WO2016024725A1 - Method and device for calculating segmental moments of inertia by using dynamometer - Google Patents

Method and device for calculating segmental moments of inertia by using dynamometer Download PDF

Info

Publication number
WO2016024725A1
WO2016024725A1 PCT/KR2015/007193 KR2015007193W WO2016024725A1 WO 2016024725 A1 WO2016024725 A1 WO 2016024725A1 KR 2015007193 W KR2015007193 W KR 2015007193W WO 2016024725 A1 WO2016024725 A1 WO 2016024725A1
Authority
WO
WIPO (PCT)
Prior art keywords
moment
inertia
segment
dynamometer
rotation
Prior art date
Application number
PCT/KR2015/007193
Other languages
French (fr)
Korean (ko)
Inventor
신이수
손종상
김영호
Original Assignee
연세대학교 원주산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 원주산학협력단 filed Critical 연세대학교 원주산학협력단
Publication of WO2016024725A1 publication Critical patent/WO2016024725A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb

Definitions

  • the present invention relates to a method and apparatus for calculating a segment moment of inertia using a dynamometer.
  • the link-segment model in human body movement analysis is a representation of the human body as mechanically connected bodies, and is applied to understanding, analyzing, and diagnosing various movements in medicine and sports science.
  • anthropometric data such as segment mass and moment of inertia are required.
  • segment moment of inertia is very necessary information for analyzing the body movement.
  • Korean Patent Publication No. 2002-0063646 discloses a "moment of inertia measurement mechanism".
  • this is a method of measuring the object to be measured in a jaw (jaw), it was difficult to see a suitable measurement method for human body motion analysis.
  • the present application is to provide a segment inertia moment calculation method and apparatus using a dynamometer that can directly calculate the individual segment inertia moment of the joint having different characteristics for each individual.
  • the method of calculating the segment moment of inertia using the dynamometer (a) an additional device located by using a dynamometer, the center of mass spaced apart from the rotation axis of the dynamometer Measuring a first gravity moment generated by the angle according to the angle, and measuring the first rotation moment and the first angular acceleration generated when the attachment is rotated about the rotation axis with time; (b) using the dynamometer, measure the segment having an axis coinciding with the axis of rotation and the second gravity moment generated by the accessory according to the angle, wherein the segment and the accessory are rotated together about the axis of rotation; Measuring the second rotation moment and the second angular acceleration generated over time according to time; (c) calculating the moment of inertia of the additional device through a moment equilibrium relationship based on the first gravity moment, the first rotation moment, and the first angular acceleration; (d)
  • the segment inertia moment calculation device using the dynamometer according to the second aspect of the present application the first gravity moment generated by the additional device located at a center of mass away from the rotation axis Measured according to an angle, and measuring the first rotational moment and the first angular acceleration generated when the attachment is rotated about the rotation axis with time, and generated by the segment and the segment having an axis coinciding with the rotation axis.
  • a dynamometer for measuring a second gravitational moment to be measured according to an angle, and a second rotational moment and a second angular acceleration generated in time when the segment and the attachment are rotated about the rotation axis; And calculating an inertia moment of the additional device based on the first gravity moment, the first rotation moment, and the first angular acceleration, and based on the second gravity moment, the second rotation moment, and the second angular acceleration.
  • the controller may include a controller configured to calculate a sum of the inertia moment of the segment and the inertia moment of the attachment device, and calculate the inertia moment of the segment by subtracting the inertia moment of the attachment device from the sum value.
  • the moment of inertia of the segment can be easily and accurately calculated by using a combination of the dynamometer and the additional device, and unlike the conventional method of measuring the moment of inertia using a dead body, Moment of inertia can be calculated, it is easy to calculate the individual moment of inertia that appears different for each individual.
  • FIG. 1 is a flowchart of a method of calculating a segment moment of inertia using a dynamometer according to an embodiment of the present disclosure.
  • FIGS. 2A and 2B are conceptual views illustrating a method of calculating a segment moment of inertia using a dynamometer according to an embodiment of the present application.
  • FIG. 3 shows the first angle, the first angular velocity, the first angular acceleration, the first gravity moment, and the first moment of rotation, and the moment of inertia of the attachment, with only the attachment attached to the dynamometer. This is a graph showing the effect over time.
  • FIG. 4 is a block diagram illustrating an apparatus for calculating a segment moment of inertia using a dynamometer according to an embodiment of the present disclosure.
  • FIGS. 2A and 2B are conceptual views illustrating a method of calculating segment inertia moment using a dynamometer according to an embodiment of the present disclosure.
  • the method of calculating the segment inertia moment may include measuring a first gravity moment, a first rotation moment, and a first angular acceleration with respect to the attachment device 110 (S110), and the attachment device 110 with the segment 10. 2 the gravitational moment, the second rotation moment and the second angular acceleration measuring step (S120), calculating the moment of inertia of the additional device 110 (S130), the moment of inertia of the additional device 110 and the segment 10 Computing the total value (S140), and calculating the moment of inertia of the segment 10 (S150).
  • steps S110 and S120 may be performed using the dynamometer 100.
  • steps S130 to S150 may be performed through the controller 200 (shown in FIG. 4 to be described later).
  • step S110 the first gravity moment generated by the additional device 110 located at a center of mass spaced apart from the rotation axis 1 of the dynamometer 100 by using the dynamometer 100 is used. Measure according to the angle.
  • operation S110 the first rotation moment and the first angular acceleration generated when the additional device 110 is rotated about the rotation shaft 1 are measured with time.
  • Dynamometer 100 is a device that can directly measure the torque (moment), angular acceleration, etc. generated in the human joint that can be interpreted as a mechanical hinge (hinge jont).
  • the dynamometer 100 may be a Biodex System 3 Pro (Biodex Medical Systems, US).
  • the commercial dynamometer 100 allows an angular velocity of manual movement up to about 300 degrees / sec, and when the angular velocity to be reached is set at such a fast angular velocity, the intermediate process of reaching the angular velocity will be described later with reference to FIG. As shown in (b), an almost constant acceleration section (time section with equivalent acceleration) may occur.
  • attachment device 110 attachment
  • attachment may be referred to as a mechanism that can be attached to the dynamometer 100 separately from the segment 10 or integrally with the segment 10.
  • step S110 only the additional device 110 is attached to the dynamometer 100 alone.
  • the additional device 110 by attaching the additional device 110 so that the center of mass of the additional device 110 is spaced apart from the rotation axis 1 by a predetermined distance la, the gravity generated by the gravity of the additional device 110 is applied. 1 gravitational moment ( ) Can be measured.
  • the first gravity moment is measured according to the angle, which means that the additional device 110 is rotated ( ), Depending on arm length ( For example, it may mean that the first gravity moment is changed due to, for example, a plurality of times at a predetermined angular interval.
  • the angle range for rotating the additional device 110 may be set, and the first gravity moment that varies according to the angle within the set angle range may be measured.
  • step S110 the first gravity moment is measured through a quasi-static passive movement using the dynamometer 100, and the additional device 110 is provided through a dynamic passive movement using the dynamometer 100.
  • the method may include measuring the first rotation moment and the first angular acceleration according to the angle of rotation.
  • the quasi-static passive exercise may be performed at an ultra low speed of about 1 degree / sec. Through this ultra-low speed rotation, the first gravity moment that changes according to the angle may be measured.
  • the dynamic passive movement may be, for example, at an angular velocity of about 240 degrees / sec to about 300 degrees / sec, but is not limited thereto. That is, the quasi-static passive motion may mean a very slow rotational motion close to the static state, and the dynamic passive motion may mean a rotational motion (fast manual motion) which is much faster than the quasi-static manual motion. Can be.
  • the quasi-static passive motion is to measure the moment generated by the mass of the additional device 110 according to the angle
  • the dynamic manual motion is that the additional device 110 can have a constant angular acceleration (equivalent acceleration) It may be said to secure a predetermined time period or more.
  • the first rotation moment and the first angular acceleration may be measured according to the rotated angle when the additional device 110 is rotated, and may also be measured according to the time that the rotation of the additional device 110 proceeds.
  • the dynamometer 100 is an angle at which the additional device 110 is rotated (first angle), angular velocity (first angular velocity) to rotate, angular acceleration (first angular acceleration) during rotation, occurs during rotation
  • the moment (first rotation moment) to be measured can be measured over time.
  • the step S120 uses the dynamometer 100 to angle the second gravitational moment generated by the segment 10 having the axis coinciding with the rotation axis 1 and the additional device 110. Measure according to. In operation S120, the second rotation moment and the second angular acceleration generated when the segment 10 and the additional device 110 are rotated together about the rotation axis 1 are measured with time.
  • the segment 10 may be a segment of the human body.
  • the segment 10 may be an arm region (lower arm) around an elbow joint.
  • the segment 10 may be a leg portion around the knee joint.
  • the segment 10 may not be limited to the segment of the human body, and various objects that may be modeled as link segments may correspond to the segment 10.
  • segment 10 when the segment 10 is an arm part, coinciding the axes of the rotation axis 1 and the segment 10 means that the rotation axis 1 of the dynamometer 1 and the fire center of the elbow joint are on the same axis line. This may mean that the segment 10 and the dynamometer 100 are disposed to be connected to each other.
  • step S120 the segment 10 and the additional device 110 are integrally connected with the dynamometer 100. Through this, the second gravitational moment ( ) Can be measured.
  • the second gravity moment is measured according to the angle, which means that the angle at which the additional device 110 is rotated ( ), Depending on arm length ( , For example, it may mean that the second gravity moment, which is changed due to), is measured a plurality of times at regular angular intervals.
  • an angle range for rotating the segment 10 and the additional device 110 may be set, and the second gravity moment that changes according to the angle within the set angle range may be measured.
  • the angular range may be set within the maximum movable range of the segment 10 to be measured.
  • the angle range for rotating the segment 10 and the additional device 110 may be set to 120 degrees.
  • the state where the elbow joint is fully folded may be set to -20 degree, and the state where the elbow joint is bent by 120 degree from 100 degree.
  • step S120 the second gravitational moment is measured through a quasi-static manual motion using the dynamometer 100, and the segment 10 and the additional device are provided through a dynamic manual motion using the dynamometer 100.
  • the method may include measuring the second rotation moment and the second angular acceleration according to the angle at which the 110 is rotated.
  • the quasi-static passive movement may mean a very slow rotational movement close to the static state, and the dynamic passive movement is a rotational movement (fast manual movement) which is much faster than the quasi-static passive movement. Exercise).
  • step S120 the quasi-static passive motion is to measure the moment generated by the mass of the segment 10 and the additional device 110 according to the angle, the dynamic manual motion is the segment 10 and the additional device 110 is It can be said to ensure a predetermined or more time interval that can have a constant angular acceleration (equivalent acceleration) integrally.
  • the second rotation moment and the second angular acceleration may be measured according to the rotated angle when the segment 10 and the attachment 110 are integrally rotated together, and the segment 10 and the attachment 110 may be measured. It can be measured according to the time that the rotation of). That is, the dynamometer 100 has an angle (second angle) at which the additional device 110 is rotated, an angular velocity (second angular velocity) that rotates, an angular acceleration (second angular acceleration) during rotation, and a moment generated during rotation (second rotation). Moment) and the like can be measured over time.
  • step S130 is a moment equilibrium relationship based on the first gravity moment, the first rotation moment, and the first angular acceleration measured in step S110 ( Calculate the moment of inertia of the additional device 110 through).
  • FIG. 3 shows the first angle, the first angular velocity, the first angular acceleration, the first gravity moment, and the first moment of rotation, and the moment of inertia of the attachment, with only the attachment attached to the dynamometer. This is a graph showing the effect over time.
  • FIG. 3A is a first angle
  • FIG. 3B is a first angular velocity
  • FIG. 3C is a graph relating to the first angular acceleration.
  • the graph described as 'Gravity effect' in FIG. 3 (d) is a graph related to the first gravity moment measured during quasi-static manual movement
  • the graph described as 'Measured' in the legend is 240 degree / sec.
  • a graph relating to the first rotation moment measured during the manual movement, and the graph described as 'Acceleration effect' in the legend is a graph regarding the moment of inertia of the additional device 110 calculated based on the above measured values.
  • FIG. 3 shows 120 degrees of the lower arm of a healthy male (age: 28 years old, mass: 80.8 kg, height: 1.67 m) using the dynamometer 100 called Biodex System 3 Pro (Biodex Medical Systems, US). This is a graph showing the time of each parameter measured while rotating in the angle range of the joint.
  • the moment of inertia of the additional device 110 includes the first angular acceleration and the first rotation moment measured in the first time interval (a) determined that the first angular acceleration maintains the equivalent speed.
  • the first apparatus 110 may be calculated based on a first gravity moment corresponding to an angle at which the additional device 110 is rotated about the rotation axis 1.
  • the equivalent speed does not only mean that the angular acceleration remains completely constant without change.
  • the variation range is within the set tolerance, it may be determined that it is a time interval in which the equivalent acceleration is maintained. Can be.
  • the moment of inertia of the additional device 110 may include a first angular acceleration and a first rotation moment measured at a specific time point belonging to the first time interval (a) (see FIGS. 3C and 3D), and At this particular point in time, the additional device 110 may be calculated based on the first gravity moment at the first angle (see (a) of FIG. 3).
  • the first gravity moment may be in a state measured according to an angle through a quasi-static manual movement through the dynamometer 100 as described above.
  • the moment of inertia of the additional device 110 may be calculated as an average value for at least some of the first time intervals a.
  • the moment of inertia of the additional device 110 may be calculated for a specific time point in the first time interval a, but by calculating the average value of at least some of the first time interval a.
  • the average concept can further reduce errors that can occur in the calculation and calculate the moment of inertia more reliably.
  • At least some of the first time interval a may be set to the entire first time interval a.
  • at least some sections of the first time section (a) may be set to sections that are determined to be closer to the equivalent speed due to less variation in the angular acceleration of the first time section (a).
  • step S140 the moment of inertia of the segment 10 and the additional device 110 are provided through a moment equilibrium relationship based on the second gravity moment, the second rotation moment, and the second angular acceleration measured in step S120. Calculate the sum of moments of inertia of.
  • step S130 is a step of calculating the moment of inertia of the additional device 110 only, whereas the step S140 is for the case in which the segment 10 and the additional device 110 are integrally rotated, and the segment 10 and the additional device 110 are added. Calculating the sum of the moments of inertia of each device 110.
  • the second segment may be calculated based on a second gravitational moment corresponding to an angle at which the segment 10 and the additional device 110 are rotated together about the rotation axis 1.
  • the equivalent speed does not only mean that a completely constant angular acceleration is maintained without change. For example, even if the angular acceleration has a predetermined variation with time, it may be determined that it is a time interval in which the equivalent acceleration is maintained when the variance is within a set tolerance.
  • the sum of the moments of inertia of each of the segment 10 and the additional device 110 may include the second angular acceleration and the second rotation moment measured at a specific time point belonging to the second time interval, and the segment 10 at this specific time point.
  • the second gravitational moment at the second angle at which the additional device 110 is located may be in a state measured according to the angle through a quasi-static manual movement through the dynamometer 100 as described above.
  • the summation may be calculated as an average of at least some of the second time intervals.
  • the moment of inertia of the additional device 110 may be calculated for a specific time point of the second time period. However, the moment of inertia of the additional device 110 may be calculated as an average value for at least some of the second time period. It is possible to further reduce the error that can occur and calculate the moment of inertia more reliably. Since this is similar to that described in step S130, a detailed description thereof will be omitted.
  • step S150 the inertia moment of the segment 10 is calculated by subtracting the inertia moment of the additional device 110 calculated in step S130 from the sum value calculated in step S140.
  • step S130 the moment of inertia of the additional device 110 may be calculated by Equation 1 below.
  • the sum may be calculated by Equation 2 below.
  • Equation 1 the first rotation moment, the first gravity moment, and the first angular acceleration are measured through the step S110. Therefore, if the first angular acceleration is not 0, the moment of inertia of the additional device 110 may be calculated using Equation 1 as shown in Equation 3 below (step S130).
  • Equation 2 the second rotation moment, the second gravity moment and the second angular acceleration are values measured through the step S120. Therefore, if the second angular acceleration is not 0, the sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110 may be calculated using Equation 2 as shown in Equation 4 below (step S140).
  • the sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110 calculated through Equation 4 ( The moment of inertia of the additional device 110 calculated through Equation (3) ), The moment of inertia of the segment 10 may be calculated (step S150).
  • the segment inertia moment calculation apparatus using a dynamometer according to an embodiment of the present application will be described.
  • the present segment inertia moment calculating device is a device that can be used to implement the method of calculating the segment inertia moment described above, and the same reference numerals are used for the same or similar components as the above-described salping structure, and overlapping descriptions will be briefly or omitted. Let's do it.
  • FIG. 4 is a block diagram illustrating an apparatus for calculating a segment moment of inertia using a dynamometer according to an embodiment of the present disclosure.
  • the apparatus for calculating the segment moment of inertia includes a controller 200.
  • the segment moment of inertia calculation device may include a dynamometer (100).
  • the dynamometer 100 measures the first gravity moment generated by the additional device 110 positioned at a center of mass spaced apart from the rotating shaft 1 according to the angle, and the additional device 110 rotates about the rotating shaft 1. When the first rotation moment and the first angular acceleration generated when the can be measured over time.
  • the first gravity moment may be measured through a quasi-static passive movement using the dynamometer 100 as described above.
  • the first rotation moment and the first angular acceleration may be measured according to the angle at which the attachment is rotated through the dynamic manual movement using the dynamometer 100.
  • the dynamometer 100 measures the second gravity moment generated by the segment 10 having the axis coinciding with the rotation axis 1 and the additional device 110 according to the angle, and the segment 10 and the additional device 110. ) Can be measured with time the second rotation moment and the second angular acceleration generated when the rotation axis (1) rotated together.
  • the second gravity moment may be measured through quasi-static passive movement using the dynamometer 100 as described above.
  • the second rotation moment and the second angular acceleration may be measured according to the angle at which the segment 10 and the additional device 110 are rotated through the dynamic manual movement using the dynamometer 100.
  • the controller 200 may calculate the moment of inertia of the additional device 110 based on the first gravity moment, the first rotation moment, and the first angular acceleration. In addition, the controller 200 may calculate the sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110 based on the second gravity moment, the second rotation moment, and the second angular acceleration.
  • the controller 200 may calculate the moment of inertia of the segment 10 by subtracting the moment of inertia of the additional device 110 from the sum.
  • controller 200 may be applied to various computing devices.
  • various computing devices may be applied to the controller 200.
  • the control unit 200 may include the first axis and the first rotation moment measured in the first time section determined that the first angular acceleration maintains the equivalent acceleration, and the additional device 110 may rotate the rotation shaft 1 in the first time section.
  • the moment of inertia of the additional device 110 may be calculated based on the first gravity moment corresponding to the angle rotated about the center.
  • the controller 200 may calculate the moment of inertia of the additional device 110 as an average of at least some of the first time intervals. As it has been described in the above method of calculating the segment moment of inertia, detailed description thereof will be omitted.
  • control unit 200 may include the segment 10 and the additional device 110 in the second angular acceleration and the second rotation moment measured in the second time interval and the second time interval determined that the second angular acceleration maintains the equivalent acceleration.
  • the sum of the moment of inertia of the segment 10 and the moment of inertia of the attachment device 110 may be calculated based on the second gravitational moment corresponding to the angle rotated together about the rotation axis 1.
  • the controller 200 may calculate the sum as the average value of at least some of the second time intervals. As it has been described in the above method of calculating the segment moment of inertia, detailed description thereof will be omitted.
  • controller 200 may calculate the moment of inertia of the additional device 110 by using Equations 1 and 3 described above. In addition, the controller 200 may calculate the sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110 by using Equations 2 and 4 described above.
  • control unit 200 is the sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110 calculated through Equations 2 and 4 ( Moment of inertia of the additional device 110 calculated through Equations 1 and 3 ), The moment of inertia of the segment 10 can be calculated.
  • the moment of inertia of the segment 10 can be easily and accurately calculated using a combination of the dynamometer 100 and the additional device 110, and a conventional inertia moment measuring method using a dead body Unlike the moment of inertia for the living body can be calculated, the segmented moment of inertia that appears differently for each individual can be easily calculated by personal customization. That is, according to the present application, the moment of inertia of the segment 10 can be calculated by clearly reflecting personal characteristics.
  • control unit 10 segment

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Disclosed is a method for calculating segmental moments of inertia by using a dynamometer. The method for calculating segmental moments of inertia may comprise the steps of: (a) by using a dynamometer, measuring a first gravitational moment generated by an additional device, and a first rotational moment and a first angular acceleration generated when the additional device is rotated on the rotational shaft; (b) by using the dynamometer, measuring a second gravitational moment generated by the additional device and the segment, and a second rotational moment and a second angular acceleration generated when the additional device and the segment are rotated together on the rotational shaft; (c) calculating the moment of inertia of the additional device; (d) calculating the sum value of the moment of inertia of the segment and the moment of inertia of the additional device; and (e) calculating the moment of inertia of the segment.

Description

동력계를 이용한 분절 관성모멘트 산출 방법 및 장치Method and apparatus for calculating segment inertia moment using dynamometer
본원은 동력계를 이용한 분절 관성모멘트 산출 방법 및 장치에 관한 것이다.The present invention relates to a method and apparatus for calculating a segment moment of inertia using a dynamometer.
인체운동분석학에서 링크분절모델(link-segment model)은 인체를 기계적으로 서로 연결된 강체들로 표현한 것으로, 의학과 스포츠 과학 분야에서 다양한 운동을 이해하거나 분석, 진단하는 데 적용되고 있다.The link-segment model in human body movement analysis is a representation of the human body as mechanically connected bodies, and is applied to understanding, analyzing, and diagnosing various movements in medicine and sports science.
이러한 링크분절모델을 이용하기 위해서는 분절의 질량이나 관성모멘트와 같은 인체측정자료(anthropometric data)가 필요하다. 특히, 인체운동의 대부분은 관절의 회전운동을 기반으로 하므로 분절 관성모멘트는 인체운동을 분석하는 데 매우 필요한 정보이다.In order to use the link segment model, anthropometric data such as segment mass and moment of inertia are required. In particular, since most of the human body movement is based on the rotational movement of the joint, the segment moment of inertia is very necessary information for analyzing the body movement.
이러한 관성모멘트 측정과 관련하여 한국공개특허공보 제2002-0063646호에는 "관성 모멘트 측정 기구"가 개시되어 있다. 다만, 이는 피측정물을 조(jaw)에 고정시켜 측정하는 방식으로서, 인체운동분석학에 적합한 측정 방식이라고 보기는 어려웠다.In connection with the measurement of the moment of inertia, Korean Patent Publication No. 2002-0063646 discloses a "moment of inertia measurement mechanism". However, this is a method of measuring the object to be measured in a jaw (jaw), it was difficult to see a suitable measurement method for human body motion analysis.
한편, 인체운동분석학에 있어서 가장 보편적인 방법은 사체(cadaver)를 통해 직접 측정한 관성 파라미터로 도출한 회귀식(regression equation)을 이용하는 것이며, Dempster("Space requirements of the seated operator," Wright-Patterson Air Force Base, Ohio, 1955)의 회귀식을 이용한 방법이 대표적이다. 이 방법은 해당 관절에 대한 분절 관성모멘트의 대체적인 범위를 도출하는 일반적인 목적으로 사용하기엔 쉽고 유용하다고 할 수 있다.On the other hand, the most common method in anthropometric analysis is to use a regression equation derived from inertial parameters measured directly through a cadaver, and Dempster ("Space requirements of the seated operator," Wright-Patterson). Air Force Base, Ohio, 1955) is a typical method using the regression equation. This method is easy and useful to use for general purposes to derive an alternative range of segmental moment of inertia for the joint.
하지만, 이 방법은 상술한 바와 같이 사체를 대상으로 관성 파라미터를 측정하고 분절 관성모멘트를 도출하는 것이어서, 해당 관절에 대하여 개개인마다 다르게 나타나는 특성을 반영하는 데 한계가 있었다.However, this method is to measure the inertia parameter and derive the segment moment of inertia of the dead body, as described above, there was a limit in reflecting the characteristics appearing differently for each joint.
전술한 종래 기술의 문제점을 해결하기 위한 것으로서, 본원은 개개인마다 다른 특성을 갖는 관절의 분절 관성모멘트를 개인별 맞춤형으로 직접 산출할 수 있는 동력계를 이용한 분절 관성모멘트 산출 방법 및 장치를 제공하고자 한다. In order to solve the above problems of the prior art, the present application is to provide a segment inertia moment calculation method and apparatus using a dynamometer that can directly calculate the individual segment inertia moment of the joint having different characteristics for each individual.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical problem to be achieved by the present embodiment is not limited to the technical problems as described above, and other technical problems may exist.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제1 측면에 따른 동력계를 이용한 분절 관성모멘트 산출 방법은, (a) 동력계를 이용하여, 상기 동력계의 회전축으로부터 질량 중심이 이격되어 위치한 부가장치에 의해 발생되는 제1 중력모멘트를 각도에 따라 측정하고, 상기 부가장치가 상기 회전축을 중심으로 회전되었을 때 발생되는 제1 회전모멘트와 제1 각가속도를 시간에 따라 측정하는 단계; (b) 상기 동력계를 이용하여, 상기 회전축과 일치하는 축을 갖는 분절과 상기 부가장치에 의해 발생되는 제2 중력모멘트를 각도에 따라 측정하고, 상기 분절과 상기 부가장치가 상기 회전축을 중심으로 함께 회전되었을 때 발생되는 제2 회전모멘트와 제2 각가속도를 시간에 따라 측정하는 단계; (c) 상기 제1 중력모멘트, 상기 제1 회전모멘트, 및 상기 제1 각가속도를 기초로 모멘트 평형 관계를 통해 상기 부가장치의 관성모멘트를 산출하는 단계; (d) 상기 제2 중력모멘트, 상기 제2 회전모멘트, 및 상기 제2 각가속도를 기초로 모멘트 평형 관계를 통해 상기 분절의 관성모멘트와 상기 부가장치의 관성모멘트의 합산치를 산출하는 단계; 및 (e) 상기 (d) 단계에서 산출된 상기 합산치에서 상기 (c) 단계에서 산출된 상기 부가장치의 관성모멘트를 감하여 상기 분절의 관성모멘트를 산출하는 단계를 포함할 수 있다.As a technical means for achieving the above technical problem, the method of calculating the segment moment of inertia using the dynamometer according to the first aspect of the present application, (a) an additional device located by using a dynamometer, the center of mass spaced apart from the rotation axis of the dynamometer Measuring a first gravity moment generated by the angle according to the angle, and measuring the first rotation moment and the first angular acceleration generated when the attachment is rotated about the rotation axis with time; (b) using the dynamometer, measure the segment having an axis coinciding with the axis of rotation and the second gravity moment generated by the accessory according to the angle, wherein the segment and the accessory are rotated together about the axis of rotation; Measuring the second rotation moment and the second angular acceleration generated over time according to time; (c) calculating the moment of inertia of the additional device through a moment equilibrium relationship based on the first gravity moment, the first rotation moment, and the first angular acceleration; (d) calculating a sum of the moment of inertia of the segment and the moment of inertia of the attachment device through a moment equilibrium relationship based on the second gravity moment, the second rotation moment, and the second angular acceleration; And (e) calculating the moment of inertia of the segment by subtracting the moment of inertia of the additional device calculated in step (c) from the sum calculated in step (d).
또한, 상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본원의 제2 측면에 따른 동력계를 이용한 분절 관성모멘트 산출 장치는, 회전축으로부터 질량 중심이 이격되어 위치한 부가장치에 의해 발생되는 제1 중력모멘트를 각도에 따라 측정하고, 상기 부가장치가 상기 회전축을 중심으로 회전되었을 때 발생되는 제1 회전모멘트와 제1 각가속도를 시간에 따라 측정하며, 상기 회전축과 일치하는 축을 갖는 분절과 상기 부가장치에 의해 발생되는 제2 중력모멘트를 각도에 따라 측정하고, 상기 분절과 상기 부가장치가 상기 회전축을 중심으로 함께 회전되었을 때 발생되는 제2 회전모멘트와 제2 각가속도를 시간에 따라 측정하는 동력계; 및 상기 제1 중력모멘트, 상기 제1 회전모멘트, 및 상기 제1 각가속도를 기초로 상기 부가장치의 관성모멘트를 산출하고, 상기 제2 중력모멘트, 상기 제2 회전모멘트, 및 상기 제2 각가속도를 기초로 상기 분절의 관성모멘트와 상기 부가장치의 관성모멘트의 합산치를 산출하며, 상기 합산치에서 상기 부가장치의 관성모멘트를 감하여 상기 분절의 관성모멘트를 산출하는 제어부를 포함할 수 있다.In addition, as a technical means for achieving the above technical problem, the segment inertia moment calculation device using the dynamometer according to the second aspect of the present application, the first gravity moment generated by the additional device located at a center of mass away from the rotation axis Measured according to an angle, and measuring the first rotational moment and the first angular acceleration generated when the attachment is rotated about the rotation axis with time, and generated by the segment and the segment having an axis coinciding with the rotation axis. A dynamometer for measuring a second gravitational moment to be measured according to an angle, and a second rotational moment and a second angular acceleration generated in time when the segment and the attachment are rotated about the rotation axis; And calculating an inertia moment of the additional device based on the first gravity moment, the first rotation moment, and the first angular acceleration, and based on the second gravity moment, the second rotation moment, and the second angular acceleration. The controller may include a controller configured to calculate a sum of the inertia moment of the segment and the inertia moment of the attachment device, and calculate the inertia moment of the segment by subtracting the inertia moment of the attachment device from the sum value.
전술한 본원의 과제 해결 수단 중 어느 하나에 의하면, 동력계와 부가장치의 조합을 이용하여 분절의 관성모멘트를 용이하면서도 정확하게 산출할 수 있으며, 사체를 이용하였던 종래의 관성모멘트 측정 방식과 달리 생체에 대한 관성모멘트 산출이 이루어질 수 있어, 개개인별로 다르게 나타나는 분절관성모멘트를 개인 맞춤형으로 쉽게 산출할 수 있다.According to any one of the above problem solving means of the present application, the moment of inertia of the segment can be easily and accurately calculated by using a combination of the dynamometer and the additional device, and unlike the conventional method of measuring the moment of inertia using a dead body, Moment of inertia can be calculated, it is easy to calculate the individual moment of inertia that appears different for each individual.
도 1은 본원의 일 실시예에 따른 동력계를 이용한 분절 관성모멘트 산출 방법의 흐름도이다.1 is a flowchart of a method of calculating a segment moment of inertia using a dynamometer according to an embodiment of the present disclosure.
도 2a 및 도 2b는 본원의 일 실시예에 따른 동력계를 이용한 분절 관성모멘트 산출 방법을 설명하기 위한 개념도이다.2A and 2B are conceptual views illustrating a method of calculating a segment moment of inertia using a dynamometer according to an embodiment of the present application.
도 3은 동력계에 부가장치만을 부착하고 측정된 제1 각도, 제1 각속도, 제1 각가속도, 제1 중력모멘트(gravity effect), 및 제1 회전모멘트(measured), 그리고 부가장치의 관성모멘트(acceleration effect)를 시간에 따라 도시한 그래프이다.FIG. 3 shows the first angle, the first angular velocity, the first angular acceleration, the first gravity moment, and the first moment of rotation, and the moment of inertia of the attachment, with only the attachment attached to the dynamometer. This is a graph showing the effect over time.
도 4는 본원의 일 실시예에 따른 동력계를 이용한 분절 관성모멘트 산출 장치를 설명하기 위한 블록도이다.4 is a block diagram illustrating an apparatus for calculating a segment moment of inertia using a dynamometer according to an embodiment of the present disclosure.
아래에서는 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 실시예를 상세히 설명한다. 그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present disclosure. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
본원 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다. Throughout this specification, when a portion is "connected" to another portion, this includes not only "directly connected" but also "electrically connected" with another element in between. do.
본원 명세서 전체에서, 어떤 부재가 다른 부재 “상에” 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout this specification, when a member is located “on” another member, this includes not only when one member is in contact with another member but also when another member exists between the two members.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise. As used throughout this specification, the terms "about", "substantially" and the like are used at, or in the sense of, numerical values when a manufacturing and material tolerance inherent in the stated meanings is indicated, Accurate or absolute figures are used to assist in the prevention of unfair use by unscrupulous infringers. As used throughout this specification, the term "step to" or "step of" does not mean "step for."
이하에서는 본원의 일 실시예에 따른 동력계를 이용한 분절 관성모멘트 산출 방법(이하 '본 분절 관성모멘트 산출 방법'이라 함)에 대해 설명한다.Hereinafter, a method of calculating a segment inertia moment using a dynamometer according to an exemplary embodiment of the present application (hereinafter referred to as 'the present segment inertia moment calculation method') will be described.
도 1은 본원의 일 실시예에 따른 동력계를 이용한 분절 관성모멘트 산출 방법의 흐름도이고, 도 2a 및 도 2b는 본원의 일 실시예에 따른 동력계를 이용한 분절 관성모멘트 산출 방법을 설명하기 위한 개념도이다.1 is a flowchart illustrating a method of calculating a segment inertia moment using a dynamometer according to an embodiment of the present disclosure, and FIGS. 2A and 2B are conceptual views illustrating a method of calculating segment inertia moment using a dynamometer according to an embodiment of the present disclosure.
본 분절 관성모멘트 산출 방법은, 부가장치(110)에 대한 제1 중력모멘트, 제1 회전모멘트 및 제1 각가속도를 측정하는 단계(S110), 부가장치(110)와 분절(10) 일체에 대한 제2 중력모멘트, 제2 회전모멘트 및 제2 각가속도를 측정하는 단계(S120), 부가장치(110)의 관성모멘트를 산출하는 단계(S130), 부가장치(110)와 분절(10) 일체의 관성모멘트 합산치를 산출하는 단계(S140), 분절(10)의 관성모멘트를 산출하는 단계(S150)를 포함한다.The method of calculating the segment inertia moment may include measuring a first gravity moment, a first rotation moment, and a first angular acceleration with respect to the attachment device 110 (S110), and the attachment device 110 with the segment 10. 2 the gravitational moment, the second rotation moment and the second angular acceleration measuring step (S120), calculating the moment of inertia of the additional device 110 (S130), the moment of inertia of the additional device 110 and the segment 10 Computing the total value (S140), and calculating the moment of inertia of the segment 10 (S150).
여기서, S110 단계 및 S120 단계는 동력계(100)를 이용하여 수행될 수 있다. 또한, S130 단계 내지 S150 단계는 제어부(200; 후술할 도 4에 도시)를 통해 수행될 수 있다.Here, steps S110 and S120 may be performed using the dynamometer 100. In addition, steps S130 to S150 may be performed through the controller 200 (shown in FIG. 4 to be described later).
도 1 및 도 2a를 참조하면, S110 단계는 동력계(100)를 이용하여, 동력계(100)의 회전축(1)으로부터 질량 중심이 이격되어 위치한 부가장치(110)에 의해 발생되는 제1 중력모멘트를 각도에 따라 측정한다. 또한, S110 단계는 부가장치(110)가 회전축(1)을 중심으로 회전되었을 때 발생되는 제1 회전모멘트와 제1 각가속도를 시간에 따라 측정한다.1 and 2A, in step S110, the first gravity moment generated by the additional device 110 located at a center of mass spaced apart from the rotation axis 1 of the dynamometer 100 by using the dynamometer 100 is used. Measure according to the angle. In operation S110, the first rotation moment and the first angular acceleration generated when the additional device 110 is rotated about the rotation shaft 1 are measured with time.
동력계(100)(dynamometer)는 기계적 경첩관절(hinge jont)로 해석될 수 있는 인체 관절에서 발생되는 토크(모멘트), 각가속도 등을 직접적으로 측정할 수 있는 장치이다. 예시적으로, 동력계(100)는 Biodex System 3 Pro(Biodex Medical Systems, US)일 수 있다. 이러한 상용의 동력계(100)는 수동운동의 각속도를 최대 300 degree/sec정도까지 허용하여, 도달하고자 하는 각속도를 이와 같이 빠른 각속도로 설정하는 경우, 그 각속도에 도달하는 중간 과정으로서 후술할 도 3의 (b)에 도시된 바와 같이 거의 일정한 가속 구간(등가속도를 갖는 시간구간)이 발생할 수 있다.Dynamometer 100 (dynamometer) is a device that can directly measure the torque (moment), angular acceleration, etc. generated in the human joint that can be interpreted as a mechanical hinge (hinge jont). In exemplary embodiments, the dynamometer 100 may be a Biodex System 3 Pro (Biodex Medical Systems, US). The commercial dynamometer 100 allows an angular velocity of manual movement up to about 300 degrees / sec, and when the angular velocity to be reached is set at such a fast angular velocity, the intermediate process of reaching the angular velocity will be described later with reference to FIG. As shown in (b), an almost constant acceleration section (time section with equivalent acceleration) may occur.
또한, 부가장치(110)(attachment)는 분절(10)과는 별도로, 또는 분절(10)과 일체적으로 동력계(100)에 부착 설치하여 활용할 수 있는 기구물이라 할 수 있다.In addition, the attachment device 110 (attachment) may be referred to as a mechanism that can be attached to the dynamometer 100 separately from the segment 10 or integrally with the segment 10.
도 2a를 참조하면, S110 단계에서는 분절(10)은 제외하고, 부가장치(110)만을 단독으로 동력계(100)에 부착한다. 이때, 부가장치(110)의 질량 중심이 회전축(1)으로부터 소정의 거리(la)만큼 이격되도록 부가장치(110)를 부착함으로써, 부가장치(110)의 질량에 대해 중력이 작용하여 발생되는 제1 중력모멘트(
Figure PCTKR2015007193-appb-I000001
)가 측정될 수 있다.
Referring to FIG. 2A, except for the segment 10, in step S110, only the additional device 110 is attached to the dynamometer 100 alone. In this case, by attaching the additional device 110 so that the center of mass of the additional device 110 is spaced apart from the rotation axis 1 by a predetermined distance la, the gravity generated by the gravity of the additional device 110 is applied. 1 gravitational moment (
Figure PCTKR2015007193-appb-I000001
) Can be measured.
또한, 제1 중력모멘트가 각도에 따라 측정된다는 것은, 부가장치(110)가 회전되는 각도(
Figure PCTKR2015007193-appb-I000002
)에 따라 변화되는 팔길이(
Figure PCTKR2015007193-appb-I000003
)로 인해 달라지는 제1 중력모멘트를 이를 테면 일정 각도 간격으로 복수회 측정하는 것을 의미할 수 있다. 예시적으로, S110 단계에서는 부가장치(110)를 회전시킬 각도범위를 설정하고, 그 설정된 각도범위 내에서 각도에 따라 변화되는 제1 중력모멘트를 측정할 수 있다.
In addition, the first gravity moment is measured according to the angle, which means that the additional device 110 is rotated (
Figure PCTKR2015007193-appb-I000002
), Depending on arm length (
Figure PCTKR2015007193-appb-I000003
For example, it may mean that the first gravity moment is changed due to, for example, a plurality of times at a predetermined angular interval. For example, in step S110, the angle range for rotating the additional device 110 may be set, and the first gravity moment that varies according to the angle within the set angle range may be measured.
이러한 S110 단계는, 동력계(100)를 이용한 준정적 수동운동(quasi-static passive movement)을 통하여 제1 중력모멘트를 측정하는 단계, 그리고 동력계(100)를 이용한 동적 수동운동을 통하여 부가장치(110)가 회전되는 각도에 따른 제1 회전모멘트 및 제1 각가속도를 측정하는 단계를 포함할 수 있다.In step S110, the first gravity moment is measured through a quasi-static passive movement using the dynamometer 100, and the additional device 110 is provided through a dynamic passive movement using the dynamometer 100. The method may include measuring the first rotation moment and the first angular acceleration according to the angle of rotation.
예시적으로, 준정적 수동운동은 1 degree/sec 정도의 초저속으로 이루어질 수 있다. 이러한 초저속 회전을 통하여 각도에 따라 변화되는 제1 중력모멘트가 측정될 수 있다. 또한, 동적 수동운동은 예를 들면 240 degree/sec 내지 300 degree/sec 정도의 각속도로 이루어질 수 있으나, 이에 한정되는 것은 아니다. 즉, 준정적 수동운동은 정적(static) 상태에 가까울 정도로 매우 느린 회전 운동을 의미할 수 있으며, 동적 수동운동은 준정적 수동운동에 비해 훨씬 빠른 속도로 이루어지는 회전 운동(빠른 수동운동)을 의미할 수 있다.For example, the quasi-static passive exercise may be performed at an ultra low speed of about 1 degree / sec. Through this ultra-low speed rotation, the first gravity moment that changes according to the angle may be measured. In addition, the dynamic passive movement may be, for example, at an angular velocity of about 240 degrees / sec to about 300 degrees / sec, but is not limited thereto. That is, the quasi-static passive motion may mean a very slow rotational motion close to the static state, and the dynamic passive motion may mean a rotational motion (fast manual motion) which is much faster than the quasi-static manual motion. Can be.
S110 단계에서, 준정적 수동운동은 각도에 따라 부가장치(110)의 질량에 의해 발생되는 모멘트를 측정하기 위한 것이고, 동적 수동운동은 부가장치(110)가 일정한 각가속도(등가속도)를 가질 수 있는 소정 이상의 시간구간을 확보하기 위한 것이라 할 수 있다.In step S110, the quasi-static passive motion is to measure the moment generated by the mass of the additional device 110 according to the angle, the dynamic manual motion is that the additional device 110 can have a constant angular acceleration (equivalent acceleration) It may be said to secure a predetermined time period or more.
또한, 제1 회전모멘트 및 제1 각가속도는 부가장치(110)가 회전되었을 때 그 회전된 각도에 따라 측정될 수 있으며, 아울러 부가장치(110)의 회전이 진행되는 시간에 따라 측정될 수 있다. 후술할 도 3을 참조하면, 동력계(100)는 부가장치(110)가 회전되는 각도(제1 각도), 회전하는 각속도(제1 각속도), 회전시의 각가속도(제1 각가속도), 회전시 발생하는 모멘트(제1 회전모멘트) 등을 시간의 흐름에 따라 측정할 수 있다.In addition, the first rotation moment and the first angular acceleration may be measured according to the rotated angle when the additional device 110 is rotated, and may also be measured according to the time that the rotation of the additional device 110 proceeds. Referring to FIG. 3 to be described later, the dynamometer 100 is an angle at which the additional device 110 is rotated (first angle), angular velocity (first angular velocity) to rotate, angular acceleration (first angular acceleration) during rotation, occurs during rotation The moment (first rotation moment) to be measured can be measured over time.
또한 도 1 및 도 2b를 참조하면, S120 단계는 동력계(100)를 이용하여, 회전축(1)과 일치하는 축을 갖는 분절(10)과 부가장치(110)에 의해 발생되는 제2 중력모멘트를 각도에 따라 측정한다. 또한, S120 단계는 분절(10)과 부가장치(110)가 회전축(1)을 중심으로 함께 회전되었을 때 발생되는 제2 회전모멘트와 제2 각가속도를 시간에 따라 측정한다.1 and 2b, the step S120 uses the dynamometer 100 to angle the second gravitational moment generated by the segment 10 having the axis coinciding with the rotation axis 1 and the additional device 110. Measure according to. In operation S120, the second rotation moment and the second angular acceleration generated when the segment 10 and the additional device 110 are rotated together about the rotation axis 1 are measured with time.
분절(10)은 인체의 분절일 수 있다. 예시적으로, 분절(10)은 팔꿈치관절을 축으로 하는 팔 부위(하완)일 수 있다. 또는 분절(10)은 무릎관절을 축으로 하는 다리 부위일 수 있다. 다만 분절(10)은 이러한 인체의 분절로만 한정되는 것은 아니며 링크분절(link-segment)로 모델링될 수 있는 다양한 대상들이 분절(10)에 해당될 수 있다.The segment 10 may be a segment of the human body. For example, the segment 10 may be an arm region (lower arm) around an elbow joint. Alternatively, the segment 10 may be a leg portion around the knee joint. However, the segment 10 may not be limited to the segment of the human body, and various objects that may be modeled as link segments may correspond to the segment 10.
또한 예를 들어 분절(10)이 팔 부위인 경우, 회전축(1)과 분절(10)의 축을 일치시킨다는 것은, 동력계(1)의 회전축(1)과 팔꿈치관절의 화전중심이 동일 축 선상에 놓이도록 분절(10)과 동력계(100)를 상호 연계하여 배치하는 것을 의미할 수 있다.In addition, for example, when the segment 10 is an arm part, coinciding the axes of the rotation axis 1 and the segment 10 means that the rotation axis 1 of the dynamometer 1 and the fire center of the elbow joint are on the same axis line. This may mean that the segment 10 and the dynamometer 100 are disposed to be connected to each other.
도 2b를 참조하면, S120 단계에서는 분절(10)과 부가장치(110)를 함께 일체적으로 동력계(100)와 연결한다. 이를 통해, 제2 중력모멘트(
Figure PCTKR2015007193-appb-I000004
)가 측정될 수 있다.
Referring to FIG. 2B, in step S120, the segment 10 and the additional device 110 are integrally connected with the dynamometer 100. Through this, the second gravitational moment (
Figure PCTKR2015007193-appb-I000004
) Can be measured.
또한, 제2 중력모멘트가 각도에 따라 측정된다는 것은, 부가장치(110)가 회전되는 각도(
Figure PCTKR2015007193-appb-I000005
)에 따라 변화되는 팔길이(
Figure PCTKR2015007193-appb-I000006
,
Figure PCTKR2015007193-appb-I000007
)로 인해 달라지는 제2중력모멘트를 이를 테면 일정한 각도 간격으로 복수회 측정하는 것을 의미할 수 있다. 예시적으로, S120 단계에서는 분절(10)과 부가장치(110)를 함께 회전시킬 각도범위를 설정하고, 그 설정된 각도범위 내에서 각도에 따라 변화되는 제2 중력모멘트를 측정할 수 있다.
In addition, the second gravity moment is measured according to the angle, which means that the angle at which the additional device 110 is rotated (
Figure PCTKR2015007193-appb-I000005
), Depending on arm length (
Figure PCTKR2015007193-appb-I000006
,
Figure PCTKR2015007193-appb-I000007
For example, it may mean that the second gravity moment, which is changed due to), is measured a plurality of times at regular angular intervals. For example, in step S120, an angle range for rotating the segment 10 and the additional device 110 may be set, and the second gravity moment that changes according to the angle within the set angle range may be measured.
여기서, 각도범위는 측정 대상이 되는 분절(10)의 최대 가동범위 이내에서 설정될 수 있을 것이다. 예를 들어, 분절(10)이 팔 부위(하완)인 경우, 분절(10)과 부가장치(110)를 회전시킬 각도범위는 120 degree로 설정될 수 있다. 예시적으로 도 3의 (a)를 참조하면, 팔꿈치관절을 완전히 편 상태를 -20 degree, 그로부터 120 degree만큼 팔꿈치관절을 굽힌 상태를 100 degree로 설정할 수 있다.Here, the angular range may be set within the maximum movable range of the segment 10 to be measured. For example, when the segment 10 is an arm portion (lower arm), the angle range for rotating the segment 10 and the additional device 110 may be set to 120 degrees. For example, referring to FIG. 3A, the state where the elbow joint is fully folded may be set to -20 degree, and the state where the elbow joint is bent by 120 degree from 100 degree.
이러한 S120 단계는, 동력계(100)를 이용한 준정적(quasi-static) 수동운동을 통하여 제2 중력모멘트를 측정하는 단계, 그리고 동력계(100)를 이용한 동적 수동운동을 통하여 분절(10)과 부가장치(110)가 회전되는 각도에 따른 제2 회전모멘트 및 제2 각가속도를 측정하는 단계를 포함할 수 있다.In step S120, the second gravitational moment is measured through a quasi-static manual motion using the dynamometer 100, and the segment 10 and the additional device are provided through a dynamic manual motion using the dynamometer 100. The method may include measuring the second rotation moment and the second angular acceleration according to the angle at which the 110 is rotated.
S110 단계에서 설명한 바와 같이, 준정적 수동운동은 정적(static) 상태에 가까울 정도로 매우 느린 회전 운동을 의미할 수 있으며, 동적 수동운동은 준정적 수동운동에 비해 훨씬 빠른 속도로 이루어지는 회전 운동(빠른 수동운동)을 의미할 수 있다.As described in step S110, the quasi-static passive movement may mean a very slow rotational movement close to the static state, and the dynamic passive movement is a rotational movement (fast manual movement) which is much faster than the quasi-static passive movement. Exercise).
S120 단계에서, 준정적 수동운동은 각도에 따라 분절(10) 및 부가장치(110)의 질량에 의해 발생되는 모멘트를 측정하기 위한 것이고, 동적 수동운동은 분절(10) 및 부가장치(110)가 일체적으로 일정한 각가속도(등가속도)를 가질 수 있는 소정 이상의 시간구간을 확보하기 위한 것이라 할 수 있다.In step S120, the quasi-static passive motion is to measure the moment generated by the mass of the segment 10 and the additional device 110 according to the angle, the dynamic manual motion is the segment 10 and the additional device 110 is It can be said to ensure a predetermined or more time interval that can have a constant angular acceleration (equivalent acceleration) integrally.
또한, 제2 회전모멘트 및 제2 각가속도는 분절(10)과 부가장치(110)가 함께 일체적으로 회전되었을 때 그 회전된 각도에 따라 측정될 수 있으며, 아울러 분절(10) 및 부가장치(110)의 회전이 진행되는 시간에 따라 측정될 수 있다. 즉, 동력계(100)는 부가장치(110)가 회전되는 각도(제2 각도), 회전하는 각속도(제2 각속도), 회전시의 각가속도(제2 각가속도), 회전시 발생하는 모멘트(제2 회전모멘트) 등을 시간의 흐름에 따라 측정할 수 있다.In addition, the second rotation moment and the second angular acceleration may be measured according to the rotated angle when the segment 10 and the attachment 110 are integrally rotated together, and the segment 10 and the attachment 110 may be measured. It can be measured according to the time that the rotation of). That is, the dynamometer 100 has an angle (second angle) at which the additional device 110 is rotated, an angular velocity (second angular velocity) that rotates, an angular acceleration (second angular acceleration) during rotation, and a moment generated during rotation (second rotation). Moment) and the like can be measured over time.
또한 도 1을 참조하면, S130 단계는 S110 단계에서 측정된 제1 중력모멘트, 제1 회전모멘트, 및 제1 각가속도를 기초로 모멘트 평형 관계(
Figure PCTKR2015007193-appb-I000008
)를 통해 부가장치(110)의 관성모멘트를 산출한다.
In addition, referring to Figure 1, step S130 is a moment equilibrium relationship based on the first gravity moment, the first rotation moment, and the first angular acceleration measured in step S110 (
Figure PCTKR2015007193-appb-I000008
Calculate the moment of inertia of the additional device 110 through).
도 3은 동력계에 부가장치만을 부착하고 측정된 제1 각도, 제1 각속도, 제1 각가속도, 제1 중력모멘트(gravity effect), 및 제1 회전모멘트(measured), 그리고 부가장치의 관성모멘트(acceleration effect)를 시간에 따라 도시한 그래프이다.FIG. 3 shows the first angle, the first angular velocity, the first angular acceleration, the first gravity moment, and the first moment of rotation, and the moment of inertia of the attachment, with only the attachment attached to the dynamometer. This is a graph showing the effect over time.
구체적으로, 도 3의 (a)는 제1 각도, 도 3의 (b)는 제1 각속도, 및 도 3의 (c)는 제1 각가속도에 관한 그래프이다. 또한, 도 3의 (d)에서 범례에 'Gravity effect'라 기재된 그래프는 준정적 수동운동시 측정된 제1 중력모멘트에 관한 그래프이고, 범례에 'Measured'라 기재된 그래프는 240 degree/sec의 동적 수동운동시 측정된 제1 회전모멘트에 관한 그래프이며, 범례에 'Acceleration effect'라 기재된 그래프는 위 측정값들을 기초로 산출된 부가장치(110)의 관성모멘트에 관한 그래프이다.Specifically, FIG. 3A is a first angle, FIG. 3B is a first angular velocity, and FIG. 3C is a graph relating to the first angular acceleration. In addition, the graph described as 'Gravity effect' in FIG. 3 (d) is a graph related to the first gravity moment measured during quasi-static manual movement, and the graph described as 'Measured' in the legend is 240 degree / sec. A graph relating to the first rotation moment measured during the manual movement, and the graph described as 'Acceleration effect' in the legend is a graph regarding the moment of inertia of the additional device 110 calculated based on the above measured values.
또한, 도 3은 전술한 Biodex System 3 Pro(Biodex Medical Systems, US)라는 동력계(100)를 이용하여, 건강한 남성(나이: 28세, 질량: 80.8 kg, 키: 1.67 m)의 하완을 120 degree의 각도범위(관절 가동범위)에서 회전시키며 측정한 각각의 패러미터들을 시간에 대하여 도시한 그래프이다.In addition, FIG. 3 shows 120 degrees of the lower arm of a healthy male (age: 28 years old, mass: 80.8 kg, height: 1.67 m) using the dynamometer 100 called Biodex System 3 Pro (Biodex Medical Systems, US). This is a graph showing the time of each parameter measured while rotating in the angle range of the joint.
도 3을 참조하면, S130 단계에서, 부가장치(110)의 관성모멘트는, 제1 각가속도가 등가속도를 유지한다고 판단되는 제1 시간구간(a)에서 측정된 제1 각가속도와 제1 회전모멘트, 그리고 제1 시간구간(a)에서 부가장치(110)가 회전축(1)을 중심으로 회전되는 각도에 대응하는 제1 중력모멘트를 기초로 산출될 수 있다.Referring to FIG. 3, in step S130, the moment of inertia of the additional device 110 includes the first angular acceleration and the first rotation moment measured in the first time interval (a) determined that the first angular acceleration maintains the equivalent speed. In addition, the first apparatus 110 may be calculated based on a first gravity moment corresponding to an angle at which the additional device 110 is rotated about the rotation axis 1.
여기서, 등가속도라 함은 각가속도가 변동 없이 완전히 일정하게 유지되는 것만을 의미하는 것은 아니다. 예를 들어 도 3을 참조하면, 제1 시간구간(a)에서 각가속도에 소정의 변동은 있다고 할 것이나, 그 변동폭이 설정된 허용범위(tolerance) 이내인 경우에는 등가속도가 유지되는 시간구간이라 판단할 수 있다.Here, the equivalent speed does not only mean that the angular acceleration remains completely constant without change. For example, referring to FIG. 3, it may be said that there is a predetermined variation in the angular acceleration in the first time interval (a). However, when the variation range is within the set tolerance, it may be determined that it is a time interval in which the equivalent acceleration is maintained. Can be.
예시적으로, 부가장치(110)의 관성모멘트는 제1 시간구간(a)에 속하는 특정 시점에서 측정된 제1 각가속도와 제1 회전모멘트(도 3의 (c) 및 (d) 참조), 그리고 이러한 특정 시점에서 부가장치(110)가 위치하고 있는 제1 각도(도 3의 (a) 참조)에서의 제1 중력모멘트를 기초로 산출될 수 있다. 여기서, 제1 중력모멘트는 전술한 바와 같이 동력계(100)를 통한 준정적 수동운동을 통해 각도에 따라 측정하여 둔 상태일 수 있다.For example, the moment of inertia of the additional device 110 may include a first angular acceleration and a first rotation moment measured at a specific time point belonging to the first time interval (a) (see FIGS. 3C and 3D), and At this particular point in time, the additional device 110 may be calculated based on the first gravity moment at the first angle (see (a) of FIG. 3). Here, the first gravity moment may be in a state measured according to an angle through a quasi-static manual movement through the dynamometer 100 as described above.
이렇게 특정 시점 및 특정 각도에 대하여 측정된 제1 각가속도, 제1 회전모멘트, 제1 중력모멘트를 모멘트 평형방정식에 대입함으로써, 유일한 미지수인 부가장치(110)의 관성모멘트가 산출될 수 있다. 이러한 모멘트 평형방정식에 대해서는 보다 구체적으로 후술하기로 한다.In this way, by substituting the first angular acceleration, the first rotation moment, and the first gravity moment measured for a specific time point and a specific angle into the moment equilibrium equation, the moment of inertia of the additional device 110, which is the only unknown, can be calculated. This moment equilibrium equation will be described in more detail later.
또한 예시적으로, S130 단계에서, 부가장치(110)의 관성모멘트는 제1 시간구간(a) 중 적어도 일부 구간에 대한 평균값으로 산출될 수 있다.Also, in step S130, the moment of inertia of the additional device 110 may be calculated as an average value for at least some of the first time intervals a.
즉, 전술한 바와 같이 제1 시간구간(a)의 특정 시점에 대하여 부가장치(110)의 관성모멘트를 산출할 수도 있지만, 제1 시간구간(a) 중 적어도 일부 구간에 대한 평균값으로 산출함으로써, 평균 개념을 통해 산출시 발생할 수 있는 오차를 더욱 줄이고 관성모멘트를 더욱 신뢰성 있게 산출할 수 있다. That is, as described above, the moment of inertia of the additional device 110 may be calculated for a specific time point in the first time interval a, but by calculating the average value of at least some of the first time interval a. The average concept can further reduce errors that can occur in the calculation and calculate the moment of inertia more reliably.
예를 들어, 제1 시간구간(a) 중 적어도 일부 구간은 제1 시간구간(a) 전체로 설정될 수도 있다. 또는 제1 시간구간(a) 중 적어도 일부 구간은 제1 시간구간(a) 중 각가속도의 변동폭이 적어 등가속도에 보다 가깝다고 판단되는 구간으로 설정될 수도 있을 것이다.For example, at least some of the first time interval a may be set to the entire first time interval a. Alternatively, at least some sections of the first time section (a) may be set to sections that are determined to be closer to the equivalent speed due to less variation in the angular acceleration of the first time section (a).
또한 도 1을 참조하면, S140 단계는 S120 단계에서 측정된 제2 중력모멘트, 제2 회전모멘트, 및 제2 각가속도를 기초로 모멘트 평형 관계를 통해 분절(10)의 관성모멘트와 부가장치(110)의 관성모멘트의 합산치를 산출한다.Referring to FIG. 1, in step S140, the moment of inertia of the segment 10 and the additional device 110 are provided through a moment equilibrium relationship based on the second gravity moment, the second rotation moment, and the second angular acceleration measured in step S120. Calculate the sum of moments of inertia of.
전술한 S130 단계는 부가장치(110)만의 관성모멘트를 산출하는 단계인 반면, S140 단계는 분절(10)과 부가장치(110)가 일체적으로 회전되는 경우에 대한 것으로서, 분절(10)과 부가장치(110) 각각의 관성모멘트의 합산치를 산출하는 단계이다.The above-described step S130 is a step of calculating the moment of inertia of the additional device 110 only, whereas the step S140 is for the case in which the segment 10 and the additional device 110 are integrally rotated, and the segment 10 and the additional device 110 are added. Calculating the sum of the moments of inertia of each device 110.
S140 단계에서, 분절(10)의 관성모멘트와 부가장치(110)의 관성모멘트의 합산치는, 제2 각가속도가 등가속도를 유지한다고 판단되는 제2 시간구간에서 측정된 제2 각가속도와 제2 회전모멘트, 그리고 제2 시간구간에서 분절(10)과 부가장치(110)가 회전축(1)을 중심으로 함께 회전되는 각도에 대응하는 제2 중력모멘트를 기초로 산출될 수 있다.In the step S140, the sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110, the second angular acceleration and the second rotation moment measured in the second time interval determined that the second angular acceleration maintains the equivalent acceleration In addition, the second segment may be calculated based on a second gravitational moment corresponding to an angle at which the segment 10 and the additional device 110 are rotated together about the rotation axis 1.
S130 단계에서 설명한 바와 같이, 등가속도라 함은 변동 없이 완전히 일정한 각가속도가 유지되는 것만을 의미하는 것은 아니다. 예를 들어 각가속도가 시간에 따라 소정의 변동은 있다고 하더라도, 그 변동폭이 설정된 허용범위(tolerance) 이내인 경우에는 등가속도가 유지되는 시간구간이라 판단할 수 있을 것이다.As described in step S130, the equivalent speed does not only mean that a completely constant angular acceleration is maintained without change. For example, even if the angular acceleration has a predetermined variation with time, it may be determined that it is a time interval in which the equivalent acceleration is maintained when the variance is within a set tolerance.
예시적으로, 분절(10)과 부가장치(110) 각각의 관성모멘트의 합산치는 제2 시간구간에 속하는 특정 시점에서 측정된 제2 각가속도와 제2 회전모멘트, 그리고 이러한 특정 시점에서 분절(10)과 부가장치(110)가 위치하고 있는 제2 각도에서의 제2 중력모멘트를 기초로 산출될 수 있다. 여기서, 제2 중력모멘트는 전술한 바와 같이 동력계(100)를 통한 준정적 수동운동을 통해 각도에 따라 측정하여 둔 상태일 수 있다.For example, the sum of the moments of inertia of each of the segment 10 and the additional device 110 may include the second angular acceleration and the second rotation moment measured at a specific time point belonging to the second time interval, and the segment 10 at this specific time point. And the second gravitational moment at the second angle at which the additional device 110 is located. Here, the second gravity moment may be in a state measured according to the angle through a quasi-static manual movement through the dynamometer 100 as described above.
이렇게 특정 시점 및 특정 각도에 대하여 측정된 제2 각가속도, 제2 회전모멘트, 제2 중력모멘트를 모멘트 평형방정식에 대입함으로써, 분절(10)의 관성모멘트 및 부가장치(110)의 관성모멘트의 합산치가 도출될 수 있다. 이러한 모멘트 평형방정식에 대해서는 보다 구체적으로 후술하기로 한다.Thus, by substituting the second angular acceleration, the second rotation moment, and the second gravity moment measured for a specific time point and a specific angle into the moment equilibrium equation, the sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110 is added. Can be derived. This moment equilibrium equation will be described in more detail later.
S140 단계에서, 위 합산치는 제2 시간구간 중 적어도 일부 구간에 대한 평균값으로 산출될 수 있다.In operation S140, the summation may be calculated as an average of at least some of the second time intervals.
즉, 전술한 바와 같이 제2 시간구간의 특정 시점에 대하여 부가장치(110)의 관성모멘트를 산출할 수도 있지만, 제2 시간구간 중 적어도 일부 구간에 대한 평균값으로 산출함으로써, 평균 개념을 통해 산출시 발생할 수 있는 오차를 더욱 줄이고 관성모멘트를 더욱 신뢰성 있게 산출할 수 있다. 이는 S130 단계에서 설명한 바와 유사하므로 보다 상세한 설명은 생략하기로 한다.That is, as described above, the moment of inertia of the additional device 110 may be calculated for a specific time point of the second time period. However, the moment of inertia of the additional device 110 may be calculated as an average value for at least some of the second time period. It is possible to further reduce the error that can occur and calculate the moment of inertia more reliably. Since this is similar to that described in step S130, a detailed description thereof will be omitted.
또한 도 1을 참조하면, S150 단계는, S140 단계를 통해 산출된 합산치에서 S130 단계를 통해 산출된 부가장치(110)의 관성모멘트를 감하여, 분절(10)의 관성모멘트를 산출한다.Referring to FIG. 1, in step S150, the inertia moment of the segment 10 is calculated by subtracting the inertia moment of the additional device 110 calculated in step S130 from the sum value calculated in step S140.
S130 단계 내지 S150 단계를 통한 분절(10)의 관성모멘트 산출 방법을 수학식을 통해 구체적으로 설명하면 다음과 같다.The method of calculating the moment of inertia of the segment 10 through the steps S130 to S150 will be described in detail with reference to the following equation.
S130 단계에서, 부가장치(110)의 관성모멘트는 아래의 수학식 1에 의해 산출될 수 있다. 또한, S140 단계에서, 합산치는 아래의 수학식 2에 의해 산출될 수 있다.In step S130, the moment of inertia of the additional device 110 may be calculated by Equation 1 below. In addition, in operation S140, the sum may be calculated by Equation 2 below.
[수학식 1][Equation 1]
Figure PCTKR2015007193-appb-I000009
Figure PCTKR2015007193-appb-I000009
[수학식 2][Equation 2]
Figure PCTKR2015007193-appb-I000010
Figure PCTKR2015007193-appb-I000010
여기서,
Figure PCTKR2015007193-appb-I000011
는 제1 회전모멘트,
Figure PCTKR2015007193-appb-I000012
는 제1 중력모멘트,
Figure PCTKR2015007193-appb-I000013
는 부가장치(110)의 관성모멘트, 는 제1 각가속도,
Figure PCTKR2015007193-appb-I000015
는 제2 회전모멘트,
Figure PCTKR2015007193-appb-I000016
는 제2 중력모멘트,
Figure PCTKR2015007193-appb-I000017
는 분절(10)의 관성모멘트,
Figure PCTKR2015007193-appb-I000018
는 제2 각가속도이다.
here,
Figure PCTKR2015007193-appb-I000011
Is the first rotation moment,
Figure PCTKR2015007193-appb-I000012
Is the first gravity moment,
Figure PCTKR2015007193-appb-I000013
Is the moment of inertia of the additional device 110, Is the first angular acceleration,
Figure PCTKR2015007193-appb-I000015
Is the second rotation moment,
Figure PCTKR2015007193-appb-I000016
Is the second gravitational moment,
Figure PCTKR2015007193-appb-I000017
Is the moment of inertia of the segment (10),
Figure PCTKR2015007193-appb-I000018
Is the second angular acceleration.
수학식 1에서 제1 회전모멘트, 제1 중력모멘트 및 제1 각가속도는 S110 단계를 통해 측정된 값이다. 따라서, 제1 각가속도가 0이 아니라면 수학식 1을 통해 부가장치(110)의 관성모멘트가 다음의 수학식 3과 같이 산출될 수 있다(S130 단계).In Equation 1, the first rotation moment, the first gravity moment, and the first angular acceleration are measured through the step S110. Therefore, if the first angular acceleration is not 0, the moment of inertia of the additional device 110 may be calculated using Equation 1 as shown in Equation 3 below (step S130).
[수학식 3][Equation 3]
Figure PCTKR2015007193-appb-I000019
Figure PCTKR2015007193-appb-I000019
또한, 수학식 2에서 제2 회전모멘트, 제2 중력모멘트 및 제2 각가속도는 S120 단계를 통해 측정된 값이다. 따라서, 제2 각가속도가 0이 아니라면 수학식 2를 통해 분절(10)의 관성모멘트와 부가장치(110)의 관성모멘트의 합산치가 다음의 수학식 4와 같이 산출될 수 있다(S140 단계).In addition, in Equation 2, the second rotation moment, the second gravity moment and the second angular acceleration are values measured through the step S120. Therefore, if the second angular acceleration is not 0, the sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110 may be calculated using Equation 2 as shown in Equation 4 below (step S140).
[수학식 4][Equation 4]
Figure PCTKR2015007193-appb-I000020
Figure PCTKR2015007193-appb-I000020
수학식 4를 통해 산출된 분절(10)의 관성모멘트와 부가장치(110)의 관성모멘트의 합산치(
Figure PCTKR2015007193-appb-I000021
)에서 수학식 3을 통해 산출된 부가장치(110)의 관성모멘트(
Figure PCTKR2015007193-appb-I000022
)를 차감하면, 분절(10)의 관성모멘트가 산출될 수 있다(S150 단계).
The sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110 calculated through Equation 4 (
Figure PCTKR2015007193-appb-I000021
The moment of inertia of the additional device 110 calculated through Equation (3)
Figure PCTKR2015007193-appb-I000022
), The moment of inertia of the segment 10 may be calculated (step S150).
한편, 이하에서는, 본원의 일 실시예에 따른 동력계를 이용한 분절 관성모멘트 산출 장치(이하 '본 분절 관성모멘트 산출 장치'라 함)에 대해 설명한다.On the other hand, hereinafter, a segment inertia moment calculation device (hereinafter referred to as "the segment inertia moment calculation apparatus") using a dynamometer according to an embodiment of the present application will be described.
다만, 본 분절 관성모멘트 산출 장치는 앞서 설명한 본 분절 관성모멘트 산출 방법을 실시하기 위해 이용 가능한 장치로서, 앞서 살핀 구성과 동일하거나 유사한 구성에 대하여는 동일한 도면 부호를 사용하고, 중복되는 설명은 간략히 하거나 생략하기로 한다.However, the present segment inertia moment calculating device is a device that can be used to implement the method of calculating the segment inertia moment described above, and the same reference numerals are used for the same or similar components as the above-described salping structure, and overlapping descriptions will be briefly or omitted. Let's do it.
도 4는 본원의 일 실시예에 따른 동력계를 이용한 분절 관성모멘트 산출 장치를 설명하기 위한 블록도이다.4 is a block diagram illustrating an apparatus for calculating a segment moment of inertia using a dynamometer according to an embodiment of the present disclosure.
도 4를 참조하면, 본 분절 관성모멘트 산출 장치는 제어부(200)를 포함한다. 또한, 본 분절 관성모멘트 산출 장치는 동력계(100)를 포함할 수 있다.Referring to FIG. 4, the apparatus for calculating the segment moment of inertia includes a controller 200. In addition, the segment moment of inertia calculation device may include a dynamometer (100).
동력계(100)는 회전축(1)으로부터 질량 중심이 이격되어 위치한 부가장치(110)에 의해 발생되는 제1 중력모멘트를 각도에 따라 측정하고, 부가장치(110)가 회전축(1)을 중심으로 회전되었을 때 발생되는 제1 회전모멘트와 제1 각가속도를 시간에 따라 측정할 수 있다.The dynamometer 100 measures the first gravity moment generated by the additional device 110 positioned at a center of mass spaced apart from the rotating shaft 1 according to the angle, and the additional device 110 rotates about the rotating shaft 1. When the first rotation moment and the first angular acceleration generated when the can be measured over time.
여기서, 제1 중력모멘트는 전술한 바와 같이 동력계(100)를 이용한 준정적(quasi-static) 수동운동을 통하여 측정될 수 있다. 아울러, 제1 회전모멘트 및 제1 각가속도는 동력계(100)를 이용한 동적 수동운동을 통하여 부가장치가 회전되는 각도에 따라 측정될 수 있다.Here, the first gravity moment may be measured through a quasi-static passive movement using the dynamometer 100 as described above. In addition, the first rotation moment and the first angular acceleration may be measured according to the angle at which the attachment is rotated through the dynamic manual movement using the dynamometer 100.
또한, 동력계(100)는 회전축(1)과 일치하는 축을 갖는 분절(10)과 부가장치(110)에 의해 발생되는 제2 중력모멘트를 각도에 따라 측정하고, 분절(10)과 부가장치(110)가 회전축(1)을 중심으로 함께 회전되었을 때 발생되는 제2 회전모멘트와 제2 각가속도를 시간에 따라 측정할 수 있다.In addition, the dynamometer 100 measures the second gravity moment generated by the segment 10 having the axis coinciding with the rotation axis 1 and the additional device 110 according to the angle, and the segment 10 and the additional device 110. ) Can be measured with time the second rotation moment and the second angular acceleration generated when the rotation axis (1) rotated together.
여기서, 제2 중력모멘트는 전술한 바와 같이 동력계(100)를 이용한 준정적(quasi-static) 수동운동을 통하여 측정될 수 있다. 아울러, 제2 회전모멘트 및 제2 각가속도는 동력계(100)를 이용한 동적 수동운동을 통하여 분절(10)과 부가장치(110)가 회전되는 각도에 따라 측정될 수 있다.Here, the second gravity moment may be measured through quasi-static passive movement using the dynamometer 100 as described above. In addition, the second rotation moment and the second angular acceleration may be measured according to the angle at which the segment 10 and the additional device 110 are rotated through the dynamic manual movement using the dynamometer 100.
제어부(200)는 제1 중력모멘트, 제1 회전모멘트, 및 제1 각가속도를 기초로 부가장치(110)의 관성모멘트를 산출할 수 있다. 또한, 제어부(200)는 제2 중력모멘트, 제2 회전모멘트, 및 제2 각가속도를 기초로 분절(10)의 관성모멘트와 부가장치(110)의 관성모멘트의 합산치를 산출할 수 있다.The controller 200 may calculate the moment of inertia of the additional device 110 based on the first gravity moment, the first rotation moment, and the first angular acceleration. In addition, the controller 200 may calculate the sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110 based on the second gravity moment, the second rotation moment, and the second angular acceleration.
그리고, 제어부(200)는 위 합산치에서 부가장치(110)의 관성모멘트를 감하여 분절(10)의 관성모멘트를 산출할 수 있다.The controller 200 may calculate the moment of inertia of the segment 10 by subtracting the moment of inertia of the additional device 110 from the sum.
예시적으로, 이러한 제어부(200)로는 다양한 컴퓨팅 장치(computing device)가 적용될 수 있다.For example, various computing devices may be applied to the controller 200.
제어부(200)는, 제1 각가속도가 등가속도를 유지한다고 판단되는 제1 시간구간에서 측정된 제1 각가속도와 제1 회전모멘트, 그리고 제1 시간구간에서 부가장치(110)가 회전축(1)을 중심으로 회전되는 각도에 대응하는 제1 중력모멘트를 기초로 상기 부가장치(110)의 관성모멘트를 산출할 수 있다.The control unit 200 may include the first axis and the first rotation moment measured in the first time section determined that the first angular acceleration maintains the equivalent acceleration, and the additional device 110 may rotate the rotation shaft 1 in the first time section. The moment of inertia of the additional device 110 may be calculated based on the first gravity moment corresponding to the angle rotated about the center.
이때, 제어부(200)는 부가장치(110)의 관성모멘트를 제1 시간구간 중 적어도 일부 구간에 대한 평균값으로 산출할 수 있다. 이에 대해서는 앞서 본 분절 관성모멘트 산출 방법에서 설명한 바 있으므로 상세한 설명은 생략한다.In this case, the controller 200 may calculate the moment of inertia of the additional device 110 as an average of at least some of the first time intervals. As it has been described in the above method of calculating the segment moment of inertia, detailed description thereof will be omitted.
또한 제어부(200)는, 제2 각가속도가 등가속도를 유지한다고 판단되는 제2 시간구간에서 측정된 제2 각가속도와 제2 회전모멘트, 그리고 제2 시간구간에서 분절(10)과 부가장치(110)가 회전축(1)을 중심으로 함께 회전되는 각도에 대응하는 제2 중력모멘트를 기초로 분절(10)의 관성모멘트와 부가장치(110)의 관성모멘트의 합산치를 산출할 수 있다.In addition, the control unit 200 may include the segment 10 and the additional device 110 in the second angular acceleration and the second rotation moment measured in the second time interval and the second time interval determined that the second angular acceleration maintains the equivalent acceleration. The sum of the moment of inertia of the segment 10 and the moment of inertia of the attachment device 110 may be calculated based on the second gravitational moment corresponding to the angle rotated together about the rotation axis 1.
이때, 제어부(200)는 위 합산치를 제2 시간구간 중 적어도 일부 구간에 대한 평균값으로 산출할 수 있다. 이에 대해서는 앞서 본 분절 관성모멘트 산출 방법에서 설명한 바 있으므로 상세한 설명은 생략한다.In this case, the controller 200 may calculate the sum as the average value of at least some of the second time intervals. As it has been described in the above method of calculating the segment moment of inertia, detailed description thereof will be omitted.
또한, 제어부(200)는 부가장치(110)의 관성모멘트를 전술한 수학식 1 및 3에 의해 산출할 수 있다. 또한, 제어부(200)는 분절(10)의 관성모멘트와 부가장치(110)의 관성모멘트의 합산치를 전술한 수학식 2 및 4에 의해 산출할 수 있다.In addition, the controller 200 may calculate the moment of inertia of the additional device 110 by using Equations 1 and 3 described above. In addition, the controller 200 may calculate the sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110 by using Equations 2 and 4 described above.
또한, 제어부(200)는 수학식 2 및 4를 통해 산출된 분절(10)의 관성모멘트와 부가장치(110)의 관성모멘트의 합산치(
Figure PCTKR2015007193-appb-I000023
)에서 수학식 1 및 3을 통해 산출된 부가장치(110)의 관성모멘트(
Figure PCTKR2015007193-appb-I000024
)를 차감하여, 분절(10)의 관성모멘트를 산출할 수 있다.
In addition, the control unit 200 is the sum of the moment of inertia of the segment 10 and the moment of inertia of the additional device 110 calculated through Equations 2 and 4 (
Figure PCTKR2015007193-appb-I000023
Moment of inertia of the additional device 110 calculated through Equations 1 and 3
Figure PCTKR2015007193-appb-I000024
), The moment of inertia of the segment 10 can be calculated.
이상 살펴본 바와 같이, 본원에 의하면, 동력계(100)와 부가장치(110)의 조합을 이용하여 분절(10)의 관성모멘트를 용이하면서도 정확하게 산출할 수 있으며, 사체를 이용하였던 종래의 관성모멘트 측정 방식과 달리 생체에 대한 관성모멘트 산출이 이루어질 수 있어, 개개인별로 다르게 나타나는 분절관성모멘트를 개인 맞춤형으로 쉽게 산출할 수 있다. 즉, 본원에 의하면, 개인 특성을 명확하게 반영하여 분절(10)의 관성모멘트를 산출할 수 있다.As described above, according to the present application, the moment of inertia of the segment 10 can be easily and accurately calculated using a combination of the dynamometer 100 and the additional device 110, and a conventional inertia moment measuring method using a dead body Unlike the moment of inertia for the living body can be calculated, the segmented moment of inertia that appears differently for each individual can be easily calculated by personal customization. That is, according to the present application, the moment of inertia of the segment 10 can be calculated by clearly reflecting personal characteristics.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The above description of the present application is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the following claims rather than the above description, and it should be construed that all changes or modifications derived from the meaning and scope of the claims and their equivalents are included in the scope of the present application.
본원의 도면들의 부호를 예시하면 아래와 같을 수 있다. To illustrate the symbols of the drawings of the present application may be as follows.
100: 동력계 110: 부가장치100: dynamometer 110: additional device
200: 제어부 10: 분절200: control unit 10: segment
1: 회전축1: axis of rotation

Claims (10)

  1. (a) 동력계를 이용하여, 상기 동력계의 회전축으로부터 질량 중심이 이격되어 위치한 부가장치에 의해 발생되는 제1 중력모멘트를 각도에 따라 측정하고, 상기 부가장치가 상기 회전축을 중심으로 회전되었을 때 발생되는 제1 회전모멘트와 제1 각가속도를 시간에 따라 측정하는 단계;(a) Using a dynamometer, the first gravity moment generated by the attachment is located at a distance from the rotation axis of the dynamometer according to the angle, and is generated when the attachment is rotated about the rotation axis. Measuring the first rotation moment and the first angular acceleration with time;
    (b) 상기 동력계를 이용하여, 상기 회전축과 일치하는 축을 갖는 분절과 상기 부가장치에 의해 발생되는 제2 중력모멘트를 각도에 따라 측정하고, 상기 분절과 상기 부가장치가 상기 회전축을 중심으로 함께 회전되었을 때 발생되는 제2 회전모멘트와 제2 각가속도를 시간에 따라 측정하는 단계;(b) using the dynamometer, measure the segment having an axis coinciding with the axis of rotation and the second gravity moment generated by the accessory according to the angle, wherein the segment and the accessory are rotated together about the axis of rotation; Measuring the second rotation moment and the second angular acceleration generated over time according to time;
    (c) 상기 제1 중력모멘트, 상기 제1 회전모멘트, 및 상기 제1 각가속도를 기초로 모멘트 평형 관계를 통해 상기 부가장치의 관성모멘트를 산출하는 단계;(c) calculating the moment of inertia of the additional device through a moment equilibrium relationship based on the first gravity moment, the first rotation moment, and the first angular acceleration;
    (d) 상기 제2 중력모멘트, 상기 제2 회전모멘트, 및 상기 제2 각가속도를 기초로 모멘트 평형 관계를 통해 상기 분절의 관성모멘트와 상기 부가장치의 관성모멘트의 합산치를 산출하는 단계; 및(d) calculating a sum of the moment of inertia of the segment and the moment of inertia of the attachment device through a moment equilibrium relationship based on the second gravity moment, the second rotation moment, and the second angular acceleration; And
    (e) 상기 (d) 단계에서 산출된 상기 합산치에서 상기 (c) 단계에서 산출된 상기 부가장치의 관성모멘트를 감하여 상기 분절의 관성모멘트를 산출하는 단계를 포함하는, 동력계를 이용한 분절 관성모멘트 산출 방법.(e) subtracting the moment of inertia of the additional device calculated in step (c) from the sum calculated in step (d) to calculate the moment of inertia of the segment, the segment moment of inertia using a dynamometer Output method.
  2. 제1항에 있어서,The method of claim 1,
    상기 (a) 단계는,In step (a),
    (a1) 상기 동력계를 이용한 준정적(quasi-static) 수동운동을 통하여, 상기 제1 중력모멘트를 측정하는 단계; 및(a1) measuring the first gravity moment through a quasi-static passive movement using the dynamometer; And
    (a2) 상기 동력계를 이용한 동적 수동운동을 통하여, 상기 부가장치가 회전되는 각도에 따른 상기 제1 회전모멘트 및 상기 제1 각가속도를 측정하는 단계를 포함하고,(a2) measuring the first rotation moment and the first angular acceleration according to the angle at which the attachment is rotated through a dynamic manual movement using the dynamometer,
    상기 (b) 단계는,In step (b),
    (b1) 상기 동력계를 이용한 준정적(quasi-static) 수동운동을 통하여, 상기 제2 중력모멘트를 측정하는 단계; 및(b1) measuring the second gravitational moment through a quasi-static passive motion using the dynamometer; And
    (b2) 상기 동력계를 이용한 동적 수동운동을 통하여, 상기 분절과 상기 부가장치가 회전되는 각도에 따른 상기 제2 회전모멘트 및 상기 제2 각가속도를 측정하는 단계를 포함하는 것인, 동력계를 이용한 분절 관성모멘트 산출 방법.(b2) segment inertia using a dynamometer, including measuring the second rotation moment and the second angular acceleration according to an angle at which the segment and the attachment are rotated through a dynamic manual movement using the dynamometer. Moment calculation method.
  3. 제1항에 있어서,The method of claim 1,
    상기 (c) 단계에서,In the step (c),
    상기 부가장치의 관성모멘트는, 상기 제1 각가속도가 등가속도를 유지한다고 판단되는 제1 시간구간에서 측정된 제1 각가속도와 제1 회전모멘트, 그리고 상기 제1 시간구간에서 상기 부가장치가 상기 회전축을 중심으로 회전되는 각도에 대응하는 제1 중력모멘트를 기초로 산출되며,The moment of inertia of the additional device may include a first angular acceleration and a first rotation moment measured in a first time interval determined that the first angular acceleration maintains an equivalent speed, and the additional device moves the rotation axis in the first time period. It is calculated based on the first gravity moment corresponding to the angle rotated about the center,
    상기 (d) 단계에서, In step (d),
    상기 합산치는, 상기 제2 각가속도가 등가속도를 유지한다고 판단되는 제2 시간구간에서 측정된 제2 각가속도와 제2 회전모멘트, 그리고 상기 제2 시간구간에서 상기 분절과 상기 부가장치가 상기 회전축을 중심으로 함께 회전되는 각도에 대응하는 제2 중력모멘트를 기초로 산출되는 것인, 동력계를 이용한 분절 관성모멘트 산출 방법.The sum is a second angular acceleration and a second rotation moment measured in a second time interval in which it is determined that the second angular acceleration maintains the equivalent acceleration, and the segment and the additional device are centered on the rotation axis in the second time period. Segment inertia moment calculation method using a dynamometer, which is calculated based on the second gravity moment corresponding to the angle rotated together.
  4. 제3항에 있어서,The method of claim 3,
    상기 (c) 단계에서,In the step (c),
    상기 부가장치의 관성모멘트는 상기 제1 시간구간 중 적어도 일부 구간에 대한 평균값으로 산출되고,The moment of inertia of the additional device is calculated as an average value for at least some of the first time intervals,
    상기 (d) 단계에서,In step (d),
    상기 합산치는 상기 제2 시간구간 중 적어도 일부 구간에 대한 평균값으로 산출되는 것인, 동력계를 이용한 분절 관성모멘트 산출 방법.The summation value is calculated as an average value for at least some of the second time interval, segment inertia moment calculation method using a dynamometer.
  5. 제1항에 있어서,The method of claim 1,
    상기 (c) 단계에서, 상기 부가장치의 관성모멘트는 다음의 [식 1]에 의해 산출되고,In the step (c), the moment of inertia of the additional device is calculated by the following [Formula 1],
    상기 (d) 단계에서, 상기 합산치는 다음의 [식 2]에 의해 산출되는 것인, 동력계를 이용한 분절 관성모멘트 산출 방법.In the step (d), the sum value is calculated by the following [Equation 2], segment inertia moment calculation method using a dynamometer.
    [식 1][Equation 1]
    Figure PCTKR2015007193-appb-I000025
    Figure PCTKR2015007193-appb-I000025
    [식 2][Equation 2]
    Figure PCTKR2015007193-appb-I000026
    Figure PCTKR2015007193-appb-I000026
    (여기서,
    Figure PCTKR2015007193-appb-I000027
    는 상기 제1 회전모멘트,
    Figure PCTKR2015007193-appb-I000028
    는 상기 제1 중력모멘트,
    Figure PCTKR2015007193-appb-I000029
    는 상기 부가장치의 관성모멘트,
    Figure PCTKR2015007193-appb-I000030
    는 상기 제1 각가속도,
    Figure PCTKR2015007193-appb-I000031
    는 상기 제2 회전모멘트,
    Figure PCTKR2015007193-appb-I000032
    는 상기 제2 중력모멘트,
    Figure PCTKR2015007193-appb-I000033
    는 상기 분절의 관성모멘트,
    Figure PCTKR2015007193-appb-I000034
    는 상기 제2 각가속도이다)
    (here,
    Figure PCTKR2015007193-appb-I000027
    Is the first rotation moment,
    Figure PCTKR2015007193-appb-I000028
    Is the first gravity moment,
    Figure PCTKR2015007193-appb-I000029
    Is the moment of inertia of the attachment,
    Figure PCTKR2015007193-appb-I000030
    Is the first angular acceleration,
    Figure PCTKR2015007193-appb-I000031
    Is the second rotation moment,
    Figure PCTKR2015007193-appb-I000032
    Is the second gravity moment,
    Figure PCTKR2015007193-appb-I000033
    Is the moment of inertia of the segment,
    Figure PCTKR2015007193-appb-I000034
    Is the second angular acceleration)
  6. 회전축으로부터 질량 중심이 이격되어 위치한 부가장치에 의해 발생되는 제1 중력모멘트를 각도에 따라 측정하고, 상기 부가장치가 상기 회전축을 중심으로 회전되었을 때 발생되는 제1 회전모멘트와 제1 각가속도를 시간에 따라 측정하며, 상기 회전축과 일치하는 축을 갖는 분절과 상기 부가장치에 의해 발생되는 제2 중력모멘트를 각도에 따라 측정하고, 상기 분절과 상기 부가장치가 상기 회전축을 중심으로 함께 회전되었을 때 발생되는 제2 회전모멘트와 제2 각가속도를 시간에 따라 측정하는 동력계; 및The first gravitational moment generated by the additional device located at a center of mass away from the rotational axis is measured according to an angle, and the first rotational moment and the first angular acceleration generated when the accessory is rotated about the rotational axis in time. The second gravity moment generated by the segment and the segment having an axis coinciding with the axis of rotation according to the angle, and the segment generated when the segment and the accessory are rotated together about the axis of rotation. A dynamometer measuring the second rotation moment and the second angular acceleration with time; And
    상기 제1 중력모멘트, 상기 제1 회전모멘트, 및 상기 제1 각가속도를 기초로 상기 부가장치의 관성모멘트를 산출하고, 상기 제2 중력모멘트, 상기 제2 회전모멘트, 및 상기 제2 각가속도를 기초로 상기 분절의 관성모멘트와 상기 부가장치의 관성모멘트의 합산치를 산출하며, 상기 합산치에서 상기 부가장치의 관성모멘트를 감하여 상기 분절의 관성모멘트를 산출하는 제어부를 포함하는, 동력계를 이용한 분절 관성모멘트 산출 장치. The moment of inertia of the additional device is calculated based on the first gravity moment, the first rotation moment, and the first angular acceleration, and based on the second gravity moment, the second rotation moment, and the second angular acceleration. Calculating a sum of the moment of inertia of the segment and the moment of inertia of the accessory, and calculating a segment moment of inertia using a dynamometer, including a control unit which calculates the moment of inertia of the segment by subtracting the moment of inertia of the accessory from the sum. Device.
  7. 제6항에 있어서,The method of claim 6,
    상기 제1 중력모멘트는 상기 동력계를 이용한 준정적(quasi-static) 수동운동을 통하여 측정되고,The first gravity moment is measured through a quasi-static passive movement using the dynamometer,
    상기 제1 회전모멘트 및 상기 제1 각가속도는 상기 동력계를 이용한 동적 수동운동을 통하여 상기 부가장치가 회전되는 각도에 따라 측정되며,The first rotation moment and the first angular acceleration are measured according to the angle at which the attachment is rotated through a dynamic manual movement using the dynamometer,
    상기 제2 중력모멘트는 상기 동력계를 이용한 준정적(quasi-static) 수동운동을 통하여 측정되고,The second gravitational moment is measured through quasi-static passive movement using the dynamometer,
    상기 제2 회전모멘트 및 상기 제2 각가속도는 상기 동력계를 이용한 동적 수동운동을 통하여 상기 분절과 상기 부가장치가 회전되는 각도에 따라 측정되는 것인, 동력계를 이용한 분절 관성모멘트 산출 장치.The second rotation moment and the second angular acceleration is measured according to the angle at which the segment and the additional device is rotated through a dynamic manual movement using the dynamometer, segment inertia moment calculation device using a dynamometer.
  8. 제6항에 있어서,The method of claim 6,
    상기 제어부는,The control unit,
    상기 제1 각가속도가 등가속도를 유지한다고 판단되는 제1 시간구간에서 측정된 제1 각가속도와 제1 회전모멘트, 그리고 상기 제1 시간구간에서 상기 부가장치가 상기 회전축을 중심으로 회전되는 각도에 대응하는 제1 중력모멘트를 기초로 상기 부가장치의 관성모멘트를 산출하고,A first angular acceleration and a first rotation moment measured in a first time interval determined that the first angular acceleration maintains an equivalent speed, and an angle at which the additional device is rotated about the rotation axis in the first time period. Calculate the moment of inertia of the attachment device based on the first gravity moment,
    상기 제2 각가속도가 등가속도를 유지한다고 판단되는 제2 시간구간에서 측정된 제2 각가속도와 제2 회전모멘트, 그리고 상기 제2 시간구간에서 상기 분절과 상기 부가장치가 상기 회전축을 중심으로 함께 회전되는 각도에 대응하는 제2 중력모멘트를 기초로 상기 합산치를 산출하는 것인, 동력계를 이용한 분절 관성모멘트 산출 장치.The second angular acceleration and the second rotation moment measured in the second time interval determined that the second angular acceleration maintains the equivalent speed, and the segment and the additional device is rotated together about the rotation axis in the second time interval A segment inertia moment calculating device using a dynamometer, which calculates the sum based on a second gravity moment corresponding to an angle.
  9. 제8항에 있어서,The method of claim 8,
    상기 제어부는,The control unit,
    상기 부가장치의 관성모멘트를 상기 제1 시간구간 중 적어도 일부 구간에 대한 평균값으로 산출하고,Calculating the moment of inertia of the additional device as an average value of at least some of the first time intervals;
    상기 합산치를 상기 제2 시간구간 중 적어도 일부 구간에 대한 평균값으로 산출하는 것인, 동력계를 이용한 분절 관성모멘트 산출 장치.Segmented moment of inertia using the dynamometer, which calculates the sum as an average value for at least some of the second time interval.
  10. 제6항에 있어서,The method of claim 6,
    상기 제어부는,The control unit,
    상기 부가장치의 관성모멘트를 다음의 [식 1]에 의해 산출하고,The moment of inertia of the additional device is calculated by the following [Formula 1],
    상기 합산치는 다음의 [식 2]에 의해 산출하는 것인, 동력계를 이용한 분절 관성모멘트 산출 장치.The summation value is calculated by the following [Equation 2], segment inertia moment calculation device using a dynamometer.
    [식 1][Equation 1]
    Figure PCTKR2015007193-appb-I000035
    Figure PCTKR2015007193-appb-I000035
    [식 2][Equation 2]
    Figure PCTKR2015007193-appb-I000036
    Figure PCTKR2015007193-appb-I000036
    (여기서,
    Figure PCTKR2015007193-appb-I000037
    는 상기 제1 회전모멘트,
    Figure PCTKR2015007193-appb-I000038
    는 상기 제1 중력모멘트,
    Figure PCTKR2015007193-appb-I000039
    는 상기 부가장치의 관성모멘트,
    Figure PCTKR2015007193-appb-I000040
    는 상기 제1 각가속도,
    Figure PCTKR2015007193-appb-I000041
    는 상기 제2 회전모멘트,
    Figure PCTKR2015007193-appb-I000042
    는 상기 제2 중력모멘트,
    Figure PCTKR2015007193-appb-I000043
    는 상기 분절의 관성모멘트,
    Figure PCTKR2015007193-appb-I000044
    는 상기 제2 각가속도이다)
    (here,
    Figure PCTKR2015007193-appb-I000037
    Is the first rotation moment,
    Figure PCTKR2015007193-appb-I000038
    Is the first gravity moment,
    Figure PCTKR2015007193-appb-I000039
    Is the moment of inertia of the attachment,
    Figure PCTKR2015007193-appb-I000040
    Is the first angular acceleration,
    Figure PCTKR2015007193-appb-I000041
    Is the second rotation moment,
    Figure PCTKR2015007193-appb-I000042
    Is the second gravity moment,
    Figure PCTKR2015007193-appb-I000043
    Is the moment of inertia of the segment,
    Figure PCTKR2015007193-appb-I000044
    Is the second angular acceleration)
PCT/KR2015/007193 2014-08-12 2015-07-10 Method and device for calculating segmental moments of inertia by using dynamometer WO2016024725A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140104667A KR101569477B1 (en) 2014-08-12 2014-08-12 Method and Device for calculating inertia moment of segment using dynamometer
KR10-2014-0104667 2014-08-12

Publications (1)

Publication Number Publication Date
WO2016024725A1 true WO2016024725A1 (en) 2016-02-18

Family

ID=54785928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007193 WO2016024725A1 (en) 2014-08-12 2015-07-10 Method and device for calculating segmental moments of inertia by using dynamometer

Country Status (2)

Country Link
KR (1) KR101569477B1 (en)
WO (1) WO2016024725A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503635A (en) * 2002-10-23 2006-02-02 ラモタット テル・アヴィヴ ユニヴァーシティ リミテッド System and method for obtaining angular isokinetic measurements using a linear dynamometer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006503635A (en) * 2002-10-23 2006-02-02 ラモタット テル・アヴィヴ ユニヴァーシティ リミテッド System and method for obtaining angular isokinetic measurements using a linear dynamometer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A. J. PEYTON: "Determination of the moment of inertia of LIMB segments by a simple method", J. BIOMECHANICS, vol. 19, no. 5, 1986, pages 405 - 410, XP026261282, DOI: doi:10.1016/0021-9290(86)90017-5 *
DIMITRIOS E. TSAOPOULOS ET AL.: "Mechanical correction of dynamometer moment for the effects of segment motion during isometric knee-extension tests", J APPL PHYSIOL., vol. 111, 7 April 2011 (2011-04-07), pages 68 - 74 *

Also Published As

Publication number Publication date
KR101569477B1 (en) 2015-11-16

Similar Documents

Publication Publication Date Title
WO2018092944A1 (en) Spasticity evaluation device, method and system
Hansson et al. Validity and reliability of triaxial accelerometers for inclinometry in posture analysis
WO2017217732A1 (en) Force reflecting system
WO2019112158A1 (en) Sensor error correction apparatus using joint sensor and correction method
KR20140044755A (en) Golf swing analyzing apparatus and method of analyzing golf swing
WO2015113434A1 (en) Method for determining unbalance amounts of rotor
WO2020122416A1 (en) Method and system for mitigating collision of surgical robot
WO2019027260A1 (en) Method for compensating gyroscope drift on an electronic device
Bai et al. Application of low cost inertial sensors to human motion analysis
WO2012091197A1 (en) Wheel drive vehicle and wheel contact sensing method of the same
Salehi et al. A low-cost and light-weight motion tracking suit
WO2016024725A1 (en) Method and device for calculating segmental moments of inertia by using dynamometer
WO2018135886A2 (en) Method for estimating location of wearable device and device using same
WO2016208938A1 (en) Piston rotating device for deadweight pressure gauge
WO2016200169A1 (en) Obstacle detecting device and detecting method using same
WO2013183829A1 (en) Method of measuring rotating speed of sphere using accelerometer
CN109945889A (en) A kind of joint angles measurement method based on double attitude transducers
CN112683303B (en) Gyro position compensation method for inertial measurement unit
WO2014003217A1 (en) Three-axis displacement measurement apparatus
Makikawa et al. Ambulatory monitoring of behavior in daily life by accelerometers set at both-near-sides of the joint
Viegas et al. NUI therapeutic serious games with metrics validation based on wearable devices
CN106493719A (en) Mechanical arm and robot
WO2020085748A1 (en) Master robot and control method thereof
RU190692U1 (en) DOUBLE HANDING ROTARY DYNAMIC STAND
JP3062433U (en) A triaxial displacement gauge that measures (XYZ) displacement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832073

Country of ref document: EP

Kind code of ref document: A1