1-yl acetate (lUPAC name) (784) + TX, (7E,9Z)-dodeca-7,9-dien-1-yl acetate (lUPAC name) (283) + TX, (9Z, 1 1 E)-tetradeca-9, 1 1-dien-1-yl acetate (lUPAC name) (780) + TX, (9Z, 12E)-tetradeca-9, 12-dien-1-yl acetate (lUPAC name) (781 ) + TX, 14-methyloctadec-1-ene (lUPAC name) (545) + TX, 4-methylnonan-5-ol with 4-methylnonan-5-one (lUPAC name) (544) + TX, alpha-multistriatin (alternative name) [CCN] + TX, brevicomin (alternative name) [CCN] + TX, codlelure (alternative name) [CCN] + TX, codlemone (alternative name) (167) + TX, cuelure (alternative name) (179) + TX, disparlure (277) + TX, dodec-8-en-1-yl acetate (lUPAC name) (286) + TX, dodec-9-en-1-yl acetate (lUPAC name) (287) + TX, dodeca-8 + TX, 10-dien-1-yl acetate (lUPAC name) (284) + TX, dominicalure (alternative name) [CCN] + TX, ethyl 4-methyloctanoate (lUPAC name) (317) + TX, eugenol (alternative name) [CCN] + TX, frontalin (alternative name) [CCN] + TX, gossyplure (alternative name) (420) + TX, grandlure (421 ) + TX, grandlure I
(alternative name) (421 ) + TX, grandlure II (alternative name) (421 ) + TX, grandlure III (alternative name) (421 ) + TX, grandlure IV (alternative name) (421 ) + TX, hexalure [CCN] + TX, ipsdienol (alternative name) [CCN] + TX, ipsenol (alternative name) [CCN] + TX, japonilure (alternative name) (481 ) + TX, lineatin (alternative name) [CCN] + TX, litlure (alternative name) [CCN] + TX, looplure (alternative name) [CCN] + TX, medlure [CCN] + TX, megatomoic acid (alternative name) [CCN] + TX, methyl eugenol (alternative name) (540) + TX, muscalure (563) + TX, octadeca-2, 13-dien-1-yl acetate (lUPAC name) (588) + TX, octadeca-3, 13-dien-1-yl acetate (lUPAC name) (589) + TX, orfralure (alternative name) [CCN] + TX, oryctalu re (alternative name) (317) + TX, ostramone
(alternative name) [CCN] + TX, siglure [CCN] + TX, sordidin (alternative name) (736) + TX, sulcatol (alternative name) [CCN] + TX, tetradec-1 1-en-1-yl acetate (lUPAC name) (785) + TX, trimedlure (839) + TX, trimedlure A (alternative name) (839) + TX, trimedlure B-, (alternative name) (839) + TX, trimedlure B2 (alternative name) (839) + TX, trimedlure C (alternative name) (839) and trunc-call (alternative name) [CCN] + TX,
an insect repellent selected from the group of substances consisting of 2-(octylthio)ethanol (lUPAC name) (591 ) + TX, butopyronoxyl (933) + TX, butoxy(polypropylene glycol) (936) + TX, dibutyl adipate (lUPAC name) (1046) + TX, dibutyl phthalate (1047) + TX, dibutyl succinate (lUPAC name) (1048) + TX, diethyltoluamide [CCN] + TX, dimethyl carbate [CCN] + TX, dimethyl phthalate [CCN] + TX, ethyl hexanediol (1 137) + TX, hexamide [CCN] + TX, methoquin-butyl (1276) + TX, methylneodecanamide [CCN] + TX, oxamate [CCN] and picaridin [CCN] + TX,
an insecticide selected from the group of substances consisting of 1-dichloro-1-nitroethane
(lUPAC/Chemical Abstracts name) (1058) + TX, 1 , 1-dichloro-2,2-bis(4-ethylphenyl)ethane (lUPAC name) (1056), + TX, 1 ,2-dichloropropane (lUPAC/Chemical Abstracts name) (1062) + TX, 1 ,2- dichloropropane with 1 ,3-dichloropropene (lUPAC name) (1063) + TX, 1-bromo-2-chloroethane (lUPAC/Chemical Abstracts name) (916) + TX, 2,2,2-trichloro-1-(3,4-dichlorophenyl)ethyl acetate (lUPAC name) (1451 ) + TX, 2,2-dichlorovinyl 2-ethy Isu If i ny lethyl methyl phosphate (lUPAC name) (1066) + TX, 2-(1 ,3-dithiolan-2-yl)phenyl dimethylcarbamate (lUPAC/ Chemical Abstracts name)
(1 109) + TX, 2-(2-butoxyethoxy)ethyl thiocyanate (lUPAC/Chemical Abstracts name) (935) + TX, 2- (4,5-dimethyl-1 ,3-dioxolan-2-yl)phenyl methylcarbamate (lUPAC/ Chemical Abstracts name) (1084) + TX, 2-(4-chloro-3,5-xylyloxy)ethanol (lUPAC name) (986) + TX, 2-chlorovinyl diethyl phosphate (lUPAC name) (984) + TX, 2-imidazolidone (lUPAC name) (1225) + TX, 2-isovalerylindan-1 ,3-dione (lUPAC name) (1246) + TX, 2-methyl(prop-2-ynyl)aminophenyl methylcarbamate (lUPAC name) (1284) + TX, 2-thiocyanatoethyl laurate (lUPAC name) (1433) + TX, 3-bromo-1-chloroprop-1-ene (lUPAC name) (917) + TX, 3-methyl-1-phenylpyrazol-5-yl dimethylcarbamate (lUPAC name) (1283) + TX, 4-methyl(prop-2-ynyl)amino-3,5-xylyl methylcarbamate (lUPAC name) (1285) + TX, 5,5-dimethyl- 3-oxocyclohex-1-enyl dimethylcarbamate (lUPAC name) (1085) + TX, abamectin (1 ) + TX, acephate (2) + TX, acetamiprid (4) + TX, acethion (alternative name) [CCN] + TX, acetoprole [CCN] + TX, acrinathrin (9) + TX, acrylonitrile (lUPAC name) (861 ) + TX, alanycarb (15) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, aldrin (864) + TX, allethrin (17) + TX, allosamidin (alternative name) [CCN] + TX, allyxycarb (866) + TX, alpha-cypermethrin (202) + TX, alpha- ecdysone (alternative name) [CCN] + TX, aluminium phosphide (640) + TX, amidithion (870) + TX, amidothioate (872) + TX, aminocarb (873) + TX, amiton (875) + TX, amiton hydrogen oxalate
(875) + TX, amitraz (24) + TX, anabasine (877) + TX, athidathion (883) + TX, AVI 382 (compound code) + TX, AZ 60541 (compound code) + TX, azadirachtin (alternative name) (41 ) + TX, azamethiphos (42) + TX, azinphos-ethyl (44) + TX, azinphos-methyl (45) + TX, azothoate (889) + TX, Bacillus thuringiensis delta endotoxins (alternative name) (52) + TX, barium hexafluorosilicate (alternative name) [CCN] + TX, barium polysulfide (lUPAC/Chemical Abstracts name) (892) + TX, barthrin [CCN] + TX, Bayer 22/190 (development code) (893) + TX, Bayer 22408 (development code) (894) + TX, bendiocarb (58) + TX, benfuracarb (60) + TX, bensultap (66) + TX, beta- cyfluthrin (194) + TX, beta-cypermethrin (203) + TX, bifenthrin (76) + TX, bioallethrin (78) + TX, bioallethrin S-cyclopentenyl isomer (alternative name) (79) + TX, bioethanomethrin [CCN] + TX, biopermethrin (908) + TX, bioresmethrin (80) + TX, bis(2-chloroethyl) ether (lUPAC name) (909) + TX, bistrifluron (83) + TX, borax (86) + TX, brofenvalerate (alternative name) + TX, bromfenvinfos (914) + TX, bromocyclen (918) + TX, bromo-DDT (alternative name) [CCN] + TX, bromophos (920) + TX, bromophos-ethyl (921 ) + TX, bufencarb (924) + TX, buprofezin (99) + TX, butacarb (926) + TX, butathiofos (927) + TX, butocarboxim (103) + TX, butonate (932) + TX,
butoxycarboxim (104) + TX, butylpyridaben (alternative name) + TX, cadusafos (109) + TX, calcium arsenate [CCN] + TX, calcium cyanide (444) + TX, calcium polysulfide (lUPAC name) (1 1 1 ) + TX, camphechlor (941 ) + TX, carbanolate (943) + TX, carbaryl (1 15) + TX, carbofuran (1 18) + TX, carbon disulfide (lUPAC/Chemical Abstracts name) (945) + TX, carbon tetrachloride (lUPAC name) (946) + TX, carbophenothion (947) + TX, carbosulfan (1 19) + TX, cartap (123) + TX, cartap hydrochloride (123) + TX, cevadine (alternative name) (725) + TX, chlorbicyclen (960) + TX, chlordane (128) + TX, chlordecone (963) + TX, chlordimeform (964) + TX, chlordimeform hydrochloride (964) + TX, chlorethoxyfos (129) + TX, chlorfenapyr (130) + TX, chlorfenvinphos (131 ) + TX, chlorfluazuron (132) + TX, chlormephos (136) + TX, chloroform [CCN] + TX, chloropicrin (141 ) + TX, chlorphoxim (989) + TX, chlorprazophos (990) + TX, chlorpyrifos (145) + TX, chlorpyrifos-methyl (146) + TX, chlorthiophos (994) + TX, chromafenozide (150) + TX, cinerin I (696) + TX, cinerin II (696) + TX, cinerins (696) + TX, cis-resmethrin (alternative name) + TX, cismethrin (80) + TX, clocythrin (alternative name) + TX, cloethocarb (999) + TX, closantel (alternative name) [CCN] + TX, clothianidin (165) + TX, copper acetoarsenite [CCN] + TX, copper arsenate [CCN] + TX, copper oleate [CCN] + TX, coumaphos (174) + TX, coumithoate (1006) + TX, crotamiton (alternative name) [CCN] + TX, crotoxyphos (1010) + TX, crufomate (101 1 ) + TX, cryolite (alternative name) (177) + TX, CS 708 (development code) (1012) + TX, cyanofenphos (1019) + TX, cyanophos (184) + TX, cyanthoate (1020) + TX, cyclethrin [CCN] + TX,
cycloprothrin (188) + TX, cyfluthrin (193) + TX, cyhalothrin (196) + TX, cypermethrin (201 ) + TX, cyphenothrin (206) + TX, cyromazine (209) + TX, cythioate (alternative name) [CCN] + TX, d- limonene (alternative name) [CCN] + TX, cf-tetramethrin (alternative name) (788) + TX, DAEP (1031 ) + TX, dazomet (216) + TX, DDT (219) + TX, decarbofu ran (1034) + TX, deltamethrin (223) + TX, demephion (1037) + TX, demephion-0 (1037) + TX, demephion-S (1037) + TX, demeton (1038) + TX, demeton-methyl (224) + TX, demeton-0 (1038) + TX, demeton-O-methyl (224) + TX, demeton-S (1038) + TX, demeton-S-methyl (224) + TX, demeton-S-methylsulphon (1039) + TX, diafenthiuron (226) + TX, dialifos (1042) + TX, diamidafos (1044) + TX, diazinon (227) + TX, dicapthon (1050) + TX, dichlofenthion (1051 ) + TX, dichlorvos (236) + TX, dicliphos (alternative name) + TX, dicresyl (alternative name) [CCN] + TX, dicrotophos (243) + TX, dicyclanil (244) + TX, dieldrin (1070) + TX, diethyl 5-methylpyrazol-3-yl phosphate (lUPAC name) (1076) + TX, diflubenzuron (250) + TX, dilor (alternative name) [CCN] + TX, dimefluthrin [CCN] + TX, dimefox (1081 ) + TX, dimetan (1085) + TX, dimethoate (262) + TX, dimethrin (1083) + TX,
dimethylvinphos (265) + TX, dimetilan (1086) + TX, dinex (1089) + TX, dinex-diclexine (1089) + TX, dinoprop (1093) + TX, dinosam (1094) + TX, dinoseb (1095) + TX, dinotefuran (271 ) + TX, diofenolan (1099) + TX, dioxabenzofos (1 100) + TX, dioxacarb (1 101 ) + TX, dioxathion (1 102) + TX, disulfoton (278) + TX, dithicrofos (1 108) + TX, DNOC (282) + TX, doramectin (alternative name) [CCN] + TX, DSP (1 1 15) + TX, ecdysterone (alternative name) [CCN] + TX, El 1642 (development code) (1 1 18) + TX, emamectin (291 ) + TX, emamectin benzoate (291 ) + TX, EMPC (1 120) + TX, empenthrin (292) + TX, endosulfan (294) + TX, endothion (1 121 ) + TX, endrin (1 122) + TX, EPBP (1 123) + TX, EPN (297) + TX, epofenonane (1 124) + TX, eprinomectin
(alternative name) [CCN] + TX, esfenvalerate (302) + TX, etaphos (alternative name) [CCN] + TX, ethiofencarb (308) + TX, ethion (309) + TX, ethiprole (310) + TX, ethoate-m ethyl (1 134) + TX, ethoprophos (312) + TX, ethyl formate (lUPAC name) [CCN] + TX, ethyl-DDD (alternative name) (1056) + TX, ethylene dibromide (316) + TX, ethylene dichloride (chemical name) (1 136) + TX, ethylene oxide [CCN] + TX, etofenprox (319) + TX, etrimfos (1 142) + TX, EXD (1 143) + TX, famphur (323) + TX, fenamiphos (326) + TX, fenazaflor (1 147) + TX, fenchlorphos (1 148) + TX, fenethacarb (1 149) + TX, fenfluthrin (1 150) + TX, fenitrothion (335) + TX, fenobucarb (336) + TX, fenoxacrim (1 153) + TX, fenoxycarb (340) + TX, fenpirithrin (1 155) + TX, fenpropathrin (342) + TX, fenpyrad (alternative name) + TX, fensulfothion (1 158) + TX, fenthion (346) + TX, fenth ion-ethyl [CCN] + TX, fenvalerate (349) + TX, fipronil (354) + TX, flonicamid (358) + TX, flubendiamide (CAS. Reg. No.: 272451-65-7) + TX, flucofuron (1 168) + TX, flucycloxuron (366) + TX,
flucythrinate (367) + TX, fluenetil (1 169) + TX, flufenerim [CCN] + TX, flufenoxuron (370) + TX, flufenprox (1 171 ) + TX, flumethrin (372) + TX, fluvalinate (1 184) + TX, FMC 1 137 (development code) (1 185) + TX, fonofos (1 191 ) + TX, formetanate (405) + TX, formetanate hydrochloride (405) + TX, formothion (1 192) + TX, formparanate (1 193) + TX, fosmethilan (1 194) + TX, fospirate (1 195) + TX, fosthiazate (408) + TX, fosthietan (1 196) + TX, furathiocarb (412) + TX, furethrin (1200) + TX, gamma-cyhalothrin (197) + TX, gamma-HCH (430) + TX, guazatine (422) + TX, guazatine acetates (422) + TX, GY-81 (development code) (423) + TX, halfenprox (424) + TX, halofenozide (425) + TX, HCH (430) + TX, HEOD (1070) + TX, heptachlor (121 1 ) + TX, heptenophos (432) + TX, heterophos [CCN] + TX, hexaflumuron (439) + TX, HHDN (864) + TX, hydramethylnon (443) + TX, hydrogen cyanide (444) + TX, hydroprene (445) + TX, hyquincarb (1223) + TX, imidacloprid (458) + TX, imiprothrin (460) + TX, indoxacarb (465) + TX,
iodomethane (lUPAC name) (542) + TX, IPSP (1229) + TX, isazofos (1231 ) + TX, isobenzan (1232) + TX, isocarbophos (alternative name) (473) + TX, isodrin (1235) + TX, isofenphos (1236) + TX, isolane (1237) + TX, isoprocarb (472) + TX, isopropyl 0-(methoxy- aminothiophosphoryl)salicylate (lUPAC name) (473) + TX, isoprothiolane (474) + TX, isothioate (1244) + TX, isoxathion (480) + TX, ivermectin (alternative name) [CCN] + TX, jasmolin I (696) + TX, jasmolin II (696) + TX, jodfenphos (1248) + TX, juvenile hormone I (alternative name) [CCN] + TX, juvenile hormone II (alternative name) [CCN] + TX, juvenile hormone III (alternative name) [CCN] + TX, kelevan (1249) + TX, kinoprene (484) + TX, lambda-cyhalothrin (198) + TX, lead arsenate [CCN] + TX, lepimectin (CCN) + TX, leptophos (1250) + TX, lindane (430) + TX, lirimfos (1251 ) + TX, lufenuron (490) + TX, lythidathion (1253) + TX, m-cumenyl methylcarbamate (lUPAC name) (1014) + TX, magnesium phosphide (lUPAC name) (640) + TX, malathion (492) + TX, malonoben (1254) + TX, mazidox (1255) + TX, mecarbam (502) + TX, mecarphon (1258) + TX, menazon (1260) + TX, mephosfolan (1261 ) + TX, mercurous chloride (513) + TX, mesulfenfos (1263) + TX, metaflumizone (CCN) + TX, metam (519) + TX, metam-potassium (alternative name) (519) + TX, metam-sodium (519) + TX, methacrifos (1266) + TX, methamidophos (527) + TX, methanesulfonyl fluoride (lUPAC/Chemical Abstracts name) (1268) + TX, methidathion (529) + TX, methiocarb (530) + TX, methocrotophos (1273) + TX, methomyl (531 ) + TX, methoprene (532) + TX, methoquin-butyl (1276) + TX, methothrin (alternative name) (533) + TX, methoxychlor (534) + TX, methoxyfenozide (535) + TX, methyl bromide (537) + TX, methyl isothiocyanate (543) + TX, methylchloroform (alternative name) [CCN] + TX, methylene chloride [CCN] + TX, metofluthrin [CCN] + TX, metolcarb (550) + TX, metoxadiazone (1288) + TX, mevinphos (556) + TX, mexacarbate (1290) + TX, milbemectin (557) + TX, milbemycin oxime (alternative name) [CCN] + TX, mipafox (1293) + TX, mirex (1294) + TX, monocrotophos (561 ) + TX, morphothion (1300) + TX, moxidectin (alternative name) [CCN] + TX, naftalofos (alternative name) [CCN] + TX, naled (567) + TX, naphthalene (lUPAC/Chemical Abstracts name) (1303) + TX, NC-170 (development code) (1306) + TX, NC-184 (compound code) + TX, nicotine (578) + TX, nicotine sulfate (578) + TX, nifluridide (1309) + TX, nitenpyram (579) + TX, nithiazine (131 1 ) + TX, nitrilacarb (1313) +
TX, nitrilacarb 1 :1 zinc chloride complex (1313) + TX, NNI-0101 (compound code) + TX, NNI-0250 (compound code) + TX, nornicotine (traditional name) (1319) + TX, novaluron (585) + TX, noviflumuron (586) + TX, 0-5-dichloro-4-iodophenyl O-ethyl ethylphosphonothioate (lUPAC name) (1057) + TX, 0,0-diethyl 0-4-methyl-2-oxo-2H-chromen-7-yl phosphorothioate (lUPAC name) (1074) + TX, Ο,Ο-diethyl 0-6-methyl-2-propylpyrimidin-4-yl phosphorothioate (lUPAC name) (1075) + TX, 0,0, 0',Ο'-tetrapropyl dithiopyrophosphate (lUPAC name) (1424) + TX, oleic acid (lUPAC name) (593) + TX, omethoate (594) + TX, oxamyl (602) + TX, oxydemeton-methyl (609) + TX, oxydeprofos (1324) + TX, oxydisulfoton (1325) + TX, pp'-DDT (219) + TX, para-dichlorobenzene [CCN] + TX, parathion (615) + TX, parathion-methyl (616) + TX, penfluron (alternative name) [CCN] + TX, pentachlorophenol (623) + TX, pentachlorophenyl laurate (lUPAC name) (623) + TX, permethrin (626) + TX, petroleum oils (alternative name) (628) + TX, PH 60-38 (development code) (1328) + TX, phenkapton (1330) + TX, phenothrin (630) + TX, phenthoate (631 ) + TX, phorate (636) + TX, phosalone (637) + TX, phosfolan (1338) + TX, phosmet (638) + TX, phosnichlor (1339) + TX, phosphamidon (639) + TX, phosphine (lUPAC name) (640) + TX, phoxim (642) + TX, phoxim-methyl (1340) + TX, pirimetaphos (1344) + TX, pirimicarb (651 ) + TX, pirimiphos-ethyl
(1345) + TX, pirimiphos-methyl (652) + TX, polychlorodicyclopentadiene isomers (lUPAC name)
(1346) + TX, polychloroterpenes (traditional name) (1347) + TX, potassium arsenite [CCN] + TX, potassium thiocyanate [CCN] + TX, prallethrin (655) + TX, precocene I (alternative name) [CCN] + TX, precocene II (alternative name) [CCN] + TX, precocene III (alternative name) [CCN] + TX, primidophos (1349) + TX, profenofos (662) + TX, profluthrin [CCN] + TX, promacyl (1354) + TX, promecarb (1355) + TX, propaphos (1356) + TX, propetamphos (673) + TX, propoxur (678) + TX, prothidathion (1360) + TX, prothiofos (686) + TX, prothoate (1362) + TX, protrifenbute [CCN] + TX, pymetrozine (688) + TX, pyraclofos (689) + TX, pyrazophos (693) + TX, pyresmethrin (1367) + TX, pyrethrin I (696) + TX, pyrethrin II (696) + TX, pyrethrins (696) + TX, pyridaben (699) + TX, pyridalyl (700) + TX, pyridaphenthion (701 ) + TX, pyrimidifen (706) + TX, pyrimitate (1370) + TX, pyriproxyfen (708) + TX, quassia (alternative name) [CCN] + TX, quinalphos (71 1 ) + TX, quinalphos-methyl (1376) + TX, quinothion (1380) + TX, quintiofos (1381 ) + TX, R-1492
(development code) (1382) + TX, rafoxanide (alternative name) [CCN] + TX, resmethrin (719) + TX, rotenone (722) + TX, RU 15525 (development code) (723) + TX, RU 25475 (development code) (1386) + TX, ryania (alternative name) (1387) + TX, ryanodine (traditional name) (1387) + TX, sabadilla (alternative name) (725) + TX, schradan (1389) + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, SI-0009 (compound code) + TX, SI-0205 (compound code) + TX, SI-0404 (compound code) + TX, SI-0405 (compound code) + TX, silafluofen (728) + TX, SN 72129 (development code) (1397) + TX, sodium arsenite [CCN] + TX, sodium cyanide (444) + TX, sodium fluoride (lUPAC/Chemical Abstracts name) (1399) + TX, sodium
hexafluorosilicate (1400) + TX, sodium pentachlorophenoxide (623) + TX, sodium selenate (lUPAC name) (1401 ) + TX, sodium thiocyanate [CCN] + TX, sophamide (1402) + TX, spinosad (737) + TX, spiromesifen (739) + TX, spirotetrmat (CCN) + TX, sulcofuron (746) + TX, sulcofuron-sodium (746) + TX, sulfluramid (750) + TX, sulfotep (753) + TX, sulfuryl fluoride (756) + TX, sulprofos
(1408) + TX, tar oils (alternative name) (758) + TX, tau-fluvalinate (398) + TX, tazimcarb (1412) + TX, TDE (1414) + TX, tebufenozide (762) + TX, tebufenpyrad (763) + TX, tebupirimfos (764) + TX, teflubenzuron (768) + TX, tefluthrin (769) + TX, temephos (770) + TX, TEPP (1417) + TX, terallethrin (1418) + TX, terbam (alternative name) + TX, terbufos (773) + TX, tetrachloroethane [CCN] + TX, tetrachlorvinphos (777) + TX, tetramethrin (787) + TX, theta-cypermethrin (204) + TX, thiacloprid (791 ) + TX, thiafenox (alternative name) + TX, thiamethoxam (792) + TX, thicrofos (1428) + TX, thiocarboxime (1431 ) + TX, thiocyclam (798) + TX, thiocyclam hydrogen oxalate (798) + TX, thiodicarb (799) + TX, thiofanox (800) + TX, thiometon (801 ) + TX, thionazin (1434) + TX, thiosultap (803) + TX, thiosultap-sodium (803) + TX, thuringiensin (alternative name) [CCN] + TX, tolfenpyrad (809) + TX, tralomethrin (812) + TX, transfluthrin (813) + TX, transpermethrin (1440) + TX, triamiphos (1441 ) + TX, triazamate (818) + TX, triazophos (820) + TX, triazuron (alternative name) + TX, trichlorfon (824) + TX, trichlormetaphos-3 (alternative name) [CCN] + TX, trichloronat (1452) + TX, trifenofos (1455) + TX, triflumuron (835) + TX, trimethacarb (840) + TX, triprene (1459) + TX, vamidothion (847) + TX, vaniliprole [CCN] + TX, veratridine (alternative name) (725) + TX, veratrine (alternative name) (725) + TX, XMC (853) + TX, xylylcarb (854) + TX, YI-5302 (compound code) + TX, zeta-cypermethrin (205) + TX, zetamethrin (alternative name) + TX, zinc phosphide (640) + TX, zolaprofos (1469) and ZXI 8901 (development code) (858) + TX, cyantraniliprole [736994-63-19 + TX, chlorantraniliprole [500008-45-7] + TX, cyenopyrafen [560121- 52-0] + TX, cyflumetofen [400882-07-7] + TX, pyrifluquinazon [337458-27-2] + TX, spinetoram
[187166-40-1 + 187166-15-0] + TX, spirotetramat [203313-25-1] + TX, sulfoxaflor [946578-00-3] + TX, flufiprole [704886-18-0] + TX, meperfluthrin [915288-13-0] + TX, tetramethylfluthrin [84937-88-2] + TX, triflumezopyrim (disclosed in WO 2012/0921 15) + TX, fluxametamide (WO 2007/026965) + TX, epsilon-metofluthrin [240494-71-7] + TX, epsilon-momfluorothrin [1065124-65-3] + TX,
fluazaindolizine [1254304-22-7] + TX, chloroprallethrin [399572-87-3] + TX, fluxametamide [928783- 29-3] + TX, cyhalodiamide [1262605-53-7] + TX, tioxazafen [330459-31-9] + TX, broflanilide [1207727- 04-5] + TX, flufiprole [704886-18-0] + TX, cyclaniliprole [1031756-98-5] + TX, tetraniliprole [1229654- 66-3] + TX, guadipyr (described in WO2010/060231 ) + TX, cycloxaprid (described in
WO2005/077934) + TX,
a molluscicide selected from the group of substances consisting of bis(tributyltin) oxide (lUPAC name) (913) + TX, bromoacetamide [CCN] + TX, calcium arsenate [CCN] + TX, cloethocarb (999) + TX, copper acetoarsenite [CCN] + TX, copper sulfate (172) + TX, fentin (347) + TX, ferric phosphate (lUPAC name) (352) + TX, metaldehyde (518) + TX, methiocarb (530) + TX, niclosamide (576) + TX, niclosamide-olamine (576) + TX, pentachlorophenol (623) + TX, sodium pentachlorophenoxide (623) + TX, tazimcarb (1412) + TX, thiodicarb (799) + TX, tributyltin oxide (913) + TX, trifenmorph (1454) + TX, trimethacarb (840) + TX, triphenyltin acetate (lUPAC name) (347) and triphenyltin hydroxide (lUPAC name) (347) + TX, pyriprole [394730-71-3] + TX,
a nematicide selected from the group of substances consisting of AKD-3088 (compound code) + TX, 1 ,2-dibromo-3-chloropropane (lUPAC/Chemical Abstracts name) (1045) + TX, 1 ,2-dichloropropane (lUPAC/ Chemical Abstracts name) (1062) + TX, 1 ,2-dichloropropane with 1 ,3-dichloropropene
(lUPAC name) (1063) + TX, 1 ,3-dichloropropene (233) + TX, 3,4-dichlorotetrahydrothiophene 1 ,1- dioxide (lUPAC/Chemical Abstracts name) (1065) + TX, 3-(4-chlorophenyl)-5-methylrhodanine (lUPAC name) (980) + TX, 5-methyl-6-thioxo-1 ,3,5-thiadiazinan-3-ylacetic acid (lUPAC name) (1286) + TX, 6-isopentenylaminopurine (alternative name) (210) + TX, abamectin (1 ) + TX, acetoprole [CCN] + TX, alanycarb (15) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, AZ 60541
(compound code) + TX, benclothiaz [CCN] + TX, benomyl (62) + TX, butylpyridaben (alternative name) + TX, cadusafos (109) + TX, carbofuran (1 18) + TX, carbon disulfide (945) + TX, carbosulfan (1 19) + TX, chloropicrin (141 ) + TX, chlorpyrifos (145) + TX, cloethocarb (999) + TX, cytokinins (alternative name) (210) + TX, dazomet (216) + TX, DBCP (1045) + TX, DCIP (218) + TX, diamidafos (1044) + TX, dichlofenthion (1051 ) + TX, dicliphos (alternative name) + TX, dimethoate (262) + TX, doramectin (alternative name) [CCN] + TX, emamectin (291 ) + TX, emamectin benzoate (291 ) + TX, eprinomectin (alternative name) [CCN] + TX, ethoprophos (312) + TX, ethylene dibromide (316) + TX, fenamiphos (326) + TX, fenpyrad (alternative name) + TX, fensulfothion (1 158) + TX, fosthiazate (408) + TX, fosthietan (1 196) + TX, furfural (alternative name) [CCN] + TX, GY-81 (development code) (423) + TX, heterophos [CCN] + TX, iodomethane (lUPAC name) (542) + TX, isamidofos (1230) + TX, isazofos (1231 ) + TX, ivermectin (alternative name) [CCN] + TX, kinetin (alternative name) (210) + TX, mecarphon (1258) + TX, metam (519) + TX, metam-potassium (alternative name) (519) + TX, metam-sodium (519) + TX, methyl bromide (537) + TX, methyl isothiocyanate (543) + TX, milbemycin oxime (alternative name) [CCN] + TX, moxidectin (alternative name) [CCN] + TX, Myrothecium verrucaria composition (alternative name) (565) + TX, NC-184 (compound code) + TX, oxamyl (602) + TX, phorate (636) + TX,
phosphamidon (639) + TX, phosphocarb [CCN] + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, spinosad (737) + TX, terbam (alternative name) + TX, terbufos (773) + TX, tetrachlorothiophene (lUPAC/ Chemical Abstracts name) (1422) + TX, thiafenox (alternative name) + TX, thionazin (1434) + TX, triazophos (820) + TX, triazuron (alternative name) + TX, xylenols [CCN] + TX, YI-5302 (compound code) and zeatin (alternative name) (210) + TX, fluensulfone [318290-98-1] + TX,
a nitrification inhibitor selected from the group of substances consisting of potassium ethylxanthate [CCN] and nitrapyrin (580) + TX,
a plant activator selected from the group of substances consisting of acibenzolar (6) + TX, acibenzolar-S-methyl (6) + TX, probenazole (658) and Reynoutria sachalinensis extract (alternative name) (720) + TX,
a rodenticide selected from the group of substances consisting of 2-isovalerylindan-1 ,3-dione (lUPAC name) (1246) + TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (lUPAC name) (748) + TX, alpha- chlorohydrin [CCN] + TX, aluminium phosphide (640) + TX, antu (880) + TX, arsenous oxide (882) + TX, barium carbonate (891 ) + TX, bisthiosemi (912) + TX, brodifacoum (89) + TX,
bromadiolone (91 ) + TX, bromethalin (92) + TX, calcium cyanide (444) + TX, chloralose (127) + TX, chlorophacinone (140) + TX, cholecalciferol (alternative name) (850) + TX, coumachlor (1004) + TX, coumafuryl (1005) + TX, coumatetralyl (175) + TX, crimidine (1009) + TX, difenacoum (246) + TX, difethialone (249) + TX, diphacinone (273) + TX, ergocalciferol (301 ) + TX, flocoumafen (357) + TX, fluoroacetamide (379) + TX, flupropadine (1 183) + TX, flupropadine hydrochloride (1 183) + TX, gamma-HCH (430) + TX, HCH (430) + TX, hydrogen cyanide (444) + TX, iodomethane (lUPAC name) (542) + TX, lindane (430) + TX, magnesium phosphide (lUPAC name) (640) + TX, methyl bromide (537) + TX, norbormide (1318) + TX, phosacetim (1336) + TX, phosphine (lUPAC name) (640) + TX, phosphorus [CCN] + TX, pindone (1341 ) + TX, potassium arsenite [CCN] + TX, pyrinuron (1371 ) + TX, scilliroside (1390) + TX, sodium arsenite [CCN] + TX, sodium cyanide (444) + TX, sodium fluoroacetate (735) + TX, strychnine (745) + TX, thallium sulfate [CCN] + TX, warfarin (851 ) and zinc phosphide (640) + TX,
a synergist selected from the group of substances consisting of 2-(2-butoxyethoxy)ethyl piperonylate (lUPAC name) (934) + TX, 5-(1 ,3-benzodioxol-5-yl)-3-hexylcyclohex-2-enone (lUPAC name) (903) + TX, farnesol with nerolidol (alternative name) (324) + TX, MB-599 (development code) (498) + TX, MGK 264 (development code) (296) + TX, piperonyl butoxide (649) + TX, piprotal (1343) + TX, propyl isomer (1358) + TX, S421 (development code) (724) + TX, sesamex (1393) + TX, sesasmolin (1394) and sulfoxide (1406) + TX,
an animal repellent selected from the group of substances consisting of anthraquinone (32) + TX, chloralose (127) + TX, copper naphthenate [CCN] + TX, copper oxychloride (171 ) + TX, diazinon (227) + TX, dicyclopentadiene (chemical name) (1069) + TX, guazatine (422) + TX, guazatine acetates (422) + TX, methiocarb (530) + TX, pyridin-4-amine (lUPAC name) (23) + TX, thiram (804) + TX, trimethacarb (840) + TX, zinc naphthenate [CCN] and ziram (856) + TX,
a virucide selected from the group of substances consisting of imanin (alternative name) [CCN] and ribavirin (alternative name) [CCN] + TX,
a wound protectant selected from the group of substances consisting of mercuric oxide (512) + TX, octhilinone (590) and thiophanate-methyl (802) + TX, and biologically active compounds selected from the group consisting of azaconazole (60207-31-0] + TX, bitertanol [70585-36-3] + TX, bromuconazole [1 16255-48-2] + TX, cyproconazole [94361-06-5] + TX, difenoconazole [1 19446-68-3] + TX, diniconazole [83657-24-3] + TX, epoxiconazole
[106325-08-0] + TX, fenbuconazole [1 14369-43-6] + TX, fluquinconazole [136426-54-5] + TX, flusilazole [85509-19-9] + TX, flutriafol [76674-21-0] + TX, hexaconazole [79983-71-4] + TX, imazalil [35554-44-0] + TX, imibenconazole [86598-92-7] + TX, ipconazole [125225-28-7] + TX, metconazole [1251 16-23-6] + TX, myclobutanil [88671-89-0] + TX, pefurazoate [101903-30-4] + TX, penconazole [66246-88-6] + TX, prothioconazole [178928-70-6] + TX, pyrifenox [88283-41-4] + TX, prochloraz [67747-09-5] + TX, propiconazole [60207-90-1] + TX, simeconazole [149508-90-7] + TX, tebuconazole [107534-96-3] + TX, tetraconazole [1 12281-77-3] + TX, triadimefon [43121-43-3] + TX, triad imenol [55219-65-3] + TX, triflumizole [99387-89-0] + TX, triticonazole [131983-72-7] + TX, ancymidol [12771-68-5] + TX, fenarimol [60168-88-9] + TX, nuarimol [63284-71-9] + TX, bupirimate [41483-43-6] + TX, dimethirimol [5221-53-4] + TX, ethirimol [23947-60-6] + TX, dodemorph [1593-77-7] + TX, fenpropidine [67306-00-7] + TX, fenpropimorph [67564-91-4] + TX, spiroxamine [1 18134-30-8] + TX, tridemorph [81412-43-3] + TX, cyprodinil [121552-61-2] + TX, mepanipyrim [1 10235-47-7] + TX, pyrimethanil [531 12-28-0] + TX, fenpiclonil [74738-17-3] + TX, fludioxonil [131341-86-1] + TX, benalaxyl [71626-1 1-4] + TX, furalaxyl [57646-30-7] + TX, meta- laxyl [57837-19-1] + TX, R-metalaxyl [70630-17-0] + TX, ofurace [58810-48-3] + TX, oxadixyl [77732-09-3] + TX, benomyl [17804-35-2] + TX, carbendazim [10605-21-7] + TX, debacarb
[62732-91-6] + TX, fuberidazole [3878-19-1] + TX, thiabendazole [148-79-8] + TX, chlozolinate [84332-86-5] + TX, dichlozoline [24201-58-9] + TX, iprodione [36734-19-7] + TX, myclozoline [54864-61-8] + TX, procymidone [32809-16-8] + TX, vinclozoline [50471-44-8] + TX, boscalid [188425-85-6] + TX, carboxin [5234-68-4] + TX, fenfuram [24691-80-3] + TX, flutolanil [66332-96- 5] + TX, mepronil [55814-41-0] + TX, oxycarboxin [5259-88-1] + TX, penthiopyrad [183675-82-3] + TX, thifluzamide [130000-40-7] + TX, guazatine [108173-90-6] + TX, dodine [2439-10-3] [1 12-65- 2] (free base) + TX, iminoctadine [13516-27-3] + TX, azoxystrobin [131860-33-8] + TX, dimoxystrobin [149961-52-4] + TX, enestroburin {Proc. BCPC, Int. Congr., Glasgow, 2003, 1 , 93} + TX, fluoxastrobin [361377-29-9] + TX, kresoxim-methyl [143390-89-0] + TX, metominostrobin [133408-50-1] + TX, trifloxystrobin [141517-21-7] + TX, orysastrobin [248593-16-0] + TX, picoxystrobin [1 17428-22-5] + TX, pyraclostrobin [175013-18-0] + TX, ferbam [14484-64-1] + TX, mancozeb [8018-01-7] + TX, maneb [12427-38-2] + TX, metiram [9006-42-2] + TX, propineb [12071-83-9] + TX, thiram [137-26-8] + TX, zineb [12122-67-7] + TX, ziram [137-30-4] + TX, captafol [2425-06-1] + TX, captan [133-06-2] + TX, dichlofluanid [1085-98-9] + TX, fluoroimide [41205-21-4] + TX, folpet [133-07-3 ] + TX, tolylfluanid [731-27-1] + TX, bordeaux mixture [801 1- 63-0] + TX, copperhydroxid [20427-59-2] + TX, copperoxychlorid [1332-40-7] + TX, coppersulfat [7758-98-7] + TX, copperoxid [1317-39-1] + TX, mancopper [53988-93-5] + TX, oxine-copper [10380-28-6] + TX, dinocap [131-72-6] + TX, nitrothal-isopropyl [10552-74-6] + TX, edifenphos [17109-49-8] + TX, iprobenphos [26087-47-8] + TX, isoprothiolane [50512-35-1] + TX, phosdiphen [36519-00-3] + TX, pyrazophos [13457-18-6] + TX, tolclofos-methyl [57018-04-9] + TX, acibenzo- lar-S-methyl [135158-54-2] + TX, anilazine [101-05-3] + TX, benthiavalicarb [413615-35-7] + TX, blasticidin-S [2079-00-7] + TX, chinomethionat [2439-01-2] + TX, chloroneb [2675-77-6] + TX, chlorothalonil [1897-45-6] + TX, cyflufenamid [180409-60-3] + TX, cymoxanil [57966-95-7] + TX, dichlone [117-80-6] + TX, diclocymet [139920-32-4] + TX, diclomezine [62865-36-5] + TX, dicloran [99-30-9] + TX, diethofencarb [87130-20-9] + TX, dimethomorph [110488-70-5] + TX, SYP-LI90 (Flumorph) [211867-47-9] + TX, dithianon [3347-22-6] + TX, ethaboxam [162650-77-3] + TX, etridiazole [2593-15-9] + TX, famoxadone [131807-57-3] + TX, fenamidone [161326-34-7] + TX, fenoxanil [115852-48-7] + TX, fentin [668-34-8] + TX, ferimzone [89269-64-7] + TX, fluazinam [79622-59-6] + TX, fluopicolide [2391 10-15-7] + TX, flusulfamide [106917-52-6] + TX, fenhexamid [126833-17-8] + TX, fosetyl-aluminium [39148-24-8] + TX, hymexazol [10004-44-1] + TX, iprovalicarb [140923-17-7] + TX, IKF-916 (Cyazofamid) [120116-88-3] + TX, kasugamycin [6980-18- 3] + TX, methasulfocarb [66952-49-6] + TX, metrafenone [220899-03-6] + TX, pencycuron [66063- 05-6] + TX, phthalide [27355-22-2] + TX, polyoxins [1 1 1 13-80-7] + TX, probenazole [27605-76-1] + TX, propamocarb [25606-41-1] + TX, proquinazid [189278-12-4] + TX, pyroquilon [57369-32-1] + TX, quinoxyfen [124495-18-7] + TX, quintozene [82-68-8] + TX, sulfur [7704-34-9] + TX, tiadinil [223580-51-6] + TX, triazoxide [72459-58-6] + TX, tricyclazole [41814-78-2] + TX, triforine [26644- 46-2] + TX, validamycin [37248-47-8] + TX, zoxamide (RH7281 ) [156052-68-5] + TX,
mandipropamid [374726-62-2] + TX, isopyrazam [881685-58-1] + TX, sedaxane [874967-67-6] + TX, 3-difluoromethyl-1-methyl-1 H-pyrazole-4-carboxylic acid (9-dichloromethylene-1 ,2,3,4-tetrahydro-1 ,4- methano-naphthalen-5-yl)-amide (dislosed in WO 2007/048556) + TX, 3-difluoromethyl-1-methyl-1 H- pyrazole-4-carboxylic acid (3',4',5'-trifluoro-biphenyl-2-yl)-amide (disclosed in WO 2006/087343) + TX, [(3S,4R,4aR,6S,6aS, 12R, 12aS, 12bS)-3-[(cyclopropylcarbonyl)oxy]- 1 ,3,4,4a,5,6,6a, 12,12a, 12b- decahydro-e.
Figure imgf000086_0001
e]pyran-4-yl]methyl-cyclopropanecarboxylate [915972-17-7] + TX and 1 ,3,5-trimethyl-N-(2-methyl-1- oxopropyl)-N-[3-(2-methylpropyl)-4-[2,2,2-trifluoro^
pyrazole-4-carboxamide [926914-55-8] + TX; and
microbials including: Acinetobacter Iwoffii + TX, Acremonium alternatum + TX + TX, Acremonium cephalosporium + TX + TX, Acremonium diospyri + TX, Acremonium obclavatum + TX, Adoxophyes orana granulovirus (AdoxGV) (Capex®) + TX, Agrobacterium radiobacter strain K84 (Galltrol-A®) + TX, Alternaria alternate + TX, Alternaria cassia + TX, Alternaria destruens (Smolder®) + TX,
Ampelomyces quisqualis (AQ10®) + TX, Aspergillus flavus AF36 (AF36®) + TX, Aspergillus flavus NRRL 21882 (Aflaguard®) + TX, Aspergillus spp. + TX, Aureobasidium pullulans + TX, Azospirillum + TX, (MicroAZ® + TX, TAZO B®) + TX, Azotobacter + TX, Azotobacter chroocuccum (Azotomeal®) + TX, Azotobacter cysts (Bionatural Blooming Blossoms®) + TX, Bacillus amyloliquefaciens + TX,
Bacillus cereus + TX, Bacillus chitinosporus strain CM-1 + TX, Bacillus chitinosporus strain AQ746 + TX, Bacillus licheniformis strain HB-2 (Biostart™ Rhizoboost®) + TX, Bacillus licheniformis strain 3086 (EcoGuard® + TX, Green Releaf®) + TX, Bacillus circulans + TX, Bacillus firmus (BioSafe® + TX, BioNem-WP® + TX, VOTiVO®) + TX, Bacillus firmus strain 1-1582 + TX, Bacillus macerans + TX, Bacillus marismortui + TX, Bacillus megaterium + TX, Bacillus mycoides strain AQ726 + TX, Bacillus papillae (Milky Spore Powder®) + TX, Bacillus pumilus spp. + TX, Bacillus pumilus strain GB34 (Yield Shield®) + TX, Bacillus pumilus strain AQ717 + TX, Bacillus pumilus strain QST 2808 (Sonata® + TX, Ballad Plus®) + TX, Bacillus spahericus (VectoLex®) + TX, Bacillus spp. + TX, Bacillus spp. strain AQ175 + TX, Bacillus spp. strain AQ177 + TX, Bacillus spp. strain AQ178 + TX, Bacillus subtilis strain QST 713 (CEASE® + TX, Serenade® + TX, Rhapsody®) + TX, Bacillus subtilis strain QST 714 (JAZZ®) + TX, Bacillus subtilis strain AQ153 + TX, Bacillus subtilis strain AQ743 + TX, Bacillus subtilis strain QST3002 + TX, Bacillus subtilis strain QST3004 + TX, Bacillus subtilis var. amyloliquefaciens strain FZB24 (Taegro® + TX, Rhizopro®) + TX, Bacillus thuringiensis Cry 2Ae + TX, Bacillus thuringiensis Cry1 Ab + TX, Bacillus thuringiensis aizawai GC 91 (Agree®) + TX, Bacillus thuringiensis israelensis (BMP123® + TX, Aquabac® + TX, VectoBac®) + TX, Bacillus thuringiensis kurstaki (Javelin® + TX, Deliver® + TX, CryMax® + TX, Bonide® + TX, Scutella WP® + TX, Turilav WP ® + TX, Astuto® + TX, Dipel WP® + TX, Biobit® + TX, Foray®) + TX, Bacillus thuringiensis kurstaki BMP 123 (Baritone®) + TX, Bacillus thuringiensis kurstaki HD-1 (Bioprotec-CAF / 3P®) + TX, Bacillus thuringiensis strain BD#32 + TX, Bacillus thuringiensis strain AQ52 + TX, Bacillus thuringiensis var. aizawai (XenTari® + TX, DiPel®) + TX, bacteria spp. (GROWMEND® + TX, GROWSWEET® + TX, Shootup®) + TX, bacteriophage of Clavipacter michiganensis (AgriPhage®) + TX, Bakflor® + TX, Beauveria bassiana (Beaugenic® + TX, Brocaril WP®) + TX, Beauveria bassiana GHA (Mycotrol ES® + TX, Mycotrol O® + TX, BotaniGuard®) + TX, Beauveria brongniartii (Engerlingspilz® + TX, Schweizer Beauveria® + TX, Melocont®) + TX, Beauveria spp. + TX, Botrytis cineria + TX,
Bradyrhizobium japonicum (TerraMax®) + TX, Brevibacillus brevis + TX, Bacillus thuringiensis tenebrionis (Novodor®) + TX, BtBooster + TX, Burkholderia cepacia (Deny® + TX, Intercept® + TX, Blue Circle®) + TX, Burkholderia gladii + TX, Burkholderia gladioli + TX, Burkholderia spp. + TX, Canadian thistle fungus (CBH Canadian Bioherbicide®) + TX, Candida butyri + TX, Candida famata + TX, Candida fructus + TX, Candida glabrata + TX, Candida guilliermondii + TX, Candida melibiosica + TX, Candida oleophila strain O + TX, Candida parapsilosis + TX, Candida pelliculosa + TX, Candida pulcherrima + TX, Candida reukaufii + TX, Candida saitoana (Bio-Coat® + TX, Biocure®) + TX, Candida sake + TX, Candida spp. + TX, Candida tenius + TX, Cedecea dravisae + TX, Cellulomonas flavigena + TX, Chaetomium cochliodes (Nova-Cide®) + TX, Chaetomium globosum (Nova-Cide®) + TX, Chromobacterium subtsugae strain PRAA4-1T (Grandevo®) + TX, Cladosporium cladosporioides + TX, Cladosporium oxysporum + TX, Cladosporium chlorocephalum + TX, Cladosporium spp. + TX, Cladosporium tenuissimum + TX, Clonostachys rosea (EndoFine®) + TX, Colletotrichum acutatum + TX, Coniothyrium minitans (Cotans WG®) + TX, Coniothyrium spp. + TX, Cryptococcus albidus (YIELDPLUS®) + TX, Cryptococcus humicola + TX, Cryptococcus infirmo-miniatus + TX,
Cryptococcus laurentii + TX, Cryptophlebia leucotreta granulovirus (Cryptex®) + TX, Cupriavidus campinensis + TX, Cydia pomonella granulovirus (CYD-X®) + TX, Cydia pomonella granulovirus (Madex® + TX, Madex Plus® + TX, Madex Max/ Carpovirusine®) + TX, Cylindrobasidium laeve (Stum pout®) + TX, Cylindrocladium + TX, Debaryomyces hansenii + TX, Drechslera hawaiinensis + TX, Enterobacter cloacae + TX, Enterobacteriaceae + TX, Entomophtora virulenta (Vektor®) + TX, Epicoccum nigrum + TX, Epicoccum purpurascens + TX, Epicoccum spp. + TX, Filobasidium floriforme + TX, Fusarium acuminatum + TX, Fusarium chlamydosporum + TX, Fusarium oxysporum (Fusaclean® / Biofox C®) + TX, Fusarium proliferatum + TX, Fusarium spp. + TX, Galactomyces geotrichum + TX, Gliocladium catenulatum (Primastop® + TX, Prestop®) + TX, Gliocladium roseum + TX, Gliocladium spp. (SoilGard®) + TX, Gliocladium virens (Soilgard®) + TX, Granulovirus
(Granupom®) + TX, Halobacillus halophilus + TX, Halobacillus litoralis + TX, Halobacillus trueperi + TX, Halomonas spp. + TX, Halomonas subglaciescola + TX, Halovibrio variabilis + TX, Hanseniaspora uvarum + TX, Helicoverpa armigera nucleopolyhedrovirus (Helicovex®) + TX, Helicoverpa zea nuclear polyhedrosis virus (Gemstar®) + TX, Isoflavone - formononetin (Myconate®) + TX, Kloeckera apiculata + TX, Kloeckera spp. + TX, Lagenidium giganteum (Laginex®) + TX, Lecanicillium longisporum (Vertiblast®) + TX, Lecanicillium muscarium (Vertikil®) + TX, Lymantria Dispar nucleopolyhedrosis virus (Disparvirus®) + TX, Marinococcus halophilus + TX, Meira geulakonigii + TX, Metarhizium anisopliae (Met52®) + TX, Metarhizium anisopliae (Destruxin WP®) + TX, Metschnikowia fruticola (Shemer®) + TX, Metschnikowia pulcherrima + TX, Microdochium dimerum (Antibot®) + TX, Micromonospora coerulea + TX, Microsphaeropsis ochracea + TX, Muscodor albus 620 (Muscudor®) + TX, Muscodor roseus strain A3-5 + TX, Mycorrhizae spp. (AMykor® + TX, Root Maximizer®) + TX, Myrothecium verrucaria strain AARC-0255 (DiTera®) + TX, BROS PLUS® + TX, Ophiostoma piliferum strain D97 (Sylvanex®) + TX, Paecilomyces farinosus + TX, Paecilomyces fumosoroseus (PFR-97® + TX, PreFeRal®) + TX, Paecilomyces linacinus (Biostat WP®) + TX, Paecilomyces lilacinus strain 251 (MeloCon WG®) + TX, Paenibacillus polymyxa + TX, Pantoea agglomerans (BlightBan C9-1®) + TX, Pantoea spp. + TX, Pasteuria spp. (Econem®) + TX, Pasteuria nishizawae + TX, Penicillium aurantiogriseum + TX, Penicillium billai (Jumpstart® + TX, TagTeam®) + TX, Penicillium
brevicompactum + TX, Penicillium frequentans + TX, Penicillium griseofulvum + TX, Penicillium purpurogenum + TX, Penicillium spp. + TX, Penicillium viridicatum + TX, Phlebiopsis gigantean (Rotstop®) + TX, phosphate solubilizing bacteria (Phosphomeal®) + TX, Phytophthora cryptogea + TX, Phytophthora palmivora (Devine®) + TX, Pichia anomala + TX, Pichia guilermondii + TX, Pichia membranaefaciens + TX, Pichia onychis + TX, Pichia stipites + TX, Pseudomonas aeruginosa + TX, Pseudomonas aureofasciens (Spot-Less Biofungicide®) + TX, Pseudomonas cepacia + TX,
Pseudomonas chlororaphis (AtEze®) + TX, Pseudomonas corrugate + TX, Pseudomonas fluorescens strain A506 (BlightBan A506®) + TX, Pseudomonas putida + TX, Pseudomonas reactans + TX,
Pseudomonas spp. + TX, Pseudomonas syringae (Bio-Save®) + TX, Pseudomonas viridiflava + TX, Pseudomons fluorescens (Zequanox®) + TX, Pseudozyma flocculosa strain PF-A22 UL (Sporodex L®) + TX, Puccinia canaliculata + TX, Puccinia thlaspeos (Wood Warrior®) + TX, Pythium
paroecandrum + TX, Pythium oligandrum (Polygandron® + TX, Polyversum®) + TX, Pythium periplocum + TX, Rhanella aquatilis + TX, Rhanella spp. + TX, Rhizobia (Dormal® + TX, Vault®) + TX, Rhizoctonia + TX, Rhodococcus globerulus strain AQ719 + TX, Rhodosporidium diobovatum + TX, Rhodosporidium toruloides + TX, Rhodotorula spp. + TX, Rhodotorula glutinis + TX, Rhodotorula graminis + TX, Rhodotorula mucilagnosa + TX, Rhodotorula rubra + TX, Saccharomyces cerevisiae + TX, Salinococcus roseus + TX, Sclerotinia minor + TX, Sclerotinia minor (SARRITOR®) + TX, Scytalidium spp. + TX, Scytalidium uredinicola + TX, Spodoptera exigua nuclear polyhedrosis virus (Spod-X® + TX, Spexit®) + TX, Serratia marcescens + TX, Serratia plymuthica + TX, Serratia spp. + TX, Sordaria fimicola + TX, Spodoptera littoralis nucleopolyhedrovirus (Littovir®) + TX,
Sporobolomyces roseus + TX, Stenotrophomonas maltophilia + TX, Streptomyces ahygroscopicus + TX, Streptomyces albaduncus + TX, Streptomyces exfoliates + TX, Streptomyces galbus + TX,
Streptomyces griseoplanus + TX, Streptomyces griseoviridis (Mycostop®) + TX, Streptomyces lydicus (Actinovate®) + TX, Streptomyces lydicus WYEC-108 (ActinoGrow®) + TX, Streptomyces violaceus + TX, Tilletiopsis minor + TX, Tilletiopsis spp. + TX, Trichoderma asperellum (T34 Biocontrol®) + TX, Trichoderma gamsii (Tenet®) + TX, Trichoderma atroviride (Plantmate®) + TX, Trichoderma hamatum TH 382 + TX, Trichoderma harzianum rifai (Mycostar®) + TX, Trichoderma harzianum T-22 (Trianum- P® + TX, PlantShield HC® + TX, RootShield® + TX, Trianum-G®) + TX, Trichoderma harzianum T-39 (Trichodex®) + TX, Trichoderma inhamatum + TX, Trichoderma koningii + TX, Trichoderma spp. LC 52 (Sentinel®) + TX, Trichoderma lignorum + TX, Trichoderma longibrachiatum + TX, Trichoderma polysporum (Binab T®) + TX, Trichoderma taxi + TX, Trichoderma virens + TX, Trichoderma virens (formerly Gliocladium virens GL-21 ) (SoilGuard®) + TX, Trichoderma viride + TX, Trichoderma viride strain ICC 080 (Remedier®) + TX, Trichosporon pullulans + TX, Trichosporon spp. + TX,
Trichothecium spp. + TX, Trichothecium roseum + TX, Typhula phacorrhiza strain 94670 + TX, Typhula phacorrhiza strain 94671 + TX, Ulocladium atrum + TX, Ulocladium oudemansii (Botry-Zen®) + TX, Ustilago maydis + TX, various bacteria and supplementary micronutrients (Natural II®) + TX, various fungi (Millennium Microbes®) + TX, Verticillium chlamydosporium + TX, Verticillium lecanii (Mycotal® + TX, Vertalec®) + TX, Vip3Aa20 (VIPtera®) + TX, Virgibaclillus marismortui + TX, Xanthomonas campestris pv. Poae (Camperico®) + TX, Xenorhabdus bovienii + TX, Xenorhabdus nematophilus; and
Plant extracts including: pine oil (Retenol®) + TX, azadirachtin (Plasma Neem Oil® + TX, AzaGuard® + TX, MeemAzal® + TX, Molt-X® + TX, Botanical IGR (Neemazad® + TX, Neemix®) + TX, canola oil (Lilly Miller Vegol®) + TX, Chenopodium ambrosioides near ambrosioides (Requiem®) + TX, Chrysanthemum extract (Crisant®) + TX, extract of neem oil (Trilogy®) + TX, essentials oils of Labiatae (Botania®) + TX, extracts of clove rosemary peppermint and thyme oil (Garden insect killer®) + TX, Glycinebetaine (Greenstim®) + TX, garlic + TX, lemongrass oil (GreenMatch®) + TX, neem oil + TX, Nepeta cataria (Catnip oil) + TX, Nepeta catarina + TX, nicotine + TX, oregano oil (MossBuster®) + TX, Pedaliaceae oil (Nematon®) + TX, pyrethrum + TX, Quillaja saponaria (NemaQ®) + TX, Reynoutria sachalinensis (Regalia® + TX, Sakalia®) + TX, rotenone (Eco Roten®) + TX, Rutaceae plant extract (Soleo®) + TX, soybean oil (Ortho ecosense®) + TX, tea tree oil (Timorex Gold®) + TX, thymus oil + TX, AGNIQUE® MMF + TX, BugOil® + TX, mixture of rosemary sesame pepermint thyme and cinnamon extracts (EF 300®) + TX, mixture of clove rosemary and peppermint extract (EF 400®) + TX, mixture of clove pepermint garlic oil and mint (Soil Shot®) + TX, kaolin (Screen®) + TX, storage glucam of brown algae (Laminarin®); and
pheromones including: blackheaded fireworm pheromone (3M Sprayable Blackheaded Fireworm Pheromone®) + TX, Codling Moth Pheromone (Paramount dispenser-(CM)/ Isomate C-Plus®) + TX, Grape Berry Moth Pheromone (3M MEC-GBM Sprayable Pheromone®) + TX, Leafroller pheromone (3M MEC - LR Sprayable Pheromone®) + TX, Muscamone (Snip7 Fly Bait® + TX, Starbar Premium Fly Bait®) + TX, Oriental Fruit Moth Pheromone (3M oriental fruit moth sprayable pheromone®) + TX, Peachtree Borer Pheromone (Isomate-P®) + TX, Tomato Pinworm Pheromone (3M Sprayable pheromone®) + TX, Entostat powder (extract from palm tree) (Exosex CM®) + TX, (E + ΤΧ,Ζ + ΤΧ,Ζ)- 3 + TX,8 + TX,1 1 Tetradecatrienyl acetate + TX, (Z + ΤΧ,Ζ + TX,E)-7 + TX, 1 1 + TX,13- Hexadecatrienal + TX, (E + TX,Z)-7 + TX,9-Dodecadien-1-yl acetate + TX, 2-Methyl-1-butanol + TX, Calcium acetate + TX, Scenturion® + TX, Biolure® + TX, Check-Mate® + TX, Lavandulyl senecioate; and
Macrobials including: Aphelinus abdominalis + TX, Aphidius ervi (Aphelinus-System®) + TX,
Acerophagus papaya + TX, Adalia bipunctata (Adalia-System®) + TX, Adalia bipunctata (Adaline®) + TX, Adalia bipunctata (Aphidalia®) + TX, Ageniaspis citricola + TX, Ageniaspis fuscicollis + TX, Amblyseius andersoni (Anderline® + TX, Andersoni-System®) + TX, Amblyseius californicus (Amblyline® + TX, Spical®) + TX, Amblyseius cucumeris (Thripex® + TX, Bugline cucumeris®) + TX, Amblyseius fallacis (Fallacis®) + TX, Amblyseius swirskii (Bugline swirskii® + TX, Swirskii-Mite®) + TX, Amblyseius womersleyi (WomerMite®) + TX, Amitus hesperidum + TX, Anagrus atomus + TX, Anagyrus fusciventris + TX, Anagyrus kamali + TX, Anagyrus loecki + TX, Anagyrus pseudococci (Citripar®) + TX, Anicetus benefices + TX, Anisopteromalus calandrae + TX, Anthocoris nemoralis (Anthocoris-System®) + TX, Aphelinus abdominalis (Apheline® + TX, Aphiline®) + TX, Aphelinus asychis + TX, Aphidius colemani (Aphipar®) + TX, Aphidius ervi (Ervipar®) + TX, Aphidius gifuensis + TX, Aphidius matricariae (Aphipar-M®) + TX, Aphidoletes aphidimyza (Aphidend®) + TX, Aphidoletes aphidimyza (Aphidoline®) + TX, Aphytis lingnanensis + TX, Aphytis melinus + TX, Aprostocetus hagenowii + TX, Atheta coriaria (Staphyline®) + TX, Bombus spp. + TX, Bombus terrestris (Natupol Beehive®) + TX, Bombus terrestris (Beeline® + TX, Tripol®) + TX, Cephalonomia stephanoderis + TX, Chilocorus nigritus + TX, Chrysoperla carnea (Chrysoline®) + TX, Chrysoperla carnea
(Chrysopa®) + TX, Chrysoperla rufilabris + TX, Cirrospilus ingenuus + TX, Cirrospilus quadristriatus + TX, Citrostichus phyllocnistoides + TX, Closterocerus chamaeleon + TX, Closterocerus spp. + TX, Coccidoxenoides perminutus (Planopar®) + TX, Coccophagus cowperi + TX, Coccophagus lycimnia + TX, Cotesia flavipes + TX, Cotesia plutellae + TX, Cryptolaemus montrouzieri (Cryptobug® + TX, Cryptoline®) + TX, Cybocephalus nipponicus + TX, Dacnusa sibirica + TX, Dacnusa sibirica
(Minusa®) + TX, Diglyphus isaea (Diminex®) + TX, Delphastus catalinae (Delphastus®) + TX, Delphastus pusillus + TX, Diachasmimorpha krausii + TX, Diachasmimorpha longicaudata + TX, Diaparsis jucunda + TX, Diaphorencyrtus aligarhensis + TX, Diglyphus isaea + TX, Diglyphus isaea (Miglyphus® + TX, Digline®) + TX, Dacnusa sibirica (DacDigline® + TX, Minex®) + TX, Diversinervus spp. + TX, Encarsia citrina + TX, Encarsia formosa (Encarsia max® + TX, Encarline® + TX, En- Strip®) + TX, Eretmocerus eremicus (Enermix®) + TX, Encarsia guadeloupae + TX, Encarsia haitiensis + TX, Episyrphus balteatus (Syrphidend®) + TX, Eretmoceris siphonini + TX, Eretmocerus californicus + TX, Eretmocerus eremicus (Ercal® + TX, Eretline e®) + TX, Eretmocerus eremicus (Bemimix®) + TX, Eretmocerus hayati + TX, Eretmocerus mundus (Bemipar® + TX, Eretline m®) + TX, Eretmocerus siphonini + TX, Exochomus quadripustulatus + TX, Feltiella acarisuga (Spidend®) + TX, Feltiella acarisuga (Feltiline®) + TX, Fopius arisanus + TX, Fopius ceratitivorus + TX,
Formononetin (Wirless Beehome®) + TX, Franklinothrips vespiformis (Vespop®) + TX, Galendromus occidentalis + TX, Goniozus legneri + TX, Habrobracon hebetor + TX, Harmonia axyridis
(HarmoBeetle®) + TX, Heterorhabditis spp. (Lawn Patrol®) + TX, Heterorhabditis bacteriophora
(NemaShield HB® + TX, Nemaseek® + TX, Terranem-Nam® + TX, Terranem® + TX, Larvanem® + TX, B-Green® + TX, NemAttack ® + TX, Nematop®) + TX, Heterorhabditis megidis (Nemasys H® + TX, BioNem H® + TX, Exhibitline hm® + TX, Larvanem-M®) + TX, Hippodamia convergens + TX, Hypoaspis aculeifer (Aculeifer-System® + TX, Entomite-A®) + TX, Hypoaspis miles (Hypoline m® + TX, Entomite-M®) + TX, Lbalia leucospoides + TX, Lecanoideus floccissimus + TX, Lemophagus errabundus + TX, Leptomastidea abnormis + TX, Leptomastix dactylopii (Leptopar®) + TX,
Leptomastix epona + TX, Lindorus lophanthae + TX, Lipolexis oregmae + TX, Lucilia caesar
(Natufly®) + TX, Lysiphlebus testaceipes + TX, Macrolophus caliginosus (Mirical-N® + TX, Macroline c® + TX, Mirical®) + TX, Mesoseiulus longipes + TX, Metaphycus flavus + TX, Metaphycus lounsburyi + TX, Micromus angulatus (Milacewing®) + TX, Microterys flavus + TX, Muscidifurax raptorellus and Spalangia cameroni (Biopar®) + TX, Neodryinus typhlocybae + TX, Neoseiulus californicus + TX, Neoseiulus cucumeris (THRYPEX®) + TX, Neoseiulus fallacis + TX, Nesideocoris tenuis
(NesidioBug® + TX, Nesibug®) + TX, Ophyra aenescens (Biofly®) + TX, Orius insidiosus (Thripor-I® + TX, Oriline i®) + TX, Orius laevigatus (Thripor-L® + TX, Oriline I®) + TX, Orius majusculus (Oriline m®) + TX, Orius strigicollis (Thripor-S®) + TX, Pauesia juniperorum + TX, Pediobius foveolatus + TX, Phasmarhabditis hermaphrodita (Nemaslug®) + TX, Phymastichus coffea + TX, Phytoseiulus macropilus + TX, Phytoseiulus persimilis (Spidex® + TX, Phytoline p®) + TX, Podisus maculiventris (Podisus®) + TX, Pseudacteon curvatus + TX, Pseudacteon obtusus + TX, Pseudacteon tricuspis + TX, Pseudaphycus maculipennis + TX, Pseudleptomastix mexicana + TX, Psyllaephagus pilosus + TX, Psyttalia concolor (complex) + TX, Quadrastichus spp. + TX, Rhyzobius lophanthae + TX, Rodolia cardinalis + TX, Rumina decollate + TX, Semielacher petiolatus + TX, Sitobion avenae (Ervibank®) + TX, Steinemema carpocapsae (Nematac C® + TX, Millenium® + TX, BioNem C® + TX, NemAttack® + TX, Nemastar® + TX, Capsanem®) + TX, Steinemema feltiae (NemaShield® + TX, Nemasys F® + TX, BioNem F® + TX, Steinernema-System® + TX, NemAttack® + TX, Nemaplus® + TX, Exhibitline sf® + TX, Scia-rid® + TX, Entonem®) + TX, Steinemema kraussei (Nemasys L® + TX, BioNem L® + TX, Exhibitline srb®) + TX, Steinemema riobrave (BioVector® + TX, BioVektor®) + TX, Steinemema scapterisci (Nematac S®) + TX, Steinemema spp. + TX, Steinernematid spp. (Guardian Nematodes®) + TX, Stethorus punctillum (Stethorus®) + TX, Tamarixia radiate + TX, Tetrastichus setifer + TX, Thripobius semiluteus + TX, Torymus sinensis + TX, Trichogramma brassicae (Tricholine b®) + TX, Trichogramma brassicae (Tricho-Strip®) + TX, Trichogramma evanescens + TX, Trichogramma minutum + TX, Trichogramma ostriniae + TX, Trichogramma platneri + TX, Trichogramma pretiosum + TX, Xanthopimpla stemmator; and
other biologicals including: abscisic acid + TX, bioSea® + TX, Chondrostereum purpureum (Chontrol Paste®) + TX, Colletotrichum gloeosporioides (Collego®) + TX, Copper Octanoate (Cueva®) + TX, Delta traps (Trapline d®) + TX, Erwinia amylovora (Harpin) (ProAct® + TX, Ni-HIBIT Gold CST®) + TX, Ferri-phosphate (Ferramol®) + TX, Funnel traps (Trapline y®) + TX, Gallex® + TX, Grower's Secret® + TX, Homo-brassonolide + TX, Iron Phosphate (Lilly Miller Worry Free Ferramol Slug & Snail Bait®) + TX, MCP hail trap (Trapline f®) + TX, Microctonus hyperodae + TX, Mycoleptodiscus terrestris (Des-X®) + TX, BioGain® + TX, Aminomite® + TX, Zenox® + TX, Pheromone trap (Thripline ams®) + TX, potassium bicarbonate (MilStop®) + TX, potassium salts of fatty acids (Sanova®) + TX, potassium silicate solution (Sil-Matrix®) + TX, potassium iodide + potassiumthiocyanate (Enzicur®) + TX, SuffOil-X® + TX, Spider venom + TX, Nosema locustae (Semaspore Organic Grasshopper Control®) + TX, Sticky traps (Trapline YF® + TX, Rebell Amarillo®) + TX and Traps (Takitrapline y + b®) + TX.
The references in brackets behind the active ingredients, e.g. [3878-19-1] refer to the Chemical Abstracts Registry number. The above described mixing partners are known. Where the active ingredients are included in "The Pesticide Manual" [The Pesticide Manual - A World Compendium; Thirteenth Edition; Editor: C. D. S. TomLin; The British Crop Protection Council], they are described therein under the entry number given in round brackets hereinabove for the particular compound; for example, the compound "abamectin" is described under entry number (1 ). Where "[CCN]" is added hereinabove to the particular compound, the compound in question is included in the "Compendium of Pesticide Common Names", which is accessible on the internet [A. Wood; Compendium of Pesticide Common Names, Copyright © 1995-2004]; for example, the compound "acetoprole" is described under the internet address http://www.alanwood.net/pesticides/acetoprole.html.
Most of the active ingredients described above are referred to hereinabove by a so-called "common name", the relevant "ISO common name" or another "common name" being used in individual cases. If the designation is not a "common name", the nature of the designation used instead is given in round brackets for the particular compound; in that case, the lUPAC name, the lUPAC/Chemical Abstracts name, a "chemical name", a "traditional name", a "compound name" or a "develoment code" is used or, if neither one of those designations nor a "common name" is used, an "alternative name" is employed. "CAS Reg. No" means the Chemical Abstracts Registry Number.
The active ingredient mixture of the compounds of formula I selected from Tables 1 to 18 and P1 with active ingredients described above comprises a compound selected from Tables 1 to 18 and P1 and an active ingredient as described above preferably in a mixing ratio of from 100: 1 to 1 :6000, especially from 50: 1 to 1 :50, more especially in a ratio of from 20: 1 to 1 :20, even more especially from 10:1 to 1 : 10, very especially from 5: 1 and 1 :5, special preference being given to a ratio of from 2: 1 to 1 :2, and a ratio of from 4:1 to 2:1 being likewise preferred, above all in a ratio of 1 : 1 , or 5:1 , or 5:2, or 5:3, or 5:4, or 4: 1 , or 4:2, or 4:3, or 3: 1 , or 3:2, or 2:1 , or 1 :5, or 2:5, or 3:5, or 4:5, or 1 :4, or 2:4, or 3:4, or 1 :3, or 2:3, or 1 :2, or 1 :600, or 1 :300, or 1 : 150, or 1 :35, or 2:35, or 4:35, or 1 :75, or 2:75, or 4:75, or 1 :6000, or 1 :3000, or 1 :1500, or 1 :350, or 2:350, or 4:350, or 1 :750, or 2:750, or 4:750. Those mixing ratios are by weight.
The mixtures as described above can be used in a method for controlling pests, which comprises applying a composition comprising a mixture as described above to the pests or their environment, with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.
The mixtures comprising a compound of formula I selected from Tables 1 to 18 and P1 and one or more active ingredients as described above can be applied, for example, in a single "ready-mix" form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a "tank-mix", and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days. The order of applying the compounds of formula I selected from Tables 1 to 18 and P1 and the active ingredients as described above is not essential for working the present invention.
The compositions according to the invention can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.
The compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries). These processes for the preparation of the compositions and the use of the compounds I for the preparation of these compositions are also a subject of the invention. The application methods for the compositions, that is the methods of controlling pests of the abovementioned type, such as spraying, atomizing, dusting, brushing on, dressing, scattering or pouring - which are to be selected to suit the intended aims of the prevailing circumstances - and the use of the compositions for controlling pests of the abovementioned type are other subjects of the invention. Typical rates of concentration are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm, of active ingredient. The rate of application per hectare is generally 1 to 2000 g of active ingredient per hectare, in particular 10 to 1000 g/ha, preferably 10 to 600 g/ha.
A preferred method of application in the field of crop protection is application to the foliage of the plants (foliar application), it being possible to select frequency and rate of application to match the danger of infestation with the pest in question. Alternatively, the active ingredient can reach the plants via the root system (systemic action), by drenching the locus of the plants with a liquid composition or by incorporating the active ingredient in solid form into the locus of the plants, for example into the soil, for example in the form of granules (soil application). In the case of paddy rice crops, such granules can be metered into the flooded paddy-field.
The compounds of the invention and compositions thereof are also be suitable for the protection of plant propagation material, for example seeds, such as fruit, tubers or kernels, or nursery plants, against pests of the abovementioned type. The propagation material can be treated with the compound prior to planting, for example seed can be treated prior to sowing. Alternatively, the compound can be applied to seed kernels (coating), either by soaking the kernels in a liquid composition or by applying a layer of a solid composition. It is also possible to apply the compositions when the propagation material is planted to the site of application, for example into the seed furrow during drilling. These treatment methods for plant propagation material and the plant propagation material thus treated are further subjects of the invention. Typical treatment rates would depend on the plant and pest/fungi to be controlled and are generally between 1 to 200 grams per 100 kg of seeds, preferably between 5 to 150 grams per 100 kg of seeds, such as between 10 to 100 grams per 100 kg of seeds. The term seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corns, bulbs, fruit, tubers, grains, rhizomes, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
The present invention also comprises seeds coated or treated with or containing a compound of formula I. The term "coated or treated with and/or containing" generally signifies that the active ingredient is for the most part on the surface of the seed at the time of application, although a greater or lesser part of the ingredient may penetrate into the seed material, depending on the method of application. When the said seed product is (re)planted, it may absorb the active ingredient. In an embodiment, the present invention makes available a plant propagation material adhered thereto with a compound of formula (I). Further, it is hereby made available, a composition comprising a plant propagation material treated with a compound of formula (I).
Seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting. The seed treatment application of the compound formula (I) can be carried out by any known methods, such as spraying or by dusting the seeds before sowing or during the sowing/planting of the seeds.
Biological Examples: Example B1 : Spodoptera littoralis (Egyptian cotton leaf worm)
Cotton leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10Ό00 ppm DMSO stock solutions. After drying, the leaf discs were infested with five L1 larvae. The samples were assessed for mortality, anti-feedant effect, and growth inhibition in comparison to untreated samples 3 days after infestation. Control of Spodoptera littoralis by a test sample is when at least one of mortality, anti-feedant effect, and growth inhibition is higher than the untreated sample.
The following compounds resulted in at least 80% control at an application rate of 200 ppm: P1 , P2, P3, P4, P6, P7, P8, P10, P1 1 , P13, P14, P15 and P16.
Example B2: Spodoptera littoralis (Egyptian cotton leaf worm)
Test compounds were applied by pipette from 10Ό00 ppm DMSO stock solutions into 24-well plates and mixed with agar. Lettuce seeds were placed on the agar and the multi well plate was closed by another plate which contains also agar. After 7 days the roots have absorbed the compound and the lettuce has grown into the lid plate. The lettuce leafs were now cut off into the lid plate. Spodoptera eggs were pipetted through a plastic stencil on a humid gel blotting paper and the plate closed with it. The samples were assessed for mortality, anti-feedant effect and growth inhibition in comparison to untreated samples 6 days after infestation.
The following compounds gave an effect of at least 80% in at least one of the three categories (mortality, anti-feedancy, or growth inhibition) at a test rate of 12.5 ppm: P6, P7, P8, P13, P15 and P16.
Example B3: Plutella xylostella (Diamond back moth)
24-well microtiter plates with artificial diet were treated with agueous test solutions prepared from 10Ό00 ppm DMSO stock solutions by pipetting. After drying, the plates were infested with L2 larvae (10 to 15 per well). The samples were assessed for mortality and growth inhibition in comparison to untreated samples 5 days after infestation.
The following compounds gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm: P1 , P2, P3, P4, P5, P6, P7, P8, P10, P1 1 , P12, P13, P14, P15 and P16.
Example B4: Diabrotica balteata (Corn root worm)
Maize sprouts, placed on an agar layer in 24-well microtiter plates were treated with agueous test solutions prepared from 10Ό00 ppm DMSO stock solutions by spraying. After drying, the plates were infested with L2 larvae (6 to 10 per well). The samples were assessed for mortality and growth inhibition in comparison to untreated samples 4 days after infestation.
The following compounds gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm: P3, P4, P5, P6, P7, P8, P9, P10, P1 1 , P13, P14, P15, P16 and P17. Example B5: Myzus persicae (Green peach aphid)
Sunflower leaf discs were placed on agar in a 24-well microtiter plate and sprayed with aqueous test solutions prepared from 10Ό00 ppm DMSO stock solutions. After drying, the leaf discs were infested with an aphid population of mixed ages. The samples were assessed for mortality 6 days after infestation.
The following compounds resulted in at least 80% mortality at an application rate of 200 ppm: P3, P4, P6, P7, P1 1 , P12, P15 and P16. Example B6: Myzus persicae (Green peach aphid)
Roots of pea seedlings infested with an aphid population of mixed ages were placed directly in the aqueous test solutions prepared from 10Ό00 DMSO stock solutions. The samples were assessed for mortality 6 days after placing seedlings in test solutions.
The following compounds resulted in at least 80% mortality at a test rate of 24 ppm: P3, P7, P15 and P16.
Example B7: Bemisia tabaci (Cotton white fly)
Cotton leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10Ό00 ppm DMSO stock solutions. After drying the leaf discs were infested with adult white flies. The samples were checked for mortality 6 days after incubation.
The following compounds resulted in at least 80% mortality at an application rate of 200 ppm: P5, P8, P12, P15 and P16.
Example B8: Euschistus heros (Neotropical Brown Stink Bug)
Soybean leaf on agar in 24-well microtiter plates were sprayed with aqueous test solutions prepared from 10Ό00 ppm DMSO stock solutions. After drying the leaf were infested with N-2 nymphs. The samples were assessed for mortality 5 days after infestation.
The following compounds resulted in at least 80% mortality at an application rate of 200 ppm: P6, P7, P8, P10, P1 1 , P12, P15 and P16.
Example B9: Aedes aegypti (Yellow fever mosquito)
Test solutions, at an application rate of 200ppm in ethanol, were applied to 12 well tissue culture plates. Once the deposits were dry, five, two to five day old adult female Aedes aegypti were added to each well, and sustained with a 10% sucrose solution in a cotton wool plug. Assessment of knockdown was made one hour after introduction, and mortality was assessed at 24 and 48 hours after introduction.
The following compounds gave at least 80% control of Aedes aegypti after 48h: P1 , P7, P8, P10, P15 and P16. Example B10: Tetranychus urticae (Two-spotted spider mite)
Bean leaf discs on agar in 24-well microtiter plates were sprayed with aqueous test solutions prepared from 10Ό00 ppm DMSO stock solutions. After drying the leaf discs were infested with a mite population of mixed ages. The samples were assessed for mortality on mixed population (mobile stages) 8 days after infestation.
The following compounds resulted in at least 80% mortality at an application rate of 200 ppm:
P9 and P15.
Example B1 1 : Thrips tabaci (Onion thrips)
Sunflower leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10Ό00 ppm DMSO stock solutions. After drying the leaf discs were infested with a thrips population of mixed ages. The samples were assessed for mortality 6 days after infestation.
The following compound resulted in at least 80% mortality at an application rate of 200 ppm: P16.
Example B12: Frankliniella occidentalis (Western flower thrips)
Sunflower leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10Ό00 DMSO stock solutions. After drying the leaf discs were infested with a Frankliniella population of mixed ages. The samples were assessed for mortality 7 days after infestation.
The following compounds resulted in at least 80% mortality at an application rate of 200 ppm: P15 and P16.

Claims

Claims:
1. A compound of formula I,
Figure imgf000098_0001
wherein
A represents CH or N;
Q is C3-C6cycloalkyl, or C3-C6cycloalkyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, C3-C6cycloalkyl and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, Ci-C4haloalkoxy, Ci-C4alkoxy, Ci-C4haloalkylsulfanyl, Ci-C4halo-alkylsulfinyl, Ci-C4haloalkylsulfonyl and -C(0)Ci-C4haloalkyl; or
Q is C2-C6alkenyl, or C2-C6alkenyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, C3-C6cycloalkyl and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, Ci-C4haloalkoxy, Ci-C4alkoxy, Ci-C4haloalkylsulfanyl, Ci-C4halo- alkylsulfinyl, Ci-C4haloalkylsulfonyl and -C(0)Ci-C4haloalkyl; or
Q is C2-C6alkynyl, or C2-C6alkynyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, C3-C6cycloalkyl, tri(Ci-C4alkyl)silyl and phenyl, or is phenyl which can be mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano, Ci-C4alkyl, Ci-C4haloalkyl, Ci-C4haloalkoxy, Ci-C4alkoxy, Ci-C4halo- alkylsulfanyl, Ci-C4haloalkylsulfinyl, Ci-C4haloalkylsulfonyl and -C(0)Ci-C4haloalkyl;
X is S, SO or S02;
Ri is Ci-C4alkyl, Ci-C4haloalkyl, C3-C6cycloalkyl, C3-C6cycloalkyl-Ci-C4alkyl or C3-C6cycloalkyl mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano and d- C4alkyl; or
Ri is C3-C6cycloalkyl-Ci-C4alkyl mono- or polysubstituted by substituents selected from the group consisting of halogen, cyano and Ci-C4alkyl; or
Ri is C2-C6alkenyl, C2-C6haloalkenyl or C2-C6alkynyl;
R2 is halogen, cyano, Ci-C6haloalkyl or Ci-C6haloalkyl substituted by one or two substituents selected from the group consisting of hydroxyl, methoxy and cyano; or
R2 is Ci-C4haloalkylsulfanyl, Ci-C4haloalkylsulfinyl, Ci-C4haloalkylsulfonyl, 0(Ci-C4haloalkyl), or -C(0)d-C4haloalkyl; or
R2 is C3-C6cycloalkyl which can be mono - or polysubstituted by substituents selected from the group consisting of halogen, cyano and Ci-C4alkyl; Xi is O, S or NR3, wherein R3 is hydrogen, Ci-C4alkyl, C2-C6alkenyl, C2-C6alkynyl, d-C4alkoxy- Ci-C4alkyl or C3-C6cycloalkyl; and agrochemically acceptable salts, stereoisomers, enantiomers, tautomers and N-oxides of those compounds.
A compound of formula I according to claim 1 , represented by the compounds of formula
Figure imgf000099_0001
wherein
R2 and Q are as defined under formula I in claim 1 ;
Xa10 is S, SO or S02; and
Ra-ιο is methyl, ethyl, n-propyl, i-propyl or cyclopropyl methyl.
3. A compound of formula 1-10 according to claim 2, wherein
Q is C3-C6cycloalkyl, or C3-C6cycloalkyl mono- or disubstituted by substituents selected from the group consisting of cyano, Ci-C4haloalkyl and halogen; or Q is C2-C6alkenyl, or C2-C6alkenyl
monosubstituted by substituents selected from the group consisting of Ci-C4alkyl and C3-C6cycloalkyl; or Q is C2-C6alkynyl, or C2-C6alkynyl monosubstituted by substituents selected from the group consisting of tri(Ci-C4alkyl)silyl, phenyl and phenyl which itself can be monosubstituted by substituents selected from the group consisting of halogen, Ci-C4alkyl or Ci-C4haloalkyl.
4. A compound of formula I according to claim 1 , represented by the compounds of formula
I-20
Figure imgf000099_0002
wherein
R2 and Q are as defined under formula I in claim 1 ;
Xa20 is S, SO or S02; and
Ra20 is methyl, ethyl, n-propyl, i-propyl or cyclopropyl methyl.
5. A compound of formula I-20 according to claim 4, wherein Q is C3-C6cycloalkyl, or C3-C6cycloalkyl mono- or disubstituted by substituents selected from the group consisting of cyano, Ci-C4haloalkyl and halogen; or Q is C2-C6alkenyl, or C2-C6alkenyl
monosubstituted by substituents selected from the group consisting of Ci-C4alkyl and C3-C6cycloalkyl; or Q is C2-C6alkynyl, or C2-C6alkynyl monosubstituted by substituents selected from the group consisting of tri(Ci-C4alkyl)silyl and phenyl, said phenyl can be monosubstituted by substituents selected from the group consisting of halogen, Ci-C4alkyl or Ci-C4haloalkyl.
6. A compound of formula I according to claim 1 represented by the compounds of formula la
Figure imgf000100_0001
wherein
X2 is S02;
X3 is N-(d-C4alkyl);
R4 is Ci-C4alkyl;
Qa is C3-C6cycloalkyl, C2-C6alkenyl or C2-C6alkynyl, or is C3-C6cycloalkyl, C2-C6alkenyl or C2-C6alkynyl each mono- or disubstituted by substituents selected from the group consisting of halogen, Ci-C4alkyl, Ci-C4haloalkyl, cyano, C3-C6cycloalkyl, tri(Ci-C4alkyl)silyl and phenyl, said phenyl can be mono- substituted by halogen or Ci-C4haloalkyl; or Qa is C3-C6cycloalkenyl which itself can be mono- or disubstituted by Ci-C4alkyl; and
R6 is Ci-C4haloalkyl.
7. A compound of formula I according to claim 1 represented by the compounds of formula lb
Figure imgf000100_0002
wherein
X2b is S02;
X3b is N-(d-C4alkyl);
R4b is Ci-C4alkyl;
Qb is C3-C6cycloalkyl, C2-C6alkenyl or C2-C6alkynyl, or is C3-C6cycloalkyl, C2-C6alkenyl or C2-C6alkynyl each mono- or disubstituted by substituents selected from the group consisting of halogen, Ci-C4alkyl, Ci-C4haloalkyl, cyano, C3-C6cycloalkyl, tri(Ci-C4alkyl)silyl and phenyl, said phenyl can be mono- substituted by halogen or Ci-C4haloalkyl; and
R6b is Ci-C4haloalkyl. 8. A compound of formula IV
Figure imgf000101_0001
wherein
R-i, R2, X, Xi and A are as defined under formula I in claim 1 , and Yb2 is -B(OH)2 or or Yb2 is the group
Figure imgf000101_0002
9. A com ound of formula XlV-b
Figure imgf000101_0003
wherein X is S02;
R-i is ethyl or methylene-cyclopropyl;
A is nitrogen or methine;
Rooi is hydrogen or Ci-C4alkyl;
Q is a group
Figure imgf000101_0004
wherein R0002 is cyano.
10. A pesticidal composition, which comprises at least one compound of formula I according to claim 1 or, where appropriate, a tautomer thereof, in each case in free form or in agrochemically utilizable salt form, as active ingredient and at least one auxiliary.
1 1. A method for controlling pests, which comprises applying a composition according to claim 10 to the pests or their environment with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.
12. A method for the protection of plant propagation material from the attack by pests, which comprises treating the propagation material or the site, where the propagation material is planted, with a composition according to claim 10.
PCT/EP2015/068928 2014-08-21 2015-08-18 Pesticidally active heterocyclic derivatives with sulphur containing substituents WO2016026848A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BR112017003168-0A BR112017003168B1 (en) 2014-08-21 2015-08-18 compounds derived from heterocyclics, pesticide composition, method for pest control and method for the protection of plant propagating material from attack by pests
US15/504,688 US10081641B2 (en) 2014-08-21 2015-08-18 Pesticidally active heterocyclic derivatives with sulphur containing substituents
CN201580044808.2A CN106573891B (en) 2014-08-21 2015-08-18 Pesticidally active heterocyclic derivatives with sulphur containing substituents
EP15753672.3A EP3183245B1 (en) 2014-08-21 2015-08-18 Pesticidally active heterocyclic derivatives with sulphur containing substituents
JP2017510336A JP6695326B2 (en) 2014-08-21 2015-08-18 Pesticidally Active Heterocyclic Derivatives Bearing Sulfur-Containing Substituents
ES15753672T ES2701859T3 (en) 2014-08-21 2015-08-18 Active heterocyclic derivatives as a pesticide with sulfur-containing substituents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14181715 2014-08-21
EP14181715.5 2014-08-21

Publications (1)

Publication Number Publication Date
WO2016026848A1 true WO2016026848A1 (en) 2016-02-25

Family

ID=51383620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/068928 WO2016026848A1 (en) 2014-08-21 2015-08-18 Pesticidally active heterocyclic derivatives with sulphur containing substituents

Country Status (8)

Country Link
US (1) US10081641B2 (en)
EP (1) EP3183245B1 (en)
JP (1) JP6695326B2 (en)
CN (1) CN106573891B (en)
AR (1) AR101586A1 (en)
BR (1) BR112017003168B1 (en)
ES (1) ES2701859T3 (en)
WO (1) WO2016026848A1 (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016121997A1 (en) * 2015-01-29 2016-08-04 日本農薬株式会社 Fused heterocyclic compound having cycloalkylpyridyl group or salt thereof, and agricultural or horticultural insecticide containing said compound and use method therefor
WO2017072039A1 (en) 2015-10-26 2017-05-04 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
KR20170078685A (en) * 2014-11-07 2017-07-07 신젠타 파티서페이션즈 아게 Pesticidally active polycyclic derivatives with sulfur containing substituents
US20180016273A1 (en) * 2015-02-05 2018-01-18 Bayer Cropscience Aktiengesellschsaft 2-(het)aryl-substituted fused bicyclic heterocycle derivatives as pesticides
WO2018065292A1 (en) 2016-10-06 2018-04-12 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocycle derivatives as pest control agents
WO2018065288A1 (en) 2016-10-07 2018-04-12 Bayer Cropscience Aktiengesellschaft 2-[2-phenyl-1-(sulfonyl-methyl)-vinyl]-imidazo-[4,5-b] pyridine derivatives and related compounds as pesticides in plant protection
WO2018099812A1 (en) 2016-12-01 2018-06-07 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2018130437A1 (en) 2017-01-10 2018-07-19 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2018130443A1 (en) 2017-01-10 2018-07-19 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2018153778A1 (en) 2017-02-21 2018-08-30 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2018199209A1 (en) * 2017-04-27 2018-11-01 日本農薬株式会社 Heterocyclic compound having conjugated oxime ether group or salt thereof, and agricultural and horticultural insecticide comprising same and method for use thereof
WO2018197315A1 (en) 2017-04-25 2018-11-01 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2018202540A1 (en) 2017-05-02 2018-11-08 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2019008072A1 (en) 2017-07-05 2019-01-10 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2019008115A1 (en) 2017-07-07 2019-01-10 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2019053182A1 (en) 2017-09-18 2019-03-21 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2019059244A1 (en) 2017-09-21 2019-03-28 日本農薬株式会社 Benzimidazole compound having cyclopropylpyridyl group or salt thereof, agricultural and horticultural pesticide containing said compound, and method of using said pesticide
US20190112303A1 (en) * 2014-12-01 2019-04-18 Syngenta Participations Ag Pesticidally active amide heterocyclic derivatives with sulphur containing substituents
WO2019076778A1 (en) 2017-10-16 2019-04-25 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur and sulfonimidamides containing substituents
WO2019138018A1 (en) 2018-01-15 2019-07-18 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
US10375962B2 (en) 2016-01-11 2019-08-13 Bayer Cropscience Aktiengesellschaft Heterocycle derivatives as pesticides
WO2019229089A1 (en) 2018-05-31 2019-12-05 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2019234158A1 (en) 2018-06-06 2019-12-12 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfoximine containing substituents
WO2019234160A1 (en) 2018-06-06 2019-12-12 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2020013147A1 (en) 2018-07-10 2020-01-16 日本農薬株式会社 Benzimidazole compound having alkylenedioxy group which may be halogenated or salt thereof, agricultural and horticultural pesticide containing said compound, and method of using same
WO2020084075A1 (en) 2018-10-24 2020-04-30 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfoximine containing substituents
US10667517B2 (en) 2015-08-07 2020-06-02 Bayer Cropscience Aktiengesellschaft 2-(Het)aryl-substituted fused heterocycle derivatives as pesticides
WO2020141136A1 (en) 2018-12-31 2020-07-09 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
US10745398B2 (en) 2015-09-28 2020-08-18 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted fused heterocycle derivatives as pesticides
WO2020174094A1 (en) 2019-02-28 2020-09-03 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2020173860A1 (en) 2019-02-26 2020-09-03 Bayer Aktiengesellschaft Fused bicyclic heterocycle derivatives as pesticides
WO2020173861A1 (en) 2019-02-26 2020-09-03 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pest control agents
WO2020178789A1 (en) 2019-03-07 2020-09-10 Pi Industries Ltd. Fused heterocyclic compounds and their use as pest control agents
EP3186249B1 (en) * 2014-08-25 2020-12-09 Syngenta Participations AG Pesticidally active heterocyclic derivatives with sulphur containing substituents
WO2021204577A1 (en) 2020-04-06 2021-10-14 Basf Se Imidazo-pyrimidone compounds as pesticides
WO2021213978A1 (en) 2020-04-21 2021-10-28 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents
WO2021219810A1 (en) 2020-04-30 2021-11-04 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022002818A1 (en) 2020-07-02 2022-01-06 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2022043468A1 (en) 2020-08-26 2022-03-03 Syngenta Crop Protection Ag Process for the preparation of 2,2-difluoro-1,3-benzodioxole derivatives with sulfur containing substituents
WO2022128524A1 (en) 2020-12-14 2022-06-23 Basf Se Sulfoximine pesticides
WO2022238391A1 (en) 2021-05-12 2022-11-17 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents
WO2022253841A1 (en) 2021-06-02 2022-12-08 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfoximine containing substituents
RU2796535C2 (en) * 2017-02-21 2023-05-25 Зингента Партисипейшнс Аг Pesticidally active heterocyclic derivatives with sulfur-containing substitutes
US11926623B2 (en) 2018-06-26 2024-03-12 Bayer Aktiengesellschaft Heterocycle derivatives as pesticides
WO2024189139A1 (en) 2023-03-14 2024-09-19 Syngenta Crop Protection Ag Control of pests resistant to insecticides

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11229208B2 (en) 2013-07-02 2022-01-25 Syngenta Participations Ag Pesticidally active bi- or tricyclic heterocycles with sulfur containing substituents
EP3016949B1 (en) * 2013-07-02 2020-05-13 Syngenta Participations AG Pesticidally active bi- or tricyclic heterocycles with sulfur containing substituents
BR112017011306B1 (en) * 2014-12-01 2022-06-07 Syngenta Participations Ag Heterocyclic amide derivatives with pesticidally active sulfur-containing substituents, composition and related methods
JPWO2020175491A1 (en) * 2019-02-26 2021-11-11 日本曹達株式会社 Pyridine N-oxide compounds and pest control agents
KR102335886B1 (en) * 2020-03-11 2021-12-07 서울대학교병원 Composition for preventing or treating cardiometabolic syndrome comprising Elaeocarpus petiolatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0079083A1 (en) * 1981-11-10 1983-05-18 MERCK PATENT GmbH New imidazo[4,5-c]pyridine derivatives, processes for their preparation and pharmaceutical formulations containing such compounds
WO2012086848A1 (en) * 2010-12-24 2012-06-28 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use for pest control thereof
WO2013018928A1 (en) * 2011-08-04 2013-02-07 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof for pest control

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1384200A3 (en) * 1981-11-10 1988-03-23 Дзе Веллкам Фаундейшн Лимитед (Фирма) Method of producing bicyclic compounds or additive salts of hydrochloric acid thereof
ITMI20120225A1 (en) * 2012-02-16 2013-08-17 Ecoct Tecnologie Ambientali S P A ROTARY DRUM WASHING MACHINE
EP3016949B1 (en) * 2013-07-02 2020-05-13 Syngenta Participations AG Pesticidally active bi- or tricyclic heterocycles with sulfur containing substituents
KR101545215B1 (en) * 2013-10-30 2015-08-18 삼성에스디에스 주식회사 system and method for automatically manageing fault events of data center
AU2015217802B2 (en) * 2014-02-17 2019-06-06 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocycle derivatives as pest control agents
MX2017000305A (en) * 2014-07-08 2017-04-27 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulphur containing substituents.
BR112017002598B1 (en) * 2014-08-12 2022-03-03 Syngenta Participations Ag Pesticide-active heterocyclic derivatives with sulfur-containing substituents
BR112017003366B1 (en) * 2014-08-25 2020-12-08 Syngenta Participations Ag pesticide-active heterocyclic derivatives with sulfur-containing substituents, pesticide composition, method for pest control and method for the protection of plant propagating material from pest attack

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0079083A1 (en) * 1981-11-10 1983-05-18 MERCK PATENT GmbH New imidazo[4,5-c]pyridine derivatives, processes for their preparation and pharmaceutical formulations containing such compounds
WO2012086848A1 (en) * 2010-12-24 2012-06-28 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use for pest control thereof
WO2013018928A1 (en) * 2011-08-04 2013-02-07 Sumitomo Chemical Company, Limited Fused heterocyclic compound and use thereof for pest control

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROBERTSON D W ET AL: "STRUCTURE-ACTIVITY RELATIONSHIPS OF ARYLIMIDAZOPYRIDINE CARDIOTONICS: DISCOVERY AND INOTROPIC ACTIVITY OF 2-Ú2-METHOXY-4- (METHYLSULFINYL)PHENYL 3/4 -1 H-IMIDAZOÚ4,5-C 3/4 PYRIDINE", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 28, no. 6, 1985, pages 717 - 727, XP000577047, ISSN: 0022-2623, DOI: 10.1021/JM00383A006 *

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3186249B1 (en) * 2014-08-25 2020-12-09 Syngenta Participations AG Pesticidally active heterocyclic derivatives with sulphur containing substituents
KR20170078685A (en) * 2014-11-07 2017-07-07 신젠타 파티서페이션즈 아게 Pesticidally active polycyclic derivatives with sulfur containing substituents
JP2018502142A (en) * 2014-11-07 2018-01-25 シンジェンタ パーティシペーションズ アーゲー Pesticide active polycyclic derivatives with sulfur-containing substituents
KR102551157B1 (en) 2014-11-07 2023-07-03 신젠타 파티서페이션즈 아게 Pesticidally active polycyclic derivatives with sulfur containing substituents
US20190112303A1 (en) * 2014-12-01 2019-04-18 Syngenta Participations Ag Pesticidally active amide heterocyclic derivatives with sulphur containing substituents
US10590123B2 (en) * 2014-12-01 2020-03-17 Syngenta Participations Ag Pesticidally active amide heterocyclic derivatives with sulphur containing substituents
US10266552B2 (en) 2015-01-29 2019-04-23 Nihon Nohyaku Co., Ltd. Condensed heterocyclic compound having cycloalkylpyridyl group or salt thereof, agricultural and horticultural insecticide comprising the compound, and method for using the insecticide
JPWO2016121997A1 (en) * 2015-01-29 2017-12-07 日本農薬株式会社 Fused heterocyclic compounds having a cycloalkylpyridyl group or salts thereof, agricultural and horticultural insecticides containing the compounds, and methods of use thereof
WO2016121997A1 (en) * 2015-01-29 2016-08-04 日本農薬株式会社 Fused heterocyclic compound having cycloalkylpyridyl group or salt thereof, and agricultural or horticultural insecticide containing said compound and use method therefor
AU2016213001B2 (en) * 2015-01-29 2019-01-03 Nihon Nohyaku Co., Ltd. Fused heterocyclic compound having cycloalkylpyridyl group or salt thereof, and agricultural or horticultural insecticide containing said compound and use method therefor
US10654845B2 (en) * 2015-02-05 2020-05-19 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted fused bicyclic heterocycle derivatives as pesticides
US20180016273A1 (en) * 2015-02-05 2018-01-18 Bayer Cropscience Aktiengesellschsaft 2-(het)aryl-substituted fused bicyclic heterocycle derivatives as pesticides
EP3896066A2 (en) 2015-08-07 2021-10-20 Bayer CropScience Aktiengesellschaft 2-(het)aryl-substituted condensed heterocycle derivatives as pesticides
US10667517B2 (en) 2015-08-07 2020-06-02 Bayer Cropscience Aktiengesellschaft 2-(Het)aryl-substituted fused heterocycle derivatives as pesticides
EP3896065A1 (en) 2015-08-07 2021-10-20 Bayer CropScience Aktiengesellschaft 2-(het)aryl-substituted condensed heterocycle derivatives as pesticides
US10986840B2 (en) 2015-08-07 2021-04-27 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted fused heterocycle derivatives as pesticides
US10745398B2 (en) 2015-09-28 2020-08-18 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted fused heterocycle derivatives as pesticides
WO2017072039A1 (en) 2015-10-26 2017-05-04 Bayer Cropscience Aktiengesellschaft Condensed bicyclic heterocycle derivatives as pest control agents
US10550116B2 (en) 2015-10-26 2020-02-04 Bayer Cropscience Aktiengesellschaft Fused bicyclic heterocycle derivatives as pesticides
US10375962B2 (en) 2016-01-11 2019-08-13 Bayer Cropscience Aktiengesellschaft Heterocycle derivatives as pesticides
WO2018065292A1 (en) 2016-10-06 2018-04-12 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted condensed bicyclic heterocycle derivatives as pest control agents
US11339155B2 (en) 2016-10-06 2022-05-24 Bayer Cropscience Aktiengesellschaft 2-(het)aryl-substituted fused bicyclic heterocycle derivatives as pesticides
WO2018065288A1 (en) 2016-10-07 2018-04-12 Bayer Cropscience Aktiengesellschaft 2-[2-phenyl-1-(sulfonyl-methyl)-vinyl]-imidazo-[4,5-b] pyridine derivatives and related compounds as pesticides in plant protection
WO2018099812A1 (en) 2016-12-01 2018-06-07 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2018130443A1 (en) 2017-01-10 2018-07-19 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
US11083199B2 (en) 2017-01-10 2021-08-10 Bayer Aktiengesellschaft Heterocycle derivatives as pesticides
WO2018130437A1 (en) 2017-01-10 2018-07-19 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
US11058115B2 (en) 2017-01-10 2021-07-13 Bayer Aktiengesellschaft Heterocycle derivatives as pesticides
JP2020508312A (en) * 2017-02-21 2020-03-19 シンジェンタ パーティシペーションズ アーゲー Pesticidally active heterocyclic derivatives with sulfur-containing substituents
WO2018153778A1 (en) 2017-02-21 2018-08-30 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
JP7053644B2 (en) 2017-02-21 2022-04-12 シンジェンタ パーティシペーションズ アーゲー Pesticide-active heterocyclic derivative with sulfur-containing substituent
CN110312707B (en) * 2017-02-21 2023-06-23 先正达参股股份有限公司 Pesticidally active heterocyclic derivatives with sulfur containing substituents
KR102600081B1 (en) * 2017-02-21 2023-11-07 신젠타 파티서페이션즈 아게 Insecticidally active heterocyclic derivatives with sulfur-containing substituents
CN110312707A (en) * 2017-02-21 2019-10-08 先正达参股股份有限公司 Pesticidally active heterocyclic derivatives with sulphur containing substituents
KR20190120269A (en) * 2017-02-21 2019-10-23 신젠타 파티서페이션즈 아게 Insecticidal active heterocyclic derivatives with sulfur containing substituents
TWI793104B (en) * 2017-02-21 2023-02-21 瑞士商先正達合夥公司 Pesticidally active heterocyclic derivatives with sulfur containing substituents
US11440910B2 (en) 2017-02-21 2022-09-13 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
RU2796535C2 (en) * 2017-02-21 2023-05-25 Зингента Партисипейшнс Аг Pesticidally active heterocyclic derivatives with sulfur-containing substitutes
WO2018197315A1 (en) 2017-04-25 2018-11-01 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2018199209A1 (en) * 2017-04-27 2018-11-01 日本農薬株式会社 Heterocyclic compound having conjugated oxime ether group or salt thereof, and agricultural and horticultural insecticide comprising same and method for use thereof
WO2018202540A1 (en) 2017-05-02 2018-11-08 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2019008072A1 (en) 2017-07-05 2019-01-10 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2019008115A1 (en) 2017-07-07 2019-01-10 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2019053182A1 (en) 2017-09-18 2019-03-21 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
US11252962B2 (en) 2017-09-21 2022-02-22 Nihon Nohyaku Co., Ltd. Cyclopropylpyridyl group-containing benzimidazole compound or salt thereof, agricultural and horticultural insecticide comprising the compound or the salt, and method for using the insecticide
WO2019059244A1 (en) 2017-09-21 2019-03-28 日本農薬株式会社 Benzimidazole compound having cyclopropylpyridyl group or salt thereof, agricultural and horticultural pesticide containing said compound, and method of using said pesticide
JPWO2019059244A1 (en) * 2017-09-21 2020-11-05 日本農薬株式会社 Benzimidazole compounds having a cyclopropylpyridyl group or salts thereof, agricultural and horticultural insecticides containing these compounds, and their usage methods.
WO2019076778A1 (en) 2017-10-16 2019-04-25 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur and sulfonimidamides containing substituents
WO2019138018A1 (en) 2018-01-15 2019-07-18 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2019229089A1 (en) 2018-05-31 2019-12-05 Syngenta Participations Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2019234160A1 (en) 2018-06-06 2019-12-12 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
EP4342297A2 (en) 2018-06-06 2024-03-27 Syngenta Crop Protection AG Pesticidally active heterocyclic derivatives with sulfoximine containing substituents
WO2019234158A1 (en) 2018-06-06 2019-12-12 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfoximine containing substituents
US11926623B2 (en) 2018-06-26 2024-03-12 Bayer Aktiengesellschaft Heterocycle derivatives as pesticides
US11882835B2 (en) 2018-07-10 2024-01-30 Nihon Nohyaku Co., Ltd. Benzimidazole compound having an optionally halogenated alkylenedioxy group or salt thereof, agricultural and horticultural insecticide comprising the compound or the salt, and method for using the insecticide
WO2020013147A1 (en) 2018-07-10 2020-01-16 日本農薬株式会社 Benzimidazole compound having alkylenedioxy group which may be halogenated or salt thereof, agricultural and horticultural pesticide containing said compound, and method of using same
WO2020084075A1 (en) 2018-10-24 2020-04-30 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfoximine containing substituents
WO2020141136A1 (en) 2018-12-31 2020-07-09 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2020173861A1 (en) 2019-02-26 2020-09-03 Bayer Aktiengesellschaft Condensed bicyclic heterocyclic derivatives as pest control agents
WO2020173860A1 (en) 2019-02-26 2020-09-03 Bayer Aktiengesellschaft Fused bicyclic heterocycle derivatives as pesticides
WO2020174094A1 (en) 2019-02-28 2020-09-03 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2020178789A1 (en) 2019-03-07 2020-09-10 Pi Industries Ltd. Fused heterocyclic compounds and their use as pest control agents
WO2021204577A1 (en) 2020-04-06 2021-10-14 Basf Se Imidazo-pyrimidone compounds as pesticides
WO2021213978A1 (en) 2020-04-21 2021-10-28 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocyclic derivatives as pest control agents
WO2021219810A1 (en) 2020-04-30 2021-11-04 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2022002818A1 (en) 2020-07-02 2022-01-06 Bayer Aktiengesellschaft Heterocyclene derivatives as pest control agents
WO2022043468A1 (en) 2020-08-26 2022-03-03 Syngenta Crop Protection Ag Process for the preparation of 2,2-difluoro-1,3-benzodioxole derivatives with sulfur containing substituents
WO2022128524A1 (en) 2020-12-14 2022-06-23 Basf Se Sulfoximine pesticides
WO2022238391A1 (en) 2021-05-12 2022-11-17 Bayer Aktiengesellschaft 2-(het)aryl-substituted condensed heterocycle derivatives as pest control agents
WO2022253841A1 (en) 2021-06-02 2022-12-08 Syngenta Crop Protection Ag Pesticidally active heterocyclic derivatives with sulfoximine containing substituents
WO2024189139A1 (en) 2023-03-14 2024-09-19 Syngenta Crop Protection Ag Control of pests resistant to insecticides

Also Published As

Publication number Publication date
US10081641B2 (en) 2018-09-25
CN106573891A (en) 2017-04-19
BR112017003168B1 (en) 2021-03-02
EP3183245A1 (en) 2017-06-28
EP3183245B1 (en) 2018-09-26
ES2701859T3 (en) 2019-02-26
JP6695326B2 (en) 2020-05-20
US20170260214A1 (en) 2017-09-14
JP2017531616A (en) 2017-10-26
BR112017003168A2 (en) 2018-07-03
CN106573891B (en) 2020-06-16
AR101586A1 (en) 2016-12-28

Similar Documents

Publication Publication Date Title
US10051864B2 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
EP3183245B1 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
US9949483B2 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
EP3317276B1 (en) Pesticidally active polycyclic derivatives with sulfur containing substituents
US20210403478A1 (en) Pesticidally active heterocyclic derivatives with sulfur containing substituents
EP3247712A1 (en) Pesticidally active polycyclic derivatives with sulfur containing substituents
WO2016030229A1 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
EP3268365A1 (en) Pesticidally active tetracyclic derivatives with sulfur containing substituents
EP3380470A1 (en) Pesticidally active heterocyclic derivatives with sulphur and cyclopropyl containing substituents
EP3411373A1 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
WO2018153778A1 (en) Pesticidally active heterocyclic derivatives with sulfur containing substituents
WO2016058928A1 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
AU2018332263B2 (en) Pesticidally active heterocyclic derivatives with sulfur containing substituents
EP3245192A1 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
WO2018206348A1 (en) Imidazopyrimidine derivatives with sulfur containing phenyl and pyridyl substituents
EP3615531A1 (en) Pesticidally active heterocyclic derivatives with sulfur containing substituents
EP3227285B1 (en) Pesticidally active amide heterocyclic derivatives with sulphur containing substituents
WO2019076778A1 (en) Pesticidally active heterocyclic derivatives with sulfur and sulfonimidamides containing substituents
WO2018095795A1 (en) Pesticidally active polycyclic derivatives with sulfur containing substituents
WO2018215304A1 (en) Tetracyclic pyridazine sulphur containing compounds and their use as pesticides
WO2018091389A1 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15753672

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015753672

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15504688

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017510336

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017003168

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017003168

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170216