WO2016024652A1 - Real-time detection apparatus for biological particle in atmosphere and liquid substance flowing through flow channel cell - Google Patents

Real-time detection apparatus for biological particle in atmosphere and liquid substance flowing through flow channel cell Download PDF

Info

Publication number
WO2016024652A1
WO2016024652A1 PCT/KR2014/007553 KR2014007553W WO2016024652A1 WO 2016024652 A1 WO2016024652 A1 WO 2016024652A1 KR 2014007553 W KR2014007553 W KR 2014007553W WO 2016024652 A1 WO2016024652 A1 WO 2016024652A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle
real
optical chamber
time detection
detection device
Prior art date
Application number
PCT/KR2014/007553
Other languages
French (fr)
Korean (ko)
Inventor
김덕호
유현상
이재경
전병길
윤경원
김민철
윤성녀
이서경
최기봉
Original Assignee
삼양화학공업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼양화학공업주식회사 filed Critical 삼양화학공업주식회사
Publication of WO2016024652A1 publication Critical patent/WO2016024652A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a real-time detection device for biological particles flowing in the flow path, in particular scattered light and weak light generated when irradiating a laser beam after forcibly transporting particles contained in the liquid material or suspended particles in the air to the flow path continuously
  • the present invention relates to a real-time detection device of bioparticles flowing through a flow cell that can collect fluorescence and separate them by a plurality of wavelength bands to detect bioparticles of air or liquid material in real time.
  • Methods for detecting bioparticles in liquid materials include luciferase method, fluorescent dye method, autofluorescence culture method (official verification method), micro-colony method, ATP method. It is common to check.
  • self-fluorescence method is generally used to detect the presence of bioparticles in a liquid material flowing in a flow path.
  • Self-fluorescence measurement method is a method for measuring bioparticles in real time and liquid materials in the air. There is a method to measure the bioparticles of.
  • Bio aerosols such as bacteria, viruses, or fungi, which are suspended in the air, employ traditional methods of capturing or detecting and most require several hours to several days of culture in the medium. That is, in order to read the bioparticles contained in the particles present in the air and the liquid material, first, a sample for measurement in the air is collected, and the amount or type of the bioparticles in the collected sample is required.
  • bioparticle measurement methods require a lot of time and effort, and often require several hours to several days or more of culture. This is a method of culturing a sample directly in the medium and counting the number of colonies formed to read the presence or absence of bioparticles. However, it usually takes more than 24 hours to incubate the sample, and more than one week is required for the detection of fungi.
  • Laser-induced fluorescence is widely used as a method of detecting such bioparticles in real time. This method detects bioparticles in suspended particles through scattered light and fluorescence generated by irradiating a single particle by irradiating a laser beam with floating particles in the air. There is a way.
  • Patent document 1 is disclosed as a related art.
  • Patent document 1 collects fine fluorescence originating from biological particles together with scattered light generated by irradiating a laser beam to the transported particles after inhaling and concentrating suspended particles in the atmosphere.
  • a real-time fluorescence detection apparatus for suspended particles in the air by separating by a plurality of wavelength bands so that a small amount of particles having a weak fluorescence signal contained in the suspended particles can be detected quickly and reliably in real time.
  • the detection device described in Patent Document 1 has a problem in that it can detect only bioparticles contained in suspended particles in the air, but cannot detect bioparticles contained in a liquid.
  • Patent Document 1 KR10-1246661 B1
  • the present invention has been made in view of the above-described conventional problems, and is a real-time detection device for liquid particles and atmospheric bioparticles flowing in a flow cell for detecting real-time suspended particles as well as fine bioparticles contained in a liquid in real time.
  • the purpose is to provide.
  • a weak fluorescence is collected together with scattered light generated when a laser beam is irradiated to a single fine particle transported by being sucked into the air or transported in a liquid material, and then separated into a plurality of wavelength bands. It is a general purpose to enable rapid and reliable detection of small amounts of bioparticles in real time through weak fluorescence and scattered light signals.
  • the present invention for achieving the above object, the scattering light and bioparticles of all particles generated when irradiating a laser after inhaling the fine particles contained in the liquid particles containing the suspended particles and bacteria in the air containing the biological particles
  • a real-time detection device of biological particles for detecting fluorescence
  • a particle introduction part having a flow path cell into which the suspended particles contained in the air introduced from the outside or the particles contained in the liquid material introduced from the outside are introduced; And a particle light side part installed in a casing assembly at the bottom of the particle introduction part.
  • the particle light side part is an hexahedron optical having a particle measuring space having an opening formed in an upper surface thereof and connected to a lower end of the particle introduction part through the opening to measure particles moving along the flow cell located therein.
  • a chamber A beam forming optical system connected to an opening formed in the front surface of the optical chamber and irradiating a laser beam to particles introduced into the particle measuring space through the air or liquid material particle introducing unit;
  • a beam absorbing system connected to the opening formed in the rear surface of the optical chamber opposite to the beam forming optical system to extinguish the laser beam irradiated from the beam forming optical system;
  • a pair of reflecting mirrors disposed in the particle measuring space in a direction 90 ° to the traveling direction of the laser beam;
  • a particle discharging unit connected to an opening formed in a lower surface of the optical chamber and discharging air or liquid substance after interacting with a laser beam in the particle measuring space to the outside through a nozzle;
  • Two beam splitters connected to an opening formed at a
  • a line separator for filtering foreign matter and particles of a predetermined size or more above the particle introduction portion to detect the suspended particles in the air, and the floating particles to a predetermined size using the inertial force Particle enrichment unit comprising a cylindrical casing having a plurality of nozzles for sorting and concentrating is connected, characterized in that the particle introduction unit acts as an atmospheric particle introduction unit.
  • the particle introduction portion is installed inside the upper body and the lower body of the hollow screw, the upper body and the lower body is protruded protruding to the lower end of the particle concentration portion It characterized in that it comprises an insertion tube having the insertion hole is inserted into the particle discharge port is connected and fixed to the flow path cell, the outer nozzle is connected to the flow path cell is fixed to the lower end of the lower body.
  • the particle introduction portion further comprises a first positioning means for positioning of the flow path cell when the flow path cell is installed in the upper body, the lower body,
  • the first positioning means is characterized in that it comprises a groove formed in one side of the ring member provided on the outer peripheral surface of the insertion tube, the pin is inserted into the pin hole formed in the pin hole formed on one side of the upper surface of the lower body.
  • the particle introduction portion further includes a second positioning means for positioning the particle introduction portion itself when mounting the particle introduction portion in the optical chamber,
  • the second positioning means is composed of a groove formed on one side of the annular protruding jaw provided on the lower outer peripheral surface of the lower body, and a pin formed on one side of the upper opening of the optical chamber and inserted into the groove. It is done.
  • the particle introduction portion is fastened to the outer periphery of the lower body coupled to the upper main body along the edge of the nut member and the upper surface opening of the optical chamber formed with a screw thread on the inner peripheral surface It is characterized in that the connection is fixed to the optical chamber by screwing with the connection portion is formed projecting on the outer peripheral surface threaded upward.
  • the pin is characterized in that the pin hole is inserted into the pin hole formed on one side of the upper surface of the connecting portion.
  • the lower end of the lower body of the particle introduction portion when the particle introduction portion is separated from the optical chamber and then reattached without being eccentric in the transverse direction from the predetermined mounting position of the optical chamber
  • an anti-eccentric inclined portion of an inverted conical structure inclined toward an opening formed in the upper surface of the optical chamber is formed so that the flow cell can be easily mounted on the particle ejection portion silicon boarding at the lower end
  • the inner lower end of the upper surface opening of the optical chamber is characterized in that it has an inclined surface in close contact with the anti-eccentric inclined portion.
  • the inclination angle of the anti-eccentric inclined portion and the inclined surface is the same, the inclination angle is characterized in that 25 ° ⁇ 35 ° with respect to the central axis of the particle introduction portion .
  • the nozzle of the particle discharging portion is characterized in that the tapered shape tapered toward the tip toward the particle introduction portion.
  • the liquid material introduction nozzle and the liquid material discharge nozzle are respectively connected to the particle introduction portion to detect the biological particles contained in the liquid material, the particle introduction portion to the liquid particle introduction portion It is characterized by working.
  • the particle introduction portion hollow upper body coupled to the upper opening of the optical chamber, hollow lower body coupled to the lower opening of the optical chamber, And a flow passage cell coupled between the upper main body and the lower main body to communicate with both sides, and a liquid flow cell flowing therein, and a nozzle fixture for coupling the liquid material introduction nozzle and the liquid material discharge nozzle to the upper main body and the lower main body, respectively. It is done.
  • the beam forming optical system has an inner space that is open at both ends and the body is equipped with an aspherical lens is mounted in the inner space and the socket with a laser diode built in the front side of the body;
  • a light source unit comprising a cover plate;
  • a first lens group which is detachably assembled with the light source unit and adjusts the longitudinal size of the laser beam generated from the laser diode and passed through the aspherical lens, and adjusts the lateral size of the laser beam passed through the first lens group.
  • a beam forming adjustment unit in which the second lens group and the window are sequentially arranged; And a reflector coupled to the bent portion of the beamforming adjustment unit and having a laser reflector installed therein to reflect the laser beam passing through the first lens group in a direction of the second lens group. It is done.
  • the laser diode control board is fixed to the front of the aspherical lens with four hexagon bolts on the upper side, the aspherical lens is to enlarge the beam of the laser diode to a certain size It is then reflected by the laser reflector and directed to two fisheye lenses to form a predetermined pattern.
  • the reflector is made of a structure capable of adjusting the angle of the laser reflector with three control bolts, thereby controlling the direction of the laser diode beam in the optical chamber. It is characterized in that it serves to adjust the position to be placed.
  • the beam absorbing system and the body is fixed to the rear of the optical chamber;
  • a focus lens assembly inserted into an insertion hole formed through a central portion of the body;
  • a pinhole assembly inserted into a recess formed in a rear surface of the body such that the optical axis of the focus lens assembly passes through the pinhole;
  • a housing fixed to a rear surface of the pinhole assembly;
  • a light source output detector fixed to a rear surface of the housing so as to be inclined at a predetermined angle with respect to a reference plane orthogonal to an optical axis of the focus lens assembly.
  • a cavity is formed in the central portion of the pinhole assembly and the housing such that the laser beam passing through the pinhole of the pinhole assembly gradually spreads as the laser beam passes closer to the light source output detector.
  • the pair of reflectors are disposed so as to face the beam split optical system and coated with a spherical reflector of the glass material, and an aspherical surface of aluminum coated and installed opposite to the spherical reflector Consisting of reflectors,
  • the spherical reflector is coated with a central portion so that the scattered light and the fluorescence signal generated by the laser beam generated from the beam forming optical system are irradiated to the particles introduced from the particle introduction unit are reflected by the aspheric reflector and directed toward the beam splitting optical system. It is characterized by not.
  • the aspheric reflector is located on the opening side formed on the left side of the optical chamber, characterized in that the opening is sealed by a removable sealing plate.
  • the scattering photodetector is characterized in that it comprises an Avalanche Photodiode (APD) and an amplifier.
  • APD Avalanche Photodiode
  • any one of the fluorescence detector is configured to detect a long wavelength and a signal, the other is configured to detect a short wavelength signal, the front of the fluorescence detector ( The front surface is characterized in that the optical filter is mounted to block the scattered light and to pass the induced fluorescence.
  • the fluorescence detector is characterized in that the photomultiplier tube (PMT).
  • the scattering light intensity and the weak fluorescence light intensity generated when the laser beam is irradiated to the single transported particles are collected by a plurality of wavelength bands It can be separated and detected, thereby analyzing 130,000 high concentration atmospheric and liquid states per second in real time using a high-speed signal processing circuit.
  • the size and alignment of the laser beam can be adjusted and aligned in the particle measuring space in the optical chamber where the laser beam and the particle meet.
  • the scattered light is weakly disposed by opposing the spherical reflector and the aspheric reflecting mirror in the particle measuring space in the optical chamber.
  • fluorescence signal can be collected as much as possible.
  • the optimization process can be performed by simultaneously measuring the scattered light of one channel and the fluorescence of the biological particles of two channels generated by interacting in the particle measuring space in the optical chamber.
  • the present invention can be usefully used as a detection device for rapidly and reliably monitoring in real time the harmful bioparticles sprayed in the air by terrorists and the like near the important facilities or the biological particles contained in the drinking water of a water treatment plant.
  • FIG. 1 is an external perspective view of a real-time detection device of liquid matter and airborne biological particles flowing through the flow cell according to the present invention.
  • FIG. 2 is a reference diagram illustrating a case where a particle concentration unit is added to detect biological particles in the atmosphere.
  • FIG 3 is a combined perspective view of the particle light side of the detection device according to the present invention.
  • FIG. 4 is an exploded perspective view of a particle light side part of the detection device according to the present invention.
  • FIG 5 is an exploded perspective view of the particle introduction portion when acting as the atmospheric particle introduction portion.
  • FIG. 6 is a cross-sectional view when the particle introduction portion acts as a liquid particle introduction portion.
  • FIG. 9 is a configuration diagram of a beamforming optical system.
  • FIG. 10 is a configuration diagram of a spherical reflector and a non-reflective mirror installed in a 90 ° direction with respect to a traveling direction of the laser beam.
  • Fig. 11 is a reference diagram showing an optical path in the particle light side.
  • FIG. 12 is an exploded perspective view of a part of the particle light side of the detection device according to the present invention.
  • FIG. 13 is a perspective view of the beam absorbing system.
  • 15 is a side sectional view of a beam absorber
  • 16 is a reference diagram for explaining an alignment method of a beam absorbing system.
  • 17 is a reference diagram for explaining the principle of operation of the beam absorbing system.
  • 20 is a view showing a mounting state of a beam splitter on a housing in a beam splitting optical system.
  • the real-time detection device of the bioparticles separates the scattered light generated when the laser beam is irradiated to the particles present in the air and the liquid material and the laser-induced fluorescence of the weak bioparticles by wavelength band to emit the fluorescent particles.
  • the particle introduction unit 210 having flow path cells 214 and 214 'into which the suspended particles contained in the air introduced from the outside or the fine particles contained in the liquid material introduced from the outside are introduced.
  • Wow; It is provided in the casing assembly 300 and includes a particle light side portion 200 for detecting the fine particles in the fluid flowing along the flow path cells (214, 214 ').
  • the particle light side part includes a particle introduction part 210 and an optical chamber installed in the casing assembly 300 (see FIG. 1) to measure laser-induced fluorescence of weak bioparticles. 220, a reflector 230, a particle ejection unit 240, a beam forming optical system 250, a beam absorbing system 260, and a beam splitting optical system 270.
  • the optical chamber 220 is composed of a rectangular parallelepiped having a particle measuring space S therein as shown in FIGS. 7 and 9, and has openings 222 and 223 in the upper and lower surfaces, the left and right surfaces, and the front and rear surfaces, respectively. , 224, 225, 226, and 227 are formed.
  • the particle introduction portion 210 and the particle discharge portion 240 are provided on the upper and lower surfaces of the optical chamber 220, respectively, and the beam forming optical system 250 is provided.
  • the beam absorbing system 260 are installed on the front and rear surfaces of the optical chamber 220 in a mutually opposite relationship, and the beam splitting optical system 270 is installed on the right side of the optical chamber 220.
  • the openings 226 (FIG. 9) formed on the left side of the optical chamber 220 are sealed by the sealing plate 280 (see FIGS. 11 and 18).
  • O-rings are provided in all openings of the optical chamber 220 to maintain airtightness, and all surfaces inside the optical chamber 220 are black salted to efficiently absorb stray light. .
  • the flow path cells 214 and 214 'through which the introduced air or liquid material flows may be manufactured in various shapes, but it is preferable to use an inner diameter of 1 mm or less and an outer diameter of 2 mm or less.
  • the line separator 110 to filter the foreign matter and particles of a predetermined size or more on the upper side of the particle introduction portion 210, and selects the suspended particles to a predetermined size using the inertial force
  • the particle introduction portion 210 may act as an atmospheric particle introduction portion.
  • the particle introduction portion 210 is installed inside the hollow upper body 211 and the lower body 212, the upper body 211 and the lower body 212 is screw condensed with each other
  • An insertion tube 213 having an insertion hole into which a particle discharge port protrudingly extended at the lower end of the part 100 is inserted, a flow passage cell 214 connected to and fixed in the insertion tube 213, and connected to the flow passage cell 214.
  • An outer nozzle 215 is fixed to the lower end of the lower body 212.
  • the outer circumferential surface of the insertion tube 213 is provided with a ring member 213a which protrudes while wrapping the outer circumferential surface thereof, and a recess 213b is formed at one side of the ring member 213a.
  • Pinholes are formed at one side of the upper surface of the lower body 212, and pins 212a are inserted into and fixed to the pinholes.
  • Such grooves 213b and pins function as first positioning means for positioning the flow path cell 214. That is, when the flow path cell 214 is installed in the upper and lower main bodies 211 and 212, the pin 212a on the upper surface of the lower main body 212 is connected to the flow path cell 214 of the insertion tube 213. The flow path cell 214 is positioned by being inserted into the recess 213b formed in the ring member 213a.
  • a fitting hole 212a for fitting an air inlet for introducing external air is formed at an outer side of the upper end of the lower body 212.
  • the lower outer periphery of the lower body 212 is provided with an annular projection jaw (212b) formed with a groove (212c) on one side.
  • the particle introduction portion 210 having such a structure is connected to and fixed to the upper surface opening 222 of the optical chamber 220 by a nut member 218 formed with a screw thread on the inner circumferential surface and fastened to the outer circumference of the lower body 212.
  • the connecting portion 221 is formed to protrude upward along the edge of the upper surface opening 222 of the optical chamber 220 and the thread is formed on the outer circumferential surface thereof. Since the pin is inserted into and fixed to the pin hole formed at one side of the upper surface, when the lower end portion of the lower body 212 of the particle introduction portion 210 is inserted into the upper opening 222 of the optical chamber 220, the pin is lower body 212.
  • the particle introduction portion 210 is inserted into the upper opening 222 of the optical chamber 220 in a state of being accommodated in the groove 212c of the annular projection jaw 212b provided at the outer circumference of the upper portion of the particle introduction portion 210.
  • the particle introduction portion is formed by screwing the nut member 218 inserted from the main body 211 into the lower main body 212 and hooked to the annular projection jaw 212b with a thread formed on the outer peripheral surface of the upper opening 222 of the optical chamber 220.
  • 210 can be reliably connected and fixed to the optical chamber 220 (see FIG. 10).
  • the groove 212c of the annular projection jaw 212b and the pin of the connection portion 221 of the optical chamber 220 are second positions for accurately positioning the particle introduction portion 210 at the mounting position of the optical chamber 220. It functions as a determining means.
  • an anti-eccentric inclined portion 212d having an inverted conical structure inclined toward the upper opening 222 of the optical chamber 220 is formed.
  • the inner lower end of the upper surface opening 222 of the optical chamber 220 is designed to have an inclined surface 222a as shown in FIG.
  • the structure of the anti-eccentric inclined portion 212d and the inclined surface 222a will be described in detail as follows. If a situation occurs in which the particle introduction portion 210 or the optical chamber 220 is cleaned in the yellow sand or the extreme environment, the particle introduction portion 210 needs to be removed from the optical chamber 220 and then remounted. At this time, the lower end of the particle introduction portion 210, that is, the outer nozzle 215 should be mounted to have an accuracy within a few tens of micrometer tolerance at a predetermined position of the particle measuring space (S) in the optical chamber 220.
  • the particle introduction portion 210 is not correctly mounted on the top opening 222 of the optical chamber 220, that is, the central axis of the outer nozzle 215 located in the particle measuring space S is the optical axis 220.
  • a deviation from the original mounting position may not be in the correct position even if the central axis does not intersect or intersect with the laser beam having a size of several hundred micrometers, which may adversely affect the measurement of particle size and measurement of fluorescence intensity.
  • OPC Optical Particle Counter
  • the groove 213b for accommodating the pin together with the pin inserted in the pinhole formed on the upper surface of the lower body 212 of the particle introduction portion 210 flow path
  • the structure applied to the insertion tube 213 connected to the cell 214 and the groove 212c for accommodating the pin together with the pin inserted into the pinhole of the connecting portion 221 of the optical chamber 220 may be formed in the particle introduction portion 210.
  • the structure processed in the inverted cone shape is introduced.
  • the recess 213c of the insertion pipe 213 connected to the flow path cell 214 is lowered. Mounting the flow path cell 214 in accordance with the position of the pin provided on the upper surface of the main body 212 can prevent the central axis of the flow path cell 214 to be shifted, and the annular projection jaw 212b provided on the outer circumference of the lower main body 212.
  • the grooves 212c of the) to the pins provided in the connecting portion 221 of the optical chamber 220 to mount the main body 211, 212 of the particle introduction portion 210 to the optical chamber 220, the particle introduction portion 210 It is possible to prevent the alignment of itself, and also the eccentric prevention inclined portion 212d of the lower body 212 is in close contact with the inclined surface 222a in the upper opening 222 of the optical chamber 220, the particle introduction portion 210 Since the central axis is always aligned to the predetermined position of the optical chamber 220 without being eccentric in the transverse direction, Easy to ipbu 210 to the optical chamber 220 can be accurately mounted. In addition, according to this structure, there is a side effect that can further enhance the vibration generated by the external impact.
  • the inclination angles of the anti-eccentric inclined portion 212d and the inclined surface 222a are the same, and the inclination angle is 30.0 ° ⁇ 5.0 ° with respect to the central axis of the particle introduction portion 210 (that is, 25 ° ⁇ 35 °).
  • the coupling structure of the pin and the recess 213c and the anti-eccentric inclined portion By the coupling structure of 212d) and the inclined surface 222a, the particle introduction part 210 can be mounted reliably in the optical chamber 220, and can be mounted.
  • Air or liquid substance of a constant flow rate passes through the flow path cells 214 and 214 'of the particle introduction portion 210, and a part of the flow path cells 214 and 214' is introduced into the particle measuring space in the optical chamber 220. Will be located.
  • air or liquid introduced into the optical chamber 220 through the upper end of the particle introduction unit 210 may be formed in the optical chamber 220 described later.
  • the laser beam (L) in the particle measuring space (S) when the liquid material sucked through the nozzle installed in the particle discharge unit 240 is discharged to the discharge bottle of the liquid material flow control unit or the filter of the air flow control unit do.
  • a pair of reflecting mirrors 230 which collect weak scattered light and fluorescence signals and reflect them to the beam splitting optical system 270, are provided.
  • the pair of reflecting mirrors 230 includes a spherical reflector 231 and an aspheric reflector 232 opposite to the spherical reflector 231, and It is arrange
  • SNR signal side noise ratio
  • the spherical reflector 231 is made of a glass reflector
  • the aspheric reflector 232 is made of a glass reflector adhesively bonded to an aluminum structure.
  • the aspheric reflector 232 has an O-ring interposed between the aluminum structure and the reflector made of glass.
  • the surfaces of the two reflectors 231 and 232 are coated so that the surfaces of the reflectors 231 and 232 are not damaged by impurities or ultraviolet rays introduced through the particle introduction unit 210 from the outside.
  • the spherical reflector 231 reflects the scattered light and the fluorescence signal generated by irradiating the laser beam L generated from the beam forming optical system 250 to the particles introduced from the particle introduction unit 210 to the aspheric reflector 232.
  • the central portion is configured not to be coated so as to face the beam splitting optical system 270. As such, when the spherical reflector 231 is configured, the glass material can be easily processed, and the coating area for collecting the weak signal can be expanded.
  • the spherical reflector 231 is detachably coupled to a fixed plate 281 having a through hole 281 a in the center thereof, and the fixed plate 281 is disposed around the right side opening 224 of the optical chamber 220. Is fastened by fastening means such as bolts.
  • the aspheric reflector 232 is positioned in the optical chamber 220 and fixed to the outer detachable sealing plate 280 to facilitate cleaning of the optical chamber 220.
  • the particle discharging part 240 is fixedly installed under the optical chamber 220, and is connected to the nozzle 241 and the nozzle 241 which are opposed to the nozzle 215 at the lower end of the particle introduction part 210 at a predetermined interval.
  • An exhaust port 242 is included.
  • the particle discharging unit 240 sucks the fine particles and air introduced into the particle measuring space S of the optical chamber 220 through the nozzle 215 at the lower end of the particle introducing unit 210 through the nozzle 241.
  • the nozzle 241 of the particle discharging part 240 has a taper shape that becomes thinner toward the tip so that interference does not occur while the laser beam passes.
  • the particle introduction part 210 is connected to the liquid material introduction nozzle 217 and the liquid material discharge nozzle 219 to the particle introduction part 210 so as to detect bioparticles contained in the liquid material.
  • the particle introduction portion 210 may act as a liquid particle introduction portion.
  • the particle introduction portion 210 has a hollow upper body 211 ′ coupled to the upper opening of the optical chamber 220, and a hollow lower body coupled to the lower opening of the optical chamber 220.
  • 212 ′ a flow cell 214 ′ coupled between the upper body 211 ′ and the lower body 212 ′ and communicating with both sides, and a liquid material flowing therein, the liquid material introduction nozzle 217 and the liquid phase.
  • a nozzle fixing tool 213 ' for coupling the material discharge nozzle 219 to the upper body 211' and the lower body 212 ', respectively.
  • the beam forming optical system 250 includes a light source unit 251 having an internal space at which both ends are opened, an aspherical lens mounted in the internal space, and a laser diode 253 built in the front side thereof;
  • the first lens group 255 and the first lens group 255 which are detachably assembled with the light source unit 251 and adjust the longitudinal size of the laser beam generated from the laser diode 253 and passed through the aspherical lens.
  • a beam forming adjustment unit 252 in which the second lens group 256 for adjusting the lateral size of the laser beam passing through the window and the window 257 are sequentially arranged;
  • a reflector coupled to the bent portion of the beamforming adjustment unit 252 and having a laser reflector 259 'installed therein for reflecting the laser beam passing through the first lens group 255 toward the second lens group 256. (259);
  • the beam forming optical system 250 black-treated the inner surface to block dust and noise signals from the outside, the aspherical lens of the light source unit 251, the lens group (255, 256), the window of the beam forming optical system 250 Parts such as (257) are formed with an antireflective coating having a reflectance of 0.25% or less to minimize laser power loss.
  • the Peltier device may be installed outside the light source unit 251 to maintain the constant temperature around the light source unit 251 to reduce the output change of the laser beam according to the change of the external temperature.
  • the light source unit 251 is a laser diode control board 254 located at the top of the four hexagon bolts (254 ') fixed to the front of the aspherical lens, the aspherical lens is a predetermined size of the beam of the laser diode 253 After magnification, the light is reflected by the laser reflector 259 'and directed to the two fisheye lenses 258 to form a predetermined pattern.
  • the reflector 259 is manufactured in a structure capable of adjusting the angle of the laser reflector 259 with three control bolts 259 ′′ to direct the direction of the laser beam L to a desired position in the optical chamber 220. It is responsible for adjusting to release.
  • the aspherical lens of the light source unit 251 serves to enlarge the laser beam generated from the laser diode 253 at a 10-fold magnification, and the first lens group 255 of the beam forming adjustment unit 252 x beams the laser beam.
  • the second lens group 256 enlarges the laser beam at 15 magnification in the y direction (vertical direction) in the direction (lateral direction).
  • the light source unit 251 equipped with the laser diode is sensitive to minute vibrations from external shocks, it may be necessary to frequently perform light alignment.
  • the laser beam output generated from the laser diode 253 is weakened, and thus the particle size is reduced.
  • the problem of inaccuracy of the measurement occurs.
  • UV or short wavelength laser beams work with various dusts and are fixed to the lens, even if the laser beam output is not greatly changed by the dust, the laser beam is covered by a large number of contaminated lenses, and thus the output at the final stage is reduced. This results in lowering the accuracy of particle size measurement.
  • the photodiode detects the laser beam output at the end of the laser beam at any time, and if the laser beam axis alignment is misaligned or the change of the output exceeds a threshold value, the laser beam is notified to the user immediately. Axis alignment is possible.
  • the beam forming optical system 250 is a structure coupled to the optical chamber 220 irrespective of the support plate 201 that receives the actual vibration. Accordingly, the light source unit 251 does not react sensitively.
  • the beam absorbing system 260 is a body 261 that is screwed to the rear surface of the optical chamber 220 to face the beam forming optical system 250, and a central portion of the body 261.
  • a focus lens assembly 291 inserted into the insertion hole 262a formed therethrough, a mounting groove 262b recessed in a front surface of the body 261 so that the insertion hole 262a is located at the center thereof, and a mounting groove ( A window 297 inserted into and fixed to the 262b, a fixing ring 290 inserted into the outer circumference of the focus lens assembly 291 and covered by the window 297, and the insertion hole 262a is positioned at the center thereof.
  • a pinhole assembly 296 inserted into a concave portion formed concave on the rear surface of the 261, a housing 263 screwed to the rear end of the body 261, and a light source output fixed to the rear end of the housing 263
  • the detector 264, the sealing ring 298 fitted in the annular groove formed in the rear center portion of the light source output detector 264, and the rear surface of the light source output detector 264 It consists of a cover plate 299 fixed to.
  • the focus lens assembly 291 uses the convex lens 292 as the focus lens to allow the laser beam to pass through the pinhole 293a of the pinhole assembly 296, and the diameter of the pinhole 293a is about 0.3 mm. do.
  • the pinhole assembly 296 includes a cylindrical cap 293 in which a pinhole 293a penetrates a central portion of the front surface, and an outer circumference of the cap 293 and an inner circumference of a recess formed concave on the back of the body 261. It consists of about 2 blocks 294 fitted in the end, and an end member 295 installed so as to be in contact with the rear of the cap 293.
  • the pinhole 293a is formed in the form of decreasing in diameter as it approaches the front surface of the cap 293.
  • a hole having a rear diameter larger than that of the front side is formed through the center, and the diameter of the front side of the hole is equal to the inner diameter of the recess formed in the rear of the cap 293.
  • position adjusting holes 265 are circumferentially coupled at a predetermined interval around the body 261.
  • the position adjusting opening 265 is provided with a spring 266 for pressing the block 294 toward the circumference of the cap 293, so as to loosen or tighten the positioning opening 265, the concave behind the body 261 Within the part, the position of the cap 293 is adjustable.
  • the housing 263 has a hole in the center, and the diameter of the front side of the hole is larger than the diameter observed from the rear side.
  • the diameter of this hole observed from the front side of the housing is equal to the diameter of the rear side of the hole formed through the center of the end member 295.
  • the rear surface of the housing 263 is inclined at a constant angle of about 10 degrees with respect to the reference plane orthogonal to the optical axis.
  • the light source output detector 264 is arranged such that the beam forming optical system 250 and the beam absorbing system 260 which are provided at the front and rear sides of the optical chamber 220 are not aligned in a line or the beam forming optical system 250 is abnormal. If a variation occurs in the intensity of the beam, this variation is detected and a warning is issued through a warning device (not shown). A photodiode is used as the light source output detector 264.
  • the beam absorbing system 260 having such a structure is fitted with a part of the parts and fixed with a part of the screws, the beam absorption system 260 is easy to be disassembled and coupled between the parts, and it is also convenient to be mounted on the detection device.
  • the optical chamber 220 is closed.
  • the internal path (or internal space) of the beam absorbing system 260 through which the laser beam passes is blocked from the outside, and from the outside into the optical chamber 220 or the beam absorbing system 260, There is no air or light. This improves the accuracy and reliability of the measurement.
  • the beam absorbing system 260 passes through the window 297 while the laser beam (incident beam) generated from the beam forming optical system 250 is irradiated to the fine particles toward the particle measuring space S of the optical chamber 220. Then, through the convex lens 292 of the focus lens assembly 291, through a 0.3 mm diameter pinhole 293a which is drilled in the front of the cap 293 of the pinhole assembly 296, the light source output detector 264 It is configured to reach. In addition, the surface of the light source output detector 264 is inclined by about 10 degrees with respect to the reference plane perpendicular to the traveling path (optical axis) of the incident beam.
  • the incident beam is collected into the pinhole 293a of the pinhole assembly 296 through the convex lens 292 of the focus lens assembly 291, and the incident beam passing through the pinhole 293a is the pinhole 293a.
  • the beam width gradually spreads toward the light source output detector 264 while passing through a cavity formed inside the beam absorbing system 260 to the rear of the.
  • the intensity of the incident beam is detected by the light source output detector 264, and a part of the incident beam is formed on the surface of the light source output detector 264. Reflected.
  • the beam width becomes wider and spreads 20 times or more than the diameter of the pinhole 293a.
  • the energy of the beam is on the order of 0.2%.
  • the beam absorbing system 260 of the present invention most of the reflected beams reflected from the surface of the light source output detector 264 do not pass through the pinhole 293a. In addition, even when the reflected beam passes through the pinhole 293a, since the outer intensity of the Gaussian distribution passes through the low region, only a very small amount of energy flows into the optical chamber 220.
  • the reflected light reflected from the surface of the light source output detector 264 and the stray light generated in the beam absorbing system 260 are hardly introduced into the optical chamber 220, so that the signal-to-noise ratio of the beam splitting optical system 270 ( In addition to improving the energy ratio between the signal and the noise, the accuracy and reliability of the detection of the detector can be improved.
  • the beam split optical system 270 is connected to the optical chamber 220 in a state where the lower surface thereof is horizontally supported through the through hole of the vertical support 202 fixed to the support plate 201.
  • the beam splitting optical system 270 is to separate and detect weak scattered light and fluorescence collected by the spherical reflector 231 and the aspheric reflector 232 disposed in the particle measuring space S inside the optical chamber 220.
  • a hollow housing 271 connected to the fixing plate 281 detachably coupled to the spherical reflector 231 so that the front face thereof faces the spherical reflector 231 of the optical chamber 220;
  • a first accommodation portion 276 installed in the housing 271 to accommodate the first lens group 277a, and a second accommodation housing the two beam splitters 279a and 279b and the second lens group 277b and 277c.
  • Portion 278 Photodiodes (not shown) for measuring laser beam output; And scattered light detectors 274 (see FIG.
  • Two fluorescent detectors 272 and 273 are vertically connected to the connecting holes 271a and 271b and are bifurcated to the housing 171.
  • the beam splitters 279a and 279b have the same structure, and each of them is separated by a fastening bolt or the like through the beam splitter mounting holes 271c and 271d formed on the rear surface of the housing 271 as shown in FIG. 23. It consists of a structure including a body (279a1) having a mounting portion that is possibly mounted and a reflective element (279a2) inclined on one surface of the body (279a). According to such a structure, the beam splitters 279a and 279b can be easily replaced when the wavelength of the laser diode 253 is changed.
  • One of the fluorescence detectors 272 and 273 is configured to detect a long wavelength signal and the other to detect a short wavelength signal.
  • Scattered photodetector 274 includes an avalanche photodiode (APD) 274 'that measures the scattered light signal generated from the particles and an amplifier. And since the gain of the avalanche photodiode is influenced by the ambient temperature, it is preferable to further include a sensor for measuring the ambient temperature of the avalanche photodiode as a means for correcting the avalanche photodiode.
  • APD avalanche photodiode
  • the fluorescence detectors 272 and 273 are preferably photomultiplier tubes (PMTs) for amplifying and detecting weak inherent fluorescence signals generated from particles.
  • the front face of the fluorescence detectors 272 and 273 is equipped with an optical filter 275 to block the scattered light and to pass the induced fluorescence.
  • the scattered light signal and the fluorescence signal detected by the scattered light detector 274 and the two fluorescence detectors 272 and 273 are converted into particle sizes through a signal processor (not shown).
  • the particle light side part 200 when the floating particles in the atmosphere are introduced into the optical chamber 220 together with air of a predetermined flow rate or through the particle introduction part 210, the fine particles included in the liquid material. Is introduced into the optical chamber 220 together with the liquid material of a certain flow rate, the optical chamber 220 by the fine particles passing through the laser beam irradiated from the beam forming optical system 250 toward the beam absorbing system 260 Scattered light is generated in the particle measuring space S therein. Since the scattered light is detected by the scattering light detector 274, and particularly when the suspended particles or the microparticles contain the bioparticles, fluorescence is also generated along with the scattered light.
  • the size distribution and concentration change of the microbial particles in the liquid phase can be monitored in real time.
  • the detected scattered light and the fluorescence signal are converted into an electrical signal through a photodetector sensor and then passed through a high speed signal processing circuit, the atmospheric state or liquid material can be analyzed in real time.
  • it is possible to detect the presence of harmful substances by analyzing the fluorescence of the suspended particles in the air in variable time units in real time by analyzing the concentration of each particle size, the concentration of fluorescent particles by particle size, and the intensity of fluorescence by particle size.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Dispersion Chemistry (AREA)
  • Biotechnology (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention relates to a real-time detection apparatus for a biological particle flowing through a flow channel cell, which can quickly and surely detect the biological particle in the atmosphere or a liquid substance in real time, the apparatus comprising: a particle introduction unit having a flow channel cell to which a floating particle included in the air introduced from the outside or a particle included in the liquid substance introduced from the outside is introduced; and a particle light measuring unit installed in a casing assembly at a lower end of the particle introduction unit; wherein the particle light measuring unit comprises: an optical chamber (220) having a particle measurement space (S) therein; a beam forming optical system (250) for irradiating a laser beam (L) to a particle introduced into the particle measurement space (S); a beam absorption system (260) for extinguishing the laser beam (L) irradiated from the beam forming optical system (250); a pair of reflecting mirrors (230) disposed within the particle measurement space (S); a particle discharge unit (240) for discharging, to the outside, the air or liquid after interacting with the laser beam (L) in the particle measurement space (S); and a beam separation optical system (270) for simultaneously detecting a fluorescence signal and a scattered light generated by the interaction of the laser beam (L) with the particle in the particle measurement space (S).

Description

유로 셀을 흐르는 액상물질 및 대기 중 생물입자의 실시간 검출장치Real-time detection device of liquid material and airborne biological particles flowing in the flow cell
본 발명은 유로를 흐르는 생물입자의 실시간 검출장치에 관한 것으로서, 특히 액상물질에 포함된 입자나 대기 중의 부유입자를 연속적으로 유로에 강제로 이송한 후 레이저빔을 조사할 때 발생하는 산란광과 미약한 형광을 모아 이를 다수의 파장대별로 분리하여 대기 혹은 액상물질의 생물입자를 실시간으로 신속하고 확실하게 검출할 수 있는 유로 셀을 흐르는 생물입자의 실시간 검출장치에 관한 것이다.The present invention relates to a real-time detection device for biological particles flowing in the flow path, in particular scattered light and weak light generated when irradiating a laser beam after forcibly transporting particles contained in the liquid material or suspended particles in the air to the flow path continuously The present invention relates to a real-time detection device of bioparticles flowing through a flow cell that can collect fluorescence and separate them by a plurality of wavelength bands to detect bioparticles of air or liquid material in real time.
최근 국제사회의 긴장이 고조됨에 따라 테러 사건의 발생 위험성이 커지고 있다. 특히 생물학 테러사건은 생물학적 무기를 쉽게 제조할 수 있을 뿐만 아니라 생물학 무기의 이동 및 살포가 용이하기 때문에 그 위험성이 더욱 증대되고 있으며 세균 등의 잠복기에 의한 전염성의 증대로 심리적 공황 상태와 막대한 경제적 피해를 발생시킨다.As the tension of the international community has recently increased, the risk of terrorist incidents is increasing. In particular, biological terrorism is not only easy to manufacture biological weapons, but also easy to move and spread biological weapons, and the danger is further increased. Generate.
세균이 대기 혹은 유로를 흐를 때 이를 실시간으로 검출하여 이에 대응하는 조치를 취해야 하나, 세균은 대기 중에 부유하는 미세입자로서 존재하거나 액상물질에 부유하기 때문에 육안으로 쉽게 확인이 되지 않아 별도의 검출장치가 필요하다.When bacteria flow through the air or the flow path, they must be detected in real time and take countermeasures.Because bacteria are present as fine particles suspended in the air or suspended in liquid materials, they are not easily identified with the naked eye. need.
액상물질의 생물입자를 검출하는 방법으로는 루시퍼라제(luciferase) 방법, 형광 염료(fluorescent dye) 방법, 자기 형광(autofluorescence culture) 배양법(공식적인 검증 방법), 마이크로 콜로니(micro-colony) 방법, ATP 방법으로 확인하는 것이 일반적이다. 이러한 검출 방법 중 유로를 흐르는 액상물질의 생물입자의 존재를 실시간으로 탐지하는 방법은 자기 형광 측정(self fluorescence) 방법이 일반적이며 자기 형광 측정 방법은 대기 중에서 실시간으로 생물입자를 측정하는 방법과 액상물질의 생물입자를 측정하는 방법이 있다.Methods for detecting bioparticles in liquid materials include luciferase method, fluorescent dye method, autofluorescence culture method (official verification method), micro-colony method, ATP method. It is common to check. Among these detection methods, self-fluorescence method is generally used to detect the presence of bioparticles in a liquid material flowing in a flow path. Self-fluorescence measurement method is a method for measuring bioparticles in real time and liquid materials in the air. There is a method to measure the bioparticles of.
대기 중에 부유하고 있는 박테리아, 바이러스, 또는 곰팡이 등과 같은 생물입자(biological aerosol)는 포집 또는 검출하는 전통적인 방법을 적용하며 대부분 배지에서 수 시간 내지 수 일 동안의 배양을 필요로 한다. 즉, 대기와 액상물질에 존재하는 입자에 포함되어 있는 생물입자를 판독하기 위해서는 먼저, 대기 중에서 측정을 위한 샘플을 포집하고, 포집된 샘플에서 생물입자의 양이나 종류를 측정하는 단계가 필요하다. 그런데 전통적으로 사용되는 생물입자 측정 방법은 시간과 노력을 많이 요구하며 수 시간 내지 수 일 이상의 배양을 필요로 하는 경우가 많다. 이는 시료를 직접 배지에 배양하고 형성된 콜로니의 수를 계수하여 생물입자의 존재 유무를 판독하는 방법이다. 그러나 시료의 배양에 통상적으로 24시간 이상이 소요되며 진균류의 검출을 위해서는 1주일 이상이 소요되기 때문에 신속한 검출이 불가능하다. Biological aerosols, such as bacteria, viruses, or fungi, which are suspended in the air, employ traditional methods of capturing or detecting and most require several hours to several days of culture in the medium. That is, in order to read the bioparticles contained in the particles present in the air and the liquid material, first, a sample for measurement in the air is collected, and the amount or type of the bioparticles in the collected sample is required. However, traditionally used bioparticle measurement methods require a lot of time and effort, and often require several hours to several days or more of culture. This is a method of culturing a sample directly in the medium and counting the number of colonies formed to read the presence or absence of bioparticles. However, it usually takes more than 24 hours to incubate the sample, and more than one week is required for the detection of fungi.
이러한 생물입자를 실시간으로 검출하는 방법으로 레이저 유도 형광법이 많이 사용되고 있는데, 이 방법은 레이저빔을 대기 중의 부유입자를 흡입하여 단일입자에 조사하면서 생긴 산란광과 형광을 통하여 부유입자 중의 생물입자를 검출하는 방법이 있다.Laser-induced fluorescence is widely used as a method of detecting such bioparticles in real time. This method detects bioparticles in suspended particles through scattered light and fluorescence generated by irradiating a single particle by irradiating a laser beam with floating particles in the air. There is a way.
하지만, 액상물질 및 대기에서 단일 생물입자를 실시간으로 검출하는 것은 미약한 형광을 모으는 집광장치와 액상물질의 유로가 쉽게 장착되어 유로를 통해 생물입자를 흐르게 하여 측정하여야 하기 때문에 측정에 어려움이 많다는 문제점이 있었다.However, the detection of a single bioparticle in real time in a liquid material and the atmosphere is difficult because it is difficult to measure because the light collecting device collecting the weak fluorescence and the flow path of the liquid material are easily mounted and the bioparticles flow through the flow path. There was this.
이와 관련한 선행기술로 특허문헌 1이 개시되어 있으며, 특허문헌 1에는 대기 중의 부유입자를 흡입하여 농축한 후 이송된 입자에 레이저 빔을 조사하여 발생한 산란광과 함께 생물입자에서 비롯된 미세한 형광을 모은 후 이를 다수의 파장대별로 분리함으로써, 부유입자에 포함된 형광신호가 미약한 소량의 입자를 실시간으로 신속하고 확실하게 검출할 수 있도록 한, 대기 중의 부유입자의 실시간 형광검출장치가 기재되어 있다.Patent document 1 is disclosed as a related art. Patent document 1 collects fine fluorescence originating from biological particles together with scattered light generated by irradiating a laser beam to the transported particles after inhaling and concentrating suspended particles in the atmosphere. Disclosed is a real-time fluorescence detection apparatus for suspended particles in the air by separating by a plurality of wavelength bands so that a small amount of particles having a weak fluorescence signal contained in the suspended particles can be detected quickly and reliably in real time.
그러나, 특허문헌 1에 기재된 검출장치는 대기 중의 부유입자에 포함된 생물입자만 검출할 수 있을 뿐 액체에 포함된 생물입자는 검출할 수 없는 문제점이 있다. However, the detection device described in Patent Document 1 has a problem in that it can detect only bioparticles contained in suspended particles in the air, but cannot detect bioparticles contained in a liquid.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) KR10-1246661 B1 (Patent Document 1) KR10-1246661 B1
본 발명은 상기한 종래의 문제점을 감안하여 이루어진 것으로, 대기 중의 부유입자는 물론 액체에 포함된 미세 생물입자까지도 실시간으로 검출할 수 있도록 한 유로 셀을 흐르는 액상물질 및 대기 중 생물입자의 실시간 검출장치를 제공하는데 그 목적이 있다.The present invention has been made in view of the above-described conventional problems, and is a real-time detection device for liquid particles and atmospheric bioparticles flowing in a flow cell for detecting real-time suspended particles as well as fine bioparticles contained in a liquid in real time. The purpose is to provide.
다시 말해서, 대기 중의 부유입자를 흡입하거나 액상물질에 포함되어 이송된 단일 미세입자에 레이저빔을 조사할 때 발생하는 산란광과 함께 미약한 형광을 모은 후 이를 다수의 파장대별로 분리하여 부유입자에 포함된 미약한 형광 신호와 산란광 신호를 통해 소량의 생물입자를 실시간으로 신속하고 확실하게 검출할 수 있도록 하는 것을 일반적인 목적으로 한다.In other words, a weak fluorescence is collected together with scattered light generated when a laser beam is irradiated to a single fine particle transported by being sucked into the air or transported in a liquid material, and then separated into a plurality of wavelength bands. It is a general purpose to enable rapid and reliable detection of small amounts of bioparticles in real time through weak fluorescence and scattered light signals.
상기 목적을 달성하기 위한 본 발명은, 생물입자를 포함하는 대기 중의 부유입자와 세균을 포함하는 액상물질에 포함된 미세입자를 흡입한 후 레이저를 조사할 때 발생하는 모든 입자의 산란광과 생물입자의 형광을 검출하는 생물입자의 실시간 검출장치로서,The present invention for achieving the above object, the scattering light and bioparticles of all particles generated when irradiating a laser after inhaling the fine particles contained in the liquid particles containing the suspended particles and bacteria in the air containing the biological particles A real-time detection device of biological particles for detecting fluorescence,
외부에서 도입된 공기에 포함된 부유입자 또는 외부에서 도입된 액상물질에 포함된 입자가 유입되는 유로 셀을 갖는 입자도입부와; 상기 입자도입부 하단의 케이싱 조립체 내에 설치되는 입자광측부;를 포함하고,A particle introduction part having a flow path cell into which the suspended particles contained in the air introduced from the outside or the particles contained in the liquid material introduced from the outside are introduced; And a particle light side part installed in a casing assembly at the bottom of the particle introduction part.
상기 입자광측부는, 상면에 개구가 형성되어 있고 그 개구를 통하여 상기 입자도입부의 하단과 연결되며 내부에 위치한 상기 유로 셀(flow cell)을 따라 이동하는 입자를 측정하는 입자측정공간을 갖는 육면체 광학챔버와; 상기 광학챔버의 전면에 형성된 개구에 연결 설치되어 상기 대기 혹은 액상물질입자도입부를 통해 상기 입자측정공간 내에 도입되는 입자에 레이저빔을 조사시키기 위한 빔형성광학계와; 상기 빔형성광학계에 대향하여 상기 광학챔버의 후면에 형성된 개구에 연결 설치되어 빔형성광학계로부터 조사되는 레이저빔을 소멸시키기 위한 빔흡수계와; 상기 입자측정공간 내에 상기 레이저빔의 진행방향과 90°방향으로 배치된 한 쌍의 반사경과; 상기 광학챔버의 하면에 형성된 개구에 연결 설치되어 상기 입자측정공간에서 레이저빔과의 상호작용을 한 후의 공기 또는 액상물질을 노즐을 통하여 외부로 토출시키기 위한 입자토출부와; 상기 빔형성광학계와 수직을 이루도록 상기 광학챔버의 우측면에 형성된 개구에 연결 설치되어 상기 광학챔버 내부의 입자측정공간에서 레이저빔과 입자와의 상호작용에 의해 생성된 산란광과 형광 신호를 두 개의 빔스플리터의 차단 주파수에 따라 한 개의 산란광과 두 개의 형광을 동시에 검출하는 산란광검출기와 형광검출기를 구비하는 빔분리광학계;를 포함하는 것을 특징으로 한다.The particle light side part is an hexahedron optical having a particle measuring space having an opening formed in an upper surface thereof and connected to a lower end of the particle introduction part through the opening to measure particles moving along the flow cell located therein. A chamber; A beam forming optical system connected to an opening formed in the front surface of the optical chamber and irradiating a laser beam to particles introduced into the particle measuring space through the air or liquid material particle introducing unit; A beam absorbing system connected to the opening formed in the rear surface of the optical chamber opposite to the beam forming optical system to extinguish the laser beam irradiated from the beam forming optical system; A pair of reflecting mirrors disposed in the particle measuring space in a direction 90 ° to the traveling direction of the laser beam; A particle discharging unit connected to an opening formed in a lower surface of the optical chamber and discharging air or liquid substance after interacting with a laser beam in the particle measuring space to the outside through a nozzle; Two beam splitters connected to an opening formed at a right side of the optical chamber to be perpendicular to the beamforming optical system, so that scattered light and fluorescent signals generated by interaction between the laser beam and the particles in the particle measuring space inside the optical chamber A beam splitting optical system having a scattering light detector and a fluorescence detector for detecting one scattered light and two fluorescence at the same time according to the cutoff frequency of the.
또, 본 발명의 생물입자의 실시간 감지장치에 따르면, 대기 중의 부유입자를 검출하도록 상기 입자도입부의 상측에 이물질과 일정 크기 이상의 입자를 걸러주는 선분리기와, 관성력을 이용하여 부유입자를 정해진 크기로 선별하여 농축하는 복수의 노즐이 구비된 원통형 케이싱을 포함하는 입자농축부가 연결되어, 상기 입자도입부가 대기입자도입부로 작용하는 것을 특징으로 한다.In addition, according to the real-time detection device of the biological particles of the present invention, a line separator for filtering foreign matter and particles of a predetermined size or more above the particle introduction portion to detect the suspended particles in the air, and the floating particles to a predetermined size using the inertial force Particle enrichment unit comprising a cylindrical casing having a plurality of nozzles for sorting and concentrating is connected, characterized in that the particle introduction unit acts as an atmospheric particle introduction unit.
또한, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 입자도입부는 상호 나사결합되는 중공형의 상부 본체 및 하부 본체와, 상기 상부 본체와 하부 본체의 내부에 설치되어 입자농축부의 하단에 돌출 연장된 입자배출구가 끼워지는 삽입공을 갖고 상기 유로 셀이 연결 고정되는 삽입관과, 상기 유로 셀과 연결되어 하부 본체의 하단에 고정되는 외측 노즐을 포함하는 것을 특징으로 한다.In addition, according to the real-time detection device of the biological particles of the present invention, the particle introduction portion is installed inside the upper body and the lower body of the hollow screw, the upper body and the lower body is protruded protruding to the lower end of the particle concentration portion It characterized in that it comprises an insertion tube having the insertion hole is inserted into the particle discharge port is connected and fixed to the flow path cell, the outer nozzle is connected to the flow path cell is fixed to the lower end of the lower body.
또, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 입자도입부는 상기 유로 셀을 상· 하부 본체 내에 설치할 때, 상기 유로 셀의 위치 결정을 위한 제1위치결정수단을 더 포함하고, In addition, according to the real-time detection device of the biological particles of the present invention, the particle introduction portion further comprises a first positioning means for positioning of the flow path cell when the flow path cell is installed in the upper body, the lower body,
상기 제1위치결정수단은 상기 삽입관의 외주면에 설치된 링부재의 일측에 형성된 요홈과, 상기 하부 본체의 상면 일측에 형성된 핀홀에 삽입 고정되어 상기 요홈에 삽입되는 핀으로 이루어져 있는 것을 특징으로 한다.The first positioning means is characterized in that it comprises a groove formed in one side of the ring member provided on the outer peripheral surface of the insertion tube, the pin is inserted into the pin hole formed in the pin hole formed on one side of the upper surface of the lower body.
또한, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 입자도입부는 입자도입부를 광학챔버에 장착할 때, 입자도입부 자체의 위치 결정을 위한 제2위치결정수단을 더 포함하고,In addition, according to the real-time detection device of the biological particles of the present invention, the particle introduction portion further includes a second positioning means for positioning the particle introduction portion itself when mounting the particle introduction portion in the optical chamber,
제2위치결정수단은 상기 하부 본체의 하단 외주면에 설치된 환형(環形) 돌출턱의 일측에 형성된 요홈과, 상기 광학챔버의 상면 개구의 주변 일측에 형성되어 상기 요홈에 삽입되는 핀으로 이루어져 있는 것을 특징으로 한다.The second positioning means is composed of a groove formed on one side of the annular protruding jaw provided on the lower outer peripheral surface of the lower body, and a pin formed on one side of the upper opening of the optical chamber and inserted into the groove. It is done.
또, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 입자도입부는 상부 본체와 결합된 하부 본체의 하단 외주와 체결되는 것으로 내주면에 나사산이 형성된 너트부재와 상기 광학챔버의 상면 개구의 테두리를 따라 상향 돌출되어 외주면에 나사산이 형성된 연결부와의 나사체결에 의해 상기 광학챔버에 연결 고정되는 것을 특징으로 한다.In addition, according to the real-time detection device of the biological particles of the present invention, the particle introduction portion is fastened to the outer periphery of the lower body coupled to the upper main body along the edge of the nut member and the upper surface opening of the optical chamber formed with a screw thread on the inner peripheral surface It is characterized in that the connection is fixed to the optical chamber by screwing with the connection portion is formed projecting on the outer peripheral surface threaded upward.
또한, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 핀은 상기 연결부의 상면 일측에 형성된 핀홀에 삽입 고정된 것을 특징으로 한다.In addition, according to the real-time detection device of the biological particles of the present invention, the pin is characterized in that the pin hole is inserted into the pin hole formed on one side of the upper surface of the connecting portion.
또, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 입자도입부의 하부 본체의 하단에는, 입자도입부를 광학챔버로부터 분리 후 다시 장착할 때 광학챔버의 정해진 장착 위치로부터 횡방향으로 편심됨이 없이 광학챔버의 장착 위치에 정렬되도록, 광학챔버의 상면에 형성된 개구를 향하여 경사지는 역원뿔형 구조의 편심방지 경사부가 형성되어 하단부의 입자토출부 실리콘 보딩(silicone boding)에 유로 셀이 쉽게 장착되도록 하고,In addition, according to the real-time detection device of the biological particles of the present invention, the lower end of the lower body of the particle introduction portion, when the particle introduction portion is separated from the optical chamber and then reattached without being eccentric in the transverse direction from the predetermined mounting position of the optical chamber In order to align with the mounting position of the optical chamber, an anti-eccentric inclined portion of an inverted conical structure inclined toward an opening formed in the upper surface of the optical chamber is formed so that the flow cell can be easily mounted on the particle ejection portion silicon boarding at the lower end,
상기 광학챔버의 상면 개구의 내측 하단은 상기 편심방지 경사부와 맞닿아 밀착되는 경사면을 갖는 것을 특징으로 한다.The inner lower end of the upper surface opening of the optical chamber is characterized in that it has an inclined surface in close contact with the anti-eccentric inclined portion.
또한, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 편심방지 경사부와 경사면의 경사각도는 동일하고, 그 경사각도는 상기 입자도입부의 중심축에 대하여 25° ~ 35°인 것을 특징으로 한다.In addition, according to the real-time detection device of the biological particles of the present invention, the inclination angle of the anti-eccentric inclined portion and the inclined surface is the same, the inclination angle is characterized in that 25 ° ~ 35 ° with respect to the central axis of the particle introduction portion .
또, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 입자토출부의 노즐은 상기 입자도입부를 향하여 선단(先端)쪽으로 갈수록 가늘어지는 테이퍼(taper) 형상으로 되어 있는 것을 특징으로 한다.Further, according to the real-time detection device of the biological particles of the present invention, the nozzle of the particle discharging portion is characterized in that the tapered shape tapered toward the tip toward the particle introduction portion.
또한, 본 발명의 생물입자의 실시간 감지장치에 따르면, 액상물질에 포함된 생물입자를 검출하도록 상기 입자도입부에 각각 액상물질 도입노즐과 액상물질 토출노즐이 연결되어, 상기 입자도입부가 액상입자도입부로 작용하는 것을 특징으로 한다. In addition, according to the real-time detection device of the bioparticles of the present invention, the liquid material introduction nozzle and the liquid material discharge nozzle are respectively connected to the particle introduction portion to detect the biological particles contained in the liquid material, the particle introduction portion to the liquid particle introduction portion It is characterized by working.
또, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 입자도입부는 상기 광학챔버의 상측 개구부에 결합된 중공형의 상부 본체와, 상기 광학챔버의 하측 개구부에 결합된 중공형의 하부 본체와, 상기 상부 본체와 하부 본체 사이에 결합되어 양측을 연통시키며 액상물질이 유동하는 유로 셀과, 상기 액상물질 도입노즐 및 액상물질 토출노즐을 상부 본체 및 하부 본체에 각각 결합시키는 노즐고정구를 포함하는 것을 특징으로 한다.In addition, according to the real-time detection device of the biological particles of the present invention, the particle introduction portion hollow upper body coupled to the upper opening of the optical chamber, hollow lower body coupled to the lower opening of the optical chamber, And a flow passage cell coupled between the upper main body and the lower main body to communicate with both sides, and a liquid flow cell flowing therein, and a nozzle fixture for coupling the liquid material introduction nozzle and the liquid material discharge nozzle to the upper main body and the lower main body, respectively. It is done.
또한, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 빔형성광학계는 양단부가 개방되는 내부공간을 갖고 그 내부공간에 비구면렌즈가 장착되는 몸체와 몸체의 전방측에 레이저다이오드가 내장된 소켓을 갖는 덮개판으로 이루어지는 광원부와; 상기 광원부와 분리 가능하게 조립되고 내부에 레이저다이오드로부터 발생되어 비구면렌즈를 통과한 레이저빔의 종방향 크기를 조절하는 제1렌즈군, 제1렌즈군을 통과한 레이저빔의 횡방향 크기를 조절하는 제2렌즈군, 및 윈도우가 순차적으로 배열되어 있는 빔형성조정부와; 상기 빔형성조정부의 절곡부에 결합되며 내부에 상기 제1렌즈군을 통과한 레이저빔을 제2렌즈군 방향으로 반사시키는 레이저 반사경이 설치된 반사부;를 포함하며, 내부면이 흑염처리된 것을 특징으로 한다.In addition, according to the real-time detection device of the bioparticles of the present invention, the beam forming optical system has an inner space that is open at both ends and the body is equipped with an aspherical lens is mounted in the inner space and the socket with a laser diode built in the front side of the body; A light source unit comprising a cover plate; A first lens group which is detachably assembled with the light source unit and adjusts the longitudinal size of the laser beam generated from the laser diode and passed through the aspherical lens, and adjusts the lateral size of the laser beam passed through the first lens group. A beam forming adjustment unit in which the second lens group and the window are sequentially arranged; And a reflector coupled to the bent portion of the beamforming adjustment unit and having a laser reflector installed therein to reflect the laser beam passing through the first lens group in a direction of the second lens group. It is done.
또, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 광원부는 레이저다이오드 제어보드가 상단에 4개의 육각볼트로 비구면 렌즈 전단에 고정되고, 상기 비구면 렌즈는 레이저다이오드의 빔을 일정 크기로 확대한 후 레이저 반사경에 의해 반사되어 두 개의 어안렌즈로 향한 후 일정한 패턴을 형성하며, 상기 반사부는 3개의 제어볼트로 레이저반사경의 각도를 조절할 수 있는 구조로 제작되어 레이저다이오드빔의 방향을 광학챔버 내의 원하는 위치에 놓을 수 있도록 조정하는 역할을 수행하는 것을 특징으로 한다.In addition, according to the real-time detection device of the biological particles of the present invention, the laser diode control board is fixed to the front of the aspherical lens with four hexagon bolts on the upper side, the aspherical lens is to enlarge the beam of the laser diode to a certain size It is then reflected by the laser reflector and directed to two fisheye lenses to form a predetermined pattern. The reflector is made of a structure capable of adjusting the angle of the laser reflector with three control bolts, thereby controlling the direction of the laser diode beam in the optical chamber. It is characterized in that it serves to adjust the position to be placed.
또한, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 빔흡수계는 상기 광학챔버의 후면에 고정되는 몸체와; 상기 몸체의 중앙부에 관통 형성된 삽입공에 끼워넣는 초점렌즈 조립체와; 상기 초점렌즈 조립체의 광축이 핀홀을 지나도록, 상기 몸체의 후면에 형성된 오목부에 삽입하는 핀홀 조립체와; 상기 핀홀 조립체의 후면에 고정하는 하우징과; 상기 초점렌즈 조립체의 광축에 직교하는 기준면에 대해 일정한 각도로 경사지도록, 상기 하우징의 후면에 고정하는 광원출력검출기;를 포함하고,In addition, according to the real-time detection device of the biological particles of the present invention, the beam absorbing system and the body is fixed to the rear of the optical chamber; A focus lens assembly inserted into an insertion hole formed through a central portion of the body; A pinhole assembly inserted into a recess formed in a rear surface of the body such that the optical axis of the focus lens assembly passes through the pinhole; A housing fixed to a rear surface of the pinhole assembly; And a light source output detector fixed to a rear surface of the housing so as to be inclined at a predetermined angle with respect to a reference plane orthogonal to an optical axis of the focus lens assembly.
상기 핀홀 조립체의 핀홀을 통과한 레이저빔이, 상기 광원출력검출기에 점점 가까워짐에 따라 레이저빔 폭이 점차 퍼지도록, 상기 핀홀 조립체와 상기 하우징의 중앙부에는 공동이 형성되어 있는 것을 특징으로 한다.A cavity is formed in the central portion of the pinhole assembly and the housing such that the laser beam passing through the pinhole of the pinhole assembly gradually spreads as the laser beam passes closer to the light source output detector.
또, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 한 쌍의 반사경은 상기 빔분리광학계에 향하여 배치되어 코팅된 유리재질의 구면반사경과, 구면반사경에 대향하여 설치되어 코팅된 알루미늄 재질의 비구면반사경으로 이루어져 있고,In addition, according to the real-time detection device of the biological particles of the present invention, the pair of reflectors are disposed so as to face the beam split optical system and coated with a spherical reflector of the glass material, and an aspherical surface of aluminum coated and installed opposite to the spherical reflector Consisting of reflectors,
상기 구면반사경은 상기 빔형성광학계로부터 발생된 레이저빔이 상기 입자도입부로부터 도입되는 입자에 조사됨으로써 생성된 산란광과 형광 신호가 상기 비구면반사경에 반사되어 상기 빔분리광학계를 향하도록 중앙 부분이 코팅되어 있지 않은 것을 특징으로 한다.The spherical reflector is coated with a central portion so that the scattered light and the fluorescence signal generated by the laser beam generated from the beam forming optical system are irradiated to the particles introduced from the particle introduction unit are reflected by the aspheric reflector and directed toward the beam splitting optical system. It is characterized by not.
또, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 비구면반사경은 상기 광학챔버의 좌측면에 형성된 개구측에 위치되며 상기 개구는 분리 가능한 밀폐판에 의해 밀폐되어 있는 것을 특징으로 한다.In addition, according to the real-time detection device of the biological particles of the present invention, the aspheric reflector is located on the opening side formed on the left side of the optical chamber, characterized in that the opening is sealed by a removable sealing plate.
또한, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 산란광검출기는 아발란체 포토다이오드(APD; Avalanche Photodiode)와 증폭기를 구비하는 것을 특징으로 한다.In addition, according to the real-time detection device of the bioparticles of the present invention, the scattering photodetector is characterized in that it comprises an Avalanche Photodiode (APD) and an amplifier.
또, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 형광검출기의 어느 하나는 장파장과 신호를 검출하도록 구성되어 있고, 다른 하나는 단파장의 신호를 검출하도록 구성되어 있으며, 상기 형광검출기의 전면(前面)에는 산란된 광을 차단하고 유도된 형광을 통과시키도록 광학필터가 장착되어 있는 것을 특징으로 한다.In addition, according to the real-time detection device of the biological particles of the present invention, any one of the fluorescence detector is configured to detect a long wavelength and a signal, the other is configured to detect a short wavelength signal, the front of the fluorescence detector ( The front surface is characterized in that the optical filter is mounted to block the scattered light and to pass the induced fluorescence.
또한, 본 발명의 생물입자의 실시간 감지장치에 따르면, 상기 형광검출기는 광전증배관(PMT; Photomultiplier Tube)인 것을 특징으로 한다.In addition, according to the real-time detection device of the biological particles of the present invention, the fluorescence detector is characterized in that the photomultiplier tube (PMT).
본 발명에 의하면, 대기와 액상물질의 미세입자를 흡입하며, 이송된 단일 입자에 레이저빔을 조사할 때 발생하는 산란광(scattering light) 세기와 미약한 형광(fluorescent light) 세기를 모아 다수의 파장대별로 분리, 검출할 수 있고, 이에 의해 고속신호처리회로를 사용하여 초당 13만개의 고농도 대기 상태 및 액상 상태를 실시간으로 분석할 수 있다. According to the present invention, by absorbing the fine particles of the atmosphere and liquid material, the scattering light intensity and the weak fluorescence light intensity generated when the laser beam is irradiated to the single transported particles are collected by a plurality of wavelength bands It can be separated and detected, thereby analyzing 130,000 high concentration atmospheric and liquid states per second in real time using a high-speed signal processing circuit.
또한 본 발명에 의하면, 외부 요인에 의한 진동이나 충격, 그리고 장비의 분해 후 재 조립시에도 안정성을 유지하여 부유입자 중의 생물입자의 측정에 대한 정확도 및 반복도를 향상시킴과 함께 광학챔버에 장착되는 입자도입부의 중심축 및 레이저빔의 정렬작업을 확실하고 용이하게 행할 수 있다.In addition, according to the present invention, the vibration and shock caused by external factors, and the stability of the reassembly after disassembly of the equipment to maintain the accuracy and repeatability of the measurement of the biological particles in the suspended particles and is mounted on the optical chamber Alignment of the central axis of the particle introduction portion and the laser beam can be reliably and easily performed.
또한 본 발명에 의하면, 레이저빔과 입자가 만나는 광학챔버 내의 입자측정공간에서 레이저빔의 크기 조정 및 정렬이 가능하며, 특히 광학챔버 내의 입자측정공간에 구면반사경과 비구면반사경을 대향 배치함으로써 미약한 산란광과 형광 신호를 최대한 수집할 수 있다.According to the present invention, the size and alignment of the laser beam can be adjusted and aligned in the particle measuring space in the optical chamber where the laser beam and the particle meet. In particular, the scattered light is weakly disposed by opposing the spherical reflector and the aspheric reflecting mirror in the particle measuring space in the optical chamber. And fluorescence signal can be collected as much as possible.
또한 본 발명에 의하면, 광학챔버 내의 입자측정공간에서 상호작용하여 생성된 한 채널의 산란광과 두 채널의 생물입자의 형광을 동시에 측정하여 최적화 과정을 수행할 수 있다.In addition, according to the present invention, the optimization process can be performed by simultaneously measuring the scattered light of one channel and the fluorescence of the biological particles of two channels generated by interacting in the particle measuring space in the optical chamber.
따라서, 본 발명은 중요 시설 인근에서 테러범 등에 의해 대기 중에 살포된 유해 생물입자나 수처리장의 식수 등에 포함된 생물입자를 실시간으로 신속하고 확실하게 감시하는 검출장비로서 유용하게 사용될 수 있다.Therefore, the present invention can be usefully used as a detection device for rapidly and reliably monitoring in real time the harmful bioparticles sprayed in the air by terrorists and the like near the important facilities or the biological particles contained in the drinking water of a water treatment plant.
도 1은 본 발명에 따른 유로 셀을 흐르는 액상물질 및 대기 중 생물입자의 실시간 검출장치의 외관 사시도.1 is an external perspective view of a real-time detection device of liquid matter and airborne biological particles flowing through the flow cell according to the present invention.
도 2는 대기중 생물입자의 검출을 위하여 입자농축부를 부가한 경우를 나타낸 참고도.2 is a reference diagram illustrating a case where a particle concentration unit is added to detect biological particles in the atmosphere.
도 3은 본 발명에 따른 검출장치의 입자광측부의 결합 사시도.3 is a combined perspective view of the particle light side of the detection device according to the present invention.
도 4는 본 발명에 따른 검출장치의 입자광측부의 분해 사시도.4 is an exploded perspective view of a particle light side part of the detection device according to the present invention;
도 5는 입자도입부가 대기입자도입부로 작용하는 경우의 분해 사시도.5 is an exploded perspective view of the particle introduction portion when acting as the atmospheric particle introduction portion.
도 6은 입자도입부가 액상입자도입부로 작용하는 경우의 단면도.6 is a cross-sectional view when the particle introduction portion acts as a liquid particle introduction portion.
도 7은 광학챔버의 단면도.7 is a sectional view of an optical chamber.
도 8은 입자광측부의 전체 단면도.8 is an overall sectional view of a particle light side part;
도 9는 빔형성광학계의 구성도.9 is a configuration diagram of a beamforming optical system.
도 10은 레이저빔의 진행방향에 대하여 90° 방향에 설치된 구면반사경과 비반사경의 구성도.10 is a configuration diagram of a spherical reflector and a non-reflective mirror installed in a 90 ° direction with respect to a traveling direction of the laser beam.
도 11은 입자광측부 내의 광 경로를 나타낸 참고도.Fig. 11 is a reference diagram showing an optical path in the particle light side.
도 12는 본 발명에 따른 검출장치의 입자광측부의 일부 분해사시도.12 is an exploded perspective view of a part of the particle light side of the detection device according to the present invention.
도 13은 빔흡수계의 사시도.13 is a perspective view of the beam absorbing system.
도 14는 빔흡수계의 분해사시도.14 is an exploded perspective view of the beam absorbing system.
도 15는 빔흡수계의 측단면도.15 is a side sectional view of a beam absorber;
도 16은 빔흡수계의 정렬 방식을 설명하기 위한 참고도. 16 is a reference diagram for explaining an alignment method of a beam absorbing system.
도 17은 빔흡수계의 작용 원리를 설명하기 위한 참고도.17 is a reference diagram for explaining the principle of operation of the beam absorbing system.
도 18은 빔분리광학계의 분해사시도.18 is an exploded perspective view of a beam split optical system;
도 19는 빔스플리터의 구조를 나타낸 도면.19 shows the structure of a beamsplitter.
도 20은 빔분리광학계에서 하우징에 대한 빔스플리터의 장착 상태를 나타낸 도면.20 is a view showing a mounting state of a beam splitter on a housing in a beam splitting optical system.
이하, 첨부된 도면을 참조하여 본 발명의 유로 셀을 흐르는 액상물질 및 대기 중 생물입자의 실시간 검출장치에 대하여 설명하면 다음과 같다.Hereinafter, with reference to the accompanying drawings, a real-time detection device for the liquid material and the biological particles in the air flowing through the flow cell of the present invention will be described.
본 발명에 따른 생물입자의 실시간 검출장치는 대기와 액상물질에 존재하는 입자에 레이저빔을 조사할 때 발생하는 산란광과 미약한 생물입자의 레이저 유도 형광을 파장대별로 분리하여 형광을 내는 생물입자의 농도 변화를 실시간으로 감시하는 장비로서, 외부에서 도입된 공기에 포함된 부유입자 또는 외부에서 도입된 액상물질에 포함된 미세입자가 유입되는 유로 셀(214)(214')을 갖는 입자도입부(210)와; 케이싱 조립체(300) 내에 설치되어 상기 유로 셀(214)(214')을 따라 유동하는 유체 속의 미세입자를 검출하는 입자광측부(200)을 포함하고 있다.The real-time detection device of the bioparticles according to the present invention separates the scattered light generated when the laser beam is irradiated to the particles present in the air and the liquid material and the laser-induced fluorescence of the weak bioparticles by wavelength band to emit the fluorescent particles. As a device for monitoring the change in real time, the particle introduction unit 210 having flow path cells 214 and 214 'into which the suspended particles contained in the air introduced from the outside or the fine particles contained in the liquid material introduced from the outside are introduced. Wow; It is provided in the casing assembly 300 and includes a particle light side portion 200 for detecting the fine particles in the fluid flowing along the flow path cells (214, 214 ').
상기 입자광측부는 도 3 내지 20에 도시된 바와 같이, 미약한 생물입자의 레이저유도형광을 측정할 수 있도록, 케이싱 조립체(300, 도 1 참조) 내에 설치된 입자도입부(210)와, 광학챔버(220), 반사경(230), 입자토출부(240), 빔형성광학계(250), 빔흡수계(260) 및 빔분리광학계(270)를 포함하고 있다.As shown in FIGS. 3 to 20, the particle light side part includes a particle introduction part 210 and an optical chamber installed in the casing assembly 300 (see FIG. 1) to measure laser-induced fluorescence of weak bioparticles. 220, a reflector 230, a particle ejection unit 240, a beam forming optical system 250, a beam absorbing system 260, and a beam splitting optical system 270.
광학챔버(220)는 도 7 및 도 9에 도시한 바와 같이 내부에 입자측정공간(S)을 갖는 직육면체로 이루어져 있고, 상/하면과, 좌/우측면 및 전/후면에 각각 개구(222, 223, 224, 225, 226, 227)가 형성되어 있다. The optical chamber 220 is composed of a rectangular parallelepiped having a particle measuring space S therein as shown in FIGS. 7 and 9, and has openings 222 and 223 in the upper and lower surfaces, the left and right surfaces, and the front and rear surfaces, respectively. , 224, 225, 226, and 227 are formed.
이러한 개구(222, 223, 224, 225, 226, 227)에 의해, 입자도입부(210)와 입자토출부(240)는 광학챔버(220)의 상면과 하면에 각각 설치되고, 빔형성광학계(250)와 빔흡수계(260)는 서로 대향하는 관계로 광학챔버(220)의 전면과 후면에 각각 설치되며, 빔분리광학계(270)는 광학챔버(220)의 우측면에 설치된다. 광학챔버(220)의 좌측면에 형성된 개구(226, 도 9)는 밀폐판(280)에 의해 밀폐된다(도 11 및 도 18 참조). 광학챔버(220)의 모든 개구에는 기밀 유지를 위해 오링(도시하지 않음)이 설치되어 있으며, 광학챔버(220) 내부의 모든 면은 흑염 처리하여 미광(迷光, stray light)을 효율적으로 흡수하도록 하였다. Through the openings 222, 223, 224, 225, 226, and 227, the particle introduction portion 210 and the particle discharge portion 240 are provided on the upper and lower surfaces of the optical chamber 220, respectively, and the beam forming optical system 250 is provided. ) And the beam absorbing system 260 are installed on the front and rear surfaces of the optical chamber 220 in a mutually opposite relationship, and the beam splitting optical system 270 is installed on the right side of the optical chamber 220. The openings 226 (FIG. 9) formed on the left side of the optical chamber 220 are sealed by the sealing plate 280 (see FIGS. 11 and 18). O-rings (not shown) are provided in all openings of the optical chamber 220 to maintain airtightness, and all surfaces inside the optical chamber 220 are black salted to efficiently absorb stray light. .
여기서, 도입된 공기 또는 액상 물질이 유동하는 유로 셀(214)(214')은 다양한 형상으로 제조될 수 있으나, 내부 직경 1 ㎜ 이하, 외부 직경 2 ㎜ 이하의 것을 사용하는 것이 바람직하다. 그리고, 유로 셀(214)(214')의 재질은 용융 석영(fused silica) 등 반사율이 낮은 물질을 사용하여 제작한다.Here, the flow path cells 214 and 214 'through which the introduced air or liquid material flows may be manufactured in various shapes, but it is preferable to use an inner diameter of 1 mm or less and an outer diameter of 2 mm or less. The flow path cells 214 and 214 'are made of a material having a low reflectance such as fused silica.
그리고, 대기 중의 부유입자를 검출하도록 도 2와 같이, 상기 입자도입부(210)의 상측에 이물질과 일정 크기 이상의 입자를 걸러주는 선분리기(110)와, 관성력을 이용하여 부유입자를 정해진 크기로 선별하여 농축하는 복수의 노즐이 구비된 원통형 케이싱(120)을 포함하는 입자농축부(100)를 연결함으로써, 상기 입자도입부(210)는 대기입자도입부로 작용하도록 할 수 있다.And, to detect the suspended particles in the air, as shown in Figure 2, the line separator 110 to filter the foreign matter and particles of a predetermined size or more on the upper side of the particle introduction portion 210, and selects the suspended particles to a predetermined size using the inertial force By connecting the particle concentration unit 100 including a cylindrical casing 120 having a plurality of nozzles to concentrate, the particle introduction portion 210 may act as an atmospheric particle introduction portion.
이 경우, 상기 입자도입부(210)는 상호 나사결합되는 중공(中空)형의 상부 본체(211)와 하부 본체(212), 상부 본체(211)와 하부 본체(212)의 내부에 설치되어 입자농축부(100)의 하단에 돌출 연장된 입자배출구가 끼워지는 삽입공을 갖는 삽입관(213)과, 삽입관(213) 내에 연결 고정되는 유로 셀(214)과, 유로 셀(214)과 연결되어 하부 본체(212)의 하단에 고정되는 외측 노즐(215)을 포함하고 있다. 그리고 삽입관(213)의 외주면에는 그 외주면을 감싼 상태로 돌출되는 링부재(213a)가 구비되어 있고, 링부재(213a)의 일측에는 요홈(213b)이 형성되어 있다. 하부 본체(212)의 상면 일측에는 핀홀(도시하지 않음)이 형성되어 있고, 이 핀홀에는 핀(212a)이 삽입 고정되어 있다. 이와 같은 요홈(213b)과 핀은 유로 셀(214)의 위치 결정을 위한 제1위치결정수단으로서 기능한다. 즉, 유로 셀(214)을 상· 하부 본체(211, 212) 내에 설치할 때, 하부 본체(212)의 상면에 있는 핀(212a)이 유로 셀(214)과 연결 고정된 삽입관(213)의 링부재(213a)에 형성된 요홈(213b)에 삽입됨으로써 유로 셀(214)의 위치가 결정된다.In this case, the particle introduction portion 210 is installed inside the hollow upper body 211 and the lower body 212, the upper body 211 and the lower body 212 is screw condensed with each other An insertion tube 213 having an insertion hole into which a particle discharge port protrudingly extended at the lower end of the part 100 is inserted, a flow passage cell 214 connected to and fixed in the insertion tube 213, and connected to the flow passage cell 214. An outer nozzle 215 is fixed to the lower end of the lower body 212. The outer circumferential surface of the insertion tube 213 is provided with a ring member 213a which protrudes while wrapping the outer circumferential surface thereof, and a recess 213b is formed at one side of the ring member 213a. Pinholes (not shown) are formed at one side of the upper surface of the lower body 212, and pins 212a are inserted into and fixed to the pinholes. Such grooves 213b and pins function as first positioning means for positioning the flow path cell 214. That is, when the flow path cell 214 is installed in the upper and lower main bodies 211 and 212, the pin 212a on the upper surface of the lower main body 212 is connected to the flow path cell 214 of the insertion tube 213. The flow path cell 214 is positioned by being inserted into the recess 213b formed in the ring member 213a.
또한 하부 본체(212)의 상단 외측에는 외부 공기를 유입하기 위한 공기유입구를 끼우기 위한 끼움구멍(212a)이 형성되어 있다. 그리고 하부 본체(212)의 하단 외주에는 일측에 요홈(212c)이 형성된 환형(環形) 돌출턱(212b)이 구비되어 있다. 이러한 구조를 갖는 입자도입부(210)는 내주면에 나사산이 형성되어 있고 하부 본체(212)의 하단 외주와 체결되는 너트부재(218)에 의해 광학챔버(220)의 상면 개구(222)에 연결 고정된다. In addition, a fitting hole 212a for fitting an air inlet for introducing external air is formed at an outer side of the upper end of the lower body 212. And the lower outer periphery of the lower body 212 is provided with an annular projection jaw (212b) formed with a groove (212c) on one side. The particle introduction portion 210 having such a structure is connected to and fixed to the upper surface opening 222 of the optical chamber 220 by a nut member 218 formed with a screw thread on the inner circumferential surface and fastened to the outer circumference of the lower body 212. .
즉, 도 7 및 도 9에 도시한 바와 같이 광학챔버(220)의 상면 개구(222)의 테두리를 따라 상향 돌출되어 외주면에 나사산이 형성된 연결부(221)가 형성되어 있고, 또한 연결부(221)의 상면 일측에 형성된 핀홀에는 핀이 삽입 고정되어 있으므로, 입자도입부(210)의 하부 본체(212)의 하단부를 광학챔버(220)의 상면 개구(222)에 삽입할 때, 핀이 하부 본체(212)의 외주에 구비된 환형 돌출턱(212b)의 요홈(212c)에 수용되는 상태로 입자도입부(210)를 광학챔버(220)의 상면 개구(222)에 삽입한 후, 입자도입부(210)의 상부 본체(211)로부터 하부 본체(212)로 삽입되어 환형 돌출턱(212b)에 걸려진 너트부재(218)를 광학챔버(220)의 상면 개구(222) 외주면에 형성된 나사산과 나사결합시킴으로써 입자도입부(210)를 광학챔버(220)에 확실하게 연결 고정할 수 있다(도 10 참조). 여기서, 환형 돌출턱(212b)의 요홈(212c)과 광학챔버(220)의 연결부(221)의 핀은 입자도입부(210)를 광학챔버(220)의 장착 위치에 정확히 위치 결정하기 위한 제2위치결정수단으로서 기능한다.That is, as shown in FIG. 7 and FIG. 9, the connecting portion 221 is formed to protrude upward along the edge of the upper surface opening 222 of the optical chamber 220 and the thread is formed on the outer circumferential surface thereof. Since the pin is inserted into and fixed to the pin hole formed at one side of the upper surface, when the lower end portion of the lower body 212 of the particle introduction portion 210 is inserted into the upper opening 222 of the optical chamber 220, the pin is lower body 212. The particle introduction portion 210 is inserted into the upper opening 222 of the optical chamber 220 in a state of being accommodated in the groove 212c of the annular projection jaw 212b provided at the outer circumference of the upper portion of the particle introduction portion 210. The particle introduction portion is formed by screwing the nut member 218 inserted from the main body 211 into the lower main body 212 and hooked to the annular projection jaw 212b with a thread formed on the outer peripheral surface of the upper opening 222 of the optical chamber 220. 210 can be reliably connected and fixed to the optical chamber 220 (see FIG. 10). Here, the groove 212c of the annular projection jaw 212b and the pin of the connection portion 221 of the optical chamber 220 are second positions for accurately positioning the particle introduction portion 210 at the mounting position of the optical chamber 220. It functions as a determining means.
한편, 광학챔버(220) 내부를 청소하기 위해 입자도입부(210)를 광학챔버(220)로부터 분리한 후 다시 장착할 때, 입자도입부(210)의 장착 및 탈착에 따른 입자 크기 측정의 정확성에 대한 영향을 줄이기 위해, 입자도입부(210)의 하부 본체(212)의 하단에는, 광학챔버(220)의 상면 개구(222)를 향하여 경사지는 역원뿔형 구조의 편심방지 경사부(212d)가 형성되어 있다. 이 편심방지 경사부(212d)에 대응하여, 광학챔버(220)의 상면 개구(222)의 내측 하단은 도 9에 도시한 바와 같이 경사면(222a)을 갖도록 설계되어 있다. On the other hand, when the particle introduction unit 210 is removed from the optical chamber 220 and then remounted to clean the inside of the optical chamber 220, the accuracy of particle size measurement according to the mounting and detachment of the particle introduction unit 210 is determined. In order to reduce the influence, at the lower end of the lower main body 212 of the particle introduction portion 210, an anti-eccentric inclined portion 212d having an inverted conical structure inclined toward the upper opening 222 of the optical chamber 220 is formed. . Corresponding to the eccentric prevention inclined portion 212d, the inner lower end of the upper surface opening 222 of the optical chamber 220 is designed to have an inclined surface 222a as shown in FIG.
이러한 편심방지 경사부(212d)와 경사면(222a)의 구조에 대하여 구체적으로 설명하면 다음과 같다. 황사 혹은 극단 환경에서 입자도입부(210) 또는 광학챔버(220)를 청소할 상황이 발생하는 경우, 입자도입부(210)를 광학챔버(220)로부터 분리한 후 다시 장착하여야 할 필요가 있다. 이때, 상기 입자도입부(210)의 하단부, 즉 외측 노즐(215)은 광학챔버(220) 내의 입자측정공간(S)의 정해진 위치에서 수십 ㎛ 공차 이내의 정확도를 갖도록 장착되어야 한다. 만일 입자도입부(210)가 광학챔버(220)의 상면 개구(222)에 정확히 장착되지 않으면, 즉, 입자측정공간(S) 내에 위치되는 외측 노즐(215)의 중심축이 광학챔버(220)의 원래의 장착 위치에서 어긋나면 그 중심축이 수백 ㎛의 크기를 갖는 레이저빔과 교차되지 않거나 교차되더라도 정확한 위치에 있지 않게 됨으로써, 입자 크기의 측정 및 형광 세기의 측정에 악영향을 미칠 수 있다. 그런데, 부유입자를 측정하는 OPC(Optical Particle Counter) 방식에 있어서는 그 정확도를 올리는 것이 쉽지 않다. The structure of the anti-eccentric inclined portion 212d and the inclined surface 222a will be described in detail as follows. If a situation occurs in which the particle introduction portion 210 or the optical chamber 220 is cleaned in the yellow sand or the extreme environment, the particle introduction portion 210 needs to be removed from the optical chamber 220 and then remounted. At this time, the lower end of the particle introduction portion 210, that is, the outer nozzle 215 should be mounted to have an accuracy within a few tens of micrometer tolerance at a predetermined position of the particle measuring space (S) in the optical chamber 220. If the particle introduction portion 210 is not correctly mounted on the top opening 222 of the optical chamber 220, that is, the central axis of the outer nozzle 215 located in the particle measuring space S is the optical axis 220. A deviation from the original mounting position may not be in the correct position even if the central axis does not intersect or intersect with the laser beam having a size of several hundred micrometers, which may adversely affect the measurement of particle size and measurement of fluorescence intensity. However, in the OPC (Optical Particle Counter) method for measuring suspended particles, it is not easy to increase the accuracy.
따라서 본 발명에서는, 이를 해결하기 위한 방안으로서, 도 8에 도시한 바와 같이 입자도입부(210)의 하부 본체(212) 상면에 형성된 핀홀에 삽입된 핀과 함께 핀을 수용하는 요홈(213b)을 유로 셀(214)과 연결되는 삽입관(213)에 적용한 구조와, 광학챔버(220)의 연결부(221)의 핀홀에 삽입된 핀과 함께 핀을 수용하는 요홈(212c)을 입자도입부(210)의 하부 본체(212) 외주에 구비된 환형 돌출턱(212b)에 적용한 구조와, 입자도입부(210)의 하부 본체(212)의 하단부와 광학챔버(220)의 상면 개구(222)가 서로 맞닿는 접촉면을 역원뿔형태로 가공한 구조를 도입하고 있는 것이다. Therefore, in the present invention, as a way to solve this, as shown in Figure 8, the groove 213b for accommodating the pin together with the pin inserted in the pinhole formed on the upper surface of the lower body 212 of the particle introduction portion 210 flow path The structure applied to the insertion tube 213 connected to the cell 214 and the groove 212c for accommodating the pin together with the pin inserted into the pinhole of the connecting portion 221 of the optical chamber 220 may be formed in the particle introduction portion 210. The structure applied to the annular projection jaw 212b provided on the outer circumference of the lower body 212 and the contact surface where the lower end of the lower body 212 of the particle introduction portion 210 and the upper opening 222 of the optical chamber 220 abut each other The structure processed in the inverted cone shape is introduced.
이러한 구조에 의하면, 광학챔버(220)로부터 분리한 입자도입부(210)를 광학챔버(220)에 다시 장착할 때, 유로 셀(214)과 연결되는 삽입관(213)의 요홈(213c)을 하부 본체(212) 상면에 구비된 핀에 위치 맞춰 유로 셀(214)을 장착함으로써 유로 셀(214)의 중심축이 어긋나는 것을 방지할 수 있고, 하부 본체(212) 외주에 구비된 환형 돌출턱(212b)의 요홈(212c)을 광학챔버(220)의 연결부(221)에 구비된 핀에 위치 맞춰 입자도입부(210)의 본체(211, 212)를 광학챔버(220)에 장착함으로써 입자도입부(210) 자체의 정렬이 틀어지는 것을 방지할 수 있고, 또한 하부 본체(212)의 편심방지 경사부(212d)가 광학챔버(220)의 상면 개구(222) 내의 경사면(222a)에 밀착됨으로써 입자도입부(210)가 횡방향으로 편심되는 일이 없이 그 중심축이 항상 광학챔버(220)의 정해진 위치에 정렬되게 되므로, 입자도입부(210)를 광학챔버(220)에 쉽고 정확하게 장착할 수 있다. 또한 이러한 구조에 의하면, 외부의 충격에 의하여 발생되는 진동을 더 강화시킬 수 있다는 부수적인 효과도 있다. 본 발명에 있어서, 상기 편심방지 경사부(212d)와 경사면(222a)의 경사각도는 동일하고, 그 경사각도는 입자도입부(210)의 중심축에 대하여 30.0°± 5.0°(즉, 25° ~ 35°)의 범위에 있다. 이와 같이 입자도입부(210)가 청소 등을 이유로 광학챔버(220)로부터 분리된 후 광학챔버(220)에 다시 장착되는 작업이 반복되더라도, 핀과 요홈(213c)의 결합 구조와 편심방지 경사부(212d)와 경사면(222a)의 결합 구조에 의해, 입자도입부(210)를 광학챔버(220)에 확실하게 정렬하여 장착할 수 있다. According to this structure, when the particle introduction portion 210 separated from the optical chamber 220 is mounted to the optical chamber 220 again, the recess 213c of the insertion pipe 213 connected to the flow path cell 214 is lowered. Mounting the flow path cell 214 in accordance with the position of the pin provided on the upper surface of the main body 212 can prevent the central axis of the flow path cell 214 to be shifted, and the annular projection jaw 212b provided on the outer circumference of the lower main body 212. The grooves 212c of the) to the pins provided in the connecting portion 221 of the optical chamber 220 to mount the main body 211, 212 of the particle introduction portion 210 to the optical chamber 220, the particle introduction portion 210 It is possible to prevent the alignment of itself, and also the eccentric prevention inclined portion 212d of the lower body 212 is in close contact with the inclined surface 222a in the upper opening 222 of the optical chamber 220, the particle introduction portion 210 Since the central axis is always aligned to the predetermined position of the optical chamber 220 without being eccentric in the transverse direction, Easy to ipbu 210 to the optical chamber 220 can be accurately mounted. In addition, according to this structure, there is a side effect that can further enhance the vibration generated by the external impact. In the present invention, the inclination angles of the anti-eccentric inclined portion 212d and the inclined surface 222a are the same, and the inclination angle is 30.0 ° ± 5.0 ° with respect to the central axis of the particle introduction portion 210 (that is, 25 ° ~ 35 °). As described above, even when the particle introduction part 210 is separated from the optical chamber 220 for cleaning or the like, and the mounting of the particle introduction part 210 is repeated, the coupling structure of the pin and the recess 213c and the anti-eccentric inclined portion ( By the coupling structure of 212d) and the inclined surface 222a, the particle introduction part 210 can be mounted reliably in the optical chamber 220, and can be mounted.
일정한 유량의 공기나 액상물질은 입자도입부(210)의 유로 셀(214)(214')을 통과하게 되는데, 유로 셀(214)(214')의 일부가 광학챔버(220) 내의 입자측정공간에 위치하게 된다.Air or liquid substance of a constant flow rate passes through the flow path cells 214 and 214 'of the particle introduction portion 210, and a part of the flow path cells 214 and 214' is introduced into the particle measuring space in the optical chamber 220. Will be located.
이와 같이 입자도입부(210)가 광학챔버(220)에 장착된 상태에서, 입자도입부(210)의 상단을 통해 광학챔버(220) 내로 들어온 공기나 액체는 이후에 설명하는 광학챔버(220) 내부의 입자측정공간(S)에서 레이저빔(L)과 상호작용을 한 후 입자토출부(240)에 설치된 노즐을 통하여 흡입된 액상물질일 때는 액상물질유량제어부의 배출병 혹은 대기유량제어부의 필터로 배출된다.As described above, in the state in which the particle introduction unit 210 is mounted to the optical chamber 220, air or liquid introduced into the optical chamber 220 through the upper end of the particle introduction unit 210 may be formed in the optical chamber 220 described later. After the interaction with the laser beam (L) in the particle measuring space (S), when the liquid material sucked through the nozzle installed in the particle discharge unit 240 is discharged to the discharge bottle of the liquid material flow control unit or the filter of the air flow control unit do.
광학챔버(220) 내부의 입자측정공간(S)에는, 미약한 산란광 및 형광 신호를 모아 빔분리광학계(270)로 반사하는 한 쌍의 반사경(230)이 설치되어 있다. 한 쌍의 반사경(230)은 도 11 및 도 14로부터 알 수 있는 바와 같이, 구면반사경(231)과, 구면반사경(231)에 대향하는 비구면반사경(232)으로 이루어져 있고, 레이저빔(L)의 진행방향에 대해 90°방향으로 배치되어 있다. 이러한 배치에 의해, 미약한 측면산란광(side scattering)과 형광을 최대한 수집하여 신호대잡음비(SNR)를 높일 수 있다. In the particle measuring space S inside the optical chamber 220, a pair of reflecting mirrors 230, which collect weak scattered light and fluorescence signals and reflect them to the beam splitting optical system 270, are provided. As can be seen from FIGS. 11 and 14, the pair of reflecting mirrors 230 includes a spherical reflector 231 and an aspheric reflector 232 opposite to the spherical reflector 231, and It is arrange | positioned at 90 degrees with respect to the advancing direction. With this arrangement, signal side noise ratio (SNR) can be increased by collecting weak side scattering and fluorescence as much as possible.
그리고 구면반사경(231)은 유리 재질의 반사경으로 이루어져 있고, 비구면반사경(232)은 알루미늄 재질의 구조물에 유리 재질의 반사경이 접착제로 접착되어 이루어져 있다. 비구면반사경(232)은 알루미늄 구조물과 유리 재질의 반사경 사이에 오링이 개재되어 있다. 특히 두 반사경(231, 232) 표면은 외부로부터 입자도입부(210)를 통해 유입된 불순물이나 자외선에 의해 반사경(231, 232)의 표면이 손상되지 않도록 코팅되어 있다. 다만, 구면반사경(231)은 빔형성광학계(250)로부터 발생된 레이저빔(L)이 입자도입부(210)로부터 도입되는 입자에 조사됨으로써 생성된 산란광과 형광 신호가 비구면반사경(232)에 반사되어 빔분리광학계(270)를 향하도록 중앙 부분이 코팅되지 않게 구성되어 있다. 이와 같이, 구면반사경(231)을 구성하면, 유리 재질의 가공성이 용이할 뿐만 아니라 미약한 신호를 모을 수 있는 코팅면적을 넓힐 수 있다는 이점이 있다.The spherical reflector 231 is made of a glass reflector, and the aspheric reflector 232 is made of a glass reflector adhesively bonded to an aluminum structure. The aspheric reflector 232 has an O-ring interposed between the aluminum structure and the reflector made of glass. In particular, the surfaces of the two reflectors 231 and 232 are coated so that the surfaces of the reflectors 231 and 232 are not damaged by impurities or ultraviolet rays introduced through the particle introduction unit 210 from the outside. However, the spherical reflector 231 reflects the scattered light and the fluorescence signal generated by irradiating the laser beam L generated from the beam forming optical system 250 to the particles introduced from the particle introduction unit 210 to the aspheric reflector 232. The central portion is configured not to be coated so as to face the beam splitting optical system 270. As such, when the spherical reflector 231 is configured, the glass material can be easily processed, and the coating area for collecting the weak signal can be expanded.
구면반사경(231)은 도 18에 도시한 바와 같이 중앙에 통공(281a)을 갖는 고정판(281)에 착탈 가능하게 결합되며, 이 고정판(281)은 광학챔버(220)의 우측면 개구(224) 주변에 볼트 등의 체결수단에 의해 체결된다.As shown in FIG. 18, the spherical reflector 231 is detachably coupled to a fixed plate 281 having a through hole 281 a in the center thereof, and the fixed plate 281 is disposed around the right side opening 224 of the optical chamber 220. Is fastened by fastening means such as bolts.
또한 광학챔버(220)의 청소가 쉽도록, 도 11에 도시한 바와 같이, 비구면반사경(232)은 광학챔버(220) 내에 위치하여 바깥쪽의 착탈 가능한 밀폐판(280)에 의해 고정되어 있다.In addition, as shown in FIG. 11, the aspheric reflector 232 is positioned in the optical chamber 220 and fixed to the outer detachable sealing plate 280 to facilitate cleaning of the optical chamber 220.
입자토출부(240)는 광학챔버(220)의 아래에 고정 설치되어, 입자도입부(210) 하단의 노즐(215)과 일정 간격을 두고 대향 설치된 노즐(241)과, 노즐(241)과 연결되는 배기구(242)를 포함하고 있다. 이에 의해, 입자토출부(240)는 입자도입부(210) 하단의 노즐(215)을 통해 광학챔버(220)의 입자측정공간(S)으로 도입되는 미세 입자와 공기를 노즐(241)을 통해 흡입하여 배기구(242)로 토출한다. 여기서, 입자토출부(240)의 노즐(241)은 레이저빔이 통과하는데 간섭이 일어나지 않도록 선단(先端)쪽으로 갈수록 가늘어지는 테이퍼(taper) 형상으로 되어 있다.The particle discharging part 240 is fixedly installed under the optical chamber 220, and is connected to the nozzle 241 and the nozzle 241 which are opposed to the nozzle 215 at the lower end of the particle introduction part 210 at a predetermined interval. An exhaust port 242 is included. As a result, the particle discharging unit 240 sucks the fine particles and air introduced into the particle measuring space S of the optical chamber 220 through the nozzle 215 at the lower end of the particle introducing unit 210 through the nozzle 241. To the exhaust port 242. Here, the nozzle 241 of the particle discharging part 240 has a taper shape that becomes thinner toward the tip so that interference does not occur while the laser beam passes.
한편, 상기 입자도입부(210)는 도 6과 같이, 액상물질에 포함된 생물입자를 검출하도록 상기 입자도입부(210)에 각각 액상물질 도입노즐(217)과 액상물질 토출노즐(219)이 연결됨으로써, 상기 입자도입부(210)가 액상입자도입부로 작용하도록 할 수 있다.Meanwhile, as shown in FIG. 6, the particle introduction part 210 is connected to the liquid material introduction nozzle 217 and the liquid material discharge nozzle 219 to the particle introduction part 210 so as to detect bioparticles contained in the liquid material. The particle introduction portion 210 may act as a liquid particle introduction portion.
이 경우 상기 입자도입부(210)는 상기 광학챔버(220)의 상측 개구부에 결합된 중공형의 상부 본체(211')와, 상기 광학챔버(220)의 하측 개구부에 결합된 중공형의 하부 본체(212')와, 상기 상부 본체(211')와 하부 본체(212') 사이에 결합되어 양측을 연통시키며 액상물질이 유동하는 유로셀(214')과, 상기 액상물질 도입노즐(217) 및 액상물질 토출노즐(219)을 상부 본체(211') 및 하부 본체(212')에 각각 결합시키는 노즐고정구(213')를 포함하게 된다.In this case, the particle introduction portion 210 has a hollow upper body 211 ′ coupled to the upper opening of the optical chamber 220, and a hollow lower body coupled to the lower opening of the optical chamber 220. 212 ′, a flow cell 214 ′ coupled between the upper body 211 ′ and the lower body 212 ′ and communicating with both sides, and a liquid material flowing therein, the liquid material introduction nozzle 217 and the liquid phase. A nozzle fixing tool 213 'for coupling the material discharge nozzle 219 to the upper body 211' and the lower body 212 ', respectively.
그리고, 상기 빔형성광학계(250)는 양단부가 개방되는 내부공간을 갖고 그 내부공간에 비구면렌즈가 장착되고 전방측에 레이저다이오드(253)가 내장된 광원부(251)와; 상기 광원부(251)와 분리 가능하게 조립되고 내부에 레이저다이오드(253)로부터 발생되어 비구면렌즈를 통과한 레이저빔의 종방향 크기를 조절하는 제1렌즈군(255), 제1렌즈군(255)을 통과한 레이저빔의 횡방향 크기를 조절하는 제2렌즈군(256), 및 윈도우(257)가 순차적으로 배열되어 있는 빔형성조정부(252)와; 상기 빔형성조정부(252)의 절곡부에 결합되며 내부에 상기 제1렌즈군(255)을 통과한 레이저빔을 제2렌즈군(256) 방향으로 반사시키는 레이저 반사경(259')이 설치된 반사부(259);를 포함하여 이루어진다.The beam forming optical system 250 includes a light source unit 251 having an internal space at which both ends are opened, an aspherical lens mounted in the internal space, and a laser diode 253 built in the front side thereof; The first lens group 255 and the first lens group 255, which are detachably assembled with the light source unit 251 and adjust the longitudinal size of the laser beam generated from the laser diode 253 and passed through the aspherical lens. A beam forming adjustment unit 252 in which the second lens group 256 for adjusting the lateral size of the laser beam passing through the window and the window 257 are sequentially arranged; A reflector coupled to the bent portion of the beamforming adjustment unit 252 and having a laser reflector 259 'installed therein for reflecting the laser beam passing through the first lens group 255 toward the second lens group 256. (259);
여기서, 빔형성광학계(250)는 외부로부터 먼지와 잡음신호를 차단하기 위해 내부면을 흑염처리하였으며, 광원부(251)의 비구면렌즈, 빔형성광학계(250)의 렌즈군(255, 256), 윈도우(257) 등의 부품은 레이저 출력 손실을 최소화하기 위해 반사율 0.25% 이하인 무반사 코팅으로 형성되어 있다. 도면에는 도시하지 않았지만, 광원부(251) 주변이 일정한 온도를 유지하여 외부 온도의 변화에 따른 레이저빔의 출력 변화를 줄이기 위해 광원부(251) 외측에 펠티어 소자를 설치할 수도 있다. Here, the beam forming optical system 250 black-treated the inner surface to block dust and noise signals from the outside, the aspherical lens of the light source unit 251, the lens group (255, 256), the window of the beam forming optical system 250 Parts such as (257) are formed with an antireflective coating having a reflectance of 0.25% or less to minimize laser power loss. Although not shown in the drawing, the Peltier device may be installed outside the light source unit 251 to maintain the constant temperature around the light source unit 251 to reduce the output change of the laser beam according to the change of the external temperature.
또, 상기 광원부(251)는 그 상단에 위치한 레이저다이오드 제어보드(254)가 4개의 육각볼트(254')로 비구면 렌즈 전단에 고정되고, 상기 비구면 렌즈는 레이저다이오드(253)의 빔을 일정 크기로 확대한 후 레이저 반사경(259')에 의해 반사되어 두 개의 어안렌즈(258)로 향한 후 일정한 패턴을 형성하도록 한다. 그리고, 상기 반사부(259)는 3개의 제어볼트(259")로 레이저반사경(259)의 각도를 조절할 수 있는 구조로 제작되어 레이저빔(L)의 방향을 광학챔버(220) 내의 원하는 위치에 놓을 수 있도록 조정하는 역할을 수행한다.In addition, the light source unit 251 is a laser diode control board 254 located at the top of the four hexagon bolts (254 ') fixed to the front of the aspherical lens, the aspherical lens is a predetermined size of the beam of the laser diode 253 After magnification, the light is reflected by the laser reflector 259 'and directed to the two fisheye lenses 258 to form a predetermined pattern. In addition, the reflector 259 is manufactured in a structure capable of adjusting the angle of the laser reflector 259 with three control bolts 259 ″ to direct the direction of the laser beam L to a desired position in the optical chamber 220. It is responsible for adjusting to release.
여기서, 상기 광원부(251)의 비구면렌즈는 레이저다이오드(253)로부터 발생되는 레이저빔을 10배율로 확대하는 역할을 하며, 빔형성조정부(252)의 제1렌즈군(255)은 레이저빔을 x방향(횡방향)으로 30배율로 확대하며, 제2렌즈군(256)은 레이저빔을 y방향(종방향)으로 15배율로 확대하는 역할을 한다. 이러한 렌즈 배열에 의해 광학챔버(220) 내의 입자측정공간(S)에서 레이저빔(L)의 종방향 및 횡방향 크기 조절을 자유롭게 행할 수 있다. 이와 같이, 비구면렌즈에 의해 레이저빔(L)의 배율을 확대한 후, 확대된 빔의 크기를 종축과 횡축으로 형상을 얻는다.Here, the aspherical lens of the light source unit 251 serves to enlarge the laser beam generated from the laser diode 253 at a 10-fold magnification, and the first lens group 255 of the beam forming adjustment unit 252 x beams the laser beam. The second lens group 256 enlarges the laser beam at 15 magnification in the y direction (vertical direction) in the direction (lateral direction). By such a lens arrangement, the longitudinal and transverse size adjustment of the laser beam L can be freely performed in the particle measuring space S in the optical chamber 220. In this manner, after the magnification of the laser beam L is enlarged by the aspherical lens, the shape of the enlarged beam is obtained in the vertical axis and the horizontal axis.
한편 검출장치를 탑재한 차량 장착 혹은 주변의 환경에 의해 진동하는 경우 레이저다이오드가 장착된 광원부(251)는 외부충격으로부터의 미세한 진동에도 민감하기 때문에, 잦은 광정렬 작업을 할 필요가 있을 수 있다.On the other hand, when vibrating due to a vehicle mounted with a detection device or the surrounding environment, since the light source unit 251 equipped with the laser diode is sensitive to minute vibrations from external shocks, it may be necessary to frequently perform light alignment.
만약, 상기 빔형성광학계(250)의 광원부(251)가 진동 등에 의해 정렬이 틀어졌을 때나 먼지 등에 의해 내부가 오염되었을 때에는, 레이저다이오드(253)로부터 발생되는 레이저빔 출력이 약해지고, 그로 인해 입자 크기의 측정에 대한 정확성이 떨어지는 문제가 발생한다. 특히 UV 혹은 파장이 짧은 레이저빔은 각종 먼지와 작용하여 렌즈에 고착되는 것이 일반적이기 때문에, 먼지에 의해 레이저빔 출력이 크게 변하지 않았더라도 레이저빔이 다수의 오염된 렌즈에 의해 가려져 최종단에서 출력이 저하되고, 그 결과 입자 크기 측정의 정확성이 떨어지는 문제가 발생한다.When the light source unit 251 of the beamforming optical system 250 is misaligned due to vibration or the inside is contaminated by dust or the like, the laser beam output generated from the laser diode 253 is weakened, and thus the particle size is reduced. The problem of inaccuracy of the measurement occurs. In particular, since UV or short wavelength laser beams work with various dusts and are fixed to the lens, even if the laser beam output is not greatly changed by the dust, the laser beam is covered by a large number of contaminated lenses, and thus the output at the final stage is reduced. This results in lowering the accuracy of particle size measurement.
이러한 문제는 레이저다이오드(253) 자체의 출력과 이후에 설명하는 빔흡수계(260)의 광원출력검출기(264)인 포토다이오드의 출력을 비교하여 감지할 수 있다. 이는 유지보수에 있어 매우 중요한 요소로서 본 발명에서는 상시 최종단에서 포토다이오드가 레이저빔 출력을 감지하여 레이저빔 축 정렬이 틀어지거나 그 출력의 변화가 한계치를 넘으면 즉시 이상신호를 사용자에게 알려줌으로써 레이저빔 축 정렬작업을 할 수 있도록 하고 있다.This problem can be detected by comparing the output of the laser diode 253 itself with the output of the photodiode, which is the light source output detector 264 of the beam absorbing system 260 described later. This is a very important factor in maintenance. In the present invention, the photodiode detects the laser beam output at the end of the laser beam at any time, and if the laser beam axis alignment is misaligned or the change of the output exceeds a threshold value, the laser beam is notified to the user immediately. Axis alignment is possible.
하지만, 본 발명에서는 빔형성광학계(250)가 실제 진동을 받는 지지판(201)과는 무관하게 광학챔버(220)에 결합된 구조로서, 검출장비가 진동이 심한 장소에서 동작하더라도 외부 충격과 진동에 따라 광원부(251)가 민감하게 반응하지 않게 된다.However, in the present invention, the beam forming optical system 250 is a structure coupled to the optical chamber 220 irrespective of the support plate 201 that receives the actual vibration. Accordingly, the light source unit 251 does not react sensitively.
빔흡수계(260)는 도 13 내지 27에 도시한 바와 같이, 빔형성광학계(250)에 대향하여 광학챔버(220)의 후면에 나사로 고정되는 몸체(261)와, 몸체(261)의 중앙부에 관통 형성된 삽입공(262a)에 끼우는 초점렌즈 조립체(291)와, 삽입공(262a)이 중심에 위치하도록 몸체(261)의 전면(前面)에 오목하게 형성된 장착홈(262b)과, 장착홈(262b)에 삽입 고정되는 윈도우(297)와, 초점렌즈 조립체(291)의 외측 둘레에 끼워져 윈도우(297)로 덮이는 고정링(290)과, 삽입공(262a)이 중심에 위치하도록 몸체(261)의 후면에 오목하게 형성된 오목부에 끼우는 핀홀 조립체(296)와, 몸체(261) 후단(後端)에 나사로 고정되는 하우징(263)과, 하우징(263)의 후단에 나사로 고정되는 광원출력검출기(264)와, 광원출력검출기(264)의 후면 중앙부에 형성된 환형홈에 끼우는 밀폐링(298)과, 광원출력검출기(264)의 후면에 고정하는 덮개판(299)으로 이루어져 있다.As shown in FIGS. 13 to 27, the beam absorbing system 260 is a body 261 that is screwed to the rear surface of the optical chamber 220 to face the beam forming optical system 250, and a central portion of the body 261. A focus lens assembly 291 inserted into the insertion hole 262a formed therethrough, a mounting groove 262b recessed in a front surface of the body 261 so that the insertion hole 262a is located at the center thereof, and a mounting groove ( A window 297 inserted into and fixed to the 262b, a fixing ring 290 inserted into the outer circumference of the focus lens assembly 291 and covered by the window 297, and the insertion hole 262a is positioned at the center thereof. A pinhole assembly 296 inserted into a concave portion formed concave on the rear surface of the 261, a housing 263 screwed to the rear end of the body 261, and a light source output fixed to the rear end of the housing 263 The detector 264, the sealing ring 298 fitted in the annular groove formed in the rear center portion of the light source output detector 264, and the rear surface of the light source output detector 264 It consists of a cover plate 299 fixed to.
초점렌즈 조립체(291)는, 초점렌즈로서 볼록렌즈(292)를 사용하여 레이저빔이 핀홀 조립체(296)의 핀홀(293a)을 통과할 수 있도록 하며, 상기 핀홀(293a)의 직경은 0.3㎜ 정도로 한다.The focus lens assembly 291 uses the convex lens 292 as the focus lens to allow the laser beam to pass through the pinhole 293a of the pinhole assembly 296, and the diameter of the pinhole 293a is about 0.3 mm. do.
핀홀 조립체(296)는, 전면(前面)의 중앙부에 핀홀(293a)이 관통 형성된 원통형 캡(293)과, 캡(293)의 외측 둘레와 몸체(261) 후면에 오목하게 형성된 오목부의 내측 둘레 사이에 끼우는 4개 정도의 블록(294)과, 캡(293)의 후면에 접하도록 설치하는 단부부재(295)로 이루어져 있다.The pinhole assembly 296 includes a cylindrical cap 293 in which a pinhole 293a penetrates a central portion of the front surface, and an outer circumference of the cap 293 and an inner circumference of a recess formed concave on the back of the body 261. It consists of about 2 blocks 294 fitted in the end, and an end member 295 installed so as to be in contact with the rear of the cap 293.
핀홀(293a)은, 캡(293)의 전면 쪽으로 다가갈수록 지름이 줄어드는 형태로 형성되어 있다.The pinhole 293a is formed in the form of decreasing in diameter as it approaches the front surface of the cap 293.
단부부재(295)는, 전면 쪽 지름보다 후면 쪽 지름이 더 큰 구멍이 중앙에 관통 형성되어 있는데, 이 구멍의 전면 쪽 지름은, 캡(293)의 후면에 오목하게 형성된 오목부의 안지름과 같다.In the end member 295, a hole having a rear diameter larger than that of the front side is formed through the center, and the diameter of the front side of the hole is equal to the inner diameter of the recess formed in the rear of the cap 293.
다음으로, 몸체(261)의 둘레에는 대략 4개 정도의 위치조절구(265)가 일정 간격으로 관통 결합되어 있다. 이 위치조절구(265)에는 캡(293)의 둘레 쪽으로 블록(294)을 누르는 스프링(266)이 구비되어 있어, 위치조절구(265)를 풀거나 조임에 따라, 몸체(261) 후면의 오목부 내에서, 캡(293)의 위치가 조절 가능하다.Next, about four position adjusting holes 265 are circumferentially coupled at a predetermined interval around the body 261. The position adjusting opening 265 is provided with a spring 266 for pressing the block 294 toward the circumference of the cap 293, so as to loosen or tighten the positioning opening 265, the concave behind the body 261 Within the part, the position of the cap 293 is adjustable.
또한 하우징(263)은 중앙에 구멍이 뚫려 있는데, 이 구멍의 전면 쪽 지름은 후면 쪽에서 관찰되는 지름보다 더 크다. 하우징의 전면 쪽에서 관찰되는 이 구멍의 지름은, 단부부재(295)의 중앙에 관통 형성된 구멍의 후면 쪽 지름과 같다.In addition, the housing 263 has a hole in the center, and the diameter of the front side of the hole is larger than the diameter observed from the rear side. The diameter of this hole observed from the front side of the housing is equal to the diameter of the rear side of the hole formed through the center of the end member 295.
또한 상기 하우징(263)의 후면(後面)은, 광축에 직교하는 기준면에 대해 대략 10°정도의 일정한 각도로 기울어져 있다.In addition, the rear surface of the housing 263 is inclined at a constant angle of about 10 degrees with respect to the reference plane orthogonal to the optical axis.
광원출력검출기(264)는, 광학챔버(220)의 전후측에 설치되는 빔형성광학계(250)와 빔흡수계(260)가 일렬로 정렬되지 않았거나 빔형성광학계(250)에 이상이 있어 레이저빔의 세기에 변동이 생기면, 이 변동을 검출하여, 경고장치(도시하지 않음)를 통해 경고를 발생시킨다. 광원출력검출기(264)로는 포토다이오드가 사용된다.The light source output detector 264 is arranged such that the beam forming optical system 250 and the beam absorbing system 260 which are provided at the front and rear sides of the optical chamber 220 are not aligned in a line or the beam forming optical system 250 is abnormal. If a variation occurs in the intensity of the beam, this variation is detected and a warning is issued through a warning device (not shown). A photodiode is used as the light source output detector 264.
이러한 구조를 갖는 빔흡수계(260)는, 일부의 부품은 끼워 맞추기를 하고 일부의 부품은 나사로 고정하여 일체화한 것이므로, 부품 간 분해결합이 용이하고, 검출장치에 장착하기도 편리하다.Since the beam absorbing system 260 having such a structure is fitted with a part of the parts and fixed with a part of the screws, the beam absorption system 260 is easy to be disassembled and coupled between the parts, and it is also convenient to be mounted on the detection device.
또한 몸체(261)의 전면(前面)과 광학챔버(220)의 후면(後面)에 형성된 개구(開口) 사이를 윈도우(297)와 고정링(290)으로 밀폐시켰기 때문에, 광학챔버(220)의 내부압력이 유지됨은 물론, 레이저빔이 통과하는 빔흡수계(260)의 내부경로(또는 내부공간)가 외부와 차단되어, 외부로부터 광학챔버(220)나 빔흡수계(260)의 내부로, 공기나 빛이 유입되지 않는다. 따라서 측정의 정확도와 신뢰도가 향상된다.In addition, since the window 297 and the fixing ring 290 are sealed between the front surface of the body 261 and the opening formed in the rear surface of the optical chamber 220, the optical chamber 220 is closed. As well as the internal pressure is maintained, the internal path (or internal space) of the beam absorbing system 260 through which the laser beam passes is blocked from the outside, and from the outside into the optical chamber 220 or the beam absorbing system 260, There is no air or light. This improves the accuracy and reliability of the measurement.
또한 빔흡수계(260)는 빔형성광학계(250)로부터 발생된 레이저빔(입사빔)이 광학챔버(220)의 입자측정공간(S)으로 향하여 미세 입자에 조사되면서 윈도우(297)를 거쳐 통과한 후, 초점렌즈 조립체(291)의 볼록렌즈(292)를 통해, 핀홀 조립체(296)의 캡(293)의 전면에 뚫려 있는 지름 0.3㎜의 핀홀(293a)을 거쳐, 광원출력검출기(264)에 도달되도록 구성되어 있다. 게다가, 광원출력검출기(264)의 표면은, 입사빔의 진행경로(광축)에 수직한 기준면에 대해 10°가량 경사져 있다. 이러한 구성에 의해, 레이저빔의 세기를 측정하는 과정에서, 입사빔의 일부가 광원출력검출기(264)의 표면으로부터 반사되더라도, 반사빔이 입사빔과는 다른 경로가 반사되어, 핀홀(293a)로 직진하는 반사빔의 양은 현저히 줄어들게 된다.In addition, the beam absorbing system 260 passes through the window 297 while the laser beam (incident beam) generated from the beam forming optical system 250 is irradiated to the fine particles toward the particle measuring space S of the optical chamber 220. Then, through the convex lens 292 of the focus lens assembly 291, through a 0.3 mm diameter pinhole 293a which is drilled in the front of the cap 293 of the pinhole assembly 296, the light source output detector 264 It is configured to reach. In addition, the surface of the light source output detector 264 is inclined by about 10 degrees with respect to the reference plane perpendicular to the traveling path (optical axis) of the incident beam. With such a configuration, even when a part of the incident beam is reflected from the surface of the light source output detector 264 in the process of measuring the intensity of the laser beam, a path different from that of the incident beam is reflected to the pinhole 293a. The amount of reflected beam going straight down is significantly reduced.
구체적으로, 입사빔은 초점렌즈 조립체(291)의 볼록렌즈(292)를 통해 핀홀 조립체(296)의 핀홀(293a)로 모여지는데, 이 핀홀(293a)을 통과한 입사빔은, 핀홀(293a)의 뒤쪽으로 빔흡수계(260)의 내부에 형성된 공동(空洞, cavity)을 지나면서 광원출력검출기(264)에 점점 가까워짐에 따라 빔 폭이 점차 퍼지게 된다. Specifically, the incident beam is collected into the pinhole 293a of the pinhole assembly 296 through the convex lens 292 of the focus lens assembly 291, and the incident beam passing through the pinhole 293a is the pinhole 293a. The beam width gradually spreads toward the light source output detector 264 while passing through a cavity formed inside the beam absorbing system 260 to the rear of the.
이와 같이 빔 폭이 넓어진 입사빔이 광원출력검출기(264)에 도달되면, 입사빔의 세기가 광원출력검출기(264)에 의해 검출됨과 아울러, 입사빔의 일부가 광원출력검출기(264)의 표면에서 반사된다.When the incident beam having the wider beam width reaches the light source output detector 264, the intensity of the incident beam is detected by the light source output detector 264, and a part of the incident beam is formed on the surface of the light source output detector 264. Reflected.
광원출력검출기(264)의 표면에서 반사된 반사빔은, 핀홀 조립체(296)에 가까워질수록 빔 폭이 더 넓어져 핀홀(293a)의 지름보다 20배 이상 퍼지게 된다.As the reflection beam reflected from the surface of the light source output detector 264 is closer to the pinhole assembly 296, the beam width becomes wider and spreads 20 times or more than the diameter of the pinhole 293a.
광원출력검출기(264)로서 실리콘 소재의 포토다이오드를 사용한다는 전제 하에, 입사빔이 포토다이오드의 표면에 수직(90°)으로 입사할 때는 반사율이 30% 정도이지만, 일정한 각도(90°-10°=80°)로 경사져서 입사할 때는 반사율이 0.075%밖에 되지 않는다. 빔의 가우시안 분포를 감안하면, 빔의 에너지는 0.2% 정도이다.Assuming that a photodiode of silicon material is used as the light source output detector 264, when the incident beam is incident perpendicularly (90 °) to the surface of the photodiode, the reflectance is about 30%, but a constant angle (90 ° -10 °) = 80 °), the incident rate is only 0.075%. Given the Gaussian distribution of the beam, the energy of the beam is on the order of 0.2%.
본 발명의 빔흡수계(260)에 따르면, 광원출력검출기(264)의 표면에서 반사된 반사빔의 대부분은 핀홀(293a)을 통과하지 않다. 또, 반사빔이 핀홀(293a)을 지나는 경우에도 가우시안 분포의 외곽 세기가 낮은 지역을 통과하게 되므로, 지극히 적은 양의 에너지만 광학챔버(220)로 유입될 뿐이다.According to the beam absorbing system 260 of the present invention, most of the reflected beams reflected from the surface of the light source output detector 264 do not pass through the pinhole 293a. In addition, even when the reflected beam passes through the pinhole 293a, since the outer intensity of the Gaussian distribution passes through the low region, only a very small amount of energy flows into the optical chamber 220.
그 결과, 광원출력검출기(264)의 표면에서 반사된 반사광과 빔흡수계(260) 내에서 발생한 잡광이 광학챔버(220)의 내부로 거의 유입되지 않아, 빔분리광학계(270)의 신호대잡음비(신호와 잡음의 에너지 비)가 개선됨과 아울러 검출장치의 측정의 정확도와 신뢰도가 향상된다.As a result, the reflected light reflected from the surface of the light source output detector 264 and the stray light generated in the beam absorbing system 260 are hardly introduced into the optical chamber 220, so that the signal-to-noise ratio of the beam splitting optical system 270 ( In addition to improving the energy ratio between the signal and the noise, the accuracy and reliability of the detection of the detector can be improved.
빔분리광학계(270)는 하면이 지지판(201)에 고정 설치된 수직 지지대(202)의 관통공을 통하여 수평하게 지지되는 상태로 광학챔버(220)에 연결되어 있다.The beam split optical system 270 is connected to the optical chamber 220 in a state where the lower surface thereof is horizontally supported through the through hole of the vertical support 202 fixed to the support plate 201.
이와 같은 빔분리광학계(270)는 광학챔버(220) 내부의 입자측정공간(S)에 배치된 구면반사경(231)과 비구면반사경(232)으로 모은 미약한 산란광과 형광을 분리하여 검출하기 위한 것으로, 전면(前面)이 광학챔버(220)의 구면반사경(231)을 향하도록 구면반사경(231)과 착탈 가능하게 결합되는 고정판(281)에 연결되는 중공형 하우징(271); 하우징(271) 내에 설치되어 제1렌즈군(277a)을 수용하는 제1수용부(276) 및 두 개의 빔스플리터(279a, 279b)와 제2렌즈군(277b, 277c)을 수용하는 제2수용부(278); 레이저빔 출력을 측정하는 포토다이오드(도시하지 않음); 및 빔스플리터(279a, 279b)의 차단 주파수(cut-off frequency)에 따라 정해진 방향으로 분리되도록 하우징(271)의 후면측에 설치된 산란광 검출기(274, 도 6 참조)와 하우징(271)의 일측면에 형성된 연결공(271a, 271b)에 하우징(171)과 수직하게 연결되어 두 갈래로 분기된 두 개의 형광검출기(272, 273)를 포함하고 있다. The beam splitting optical system 270 is to separate and detect weak scattered light and fluorescence collected by the spherical reflector 231 and the aspheric reflector 232 disposed in the particle measuring space S inside the optical chamber 220. A hollow housing 271 connected to the fixing plate 281 detachably coupled to the spherical reflector 231 so that the front face thereof faces the spherical reflector 231 of the optical chamber 220; A first accommodation portion 276 installed in the housing 271 to accommodate the first lens group 277a, and a second accommodation housing the two beam splitters 279a and 279b and the second lens group 277b and 277c. Portion 278; Photodiodes (not shown) for measuring laser beam output; And scattered light detectors 274 (see FIG. 6) installed on the rear side of the housing 271 and one side of the housing 271 so as to be separated in a predetermined direction according to cut-off frequencies of the beam splitters 279a and 279b. Two fluorescent detectors 272 and 273 are vertically connected to the connecting holes 271a and 271b and are bifurcated to the housing 171.
여기서 빔스플리터(279a, 279b)는 동일한 구조를 가지며, 그 각각은 도 23에 도시한 바와 같이, 하우징(271)의 후면에 이격 형성된 빔스플리터 장착공(271c, 271d)을 통하여 체결볼트 등에 의해 분리 가능하게 장착되는 장착부를 갖는 몸체(279a1)와 몸체(279a)의 일면에 경사지게 설치된 반사요소(279a2)를 포함하는 구조로 이루어져 있다. 이와 같은 구조에 의하면, 레이저다이오드(253)의 파장이 바뀌었을 때 빔스플리터(279a, 279b)의 교체가 용이한 점이 있다.Here, the beam splitters 279a and 279b have the same structure, and each of them is separated by a fastening bolt or the like through the beam splitter mounting holes 271c and 271d formed on the rear surface of the housing 271 as shown in FIG. 23. It consists of a structure including a body (279a1) having a mounting portion that is possibly mounted and a reflective element (279a2) inclined on one surface of the body (279a). According to such a structure, the beam splitters 279a and 279b can be easily replaced when the wavelength of the laser diode 253 is changed.
그리고 형광검출기(272, 273)의 어느 하나는 장파장의 신호를 검출하고 다른 하나는 단파장의 신호를 검출할 수 있도록 구성되어 있다.One of the fluorescence detectors 272 and 273 is configured to detect a long wavelength signal and the other to detect a short wavelength signal.
산란광검출기(274)는 입자에서 발생한 산란광 신호를 측정하는 아발란체 포토다이오드(APD; Avalanche Photodiode, 274')와 증폭기를 구비한다. 그리고 아발란체 포토다이오드의 이득은 주변 온도의 영향을 받기 때문에 이를 보정하는 수단으로 아발란체 포토다이오드의 주변 온도를 측정하는 센서를 더 포함하는 것이 바람직하다. Scattered photodetector 274 includes an avalanche photodiode (APD) 274 'that measures the scattered light signal generated from the particles and an amplifier. And since the gain of the avalanche photodiode is influenced by the ambient temperature, it is preferable to further include a sensor for measuring the ambient temperature of the avalanche photodiode as a means for correcting the avalanche photodiode.
형광검출기(272, 273)는 입자에서 발생한 미약한 고유의 형광 신호를 증폭시켜 검출하는 광전증배관(PMT; Photomultiplier Tube)인 것이 바람직하다. 형광검출기(272, 273)의 전면(前面)에는 산란된 광을 차단하고 유도된 형광을 통과시키도록 광학필터(275)가 장착되어 있다.The fluorescence detectors 272 and 273 are preferably photomultiplier tubes (PMTs) for amplifying and detecting weak inherent fluorescence signals generated from particles. The front face of the fluorescence detectors 272 and 273 is equipped with an optical filter 275 to block the scattered light and to pass the induced fluorescence.
산란광검출기(274)와 두 개의 형광검출기(272, 273)에 의해 검출된 산란광 신호와 형광 신호는 신호처리부(도시하지 않음)를 거쳐 입자 크기로 환산된다.The scattered light signal and the fluorescence signal detected by the scattered light detector 274 and the two fluorescence detectors 272 and 273 are converted into particle sizes through a signal processor (not shown).
이상과 같이, 상기 입자광측부(200)에서는 입자도입부(210)를 통해, 대기 중의 부유입자가 일정 유량의 공기와 함께 광학챔버(220)의 내부로 유입될 때 또는 액체물질에 포함된 미세입자가 일정 유량의 액체물질과 함께 광학챔버(220)의 내부로 유입될 때, 빔형성광학계(250)에서 빔흡수계(260) 쪽으로 조사된 레이저빔을 통과하는 미세 입자에 의해 광학챔버(220) 내의 입자측정공간(S)에서 산란광이 발생한다. 그리고 이 산란광을 산란광검출기(274)에 의해 검출하고, 특히 부유입자 또는 미세입자에 생물입자가 포함된 경우에는, 산란광과 함께 형광도 발생하므로, 이러한 형광을 파장대별로 검출하여 대기 중 미세 생물입자 또는 액상에 포함된 미세 생물입자의 크기 분포 및 농도 변화를 실시간으로 감시할 수 있다. 최종적으로, 검출된 산란광과 형광 신호는 광검출센서를 거쳐 전기신호로 변환된 후 고속신호처리회로를 거치게 되므로, 대기 상태 또는 액체물질을 실시간으로 분석할 수 있다. 또한 대기 중에 존재하는 부유입자의 형광을 가변 시간 단위로 입자 크기별 농도와 입자 크기별 형광입자의 농도, 입자 크기별 형광의 세기를 실시간 분석하여 유해물질의 존재 여부를 검출할 수 있다. As described above, in the particle light side part 200, when the floating particles in the atmosphere are introduced into the optical chamber 220 together with air of a predetermined flow rate or through the particle introduction part 210, the fine particles included in the liquid material. Is introduced into the optical chamber 220 together with the liquid material of a certain flow rate, the optical chamber 220 by the fine particles passing through the laser beam irradiated from the beam forming optical system 250 toward the beam absorbing system 260 Scattered light is generated in the particle measuring space S therein. Since the scattered light is detected by the scattering light detector 274, and particularly when the suspended particles or the microparticles contain the bioparticles, fluorescence is also generated along with the scattered light. The size distribution and concentration change of the microbial particles in the liquid phase can be monitored in real time. Finally, since the detected scattered light and the fluorescence signal are converted into an electrical signal through a photodetector sensor and then passed through a high speed signal processing circuit, the atmospheric state or liquid material can be analyzed in real time. In addition, it is possible to detect the presence of harmful substances by analyzing the fluorescence of the suspended particles in the air in variable time units in real time by analyzing the concentration of each particle size, the concentration of fluorescent particles by particle size, and the intensity of fluorescence by particle size.
이상에서는 본 발명의 기술 사상에 대하여 바람직한 실시형태를 통하여 상세히 설명하였으나, 본 발명은 이에 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양하게 변경, 응용될 수 있음은 당업자에게 자명하다. 따라서, 본 발명의 진정한 보호 범위는 다음의 특허청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술적 사상은 물론 적절한 변경 및 수정이 가해진 것과 균등물 역시 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.In the above description, the technical idea of the present invention has been described in detail through preferred embodiments, but the present invention is not limited thereto, and various changes and applications may be made without departing from the technical idea of the present invention. Do. Therefore, the true scope of protection of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto, as well as appropriate changes and modifications, and equivalents are included in the scope of the present invention. It should be interpreted.
[부호의 설명][Description of the code]
100...입자농축부100.Particle enrichment
110...선분리기110 ... line separator
120...원통형 케이싱120 ... cylindrical casing
200...입자광측부200 ... particle side
210...입자도입부210.Particle introduction part
211, 211'...상부 본체211, 211 '... Top Body
212, 212'...하부 본체212, 212 '... Lower body
212a...끼움구멍212a ... fitting hole
212b...돌출부212b ... projection
212c...요홈212c ...
212d...편심방지 경사부212d ... Eccentricity Slope
213...삽입관213.Insert tube
213a...링부재 213a ... ring member
213b...요홈213b.
213'...노즐고정구213 '... Nozzle Fixture
214, 214'...유로 셀214, 214 '... Euro Cell
215...외측 노즐215.Outer nozzle
216...핀216 ... pin
217...액상물질 도입노즐217.Liquid introduction nozzle
218...너트부재218.Nut member
219...액상물질 토출노즐219 Liquid discharge nozzle
220...광학챔버220 ... optical chamber
221...연결부221 ... connection
222∼227...개구222 ~ 227 ... opening
230...반사경230 ... Reflector
231...구면반사경231 Spherical Reflector
232...비구면반사경232 ... Aspherical Reflector
240...입자토출부240.Particle Discharge Part
241...노즐241 nozzles
242...배기구242 ... Exhaust vent
250...빔형성광학계250 ... beam forming optical system
251...광원부251 ...
252...빔형성조정부252 ... Beam Shaping Adjuster
253...레이저다이오드253 laser diode
254...레이저다이오드 제어보드254 laser diode control board
255∼257...렌즈군255-257 ... lens group
260...빔흡수계260 ... beam absorber
264...광원출력검출기264 ... light source output detector
265...위치조절구265 position control
270...빔분리광학계270 beam split optical system
272, 273...형광검출기272, 273 Fluorescence Detector
274...산란광검출기274 Scattering Light Detector
277a, 277b, 277c...렌즈군277a, 277b, 277c ... lens group
279a, 279b...빔스플리터279a, 279b ... beam splitter
280...밀폐판280 ... Airtight
292...볼록렌즈292.Convex Lens
293...캡293 ... cap
293a...핀홀293a ... pinhole
296...핀홀 조립체296 ... pinhole assembly
297...윈도우297 ... Windows
L...레이저빔L ... laser beam
S...입자측정공간S ... Particle Measuring Space

Claims (21)

  1. 대기와 액상물질에 존재하는 입자에 포함된 생물입자를 검출하는 검출장치에 있어서,In the detection device for detecting the biological particles contained in the particles present in the atmosphere and liquid material,
    외부에서 도입된 공기에 포함된 부유입자 또는 외부에서 도입된 액상물질에 포함된 미세입자가 유입되는 유로 셀(214)(214')을 갖는 입자도입부(210)와; 케이싱 조립체(300) 내에 설치되어 상기 유로 셀(214)(214')을 따라 유동하는 유체 속의 미세입자를 검출하는 입자광측부(200)을 포함하고, A particle introduction part 210 having flow path cells 214 and 214 'into which floating particles included in the air introduced from the outside or fine particles contained in the liquid material introduced from the outside are introduced; A particle light side portion 200 installed in the casing assembly 300 to detect fine particles in the fluid flowing along the flow path cells 214 and 214 ',
    상기 입자광측부(200)는 상면에 개구(222)가 형성되어 있고 그 개구(222)를 통하여 상기 입자도입부(210)의 하단과 연결되며 내부에 입자측정공간(S)을 갖는 육면체 광학챔버(220)와;The particle light side part 200 has an opening 222 formed on an upper surface thereof, and is connected to a lower end of the particle introduction part 210 through the opening 222 and has a hexahedral optical chamber having a particle measuring space S therein ( 220);
    상기 광학챔버(220)의 전면에 형성된 개구(223)에 연결 설치되어 상기 입자도입부(210)를 통해 상기 입자측정공간(S) 내에 도입되는 입자에 레이저빔(L)을 조사시키기 위한 빔형성광학계(250)와;A beam forming optical system connected to the opening 223 formed on the front surface of the optical chamber 220 to irradiate a laser beam L to particles introduced into the particle measuring space S through the particle introduction unit 210. 250;
    상기 빔형성광학계(250)에 대향하여 상기 광학챔버(220)의 후면에 형성된 개구(225)에 연결 설치되어 빔형성광학계(250)로부터 조사되는 레이저빔(L)을 소멸시키기 위한 빔흡수계(260)와;A beam absorbing system connected to the opening 225 formed on the rear surface of the optical chamber 220 to face the beam forming optical system 250 to extinguish the laser beam L irradiated from the beam forming optical system 250 ( 260;
    상기 입자측정공간(S) 내에 상기 레이저빔(L)의 진행방향과 90°방향으로 배치된 한 쌍의 반사경(230)과;A pair of reflectors 230 disposed in the particle measuring space S in a direction of 90 ° to the traveling direction of the laser beam L;
    상기 광학챔버(200)의 하면에 형성된 개구(227)에 연결 설치되어 상기 입자측정공간(S)에서 레이저빔(L)과의 상호작용을 한 후의 공기 또는 액상물질을 노즐(241)을 통하여 외부로 토출시키기 위한 입자토출부(240)와;It is connected to the opening 227 formed in the lower surface of the optical chamber 200 to the outside through the nozzle 241 air or liquid material after the interaction with the laser beam (L) in the particle measuring space (S) A particle discharging part 240 for discharging the gas into the air;
    상기 빔형성광학계(250)와 수직을 이루도록 상기 광학챔버(220)의 우측면에 형성된 개구(224)에 연결 설치되어 상기 광학챔버(220) 내부의 입자측정공간(S)에서 레이저빔(L)과 입자와의 상호작용에 의해 생성된 산란광과 형광 신호를 두 개의 빔스플리터(279a, 279b)의 차단 주파수(cut-off frequency)에 따라 한 개의 산란광과 두 개의 형광을 동시에 검출하는 산란광검출기(274)와 형광검출기(272, 273)를 구비하는 빔분리광학계(270);를 포함하는 것을 특징으로 하는 생물입자의 실시간 검출장치.It is connected to the opening 224 formed on the right side of the optical chamber 220 to be perpendicular to the beam forming optical system 250 and the laser beam (L) in the particle measuring space (S) inside the optical chamber 220 Scattered light detector 274 simultaneously detects the scattered light and the two fluorescence according to the cut-off frequencies of the two beam splitters 279a and 279b And a beam split optical system (270) having fluorescence detectors (272, 273).
  2. 제1항에 있어서, The method of claim 1,
    대기 중의 부유입자를 검출하도록 상기 입자도입부(210)의 상측에 이물질과 일정 크기 이상의 입자를 걸러주는 선분리기(110)와, 관성력을 이용하여 부유입자를 정해진 크기로 선별하여 농축하는 복수의 노즐이 구비된 원통형 케이싱(120)을 포함하는 입자농축부(100)가 연결되고, The line separator 110 for filtering foreign matter and particles of a predetermined size or more on the upper side of the particle introduction unit 210 to detect suspended particles in the air, and a plurality of nozzles for selecting and condensing the suspended particles to a predetermined size by using inertial force. Particle enrichment unit 100 including a cylindrical casing 120 provided is connected,
    상기 입자도입부(210)는 대기입자도입부로 작용하는 것을 특징으로 하는 생물입자의 실시간 검출장치.The particle introduction unit 210 is a real-time detection device of the biological particles, characterized in that acts as air particle introduction.
  3. 제2항에 있어서, The method of claim 2,
    상기 입자도입부(210)는 상호 나사결합되는 중공형의 상부 본체(211) 및 하부 본체(212)와, 상기 상부 본체(211)와 하부 본체(212)의 내부에 설치되어 입자농축부(100)의 하단에 돌출 연장된 입자배출구가 끼워지는 삽입공을 갖고 상기 유로 셀(214)이 연결 고정되는 삽입관(213)과, 상기 유로 셀(214)과 연결되어 하부 본체(212)의 하단에 고정되는 외측 노즐(215)을 포함하는 것을 특징으로 하는 생물입자의 실시간 검출장치.The particle introduction portion 210 is installed inside the hollow upper body 211 and the lower body 212 and the upper body 211 and the lower body 212 is screw condensing portion 100 An insertion tube 213 having an insertion hole into which a protruding particle discharge port is inserted at a lower end thereof and connected to and fixed to the passage cell 214, and fixed to a lower end of the lower body 212 connected to the passage cell 214. Real time detection device of a biological particle, characterized in that it comprises an outer nozzle (215).
  4. 제3항에 있어서,The method of claim 3,
    상기 입자도입부(210)는 상기 유로 셀(214)을 상· 하부 본체(211, 212) 내에 설치할 때, 상기 유로 셀(214)의 위치 결정을 위한 제1위치결정수단을 더 포함하고, The particle introduction portion 210 further includes first positioning means for positioning the flow passage cell 214 when the flow passage cell 214 is installed in the upper and lower bodies 211 and 212.
    상기 제1위치결정수단은 상기 삽입관(213)의 외주면에 설치된 링부재(213a)의 일측에 형성된 요홈(213b)과, 상기 하부 본체(212)의 상면 일측에 형성된 핀홀에 삽입 고정되어 상기 요홈(213b)에 삽입되는 핀(212a)으로 이루어져 있는 것을 특징으로 하는 생물입자의 실시간 검출장치.The first positioning means is inserted into and fixed in the groove 213b formed on one side of the ring member 213a installed on the outer circumferential surface of the insertion tube 213 and the pin hole formed on one side of the upper surface of the lower main body 212. Real-time detection device of a biological particle, characterized in that consisting of a pin (212a) is inserted into (213b).
  5. 제3항에 있어서,The method of claim 3,
    상기 입자도입부(210)는 상기 입자도입부(210)를 상기 광학챔버(220)에 장착할 때, 상기 입자도입부(210) 자체의 위치 결정을 위한 제2위치결정수단을 더 포함하고,The particle introduction portion 210 further includes second positioning means for positioning the particle introduction portion 210 itself when the particle introduction portion 210 is mounted to the optical chamber 220,
    제2위치결정수단은 상기 하부 본체(212)의 하단 외주면에 설치된 환형(環形) 돌출턱(212b)의 일측에 형성된 요홈(212c)과, 상기 광학챔버(220)의 상면 개구(222)의 주변 일측에 형성되어 상기 요홈(212c)에 삽입되는 핀으로 이루어져 있는 것을 특징으로 하는 생물입자의 실시간 검출장치.The second positioning means includes a groove 212c formed at one side of the annular projection jaw 212b provided on the lower outer circumferential surface of the lower body 212 and the periphery of the upper opening 222 of the optical chamber 220. It is formed on one side and the real-time detection device of the biological particles, characterized in that consisting of the pin is inserted into the groove (212c).
  6. 제5항에 있어서,The method of claim 5,
    상기 입자도입부(210)는 상부 본체(211)와 결합된 하부 본체(212)의 하단 외주와 체결되는 것으로 내주면에 나사산이 형성된 너트부재(218)와 상기 광학챔버(220)의 상면 개구(222)의 테두리를 따라 상향 돌출되어 외주면에 나사산이 형성된 연결부(221)와의 나사체결에 의해 상기 광학챔버(220)에 연결 고정되는 것을 특징으로 하는 생물입자의 실시간 검출장치.The particle introduction portion 210 is fastened to the outer circumference of the lower main body 212 coupled with the upper main body 211 and has a nut member 218 having a thread formed on an inner circumferential surface thereof, and an upper surface opening 222 of the optical chamber 220. Protruding upward along the edge of the real-time detection device of the biological particles, characterized in that the connection to the optical chamber 220 by the fastening screwed with the connecting portion 221 is formed on the outer peripheral surface.
  7. 제6항에 있어서,The method of claim 6,
    상기 핀은 상기 연결부(221)의 상면 일측에 형성된 핀홀에 삽입 고정된 것을 특징으로 하는 생물입자의 실시간 검출장치.The pin is a real-time detection device of a biological particle, characterized in that the pin is inserted and fixed in the pin hole formed on one side of the upper surface of the connecting portion (221).
  8. 제3항에 있어서,The method of claim 3,
    상기 입자도입부(210)의 하부 본체(212)의 하단에는, 상기 입자도입부(210)를 광학챔버(220)로부터 분리후 다시 장착할 때 광학챔버(220)의 정해진 장착 위치로부터 횡방향으로 편심됨이 없이 광학챔버(220)의 장착 위치에 정렬되도록, 상기 광학챔버(220)의 상면에 형성된 개구(222)를 향하여 경사지는 역원뿔형 구조의 편심방지 경사부(212d)가 형성되어 있고,At the lower end of the lower body 212 of the particle introduction portion 210, when the particle introduction portion 210 is detached from the optical chamber 220 and then remounted, the particle introduction portion 210 is eccentric in a transverse direction from a predetermined mounting position of the optical chamber 220. In order to be aligned with the mounting position of the optical chamber 220, the anti-eccentric inclined portion (212d) of the inverted conical structure inclined toward the opening 222 formed on the upper surface of the optical chamber 220 is formed,
    상기 광학챔버(220)의 상면 개구(222)의 내측 하단은 상기 편심방지 경사부(212d)와 맞닿아 밀착되는 경사면(222a)을 갖는 것을 특징으로 하는 생물입자의 실시간 검출장치.The inner lower end of the upper surface opening 222 of the optical chamber 220 has an inclined surface (222a) that is in close contact with the eccentric prevention inclined portion (212d).
  9. 제8항에 있어서,The method of claim 8,
    상기 편심방지 경사부(212d)와 경사면(222a)의 경사각도는 동일하고, 그 경사각도는 상기 입자도입부(210)의 중심축에 대하여 25° ~ 35°인 것을 특징으로 하는 생물입자의 실시간 검출장치.The inclination angles of the eccentric prevention inclined portion 212d and the inclined surface 222a are the same, and the inclination angle is 25 ° to 35 ° with respect to the central axis of the particle introduction portion 210. Device.
  10. 제1항에 있어서,The method of claim 1,
    상기 입자토출부(240)의 노즐(241)은 상기 입자도입부(210)를 향하여 선단(先端)쪽으로 갈수록 가늘어지는 테이퍼(taper) 형상으로 되어 있는 것을 특징으로 하는 생물입자의 실시간 검출장치.The nozzle (241) of the particle discharging unit 240 is a taper (taper) shape of the taper toward the front end toward the particle introduction portion 210, characterized in that the real-time detection device of the biological particles.
  11. 제1항에 있어서,The method of claim 1,
    액상물질에 포함된 생물입자를 검출하도록 상기 입자도입부(210)에 각각 액상물질 도입노즐(217)과 액상물질 토출노즐(219)이 연결되고, A liquid material introduction nozzle 217 and a liquid material discharge nozzle 219 are respectively connected to the particle introduction portion 210 to detect bioparticles contained in a liquid material.
    상기 입자도입부(210)는 액상입자도입부로 작용하는 것을 특징으로 하는 생물입자의 실시간 검출장치.The particle introduction portion 210 is a real-time detection device of the biological particles, characterized in that acts as a liquid particle introduction portion.
  12. 제11항에 있어서,The method of claim 11,
    상기 입자도입부(210)는 상기 광학챔버(220)의 상측 개구부에 결합된 중공형의 상부 본체(211')와, 상기 광학챔버(220)의 하측 개구부에 결합된 중공형의 하부 본체(212')와, 상기 상부 본체(211')와 하부 본체(212') 사이에 결합되어 양측을 연통시키며 액상물질이 유동하는 유로셀(214')과, 상기 액상물질 도입노즐(217) 및 액상물질 토출노즐(219)을 상부 본체(211') 및 하부 본체(212')에 각각 결합시키는 노즐고정구(213')를 포함하는 것을 특징으로 하는 생물입자의 실시간 검출장치.The particle introduction portion 210 includes a hollow upper body 211 ′ coupled to an upper opening of the optical chamber 220, and a hollow lower body 212 ′ coupled to a lower opening of the optical chamber 220. ), A flow cell 214 'coupled between the upper body 211' and the lower body 212 'and communicating with both sides, and a liquid material flowing therein, the liquid material introduction nozzle 217 and the liquid material discharged. And a nozzle fixture (213 ') for coupling the nozzle (219) to the upper body (211') and the lower body (212 '), respectively.
  13. 제1항에 있어서,The method of claim 1,
    상기 빔형성광학계는 양단부가 개방되는 내부공간을 갖고 그 내부공간에 비구면렌즈가 장착되고 전방측에 레이저다이오드(253)가 내장된 광원부(251)와;The beam forming optical system includes: a light source unit 251 having an inner space in which both ends are opened, an aspherical lens mounted in the inner space, and a laser diode 253 built in the front side thereof;
    상기 광원부(251)와 분리 가능하게 조립되고 내부에 레이저다이오드(253)로부터 발생되어 비구면렌즈를 통과한 레이저빔의 종방향 크기를 조절하는 제1렌즈군(255), 제1렌즈군(255)을 통과한 레이저빔의 횡방향 크기를 조절하는 제2렌즈군(256), 및 윈도우(257)가 순차적으로 배열되어 있는 빔형성조정부(252)와;  The first lens group 255 and the first lens group 255, which are detachably assembled with the light source unit 251 and adjust the longitudinal size of the laser beam generated from the laser diode 253 and passed through the aspherical lens. A beam forming adjustment unit 252 in which the second lens group 256 for adjusting the lateral size of the laser beam passing through the window and the window 257 are sequentially arranged;
    상기 빔형성조정부(252)의 절곡부에 결합되며 내부에 상기 제1렌즈군(255)을 통과한 레이저빔을 제2렌즈군(256) 방향으로 반사시키는 레이저 반사경(259')이 설치된 반사부(259);를 포함하며, A reflector coupled to the bent portion of the beamforming adjustment unit 252 and having a laser reflector 259 'installed therein for reflecting the laser beam passing through the first lens group 255 toward the second lens group 256. (259);
    내부면이 흑염처리된 것을 특징으로 하는 생물입자의 실시간 검출장치.Real-time detection device of biological particles, characterized in that the inner surface is black salt treatment.
  14. 제13항에 있어서,The method of claim 13,
    상기 광원부(251)는 레이저다이오드 제어보드(254)가 상단에 4개의 육각볼트(254')로 비구면 렌즈 전단에 고정되고, 상기 비구면 렌즈는 레이저다이오드(253)의 빔을 일정 크기로 확대한 후 레이저 반사경(259')에 의해 반사되어 두 개의 어안렌즈(258)로 향한 후 일정한 패턴을 형성하도록 하는 것을 특징으로 하는 생물입자의 실시간 검출장치.The light source unit 251 is a laser diode control board 254 is fixed to the front of the aspherical lens with four hexagon bolts (254 ') on the top, the aspherical lens is to enlarge the beam of the laser diode 253 to a predetermined size A device for real-time detection of biological particles, characterized by being reflected by a laser reflector (259 ') and directed to two fisheye lenses (258) to form a predetermined pattern.
  15. 제13항에 있어서,The method of claim 13,
    상기 반사부(259)는 3개의 제어볼트(259")로 레이저반사경(259)의 각도를 조절할 수 있는 구조로 제작되어 레이저빔(L)의 방향을 광학챔버(220) 내의 원하는 위치에 놓을 수 있도록 조정하는 역할을 수행하는 것을 특징으로 하는 생물입자의 실시간 검출장치.The reflector 259 is made of a structure that can adjust the angle of the laser reflector 259 with three control bolts (259 ") to position the direction of the laser beam (L) in the desired position in the optical chamber 220 Real-time detection device of a biological particle, characterized in that it serves to adjust so that.
  16. 제1항에 있어서,The method of claim 1,
    상기 빔흡수계(260)는 상기 광학챔버(220)의 후면에 고정되는 몸체(261)와;The beam absorbing system 260 has a body 261 fixed to the rear of the optical chamber 220;
    상기 몸체(261)의 중앙부에 관통 형성된 삽입공(262a)에 끼워넣는 초점렌즈 조립체(291)와;A focus lens assembly 291 inserted into an insertion hole 262a formed through a central portion of the body 261;
    상기 초점렌즈 조립체(261)의 광축이 핀홀(293a)을 지나도록, 상기 몸체(261)의 후면에 형성된 오목부에 삽입하는 핀홀 조립체(296)와;A pinhole assembly 296 inserted into a recess formed in a rear surface of the body 261 such that the optical axis of the focus lens assembly 261 passes through the pinhole 293a;
    상기 핀홀 조립체(296)의 후면에 고정하는 하우징(263)와;A housing 263 fixed to a rear surface of the pinhole assembly 296;
    상기 초점렌즈 조립체(261)의 광축에 직교하는 기준면에 대해 일정한 각도로 경사지도록, 상기 하우징(263)의 후면에 고정하는 광원출력검출기(264);를 포함하고,And a light source output detector 264 fixed to the rear surface of the housing 263 to be inclined at a predetermined angle with respect to a reference plane orthogonal to the optical axis of the focus lens assembly 261.
    상기 핀홀 조립체(296)의 핀홀(293a)을 통과한 레이저빔(L)이, 상기 광원출력검출기(264)에 점점 가까워짐에 따라 레이저빔 폭이 점차 퍼지도록, 상기 핀홀 조립체(296)와 상기 하우징(263)의 중앙부에는 공동이 형성되어 있는 것을 특징으로 하는 생물입자의 실시간 검출장치.The pinhole assembly 296 and the housing so that the laser beam width gradually spreads as the laser beam L passing through the pinhole 293a of the pinhole assembly 296 becomes closer to the light source output detector 264. The central portion of the (263), the real-time detection device of the biological particles, characterized in that the cavity is formed.
  17. 제1항에 있어서,The method of claim 1,
    상기 한 쌍의 반사경(230)은 상기 빔분리광학계(270)에 향하여 배치되어 코팅된 유리재질의 구면반사경(231)과, 구면반사경(231)에 대향하여 설치되어 코팅된 알루미늄 재질의 비구면반사경(232)으로 이루어지고,The pair of reflectors 230 are disposed so as to face the beam split optical system 270 and coated with a glass spherical reflector 231 and an aspheric reflector made of aluminum coated and coated to face the spherical reflector 231 ( 232),
    상기 구면반사경(231)은 상기 빔형성광학계(250)로부터 발생된 레이저빔(L)이 상기 입자도입부(210)로부터 도입되는 입자에 조사됨으로써 생성된 산란광과 형광 신호가 상기 비구면반사경(232)에 반사되어 상기 빔분리광학계(270)를 향하도록 중앙 부분이 코팅되어 있지 않은 것을 특징으로 하는 생물입자의 실시간 검출장치.The spherical reflector 231 is a scattering light and a fluorescence signal generated by the laser beam (L) generated from the beam forming optical system 250 is introduced from the particle introduction portion 210 to the aspheric reflector (232) Real-time detection device for a biological particle, characterized in that the central portion is not coated so as to be reflected toward the beam split optical system (270).
  18. 제17항에 있어서,The method of claim 17,
    상기 비구면반사경(232)은 상기 광학챔버의 좌측면에 형성된 개구(226)측에 위치되며 상기 개구(226)는 분리 가능한 밀폐판(280)에 의해 밀폐되어 있는 것을 특징으로 하는 생물입자의 실시간 검출장치.The aspheric reflector 232 is located on the side of the opening 226 formed on the left side of the optical chamber, and the opening 226 is sealed by a detachable sealing plate 280, real-time detection of biological particles Device.
  19. 제1항에 있어서,The method of claim 1,
    상기 산란광검출기(274)는 아발란체 포토다이오드(APD; Avalanche Photodiode)와 증폭기를 구비하는 것을 특징으로 하는 생물입자의 실시간 검출장치.The scattering photodetector 274 is a real-time detection device of a biological particle, characterized in that it comprises an avalanche photodiode (APD) and an amplifier.
  20. 제1항에 있어서,The method of claim 1,
    상기 형광검출기(272, 273)의 어느 하나는 장파장과 신호를 검출하도록 구성되어 있고, 다른 하나는 단파장의 신호를 검출하도록 구성되어 있으며, 상기 형광검출기(272, 273)의 전면(前面)에는 산란된 광을 차단하고 유도된 형광을 통과시키도록 광학필터(275)가 장착되어 있는 것을 특징으로 하는 생물입자의 실시간 검출장치.One of the fluorescent detectors 272 and 273 is configured to detect a long wavelength and a signal, and the other is configured to detect a short wavelength signal, and scattering is formed on the front surface of the fluorescent detectors 272 and 273. An optical filter (275) is equipped with a real-time detection device of the biological particles, characterized in that to block the light and pass the induced fluorescence.
  21. 제1항에 있어서,The method of claim 1,
    상기 형광검출기(272, 273)는 광전증배관(PMT; Photomultiplier Tube)인 것을 특징으로 하는 생물입자의 실시간 검출장치.The fluorescence detector (272, 273) is a photomultiplier tube (PMT; Photo-multiplier Tube) characterized in that the real-time detection device of the biological particles.
PCT/KR2014/007553 2014-08-12 2014-08-14 Real-time detection apparatus for biological particle in atmosphere and liquid substance flowing through flow channel cell WO2016024652A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140104577A KR20160019790A (en) 2014-08-12 2014-08-12 Real Time Biological Aerosol Detection Device in Flow Cell
KR10-2014-0104577 2014-08-12

Publications (1)

Publication Number Publication Date
WO2016024652A1 true WO2016024652A1 (en) 2016-02-18

Family

ID=55304275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007553 WO2016024652A1 (en) 2014-08-12 2014-08-14 Real-time detection apparatus for biological particle in atmosphere and liquid substance flowing through flow channel cell

Country Status (2)

Country Link
KR (1) KR20160019790A (en)
WO (1) WO2016024652A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2544196A (en) * 2015-11-06 2017-05-10 Agency Defense Dev Portable real-time biological aerosol-detecting device
CN110006859A (en) * 2019-03-05 2019-07-12 北京雪迪龙科技股份有限公司 A kind of fluorescent material detection device and the method for detecting fluorescent material
CN111504872A (en) * 2020-04-16 2020-08-07 武汉大学 Variable-opening detachable simulated crack test device and test method
CN115479874A (en) * 2022-09-07 2022-12-16 青岛众瑞智能仪器股份有限公司 Aerosol concentration detection device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102380173B1 (en) * 2017-04-14 2022-03-29 엘지이노텍 주식회사 Apparatus for sensing particle
KR102028108B1 (en) 2017-11-17 2019-10-02 국방과학연구소 Real time detection of biological agents without fluorescence tags utilizing quartz capillary
CN108287129A (en) * 2018-03-22 2018-07-17 中国计量大学 The detection device of multichannel fluorescence Spectra bioaerosol particle
KR102229060B1 (en) * 2019-03-07 2021-03-18 주식회사 센트리 Optical scattering detection device with an anti-contamination tube
KR102214552B1 (en) * 2019-10-10 2021-02-09 국방과학연구소 A Small Flourescence Sensor Device for Detecting Fine Particles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070045214A (en) * 2004-07-30 2007-05-02 바이오비질런트 시스템즈 인코포레이티드 Pathogen and particle detector system and method
KR20110127504A (en) * 2010-05-19 2011-11-25 (주)에이치시티 Paticle measurement apparatus
KR20120121045A (en) * 2011-04-26 2012-11-05 김제원 Optical Apparatus for Measuring Particles
KR101246661B1 (en) * 2012-06-28 2013-03-25 국방과학연구소 Real time particle fluorescence detection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070045214A (en) * 2004-07-30 2007-05-02 바이오비질런트 시스템즈 인코포레이티드 Pathogen and particle detector system and method
KR20110127504A (en) * 2010-05-19 2011-11-25 (주)에이치시티 Paticle measurement apparatus
KR20120121045A (en) * 2011-04-26 2012-11-05 김제원 Optical Apparatus for Measuring Particles
KR101246661B1 (en) * 2012-06-28 2013-03-25 국방과학연구소 Real time particle fluorescence detection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUG, D. ET AL.: "Microfluidics for low cytometric analysis of cells and particles", PHYSIOLOGICAL MEASUREMENT, vol. 26, 1 February 2005 (2005-02-01), pages R73 - R98, XP020092189, DOI: doi:10.1088/0967-3334/26/3/R02 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2544196A (en) * 2015-11-06 2017-05-10 Agency Defense Dev Portable real-time biological aerosol-detecting device
GB2544196B (en) * 2015-11-06 2020-04-22 Agency Defense Dev Portable real-time biological aerosol-detecting device
CN110006859A (en) * 2019-03-05 2019-07-12 北京雪迪龙科技股份有限公司 A kind of fluorescent material detection device and the method for detecting fluorescent material
CN111504872A (en) * 2020-04-16 2020-08-07 武汉大学 Variable-opening detachable simulated crack test device and test method
CN115479874A (en) * 2022-09-07 2022-12-16 青岛众瑞智能仪器股份有限公司 Aerosol concentration detection device

Also Published As

Publication number Publication date
KR20160019790A (en) 2016-02-22

Similar Documents

Publication Publication Date Title
WO2016024652A1 (en) Real-time detection apparatus for biological particle in atmosphere and liquid substance flowing through flow channel cell
KR101246661B1 (en) Real time particle fluorescence detection device
KR101623787B1 (en) Portable real-time detecting device for biological aerosol
US10168269B1 (en) Aerosol real time monitor
US5631730A (en) Pseudo telecentric optical design for flow cytometric blood cell analyzer
US7659980B1 (en) Nephelometric turbidity sensor device
US7659523B1 (en) Integrated assembly for delivery of air stream for optical analysis
US20020088783A1 (en) Laser machining head
WO2020106036A1 (en) Multimodal dust sensor
WO2011145812A2 (en) Particle measurement apparatus
WO2019045488A1 (en) Detector
EP3850333A1 (en) Multimodal dust sensor
KR20210083268A (en) Optical particle sensors, especially exhaust gas sensors
US6784988B2 (en) Apparatus and process for analyzing a stream of fluid
CA2242363A1 (en) Particle separation and detection apparatus
CN201016927Y (en) Quantum laser flue gas continuous analysis sensor
KR102073483B1 (en) Apparatus and method for measuring fine particulate matter
CN109959338A (en) Distance-measuring device
JP2011080768A (en) Gas analysis device
CN109297876A (en) A method of measurement dust concentration
WO2021054496A1 (en) Apparatus for detecting fine dust and microorganisms
US11555776B2 (en) Light scattering detection apparatus
US20210123854A1 (en) System, apparatus and method for off-axis illumination in flow cytometry
JP4174600B2 (en) Flame photometric detector for gas chromatography
CN115016107A (en) Double-telecentric optical machine structure and light path system for coal quality analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14899814

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC, FORM 1205N DATED 08.06.2017

122 Ep: pct application non-entry in european phase

Ref document number: 14899814

Country of ref document: EP

Kind code of ref document: A1