WO2016024636A1 - Magnetic force microscope probe for measuring ferromagnetic field and measuring magnetic field value, and method and device for observing magnetic field of ferromagnetic-field-emitting sample - Google Patents

Magnetic force microscope probe for measuring ferromagnetic field and measuring magnetic field value, and method and device for observing magnetic field of ferromagnetic-field-emitting sample Download PDF

Info

Publication number
WO2016024636A1
WO2016024636A1 PCT/JP2015/072969 JP2015072969W WO2016024636A1 WO 2016024636 A1 WO2016024636 A1 WO 2016024636A1 JP 2015072969 W JP2015072969 W JP 2015072969W WO 2016024636 A1 WO2016024636 A1 WO 2016024636A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
magnetic field
probe
sample
ferromagnetic
Prior art date
Application number
PCT/JP2015/072969
Other languages
French (fr)
Japanese (ja)
Inventor
準 齊藤
哲 吉村
幸則 木下
Original Assignee
国立大学法人秋田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人秋田大学 filed Critical 国立大学法人秋田大学
Priority to JP2016542615A priority Critical patent/JP6624737B2/en
Publication of WO2016024636A1 publication Critical patent/WO2016024636A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/50MFM [Magnetic Force Microscopy] or apparatus therefor, e.g. MFM probes
    • G01Q60/54Probes, their manufacture, or their related instrumentation, e.g. holders
    • G01Q60/56Probes with magnetic coating

Definitions

  • the present invention relates to a probe for use in a magnetic force microscope.
  • the present invention also relates to a method and apparatus for observing the surface magnetic field of a magnetic sample (for example, a permanent magnet) that generates a strong DC magnetic field.
  • a magnetic sample for example, a permanent magnet
  • a magnetic force microscope is known as a device for measuring a magnetization pattern corresponding to magnetic information of a magnetic sample.
  • the magnetic force microscope is provided with a magnetic probe, the tip of the magnetic probe is brought close to the magnetic sample to be observed, and the magnetic interaction between the magnetic moment of the magnetic probe and the magnetic sample is measured. By detecting the action, the magnetization pattern and the like are measured.
  • a cobalt (Co) -chromium (Cr) -based alloy, nickel (Ni) -iron (Fe) -based alloy, cobalt (Co) is formed on a probe material made of a non-magnetic material Si.
  • a thin film of a ferromagnetic material such as a platinum (Pt) based alloy, an iron (Fe) -platinum (Pt) based ordered alloy, or an iron (Fe) based alloy is formed (Patent Documents 1 to 3).
  • the present inventors have developed an alternating magnetic force microscope (Patent Documents 4 and 5) in order to observe a magnetic field generated from a magnetic sample with high spatial resolution.
  • These alternating magnetic force microscopes change the magnetization direction of a ferromagnetic probe provided at the tip of an excited cantilever by an external AC magnetic field, and magnetize between the probe magnetization and the magnetic sample magnetic field.
  • By detecting the frequency modulation that occurs in the probe vibration due to the alternating magnetic force generated by the dynamic interaction it is possible to observe the DC magnetic field gradient or AC magnetic field gradient near the sample surface, and realize high spatial resolution.
  • Patent Document 4 discloses a magnetic field observation apparatus capable of measuring a magnetic force with high spatial resolution near the surface of a magnetic sample (for example, a magnetic recording medium used in a magnetic storage device) that generates a DC magnetic field.
  • a probe having a magnetic moment that is easy to reverse; an excitation mechanism that excites the probe; a scanning mechanism that causes the probe to scan a magnetic sample; and a magnetic material that can periodically reverse the magnetization of the probe; AC magnetic field generation mechanism for applying an AC magnetic field of a non-resonant frequency different from the cantilever resonance frequency to the probe in a size that does not reverse the magnetization of the sample; and the magnetization of the probe whose magnetization direction is periodically changed by the AC magnetic field This occurs when the apparent spring constant of the probe changes due to the alternating force of the non-resonant frequency applied to the probe due to the magnetic interaction with the magnetization of the magnetic sample.
  • a modulation measurement mechanism capable of measuring the degree of periodic frequency modulation of the vibration of the probe by frequency demodulation; the modulation measurement mechanism is obtained from the sensor that detects the displacement of the probe; An FM demodulator for demodulating the frequency modulation signal, and measuring the magnetic field gradient of the DC magnetic field leaking from the magnetic sample from the frequency demodulated signal obtained from the FM demodulator and the voltage signal of the AC magnetic field generation mechanism.
  • a magnetic field observation apparatus is disclosed.
  • the vibration of the cantilever is detected while scanning the scanning region on the surface of the observation sample with a probe made of a ferromagnetic material at the tip of the excited cantilever, and the magnetic field in the operation region is detected based on the detection result.
  • a magnetic field profile measuring device for generating a distribution image; a cantilever having a tip attached to a tip; an exciter for exciting the cantilever at a resonance frequency thereof or a frequency close to the frequency; and an AC magnetic field to generate a probe
  • An AC magnetic field generator that frequency-modulates or simultaneously amplitude-modulates the excitation vibration of the cantilever by periodically reversing the magnetic polarity; a vibration sensor that detects the vibration of the probe; and a probe from the detection signal of the vibration sensor While demodulating the magnetic signal corresponding to the alternating magnetic force generated between the sample and the observation sample, the demodulated magnetic signals are orthogonal to each other by 90 ° in phase.
  • a demodulation processing device for detecting the amplitude and phase of the magnetic field at the position of the probe from the demodulated magnetic signal separately detected by two signal components; and a scanning mechanism for scanning the operation region by the probe; The two signal components orthogonal to each other at each coordinate of the operation region or the amplitude and phase of the magnetic field obtained by scanning the operation region with a scanning mechanism under conditions synchronized with the operation of the AC magnetic field generator
  • a data storage device that stores the initial data from the data storage device, and a change data generator that generates a plurality of data in which the phase of the initial data is changed; and each of the operation areas generated by the change data generator
  • An image display device that displays a magnetic field distribution image based on data in coordinates is disclosed.
  • the magnetic field observation apparatus that performs the demodulation process by applying an alternating magnetic field as described in Patent Documents 4 and 5, when observing the direct magnetic field generated from the surface of the magnetic material sample, it is between the sample surface and the probe. It is possible to eliminate the influence of the surface force, which is a strong attractive force, and to increase the spatial resolution. This is because the magnetic force acting on the probe changes with time according to the change of the alternating magnetic field, while the surface force acting on the probe is not affected by the alternating magnetic field.
  • the magnetic field observation apparatus of Patent Document 4 and the magnetic profile measurement apparatus described in Patent Document 5 are based on the premise that a relatively weak DC magnetic field (for example, a surface magnetic field of a magnetic recording medium used in a magnetic storage device) is measured.
  • a relatively weak DC magnetic field for example, a surface magnetic field of a magnetic recording medium used in a magnetic storage device
  • a magnetic material sample that generates a strong magnetic field for example, 10 kOe or more
  • the magnetic material of the probe has a large magnetic moment, the probe is adsorbed on the sample surface by a strong DC magnetic field generated from the magnetic sample, making measurement itself difficult. Since there is a limit to the thinness with which the magnetic film of the probe can be formed with good quality, it is difficult to avoid this problem by adjusting the magnetic film thickness of the probe.
  • the first problem of the present invention is to observe a magnetic field gradient with a high spatial resolution using a magnetic force microscope even for a magnetic sample that generates a strong (for example, 10 kOe or more) DC magnetic field as represented by a permanent magnet. It is to provide a probe for a magnetic force microscope that makes it possible.
  • a second problem of the present invention is a magnetic field observation apparatus capable of observing a magnetic field with high spatial resolution in the vicinity of the surface of a magnetic sample that generates a strong DC magnetic field, such as a permanent magnet. And a magnetic field observation method.
  • the conventional alternating magnetic force microscope measures the magnetic field gradient on the surface of the observation sample, and cannot measure the magnetic field itself.
  • the present inventors have developed a magnetic field measuring method and a magnetic field value measuring apparatus capable of measuring an absolute value including positive and negative of a DC magnetic field generated from a magnetic material sample, and have applied for a patent (Japanese Patent Application No. 2013-2013). No. 069762 and PCT / JP2014 / 59276. Published as Patent Document 6).
  • This device excites a magnetic probe having the property that the magnetization is zero when the external magnetic field is zero in a state where a DC magnetic field generated from the observation sample is applied, and is not zero in the vibration direction of the probe (large )
  • the excitation vibration of the probe is frequency-modulated by applying an AC external magnetic field having a change rate and a frequency different from the mechanical vibration frequency of the probe. Then, by canceling the DC magnetic field from the observation sample applied to the tip of the probe by applying a DC external magnetic field, the frequency modulation of the probe vibration is weakened, and the direct current when the magnitude of the frequency modulation becomes a minimum near zero Measure the external magnetic field.
  • a DC magnetic field having a polarity opposite to the DC external magnetic field at this time is a DC magnetic field generated from the observation sample.
  • the probe used in this measuring method and measuring apparatus has a magnetic characteristic in which the magnetization is zero when the magnetic field is zero in the range used for measurement, and the strength of magnetization is proportional to the magnitude of the magnetic field. Is preferred.
  • a third subject of the present invention is a magnetic force microscope that makes it possible to measure the absolute value including the positive and negative of a DC magnetic field generated from a magnetic sample, even for a magnetic sample that generates such a strong DC magnetic field. Is to provide a probe.
  • the present invention includes the following forms [1] to [22].
  • [1] comprising at least one magnetic material; Magnetization does not saturate when a magnetic field is applied at room temperature, more specifically over a temperature range of at least 10-30 ° C.
  • the magnetic material is a solid solution of one or more ferromagnetic elements and one or more nonmagnetic elements;
  • the magnetic material is an amorphous magnetic material containing one or more ferromagnetic elements and one or more nonmagnetic elements; or
  • the magnetic material is one or more ferromagnetic particles.
  • magnetization is not saturated (no magnetic saturation) for a magnetic probe is determined based on the fact that magnetization is not saturated when an external magnetic field of 20 kOe is applied.
  • a certain material being “superparamagnetic material” or “superparamagnetic material” means that the material exhibits superparamagnetism.
  • a material “shows superparamagnetism” means that particles of a ferromagnetic material having spontaneous magnetization contained in the material (in the present invention, “ferromagnetic material” includes a ferrimagnetic material) are adjacent to each other. Due to the weak magnetic interaction with the particles and the small particle size, the magnetization direction of each particle changes randomly under the influence of thermal energy, and the magnetization of the entire material without applying a magnetic field Means an average of zero.
  • the initial magnetic susceptibility of the magnetic material is 3 ⁇ 10 ⁇ 8 H / m or more at room temperature, more specifically over a temperature range of at least 10 to 30 ° C.
  • the ferromagnetic element is one or more ferromagnetic elements selected from the group consisting of Ni, Fe, and Co
  • the nonmagnetic element is One or more nonmagnetic elements selected from the group consisting of Ti, V, Cr, Mn, Cu, Zn, Zr, Nb, Mo, Ta, W, B, Al, C, O, N, and Si;
  • the probe for a magnetic force microscope according to any one of [1] to [3], which preferably contains at least one element selected from Cr, Mn, and Mo as a nonmagnetic element.
  • the requirement (c) is satisfied, and the content of the ferromagnetic particles is 10 to 45% by volume, preferably 15 to 40% by volume, based on the total amount of the magnetic material.
  • the spherical equivalent diameter by the image analysis method of the ferromagnetic particles means that when the surface of the magnetic material is observed at a magnification of 100,000 to 200,000 times by secondary electron detection using a scanning electron microscope (SEM). Furthermore, the diameter of a circle having an area equal to the area occupied by ferromagnetic particles in the SEM image is meant. And the average value shall mean the value which took the arithmetic average of the said spherical conversion diameter about 100 or more ferromagnetic particles of the same magnetic material sample.
  • the ferromagnetic particles are particles of one or more ferromagnetic elements selected from the group consisting of Ni, Fe, and Co
  • the nonmagnetic material is Au, Ag , Cu, silicon dioxide, titanium oxide, tungsten oxide, chromium oxide, cobalt oxide, tantalum oxide, boron oxide, magnesium oxide, cerium oxide, yttrium oxide, nickel oxide, aluminum oxide, ruthenium oxide, rare earth element oxide, and carbon
  • the probe for a magnetic force microscope according to any one of [1] to [3], [6] and [7], which is at least one nonmagnetic material selected from the group consisting of:
  • the magnetic susceptibility “has substantially no temperature dependence in the temperature range of 25 to 200 ° C.” means that each of the five temperature conditions of 25 ° C., 50 ° C., 100 ° C., 150 ° C., and 200 ° C.
  • the initial magnetic susceptibility of the magnetic material it means that the variation of the five measured values is within ⁇ 10% with respect to the arithmetic average value of the five measured values.
  • the initial susceptibility of the magnetic material is 2 ⁇ 10 ⁇ 7 H / m or more, specifically over a temperature range of at least 10 to 30 ° C. at room temperature.
  • the probe for a magnetic force microscope according to any one of [1] to [3] and [6] to [10], which is preferably 1 ⁇ 10 ⁇ 6 H / m or more.
  • the magnetic material according to any one of [1] to [11], comprising a core member made of one or more kinds of nonmagnetic materials and a coating of the magnetic material that covers at least a part of the surface of the core member. Probe for force microscope.
  • a magnetic field observation apparatus for observing a direct-current magnetic field leaking from a magnetic sample, having a magnetic probe at one end that has no magnetic saturation and generates a magnetic moment in the applied magnetic field direction; excites the cantilever
  • An AC magnetic field generator for applying frequency modulation to the excitation vibration of the cantilever by applying an AC magnetic field of a magnitude that does not reverse the magnetization of the magnetic material to the probe and periodically changing the magnetization of the probe.
  • a vibration sensor for detecting the vibration of the probe; a demodulator for demodulating a signal corresponding to an AC component of the magnetic force generated between the probe and the observation sample from the detection signal of the vibration sensor; A demodulated signal processing device that obtains DC magnetic field information from the demodulated signal and the voltage signal of the AC magnetic field generator; and a scanning mechanism that causes the probe to scan the scanning region on the surface of the magnetic sample.
  • the magnetic probe is [1] to [12] magnetic force, characterized in that a microscope probe, a strong magnetic field generated magnetic field observation apparatus sample according to any one of.
  • no magnetic saturation in the magnetic probe is determined based on the fact that magnetization is not saturated when an external magnetic field of 20 kOe is applied.
  • the demodulator (A) The frequency of the detection signal of the vibration sensor is demodulated, or (B) Measure the intensity of the sideband spectrum included in the detection signal of the vibration sensor, [13] The magnetic field observation apparatus according to [13].
  • the demodulated signal processing apparatus includes: (X) measuring the amplitude of the demodulated signal obtained from the demodulator and the phase difference between the demodulated signal and the current signal or voltage signal of the AC magnetic field generator; (Y) measuring the in-phase component and the quadrature component of the demodulated signal obtained from the demodulator with respect to the current signal of the AC magnetic field generator; The magnetic field observation apparatus according to [13] or [14].
  • the image display device according to [13] to [17], further including an image display device that displays a magnetic field distribution image based on DC magnetic field information at each coordinate of the scanning region obtained by scanning the scanning region with the scanning mechanism.
  • the magnetic field observation apparatus according to any one of the above.
  • a magnetic field observation method for observing a DC magnetic field leaking from a magnetic material sample comprising exciting a cantilever having a magnetic probe that generates no magnetic saturation in the applied magnetic field direction at one end without magnetic saturation. Applying an alternating magnetic field of a magnitude that does not reverse the magnetization of the magnetic sample to the probe, and periodically modulating the magnetization of the probe to frequency-modulate the excitation vibration of the cantilever; and detecting the probe vibration And a step of demodulating a signal corresponding to an alternating current component of the magnetic force generated between the probe and the observation sample from the detection signal; and a DC magnetic field from the demodulated signal and the voltage signal of the alternating magnetic field generator.
  • the method further includes a step of displaying, on the image display device, a magnetic field distribution image based on DC magnetic field information at each coordinate of the scanning region obtained by scanning the scanning region with the scanning mechanism.
  • Magnetic field observation method in any one of.
  • the magnetic force microscope probe of the present invention for a magnetic force microscope, for example, a magnetic sample that generates a strong DC magnetic field represented by a permanent magnet can be observed with a magnetic force microscope with high spatial resolution. It becomes possible to do.
  • the magnetic field observation apparatus and magnetic field observation method of the present invention it is possible to observe a magnetic field with high spatial resolution near the surface of a magnetic sample that generates a strong DC magnetic field, such as a permanent magnet. is there. Also, the polarity of the magnetic pole on the surface of the magnetic material sample can be detected.
  • FIG. 2 is an AA arrow view of FIG. 1. It is a flowchart explaining the method to manufacture the probe for magnetic force microscopes concerning one Embodiment of this invention. It is a figure which illustrates typically the structure of the sputtering device used for film-forming of a magnetic film. It is a figure which illustrates typically the composition of the magnetic field observation device concerning one embodiment of the present invention. It is a figure for demonstrating the measurement principle by the magnetic field observation apparatus of this invention. 2 is a graph showing the results of magnetic property evaluation of an Fe—Mn solid solution paramagnetic thin film formed in Example 1.
  • FIG. 1 is a graph showing the results of magnetic property evaluation of an Fe—Mn solid solution paramagnetic thin film formed in Example 1.
  • FIG. 6 is a graph group showing the results of magnetic property evaluation of an Fe—Mo—B amorphous paramagnetic thin film formed in Example 2.
  • FIG. 10 is a graph showing the results of initial susceptibility evaluation of a Co—Ag granular superparamagnetic thin film formed in Example 3.
  • the magnetization curve of the Ag 79 Co 21 thin film (deposition rate 0.80 nm / sec) and the Ag 85 Co 15 thin film (deposition rate 0) .20 nm / sec) is compared with the magnetization curve.
  • Example 3 Of the Co—Ag granular superparamagnetic thin film formed in Example 3, the temperature dependence of the initial magnetic susceptibility of the Ag 79 Co 21 thin film (deposition rate 0.80 nm / sec) and the Ag 83 Co 17 thin film It is a graph group which compares the temperature dependence of the initial magnetic susceptibility of (film formation rate 0.54 nm / sec). It is a figure which shows the observation result in the surface vicinity of Example 4 in Example 4.
  • FIG. 3 the temperature dependence of the initial magnetic susceptibility of the Ag 79 Co 21 thin film (deposition rate 0.80 nm / sec) and the Ag 83 Co 17 thin film
  • FIG. 1 is a diagram schematically illustrating a magnetic force microscope probe 100 (hereinafter sometimes abbreviated as “probe 100”) according to an embodiment of the present invention
  • FIG. FIG. 2 is an AA arrow view of FIG. 1.
  • a magnetic force microscope probe 100 includes a triangular pyramid-shaped core member 10 made of a non-magnetic material, and a coating of a magnetic material that covers at least a part of the surface of the core member 10. 30 (hereinafter sometimes abbreviated as “magnetic coating 30”).
  • the magnetic force microscope probe 100 is erected at one end of the cantilever 20 by fixing the bottom surface of the triangular pyramid-shaped core member to one end of the cantilever 20.
  • the magnetic material coating 30 may cover not only the surface of the core member 10 but also the surface of the cantilever 20.
  • the probe 100 is provided with at least one magnetic material by covering the surface of the core member 10 with the magnetic coating 30.
  • the probe 100 is characterized in that the magnetization does not saturate when a magnetic field is applied at room temperature, more specifically over a temperature range of at least 10 to 30 ° C. Therefore, by using the probe 100 for an alternating magnetic force microscope, even when a strong magnetic field generating sample such as a permanent magnet is observed, the saturation of the probe magnetization due to the strong surface magnetic field from the sample does not occur. Frequency modulation can be generated in the probe vibration by applying a magnetic field. Therefore, it is possible to observe the magnetic field with high spatial resolution using an alternating magnetic force microscope.
  • the probe 100 does not have magnetization at room temperature, more specifically, at least in the temperature range of 10 to 30 ° C. under a condition where no magnetic field is applied, regardless of whether the probe 100 is demagnetized or magnetized.
  • the probe 100 having no remanent magnetization (and hence no hysteresis) under a condition in which no magnetic field is applied high-precision measurement is possible when measuring a DC magnetic field gradient using an alternating magnetic force microscope. Become.
  • the core member 10 is made of a non-magnetic material and is a member that determines the general shape of the probe 100 and plays a role of holding the magnetic coating 30 on the surface.
  • One end portion of the core member 10 is erected on one end portion of the cantilever 20, and the other end portion of the core member 10 is shaped so as to point toward the tip.
  • a nonmagnetic material having a strength necessary for maintaining the shape of the probe 100 can be used without particular limitation, such as Si, Si—N, Si—O, and the like. Can be preferably used. In the probe 100 shown in FIGS.
  • the core member 10 has a triangular pyramid shape, but the shape of the core member 10 is not limited to the triangular pyramid shape.
  • the shape can be appropriately selected as long as the spatial resolution and the necessary intensity required for magnetic field observation with a magnetic force microscope can be ensured.
  • the shape has a sharp tip portion, and the end portion on the side fixed to the cantilever 20 has some degree to facilitate fixing to the cantilever 20. It is preferable to have a size of Considering such circumstances, a pyramid shape such as a triangular pyramid shape, a quadrangular pyramid shape, or a conical shape can be preferably employed.
  • the magnetic material constituting the magnetic coating 30 can be one or more magnetic materials selected from the group consisting of paramagnetic materials and superparamagnetic materials. Since the magnetic moment of magnetic materials other than these ferromagnetic materials is much smaller than that of ferromagnetic materials, the magnetic film 30 is composed of these magnetic materials, so that a magnetic field generating sample such as a permanent magnet can be obtained using a magnetic force microscope. Even when the magnetic field is observed, the probe is detected by the magnetic force acting on the probe 100 due to the magnetic interaction between the magnetic moment induced in the probe 100 by the magnetic field from the magnetic sample and the magnetic moment of the magnetic sample. It is possible to prevent the needle 100 from being magnetically attracted to the magnetic sample.
  • the film thickness of the magnetic coating 30 is determined by the measurement sensitivity in the magnetic force microscope (the sensitivity increases as the magnetic coating 30 is thicker) and the spatial resolution (the tip of the probe 100 becomes duller as the magnetic coating 30 is thicker). Can be determined as appropriate in consideration of a tradeoff with
  • the initial magnetic susceptibility of the magnetic material constituting the magnetic coating 30 is preferably 3 ⁇ 10 ⁇ 8 H / m or more at room temperature, more specifically over a temperature range of at least 10 to 30 ° C.
  • Paramagnetic materials show the greatest magnetic susceptibility near the Curie temperature (Hopkinson effect). Therefore, as a paramagnetic material that can be preferably used as the magnetic material constituting the magnetic coating 30, it is possible to increase the magnetic susceptibility by adjusting the Curie temperature of the paramagnetic material and increase the measurement sensitivity of the magnetic force microscope.
  • a magnetic material containing one or more ferromagnetic elements and one or more nonmagnetic elements can be preferably used.
  • solid solution type paramagnetic material A material in which one or more kinds of ferromagnetic elements and one or more kinds of nonmagnetic elements form an amorphous structure (hereinafter sometimes referred to as “amorphous paramagnetic material”) can be preferably used.
  • the ferromagnetic element is one or more ferromagnetic elements selected from the group consisting of Ni, Fe, and Co, and the nonmagnetic elements are Ti, V, Cr, One or more nonmagnetic elements selected from the group consisting of Mn, Cu, Zn, Zr, Nb, Mo, Ta, W, B, Al, C, O, N, and Si are preferable. From the viewpoint of lowering the Curie temperature with a small amount of nonmagnetic element, it is more preferable to include one or more elements selected from Cr, Mn, and Mo as the nonmagnetic element.
  • the (a) solid solution type paramagnetic material has a composition in which the total content of ferromagnetic elements is 50 to 70 atomic% and the total content of nonmagnetic elements is 30 to 50 atomic% with respect to the total amount of the solid solution type paramagnetic material. It is preferable to have.
  • the amorphous paramagnetic material (b) has a total content of ferromagnetic elements of 70 to 90 atomic% and a total content of nonmagnetic elements of 10 to 30 atoms with respect to the total amount of the amorphous paramagnetic material. % Of the composition.
  • the (a) solid solution type paramagnetic material examples include Ni—Cr solid solution (for example, Ni 93 Cr 7 (initial magnetic susceptibility 4.7 ⁇ 10 ⁇ 8 H / m at 25 ° C.)), Fe—Cr solid solution (for example, Fe 59 Cr 41 (initial magnetic susceptibility 6.0 ⁇ 10 ⁇ 8 H / m at 25 ° C.), Fe—Mn solid solution (eg Fe 67 Mn 33 (initial magnetic susceptibility 1.2 ⁇ 10 ⁇ 7 H at 25 ° C.) / M)) etc. can be mentioned preferably.
  • Ni—Cr solid solution for example, Ni 93 Cr 7 (initial magnetic susceptibility 4.7 ⁇ 10 ⁇ 8 H / m at 25 ° C.)
  • Fe—Cr solid solution for example, Fe 59 Cr 41 (initial magnetic susceptibility 6.0 ⁇ 10 ⁇ 8 H / m at 25 ° C.)
  • Fe—Mn solid solution eg Fe
  • (b) amorphous paramagnetic material examples include Fe—Mo—B amorphous materials (for example, Fe 86 Mo 7.5 B 6.5 (initial magnetic susceptibility of 1.4 ⁇ 10 5 at 25 ° C.). -7 H / m)) and the like can be preferably mentioned.
  • a method of depositing each component on the surface of the core member 10 by simultaneous sputtering can be preferably employed.
  • the composition of the magnetic coating 30 deposited on the surface of the core member 10 can be adjusted by the amount of electric power applied to the sputtering target of each component and the amount of the thin film material sheet attached to the sputtering target.
  • the magnetic material that can be used for the magnetic coating 30 and exhibits superparamagnetism includes (c) one or more types of ferromagnetic particles and one or more types of nonmagnetic materials, and the ferromagnetic particles are nonmagnetic.
  • a magnetic material having a structure dispersed and supported in the material (hereinafter sometimes referred to as “granular superparamagnetic material”) can be preferably exemplified.
  • granular superparamagnetic materials fine ferromagnetic particles are dispersed in a non-magnetic matrix and exist in a magnetically isolated state, and the magnetic energy of the ferromagnetic particles is below a certain threshold with respect to thermal energy. As a result, the magnetic moment of the ferromagnetic particles changes its direction at random due to the influence of heat, so that superparamagnetism appears.
  • the content of the ferromagnetic particles is 10 to 45% by volume and the content of the nonmagnetic material is 55 to 90% by volume with respect to the total amount of the magnetic material. Is preferred.
  • the content of the ferromagnetic particles is more preferably 15 to 40% by volume, and the content of the nonmagnetic material is more preferably 60 to 85% by volume.
  • the particle size of the ferromagnetic material particles in the granular superparamagnetic material is the sphere equivalent diameter by image analysis.
  • the average value is preferably 30 nm or less, and more preferably 5 to 10 nm.
  • the particle size of the ferromagnetic material has a critical particle size unique to the material. When the particle size of the ferromagnetic material exceeds this critical particle size, the ferromagnetic material particle changes from the superparamagnetic state to the ferromagnetic state and exhibits magnetic hysteresis.
  • the size of the ferromagnetic material particles is preferably set to be equal to or smaller than the critical particle size of the material.
  • the particle size of the cobalt particles is preferably 30 nm or less, and more preferably 10 nm or less.
  • the sphere equivalent diameter by the image analysis method of the ferromagnetic particles means that when the surface of the magnetic material is observed at a magnification of 100,000 to 200,000 by secondary electron detection using a scanning electron microscope (SEM). And the diameter of a circle having an area equal to the area occupied by ferromagnetic particles in the SEM image.
  • the average value shall mean the value which took the arithmetic average of the said spherical conversion diameter about 100 or more ferromagnetic particles of the same magnetic material sample.
  • Examples of the constituent material of the granular superparamagnetic material include a combination of a non-solid solution metal composed of a ferromagnetic metal and a nonmagnetic metal, and a combination of a ferromagnetic metal and a nonmagnetic nonmetallic material.
  • the ferromagnetic particles particles of one or more ferromagnetic elements selected from the group consisting of Ni, Fe, and Co can be preferably used, and as the nonmagnetic material, Au, Ag, From Cu, silicon dioxide, titanium oxide, tungsten oxide, chromium oxide, cobalt oxide, tantalum oxide, boron oxide, magnesium oxide, cerium oxide, yttrium oxide, nickel oxide, aluminum oxide, ruthenium oxide, rare earth element oxide, and carbon
  • the rare earth element oxide for example, gadolinium oxide, terbium oxide and the like can be preferably employed.
  • particles of Co which is a ferromagnetic metal
  • a matrix of one or more nonmagnetic metals selected from the group consisting of Cu, Ag, and Au.
  • the material can be mentioned.
  • Examples of superparamagnetic materials by combining ferromagnetic metals and nonmagnetic nonmetallic materials include, for example, silicon dioxide, titanium oxide, tungsten oxide, chromium oxide, cobalt oxide, tantalum oxide, boron oxide, magnesium oxide, cerium oxide, and yttrium oxide. Selected from the group consisting of Fe, Co, and Ni in a matrix of one or more nonmagnetic non-metallic materials selected from the group consisting of nickel oxide, aluminum oxide, ruthenium oxide, rare earth element oxide, and carbon A material in which particles of one or more kinds of ferromagnetic metals are dispersed can be given.
  • the rare earth element oxide for example, gadolinium oxide, terbium oxide and the like can be preferably employed.
  • the film of the granular type superparamagnetic material is formed by, for example, forming a nonmagnetic material and a ferromagnetic material at a higher film deposition rate than usual (for example, 0.2 to 1.0 nm / sec in the case of Ag-Co). )) By co-sputtering. Since the material is rapidly cooled by increasing the deposition rate, the size of the dispersed ferromagnetic material particles can be reduced.
  • the initial magnetic susceptibility of a granular superparamagnetic material at room temperature is preferably 2 ⁇ 10 ⁇ 7 H / m or more, and can be 1 ⁇ 10 ⁇ 6 H / m or more. Therefore, according to the probe 100 using a granular superparamagnetic material for the magnetic coating 30, it is possible to increase the measurement sensitivity of the magnetic force microscope even with the same film thickness. Further, since the same level of measurement sensitivity can be obtained with a thinner film thickness, the tip of the probe 100 can be sharpened, and thus the spatial resolution of magnetic field measurement by a magnetic force microscope can be increased. .
  • the probe 100 with improved temperature stability of magnetic characteristics.
  • the probe 100 having no temperature dependency in the range of the magnetic susceptibility in the range from room temperature 25 ° C. to 200 ° C. may be used.
  • the probe 100 using a granular superparamagnetic material for the magnetic coating 30 has improved temperature stability of magnetic characteristics such as initial magnetic susceptibility. Therefore, for example, the temperature of the magnetic sample is observed as in the observation of the magnetic domain structure of a permanent magnet. Even when the dependence is evaluated, it is possible to obtain a highly accurate evaluation result.
  • FIG. 3 is a flowchart for explaining a manufacturing method S10 of the probe 100 (hereinafter sometimes simply referred to as “manufacturing method S10”).
  • the manufacturing method S ⁇ b> 10 includes a step S ⁇ b> 1 for preparing the core member 10 fixed to one end of the cantilever 20 (hereinafter sometimes simply referred to as “step S ⁇ b> 1”), and a core.
  • Step S2 for forming the magnetic coating 30 on the exposed surface of the member 10 (hereinafter sometimes simply referred to as “Step S2”) is included in the above order.
  • a core member 10 made of Si, which is a nonmagnetic material, is prepared.
  • the core member 10 is processed so as to have a shape desired for the probe 100.
  • the core member 10 can be manufactured, for example, by performing anisotropic etching on a Si single crystal wafer.
  • the core member 10 is fixed to one end of the cantilever 20.
  • the core member 10 can be fixed to the cantilever 20 by a known method. Thereafter, the core member 10 and the cantilever 20 are handled as a unit in a later process.
  • Si which comprises the core member 10 in order to ensure electroconductivity, you may use Si doped with an impurity.
  • Step S2 is a step of forming the magnetic coating 30 on the exposed surface of the core member 10 by simultaneous sputtering.
  • FIG. 4 is a diagram illustrating the sputtering apparatus 200 used in step S2.
  • the sputtering apparatus 200 has a sealed chamber 41 (a chamber for a magnetron sputtering apparatus, which may be abbreviated as “chamber 41” in the following).
  • a rotation holding base 42 that is rotatably arranged through a rotation drive shaft 43 and rotatably holds the core member 10
  • a ferromagnetic element target 44 for example, a Co target. 44
  • a non-magnetic element target 45 for example, an Ag target.
  • target 45 Argon gas is supplied into the chamber 41 in a vacuumed state so that the core member 10 can be sputtered.
  • the distance between each target 44, 45 and the core member 10 can be changed from 70 mm to 120 mm.
  • the ferromagnetic element target 44 is connected to a DC power source for sputtering.
  • the nonmagnetic element 45 is connected to a high frequency (for example, RF) power source for sputtering.
  • the frequency of the high frequency power source for the nonmagnetic element target 45 can be set to 13.56 MHz, for example. High power is applied to each target 44 and 45 so that high-speed argon ions for sputtering are directed to each target 44 and 45.
  • the composition of the magnetic coating film 30 formed by sputtering can be adjusted by changing the power applied to each of the targets 44 and 45 (the diameter can be set to 75 mm, for example), for example (50 W to 250 W, etc.). It is like that.
  • the core member 10 integrated with the cantilever 20 is held by the rotation holding table 42.
  • the rotation holding table 42 is rotated at a speed of, for example, 10 rpm during film formation. Further, the rotation holding table 42 can be moved up and down, and the distance between the rotation holding table 42 and the nonmagnetic element target 45 can be changed from 70 mm to 120 mm.
  • the magnetic film 30 is formed by co-sputtering at room temperature. That is, both the ferromagnetic element target 44 and the nonmagnetic element target 45 are used as sputtering targets, and both elements are simultaneously formed by sputtering.
  • the non-magnetic element for example, Ag
  • the magnetic crystal grains of the ferromagnetic element for example, Co
  • are non-magnetic elements for example, Ag.
  • the thickness of the magnetic coating 30 containing a nonmagnetic substance can be set to 10 to 100 nm, for example.
  • the time required for film formation is about 3 to 5 minutes.
  • the magnetic force microscope probe 100 is manufactured through the steps S1 and S2.
  • the manufacturing process of the form in which the magnetic coating 30 is formed by co-sputtering a ferromagnetic element and a nonmagnetic element has been exemplified.
  • the manufacturing method of the probe for use is not limited to this form.
  • a nonmagnetic element for example, Ag
  • a ferromagnetic element for example, Co
  • a form in which a magnetic film is formed by simultaneous sputtering as described above can be preferably employed.
  • FIG. 5 is a diagram schematically illustrating the magnetic field observation apparatus 1000 according to one embodiment of the present invention.
  • the magnetic field observation apparatus 1000 is an apparatus that observes a DC magnetic field leaking from the magnetic sample 1.
  • the magnetic field observation apparatus 1000 includes a probe 100, an exciter 200, an AC magnetic field generator 300, a vibration sensor 400, a demodulator 430, a demodulated signal processing device 440, the probe 100, and the magnetic material sample 1.
  • a scanning mechanism 500 that causes the probe 100 to scan the observation surface of the magnetic sample 1 and an image display device 600.
  • the magnetic material sample 1 that is a measurement target of the magnetic field observation apparatus 1000 is a sample that generates a strong DC magnetic field.
  • a specific example of the magnetic material sample 1 is a permanent magnet.
  • the probe 100 is a magnetic probe that has no magnetic saturation and generates a magnetic moment in the direction of the applied magnetic field, and is provided at one end of the cantilever 11.
  • the probe 100 is the magnetic force microscope probe 100 of the present invention described above.
  • the probe 100 is affected by a direct-current magnetic field leaking from the magnetic sample 1 by being disposed on the magnetic sample 1.
  • the magnitude of the magnetization of the probe 100 is periodically changed in the direction of the AC magnetic field by the AC magnetic field generated from the AC magnetic field generator 300.
  • the magnetic force acting on the probe 100 due to the magnetic interaction between the magnetization of the probe 100 and the DC magnetic field leaking from the magnetic sample 1 has an AC component.
  • the strength of the magnetic force acting on the probe 100 varies periodically. Therefore, the apparent spring constant of the cantilever 110 periodically varies, and as a result, the excitation vibration of the cantilever 110 (that is, the vibration of the probe 100) is frequency-modulated.
  • the degree of periodic frequency modulation of the vibration of the probe 100 is measured by a demodulator 430 and a demodulated signal processing device 440 described later.
  • the probe 100 is a magnetic probe that has no magnetic saturation and generates a magnetic moment in the applied magnetic field direction.
  • the magnetization of the probe is saturated by the strong DC magnetic field leaking from the magnetic sample 1, and an AC magnetic field is applied.
  • frequency modulation cannot be caused in the excitation vibration of the cantilever.
  • the probe may contain a ferromagnet (ie, a material with magnetic saturation). Even if the magnetization of the ferromagnet is saturated by the DC magnetic field from the magnetic sample 1, the magnetization of the magnetic material without magnetic saturation can be changed by applying an AC magnetic field. It can be changed by applying.
  • a ferromagnet ie, a material with magnetic saturation
  • the residual magnetization is not zero but has hysteresis, but as long as a strong DC magnetic field such as a permanent magnet is observed, the magnetization of the entire probe is hysteresis. It fluctuates in a reversible region outside the region. Therefore, as long as the probe 100 is not attracted to the magnetic material sample 1 and the measurement itself is not disabled, the probe including the ferromagnetic material in addition to the magnetic material that does not have magnetization saturation and generates a magnetic moment in the direction of the applied magnetic field. It can be used in the invention. However, from the viewpoint of measurement accuracy, the probe 100 preferably has no magnetic hysteresis.
  • the magnetic material that has no magnetic saturation and generates a magnetic moment in the direction of the applied magnetic field it is preferable to use a paramagnetic or superparamagnetic material, and to use a superparamagnetic material (superparamagnetic material). Is particularly preferred.
  • Superparamagnetic materials exhibit a high magnetic susceptibility compared to paramagnetic materials, and are advantageous for magnetic field detection with high sensitivity.
  • the film thickness of the magnetic material in the probe 100 is not particularly limited, and can be appropriately determined in consideration of the trade-off between magnetic field measurement sensitivity and spatial resolution, and can be, for example, 10 to 100 nm.
  • a multi-component paramagnetic material containing one or more ferromagnetic elements and one or more nonmagnetic elements can be preferably exemplified.
  • Paramagnetic materials exhibit the highest magnetic susceptibility near the Curie temperature (Hopkinson effect). Therefore, according to the multi-component paramagnetic material, the magnetic susceptibility at the measurement temperature can be adjusted by changing the composition and adjusting the Curie temperature. It is possible to increase the measurement sensitivity of the magnetic force microscope.
  • the (a) solid solution type paramagnetic material and the (b) amorphous type paramagnetic material can be preferably used as the multi-component paramagnetic material.
  • the above-mentioned (c) granular superparamagnetic material (sufficiently small particles of a ferromagnetic material are dispersed in a nonmagnetic matrix, and the ferromagnetic material particles are 10 to 45 in total.
  • examples thereof include materials having a structure occupying volume%, preferably 15 to 40 volume%. Ferromagnetic material particles occupy 10 to 45% by volume of the whole, so percolation occurs (in the sphere approximation model, when two kinds of spheres are mixed, the same kind of spheres are not in contact with each other). Strong magnetic interaction (exchange interaction) between particles can be suppressed.
  • the magnetization direction of the particle is randomized by thermal energy, and the magnetization of the individual particles cancels out in the absence of a magnetic field. Transition to magnetism. Since the magnetization is zero under no magnetic field, the residual magnetization and the coercive force are also zero at the same time.
  • magnetization occurs only in the direction of the magnetic field, and magnetization in the direction perpendicular to the magnetic field cancels between individual particles, so the superparamagnetic material does not have a magnetization component perpendicular to the direction in which the magnetic field is applied. .
  • Superparamagnetic materials transition from superparamagnetism to ferromagnetism as the temperature drops, and the transition temperature is called the blocking temperature.
  • the temperature of the probe in use is kept above the blocking temperature.
  • the probe 100 is provided near one end (free end) of the cantilever 110, and the other end (fixed end) of the cantilever 110 is fixed.
  • the probe 100 can be excited by exciting the cantilever 110 with the exciter 200.
  • the configuration of the exciter 200 is not particularly limited.
  • the exciter 200 can be configured by, for example, an excitation actuator (for example, a piezo element) attached near the fixed end of the cantilever 110 and an AC voltage power source connected to the excitation actuator.
  • the frequency at which the exciter 200 excites the cantilever 110 is not particularly limited as long as excitation is possible, but normally a frequency near the resonance frequency of the cantilever 110 is preferably adopted as the excitation frequency.
  • the AC magnetic field generator 300 is an apparatus that applies an AC magnetic field having a magnitude that does not cause magnetization reversal of the magnetic sample 1 to the probe 100.
  • an alternating magnetic field generation mechanism 300 is arranged immediately below the magnetic material sample 1, and a magnetic core 330 around which the coil 320 is wound, and an alternating current that supplies an alternating current to the coil 320. It can be constituted by a current power source 310.
  • the coil 320 and the magnetic core 330 constitute an AC electromagnet.
  • the AC magnetic field generated from the AC magnetic field generator 300 has a small spatial change. Specifically, the DC component of the magnetization at the tip of the probe 100 (that is, the magnetization due to the DC magnetic field leaking from the magnetic sample 1) and the spatial change gradient of the AC magnetic field applied from the AC magnetic field generator 300 to the probe 100. Is the space between the AC component of the magnetization at the tip of the probe 100 (that is, the magnetization fluctuation due to the AC magnetic field applied from the AC magnetic field generator 300) and the DC magnetic field applied from the magnetic sample 1 to the probe 100. It is preferably smaller than the product of the change gradient. In order to reduce the spatial change gradient of the alternating magnetic field, it is conceivable to apply an alternating magnetic field having a uniform size to the measurement space between the magnetic sample 1 and the probe 100.
  • the AC magnetic field generator 300 is used in the case of measuring a DC magnetic field in the same direction as the component to be measured of the DC magnetic field leaking from the magnetic sample 1 (for example, a direction perpendicular to the observation surface of the magnetic sample 1). Is preferably applied in the direction perpendicular to the observation plane). The reason is that in the magnetic force microscope of the present invention, a magnetic field component (projection component in the magnetization direction of the probe) generated in the direction of application of the alternating magnetic field and parallel to the magnetization direction of the probe is detected. .
  • the frequency of the AC magnetic field generated from the AC magnetic field generator 300 is not particularly limited as long as the frequency modulation of the vibration of the probe 100 can be detected, and may be, for example, 10 Hz to 1 kHz.
  • the sideband frequency generated by frequency modulation of the excitation vibration can obtain a necessary gain in the resonance curve.
  • a frequency that falls within the range can be appropriately selected.
  • the intensity of the AC magnetic field applied to the probe 100 by the AC magnetic field generator 300 is appropriately adjusted within a range where the probe 100 is not attracted to the magnetic sample 1 and a desired magnetic field measurement sensitivity can be obtained. be able to.
  • the installation position of the elements constituting the AC magnetic field generation mechanism 300 is not particularly limited.
  • an AC electromagnet composed of a magnetic core 330 and a coil 320 is arranged immediately below the magnetic sample 1.
  • an AC electromagnet or the like that generates an AC magnetic field is installed under the MFM sample mounting table. It is done.
  • the AC magnetic field generation mechanism 300 can be installed so that the space around the probe 100 can be widened and an AC magnetic field can be applied to the probe 100 from a position closer to the probe 100 than the magnetic sample 1. It is.
  • vibration sensor 400 Due to the magnetic interaction between the magnetization of the probe 100 and the DC magnetic field from the magnetic sample 1, the probe 100 receives a magnetic force whose intensity periodically varies. This magnetic force whose intensity periodically changes causes the apparent spring constant of the cantilever 110 to periodically change. In this way, the apparent spring constant of the cantilever 110 periodically varies, so that the vibration frequency of the probe 100 varies periodically.
  • the vibration sensor 400, demodulator 430, and demodulated signal processing device 440 can extract DC magnetic field information from the magnetic sample 1 at the position of the probe 100 from the vibration of the probe 100 that has been frequency-modulated.
  • the vibration sensor 400 includes a light source 410 that irradiates laser light on the free end of the cantilever 110 and an optical displacement sensor 420 that detects the laser light reflected by the cantilever 110. Yes.
  • the displacement of the probe 100 can be extracted as an output.
  • An output from the optical displacement sensor 420 detected by the scanning mechanism 600 described later while scanning the observation surface of the magnetic sample 1 with the probe 100 is input to the demodulator 430.
  • the detection signal of the vibration sensor 400 is a vibration in which the excitation vibration of the cantilever 110 is frequency-modulated by the AC component of the magnetic force generated between the probe 100 and the magnetic sample 1.
  • the demodulator 430 demodulates a signal corresponding to the alternating current component of the magnetic force generated between the probe 100 and the magnetic sample 1 from the detection signal of the vibration sensor 400.
  • the demodulator 430 is an FM demodulator that frequency-demodulates the detection signal of the vibration sensor 400.
  • a circuit known as an FM demodulator such as a PLL (Phase Locked Loop) circuit, can be employed without any particular limitation.
  • the demodulator 430 a demodulator that measures the intensity of the sideband spectrum included in the detection signal of the vibration sensor 400 can be adopted.
  • a spectrum analyzer is used as the demodulator.
  • the signal demodulated by the demodulator 430 is input to the demodulated signal processing device 440.
  • the demodulated signal processing device 440 extracts DC magnetic field information from the demodulated signal input from the demodulator 430 and the voltage signal from the AC magnetic field generator 300.
  • the demodulated signal processing apparatus 440 is configured by a lock-in amplifier.
  • the demodulated signal processing device 440 measures the amplitude R of the demodulated signal obtained from the demodulator 430 and the phase difference ⁇ between the demodulated signal and the current signal or voltage signal (reference signal) of the AC magnetic field generator 300, or The in-phase component X and the quadrature component Y of the demodulated signal obtained from the demodulator 430 with respect to the current signal (reference signal) of the AC magnetic field generator 300 are measured. As a result, the amplitude and phase can be accurately calculated from the in-phase component X and the quadrature component Y, and the phase delay and the like can be evaluated from the quadrature component.
  • the reference signal of the lock-in amplifier is represented by R ref cos ( ⁇ t) (where R ref takes a positive value), and the demodulated signal having the same angular frequency ⁇ as the reference signal measured by the lock-in amplifier is represented by R cos.
  • R ref takes a positive value
  • the demodulated signal is an alternating current component ( ⁇ F m / ⁇ z) cos ( ⁇ m t + ⁇ ) of the magnetic force gradient acting on the probe 100 as will be described later.
  • the magnetic force gradient amplitude ( ⁇ F m / ⁇ z) is proportional to the product of the periodically changing probe magnetization amplitude and the DC magnetic field gradient from the magnetic sample 1, so that the probe magnetization When the AC magnetic field is applied to change the sine wave shape at the angular frequency ⁇ , this corresponds to the strength (positive value) of the DC magnetic field gradient.
  • the phase difference ⁇ with the reference signal of the demodulated signal corresponds to the phase difference with the reference signal of the magnetic force gradient, and is used for detecting the polarity of the DC magnetic field from the magnetic sample 1 as will be described later. it can.
  • the in-phase component X and the quadrature component Y of the amplitude R and phase ⁇ described above and the reference signal R ref cos ( ⁇ t) are related by the following equations (1) and (2).
  • the in-phase component is measured using a lock-in amplifier with the voltage signal of the AC magnetic field generator 300 as a reference signal
  • the AC magnetic field generator 300 includes an inductance component and a resistance component in terms of an electric circuit. The phase of the current signal for generating the alternating magnetic field is delayed with respect to the voltage signal of the magnetic field generator 300, and therefore phase adjustment is required.
  • the in-phase component is measured with the lock-in amplifier using the current signal of the AC magnetic field generator 300 as a reference signal
  • the gradient of the DC magnetic field from the sample in the direction parallel to the AC magnetic field application direction is detected at the maximum value.
  • a ferromagnetic material is used for the probe (a soft magnetic material refers to a ferromagnetic material having a low coercive force. ).
  • a soft magnetic material refers to a ferromagnetic material having a low coercive force.
  • the magnetic moment also has a component perpendicular to the AC magnetic field direction, except when the magnetic moment is completely parallel to the application direction of the AC magnetic field.
  • an alternating magnetic field is applied perpendicular to the sample surface, and the magnetic field in the direction perpendicular to the sample surface is measured, and is generated from the sample surface except when the magnetic moment is completely parallel to the alternating magnetic field.
  • the magnetic force due to the interaction between the vertical component of the magnetic field and the probe magnetization the magnetic force due to the interaction between the in-plane component of the magnetic field generated from the sample surface and the probe magnetization also acts on the probe, resulting in a detection signal. It will be included. For this reason, in order to measure the vertical magnetic field component and the in-plane magnetic field component separately, complicated phase adjustment processing as in the magnetic profile measuring device described in Patent Document 5 is required for processing the detection signal.
  • the magnetic probe 100 without magnetic saturation (that is, non-ferromagnetic) is used instead of the ferromagnetic probe with magnetic saturation, so that an AC magnetic field is applied to the probe 100.
  • the probe magnetization occurs only in the direction in which the alternating magnetic field is applied, and does not occur in the direction perpendicular to the direction in which the alternating magnetic field is applied.
  • the AC component of the magnetic force that the probe 100 receives from the DC magnetic field from the magnetic sample 1 is derived from only the component in the AC magnetic field application direction of the DC magnetic field from the magnetic sample 1. Therefore, according to the present invention, the measurement direction of the DC magnetic field from the sample can be controlled only by changing the direction of the AC magnetic field applied to the probe, and the signal processing process can be greatly simplified.
  • the scanning mechanism 500 is a mechanism that can relatively change the positions of the probe 100 and the magnetic material sample 1.
  • the scanning mechanism 500 causes the probe 100 to scan the scanning area on the surface of the magnetic sample 1.
  • the scanning mechanism for example, by moving the sample mounting table on which the magnetic sample 1 is placed by a driving device, the position of the sample mounting table is changed relative to the probe 100, thereby the probe 100.
  • the magnetic material sample 1 can be a mechanism capable of relatively changing the position.
  • An example of such a mechanism is an XY stage.
  • a known mechanism for example, a piezo element used in a conventional scanning probe microscope or the like can be used.
  • the image display device 600 is a device that displays a magnetic field distribution image based on DC magnetic field information from the magnetic material sample 1 at each coordinate of the scanning region obtained by scanning the scanning region with the scanning mechanism 500.
  • the image display device 600 is not particularly limited as long as it has a configuration capable of imaging the output signal from the demodulated signal processing device 440 obtained as described above in correspondence with the coordinates.
  • a display device capable of imaging an external input signal as provided in a scanning probe microscope can be used.
  • the magnetic force due to the magnetic interaction between the magnetization of the probe 100 and the magnetization of the magnetic sample 1 having a magnetic material as a constituent element has a frequency (non-resonant frequency) different from the resonance frequency of the cantilever. Due to the alternating current component, the vibration frequency of the probe 100 is periodically modulated.
  • FIG. 6A schematically shows a state where an alternating magnetic field having a frequency (non-resonant frequency) different from the resonance frequency of the probe 100 is applied to the probe 100 vibrating at a constant frequency.
  • FIG. 6B schematically shows a model in which the movement of the probe 100 is compared to a spring with a weight m attached to the tip.
  • the frequency modulation phenomenon in which the alternating current component of the magnetic force (non-resonant alternating magnetic force) having a frequency (non-resonant frequency) different from the resonance frequency of the cantilever in the vibration of the probe 100 is a modulation source as shown in FIG. It is derived by considering the motion of the harmonic oscillator (formula (3) below) in which the spring constant periodically changes due to the AC component of the force.
  • the alternating magnetic field H z ac cos ( ⁇ m t) is generated by the alternating current I ac cos ( ⁇ m t) supplied to the alternating magnetic field source.
  • the measurement direction of the DC magnetic field generated from the magnetic sample 1 is the direction in which the AC magnetic field is applied, that is, the direction perpendicular to the sample surface of the magnetic sample 1 (z direction).
  • the magnetization of the probe 100 receiving the DC magnetic field H z dc in the direction perpendicular to the observation surface of the magnetic sample 1 and the DC magnetic field H x dc in the direction parallel to the observation surface is perpendicular to the observation surface of the magnetic sample 1.
  • M tip Magnetization of the probe 100.
  • M z dc DC magnetization component in the direction perpendicular to the observation surface generated by the DC magnetic field H z dc in the direction perpendicular to the observation surface out of the magnetization of the probe 100.
  • M x dc DC magnetization component in the direction parallel to the observation surface generated by the DC magnetic field H x dc in the direction parallel to the observation surface in the magnetization of the probe 100.
  • M z ac Observation surface in the magnetization of the probe 100 The amplitude of the alternating magnetization in the direction perpendicular to the observation surface generated by the alternating magnetic field H z ac in the direction perpendicular to.
  • the equation is developed using the fact that the probe magnetization can detect a magnetic field in the same direction as the magnetization direction in principle.
  • the demodulated signal is demodulated using the demodulated signal processing device (lock-in amplifier) 440.
  • the demodulated signal processing device lock-in amplifier
  • H z dc reflects the polarity of the surface magnetic pole (N pole, S pole) of the magnetic sample 1, and when the sign is reversed, the effective spring constant changes.
  • the component that changes at the angular frequency ⁇ m of k eff changes as in the following equation (9), and the phase changes by 180 °.
  • ( ⁇ 2 H z dc / ⁇ z 2 ) reflects the magnetic non-uniformity of the magnetic material sample 1, whereas it changes on the nanometer scale with respect to the measurement location.
  • ( ⁇ 2 H z ac / ⁇ z 2 ) reflects the size of the AC electromagnet and changes on a millimeter scale with respect to the measurement location, so noise in the observation of the magnetic domain structure (the right side of equation (7) above) ) Is usually small.
  • the above equation (8) becomes the following equation (11).
  • the magnetic field observation method of the present invention is a magnetic field observation method for observing a DC magnetic field leaking from a magnetic material sample, and includes (i) an excitation process; (ii) an AC magnetic field application process; (iii) a demodulation process; iv) a demodulated signal processing step; and (v) a scanning step.
  • a magnetic field distribution image display step is further included.
  • the magnetic field observation method of the present invention can be performed using, for example, the magnetic field observation apparatus 1000 of the present invention described above. Hereinafter, each step will be described with reference to FIG.
  • the excitation step is a step of exciting a cantilever having a magnetic probe without magnetic saturation at one end.
  • the excitation process can be performed by the exciter 200 described above.
  • the AC magnetic field applying step is a step of applying frequency modulation to the excitation vibration of the cantilever by applying an AC magnetic field having a magnitude that does not reverse the magnetization of the magnetic sample to the probe and periodically changing the magnetization of the probe. It is.
  • the AC magnetic field application process can be performed by the AC magnetic field generator 300 described above.
  • the demodulation step is a step of detecting the vibration of the probe and demodulating a signal corresponding to the AC component of the magnetic force generated between the probe and the observation sample from the detected signal.
  • the demodulation process can be performed by the vibration sensor 400 and the demodulator 430 described above.
  • the demodulated signal processing step is a step of obtaining DC magnetic field information from the signal demodulated in the demodulating step and the voltage signal of the AC magnetic field generator.
  • the demodulated signal processing step can be performed by the demodulated signal processing device 440 described above.
  • the scanning step is a step of causing the probe to scan the scanning region on the surface of the magnetic sample.
  • the scanning process can be performed by the scanning mechanism 500 described above.
  • the magnetic field distribution image display step is a step of displaying, on the image display device, a magnetic field distribution image based on DC magnetic field information at each coordinate of the scanning region obtained by scanning the scanning region with the scanning mechanism.
  • the magnetic field distribution image display step can be performed by the image display device 600 described above.
  • the magnetic field observation method of the present invention can be preferably used for magnetic field observation of a sample (for example, a permanent magnet) that generates a strong DC magnetic field.
  • a sample for example, a permanent magnet
  • the alternating magnetic field generated by the alternating magnetic field generator 30 in the alternating magnetic field application step preferably has a small spatial change.
  • the DC component of the magnetization at the tip of the probe 100 that is, the magnetization due to the DC magnetic field leaking from the magnetic sample 1
  • the spatial change gradient of the AC magnetic field applied from the AC magnetic field generator 300 to the probe 100.
  • Example 1 This is an example in which the probe for a magnetic force microscope of the present invention in a form having an Fe—Mn solid solution type paramagnetic material as a magnetic film was produced.
  • Fe and Mn are simultaneously sputtered using a Fe target as the ferromagnetic element target 44 and a Mn target as the non-magnetic element target 45, so that the Si can be fixed to one end of the cantilever.
  • a Fe—Mn solid solution paramagnetic thin film (Fe 67 Mn 33 , film thickness 100 nm) was formed on the surface of the core member.
  • FIG. 1 This is an example in which the probe for a magnetic force microscope of the present invention in a form having an Fe—Mn solid solution type paramagnetic material as a magnetic film was produced.
  • Fe and Mn are simultaneously sputtered using a Fe target as the ferromagnetic element target 44 and a Mn target as the non-magnetic element target 45, so that the Si can be fixed to one end of the can
  • FIG. 7 shows the results of magnetic property evaluation of a paramagnetic thin film formed on a Si substrate with a thermal oxide film under the same conditions.
  • the composition analysis of the thin film was performed by energy dispersive X-ray spectroscopy (EDX).
  • EDX energy dispersive X-ray spectroscopy
  • Magnetic property evaluation was performed using a vibrating sample magnetometer VSM-5S type (manufactured by Toei Kogyo Co., Ltd.) under conditions of a temperature of 25 ° C. and an external magnetic field of ⁇ 20 kOe to +20 kOe.
  • the formed Fe—Mn solid solution paramagnetic thin film did not saturate until the strength of the external magnetic field reached 20 kOe. Moreover, it did not have remanent magnetization or magnetic hysteresis. Its initial magnetic susceptibility was 1.2 ⁇ 10 ⁇ 7 H / m.
  • Example 2 This is an example in which the magnetic force microscope probe of the present invention in a form having a Fe—Mo—B-based amorphous paramagnetic material as a magnetic coating was produced.
  • the Fe target as the ferromagnetic element target 44 and the Mo target with the B sheet attached as the nonmagnetic element target 45, Fe, Mo, and B are simultaneously sputtered.
  • FIGS. 8A to 8I show the results of evaluating the composition and magnetic properties of the magnetic thin film formed on the Si substrate with the thermal oxide film under the same conditions under the same conditions as in Example 1.
  • the thin films of (a) and (b) in which the contents of Mo and B, which are non-magnetic elements, are too small are comparative examples in which magnetization is saturated before the intensity of the external magnetic field reaches 20 kOe. It is.
  • the thin films (c) to (i) in which the contents of Mo and B that are nonmagnetic elements were sufficient did not saturate until the external magnetic field strength reached 20 kOe. There was no residual magnetization or magnetic hysteresis.
  • (d) Fe 86 Mo 7.5 B 6.5 amorphous paramagnetic thin film has an initial magnetic susceptibility (1.4 ⁇ 10 ⁇ 7 H / m) and linearity of magnetization response to an external magnetic field. Both were the best.
  • Such a probe having excellent linearity of magnetization response is particularly suitable for magnetic domain observation with an alternating magnetic force microscope of a magnetic sample that generates a strong DC magnetic field (10 kOe or more).
  • Example 3 This is an example in which the probe for a magnetic force microscope of the present invention in a form having an Ag—Co-based granular superparamagnetic material as a magnetic film is produced.
  • the probe for a magnetic force microscope of the present invention in a form having an Ag—Co-based granular superparamagnetic material as a magnetic film is produced.
  • Co target as the ferromagnetic element target 44
  • Ag target as the nonmagnetic element target 45
  • Si is fixed to one end of the cantilever.
  • FIG. 9 shows the results of evaluating the composition and magnetic properties of the magnetic thin film formed on the Si substrate with the thermal oxide film under the same conditions under the same conditions as in Example 1.
  • the value of the initial magnetic susceptibility indicated by the sample is added below each data point corresponding to the thin film sample that is determined not to saturate until reaching an external magnetic field of 20 kOe and exhibits superparamagnetism. ing.
  • a data point in the region of “with hysteresis” indicates that the magnetization characteristic of the sample showed hysteresis, that is, the sample contained a ferromagnetic phase.
  • FIG. 10 is a magnetization curve (FIG. 10A) of an Ag 79 Co 21 thin film (1) (initial magnetic susceptibility 4.0 ⁇ 10 ⁇ 6 H / m) formed at a film formation rate of 0.80 nm / sec.
  • FIG. 10B is an enlarged view of the vicinity of the origin.
  • an Ag 85 Co 15 thin film (2) (initial magnetic susceptibility of 3.0 ⁇ 10 ⁇ 6 H) formed at a film formation rate of 0.20 nm / sec. / M) magnetization curve (FIG. 10 (c)
  • FIG. 10 (d) is an enlarged view of the vicinity of the origin).
  • FIG. 10A magnetization curve of an Ag 79 Co 21 thin film (1) (initial magnetic susceptibility 4.0 ⁇ 10 ⁇ 6 H / m) formed at a film formation rate of 0.80 nm / sec.
  • FIG. 10B is an enlarged view of the vicinity of the origin.)
  • an Ag 85 Co 15 thin film (2) (ini
  • the Ag 85 Co 15 thin film formed at a low film formation rate of 0.20 nm / sec showed hysteresis and remanent magnetization, that is, had a ferromagnetic phase (FIG. 10C).
  • the Ag 79 Co 21 thin film formed at a high film formation rate of 0.80 nm / sec has a higher content of Co, which is a ferromagnetic element, The property of the ferromagnetic phase was hardly shown (see FIGS. 10A and 10B).
  • the average value of the sphere conversion diameter by the image analysis method of Co particles in the Ag 79 Co 21 thin film (1) formed at a film formation rate of 0.80 nm / sec was 15 nm.
  • This value is obtained by observing the surface of the thin film with a scanning electron microscope (SEM) at a magnification of 100,000 to 200,000 by secondary electron detection, and showing an area equal to the area occupied by Co particles in the SEM image. This is a value obtained by calculating the diameter (sphere equivalent diameter) of the circle to have and calculating the arithmetic average of 100 or more Co particles in the same thin film sample.
  • SEM scanning electron microscope
  • FIG. 11 shows the temperature dependence of the initial magnetic susceptibility of an Ag—Co superparamagnetic thin film re-fabricated under the same conditions as the Ag 79 Co 21 thin film (1) shown in FIGS. 9 and 10 (deposition rate 0.80 nm / sec). And the temperature dependence of the initial magnetic susceptibility of an Ag-Co superparamagnetic thin film remanufactured under the same conditions as the Ag 83 Co 17 thin film (3) (deposition rate 0.54 nm / sec) shown in FIG. It is a figure to do.
  • FIGS. 11A and 11C are graphs showing the temperature dependence of the initial magnetic susceptibility
  • FIGS. 11B and 11D are graphs showing the temperature dependence of magnetization in the external magnetic field 20 kOe.
  • the Ag-Co superparamagnetic thin film re-fabricated under the same conditions as the Ag 79 Co 21 thin film (1) has a temperature range of 25 to 200 ° C. (Measurement points were 5 points of 25 ° C., 50 ° C., 100 ° C., 150 ° C., and 200 ° C.). That is, in the temperature range of 25 to 200 ° C., the initial magnetic susceptibility showed a slight negative correlation with temperature, showing a maximum value at 25 ° C. and a minimum value at 200 ° C. This means that the thin film contains a slight amount of ferromagnetic phase.
  • the Ag—Co superparamagnetic thin film re-fabricated under the same conditions as the Ag 83 Co 17 thin film (3) is in the temperature range of 25 to 200 ° C. (Measurement points were 5 ° C. at 25 ° C., 50 ° C., 100 ° C., 150 ° C., and 200 ° C.) and did not have temperature dependency. That is, no consistent tendency is observed in the measured values of the initial susceptibility and the magnetization in the external magnetic field of 20 kOe in the temperature range of 25 to 200 ° C., and the fluctuation range thereof is also the arithmetic average value of the above five measured values. Within ⁇ 10%. The same was true for the magnetization in the external magnetic field of 20 kOe (FIG. 11D).
  • the magnetic susceptibility and magnetization have temperature dependence is a typical property of a ferromagnetic material, which is unavoidable with conventional ferromagnetic probes.
  • Such a probe having substantially no temperature dependence of magnetic properties is particularly suitable for evaluating the domain structure of a permanent magnet at a high temperature.
  • the measured value of the initial magnetic susceptibility at 25 ° C. is different from the corresponding measured value described in FIG. 9 because of the following reason. Due to the limitations of the sputtering apparatus, when simultaneously sputtering Ag and Co, the Co target had to be arranged at a position shifted laterally from the front of the substrate holder. Therefore, depending on the position of the substrate in the holder circumferential direction on the rotating substrate holder at the start of sputtering, the average distance between the substrate and the Co target varies slightly from the start to the end of sputtering. It was inevitable to do.
  • the composition of the produced Ag—Co superparamagnetic thin film may not completely match the compositions of the thin films (1) and (3).
  • the thin films (1) and (3) are in a region where the initial magnetic susceptibility is sensitive to the composition. Accordingly, the deviation of the value of the initial magnetic susceptibility at 25 ° C. shown in FIGS. 11A and 11C from the value in FIG. 9 is that of the substrate in the circumferential direction of the holder on the rotating substrate holder at the start of sputtering. This is considered to reflect a slight shift in the composition of the thin film due to the fact that the arrangement position could not be completely reproduced.
  • the initial magnetic susceptibility is markedly increased in the temperature range exceeding 200 ° C. This is a result of the change in the fine structure of the granular superparamagnetic thin film at a high temperature. It is believed that there is.
  • Example 4 Using the magnetic field observation apparatus of the present invention (see FIG. 5), a DC magnetic field leaking from a permanent magnet thin film sample (FePt—MgO-based permanent magnet film, film thickness 300 nm, vertical coercive force: 8 kOe) was observed.
  • the magnetic field observation apparatus of the present invention is based on a commercially available MFM (scanning probe microscope, AFM-5400L manufactured by Hitachi High-Tech Science Co., Ltd.), and an AC electromagnet manufactured using a silicon steel sheet as an AC magnetic field generator and the AC An AC voltage power source for supplying power to the electromagnet was added, and an FM demodulator (manufactured by Nanosurf, easyPLL) was added as a demodulator.
  • the AC electromagnet was installed under the MFM sample mounting table so that an AC magnetic field was applied perpendicular to the observation surface of the sample.
  • the amplitude of the AC magnetic field applied from the AC electromagnet to the probe was 2.2 kOe, and the frequency was 89 Hz.
  • the probe 100 for magnetic force microscope according to the present invention described above was used as the probe.
  • a granular superparamagnetic material using Si as the nonmagnetic element constituting the core member 10, Co as the ferromagnetic element, and Ag as the nonmagnetic element was used for the magnetic coating 30.
  • the film thickness of the magnetic coating 30 was about 100 nm.
  • the initial magnetic susceptibility of the magnetic coating 30 was 2.2 ⁇ 10 ⁇ 6 H / m.
  • the probe 100 did not exhibit magnetization saturation until reaching an external magnetic field of 20 kOe, and had no residual magnetization or magnetic hysteresis.
  • the magnetic coating 30 is formed by simultaneously sputtering Co and Ag on the surface of a Si probe fixed to one end of a cantilever using a Co target and an Ag target simultaneously in a commercially available sputtering apparatus. It was done by doing.
  • the Co content in the thin film was about 18% by volume, and the film formation rate was about 0.56 nm / sec.
  • the distance between the probe and the observation surface of the magnetic sample at the time of observation was 10 nm.
  • the magnetization of the superparamagnetic probe was periodically changed by the AC magnetic field from the AC electromagnet without changing the magnetic moment of the permanent magnet thin film.
  • the frequency-modulated detection signal of the probe vibration Is demodulated using an FM demodulator the demodulated signal is input to a lock-in amplifier, and the voltage signal of the AC voltage power source connected to the AC electromagnet is used as a reference signal to determine the amplitude of the demodulated signal and the phase difference with respect to the reference signal.
  • DC magnetic field information of the permanent magnet thin film was obtained.
  • FIG. 12 shows the observation results near the surface of the permanent magnet thin film.
  • FIG. 12A is a surface shape image of the scanned region.
  • FIG. 12B is an image of the amplitude of the magnetic force gradient signal corresponding to the gradient strength of the DC magnetic field (vertical magnetic field) perpendicular to the observation surface of the permanent magnet thin film, and FIG. The phase of the magnetic force gradient signal corresponding to the magnetic field gradient is imaged.
  • FIG. 12B shows an image in which the bright part is surrounded by a linear dark part
  • FIG. 12C shows a binary image of the bright part and the dark part.
  • 12D shows the line profile of the image of FIG. 12B
  • FIG. 12E shows the line profile of the image of FIG. 12C.
  • FIG. 12D in the boundary portion where the phase is inverted by 180 ° in the phase line profile of FIG. It can be seen that the amplitude signal corresponding to the direction of the direct current magnetic field gradient is zero.
  • the bright part corresponds to the part where the direction of the vertical magnetic field is upward
  • the dark part corresponds to the part where the direction of the vertical magnetic field is downward, with this boundary part as a boundary.
  • S pole negative magnetic pole
  • a ferromagnetic material is used for the probe (a soft magnetic material refers to a ferromagnetic material having a low coercive force. ).
  • a soft magnetic material refers to a ferromagnetic material having a low coercive force.
  • a magnetic moment caused by spontaneous magnetization generated even when the external magnetic field is zero rotates.
  • the magnetic moment also has a component perpendicular to the alternating magnetic field direction.
  • an alternating magnetic field is applied perpendicular to the sample surface, and the magnetic field in the direction perpendicular to the sample surface is measured, and is generated from the sample surface except when the magnetic moment is completely parallel to the alternating magnetic field.
  • the magnetic force due to the interaction between the vertical component of the magnetic field and the probe magnetization the magnetic force due to the interaction between the in-plane component of the magnetic field generated from the sample surface and the probe magnetization also acts on the probe, resulting in a detection signal. It will be included. For this reason, in order to measure the vertical magnetic field component and the in-plane magnetic field component separately, complicated phase adjustment processing as in the magnetic profile measuring device described in Patent Document 5 is required for processing the detection signal.
  • the magnetic force microscope probe 100 of the present invention without magnetic saturation that is, not ferromagnetic
  • an alternating magnetic field is applied to the probe 100.
  • the probe magnetization due to the application of is generated only in the direction in which the alternating magnetic field is applied, and does not occur in the direction perpendicular to the direction in which the alternating magnetic field is applied.
  • the AC component of the magnetic force that the probe 100 receives from the DC magnetic field from the magnetic sample 1 is derived from only the component in the AC magnetic field application direction of the DC magnetic field from the magnetic sample 1. Therefore, by using the magnetic force microscope probe of the present invention for an alternating magnetic force microscope, signal processing in the magnetic force microscope can be greatly simplified.
  • the probe can be adsorbed to the sample even in the magnetic field observation near the surface of the magnetic sample that generates a strong DC magnetic field such as a permanent magnet.
  • the magnetic field can be observed with high spatial resolution, and further, the polarity of the magnetic pole on the surface of the magnetic material sample can be detected.
  • the magnetic field observation apparatus and magnetic field observation method of the present invention it is possible to observe a magnetic field with high spatial resolution in the vicinity of the surface of a magnetic sample that generates a strong DC magnetic field such as a permanent magnet, It was shown that the polarity of the magnetic pole on the surface of the magnetic material sample can be detected.
  • the magnetic force microscope probe of the present invention is suitable for, for example, observation of magnetic domains of a strong magnetic field generation sample such as a permanent magnet sample by an alternating magnetic force microscope, measurement of an absolute value including positive / negative of a DC magnetic field generated from a magnetic sample, and the like. Can be used.
  • the magnetic field observation apparatus and magnetic field observation method of the present invention can be suitably used for magnetic domain observation of a permanent magnet sample, for example.

Abstract

 Provided are: (1) a magnetic force microscope probe provided with at least one magnetic material, the magnetic material being such that, over a temperature range of at least 10-30°C, saturation magnetization is not reached when a magnetic field is applied, the magnetic material being (a) a solid solution of one or more ferromagnetic elements and one or more non-magnetic elements, (b) an amorphous magnetic material containing one or more strongly ferromagnetic elements and one or more non-magnetic elements, or (c) a magnetic material containing one or more types of ferromagnetic particles and one or more non-magnetic materials, the magnetic material being structured such that the ferromagnetic particles are dispersed within and supported by the non-magnetic material; (2) a device for observing a magnetic field, the device being provided with the magnetic force microscope probe of (1); and (3) a method for observing a magnetic field, the method employing the magnetic force microscope probe of (1).

Description

強磁場計測および磁場値測定用磁気力顕微鏡用探針、ならびに、強磁場発生試料の磁場観察方法および装置Magnetic force microscope probe for strong magnetic field measurement and magnetic field value measurement, and magnetic field observation method and apparatus for strong magnetic field generation sample
 本発明は、磁気力顕微鏡に用いるための探針に関する。また本発明は、強い直流磁場を発生する磁性体試料(例えば永久磁石等。)の表面磁場を観察する方法および装置に関する。 The present invention relates to a probe for use in a magnetic force microscope. The present invention also relates to a method and apparatus for observing the surface magnetic field of a magnetic sample (for example, a permanent magnet) that generates a strong DC magnetic field.
 磁性体試料の磁気情報に対応した磁化パターン等を測定する装置として、磁気力顕微鏡(MFM)が知られている。磁気力顕微鏡は磁性探針を備えており、その磁性探針の先端を観察対象である磁性体試料に近づけ、磁性探針の磁気モーメントと磁性体試料の磁気モーメントとの間に働く磁気的相互作用を検出することにより、磁化パターン等の測定を行う。 A magnetic force microscope (MFM) is known as a device for measuring a magnetization pattern corresponding to magnetic information of a magnetic sample. The magnetic force microscope is provided with a magnetic probe, the tip of the magnetic probe is brought close to the magnetic sample to be observed, and the magnetic interaction between the magnetic moment of the magnetic probe and the magnetic sample is measured. By detecting the action, the magnetization pattern and the like are measured.
 磁気力顕微鏡の磁性探針としては、非磁性材料Siからなる探針素材上に、コバルト(Co)-クロム(Cr)基合金、ニッケル(Ni)-鉄(Fe)基合金、コバルト(Co)-白金(Pt)基合金、鉄(Fe)-白金(Pt)系規則合金や、鉄(Fe)基合金などの強磁性体の薄膜が形成されたものが一般的である(特許文献1~3)。 As a magnetic probe for a magnetic force microscope, a cobalt (Co) -chromium (Cr) -based alloy, nickel (Ni) -iron (Fe) -based alloy, cobalt (Co) is formed on a probe material made of a non-magnetic material Si. Generally, a thin film of a ferromagnetic material such as a platinum (Pt) based alloy, an iron (Fe) -platinum (Pt) based ordered alloy, or an iron (Fe) based alloy is formed (Patent Documents 1 to 3).
 本発明者らは、磁性体試料から生じる磁場を高い空間分解能で観察するために、交番磁気力顕微鏡(特許文献4、5)を開発した。これらの交番磁気力顕微鏡は、励振させているカンチレバーの先端に設けられた強磁性体探針の磁化の方向を外部からの交流磁場によって変化させ、探針磁化と磁性体試料の磁場との磁気的相互作用により生じる交番磁気力により探針振動に生じる周波数変調を検出することにより、試料表面近傍での直流磁場勾配または交流磁場勾配の観察を可能にし、高い空間分解能を実現している。 The present inventors have developed an alternating magnetic force microscope (Patent Documents 4 and 5) in order to observe a magnetic field generated from a magnetic sample with high spatial resolution. These alternating magnetic force microscopes change the magnetization direction of a ferromagnetic probe provided at the tip of an excited cantilever by an external AC magnetic field, and magnetize between the probe magnetization and the magnetic sample magnetic field. By detecting the frequency modulation that occurs in the probe vibration due to the alternating magnetic force generated by the dynamic interaction, it is possible to observe the DC magnetic field gradient or AC magnetic field gradient near the sample surface, and realize high spatial resolution.
 特許文献4には、直流磁場を発生する磁性体試料(例えば磁気ストレージデバイスに用いられる磁気記録媒体。)の表面近傍において高い空間分解能で磁気力を計測できる磁場観測装置として、磁性体試料より磁化反転し易い磁気モーメントを有する探針と;探針を励振させる励振機構と;探針に磁性体試料上を走査させる走査機構と、探針を周期的に磁化反転させることができ、かつ磁性体試料を磁化反転させない大きさの、カンチレバーの共振周波数と異なる非共振周波数の交流磁場を探針に印加する交流磁場発生機構と;交流磁場により周期的に磁化方向を変化させた探針の磁化と磁性体試料の磁化との間の磁気的相互作用によって探針に加えられる非共振周波数の交番力を原因として探針の見かけ上のバネ定数が変化することで発生する、探針の振動の周期的な周波数変調の程度を、周波数復調により計測することができる変調計測機構とを備え;変調計測機構は、探針の変位を検知するセンサーと、該センサーから得た周波数変調信号を復調するFM復調器とを備え、該FM復調器から得た周波数復調信号及び交流磁場発生機構の電圧信号から、磁性体試料から漏洩している直流磁場の磁場勾配を計測する、磁場観察装置が開示されている。 Patent Document 4 discloses a magnetic field observation apparatus capable of measuring a magnetic force with high spatial resolution near the surface of a magnetic sample (for example, a magnetic recording medium used in a magnetic storage device) that generates a DC magnetic field. A probe having a magnetic moment that is easy to reverse; an excitation mechanism that excites the probe; a scanning mechanism that causes the probe to scan a magnetic sample; and a magnetic material that can periodically reverse the magnetization of the probe; AC magnetic field generation mechanism for applying an AC magnetic field of a non-resonant frequency different from the cantilever resonance frequency to the probe in a size that does not reverse the magnetization of the sample; and the magnetization of the probe whose magnetization direction is periodically changed by the AC magnetic field This occurs when the apparent spring constant of the probe changes due to the alternating force of the non-resonant frequency applied to the probe due to the magnetic interaction with the magnetization of the magnetic sample. A modulation measurement mechanism capable of measuring the degree of periodic frequency modulation of the vibration of the probe by frequency demodulation; the modulation measurement mechanism is obtained from the sensor that detects the displacement of the probe; An FM demodulator for demodulating the frequency modulation signal, and measuring the magnetic field gradient of the DC magnetic field leaking from the magnetic sample from the frequency demodulated signal obtained from the FM demodulator and the voltage signal of the AC magnetic field generation mechanism. A magnetic field observation apparatus is disclosed.
 特許文献5には、励振したカンチレバーの先端の強磁性体よりなる探針により観察試料の表面上の走査領域を走査しつつ、カンチレバーの振動を検出し、その検出結果に基づいて操作領域の磁場分布画像を生成する磁場プロファイル測定装置であって;先端に探針が取り付けられたカンチレバーと;カンチレバーをその共振周波数ないし当該周波数に近い周波数で励振する励振器と;交流磁場を生成し探針の磁気極性を周期的に反転させることで、カンチレバーの励振振動を周波数変調または同時に振幅変調する交流磁場発生器と;探針の振動を検出する振動センサーと;振動センサーの検出信号から、探針と観察試料との間に生じる交流磁気力に対応する磁気信号を復調するとともに、復調した磁気信号を位相が90°異なる互いに直交した2つの信号成分に分離して検出するか、又は復調した磁気信号から探針の位置における磁場の振幅および位相を検出する、復調処理装置と;探針により操作領域を走査する走査機構と;交流磁場発生器の動作と同期する条件のもとに走査機構により操作領域を走査することで得られた、当該操作領域の各座標における上記互いに直交した2つの信号成分または上記磁場の振幅および位相を初期データとして記憶するデータ記憶装置と;データ記憶装置から初期データを呼び出し、当該初期データの位相を変更したデータを複数生成する変更データ生成器と;変更データ生成器により生成した操作領域の各座標におけるデータに基づく磁場分布画像を表示する画像表示装置と、を備える磁気プロファイル測定装置が開示されている。 In Patent Document 5, the vibration of the cantilever is detected while scanning the scanning region on the surface of the observation sample with a probe made of a ferromagnetic material at the tip of the excited cantilever, and the magnetic field in the operation region is detected based on the detection result. A magnetic field profile measuring device for generating a distribution image; a cantilever having a tip attached to a tip; an exciter for exciting the cantilever at a resonance frequency thereof or a frequency close to the frequency; and an AC magnetic field to generate a probe An AC magnetic field generator that frequency-modulates or simultaneously amplitude-modulates the excitation vibration of the cantilever by periodically reversing the magnetic polarity; a vibration sensor that detects the vibration of the probe; and a probe from the detection signal of the vibration sensor While demodulating the magnetic signal corresponding to the alternating magnetic force generated between the sample and the observation sample, the demodulated magnetic signals are orthogonal to each other by 90 ° in phase. A demodulation processing device for detecting the amplitude and phase of the magnetic field at the position of the probe from the demodulated magnetic signal separately detected by two signal components; and a scanning mechanism for scanning the operation region by the probe; The two signal components orthogonal to each other at each coordinate of the operation region or the amplitude and phase of the magnetic field obtained by scanning the operation region with a scanning mechanism under conditions synchronized with the operation of the AC magnetic field generator A data storage device that stores the initial data from the data storage device, and a change data generator that generates a plurality of data in which the phase of the initial data is changed; and each of the operation areas generated by the change data generator An image display device that displays a magnetic field distribution image based on data in coordinates is disclosed.
特開2008-209276号公報JP 2008-209276 A 特開2004-20213号公報JP 2004-20213 A 特開平7-325139号公報JP 7-325139 A 特許第4769918号公報Japanese Patent No. 4776918 国際公開第2013/047537号パンフレットInternational Publication No. 2013/047537 Pamphlet 国際公開第2014/157661号パンフレットInternational Publication No. 2014/157661 Pamphlet
 特許文献4及び5に記載のように交流磁場を印加して復調処理を行う磁場観測装置によれば、磁性体試料表面から発生する直流磁場を観察するにあたり、試料表面と探針との間に作用する強い引力である表面力の影響を排除し、空間分解能を高めることが可能である。その理由は、探針に作用する磁気力は交流磁場の変化に合わせて時間変化する一方で、探針に作用する表面力は交流磁場の影響を受けないからである。 According to the magnetic field observation apparatus that performs the demodulation process by applying an alternating magnetic field as described in Patent Documents 4 and 5, when observing the direct magnetic field generated from the surface of the magnetic material sample, it is between the sample surface and the probe. It is possible to eliminate the influence of the surface force, which is a strong attractive force, and to increase the spatial resolution. This is because the magnetic force acting on the probe changes with time according to the change of the alternating magnetic field, while the surface force acting on the probe is not affected by the alternating magnetic field.
 特許文献4の磁場観察装置や特許文献5に記載の磁気プロファイル測定装置は、比較的弱い直流磁場(例えば磁気ストレージデバイスに用いられる磁気記録媒体の表面磁場。)を測定することを前提にした技術であり、これら従来の交番磁気力顕微鏡においては、強磁性体の中でも磁化反転の容易なソフト磁性材料を探針に用いることが一般的である。しかし、永久磁石のように強力な(例えば10kOe以上の)磁場を発生させる磁性体試料を、これら従来の磁気力顕微鏡用探針を用いた磁気力顕微鏡で観察しようとすると、次の(1)~(3)のような問題が生じる。 The magnetic field observation apparatus of Patent Document 4 and the magnetic profile measurement apparatus described in Patent Document 5 are based on the premise that a relatively weak DC magnetic field (for example, a surface magnetic field of a magnetic recording medium used in a magnetic storage device) is measured. In these conventional alternating magnetic force microscopes, it is common to use a soft magnetic material with easy magnetization reversal among the ferromagnetic materials for the probe. However, when a magnetic material sample that generates a strong magnetic field (for example, 10 kOe or more) like a permanent magnet is to be observed with a magnetic force microscope using these conventional magnetic force microscope probes, the following (1) Problems (3) arise.
 (1)探針の磁性材料が大きな磁気モーメントを有するために、磁性体試料から発生する強力な直流磁場により探針が試料表面に吸着されてしまい、測定自体が困難になる。探針の磁性体膜を良好な品質で成膜できる薄さには限界があるため、探針の磁性体膜厚を調整することによってこの問題を回避することは困難である。 (1) Since the magnetic material of the probe has a large magnetic moment, the probe is adsorbed on the sample surface by a strong DC magnetic field generated from the magnetic sample, making measurement itself difficult. Since there is a limit to the thinness with which the magnetic film of the probe can be formed with good quality, it is difficult to avoid this problem by adjusting the magnetic film thickness of the probe.
 (2)試料からの強い表面磁場で探針磁化が飽和してしまい、探針に作用する磁気力が外部からの交流磁場により変動しなくなるので探針振動に周波数変調が生じず、そのため直流磁場勾配の計測が困難になる。 (2) The probe magnetization is saturated by the strong surface magnetic field from the sample, and the magnetic force acting on the probe does not fluctuate due to the external AC magnetic field, so no frequency modulation occurs in the probe vibration. Gradient measurement becomes difficult.
 (3)信号強度が強すぎるために、A/D変換器の量子化誤差が無視できなくなり、大きな誤差(例えば約20~30°にも及ぶ位相誤差。)を生じるようになる。この問題の一つの対策としては測定を大気中で行うことにより探針のQ値を下げることが考えられるが、これにより空間分解能が大幅に低下してしまう。もう一つの対策としては探針を試料からより離れた位置に配置することが考えられるが、そのような配置では空間分解能が大幅に低下してしまう。 (3) Since the signal intensity is too strong, the quantization error of the A / D converter cannot be ignored, and a large error (for example, a phase error of about 20 to 30 °) is generated. As one countermeasure against this problem, it is conceivable to lower the Q value of the probe by performing measurement in the atmosphere, but this greatly reduces the spatial resolution. As another countermeasure, it is conceivable to dispose the probe at a position farther from the sample, but with such an arrangement, the spatial resolution is greatly reduced.
 本発明の第1の課題は、例えば永久磁石に代表されるような強い(例えば10kOe以上の)直流磁場を発生する磁性体試料についても、磁気力顕微鏡によって高い空間分解能で磁場勾配を観察することを可能にする、磁気力顕微鏡用探針を提供することである。 The first problem of the present invention is to observe a magnetic field gradient with a high spatial resolution using a magnetic force microscope even for a magnetic sample that generates a strong (for example, 10 kOe or more) DC magnetic field as represented by a permanent magnet. It is to provide a probe for a magnetic force microscope that makes it possible.
 本発明の第2の課題は、例えば永久磁石に代表されるような、強い直流磁場を発生する磁性体試料の表面近傍において、高い空間分解能で磁場を観察することが可能な、磁場観察装置、および磁場観察方法を提供することである。 A second problem of the present invention is a magnetic field observation apparatus capable of observing a magnetic field with high spatial resolution in the vicinity of the surface of a magnetic sample that generates a strong DC magnetic field, such as a permanent magnet. And a magnetic field observation method.
 また、上記従来の交番磁気力顕微鏡では、観察試料の表面の磁場勾配を計測しており、磁場自体を測定することはできない。これに対し、本発明者らは、磁性体試料から生じる直流磁場の正負を含めた絶対値を測定できる磁場測定方法および磁場値測定装置を開発し、特許出願を行っている(特願2013-069762及びPCT/JP2014/59276。特許文献6として公開された。)。この装置は、外部磁場がゼロのときに磁化がゼロである性質をもつ磁性探針を観察試料から発生する直流磁場が加わっている状態で励振させ、当該探針の振動方向にゼロでない(大きな)変化率を有し且つ探針の機械振動周波数と異なる周波数の交流外部磁場を与えることにより、探針の励振振動を周波数変調させる。そして、探針先端に加わる観察試料からの直流磁場を、直流外部磁場を加えて打ち消すことで、探針振動の周波数変調を弱め、周波数変調の大きさがゼロ近傍の極小となったときの直流外部磁場を測定する。このときの直流外部磁場と逆の極性を有する直流磁場が、観察試料から発生する直流磁場である。尚、この測定方法および測定装置に用いる探針は、測定に用いられる範囲において磁場がゼロのときに磁化がゼロであるとともに、磁化の強さが磁場の大きさに比例する磁気特性を有することが好ましい。 Also, the conventional alternating magnetic force microscope measures the magnetic field gradient on the surface of the observation sample, and cannot measure the magnetic field itself. On the other hand, the present inventors have developed a magnetic field measuring method and a magnetic field value measuring apparatus capable of measuring an absolute value including positive and negative of a DC magnetic field generated from a magnetic material sample, and have applied for a patent (Japanese Patent Application No. 2013-2013). No. 069762 and PCT / JP2014 / 59276. Published as Patent Document 6). This device excites a magnetic probe having the property that the magnetization is zero when the external magnetic field is zero in a state where a DC magnetic field generated from the observation sample is applied, and is not zero in the vibration direction of the probe (large ) The excitation vibration of the probe is frequency-modulated by applying an AC external magnetic field having a change rate and a frequency different from the mechanical vibration frequency of the probe. Then, by canceling the DC magnetic field from the observation sample applied to the tip of the probe by applying a DC external magnetic field, the frequency modulation of the probe vibration is weakened, and the direct current when the magnitude of the frequency modulation becomes a minimum near zero Measure the external magnetic field. A DC magnetic field having a polarity opposite to the DC external magnetic field at this time is a DC magnetic field generated from the observation sample. The probe used in this measuring method and measuring apparatus has a magnetic characteristic in which the magnetization is zero when the magnetic field is zero in the range used for measurement, and the strength of magnetization is proportional to the magnitude of the magnetic field. Is preferred.
 本発明の第3の課題は、そのような強い直流磁場を発生する磁性体試料についても、磁性体試料から生じる直流磁場の正負を含めた絶対値を測定することを可能にする、磁気力顕微鏡用探針を提供することである。 A third subject of the present invention is a magnetic force microscope that makes it possible to measure the absolute value including the positive and negative of a DC magnetic field generated from a magnetic sample, even for a magnetic sample that generates such a strong DC magnetic field. Is to provide a probe.
 本発明は、下記[1]~[22]の形態を包含する。
 [1]少なくとも1種の磁性材料を備え、
 室温において、より具体的には少なくとも10~30℃の温度域にわたって、磁場が印加されたときに磁化が飽和せず、
(a) 磁性材料が、1種以上の強磁性元素と1種以上の非磁性元素との固溶体である;
(b) 磁性材料が、1種以上の強磁性元素と1種以上の非磁性元素とを含む非晶質の磁性材料である;又は
(c) 磁性材料が、1種以上の強磁性体粒子と1種以上の非磁性材料とを含み、強磁性体粒子が非磁性材料中に分散されて支持されている構造を有する磁性材料である
ことを特徴とする、磁気力顕微鏡用探針。
The present invention includes the following forms [1] to [22].
[1] comprising at least one magnetic material;
Magnetization does not saturate when a magnetic field is applied at room temperature, more specifically over a temperature range of at least 10-30 ° C.,
(A) the magnetic material is a solid solution of one or more ferromagnetic elements and one or more nonmagnetic elements;
(B) the magnetic material is an amorphous magnetic material containing one or more ferromagnetic elements and one or more nonmagnetic elements; or (c) the magnetic material is one or more ferromagnetic particles. And a magnetic material having a structure in which ferromagnetic particles are dispersed and supported in the nonmagnetic material.
 本明細書において、磁性探針について「磁化が飽和しない(磁気飽和がない)」ことは、20kOeの外部磁場を印加したときに磁化が飽和しないことを基準として判断するものとする。 In this specification, “magnetization is not saturated (no magnetic saturation)” for a magnetic probe is determined based on the fact that magnetization is not saturated when an external magnetic field of 20 kOe is applied.
 本明細書において、ある材料が「超常磁性体」または「超常磁性材料」であるとは、当該材料が超常磁性を示すことを意味する。ある材料が「超常磁性を示す」とは、当該材料に含まれる自発磁化を有する強磁性体(本発明において「強磁性体」はフェリ磁性体を包含する概念とする。)の粒子が、隣接する粒子との磁気的相互作用が弱い状態にあって且つ粒子サイズが小さいことにより、熱エネルギーの影響で個々の粒子の磁化の向きがランダムに変化し、磁場を印加しない状態で材料全体の磁化が平均してゼロとなることを意味する。 In this specification, a certain material being “superparamagnetic material” or “superparamagnetic material” means that the material exhibits superparamagnetism. A material “shows superparamagnetism” means that particles of a ferromagnetic material having spontaneous magnetization contained in the material (in the present invention, “ferromagnetic material” includes a ferrimagnetic material) are adjacent to each other. Due to the weak magnetic interaction with the particles and the small particle size, the magnetization direction of each particle changes randomly under the influence of thermal energy, and the magnetization of the entire material without applying a magnetic field Means an average of zero.
 [2]磁場が印加されていない条件下では室温において、より具体的には少なくとも10~30℃の温度域にわたって、残留磁化を有しないことを特徴とする、[1]に記載の磁気力顕微鏡用探針。 [2] The magnetic force microscope according to [1], which has no remanent magnetization at room temperature under a condition where no magnetic field is applied, more specifically over a temperature range of at least 10 to 30 ° C. Probe.
 [3]上記磁性材料の初磁化率が、室温において、より具体的には少なくとも10~30℃の温度域にわたって、3×10-8H/m以上である、[1]又は[2]に記載の磁気力顕微鏡用探針。 [3] In the above [1] or [2], the initial magnetic susceptibility of the magnetic material is 3 × 10 −8 H / m or more at room temperature, more specifically over a temperature range of at least 10 to 30 ° C. The magnetic force microscope probe described.
 [4]上記(a)又は(b)の要件を満たし、上記強磁性元素が、Ni、Fe、及びCoからなる群から選ばれる1種以上の強磁性元素であり、上記非磁性元素が、Ti、V,Cr,Mn,Cu、Zn、Zr、Nb,Mo、Ta、W、B、Al、C、O、N、及びSiからなる群から選ばれる1種以上の非磁性元素であり、好ましくは非磁性元素としてCr、Mn、及びMoから選ばれる1種以上の元素を含む、[1]~[3]のいずれかに記載の磁気力顕微鏡用探針。 [4] The requirement (a) or (b) is satisfied, and the ferromagnetic element is one or more ferromagnetic elements selected from the group consisting of Ni, Fe, and Co, and the nonmagnetic element is One or more nonmagnetic elements selected from the group consisting of Ti, V, Cr, Mn, Cu, Zn, Zr, Nb, Mo, Ta, W, B, Al, C, O, N, and Si; The probe for a magnetic force microscope according to any one of [1] to [3], which preferably contains at least one element selected from Cr, Mn, and Mo as a nonmagnetic element.
 [5]上記(a)又は(b)の要件を満たし、上記磁性材料は常磁性または超常磁性を示す、[1]~[4]のいずれかに記載の磁気力顕微鏡用探針。 [5] The probe for a magnetic force microscope according to any one of [1] to [4], which satisfies the requirement (a) or (b), and wherein the magnetic material exhibits paramagnetism or superparamagnetism.
 [6]上記(c)の要件を満たし、上記磁性材料の全量に対して、強磁性体粒子の含有量が10~45体積%、好ましくは15~40体積%であり、非磁性材料の含有量が55~90体積%、好ましくは60~85体積%である、[1]~[3]のいずれかに記載の磁気力顕微鏡用探針。 [6] The requirement (c) is satisfied, and the content of the ferromagnetic particles is 10 to 45% by volume, preferably 15 to 40% by volume, based on the total amount of the magnetic material. The magnetic force microscope probe according to any one of [1] to [3], wherein the amount is 55 to 90% by volume, preferably 60 to 85% by volume.
 [7]上記(c)の要件を満たし、強磁性体粒子の画像解析法による球換算直径の平均値が30nm以下、好ましくは5~10nmである、[1]~[3]及び[6]のいずれかに記載の磁気力顕微鏡用探針。 [7] [1] to [3] and [6] satisfying the above-mentioned requirement (c), and the average value of the spherical equivalent diameter of the ferromagnetic particles by the image analysis method is 30 nm or less, preferably 5 to 10 nm. A probe for a magnetic force microscope according to any one of the above.
 ここで、強磁性体粒子の画像解析法による球換算直径とは、走査型電子顕微鏡(SEM)を用いて、2次電子検出により倍率10万~20万倍で磁性材料の表面を観察したときに、強磁性体粒子がSEM画像中に占める面積と等しい面積を有する円の直径を意味するものとする。そしてその平均値とは、同一の磁性材料試料の100個以上の強磁性体粒子について、上記球換算直径の算術平均をとった値を意味するものとする。 Here, the spherical equivalent diameter by the image analysis method of the ferromagnetic particles means that when the surface of the magnetic material is observed at a magnification of 100,000 to 200,000 times by secondary electron detection using a scanning electron microscope (SEM). Furthermore, the diameter of a circle having an area equal to the area occupied by ferromagnetic particles in the SEM image is meant. And the average value shall mean the value which took the arithmetic average of the said spherical conversion diameter about 100 or more ferromagnetic particles of the same magnetic material sample.
 [8]上記(c)の要件を満たし、強磁性体粒子が、Ni、Fe、及びCoからなる群から選ばれる1種以上の強磁性元素の粒子であり、非磁性材料が、Au、Ag、Cu、二酸化ケイ素、酸化チタン、酸化タングステン、酸化クロム、酸化コバルト、酸化タンタル、酸化ホウ素、酸化マグネシウム、酸化セリウム、酸化イットリウム、酸化ニッケル、酸化アルミニウム、酸化ルテニウム、希土類元素の酸化物、及び炭素からなる群から選ばれる1種以上の非磁性材料である、[1]~[3]、[6]及び[7]のいずれかに記載の磁気力顕微鏡用探針。 [8] Satisfying the requirement (c) above, the ferromagnetic particles are particles of one or more ferromagnetic elements selected from the group consisting of Ni, Fe, and Co, and the nonmagnetic material is Au, Ag , Cu, silicon dioxide, titanium oxide, tungsten oxide, chromium oxide, cobalt oxide, tantalum oxide, boron oxide, magnesium oxide, cerium oxide, yttrium oxide, nickel oxide, aluminum oxide, ruthenium oxide, rare earth element oxide, and carbon The probe for a magnetic force microscope according to any one of [1] to [3], [6] and [7], which is at least one nonmagnetic material selected from the group consisting of:
 [9]上記(c)の要件を満たし、上記磁性材料が超常磁性を示す、[1]~[3]及び[6]~[8]のいずれかに記載の磁気力顕微鏡用探針。 [9] The probe for a magnetic force microscope according to any one of [1] to [3] and [6] to [8], which satisfies the requirement (c) and the magnetic material exhibits superparamagnetism.
 [10]上記(c)の要件を満たし、磁化率が、25~200℃の温度範囲において実質的に温度依存性を有しない、[1]~[3]及び[6]~[9]のいずれかに記載の磁気力顕微鏡用探針。 [10] The conditions of [1] to [3] and [6] to [9], which satisfy the requirement (c) above and the magnetic susceptibility has substantially no temperature dependence in the temperature range of 25 to 200 ° C. The magnetic force microscope probe according to any one of the above.
 ここで、磁化率が「25~200℃の温度範囲において実質的に温度依存性を有しない」ことは、25℃、50℃、100℃、150℃、200℃の計5つの温度条件のそれぞれにおいて、当該磁性材料の初磁化率を測定したときに、それら5つの測定値のばらつきが、当該5つの測定値の算術平均値に対して±10%以内であることを意味するものとする。 Here, the magnetic susceptibility “has substantially no temperature dependence in the temperature range of 25 to 200 ° C.” means that each of the five temperature conditions of 25 ° C., 50 ° C., 100 ° C., 150 ° C., and 200 ° C. When the initial magnetic susceptibility of the magnetic material is measured, it means that the variation of the five measured values is within ± 10% with respect to the arithmetic average value of the five measured values.
 [11]上記(c)の要件を満たし、磁性材料の初磁化率が、室温の条件下において、具体的には少なくとも10~30℃の温度域にわたって、2×10-7H/m以上、好ましくは1×10-6H/m以上である、[1]~[3]及び[6]~[10]のいずれかに記載の磁気力顕微鏡用探針。 [11] The above-mentioned requirement (c) is satisfied, and the initial susceptibility of the magnetic material is 2 × 10 −7 H / m or more, specifically over a temperature range of at least 10 to 30 ° C. at room temperature. The probe for a magnetic force microscope according to any one of [1] to [3] and [6] to [10], which is preferably 1 × 10 −6 H / m or more.
 [12]1種以上の非磁性体からなる芯部材と、芯部材の表面の少なくとも一部を被覆する上記磁性材料の被膜とを有する、[1]~[11]のいずれかに記載の磁気力顕微鏡用探針。 [12] The magnetic material according to any one of [1] to [11], comprising a core member made of one or more kinds of nonmagnetic materials and a coating of the magnetic material that covers at least a part of the surface of the core member. Probe for force microscope.
 [13]磁性体試料から漏洩する直流磁場を観察する磁場観察装置であって、磁気飽和がなく印加磁場方向に磁気モーメントが発生する磁性探針を一方の端部に有するカンチレバーと;カンチレバーを励振させる励振器と;磁性体試料を磁化反転させない大きさの交流磁場を探針に印加し、探針の磁化を周期的に変動させることにより、カンチレバーの励振振動を周波数変調させる、交流磁場発生器と;探針の振動を検出する振動センサーと;振動センサーの検出信号から、探針と観察試料との間に生じる磁気力の交流成分に対応する信号を復調する、復調器と;復調器から得た復調信号および交流磁場発生器の電圧信号から、直流磁場の情報を得る、復調信号処理装置と;探針に磁性体試料表面上の走査領域を走査させる走査機構と、を備え、上記磁性探針は、[1]~[12]のいずれかに記載の磁気力顕微鏡用探針であることを特徴とする、強磁場発生試料の磁場観察装置。 [13] A magnetic field observation apparatus for observing a direct-current magnetic field leaking from a magnetic sample, having a magnetic probe at one end that has no magnetic saturation and generates a magnetic moment in the applied magnetic field direction; excites the cantilever An AC magnetic field generator for applying frequency modulation to the excitation vibration of the cantilever by applying an AC magnetic field of a magnitude that does not reverse the magnetization of the magnetic material to the probe and periodically changing the magnetization of the probe. A vibration sensor for detecting the vibration of the probe; a demodulator for demodulating a signal corresponding to an AC component of the magnetic force generated between the probe and the observation sample from the detection signal of the vibration sensor; A demodulated signal processing device that obtains DC magnetic field information from the demodulated signal and the voltage signal of the AC magnetic field generator; and a scanning mechanism that causes the probe to scan the scanning region on the surface of the magnetic sample. For example, the magnetic probe is [1] to [12] magnetic force, characterized in that a microscope probe, a strong magnetic field generated magnetic field observation apparatus sample according to any one of.
 ここで本明細書において、磁性探針に「磁気飽和がない」ことは、20kOeの外部磁場を印加したときに磁化が飽和しないことを基準として判断するものとする。 In this specification, “no magnetic saturation” in the magnetic probe is determined based on the fact that magnetization is not saturated when an external magnetic field of 20 kOe is applied.
 [14]復調器は、
(A)振動センサーの検出信号を周波数復調するか、又は、
(B)振動センサーの検出信号に含まれる側帯波スペクトルの強度を計測する、
[13]に記載の磁場観察装置。
[14] The demodulator
(A) The frequency of the detection signal of the vibration sensor is demodulated, or
(B) Measure the intensity of the sideband spectrum included in the detection signal of the vibration sensor,
[13] The magnetic field observation apparatus according to [13].
 [15]復調信号処理装置は、
(X)復調器から得た復調信号の振幅、及び、復調信号と交流磁場発生器の電流信号または電圧信号との位相差を計測するか;又は、
(Y)復調器から得た復調信号の、交流磁場発生器の電流信号に対する同相成分および直交成分を計測する、
[13]又は[14]に記載の磁場観察装置。
[15] The demodulated signal processing apparatus includes:
(X) measuring the amplitude of the demodulated signal obtained from the demodulator and the phase difference between the demodulated signal and the current signal or voltage signal of the AC magnetic field generator;
(Y) measuring the in-phase component and the quadrature component of the demodulated signal obtained from the demodulator with respect to the current signal of the AC magnetic field generator;
The magnetic field observation apparatus according to [13] or [14].
 [16]交流磁場発生機構が、直流磁場の測定すべき成分の方向と同一方向に、交流磁場を印加する、[13]~[15]のいずれかに記載の磁場観察装置。 [16] The magnetic field observation apparatus according to any one of [13] to [15], wherein the AC magnetic field generation mechanism applies an AC magnetic field in the same direction as the direction of the component to be measured of the DC magnetic field.
 [17]磁性体試料が永久磁石である、[13]~[16]のいずれかに記載の磁場観察装置。 [17] The magnetic field observation apparatus according to any one of [13] to [16], wherein the magnetic sample is a permanent magnet.
 [18]走査機構により走査領域を走査することで得られた、走査領域の各座標における直流磁場の情報に基づく磁場分布画像を表示する画像表示装置をさらに有する、[13]~[17]のいずれかに記載の磁場観察装置。 [18] The image display device according to [13] to [17], further including an image display device that displays a magnetic field distribution image based on DC magnetic field information at each coordinate of the scanning region obtained by scanning the scanning region with the scanning mechanism. The magnetic field observation apparatus according to any one of the above.
 [19]磁性体試料から漏洩する直流磁場を観察する磁場観察方法であって、磁気飽和がなく印加磁場方向に磁気モーメントが発生する磁性探針を一方の端部に有するカンチレバーを励振させる工程と;磁性体試料を磁化反転させない大きさの交流磁場を探針に印加し、探針の磁化を周期的に変動させることにより、カンチレバーの励振振動を周波数変調させる工程と;探針の振動を検出し、その検出信号から、探針と観察試料との間に生じる磁気力の交流成分に対応する信号を復調する工程と;該復調された信号および交流磁場発生器の電圧信号から、直流磁場の情報を得る工程と;探針に磁性体試料表面上の走査領域を走査させる工程とを含み、磁性探針は、[1]~[12]のいずれかに記載の磁気力顕微鏡用探針であることを特徴とする、強磁場発生試料の磁場観察方法。 [19] A magnetic field observation method for observing a DC magnetic field leaking from a magnetic material sample, the method comprising exciting a cantilever having a magnetic probe that generates no magnetic saturation in the applied magnetic field direction at one end without magnetic saturation. Applying an alternating magnetic field of a magnitude that does not reverse the magnetization of the magnetic sample to the probe, and periodically modulating the magnetization of the probe to frequency-modulate the excitation vibration of the cantilever; and detecting the probe vibration And a step of demodulating a signal corresponding to an alternating current component of the magnetic force generated between the probe and the observation sample from the detection signal; and a DC magnetic field from the demodulated signal and the voltage signal of the alternating magnetic field generator. A step of obtaining information; and a step of causing the probe to scan a scanning region on the surface of the magnetic material sample, wherein the magnetic probe is the probe for a magnetic force microscope according to any one of [1] to [12] Features that are To, strong magnetic field generated magnetic field observation method of the specimen.
 [20]交流磁場を、前記直流磁場の測定すべき成分の方向と同一方向に印加する、[19]に記載の磁場観察方法。 [20] The magnetic field observation method according to [19], wherein an alternating magnetic field is applied in the same direction as the direction of the component to be measured of the direct magnetic field.
 [21]磁性体試料が永久磁石である、[19]又は[20]に記載の磁場観察方法。 [21] The magnetic field observation method according to [19] or [20], wherein the magnetic sample is a permanent magnet.
 [20]走査機構により走査領域を走査することで得られた、走査領域の各座標における直流磁場の情報に基づく磁場分布画像を画像表示装置に表示する工程をさらに有する、[19]~[21]のいずれかに記載の磁場観察方法。 [20] The method further includes a step of displaying, on the image display device, a magnetic field distribution image based on DC magnetic field information at each coordinate of the scanning region obtained by scanning the scanning region with the scanning mechanism. ] Magnetic field observation method in any one of.
 本発明の磁気力顕微鏡用探針を磁気力顕微鏡に用いることにより、例えば永久磁石に代表されるような強い直流磁場を発生する磁性体試料についても、磁気力顕微鏡によって高い空間分解能で磁場を観察することが可能になる。 By using the magnetic force microscope probe of the present invention for a magnetic force microscope, for example, a magnetic sample that generates a strong DC magnetic field represented by a permanent magnet can be observed with a magnetic force microscope with high spatial resolution. It becomes possible to do.
 本発明の磁場観察装置および磁場観察方法によれば、例えば永久磁石に代表されるような、強い直流磁場を発生する磁性体試料の表面近傍において、高い空間分解能で磁場を観察することが可能である。また、磁性体試料表面の磁極の極性検出も可能である。 According to the magnetic field observation apparatus and magnetic field observation method of the present invention, it is possible to observe a magnetic field with high spatial resolution near the surface of a magnetic sample that generates a strong DC magnetic field, such as a permanent magnet. is there. Also, the polarity of the magnetic pole on the surface of the magnetic material sample can be detected.
本発明の一の実施形態に係る磁気力顕微鏡用探針の構成を模式的に説明する図である。It is a figure which illustrates typically the composition of the probe for magnetic force microscopes concerning one embodiment of the present invention. 図1のA-A矢視図である。FIG. 2 is an AA arrow view of FIG. 1. 本発明の一の実施形態に係る磁気力顕微鏡用探針を製造する方法を説明するフローチャートである。It is a flowchart explaining the method to manufacture the probe for magnetic force microscopes concerning one Embodiment of this invention. 磁性被膜の成膜に用いるスパッタリング装置の構成を模式的に説明する図である。It is a figure which illustrates typically the structure of the sputtering device used for film-forming of a magnetic film. 本発明の一の実施形態に係る磁場観察装置の構成を模式的に説明する図である。It is a figure which illustrates typically the composition of the magnetic field observation device concerning one embodiment of the present invention. 本発明の磁場観察装置による計測原理を説明するための図である。It is a figure for demonstrating the measurement principle by the magnetic field observation apparatus of this invention. 実施例1において成膜されたFe-Mn系固溶体型常磁性薄膜の磁気特性評価の結果を示すグラフである。2 is a graph showing the results of magnetic property evaluation of an Fe—Mn solid solution paramagnetic thin film formed in Example 1. FIG. 実施例2において成膜されたFe-Mo-B系非晶質型常磁性薄膜の磁気特性評価の結果を示すグラフ群である。6 is a graph group showing the results of magnetic property evaluation of an Fe—Mo—B amorphous paramagnetic thin film formed in Example 2. FIG. 実施例3において成膜されたCo-Ag系グラニュラー型超常磁性薄膜の初磁化率評価の結果を示すグラフである。10 is a graph showing the results of initial susceptibility evaluation of a Co—Ag granular superparamagnetic thin film formed in Example 3. 実施例3において成膜されたCo-Ag系グラニュラー型超常磁性薄膜のうち、Ag79Co21薄膜(成膜速度0.80nm/sec)の磁化曲線と、Ag85Co15薄膜(成膜速度0.20nm/sec)の磁化曲線とを比較する図である。Among the Co—Ag granular superparamagnetic thin films formed in Example 3, the magnetization curve of the Ag 79 Co 21 thin film (deposition rate 0.80 nm / sec) and the Ag 85 Co 15 thin film (deposition rate 0) .20 nm / sec) is compared with the magnetization curve. 実施例3において成膜されたCo-Ag系グラニュラー型超常磁性薄膜のうち、Ag79Co21薄膜(成膜速度0.80nm/sec)の初磁化率の温度依存性と、Ag83Co17薄膜(成膜速度0.54nm/sec)の初磁化率の温度依存性とを比較するグラフ群である。Of the Co—Ag granular superparamagnetic thin film formed in Example 3, the temperature dependence of the initial magnetic susceptibility of the Ag 79 Co 21 thin film (deposition rate 0.80 nm / sec) and the Ag 83 Co 17 thin film It is a graph group which compares the temperature dependence of the initial magnetic susceptibility of (film formation rate 0.54 nm / sec). 実施例4における、永久磁石の表面近傍での観察結果を示す図である。It is a figure which shows the observation result in the surface vicinity of Example 4 in Example 4. FIG.
 以下、図面を参照しつつ、本発明の実施の形態について説明する。図では、符号を一部省略することがある。本明細書において、数値A及びBについて「A~B」は、特に別途規定されない限り、「A以上B以下」を意味する。該表記において数値Aの単位を省略する場合には、数値Bに付された単位が数値Aの単位として適用されるものとする。なお、以下に示す形態は本発明の例示であり、本発明がこれらの形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawing, some symbols may be omitted. In the present specification, “A to B” for numerical values A and B means “A or more and B or less” unless otherwise specified. In the notation, when the unit of the numerical value A is omitted, the unit attached to the numerical value B is applied as the unit of the numerical value A. In addition, the form shown below is an illustration of this invention and this invention is not limited to these forms.
 <1.磁気力顕微鏡用探針>
 図1は、本発明の一の実施形態に係る磁気力顕微鏡用探針100(以下において「探針100」と略記することがある。)を模式的に説明する図であり、図2は、図1のA-A矢視図である。図1及び図2に示すように、磁気力顕微鏡用探針100は、非磁性体からなる三角錐形状の芯部材10と、該芯部材10の表面の少なくとも一部を被覆する磁性材料の被膜30(以下において「磁性被膜30」と略記することがある。)とを有する。磁気力顕微鏡用探針100は、三角錐形状の芯部材の底面がカンチレバー20の一方の端部に固定されていることにより、カンチレバー20の一方の端部に立設されている。なお図1に示すように、磁性材料の被膜30は、芯部材10の表面だけでなく、カンチレバー20の表面も被覆していてもよい。
<1. Magnetic Force Microscope Probe>
FIG. 1 is a diagram schematically illustrating a magnetic force microscope probe 100 (hereinafter sometimes abbreviated as “probe 100”) according to an embodiment of the present invention, and FIG. FIG. 2 is an AA arrow view of FIG. 1. As shown in FIGS. 1 and 2, a magnetic force microscope probe 100 includes a triangular pyramid-shaped core member 10 made of a non-magnetic material, and a coating of a magnetic material that covers at least a part of the surface of the core member 10. 30 (hereinafter sometimes abbreviated as “magnetic coating 30”). The magnetic force microscope probe 100 is erected at one end of the cantilever 20 by fixing the bottom surface of the triangular pyramid-shaped core member to one end of the cantilever 20. As shown in FIG. 1, the magnetic material coating 30 may cover not only the surface of the core member 10 but also the surface of the cantilever 20.
 探針100は、芯部材10の表面が磁性被膜30で被覆されていることにより、少なくとも1種の磁性材料を備えている。探針100は、室温において、より具体的には少なくとも10~30℃の温度域にわたって、磁場が印加されたときに、磁化が飽和しないという特徴を有する。そのため、探針100を交番磁気力顕微鏡に用いることにより、永久磁石等の強磁場発生試料を観察する場合であっても、試料からの強い表面磁場による探針磁化の飽和が起きないので、交流磁場の印加により探針振動に周波数変調を生じさせることができる。したがって、交番磁気力顕微鏡による高い空間分解能での磁場観察が可能となる。 The probe 100 is provided with at least one magnetic material by covering the surface of the core member 10 with the magnetic coating 30. The probe 100 is characterized in that the magnetization does not saturate when a magnetic field is applied at room temperature, more specifically over a temperature range of at least 10 to 30 ° C. Therefore, by using the probe 100 for an alternating magnetic force microscope, even when a strong magnetic field generating sample such as a permanent magnet is observed, the saturation of the probe magnetization due to the strong surface magnetic field from the sample does not occur. Frequency modulation can be generated in the probe vibration by applying a magnetic field. Therefore, it is possible to observe the magnetic field with high spatial resolution using an alternating magnetic force microscope.
 好ましくは、探針100は、消磁後か着磁後かに関わらず、磁場が印加されていない条件下では室温において、より具体的には少なくとも10~30℃の温度域にわたって磁化を有しない。磁場が印加されていない条件下で残留磁化を有しない(よってヒステリシスも有しない)探針100によれば、交番磁気力顕微鏡を用いて直流磁場勾配を計測するにあたり、高精度の計測が可能になる。 Preferably, the probe 100 does not have magnetization at room temperature, more specifically, at least in the temperature range of 10 to 30 ° C. under a condition where no magnetic field is applied, regardless of whether the probe 100 is demagnetized or magnetized. According to the probe 100 having no remanent magnetization (and hence no hysteresis) under a condition in which no magnetic field is applied, high-precision measurement is possible when measuring a DC magnetic field gradient using an alternating magnetic force microscope. Become.
 (芯部材10)
 芯部材10は、非磁性体からなり、探針100の概形を定める部材であって、表面に磁性被膜30を保持する役割を果たす。芯部材10の一方の端部は、カンチレバー20の一方の端部に立設されており、芯部材10の他方の端部は、先端に向かうにしたがって尖るように成形されている。芯部材10を構成する非磁性体としては、探針100の形状を維持するために必要な強度を有する非磁性体を特に制限なく採用可能であり、例えばSi、Si-N、Si-O等を好ましく用いることができる。
 なお図1、2に示している探針100において、芯部材10は三角錐形状を有しているが、芯部材10の形状は三角錐形状に限定されるものではない。磁気力顕微鏡による磁場観察に必要な空間分解能および必要な強度を確保できる限りにおいて、その形状は適宜選択することができる。ただし、磁場観察の空間分解能を高める観点からは、その形状はとがった先端部を有することが好ましく、カンチレバー20に固定される側の端部は、カンチレバー20との固定を容易にするためにある程度の大きさを有することが好ましい。このような事情を考慮すると、三角錐形状、四角錐形状、円錐形状等の錐形状を好ましく採用することができる。
(Core member 10)
The core member 10 is made of a non-magnetic material and is a member that determines the general shape of the probe 100 and plays a role of holding the magnetic coating 30 on the surface. One end portion of the core member 10 is erected on one end portion of the cantilever 20, and the other end portion of the core member 10 is shaped so as to point toward the tip. As the nonmagnetic material constituting the core member 10, a nonmagnetic material having a strength necessary for maintaining the shape of the probe 100 can be used without particular limitation, such as Si, Si—N, Si—O, and the like. Can be preferably used.
In the probe 100 shown in FIGS. 1 and 2, the core member 10 has a triangular pyramid shape, but the shape of the core member 10 is not limited to the triangular pyramid shape. The shape can be appropriately selected as long as the spatial resolution and the necessary intensity required for magnetic field observation with a magnetic force microscope can be ensured. However, from the viewpoint of increasing the spatial resolution of magnetic field observation, it is preferable that the shape has a sharp tip portion, and the end portion on the side fixed to the cantilever 20 has some degree to facilitate fixing to the cantilever 20. It is preferable to have a size of Considering such circumstances, a pyramid shape such as a triangular pyramid shape, a quadrangular pyramid shape, or a conical shape can be preferably employed.
 (磁性被膜30)
 磁性被膜30を構成する磁性材料は、常磁性体、及び超常磁性体からなる群から選ばれる1種以上の磁性材料とすることができる。これら強磁性体以外の磁性材料の磁気モーメントは強磁性体より遥かに小さいので、これらの磁性材料によって磁性被膜30を構成することにより、磁気力顕微鏡を用いて永久磁石等の強磁場発生試料の磁場を観察する場合であっても、磁性体試料からの磁場によって探針100に誘起される磁気モーメントと磁性体試料の磁気モーメントとの磁気的相互作用により探針100に作用する磁気力によって探針100が磁性体試料に磁気吸着される事態を防止することができる。磁性被膜30の膜厚は、磁気力顕微鏡における測定感度(磁性被膜30が厚いほど感度は向上する)と、空間分解能(磁性被膜30が厚いほど探針100の先端が鈍い形状になり空間分解能は低下する)とのトレードオフを考慮して、適宜決定することができる。なお磁性被膜30を構成する磁性材料の初磁化率は、室温において、より具体的には少なくとも10~30℃の温度域にわたって、3×10-8H/m以上であることが好ましい。
(Magnetic coating 30)
The magnetic material constituting the magnetic coating 30 can be one or more magnetic materials selected from the group consisting of paramagnetic materials and superparamagnetic materials. Since the magnetic moment of magnetic materials other than these ferromagnetic materials is much smaller than that of ferromagnetic materials, the magnetic film 30 is composed of these magnetic materials, so that a magnetic field generating sample such as a permanent magnet can be obtained using a magnetic force microscope. Even when the magnetic field is observed, the probe is detected by the magnetic force acting on the probe 100 due to the magnetic interaction between the magnetic moment induced in the probe 100 by the magnetic field from the magnetic sample and the magnetic moment of the magnetic sample. It is possible to prevent the needle 100 from being magnetically attracted to the magnetic sample. The film thickness of the magnetic coating 30 is determined by the measurement sensitivity in the magnetic force microscope (the sensitivity increases as the magnetic coating 30 is thicker) and the spatial resolution (the tip of the probe 100 becomes duller as the magnetic coating 30 is thicker). Can be determined as appropriate in consideration of a tradeoff with The initial magnetic susceptibility of the magnetic material constituting the magnetic coating 30 is preferably 3 × 10 −8 H / m or more at room temperature, more specifically over a temperature range of at least 10 to 30 ° C.
 常磁性体はキュリー温度付近で最も大きな磁化率を示す(ホプキンソン効果)。したがって、磁性被膜30を構成する磁性材料として好ましく使用可能な常磁性体としては、常磁性体のキュリー温度を調整することで磁化率を高めて磁気力顕微鏡の測定感度を高めることが可能である点で、1種以上の強磁性元素と1種以上の非磁性元素とを含んでなる磁性材料を好ましく用いることができる。具体的には、(a)1種以上の強磁性元素と1種以上の非磁性元素とが固溶体を形成したもの(以下において「固溶体型常磁性材料」ということがある。)、及び、(b)1種以上の強磁性元素と1種以上の非磁性元素とが非晶質構造を形成したもの(以下において「非晶質型常磁性材料」ということがある。)を好ましく採用できる。これらの多成分系の常磁性体においては、強磁性元素が、Ni、Fe、及びCoからなる群から選ばれる1種以上の強磁性元素であり、非磁性元素が、Ti、V,Cr,Mn,Cu、Zn、Zr、Nb,Mo、Ta、W、B、Al、C、O、N、及びSiからなる群から選ばれる1種以上の非磁性元素であることが好ましい。なお、少ない量の非磁性元素でキュリー温度を下げる観点からは、Cr、Mn、Moから選ばれる1種以上の元素を上記非磁性元素として含むことがより好ましい。 Paramagnetic materials show the greatest magnetic susceptibility near the Curie temperature (Hopkinson effect). Therefore, as a paramagnetic material that can be preferably used as the magnetic material constituting the magnetic coating 30, it is possible to increase the magnetic susceptibility by adjusting the Curie temperature of the paramagnetic material and increase the measurement sensitivity of the magnetic force microscope. In this respect, a magnetic material containing one or more ferromagnetic elements and one or more nonmagnetic elements can be preferably used. Specifically, (a) one or more kinds of ferromagnetic elements and one or more kinds of nonmagnetic elements formed a solid solution (hereinafter sometimes referred to as “solid solution type paramagnetic material”), and ( b) A material in which one or more kinds of ferromagnetic elements and one or more kinds of nonmagnetic elements form an amorphous structure (hereinafter sometimes referred to as “amorphous paramagnetic material”) can be preferably used. In these multicomponent paramagnetic materials, the ferromagnetic element is one or more ferromagnetic elements selected from the group consisting of Ni, Fe, and Co, and the nonmagnetic elements are Ti, V, Cr, One or more nonmagnetic elements selected from the group consisting of Mn, Cu, Zn, Zr, Nb, Mo, Ta, W, B, Al, C, O, N, and Si are preferable. From the viewpoint of lowering the Curie temperature with a small amount of nonmagnetic element, it is more preferable to include one or more elements selected from Cr, Mn, and Mo as the nonmagnetic element.
 上記(a)固溶体型常磁性材料は、当該固溶体型常磁性材料の全量に対する強磁性元素の全含有量が50~70原子%、非磁性元素の全含有量が30~50原子%である組成を有することが好ましい。 The (a) solid solution type paramagnetic material has a composition in which the total content of ferromagnetic elements is 50 to 70 atomic% and the total content of nonmagnetic elements is 30 to 50 atomic% with respect to the total amount of the solid solution type paramagnetic material. It is preferable to have.
 上記(b)非晶質型常磁性材料は、当該非晶質型常磁性材料の全量に対する強磁性元素の全含有量が70~90原子%、非磁性元素の全含有量が10~30原子%である組成を有することが好ましい。 The amorphous paramagnetic material (b) has a total content of ferromagnetic elements of 70 to 90 atomic% and a total content of nonmagnetic elements of 10 to 30 atoms with respect to the total amount of the amorphous paramagnetic material. % Of the composition.
 上記(a)固溶体型常磁性材料の具体例としては、Ni-Cr固溶体(例えばNi93Cr(25℃において初磁化率4.7×10-8H/m))、Fe-Cr固溶体(例えばFe59Cr41(25℃において初磁化率6.0×10-8H/m))、Fe-Mn固溶体(例えばFe67Mn33(25℃において初磁化率1.2×10-7H/m))等を好ましく挙げることができる。 Specific examples of the (a) solid solution type paramagnetic material include Ni—Cr solid solution (for example, Ni 93 Cr 7 (initial magnetic susceptibility 4.7 × 10 −8 H / m at 25 ° C.)), Fe—Cr solid solution ( For example, Fe 59 Cr 41 (initial magnetic susceptibility 6.0 × 10 −8 H / m at 25 ° C.), Fe—Mn solid solution (eg Fe 67 Mn 33 (initial magnetic susceptibility 1.2 × 10 −7 H at 25 ° C.) / M)) etc. can be mentioned preferably.
 上記(b)非晶質型常磁性材料の具体例としては、Fe-Mo-B非晶質材料(例えばFe86Mo7.56.5(25℃において初磁化率1.4×10-7H/m))等を好ましく挙げることができる。 Specific examples of the (b) amorphous paramagnetic material include Fe—Mo—B amorphous materials (for example, Fe 86 Mo 7.5 B 6.5 (initial magnetic susceptibility of 1.4 × 10 5 at 25 ° C.). -7 H / m)) and the like can be preferably mentioned.
 これらの多成分系の常磁性体で磁性被膜30を作製するにあたっては、例えば、各成分を同時スパッタリングにより芯部材10の表面に堆積させる方法を好ましく採用できる。その際、芯部材10の表面に堆積される磁性被膜30の組成は、各成分のスパッタリングターゲットに印加する電力量やスパッタリングターゲットに貼り付ける薄膜素材シートの量によって調整することができる。 In producing the magnetic coating 30 with these multicomponent paramagnetic materials, for example, a method of depositing each component on the surface of the core member 10 by simultaneous sputtering can be preferably employed. At that time, the composition of the magnetic coating 30 deposited on the surface of the core member 10 can be adjusted by the amount of electric power applied to the sputtering target of each component and the amount of the thin film material sheet attached to the sputtering target.
 磁性被膜30に使用可能な磁性材料であって超常磁性を示すものとしては、(c)1種以上の強磁性体粒子と1種以上の非磁性材料とを含み、強磁性体粒子が非磁性材料中に分散されて支持されている構造を有する磁性材料(以下において「グラニュラー型超常磁性材料」ということがある。)を好ましく例示できる。グラニュラー型超常磁性材料においては、微細な強磁性体粒子が非磁性マトリックス中に分散して磁気的に孤立した状態で存在し、強磁性体粒子の磁気エネルギーが熱エネルギーに対してある閾値以下になることにより、強磁性体粒子の磁気モーメントが熱の影響によりランダムにその方向を変化させることによって超常磁性が発現する。 The magnetic material that can be used for the magnetic coating 30 and exhibits superparamagnetism includes (c) one or more types of ferromagnetic particles and one or more types of nonmagnetic materials, and the ferromagnetic particles are nonmagnetic. A magnetic material having a structure dispersed and supported in the material (hereinafter sometimes referred to as “granular superparamagnetic material”) can be preferably exemplified. In granular superparamagnetic materials, fine ferromagnetic particles are dispersed in a non-magnetic matrix and exist in a magnetically isolated state, and the magnetic energy of the ferromagnetic particles is below a certain threshold with respect to thermal energy. As a result, the magnetic moment of the ferromagnetic particles changes its direction at random due to the influence of heat, so that superparamagnetism appears.
 磁性被膜30にグラニュラー型超常磁性材料を用いる場合、磁性材料の全量に対して、強磁性体粒子の含有量が10~45体積%、非磁性材料の含有量が55~90体積%であることが好ましい。強磁性体粒子の含有量を上記範囲内とすることにより、強磁性体粒子どうしの接触を抑制できるので、強磁性体粒子の磁気的な孤立状態を実現することが容易になる。同様の観点から、強磁性体粒子の含有量が15~40体積%、非磁性材料の含有量が60~85体積%であることがより好ましい。 When a granular superparamagnetic material is used for the magnetic coating 30, the content of the ferromagnetic particles is 10 to 45% by volume and the content of the nonmagnetic material is 55 to 90% by volume with respect to the total amount of the magnetic material. Is preferred. By making the content of the ferromagnetic particles within the above range, contact between the ferromagnetic particles can be suppressed, so that it is easy to realize a magnetically isolated state of the ferromagnetic particles. From the same viewpoint, the content of the ferromagnetic particles is more preferably 15 to 40% by volume, and the content of the nonmagnetic material is more preferably 60 to 85% by volume.
 そして強磁性体粒子の磁気エネルギーを減少させ、熱エネルギーによる磁気モーメントのランダム化を容易にする観点から、グラニュラー型超常磁性材料における強磁性材料粒子の粒子サイズは、画像解析法による球換算直径の平均値として、好ましくは30nm以下であり、より好ましくは5~10nmである。強磁性材料の粒子サイズには材料固有の臨界粒径があり、強磁性材料の粒子サイズがこの臨界粒径以上になると強磁性材料粒子は超常磁性状態から強磁性状態に変化し磁気ヒステリシスを示すようになるので、強磁性材料粒子のサイズは当該材料の臨界粒径以下とすることが好ましい。例えば強磁性材料として面心立方構造(fcc)のコバルト(Co)を用いる場合には、コバルト粒子の粒子サイズは30nm以下であることが好ましく、10nm以下であることがより好ましい。ここで、強磁性体粒子の画像解析法による球換算直径とは、走査電子顕微鏡(SEM)を用いて、2次電子検出により倍率10万~20万倍で磁性材料の表面を観察したときに、強磁性体粒子がSEM画像中に占める面積と等しい面積を有する円の直径を意味するものとする。そしてその平均値とは、同一の磁性材料試料の100個以上の強磁性体粒子について、上記球換算直径の算術平均をとった値を意味するものとする。 From the viewpoint of reducing the magnetic energy of the ferromagnetic particles and facilitating the randomization of the magnetic moment by the thermal energy, the particle size of the ferromagnetic material particles in the granular superparamagnetic material is the sphere equivalent diameter by image analysis. The average value is preferably 30 nm or less, and more preferably 5 to 10 nm. The particle size of the ferromagnetic material has a critical particle size unique to the material. When the particle size of the ferromagnetic material exceeds this critical particle size, the ferromagnetic material particle changes from the superparamagnetic state to the ferromagnetic state and exhibits magnetic hysteresis. Therefore, the size of the ferromagnetic material particles is preferably set to be equal to or smaller than the critical particle size of the material. For example, when cobalt (Co) having a face-centered cubic structure (fcc) is used as the ferromagnetic material, the particle size of the cobalt particles is preferably 30 nm or less, and more preferably 10 nm or less. Here, the sphere equivalent diameter by the image analysis method of the ferromagnetic particles means that when the surface of the magnetic material is observed at a magnification of 100,000 to 200,000 by secondary electron detection using a scanning electron microscope (SEM). And the diameter of a circle having an area equal to the area occupied by ferromagnetic particles in the SEM image. And the average value shall mean the value which took the arithmetic average of the said spherical conversion diameter about 100 or more ferromagnetic particles of the same magnetic material sample.
 (c)グラニュラー型超常磁性材料の構成材料としては、強磁性金属と非磁性金属とからなる非固溶金属の組み合わせや、強磁性金属と非磁性非金属材料との組み合わせを例示できる。 (C) Examples of the constituent material of the granular superparamagnetic material include a combination of a non-solid solution metal composed of a ferromagnetic metal and a nonmagnetic metal, and a combination of a ferromagnetic metal and a nonmagnetic nonmetallic material.
 グラニュラー型超常磁性材料において、強磁性体粒子としては、Ni、Fe、及びCoからなる群から選ばれる1種以上の強磁性元素の粒子を好ましく採用でき、非磁性材料としては、Au、Ag、Cu、二酸化ケイ素、酸化チタン、酸化タングステン、酸化クロム、酸化コバルト、酸化タンタル、酸化ホウ素、酸化マグネシウム、酸化セリウム、酸化イットリウム、酸化ニッケル、酸化アルミニウム、酸化ルテニウム、希土類元素の酸化物、及び炭素からなる群から選ばれる1種以上の非磁性材料を好ましく採用できる。希土類元素の酸化物としては、例えば酸化ガドリニウム、酸化テルビウム等を好ましく採用できる。 In the granular superparamagnetic material, as the ferromagnetic particles, particles of one or more ferromagnetic elements selected from the group consisting of Ni, Fe, and Co can be preferably used, and as the nonmagnetic material, Au, Ag, From Cu, silicon dioxide, titanium oxide, tungsten oxide, chromium oxide, cobalt oxide, tantalum oxide, boron oxide, magnesium oxide, cerium oxide, yttrium oxide, nickel oxide, aluminum oxide, ruthenium oxide, rare earth element oxide, and carbon One or more non-magnetic materials selected from the group can be preferably used. As the rare earth element oxide, for example, gadolinium oxide, terbium oxide and the like can be preferably employed.
 非固溶金属の組み合わせによるグラニュラー型超常磁性材料としては、例えばCu、Ag、及びAuからなる群から選ばれる1種以上の非磁性金属のマトリクス中に強磁性金属であるCoの粒子が分散された材料を挙げることができる。 As a granular type superparamagnetic material by a combination of non-solid solution metals, for example, particles of Co, which is a ferromagnetic metal, are dispersed in a matrix of one or more nonmagnetic metals selected from the group consisting of Cu, Ag, and Au. The material can be mentioned.
 強磁性金属と非磁性非金属材料との組み合わせによる超常磁性材料としては、例えば、二酸化ケイ素、酸化チタン、酸化タングステン、酸化クロム、酸化コバルト、酸化タンタル、酸化ホウ素、酸化マグネシウム、酸化セリウム、酸化イットリウム、酸化ニッケル、酸化アルミニウム、酸化ルテニウム、希土類元素の酸化物、及び炭素からなる群から選ばれる1種以上の非磁性非金属材料のマトリクス中に、Fe、Co、及びNiからなる群から選ばれる1種以上の強磁性金属の粒子が分散された材料を挙げることができる。希土類元素の酸化物としては、例えば酸化ガドリニウム、酸化テルビウム等を好ましく採用できる。 Examples of superparamagnetic materials by combining ferromagnetic metals and nonmagnetic nonmetallic materials include, for example, silicon dioxide, titanium oxide, tungsten oxide, chromium oxide, cobalt oxide, tantalum oxide, boron oxide, magnesium oxide, cerium oxide, and yttrium oxide. Selected from the group consisting of Fe, Co, and Ni in a matrix of one or more nonmagnetic non-metallic materials selected from the group consisting of nickel oxide, aluminum oxide, ruthenium oxide, rare earth element oxide, and carbon A material in which particles of one or more kinds of ferromagnetic metals are dispersed can be given. As the rare earth element oxide, for example, gadolinium oxide, terbium oxide and the like can be preferably employed.
 グラニュラー型超常磁性材料の被膜は、後述するように、例えば非磁性材料と強磁性材料とを通常よりも高い成膜速度(例えばAg-Coの場合には0.2~1.0nm/sec等。)で同時スパッタリング(co-sputtering)することにより作製することができる。成膜速度を高めることにより材料が急冷されるので、分散される強磁性材料粒子のサイズを小さくすることができる。 As will be described later, the film of the granular type superparamagnetic material is formed by, for example, forming a nonmagnetic material and a ferromagnetic material at a higher film deposition rate than usual (for example, 0.2 to 1.0 nm / sec in the case of Ag-Co). )) By co-sputtering. Since the material is rapidly cooled by increasing the deposition rate, the size of the dispersed ferromagnetic material particles can be reduced.
 グラニュラー型超常磁性材料によれば、常磁性体では得られない高い磁化率を実現することが可能である。例えば、グラニュラー型超常磁性材料の室温における初磁化率は好ましくは2×10-7H/m以上であり、1×10-6H/m以上とすることも可能である。したがって磁性被膜30にグラニュラー型超常磁性材料を用いる形態の探針100によれば、同じ膜厚でも磁気力顕微鏡の測定感度を高めることが可能になる。また同程度の測定感度をより薄い膜厚で得ることができるので、探針100の先端部をより先鋭化することができ、したがって磁気力顕微鏡による磁場測定の空間分解能を高めることが可能になる。 According to the granular type superparamagnetic material, it is possible to realize a high magnetic susceptibility that cannot be obtained with a paramagnetic material. For example, the initial magnetic susceptibility of a granular superparamagnetic material at room temperature is preferably 2 × 10 −7 H / m or more, and can be 1 × 10 −6 H / m or more. Therefore, according to the probe 100 using a granular superparamagnetic material for the magnetic coating 30, it is possible to increase the measurement sensitivity of the magnetic force microscope even with the same film thickness. Further, since the same level of measurement sensitivity can be obtained with a thinner film thickness, the tip of the probe 100 can be sharpened, and thus the spatial resolution of magnetic field measurement by a magnetic force microscope can be increased. .
 さらに、磁性被膜30にグラニュラー型超常磁性材料を用いる形態によれば、磁気特性の温度安定性を高めた探針100とすることが可能になる。例えば磁化率が常温25℃から200℃までの範囲で温度依存性を有しない探針100とすることも可能である。例えば永久磁石の磁区構造評価においては温度変化の測定が重要であるが、永久磁石材料の観察に通常用いられるハード磁性材料の保磁力等のハード磁気特性の温度依存性は大きいため、ハード磁性探針を用いて永久磁石の磁区構造の温度依存性を測定しようとしても、探針のハード磁気特性も変化してしまい、磁区構造の温度依存性を定量的に評価することは困難であった。磁性被膜30にグラニュラー型超常磁性材料を用いた探針100は、初磁化率等の磁気特性の温度安定性が高められているので、例えば永久磁石の磁区構造観察のように磁性体試料の温度依存性を評価する場合であっても、精度の高い評価結果を得ることが可能になる。 Furthermore, according to the embodiment using a granular superparamagnetic material for the magnetic coating 30, it is possible to obtain the probe 100 with improved temperature stability of magnetic characteristics. For example, the probe 100 having no temperature dependency in the range of the magnetic susceptibility in the range from room temperature 25 ° C. to 200 ° C. may be used. For example, in the evaluation of the domain structure of a permanent magnet, it is important to measure the temperature change. Even if the temperature dependence of the magnetic domain structure of the permanent magnet is measured using a needle, the hard magnetic characteristics of the probe also change, and it is difficult to quantitatively evaluate the temperature dependence of the magnetic domain structure. The probe 100 using a granular superparamagnetic material for the magnetic coating 30 has improved temperature stability of magnetic characteristics such as initial magnetic susceptibility. Therefore, for example, the temperature of the magnetic sample is observed as in the observation of the magnetic domain structure of a permanent magnet. Even when the dependence is evaluated, it is possible to obtain a highly accurate evaluation result.
 (磁気力顕微鏡用探針100の製造)
 磁気力顕微鏡用探針100を製造する方法について説明する。以下においては、磁性被膜30にグラニュラー型超常磁性材料を用いる形態の探針100を製造する形態を主に例示するが、本発明が当該形態に限定されることを意図するものではない。
(Manufacture of magnetic force microscope probe 100)
A method for manufacturing the magnetic force microscope probe 100 will be described. In the following, a form of manufacturing the probe 100 in a form using a granular superparamagnetic material for the magnetic coating 30 will be mainly exemplified, but the present invention is not intended to be limited to the form.
 図3は、探針100の製造方法S10(以下において単に「製造方法S10」と略記することがある。)を説明するフローチャートである。図3に示すように、製造方法S10は、カンチレバー20の一方の端部に固定された芯部材10を準備する工程S1(以下において単に「工程S1」と略記することがある。)と、芯部材10の露出表面に磁性被膜30を形成する工程S2(以下において単に「工程S2」と略記することがある。)とを上記順に有する。 FIG. 3 is a flowchart for explaining a manufacturing method S10 of the probe 100 (hereinafter sometimes simply referred to as “manufacturing method S10”). As shown in FIG. 3, the manufacturing method S <b> 10 includes a step S <b> 1 for preparing the core member 10 fixed to one end of the cantilever 20 (hereinafter sometimes simply referred to as “step S <b> 1”), and a core. Step S2 for forming the magnetic coating 30 on the exposed surface of the member 10 (hereinafter sometimes simply referred to as “Step S2”) is included in the above order.
 (工程S1)
 工程S1において、非磁性材料であるSiからなる芯部材10が準備される。芯部材10は、探針100に望まれる形状を有するように加工されている。芯部材10は、具体的には例えば、Si単結晶ウェハーに異方性エッチングを行うことにより製造することができる。芯部材10は、カンチレバー20の一方の端部に固定されている。芯部材10のカンチレバー20への固定は、公知の手法によって行うことができる。これ以後、芯部材10及びカンチレバー20は、後の工程において一体として扱われる。
 なお、芯部材10を構成するSiとしては、導電性を確保するために不純物ドープされたSiを用いてもよい。
(Process S1)
In step S1, a core member 10 made of Si, which is a nonmagnetic material, is prepared. The core member 10 is processed so as to have a shape desired for the probe 100. Specifically, the core member 10 can be manufactured, for example, by performing anisotropic etching on a Si single crystal wafer. The core member 10 is fixed to one end of the cantilever 20. The core member 10 can be fixed to the cantilever 20 by a known method. Thereafter, the core member 10 and the cantilever 20 are handled as a unit in a later process.
In addition, as Si which comprises the core member 10, in order to ensure electroconductivity, you may use Si doped with an impurity.
 (工程S2)
 工程S2は、同時スパッタリングにより芯部材10の露出表面に磁性被膜30を形成する工程である。図4は、工程S2において用いるスパッタリング装置200を説明する図である。スパッタリング装置200は、密閉されたチャンバ41(マグネトロンスパッタ装置用のチャンバ。以下において「チャンバ41」と略記することがある。)を有している。そしてチャンバ41内には、回転駆動軸43を介して回転可能に配設され、芯部材10を回転可能に保持する回転保持台42と、強磁性元素ターゲット44(例えばCoターゲット。以下において「ターゲット44」と略記することがある。)と、非磁性元素ターゲット45(例えばAgターゲット。以下において「ターゲット45」と略記することがある。)とが配設されている。チャンバ41内部には、芯部材10に対するスパッタリングが可能であるように、真空引きされた状態でアルゴンガスが供給される。各ターゲット44、45と芯部材10との間隔は70mm~120mmまで変化させることができる。
(Process S2)
Step S2 is a step of forming the magnetic coating 30 on the exposed surface of the core member 10 by simultaneous sputtering. FIG. 4 is a diagram illustrating the sputtering apparatus 200 used in step S2. The sputtering apparatus 200 has a sealed chamber 41 (a chamber for a magnetron sputtering apparatus, which may be abbreviated as “chamber 41” in the following). In the chamber 41, a rotation holding base 42 that is rotatably arranged through a rotation drive shaft 43 and rotatably holds the core member 10, and a ferromagnetic element target 44 (for example, a Co target. 44 ”and a non-magnetic element target 45 (for example, an Ag target. Hereinafter, it may be abbreviated as“ target 45 ”). Argon gas is supplied into the chamber 41 in a vacuumed state so that the core member 10 can be sputtered. The distance between each target 44, 45 and the core member 10 can be changed from 70 mm to 120 mm.
 強磁性元素ターゲット44は、スパッタリング用のDC電源に接続されている。非磁性元素45は、スパッタリング用の高周波(例えばRF)電源に接続されている。 The ferromagnetic element target 44 is connected to a DC power source for sputtering. The nonmagnetic element 45 is connected to a high frequency (for example, RF) power source for sputtering.
 非磁性元素ターゲット45用の高周波電源の周波数は、例えば13.56MHz等とすることができる。スパッタリングのための高速のアルゴンイオンが各ターゲット44、45に向かうように、各ターゲット44、45には大電力が印加されている。そして、各ターゲット44、45(直径は例えば75mm等とすることができる。)に対する印加電力を変更する(例えば50W~250W等。)ことにより、スパッタリングにより形成される磁性被膜30の組成を調整できるようになっている。 The frequency of the high frequency power source for the nonmagnetic element target 45 can be set to 13.56 MHz, for example. High power is applied to each target 44 and 45 so that high-speed argon ions for sputtering are directed to each target 44 and 45. The composition of the magnetic coating film 30 formed by sputtering can be adjusted by changing the power applied to each of the targets 44 and 45 (the diameter can be set to 75 mm, for example), for example (50 W to 250 W, etc.). It is like that.
 カンチレバー20と一体化された芯部材10が、回転保持台42に保持される。回転保持台42は、成膜中は例えば10rpmの速度で回転される。また回転保持台42は、上下に移動させることができ、回転保持台42と非磁性元素ターゲット45との間の距離を、70mmから120mmまで変化させることが可能である。 The core member 10 integrated with the cantilever 20 is held by the rotation holding table 42. The rotation holding table 42 is rotated at a speed of, for example, 10 rpm during film formation. Further, the rotation holding table 42 can be moved up and down, and the distance between the rotation holding table 42 and the nonmagnetic element target 45 can be changed from 70 mm to 120 mm.
 次に、室温下でもって、同時スパッタリングにより磁性被膜30が形成される。すなわち、スパッタリングターゲットとして、強磁性元素ターゲット44と非磁性元素ターゲット45との両方を用いて、両元素を同時にスパッタリング成膜する。成膜される磁性被膜30中では、非磁性元素(例えばAg)が強磁性元素(例えばCo)に固溶することなく、強磁性元素(例えばCo)の磁性結晶粒子が非磁性元素(例えばAg)の非磁性粒界領域中に分散して孤立した状態で存在する(グラニュラー構造化)。非磁性物質を含む磁性被膜30の厚さは、例えば10~100nm等とすることができる。例えば強磁性元素ターゲット44としてCoターゲット、非磁性元素ターゲット45としてAgターゲットを用い、成膜厚さが100nmである場合には、成膜の所要時間は約3~5分である。工程S1及び工程S2を経ることにより、磁気力顕微鏡用探針100が製造される。 Next, the magnetic film 30 is formed by co-sputtering at room temperature. That is, both the ferromagnetic element target 44 and the nonmagnetic element target 45 are used as sputtering targets, and both elements are simultaneously formed by sputtering. In the magnetic film 30 to be deposited, the non-magnetic element (for example, Ag) does not dissolve in the ferromagnetic element (for example, Co), and the magnetic crystal grains of the ferromagnetic element (for example, Co) are non-magnetic elements (for example, Ag). ) Are dispersed and isolated in the non-magnetic grain boundary region (granular structure). The thickness of the magnetic coating 30 containing a nonmagnetic substance can be set to 10 to 100 nm, for example. For example, when a Co target is used as the ferromagnetic element target 44 and an Ag target is used as the nonmagnetic element target 45 and the film thickness is 100 nm, the time required for film formation is about 3 to 5 minutes. The magnetic force microscope probe 100 is manufactured through the steps S1 and S2.
 磁気力顕微鏡用探針100の製造方法に関する上記説明では、強磁性元素と非磁性元素とを同時スパッタリングすることにより磁性被膜30を形成する形態の製造プロセスを例示したが、本発明の磁気力顕微鏡用探針の製造方法は当該形態に限定されるものではない。
例えば、非磁性元素(例えばAg)のスパッタリング成膜と強磁性元素(例えばCo)のスパッタリング成膜とを交互に行うことにより、最終的に非磁性物質を含む磁性被膜30を形成することも可能である。ただし、強磁性元素(例えばCo)の磁性結晶粒子が非磁性元素(例えばAg)の非磁性粒界領域中に分散して孤立した状態で存在する状態を実現することが容易である点からは、上記のような同時スパッタリングにより磁性被膜を成膜する形態を好ましく採用できる。
In the above description regarding the method of manufacturing the probe 100 for the magnetic force microscope, the manufacturing process of the form in which the magnetic coating 30 is formed by co-sputtering a ferromagnetic element and a nonmagnetic element has been exemplified. The manufacturing method of the probe for use is not limited to this form.
For example, by alternately performing sputtering film formation of a nonmagnetic element (for example, Ag) and sputtering film formation of a ferromagnetic element (for example, Co), the magnetic film 30 containing a nonmagnetic material can be finally formed. It is. However, from the point that it is easy to realize a state where magnetic crystal grains of a ferromagnetic element (for example, Co) are dispersed and isolated in a nonmagnetic grain boundary region of a nonmagnetic element (for example, Ag). A form in which a magnetic film is formed by simultaneous sputtering as described above can be preferably employed.
 <2.磁場観察装置>
 図5は、本発明の一の実施形態に係る磁場観察装置1000を模式的に説明する図である。磁場観察装置1000は、磁性体試料1から漏洩する直流磁場を観察する装置である。
<2. Magnetic field observation device>
FIG. 5 is a diagram schematically illustrating the magnetic field observation apparatus 1000 according to one embodiment of the present invention. The magnetic field observation apparatus 1000 is an apparatus that observes a DC magnetic field leaking from the magnetic sample 1.
 図5に示すように、磁場観察装置1000は、探針100、励振器200、交流磁場発生器300、振動センサー400、復調器430、復調信号処理装置440、探針100と磁性体試料1との相対的な位置関係を変更して探針100に磁性体試料1の観察面上を走査させる走査機構500、及び、画像表示装置600を備えている。以下に、これらの構成要素について説明する。 As shown in FIG. 5, the magnetic field observation apparatus 1000 includes a probe 100, an exciter 200, an AC magnetic field generator 300, a vibration sensor 400, a demodulator 430, a demodulated signal processing device 440, the probe 100, and the magnetic material sample 1. Are provided with a scanning mechanism 500 that causes the probe 100 to scan the observation surface of the magnetic sample 1 and an image display device 600. Hereinafter, these components will be described.
 (磁性体試料1)
 磁場観察装置1000の計測対象である磁性体試料1は、強い直流磁場を発生する試料である。磁性体試料1の具体例としては、永久磁石を挙げることができる。
(Magnetic material sample 1)
The magnetic material sample 1 that is a measurement target of the magnetic field observation apparatus 1000 is a sample that generates a strong DC magnetic field. A specific example of the magnetic material sample 1 is a permanent magnet.
 (探針100)
 探針100は、磁気飽和がなく印加磁場方向に磁気モーメントが発生する磁性探針であって、カンチレバー11の一方の端部に備えられている。探針100は、上記説明した本発明の磁気力顕微鏡用探針100である。探針100は、磁性体試料1上に配置されることによって、磁性体試料1から漏洩する直流磁場の影響を受ける。また、後に詳述するように、交流磁場発生器300から発生する交流磁場によって、探針100の磁化の大きさは周期的に交流磁場方向に変動させられる。このとき、探針100の磁化と磁性体試料1から漏洩する直流磁場との間の磁気的相互作用により探針100に作用する磁気力は交流成分を有する。すなわち、探針100に作用する磁気力の強度が周期的に変動する。そのためカンチレバー110の見かけ上のバネ定数が周期的に変動し、その結果カンチレバー110の励振振動(すなわち探針100の振動)が周波数変調される。探針100の振動の周期的な周波数変調の程度を、後に説明する復調器430および復調信号処理装置440によって計測する。
(Probe 100)
The probe 100 is a magnetic probe that has no magnetic saturation and generates a magnetic moment in the direction of the applied magnetic field, and is provided at one end of the cantilever 11. The probe 100 is the magnetic force microscope probe 100 of the present invention described above. The probe 100 is affected by a direct-current magnetic field leaking from the magnetic sample 1 by being disposed on the magnetic sample 1. As will be described in detail later, the magnitude of the magnetization of the probe 100 is periodically changed in the direction of the AC magnetic field by the AC magnetic field generated from the AC magnetic field generator 300. At this time, the magnetic force acting on the probe 100 due to the magnetic interaction between the magnetization of the probe 100 and the DC magnetic field leaking from the magnetic sample 1 has an AC component. That is, the strength of the magnetic force acting on the probe 100 varies periodically. Therefore, the apparent spring constant of the cantilever 110 periodically varies, and as a result, the excitation vibration of the cantilever 110 (that is, the vibration of the probe 100) is frequency-modulated. The degree of periodic frequency modulation of the vibration of the probe 100 is measured by a demodulator 430 and a demodulated signal processing device 440 described later.
 上記の通り、探針100は磁気飽和がなく印加磁場方向に磁気モーメントが発生する磁性探針である。磁気飽和がある強磁性体やフェリ磁性体の探針を用いた場合には、磁性体試料1から漏洩している強力な直流磁場により探針の磁化が飽和してしまい、交流磁場を印加しても探針の磁化を変動させることができないので、カンチレバーの励振振動に周波数変調を起こすことができない。 As described above, the probe 100 is a magnetic probe that has no magnetic saturation and generates a magnetic moment in the applied magnetic field direction. When a ferromagnetic or ferrimagnetic probe with magnetic saturation is used, the magnetization of the probe is saturated by the strong DC magnetic field leaking from the magnetic sample 1, and an AC magnetic field is applied. However, since the magnetization of the probe cannot be changed, frequency modulation cannot be caused in the excitation vibration of the cantilever.
 なお、磁気飽和がなく印加磁場方向に磁気モーメントが発生する磁性材料が探針100に含まれ、かつ、探針100が磁性体試料1に吸着されることによる測定不能の問題が起きない限りにおいて、探針は強磁性体(すなわち磁気飽和のある材料)を含んでいてもよい。強磁性体の磁化が磁性体試料1からの直流磁場によって飽和しても、磁気飽和のない磁性材料の磁化は交流磁場の印加によって変動させることができるから、探針全体としての磁化は交流磁場の印加によって変動させることができる。磁性体被膜に強磁性体を含む探針の場合には残留磁化がゼロではなくヒステリシスを有することになるが、永久磁石等の強力な直流磁場を観察する限り、探針全体としての磁化はヒステリシス領域を外れた可逆的な領域で変動することになる。したがって、探針100が磁性体試料1に吸着されて測定自体が不能にならない限りは、磁化飽和がなく印加磁場方向に磁気モーメントが発生する磁性材料に加えて強磁性体を含む探針も本発明において使用可能である。
 ただし、測定精度の観点からは、探針100は磁気ヒステリシスを有しないことが好ましい。
As long as a magnetic material that does not have magnetic saturation and generates a magnetic moment in the direction of the applied magnetic field is included in the probe 100 and the problem that measurement cannot be performed due to the probe 100 being adsorbed to the magnetic sample 1 does not occur. The probe may contain a ferromagnet (ie, a material with magnetic saturation). Even if the magnetization of the ferromagnet is saturated by the DC magnetic field from the magnetic sample 1, the magnetization of the magnetic material without magnetic saturation can be changed by applying an AC magnetic field. It can be changed by applying. In the case of a probe containing a ferromagnetic material in the magnetic film, the residual magnetization is not zero but has hysteresis, but as long as a strong DC magnetic field such as a permanent magnet is observed, the magnetization of the entire probe is hysteresis. It fluctuates in a reversible region outside the region. Therefore, as long as the probe 100 is not attracted to the magnetic material sample 1 and the measurement itself is not disabled, the probe including the ferromagnetic material in addition to the magnetic material that does not have magnetization saturation and generates a magnetic moment in the direction of the applied magnetic field. It can be used in the invention.
However, from the viewpoint of measurement accuracy, the probe 100 preferably has no magnetic hysteresis.
 探針100に用いる磁気飽和がなく印加磁場方向に磁気モーメントが発生する磁性材料としては、常磁性または超常磁性を示す材料を用いることが好ましく、超常磁性を示す材料(超常磁性材料)を用いることが特に好ましい。超常磁性材料は常磁性体と比較して高い磁化率を示すので、高感度での磁場検出に有利である。 As the magnetic material that has no magnetic saturation and generates a magnetic moment in the direction of the applied magnetic field, it is preferable to use a paramagnetic or superparamagnetic material, and to use a superparamagnetic material (superparamagnetic material). Is particularly preferred. Superparamagnetic materials exhibit a high magnetic susceptibility compared to paramagnetic materials, and are advantageous for magnetic field detection with high sensitivity.
 探針100における磁性材料の被膜厚さは特に制限されるものではなく、磁場計測感度と空間分解能のトレードオフを考慮して適宜決定することができ、例えば10~100nm等とすることができる。 The film thickness of the magnetic material in the probe 100 is not particularly limited, and can be appropriately determined in consideration of the trade-off between magnetic field measurement sensitivity and spatial resolution, and can be, for example, 10 to 100 nm.
 探針100に使用可能な常磁性体としては、1種以上の強磁性元素と1種以上の非磁性元素とを含んでなる多成分系の常磁性材料を好ましく例示できる。常磁性体はキュリー温度付近で最も大きな磁化率を示す(ホプキンソン効果)ので、多成分系の常磁性材料によれば、組成を変更してキュリー温度を調整することで、測定温度における磁化率を高めて磁気力顕微鏡の測定感度を高めることが可能である。多成分系の常磁性材料としては具体的には、上記(a)固溶体型常磁性材料、及び、上記(b)非晶質型常磁性材料を好ましく採用できる。 As a paramagnetic material usable for the probe 100, a multi-component paramagnetic material containing one or more ferromagnetic elements and one or more nonmagnetic elements can be preferably exemplified. Paramagnetic materials exhibit the highest magnetic susceptibility near the Curie temperature (Hopkinson effect). Therefore, according to the multi-component paramagnetic material, the magnetic susceptibility at the measurement temperature can be adjusted by changing the composition and adjusting the Curie temperature. It is possible to increase the measurement sensitivity of the magnetic force microscope. Specifically, the (a) solid solution type paramagnetic material and the (b) amorphous type paramagnetic material can be preferably used as the multi-component paramagnetic material.
 探針100に使用可能な超常磁性材料としては、上記(c)グラニュラー型超常磁性材料(強磁性材料の十分に小さい粒子が非磁性マトリクス中に分散され、強磁性材料粒子が全体の10~45体積%、好ましくは15~40体積%を占める構造を有する材料)を例示できる。強磁性材料粒子が全体の10~45体積%を占めることにより、パーコレーション(球近似モデルにおいて、2種類の球を混合したとき、同一種類の球どうしが接触しない状態)が起きるので、強磁性材料粒子同士の間での強い磁気的な相互作用(交換相互作用)を抑止することができる。強磁性材料粒子のサイズが小さくなると、熱エネルギーにより粒子の磁化の方向がランダム化し、無磁場下では個々の粒子の磁化が打ち消しあうので、平均として材料全体の磁化がゼロになり強磁性から超常磁性に転移する。無磁場下では磁化がゼロであるので、残留磁化および保磁力も同時にゼロになる。超常磁性材料に磁場を印加すると、磁場方向にのみ磁化が発生し、磁場と直交方向の磁化は個々の粒子間で打ち消しあうので、超常磁性材料は磁場の印加方向に垂直な磁化成分は有しない。 As the superparamagnetic material that can be used for the probe 100, the above-mentioned (c) granular superparamagnetic material (sufficiently small particles of a ferromagnetic material are dispersed in a nonmagnetic matrix, and the ferromagnetic material particles are 10 to 45 in total. Examples thereof include materials having a structure occupying volume%, preferably 15 to 40 volume%. Ferromagnetic material particles occupy 10 to 45% by volume of the whole, so percolation occurs (in the sphere approximation model, when two kinds of spheres are mixed, the same kind of spheres are not in contact with each other). Strong magnetic interaction (exchange interaction) between particles can be suppressed. When the size of the ferromagnetic material particle is reduced, the magnetization direction of the particle is randomized by thermal energy, and the magnetization of the individual particles cancels out in the absence of a magnetic field. Transition to magnetism. Since the magnetization is zero under no magnetic field, the residual magnetization and the coercive force are also zero at the same time. When a magnetic field is applied to a superparamagnetic material, magnetization occurs only in the direction of the magnetic field, and magnetization in the direction perpendicular to the magnetic field cancels between individual particles, so the superparamagnetic material does not have a magnetization component perpendicular to the direction in which the magnetic field is applied. .
 超常磁性材料は温度低下に伴い超常磁性から強磁性に転移し、その転移温度はブロッキング温度と呼ばれる。超常磁性材料を探針に用いる場合には、使用中の探針の温度は上記ブロッキング温度以上に保たれる。 Superparamagnetic materials transition from superparamagnetism to ferromagnetism as the temperature drops, and the transition temperature is called the blocking temperature. When a superparamagnetic material is used for the probe, the temperature of the probe in use is kept above the blocking temperature.
 (励振器200)
 上記探針100はカンチレバー110の一方の端部(自由端)近傍に備えられており、該カンチレバー110の他方の端部(固定端)は固定されている。このようなカンチレバー110を励振器200によって励振させることにより、探針100を励振させることができる。
(Exciter 200)
The probe 100 is provided near one end (free end) of the cantilever 110, and the other end (fixed end) of the cantilever 110 is fixed. The probe 100 can be excited by exciting the cantilever 110 with the exciter 200.
 探針100を励振させることができる限りにおいて、励振器200の構成は特に限定されない。励振器200は、例えば、カンチレバー110の固定端近傍に取り付けられた励振用アクチュエータ(例えばピエゾ素子等。)と、該励振用アクチュエータに接続された交流電圧電源とによって構成することができる。励振器200がカンチレバー110を励振させる周波数は、励振が可能である限りにおいて特に制限されるものではないが、通常はカンチレバー110の共振周波数近傍の周波数が励振周波数として好ましく採用される。 As long as the probe 100 can be excited, the configuration of the exciter 200 is not particularly limited. The exciter 200 can be configured by, for example, an excitation actuator (for example, a piezo element) attached near the fixed end of the cantilever 110 and an AC voltage power source connected to the excitation actuator. The frequency at which the exciter 200 excites the cantilever 110 is not particularly limited as long as excitation is possible, but normally a frequency near the resonance frequency of the cantilever 110 is preferably adopted as the excitation frequency.
 (交流磁場発生器300)
 交流磁場発生器300は、磁性体試料1を磁化反転させない大きさの交流磁場を探針100に印加する装置である。このような交流磁場発生機構300は、例えば、図5に示したように、磁性体試料1の直下に配置され、コイル320が巻回された磁心330と、コイル320に交流電流を供給する交流電流電源310とによって構成することができる。コイル320及び磁心330により交流電磁石が構成されており、交流電流電源310からコイル320に交流電流が供給されることにより、試料表面に垂直な方向の交流磁場が磁性体試料1及び探針100に印加される。
(AC magnetic field generator 300)
The AC magnetic field generator 300 is an apparatus that applies an AC magnetic field having a magnitude that does not cause magnetization reversal of the magnetic sample 1 to the probe 100. For example, as shown in FIG. 5, such an alternating magnetic field generation mechanism 300 is arranged immediately below the magnetic material sample 1, and a magnetic core 330 around which the coil 320 is wound, and an alternating current that supplies an alternating current to the coil 320. It can be constituted by a current power source 310. The coil 320 and the magnetic core 330 constitute an AC electromagnet. When an AC current is supplied from the AC current power source 310 to the coil 320, an AC magnetic field in a direction perpendicular to the sample surface is applied to the magnetic sample 1 and the probe 100. Applied.
 交流磁場発生器300から発生させる交流磁場は、空間変化が小さいことが好ましい。具体的には、探針100の先端の磁化の直流成分(すなわち磁性体試料1から漏洩する直流磁場による磁化)と、交流磁場発生器300から探針100に印加される交流磁場の空間変化勾配との積が、探針100の先端の磁化の交流成分(すなわち交流磁場発生器300から印加される交流磁場による磁化変動)と、磁性体試料1から探針100に印加される直流磁場の空間変化勾配との積より小さいことが好ましい。交流磁場の空間変化勾配を小さくするには、磁性体試料1と探針100との間の計測空間に、一様な大きさの交流磁場を印加することが考えられる。 It is preferable that the AC magnetic field generated from the AC magnetic field generator 300 has a small spatial change. Specifically, the DC component of the magnetization at the tip of the probe 100 (that is, the magnetization due to the DC magnetic field leaking from the magnetic sample 1) and the spatial change gradient of the AC magnetic field applied from the AC magnetic field generator 300 to the probe 100. Is the space between the AC component of the magnetization at the tip of the probe 100 (that is, the magnetization fluctuation due to the AC magnetic field applied from the AC magnetic field generator 300) and the DC magnetic field applied from the magnetic sample 1 to the probe 100. It is preferably smaller than the product of the change gradient. In order to reduce the spatial change gradient of the alternating magnetic field, it is conceivable to apply an alternating magnetic field having a uniform size to the measurement space between the magnetic sample 1 and the probe 100.
 また、交流磁場発生器300は、磁性体試料1から漏洩する直流磁場の測定する成分の方向と同一方向(例えば磁性体試料1の観察面に対して垂直な方向の直流磁場を測定する場合には、当該観察面に対して垂直な方向。)に、交流磁場を印加することが好ましい。その理由は、本発明の磁気力顕微鏡では、交流磁場の印加方向に発生する、探針の磁化の方向に平行な磁場成分(探針の磁化方向への射影成分)が検出されるからである。 Further, the AC magnetic field generator 300 is used in the case of measuring a DC magnetic field in the same direction as the component to be measured of the DC magnetic field leaking from the magnetic sample 1 (for example, a direction perpendicular to the observation surface of the magnetic sample 1). Is preferably applied in the direction perpendicular to the observation plane). The reason is that in the magnetic force microscope of the present invention, a magnetic field component (projection component in the magnetization direction of the probe) generated in the direction of application of the alternating magnetic field and parallel to the magnetization direction of the probe is detected. .
 なお、交流磁場発生器300から発生させる交流磁場の周波数は、探針100の振動の周波数変調が検出可能である限りにおいて特に制限されるものではなく、例えば10Hz~1kHz等とすることができる。例えば励振器200がカンチレバー110をその共振周波数または共振周波数近傍の周波数で励振させる場合には、励振振動が周波数変調されることにより生じる側波帯の周波数が、共振曲線において必要な利得を得られる範囲内となるような周波数を適宜選択することができる。 Note that the frequency of the AC magnetic field generated from the AC magnetic field generator 300 is not particularly limited as long as the frequency modulation of the vibration of the probe 100 can be detected, and may be, for example, 10 Hz to 1 kHz. For example, when the exciter 200 excites the cantilever 110 at the resonance frequency or a frequency close to the resonance frequency, the sideband frequency generated by frequency modulation of the excitation vibration can obtain a necessary gain in the resonance curve. A frequency that falls within the range can be appropriately selected.
 また交流磁場発生器300により探針100に印加する交流磁場の強度は、探針100が磁性体試料1に吸着されない範囲であって、かつ所望の磁場計測感度が得られる範囲において、適宜調整することができる。 The intensity of the AC magnetic field applied to the probe 100 by the AC magnetic field generator 300 is appropriately adjusted within a range where the probe 100 is not attracted to the magnetic sample 1 and a desired magnetic field measurement sensitivity can be obtained. be able to.
 交流磁場発生機構300を構成する要素の設置位置は特に限定されない。例えば図5の磁場観察装置1000においては、磁心330とコイル320とによって構成される交流電磁石が、磁性体試料1の直下に配置されている。また探針100の周りの空間が狭い従来の汎用型のMFMに交流磁場発生機構300を組み込むためには、交流磁場を発生する交流電磁石等をMFMの試料設置台の下に設置することが考えられる。あるいは、探針100の周りの空間を広くして、磁性体試料1よりも探針100に近い位置から探針100に交流磁場を印加できるように、交流磁場発生機構300を設置することも可能である。 The installation position of the elements constituting the AC magnetic field generation mechanism 300 is not particularly limited. For example, in the magnetic field observation apparatus 1000 shown in FIG. 5, an AC electromagnet composed of a magnetic core 330 and a coil 320 is arranged immediately below the magnetic sample 1. In order to incorporate the AC magnetic field generation mechanism 300 into a conventional general-purpose MFM in which the space around the probe 100 is narrow, it is considered that an AC electromagnet or the like that generates an AC magnetic field is installed under the MFM sample mounting table. It is done. Alternatively, the AC magnetic field generation mechanism 300 can be installed so that the space around the probe 100 can be widened and an AC magnetic field can be applied to the probe 100 from a position closer to the probe 100 than the magnetic sample 1. It is.
 (振動センサー400、復調器430、復調信号処理装置440)
 探針100の磁化と磁性体試料1からの直流磁場との間の磁気的相互作用により、探針100は強度が周期的に変動する磁気力を受ける。この強度が周期的に変動する磁気力が、カンチレバー110の見かけ上のバネ定数を周期的に変動させる。このようにしてカンチレバー110の見かけ上のバネ定数が周期的に変動することによって、探針100の振動の周波数が周期的に変動する。振動センサー400、復調器430、および復調信号処理装置440により、この周波数変調された探針100の振動から、探針100の位置における磁性体試料1からの直流磁場の情報を取り出すことができる。
(Vibration sensor 400, demodulator 430, demodulated signal processing device 440)
Due to the magnetic interaction between the magnetization of the probe 100 and the DC magnetic field from the magnetic sample 1, the probe 100 receives a magnetic force whose intensity periodically varies. This magnetic force whose intensity periodically changes causes the apparent spring constant of the cantilever 110 to periodically change. In this way, the apparent spring constant of the cantilever 110 periodically varies, so that the vibration frequency of the probe 100 varies periodically. The vibration sensor 400, demodulator 430, and demodulated signal processing device 440 can extract DC magnetic field information from the magnetic sample 1 at the position of the probe 100 from the vibration of the probe 100 that has been frequency-modulated.
 (振動センサー400)
 磁場観察装置1000において、振動センサー400は、カンチレバー110の自由端側の先端にレーザー光を照射する光源410と、カンチレバー110に反射された該レーザー光を検知する光学変位センサー420とを有している。光源410から照射されてカンチレバー110の自由端側の先端で反射したレーザー光を光学変位センサー420で検知することにより、探針100の変位を出力として取り出すことができる。後述する走査機構600によって、探針100で磁性体試料1の観察面を走査しながら検知した光学変位センサー420からの出力は、復調器430に入力される。
(Vibration sensor 400)
In the magnetic field observation apparatus 1000, the vibration sensor 400 includes a light source 410 that irradiates laser light on the free end of the cantilever 110 and an optical displacement sensor 420 that detects the laser light reflected by the cantilever 110. Yes. By detecting the laser beam emitted from the light source 410 and reflected by the free end of the cantilever 110 with the optical displacement sensor 420, the displacement of the probe 100 can be extracted as an output. An output from the optical displacement sensor 420 detected by the scanning mechanism 600 described later while scanning the observation surface of the magnetic sample 1 with the probe 100 is input to the demodulator 430.
 (復調器430)
 振動センサー400の検出信号は、カンチレバー110の励振振動が、探針100と磁性体試料1との間に生じる磁気力の交流成分によって周波数変調された振動である。復調器430は、振動センサー400の検出信号から、探針100と磁性体試料1との間に生じる磁気力の交流成分に対応する信号を復調する。図5の磁場観察装置1000において、復調器430は、振動センサー400の検出信号を周波数復調するFM復調器である。復調器430としては、例えばPLL(Phase Locked Loop)回路等の、FM復調器として公知の回路を特に制限なく採用することができる。なお復調器430として、振動センサー400の検出信号に含まれる側帯波スペクトルの強度を計測する形態の復調器を採用することも可能であり、そのような形態の復調器は、例えばスペクトラムアナライザを用いて構成することができる。復調器430によって復調された信号は、復調信号処理装置440に入力される。
(Demodulator 430)
The detection signal of the vibration sensor 400 is a vibration in which the excitation vibration of the cantilever 110 is frequency-modulated by the AC component of the magnetic force generated between the probe 100 and the magnetic sample 1. The demodulator 430 demodulates a signal corresponding to the alternating current component of the magnetic force generated between the probe 100 and the magnetic sample 1 from the detection signal of the vibration sensor 400. In the magnetic field observation apparatus 1000 of FIG. 5, the demodulator 430 is an FM demodulator that frequency-demodulates the detection signal of the vibration sensor 400. As the demodulator 430, a circuit known as an FM demodulator, such as a PLL (Phase Locked Loop) circuit, can be employed without any particular limitation. As the demodulator 430, a demodulator that measures the intensity of the sideband spectrum included in the detection signal of the vibration sensor 400 can be adopted. For example, a spectrum analyzer is used as the demodulator. Can be configured. The signal demodulated by the demodulator 430 is input to the demodulated signal processing device 440.
 (復調信号処理装置440)
 復調信号処理装置440は、復調器430から入力される復調信号および交流磁場発生器300の電圧信号から、直流磁場の情報を取り出す。図5の磁場観察装置1000において、復調信号処理装置440はロックインアンプにより構成されている。復調信号処理装置440は、復調器430から得た復調信号の振幅R、及び、復調信号と交流磁場発生器300の電流信号または電圧信号(参照信号)との位相差θを計測するか、又は、復調器430から得た復調信号の、交流磁場発生器300の電流信号(参照信号)に対する同相成分Xおよび直交成分Yを計測する。これにより、同相成分Xと直交成分Yから振幅および位相を精度よく計算でき、また、直交成分から位相遅れ等も評価することが可能になる。ここでロックインアンプの参照信号をRrefcos(ωt)(ここでRrefは正値にとる)で表し、ロックインアンプで計測する参照信号と同一の角周波数ωを有する復調信号を、Rcos(ωt+θ)(ここでRは正値にとる)で表すと、復調信号は後述するように探針100に作用する磁気力勾配の交流成分(∂F/∂z)cos(ωt+θ)に対応し、この磁気力勾配の振幅(∂F/∂z)は周期的に変化する探針磁化の振幅と磁性体試料1からの直流磁場勾配の積に比例するので、探針磁化を交流磁場印加により角周波数ωで正弦波状に変化させた場合には、直流磁場勾配の強度(正値)に対応する。また、復調信号の参照信号との位相差θは、磁気力勾配の参照信号との位相差に対応しており、後述するように磁性体試料1からの直流磁場の極性の検出に用いることができる。
(Demodulated signal processing device 440)
The demodulated signal processing device 440 extracts DC magnetic field information from the demodulated signal input from the demodulator 430 and the voltage signal from the AC magnetic field generator 300. In the magnetic field observation apparatus 1000 of FIG. 5, the demodulated signal processing apparatus 440 is configured by a lock-in amplifier. The demodulated signal processing device 440 measures the amplitude R of the demodulated signal obtained from the demodulator 430 and the phase difference θ between the demodulated signal and the current signal or voltage signal (reference signal) of the AC magnetic field generator 300, or The in-phase component X and the quadrature component Y of the demodulated signal obtained from the demodulator 430 with respect to the current signal (reference signal) of the AC magnetic field generator 300 are measured. As a result, the amplitude and phase can be accurately calculated from the in-phase component X and the quadrature component Y, and the phase delay and the like can be evaluated from the quadrature component. Here, the reference signal of the lock-in amplifier is represented by R ref cos (ωt) (where R ref takes a positive value), and the demodulated signal having the same angular frequency ω as the reference signal measured by the lock-in amplifier is represented by R cos. When represented by (ωt + θ) (where R is a positive value), the demodulated signal is an alternating current component (∂F m / ∂z) cos (ω m t + θ) of the magnetic force gradient acting on the probe 100 as will be described later. The magnetic force gradient amplitude (∂F m / ∂z) is proportional to the product of the periodically changing probe magnetization amplitude and the DC magnetic field gradient from the magnetic sample 1, so that the probe magnetization When the AC magnetic field is applied to change the sine wave shape at the angular frequency ω, this corresponds to the strength (positive value) of the DC magnetic field gradient. Further, the phase difference θ with the reference signal of the demodulated signal corresponds to the phase difference with the reference signal of the magnetic force gradient, and is used for detecting the polarity of the DC magnetic field from the magnetic sample 1 as will be described later. it can.
 一方、上記の振幅Rおよび位相θと、参照信号Rrefcos(ωt)との同相成分Xおよび直交成分Yは以下の式(1)及び(2)で関係づけられる。 On the other hand, the in-phase component X and the quadrature component Y of the amplitude R and phase θ described above and the reference signal R ref cos (ωt) are related by the following equations (1) and (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
したがって、復調信号の参照信号に対する同相成分Xの振幅である、Rcos(θ)を計測する場合には、-θの位相調整を行い、θ=0にして信号強度を最大にすることが好ましい。特に、ロックインアンプを用いて交流磁場発生器300の電圧信号を参照信号として同相成分を計測する場合には、交流磁場発生器300は電気回路的にはインダクタンス成分と抵抗成分を含むので、交流磁場発生器300の電圧信号に対して交流磁場を発生させる電流信号の位相が遅れ、そのため位相調整が必要になる。一方、ロックインアンプで交流磁場発生器300の電流信号を参照信号として同相成分を計測する場合には、交流磁場は交流磁場発生器300の電流信号と同期して発生するのでθ=0となり、電流信号が最大となるタイミングで、交流磁場印加方向と平行な方向における試料からの直流磁場の勾配が最大値で検出される。 Therefore, when measuring R cos (θ), which is the amplitude of the in-phase component X with respect to the reference signal of the demodulated signal, it is preferable to adjust the phase of −θ and set θ = 0 to maximize the signal intensity. In particular, when the in-phase component is measured using a lock-in amplifier with the voltage signal of the AC magnetic field generator 300 as a reference signal, the AC magnetic field generator 300 includes an inductance component and a resistance component in terms of an electric circuit. The phase of the current signal for generating the alternating magnetic field is delayed with respect to the voltage signal of the magnetic field generator 300, and therefore phase adjustment is required. On the other hand, when the in-phase component is measured with the lock-in amplifier using the current signal of the AC magnetic field generator 300 as a reference signal, the AC magnetic field is generated in synchronization with the current signal of the AC magnetic field generator 300, so θ = 0. At the timing when the current signal becomes maximum, the gradient of the DC magnetic field from the sample in the direction parallel to the AC magnetic field application direction is detected at the maximum value.
 特許文献4の磁場観察装置や特許文献5に記載の磁気プロファイル測定装置においては、探針に強磁性体を用いている(ソフト磁性材料とは強磁性体のうち保磁力が低いものを指す。)。強磁性体よりなる探針においては、交流磁場を印加すると、外部磁場がゼロでも発生している自発磁化に起因する磁気モーメントが回転する。よって磁気モーメントが交流磁場の印加方向に対して完全に平行になるとき以外は、磁気モーメントは交流磁場方向に対して垂直な成分も有することになる。通常、交流磁場は試料表面に対して垂直に印加され、試料表面に垂直な方向の磁場が測定されるところ、磁気モーメントが交流磁場に対して完全に平行になるとき以外は、試料表面から発生する磁場の垂直成分と探針磁化との相互作用による磁気力だけでなく、試料表面から発生する磁場の面内成分と探針磁化との相互作用による磁気力も探針に作用し、検出信号に含まれてしまう。そのため垂直磁場成分と面内磁場成分とを分離して測定するためには、検出信号の処理にあたって、特許文献5に記載の磁気プロファイル測定装置におけるように複雑な位相調整処理が必要であった。 In the magnetic field observation apparatus disclosed in Patent Document 4 and the magnetic profile measurement apparatus described in Patent Document 5, a ferromagnetic material is used for the probe (a soft magnetic material refers to a ferromagnetic material having a low coercive force. ). In a probe made of a ferromagnetic material, when an alternating magnetic field is applied, a magnetic moment caused by spontaneous magnetization generated even when the external magnetic field is zero rotates. Therefore, the magnetic moment also has a component perpendicular to the AC magnetic field direction, except when the magnetic moment is completely parallel to the application direction of the AC magnetic field. Normally, an alternating magnetic field is applied perpendicular to the sample surface, and the magnetic field in the direction perpendicular to the sample surface is measured, and is generated from the sample surface except when the magnetic moment is completely parallel to the alternating magnetic field. In addition to the magnetic force due to the interaction between the vertical component of the magnetic field and the probe magnetization, the magnetic force due to the interaction between the in-plane component of the magnetic field generated from the sample surface and the probe magnetization also acts on the probe, resulting in a detection signal. It will be included. For this reason, in order to measure the vertical magnetic field component and the in-plane magnetic field component separately, complicated phase adjustment processing as in the magnetic profile measuring device described in Patent Document 5 is required for processing the detection signal.
 本発明の磁場観察装置1000においては、磁気飽和のある強磁性探針ではなく、磁気飽和のない(すなわち強磁性でない)磁性探針100を用いるので、探針100に交流磁場を印加することによる探針磁化は、交流磁場の印加方向にのみ生じ、交流磁場の印加方向に対して垂直な方向には生じない。これにより、探針100が磁性体試料1からの直流磁場から受ける磁気力の交流成分は、磁性体試料1からの直流磁場のうち交流磁場印加方向の成分のみに由来するものとなる。したがって本発明によれば、試料からの直流磁場の計測方向は探針に印加する交流磁場の方向を変えるだけで制御でき、信号処理工程を大幅に簡略化することが可能になる。 In the magnetic field observation apparatus 1000 according to the present invention, the magnetic probe 100 without magnetic saturation (that is, non-ferromagnetic) is used instead of the ferromagnetic probe with magnetic saturation, so that an AC magnetic field is applied to the probe 100. The probe magnetization occurs only in the direction in which the alternating magnetic field is applied, and does not occur in the direction perpendicular to the direction in which the alternating magnetic field is applied. Thereby, the AC component of the magnetic force that the probe 100 receives from the DC magnetic field from the magnetic sample 1 is derived from only the component in the AC magnetic field application direction of the DC magnetic field from the magnetic sample 1. Therefore, according to the present invention, the measurement direction of the DC magnetic field from the sample can be controlled only by changing the direction of the AC magnetic field applied to the probe, and the signal processing process can be greatly simplified.
 (走査機構500)
 走査機構500は、探針100と磁性体試料1との位置を相対的に変化させることができる機構である。走査機構500により、探針100が磁性体試料1表面上の走査領域を走査する。走査機構としては、例えば、磁性体試料1が載置される試料設置台を駆動装置によって動かすことにより、試料設置台の位置を探針100に対して相対的に変化させることによって、探針100と磁性体試料1との位置を相対的に変化させることができる機構とすることができる。そのような機構としてはX-Yステージを例示できる。このほか、探針100を駆動装置によって動かすことにより、探針100と磁性体試料1の相対的な位置関係を変化させる態様の走査機構を採用することも可能である。また走査機構500として、従来の走査型プローブ顕微鏡などに用いられている公知の機構(例えば、ピエゾ素子など。)を用いることも可能である。
(Scanning mechanism 500)
The scanning mechanism 500 is a mechanism that can relatively change the positions of the probe 100 and the magnetic material sample 1. The scanning mechanism 500 causes the probe 100 to scan the scanning area on the surface of the magnetic sample 1. As the scanning mechanism, for example, by moving the sample mounting table on which the magnetic sample 1 is placed by a driving device, the position of the sample mounting table is changed relative to the probe 100, thereby the probe 100. And the magnetic material sample 1 can be a mechanism capable of relatively changing the position. An example of such a mechanism is an XY stage. In addition, it is also possible to employ a scanning mechanism that changes the relative positional relationship between the probe 100 and the magnetic sample 1 by moving the probe 100 with a driving device. As the scanning mechanism 500, a known mechanism (for example, a piezo element) used in a conventional scanning probe microscope or the like can be used.
 (画像表示装置600)
 画像表示装置600は、走査機構500により走査領域を走査することで得られた、走査領域の各座標における磁性体試料1からの直流磁場の情報に基づく磁場分布画像を表示する装置である。画像表示装置600としては、上記のようにして得られた復調信号処理装置440からの出力信号を座標に対応させて画像化できる構成を有する限りにおいて特に限定されるものではなく、例えば、従来の走査型プローブ顕微鏡に備えられるような、外部入力信号を画像化できる表示装置を用いることができる。
(Image display device 600)
The image display device 600 is a device that displays a magnetic field distribution image based on DC magnetic field information from the magnetic material sample 1 at each coordinate of the scanning region obtained by scanning the scanning region with the scanning mechanism 500. The image display device 600 is not particularly limited as long as it has a configuration capable of imaging the output signal from the demodulated signal processing device 440 obtained as described above in correspondence with the coordinates. A display device capable of imaging an external input signal as provided in a scanning probe microscope can be used.
 (計測原理)
 本発明の磁場観察装置1000を用いて、強い直流磁場を発生させる磁性体材料1の表面近傍において高分解能で磁場を観察できる原理について、以下に説明する。
(Measurement principle)
The principle of observing a magnetic field with high resolution near the surface of the magnetic material 1 that generates a strong DC magnetic field using the magnetic field observation apparatus 1000 of the present invention will be described below.
 上述したように、磁性体を構成要素とする探針100の磁化と磁性体試料1の磁化との間の磁気的相互作用による磁気力の、カンチレバーの共振周波数と異なる周波数(非共振周波数)の交流成分に起因して、探針100の振動の周波数が周期的に変調する。その理論モデルを図6に示した。図6(a)は、一定周波数で加振している探針100に、探針100の共振周波数と異なる周波数(非共振周波数)の交流磁場を印加した様子を概略的に示している。図6(b)は、このような探針100の運動を先端におもりmが取り付けられたバネに例えたモデルを概略的に示している。 As described above, the magnetic force due to the magnetic interaction between the magnetization of the probe 100 and the magnetization of the magnetic sample 1 having a magnetic material as a constituent element has a frequency (non-resonant frequency) different from the resonance frequency of the cantilever. Due to the alternating current component, the vibration frequency of the probe 100 is periodically modulated. The theoretical model is shown in FIG. FIG. 6A schematically shows a state where an alternating magnetic field having a frequency (non-resonant frequency) different from the resonance frequency of the probe 100 is applied to the probe 100 vibrating at a constant frequency. FIG. 6B schematically shows a model in which the movement of the probe 100 is compared to a spring with a weight m attached to the tip.
 探針100の振動における、カンチレバーの共振周波数と異なる周波数(非共振周波数)の磁気力(非共振交番磁気力)の交流成分を変調源とする周波数変調現象は、図6に示すような、磁気力の交流成分によりバネ定数が周期的に変化する調和振動子の運動(下記(3)式)を考えることで導出される。 The frequency modulation phenomenon in which the alternating current component of the magnetic force (non-resonant alternating magnetic force) having a frequency (non-resonant frequency) different from the resonance frequency of the cantilever in the vibration of the probe 100 is a modulation source as shown in FIG. It is derived by considering the motion of the harmonic oscillator (formula (3) below) in which the spring constant periodically changes due to the AC component of the force.
Figure JPOXMLDOC01-appb-M000002
(m:探針100の有効質量、t:時間、z:探針100の振幅(カンチレバーの振動方向を観察面に垂直方向にとりz方向とする)、γ:減衰係数、k:探針100に交流磁場を加える前のカンチレバー110の真性的なバネ定数、Δk:探針100に交流磁場を加えたことによるカンチレバー110の実効的なバネ定数の変化量、ω:加振角周波数、F:加振力の振幅、ω:探針100の共振角周波数)
Figure JPOXMLDOC01-appb-M000002
(M: effective mass of the probe 100, t: time, z: amplitude of the probe 100 (the vibration direction of the cantilever is perpendicular to the observation surface and is defined as the z direction), γ: attenuation coefficient, k 0 : probe 100 Is the intrinsic spring constant of the cantilever 110 before the AC magnetic field is applied to it, Δk: the change amount of the effective spring constant of the cantilever 110 due to the application of the AC magnetic field to the probe 100, ω m : the excitation angular frequency, F 0 : amplitude of excitation force, ω 0 : resonance angular frequency of probe 100)
 ここでは、カンチレバー110をその共振周波数ωで励振させる場合を考える。
 Δkcos(ωt)=keffは交番力による実効的なバネ定数の変化であり、Δkは前述した磁気力勾配の振幅(∂F/∂z)に対応している。(3)式の解は、Δk<<kの場合、下記(4)式のようになる。
Here, a case where the cantilever 110 is excited at the resonance frequency ω 0 is considered.
Δk cos (ω m t) = k eff is an effective change in the spring constant due to the alternating force, and Δk corresponds to the amplitude (∂F m / ∂z) of the magnetic force gradient described above. The solution of equation (3) is as shown in equation (4) below when Δk << k 0 .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記(4)式より、非共振交番磁気力の交流成分を発生源として、探針100の振動に周波数変調が発生することがわかる。ここで、探針100に常磁性材料または超常磁性材料を用い、磁性体試料1の磁化状態を乱さない範囲で角周波数ωの交流磁場を探針100に印加することにより、探針100の磁化を周期的に変動させることを考える。ここでは磁性体試料1の試料面に垂直な方向(z方向)の交流磁場H accos(ωt)を探針100に印加する場合を考える。なお、交流磁場H accos(ωt)は、交流磁場源に供給される交流電流Iaccos(ωt)により発生する。この場合、磁性体試料1から発生する直流磁場の計測方向は、交流磁場が印加されている方向、すなわち磁性体試料1の試料面に対する垂直方向(z方向)となる。磁性体試料1の観察面に垂直な方向の直流磁場H dcならびに観察面に平行な方向の直流磁場H dcを受けている探針100の磁化が、磁性体試料1の観察面に垂直な方向(z方向)の交流磁場H accos(ωt)により、下記(5)式のように変化すると、カンチレバー110の実効的なバネ定数の変化keffは下記(6)式で与えられる。 From the above equation (4), it can be seen that frequency modulation occurs in the vibration of the probe 100 using the AC component of the non-resonant alternating magnetic force as the generation source. Here, a paramagnetic material or a superparamagnetic material is used for the probe 100, and an AC magnetic field having an angular frequency ω m is applied to the probe 100 within a range that does not disturb the magnetization state of the magnetic sample 1. Consider changing the magnetization periodically. Here, a case is considered in which an alternating magnetic field H z ac cos (ω m t) in a direction (z direction) perpendicular to the sample surface of the magnetic sample 1 is applied to the probe 100. The alternating magnetic field H z ac cos (ω m t) is generated by the alternating current I ac cos (ω m t) supplied to the alternating magnetic field source. In this case, the measurement direction of the DC magnetic field generated from the magnetic sample 1 is the direction in which the AC magnetic field is applied, that is, the direction perpendicular to the sample surface of the magnetic sample 1 (z direction). The magnetization of the probe 100 receiving the DC magnetic field H z dc in the direction perpendicular to the observation surface of the magnetic sample 1 and the DC magnetic field H x dc in the direction parallel to the observation surface is perpendicular to the observation surface of the magnetic sample 1. If the AC magnetic field H z ac cos (ω m t) in the correct direction (z direction) is changed as shown in the following formula (5), the effective spring constant change k eff of the cantilever 110 is expressed by the following formula (6). Given.
Figure JPOXMLDOC01-appb-M000004
(Mtip:探針100の磁化。M dc:探針100の磁化のうち、観察面に垂直な方向の直流磁場H dcにより発生する観察面に垂直な方向の直流磁化成分。M dc:探針100の磁化のうち、観察面に平行な方向の直流磁場H dcにより発生する観察面に平行な方向の直流磁化成分。M ac:探針100の磁化のうち、観察面に垂直な方向の交流磁場H acにより発生する観察面に垂直な方向の交流磁化の振幅。)
Figure JPOXMLDOC01-appb-M000004
(M tip : Magnetization of the probe 100. M z dc : DC magnetization component in the direction perpendicular to the observation surface generated by the DC magnetic field H z dc in the direction perpendicular to the observation surface out of the magnetization of the probe 100. M x dc : DC magnetization component in the direction parallel to the observation surface generated by the DC magnetic field H x dc in the direction parallel to the observation surface in the magnetization of the probe 100. M z ac : Observation surface in the magnetization of the probe 100 The amplitude of the alternating magnetization in the direction perpendicular to the observation surface generated by the alternating magnetic field H z ac in the direction perpendicular to.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここでは、探針磁化は原理的に磁化方向と同方向の磁場を検出できることを用いて、式を展開している。 Here, the equation is developed using the fact that the probe magnetization can detect a magnetic field in the same direction as the magnetization direction in principle.
 探針100に印加する交流磁場の空間変化を小さくして、探針100に印加する交流磁場の空間変化と探針100の磁化の直流成分の強度との積を小さくして下記(7)式が満たされるようにすることで、(6)式の角周波数ωで変化する第2項は下記(8)式のようになる。 The spatial change of the alternating magnetic field applied to the probe 100 is reduced, and the product of the spatial change of the alternating magnetic field applied to the probe 100 and the intensity of the direct current component of the magnetization of the probe 100 is reduced to the following equation (7) Is satisfied, the second term that changes at the angular frequency ω m in equation (6) is expressed by equation (8) below.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 したがって、これらの条件下で交流磁場印加により発生する探針100の振動の周波数変調信号を復調器430で周波数復調した後に、その復調信号を、復調信号処理装置(ロックインアンプ)440を用いて、交流磁場発生器300に備えられた交流電流電源310の出力を参照信号として、交流電流電源310の角周波数ωでロックイン検出することで、磁性体試料1からの垂直磁場H dcの磁場勾配(∂ dc/∂z)の計測が試料表面近傍で可能になることがわかる。 Therefore, after demodulating the frequency modulation signal of the vibration of the probe 100 generated by applying the alternating magnetic field under these conditions by the demodulator 430, the demodulated signal is demodulated using the demodulated signal processing device (lock-in amplifier) 440. By using the output of the alternating current power supply 310 provided in the alternating current magnetic field generator 300 as a reference signal and detecting the lock-in at the angular frequency ω m of the alternating current power supply 310, the vertical magnetic field H z dc from the magnetic material sample 1 is detected. It can be seen that the magnetic field gradient (∂ 2 H z dc / ∂ z 2 ) can be measured near the sample surface.
 ここで、H dcの符号(上向き、下向きの極性)は、磁性体試料1の表面磁極の極性(N極、S極)を反映し、符号が反転した場合、実効的なバネ定数の変化keffの角周波数ωで変化する成分は下記(9)式のように変化し、位相が180°変化する。 Here, the sign (upward and downward polarity) of H z dc reflects the polarity of the surface magnetic pole (N pole, S pole) of the magnetic sample 1, and when the sign is reversed, the effective spring constant changes. The component that changes at the angular frequency ω m of k eff changes as in the following equation (9), and the phase changes by 180 °.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 したがって、位相が180°異なる2つの計測場所を識別することにより、磁性体試料1から発生するH dcの方向(上向き、下向きの方向)を検出し、表面磁極の極性(N極、S極)を直接に識別することも可能になる。 Therefore, by identifying two measurement locations that are 180 ° out of phase, the direction of H z dc (upward and downward) generated from the magnetic sample 1 is detected, and the polarity of the surface magnetic pole (N pole, S pole) ) Can be identified directly.
 上記(7)式では、左辺が必要な信号であり、右辺が不要な信号であるのでノイズに対応する。したがって、例えば信号ノイズ比を9:1にするには、下記(10)式を満たす必要がある。 In the above equation (7), since the left side is a necessary signal and the right side is not necessary, it corresponds to noise. Therefore, for example, in order to set the signal to noise ratio to 9: 1, it is necessary to satisfy the following expression (10).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 なお上記(10)式において、(∂ dc/∂z)は磁性体試料1の磁気的不均一性を反映するので、測定場所に対してナノメートルのスケールで変化するのに対して、(∂ ac/∂z)は交流電磁石のサイズを反映して、測定場所に対してミリメートルのスケールで変化するので、磁区構造の観察におけるノイズ(上記(7)式の右辺)の影響は通常は小さい。
 なお、探針試料間距離が小さな範囲では、探針100の先端の磁極の寄与が大きくなるので、探針は単磁極探針として振る舞うことになる。この場合上記式(8)は下記式(11)のようになる。
In the above formula (10), (∂ 2 H z dc / ∂ z 2 ) reflects the magnetic non-uniformity of the magnetic material sample 1, whereas it changes on the nanometer scale with respect to the measurement location. Thus, (∂ 2 H z ac / ∂z 2 ) reflects the size of the AC electromagnet and changes on a millimeter scale with respect to the measurement location, so noise in the observation of the magnetic domain structure (the right side of equation (7) above) ) Is usually small.
In the range where the distance between the probe samples is small, the contribution of the magnetic pole at the tip of the probe 100 is large, so that the probe behaves as a single magnetic pole probe. In this case, the above equation (8) becomes the following equation (11).
Figure JPOXMLDOC01-appb-M000010
(qtip ac:探針100先端の磁極のうち、交流磁場により発生する交流磁極の振幅。)
Figure JPOXMLDOC01-appb-M000010
(Q tip ac : amplitude of an AC magnetic pole generated by an AC magnetic field among the magnetic poles at the tip of the probe 100.)
 <3.磁場観察方法>
 本発明の磁場観察方法は、磁性体試料から漏洩する直流磁場を観察する磁場観察方法であって、(i)励振工程と;(ii)交流磁場印加工程と;(iii)復調工程と;(iv)復調信号処理工程と;(v)走査工程とを含む。好ましくは、(vi)磁場分布画像表示工程をさらに含む。
 本発明の磁場観察方法は、例えば、上記説明した本発明の磁場観察装置1000を用いて行うことができる。以下図5を参照しつつ、各工程について説明する。
<3. Magnetic field observation method>
The magnetic field observation method of the present invention is a magnetic field observation method for observing a DC magnetic field leaking from a magnetic material sample, and includes (i) an excitation process; (ii) an AC magnetic field application process; (iii) a demodulation process; iv) a demodulated signal processing step; and (v) a scanning step. Preferably, (vi) a magnetic field distribution image display step is further included.
The magnetic field observation method of the present invention can be performed using, for example, the magnetic field observation apparatus 1000 of the present invention described above. Hereinafter, each step will be described with reference to FIG.
 (i)励振工程は、磁気飽和のない磁性探針を一方の端部に有するカンチレバーを励振させる工程である。励振工程は、上記説明した励振器200によって行うことができる。 (I) The excitation step is a step of exciting a cantilever having a magnetic probe without magnetic saturation at one end. The excitation process can be performed by the exciter 200 described above.
 (ii)交流磁場印加工程は、磁性体試料を磁化反転させない大きさの交流磁場を探針に印加し、探針の磁化を周期的に変動させることにより、カンチレバーの励振振動を周波数変調させる工程である。交流磁場印加工程は、上記説明した交流磁場発生器300によって行うことができる。 (Ii) The AC magnetic field applying step is a step of applying frequency modulation to the excitation vibration of the cantilever by applying an AC magnetic field having a magnitude that does not reverse the magnetization of the magnetic sample to the probe and periodically changing the magnetization of the probe. It is. The AC magnetic field application process can be performed by the AC magnetic field generator 300 described above.
 (iii)復調工程は、探針の振動を検出し、その検出信号から、探針と観察試料との間に生じる磁気力の交流成分に対応する信号を復調する工程である。復調工程は、上記説明した振動センサー400及び復調器430によって行うことができる。 (Iii) The demodulation step is a step of detecting the vibration of the probe and demodulating a signal corresponding to the AC component of the magnetic force generated between the probe and the observation sample from the detected signal. The demodulation process can be performed by the vibration sensor 400 and the demodulator 430 described above.
 (iv)復調信号処理工程は、復調工程において復調された信号および交流磁場発生器の電圧信号から、直流磁場の情報を得る工程である。復調信号処理工程は、上記説明した復調信号処理装置440によって行うことができる。 (Iv) The demodulated signal processing step is a step of obtaining DC magnetic field information from the signal demodulated in the demodulating step and the voltage signal of the AC magnetic field generator. The demodulated signal processing step can be performed by the demodulated signal processing device 440 described above.
 (v)走査工程は、探針に磁性体試料表面上の走査領域を走査させる工程である。走査工程は、上記説明した走査機構500によって行うことができる。 (V) The scanning step is a step of causing the probe to scan the scanning region on the surface of the magnetic sample. The scanning process can be performed by the scanning mechanism 500 described above.
 (vi)磁場分布画像表示工程は、走査機構により走査領域を走査することで得られた、走査領域の各座標における直流磁場の情報に基づく磁場分布画像を画像表示装置に表示する工程である。磁場分布画像表示工程は、上記説明した画像表示装置600によって行うことができる。 (Vi) The magnetic field distribution image display step is a step of displaying, on the image display device, a magnetic field distribution image based on DC magnetic field information at each coordinate of the scanning region obtained by scanning the scanning region with the scanning mechanism. The magnetic field distribution image display step can be performed by the image display device 600 described above.
 本発明の磁場観察方法は、強い直流磁場を発生させる試料(例えば永久磁石。)の磁場観察に好ましく採用できる。また、(ii)交流磁場印加工程において交流磁場発生器30に発生させる交流磁場は、空間変化が小さいことが好ましい。具体的には、探針100の先端の磁化の直流成分(すなわち磁性体試料1から漏洩する直流磁場による磁化)と、交流磁場発生器300から探針100に印加される交流磁場の空間変化勾配との積が、探針100の先端の磁化の交流成分(すなわち交流磁場発生器300から印加される交流磁場による磁化変動)と、磁性体試料1から探針100に印加される直流磁場の空間変化勾配との積より小さいことが好ましい。 The magnetic field observation method of the present invention can be preferably used for magnetic field observation of a sample (for example, a permanent magnet) that generates a strong DC magnetic field. Further, (ii) the alternating magnetic field generated by the alternating magnetic field generator 30 in the alternating magnetic field application step preferably has a small spatial change. Specifically, the DC component of the magnetization at the tip of the probe 100 (that is, the magnetization due to the DC magnetic field leaking from the magnetic sample 1) and the spatial change gradient of the AC magnetic field applied from the AC magnetic field generator 300 to the probe 100. Is the space between the AC component of the magnetization at the tip of the probe 100 (that is, the magnetization fluctuation due to the AC magnetic field applied from the AC magnetic field generator 300) and the DC magnetic field applied from the magnetic sample 1 to the probe 100. It is preferably smaller than the product of the change gradient.
 以下に、実施例にて本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples.
 <実施例1>
 Fe-Mn系の固溶体型常磁性材料を磁性被膜として有する形態の本発明の磁気力顕微鏡用探針を製造した実施例である。
 図4のスパッタリング装置において、強磁性元素ターゲット44としてFeターゲットを、非磁性元素ターゲット45としてMnターゲットを用いて、FeとMnを同時スパッタリングすることにより、カンチレバーの一方の端部に固定したSiからなる芯部材の表面にFe-Mn系固溶体型常磁性薄膜(Fe67Mn33、膜厚100nm)を成膜した。同一条件で熱酸化膜付Si基板上に成膜された常磁性薄膜の磁気特性評価の結果を図7に示す。なお薄膜の組成分析はエネルギー分散型X線分光法(EDX)により行った。磁気特性評価は、振動試料型磁力計VSM-5S型(東英工業株式会社製)を用いて、温度25℃、外部磁場-20kOe~+20kOeの条件で行った。
<Example 1>
This is an example in which the probe for a magnetic force microscope of the present invention in a form having an Fe—Mn solid solution type paramagnetic material as a magnetic film was produced.
In the sputtering apparatus of FIG. 4, Fe and Mn are simultaneously sputtered using a Fe target as the ferromagnetic element target 44 and a Mn target as the non-magnetic element target 45, so that the Si can be fixed to one end of the cantilever. A Fe—Mn solid solution paramagnetic thin film (Fe 67 Mn 33 , film thickness 100 nm) was formed on the surface of the core member. FIG. 7 shows the results of magnetic property evaluation of a paramagnetic thin film formed on a Si substrate with a thermal oxide film under the same conditions. The composition analysis of the thin film was performed by energy dispersive X-ray spectroscopy (EDX). Magnetic property evaluation was performed using a vibrating sample magnetometer VSM-5S type (manufactured by Toei Kogyo Co., Ltd.) under conditions of a temperature of 25 ° C. and an external magnetic field of −20 kOe to +20 kOe.
 図7に示すように、成膜されたFe-Mn系固溶体型常磁性薄膜は、外部磁場の強度が20kOeに至るまで磁化が飽和しなかった。また残留磁化や磁気ヒステリシスを有しなかった。その初磁化率は1.2×10-7H/mであった。 As shown in FIG. 7, the formed Fe—Mn solid solution paramagnetic thin film did not saturate until the strength of the external magnetic field reached 20 kOe. Moreover, it did not have remanent magnetization or magnetic hysteresis. Its initial magnetic susceptibility was 1.2 × 10 −7 H / m.
 <実施例2>
 Fe-Mo-B系の非晶質型常磁性材料を磁性被膜として有する形態の本発明の磁気力顕微鏡用探針を製造した実施例である。
 図4のスパッタリング装置において、強磁性元素ターゲット44としてFeターゲットを、非磁性元素ターゲット45としてBシートを貼り付けたMoターゲットを用いて、Fe、Mo、及びBを同時スパッタリングすることにより、カンチレバーの一方の端部に固定したSiからなる芯部材の表面にFe-Mo-B系非晶質型常磁性薄膜(膜厚100nm)の成膜を試みた。同一条件で熱酸化膜付Si基板上に成膜された磁性薄膜について、実施例1と同様の条件で組成および磁気特性の評価を行った結果を図8(a)~(i)に示す。
<Example 2>
This is an example in which the magnetic force microscope probe of the present invention in a form having a Fe—Mo—B-based amorphous paramagnetic material as a magnetic coating was produced.
In the sputtering apparatus of FIG. 4, by using the Fe target as the ferromagnetic element target 44 and the Mo target with the B sheet attached as the nonmagnetic element target 45, Fe, Mo, and B are simultaneously sputtered, An attempt was made to form a Fe—Mo—B amorphous paramagnetic thin film (thickness: 100 nm) on the surface of a Si core member fixed to one end. FIGS. 8A to 8I show the results of evaluating the composition and magnetic properties of the magnetic thin film formed on the Si substrate with the thermal oxide film under the same conditions under the same conditions as in Example 1. FIG.
 図8中、非磁性元素であるMoおよびBの含有量が過少であった(a)及び(b)の薄膜は、外部磁場の強度が20kOeに至る以前に磁化が飽和してしまった比較例である。他方、非磁性元素であるMo及びBの含有量が十分であった(c)~(i)の薄膜は、外部磁場強度が20kOeに至るまで磁化が飽和せず、また(c)を除き、残留磁化や磁気ヒステリシスを有しなかった。特に、(d)Fe86Mo7.56.5の非晶質型常磁性薄膜は、初磁化率(1.4×10-7H/m)及び外部磁場に対する磁化応答の線型性が共に最も良好であった。このような磁化応答の線型性に優れる探針は、強い直流磁場(10kOe以上)を発生する磁性体試料の交番磁気力顕微鏡による磁区観察に、特に適している。 In FIG. 8, the thin films of (a) and (b) in which the contents of Mo and B, which are non-magnetic elements, are too small, are comparative examples in which magnetization is saturated before the intensity of the external magnetic field reaches 20 kOe. It is. On the other hand, the thin films (c) to (i) in which the contents of Mo and B that are nonmagnetic elements were sufficient did not saturate until the external magnetic field strength reached 20 kOe. There was no residual magnetization or magnetic hysteresis. In particular, (d) Fe 86 Mo 7.5 B 6.5 amorphous paramagnetic thin film has an initial magnetic susceptibility (1.4 × 10 −7 H / m) and linearity of magnetization response to an external magnetic field. Both were the best. Such a probe having excellent linearity of magnetization response is particularly suitable for magnetic domain observation with an alternating magnetic force microscope of a magnetic sample that generates a strong DC magnetic field (10 kOe or more).
 <実施例3>
 Ag-Co系のグラニュラー型超常磁性材料を磁性被膜として有する形態の本発明の磁気力顕微鏡用探針を製造した実施例である。
 図4のスパッタリング装置において、強磁性元素ターゲット44としてCoターゲットを、非磁性元素ターゲット45としてAgターゲットを用いて、Co及びAgを同時スパッタリングすることにより、カンチレバーの一方の端部に固定したSiからなる芯部材の表面にAg-Co系グラニュラー型超常磁性薄膜(膜厚100nm)の成膜を試みた。Agターゲット45と回転保持台42との間の距離(80mm、100mm、又は120mm)、及び各ターゲットに印加する電力(Agターゲット45に対して100~200W、Coターゲット44に対して50~150W)を変化させることにより、CoとAgとの組成比(磁性材料全量基準でCo含有量6~21体積%、残部Ag)、および成膜速度(0.1~0.85nm/sec)を調整した。同一条件で熱酸化膜付Si基板上に成膜された磁性薄膜について、実施例1と同様の条件で組成および磁気特性の評価を行った結果を図9に示す。図9中、外部磁場20kOeに至るまで磁化が飽和せず、超常磁性を示すと判断された薄膜試料に対応する各データ点の下には、その試料が示した初磁化率の値を付記している。またデータ点が「ヒステリシスあり」の領域中にあるものは、その試料の磁化特性がヒステリシスを示したこと、すなわち試料中に強磁性相が含まれていたことを表す。
<Example 3>
This is an example in which the probe for a magnetic force microscope of the present invention in a form having an Ag—Co-based granular superparamagnetic material as a magnetic film is produced.
In the sputtering apparatus of FIG. 4, by using a Co target as the ferromagnetic element target 44 and an Ag target as the nonmagnetic element target 45, Co and Ag are simultaneously sputtered, so that Si is fixed to one end of the cantilever. An attempt was made to form an Ag—Co granular superparamagnetic thin film (film thickness: 100 nm) on the surface of the core member. The distance (80 mm, 100 mm, or 120 mm) between the Ag target 45 and the rotation holding table 42 and the power applied to each target (100 to 200 W for the Ag target 45, 50 to 150 W for the Co target 44) The composition ratio of Co and Ag (Co content: 6 to 21% by volume based on the total amount of magnetic material, balance Ag) and the film formation rate (0.1 to 0.85 nm / sec) were adjusted by changing . FIG. 9 shows the results of evaluating the composition and magnetic properties of the magnetic thin film formed on the Si substrate with the thermal oxide film under the same conditions under the same conditions as in Example 1. In FIG. 9, the value of the initial magnetic susceptibility indicated by the sample is added below each data point corresponding to the thin film sample that is determined not to saturate until reaching an external magnetic field of 20 kOe and exhibits superparamagnetism. ing. A data point in the region of “with hysteresis” indicates that the magnetization characteristic of the sample showed hysteresis, that is, the sample contained a ferromagnetic phase.
 図9から判るように、一般的な傾向として、強磁性材料であるCo含有量が高いほど試料の初磁化率は高くなり、特にCo含有量が高い試料ほどその初磁化率は組成の変化に対して鋭敏に反応した。また強磁性元素であるCoの含有量が高くても、成膜速度を高めることにより、ヒステリシスのない超常磁性材料を成膜することができた。その結果、得られた初磁化率の最大値は4.0×10-6H/mであった。このような初磁化率の極めて高い探針は、磁性体試料から生じる直流磁場の正負を含めた絶対値の測定に、特に適している。 As can be seen from FIG. 9, as a general tendency, the higher the Co content of the ferromagnetic material, the higher the initial magnetic susceptibility of the sample. In particular, the higher the Co content, the more the initial magnetic susceptibility changes in the composition. It reacted sensitively. Even if the content of Co, which is a ferromagnetic element, is high, a superparamagnetic material without hysteresis can be formed by increasing the film formation rate. As a result, the maximum value of the obtained initial magnetic susceptibility was 4.0 × 10 −6 H / m. Such a probe having an extremely high initial magnetic susceptibility is particularly suitable for measuring an absolute value including positive and negative of a DC magnetic field generated from a magnetic sample.
 図10は、成膜速度0.80nm/secで成膜したAg79Co21薄膜(1)(初磁化率4.0×10-6H/m)の磁化曲線(図10(a)。その原点近傍を拡大したものが図10(b)である。)と、成膜速度0.20nm/secで成膜したAg85Co15薄膜(2)(初磁化率3.0×10-6H/m)の磁化曲線(図10(c)。その原点近傍を拡大したものが図10(d)である。)とを比較する図である。図10から判るように、0.20nm/secという低い成膜速度で成膜したAg85Co15薄膜がヒステリシス及び残留磁化を示した、すなわち強磁性相を有していた(図10(c)及び(d)参照。)のに対して、0.80nm/secという高い成膜速度で成膜したAg79Co21薄膜は、強磁性元素であるCoの含有量がより多いにも関わらず、強磁性相の性質をほとんど示さなかった(図10(a)及び(b)参照。)。なお成膜速度0.80nm/secで成膜したAg79Co21薄膜(1)におけるCo粒子の画像解析法による球換算直径の平均値は15nmであった。この値は、当該薄膜の表面を、走査型電子顕微鏡(SEM)を用いて、2次電子検出により倍率10万~20万倍で観察し、Co粒子がSEM画像中に占める面積と等しい面積を有する円の直径(球換算直径)を算出して、同一薄膜試料中の100個以上のCo粒子についての算術平均をとった値である。 FIG. 10 is a magnetization curve (FIG. 10A) of an Ag 79 Co 21 thin film (1) (initial magnetic susceptibility 4.0 × 10 −6 H / m) formed at a film formation rate of 0.80 nm / sec. FIG. 10B is an enlarged view of the vicinity of the origin.) And an Ag 85 Co 15 thin film (2) (initial magnetic susceptibility of 3.0 × 10 −6 H) formed at a film formation rate of 0.20 nm / sec. / M) magnetization curve (FIG. 10 (c), FIG. 10 (d) is an enlarged view of the vicinity of the origin). As can be seen from FIG. 10, the Ag 85 Co 15 thin film formed at a low film formation rate of 0.20 nm / sec showed hysteresis and remanent magnetization, that is, had a ferromagnetic phase (FIG. 10C). And (d))), the Ag 79 Co 21 thin film formed at a high film formation rate of 0.80 nm / sec has a higher content of Co, which is a ferromagnetic element, The property of the ferromagnetic phase was hardly shown (see FIGS. 10A and 10B). In addition, the average value of the sphere conversion diameter by the image analysis method of Co particles in the Ag 79 Co 21 thin film (1) formed at a film formation rate of 0.80 nm / sec was 15 nm. This value is obtained by observing the surface of the thin film with a scanning electron microscope (SEM) at a magnification of 100,000 to 200,000 by secondary electron detection, and showing an area equal to the area occupied by Co particles in the SEM image. This is a value obtained by calculating the diameter (sphere equivalent diameter) of the circle to have and calculating the arithmetic average of 100 or more Co particles in the same thin film sample.
 図11は、図9及び図10に示したAg79Co21薄膜(1)(成膜速度0.80nm/sec)と同じ条件で再作製したAg-Co超常磁性薄膜の初磁化率の温度依存性と、図9に示したAg83Co17薄膜(3)(成膜速度0.54nm/sec)と同じ条件で再作製したAg-Co超常磁性薄膜の初磁化率の温度依存性とを比較する図である。図11(a)及び(c)は初磁化率の温度依存性を示すグラフであり、図11(b)及び(d)は外部磁場20kOeにおける磁化の温度依存性を示すグラフである。 FIG. 11 shows the temperature dependence of the initial magnetic susceptibility of an Ag—Co superparamagnetic thin film re-fabricated under the same conditions as the Ag 79 Co 21 thin film (1) shown in FIGS. 9 and 10 (deposition rate 0.80 nm / sec). And the temperature dependence of the initial magnetic susceptibility of an Ag-Co superparamagnetic thin film remanufactured under the same conditions as the Ag 83 Co 17 thin film (3) (deposition rate 0.54 nm / sec) shown in FIG. It is a figure to do. FIGS. 11A and 11C are graphs showing the temperature dependence of the initial magnetic susceptibility, and FIGS. 11B and 11D are graphs showing the temperature dependence of magnetization in the external magnetic field 20 kOe.
 図11(a)に示すように、Ag79Co21薄膜(1)(成膜速度0.80nm/sec)と同じ条件で再作製したAg-Co超常磁性薄膜は、25~200℃の温度範囲(測定点は25℃、50℃、100℃、150℃、200℃の5点)においてわずかに温度依存性を示した。すなわち、25~200℃の温度範囲において初磁化率は温度に対してわずかに負の相関を示し、25℃において最大値を、200℃において最小値を示した。これは当該薄膜が強磁性相をわずかに含んでいることを意味する。しかしながら、その変化幅(最大値と最小値との差)は上記5点の測定値の算術平均値に対して±10%以内であった。外部磁場20kOeにおける磁化(図11(b))についても同様であった。 As shown in FIG. 11 (a), the Ag-Co superparamagnetic thin film re-fabricated under the same conditions as the Ag 79 Co 21 thin film (1) (deposition rate 0.80 nm / sec) has a temperature range of 25 to 200 ° C. (Measurement points were 5 points of 25 ° C., 50 ° C., 100 ° C., 150 ° C., and 200 ° C.). That is, in the temperature range of 25 to 200 ° C., the initial magnetic susceptibility showed a slight negative correlation with temperature, showing a maximum value at 25 ° C. and a minimum value at 200 ° C. This means that the thin film contains a slight amount of ferromagnetic phase. However, the change width (difference between the maximum value and the minimum value) was within ± 10% with respect to the arithmetic average value of the five measured values. The same was true for the magnetization in the external magnetic field 20 kOe (FIG. 11B).
 また図11(c)に示すように、Ag83Co17薄膜(3)(成膜速度0.54nm/sec)と同じ条件で再作製したAg-Co超常磁性薄膜は25~200℃の温度範囲(測定点は25℃、50℃、100℃、150℃、200℃の5点)において温度依存性を有しなかった。すなわち、初磁化率および外部磁場20kOeにおける磁化の、温度範囲25~200℃における測定値には、一貫した傾向が観察されず、その変動幅も上記5点の測定値の算術平均値に対して±10%以内であった。外部磁場20kOeにおける磁化(図11(d))についても同様であった。 Further, as shown in FIG. 11 (c), the Ag—Co superparamagnetic thin film re-fabricated under the same conditions as the Ag 83 Co 17 thin film (3) (deposition rate 0.54 nm / sec) is in the temperature range of 25 to 200 ° C. (Measurement points were 5 ° C. at 25 ° C., 50 ° C., 100 ° C., 150 ° C., and 200 ° C.) and did not have temperature dependency. That is, no consistent tendency is observed in the measured values of the initial susceptibility and the magnetization in the external magnetic field of 20 kOe in the temperature range of 25 to 200 ° C., and the fluctuation range thereof is also the arithmetic average value of the above five measured values. Within ± 10%. The same was true for the magnetization in the external magnetic field of 20 kOe (FIG. 11D).
 磁化率や磁化が温度依存性を有することは強磁性体の典型的な性質であり、従来の強磁性探針では避けられなかったことである。しかし本発明の超常磁性探針によれば、温度依存性をほとんど有しないか、または全く有しない探針とすることも可能である。このような磁気特性の温度依存性を実質的に有しない探針は、永久磁石の高温での磁区構造評価に、特に適している。 The magnetic susceptibility and magnetization have temperature dependence is a typical property of a ferromagnetic material, which is unavoidable with conventional ferromagnetic probes. However, according to the superparamagnetic probe of the present invention, it is possible to provide a probe having little or no temperature dependence. Such a probe having substantially no temperature dependence of magnetic properties is particularly suitable for evaluating the domain structure of a permanent magnet at a high temperature.
 なお、図11において25℃における初磁化率の測定値が図9に記載の対応する測定値と異なっているのは、次のような理由によると考えられる。スパッタリング装置の制約により、AgとCoを同時スパッタリングするにあたってはCoターゲットを基板ホルダの正面から横にずれた位置に配置せざるを得なかった。そのため、スパッタリング開始時点での、回転する基板ホルダ上のホルダ周方向における基板の配置位置に依存して、スパッタリングの開始から終了までの間における基板とCoターゲットとの間の平均距離が若干ながら変動することが避けられなかった。したがってその他の成膜条件が同一であっても、作製されたAg-Co超常磁性薄膜の組成は上記薄膜(1)及び(3)の組成と完全には一致しなかった可能性がある。図9について上記した通り、上記薄膜(1)及び(3)は、初磁化率が組成に対して鋭敏に反応する領域にある。したがって図11(a)及び(c)に示した25℃における初磁化率の値の図9中の値からのずれは、スパッタリング開始時点での、回転する基板ホルダ上のホルダ周方向における基板の配置位置を完全には再現できなかったことに起因する薄膜組成の僅かなズレが反映されたものと考えられる。
 また図11(a)及び(c)においては、200℃を超える温度域において初磁化率が顕著な増大を示しているが、これはグラニュラー型超常磁性薄膜の微細構造が高温で変化した結果であると考えられる。
In FIG. 11, the measured value of the initial magnetic susceptibility at 25 ° C. is different from the corresponding measured value described in FIG. 9 because of the following reason. Due to the limitations of the sputtering apparatus, when simultaneously sputtering Ag and Co, the Co target had to be arranged at a position shifted laterally from the front of the substrate holder. Therefore, depending on the position of the substrate in the holder circumferential direction on the rotating substrate holder at the start of sputtering, the average distance between the substrate and the Co target varies slightly from the start to the end of sputtering. It was inevitable to do. Therefore, even if the other film forming conditions are the same, the composition of the produced Ag—Co superparamagnetic thin film may not completely match the compositions of the thin films (1) and (3). As described above with reference to FIG. 9, the thin films (1) and (3) are in a region where the initial magnetic susceptibility is sensitive to the composition. Accordingly, the deviation of the value of the initial magnetic susceptibility at 25 ° C. shown in FIGS. 11A and 11C from the value in FIG. 9 is that of the substrate in the circumferential direction of the holder on the rotating substrate holder at the start of sputtering. This is considered to reflect a slight shift in the composition of the thin film due to the fact that the arrangement position could not be completely reproduced.
In FIGS. 11A and 11C, the initial magnetic susceptibility is markedly increased in the temperature range exceeding 200 ° C. This is a result of the change in the fine structure of the granular superparamagnetic thin film at a high temperature. It is believed that there is.
 <実施例4>
 本発明の磁場観察装置(図5参照)を用いて、永久磁石薄膜試料(FePt-MgO系永久磁石膜、膜厚300nm、垂直方向の保磁力:8kOe)から漏洩する直流磁場を観察した。本発明の磁場観察装置は、市販のMFM(日立ハイテクサイエンス株式会社製走査型プローブ顕微鏡、AFM-5400L)をベースとし、交流磁場発生器として、ケイ素鉄鋼板を用いて作製した交流電磁石及び該交流電磁石に電力を供給する交流電圧電源を加え、さらに復調器としてFM復調器(ナノサーフ社製、easyPLL)を追加して構成した。なお、交流電磁石はMFMの試料設置台の下に設置し、試料の観察面に垂直に交流磁場が印加されるようにした。交流電磁石から探針に印加した交流磁場の振幅は2.2kOe、周波数は89Hzであった。また、探針には、上記説明した本発明の磁気力顕微鏡用探針100を用いた。芯部材10を構成する非磁性元素としてSiを用い、強磁性元素としてCoを、非磁性元素としてAgを用いたグラニュラー型超常磁性材料を磁性被膜30に用いた。磁性被膜30の膜厚は約100nmであった。磁性被膜30の初磁化率は2.2×10-6H/mであった。探針100は外部磁場20kOeに至るまで磁化飽和を示さず、また残留磁化や磁気ヒステリシスを有しなかった。磁性被膜30の成膜は、商業的に入手可能なスパッタリング装置においてCoターゲットとAgターゲットとを同時に用いて、カンチレバーの一方の端部に固定されたSi探針の表面にCo及びAgを同時スパッタリングすることにより行った。薄膜中のCo含有量は約18体積%、成膜速度は約0.56nm/secとした。観察時における探針と磁性体試料の観察面との距離は10nmであった。
<Example 4>
Using the magnetic field observation apparatus of the present invention (see FIG. 5), a DC magnetic field leaking from a permanent magnet thin film sample (FePt—MgO-based permanent magnet film, film thickness 300 nm, vertical coercive force: 8 kOe) was observed. The magnetic field observation apparatus of the present invention is based on a commercially available MFM (scanning probe microscope, AFM-5400L manufactured by Hitachi High-Tech Science Co., Ltd.), and an AC electromagnet manufactured using a silicon steel sheet as an AC magnetic field generator and the AC An AC voltage power source for supplying power to the electromagnet was added, and an FM demodulator (manufactured by Nanosurf, easyPLL) was added as a demodulator. The AC electromagnet was installed under the MFM sample mounting table so that an AC magnetic field was applied perpendicular to the observation surface of the sample. The amplitude of the AC magnetic field applied from the AC electromagnet to the probe was 2.2 kOe, and the frequency was 89 Hz. The probe 100 for magnetic force microscope according to the present invention described above was used as the probe. A granular superparamagnetic material using Si as the nonmagnetic element constituting the core member 10, Co as the ferromagnetic element, and Ag as the nonmagnetic element was used for the magnetic coating 30. The film thickness of the magnetic coating 30 was about 100 nm. The initial magnetic susceptibility of the magnetic coating 30 was 2.2 × 10 −6 H / m. The probe 100 did not exhibit magnetization saturation until reaching an external magnetic field of 20 kOe, and had no residual magnetization or magnetic hysteresis. The magnetic coating 30 is formed by simultaneously sputtering Co and Ag on the surface of a Si probe fixed to one end of a cantilever using a Co target and an Ag target simultaneously in a commercially available sputtering apparatus. It was done by doing. The Co content in the thin film was about 18% by volume, and the film formation rate was about 0.56 nm / sec. The distance between the probe and the observation surface of the magnetic sample at the time of observation was 10 nm.
 交流電磁石からの交流磁場によって、永久磁石薄膜の磁気モーメントは変化させずに、超常磁性探針の磁化を周期的に変動させた。Tapping-Lift modeを用いて走査することにより永久磁石薄膜の観察面の表面形状像を取得した後、交流磁場を印加しながらLift modeを用いて走査し、周波数変調された探針振動の検出信号を、FM復調器を用いて周波数復調し、その復調信号をロックインアンプに入力し、交流電磁石に接続した交流電圧電源の電圧信号を参照信号として、復調信号の振幅および参照信号に対する位相差を測定することにより、永久磁石薄膜の直流磁場情報を得た。 The magnetization of the superparamagnetic probe was periodically changed by the AC magnetic field from the AC electromagnet without changing the magnetic moment of the permanent magnet thin film. After acquiring the surface shape image of the observation surface of the permanent magnet thin film by scanning using the Tapping-Lift mode, scanning using the Lift mode while applying an alternating magnetic field, the frequency-modulated detection signal of the probe vibration Is demodulated using an FM demodulator, the demodulated signal is input to a lock-in amplifier, and the voltage signal of the AC voltage power source connected to the AC electromagnet is used as a reference signal to determine the amplitude of the demodulated signal and the phase difference with respect to the reference signal. By measuring, DC magnetic field information of the permanent magnet thin film was obtained.
 図12に、永久磁石薄膜の表面近傍での観察結果を示した。図12(a)は走査した領域の表面形状像である。図12(b)は永久磁石薄膜の観察面に垂直な直流磁場(垂直磁場)の勾配の強度に対応する磁気力勾配信号の振幅を画像化したものであり、図12(c)はこの垂直磁場勾配に対応する磁気力勾配信号の位相を画像化したものである。図12(b)は明部が線状の暗部に取り囲まれた像であり、図12(c)は明部と暗部の2値画像であることがわかる。図12(d)は図12(b)の像のラインプロファイルを示しており、図12(e)は、図12(c)の像のラインプロファイルを示している。 FIG. 12 shows the observation results near the surface of the permanent magnet thin film. FIG. 12A is a surface shape image of the scanned region. FIG. 12B is an image of the amplitude of the magnetic force gradient signal corresponding to the gradient strength of the DC magnetic field (vertical magnetic field) perpendicular to the observation surface of the permanent magnet thin film, and FIG. The phase of the magnetic force gradient signal corresponding to the magnetic field gradient is imaged. FIG. 12B shows an image in which the bright part is surrounded by a linear dark part, and FIG. 12C shows a binary image of the bright part and the dark part. 12D shows the line profile of the image of FIG. 12B, and FIG. 12E shows the line profile of the image of FIG. 12C.
 ラインプロファイル(図12(d)、(e))を見ると、図12(d)では、図12(e)の位相のラインプロファイルで位相が180°反転する境界部分において、試料面に垂直な方向の直流磁場勾配の強度に対応する振幅信号がゼロになっていることがわかる。図12(e)では、この境界部分を境として明部は垂直磁場の方向が上向きの部分、暗部は垂直磁場の方向が下向きの部分に対応しており、明部では正の磁極(N極)が表面に存在し、暗部では負の磁極(S極)が表面に存在する。したがって、直流磁場の計測方向に平行な交流磁場を超常磁性探針に印加するだけで、交流磁場方向を計測方向とした直流磁場計測が実施でき、試料表面の磁極の極性の判別が、複雑な位相調整処理を行うことなく可能であることがわかる。なお、図12(c)および(e)で、位相が180°反転する境界部分では試料面に平行方向の直流磁場(面内磁場)の勾配が最大になっている。 Looking at the line profiles (FIGS. 12D and 12E), in FIG. 12D, in the boundary portion where the phase is inverted by 180 ° in the phase line profile of FIG. It can be seen that the amplitude signal corresponding to the direction of the direct current magnetic field gradient is zero. In FIG. 12 (e), the bright part corresponds to the part where the direction of the vertical magnetic field is upward, and the dark part corresponds to the part where the direction of the vertical magnetic field is downward, with this boundary part as a boundary. ) Exists on the surface, and in the dark part, a negative magnetic pole (S pole) exists on the surface. Therefore, simply applying an AC magnetic field parallel to the DC magnetic field measurement direction to the superparamagnetic probe makes it possible to perform DC magnetic field measurement with the AC magnetic field direction as the measurement direction. It can be seen that this is possible without performing phase adjustment processing. In FIGS. 12C and 12E, the gradient of the DC magnetic field (in-plane magnetic field) in the direction parallel to the sample surface is maximum at the boundary where the phase is inverted by 180 °.
 特許文献4の磁場観察装置や特許文献5に記載の磁気プロファイル測定装置においては、探針に強磁性体を用いている(ソフト磁性材料とは強磁性体のうち保磁力が低いものを指す。)。強磁性体においては、交流磁場を印加すると、外部磁場がゼロでも発生している自発磁化に起因する磁気モーメントが回転する。よって磁気モーメントが交流磁場に対して完全に平行になるとき以外は、磁気モーメントは交流磁場方向に対して垂直な成分も有することになる。通常、交流磁場は試料表面に対して垂直に印加され、試料表面に垂直な方向の磁場が測定されるところ、磁気モーメントが交流磁場に対して完全に平行になるとき以外は、試料表面から発生する磁場の垂直成分と探針磁化との相互作用による磁気力だけでなく、試料表面から発生する磁場の面内成分と探針磁化との相互作用による磁気力も探針に作用し、検出信号に含まれてしまう。そのため垂直磁場成分と面内磁場成分とを分離して測定するためには、検出信号の処理にあたって、特許文献5に記載の磁気プロファイル測定装置におけるように複雑な位相調整処理が必要であった。 In the magnetic field observation apparatus disclosed in Patent Document 4 and the magnetic profile measurement apparatus described in Patent Document 5, a ferromagnetic material is used for the probe (a soft magnetic material refers to a ferromagnetic material having a low coercive force. ). In a ferromagnetic material, when an alternating magnetic field is applied, a magnetic moment caused by spontaneous magnetization generated even when the external magnetic field is zero rotates. Thus, except when the magnetic moment is completely parallel to the alternating magnetic field, the magnetic moment also has a component perpendicular to the alternating magnetic field direction. Normally, an alternating magnetic field is applied perpendicular to the sample surface, and the magnetic field in the direction perpendicular to the sample surface is measured, and is generated from the sample surface except when the magnetic moment is completely parallel to the alternating magnetic field. In addition to the magnetic force due to the interaction between the vertical component of the magnetic field and the probe magnetization, the magnetic force due to the interaction between the in-plane component of the magnetic field generated from the sample surface and the probe magnetization also acts on the probe, resulting in a detection signal. It will be included. For this reason, in order to measure the vertical magnetic field component and the in-plane magnetic field component separately, complicated phase adjustment processing as in the magnetic profile measuring device described in Patent Document 5 is required for processing the detection signal.
 探針として磁気飽和のある強磁性探針ではなく、磁気飽和のない(すなわち強磁性でない)本発明の磁気力顕微鏡用探針100を交番磁気力顕微鏡に用いた場合、探針100に交流磁場を印加することによる探針磁化は、交流磁場の印加方向にのみ生じ、交流磁場の印加方向に対して垂直な方向には生じない。これにより、探針100が磁性体試料1からの直流磁場から受ける磁気力の交流成分は、磁性体試料1からの直流磁場のうち交流磁場印加方向の成分のみに由来するものとなる。したがって本発明の磁気力顕微鏡用探針を交番磁気力顕微鏡に用いることにより、磁気力顕微鏡における信号処理を大幅に簡略化することが可能になる。 When the magnetic force microscope probe 100 of the present invention without magnetic saturation (that is, not ferromagnetic) is used as an alternating magnetic force microscope, instead of a ferromagnetic probe with magnetic saturation as the probe, an alternating magnetic field is applied to the probe 100. The probe magnetization due to the application of is generated only in the direction in which the alternating magnetic field is applied, and does not occur in the direction perpendicular to the direction in which the alternating magnetic field is applied. Thereby, the AC component of the magnetic force that the probe 100 receives from the DC magnetic field from the magnetic sample 1 is derived from only the component in the AC magnetic field application direction of the DC magnetic field from the magnetic sample 1. Therefore, by using the magnetic force microscope probe of the present invention for an alternating magnetic force microscope, signal processing in the magnetic force microscope can be greatly simplified.
 以上のように、本発明の磁気力顕微鏡用探針によれば、永久磁石等の強い直流磁場を発生する磁性体試料の表面近傍の磁場観察においても、探針が試料に吸着されることがなく、また高い空間分解能で磁場を観察することが可能であり、さらには、磁性体試料表面の磁極の極性検出も可能であることが示された。また、本発明の磁場観察装置および磁場観察方法によれば、永久磁石等の強い直流磁場を発生する磁性体試料の表面近傍において、高い空間分解能で磁場を観察することが可能であり、また、磁性体試料表面の磁極の極性検出も可能であることが示された。本発明の磁気力顕微鏡用探針は、例えば交番磁気力顕微鏡による永久磁石試料等の強磁場発生試料の磁区観察や、磁性体試料から生じる直流磁場の正負を含めた絶対値の測定等に好適に用いることができる。また、本発明の磁場観察装置および磁場観察方法は、例えば永久磁石試料の磁区観察等に好適に用いることができる。 As described above, according to the probe for a magnetic force microscope of the present invention, the probe can be adsorbed to the sample even in the magnetic field observation near the surface of the magnetic sample that generates a strong DC magnetic field such as a permanent magnet. In addition, it was shown that the magnetic field can be observed with high spatial resolution, and further, the polarity of the magnetic pole on the surface of the magnetic material sample can be detected. Further, according to the magnetic field observation apparatus and magnetic field observation method of the present invention, it is possible to observe a magnetic field with high spatial resolution in the vicinity of the surface of a magnetic sample that generates a strong DC magnetic field such as a permanent magnet, It was shown that the polarity of the magnetic pole on the surface of the magnetic material sample can be detected. The magnetic force microscope probe of the present invention is suitable for, for example, observation of magnetic domains of a strong magnetic field generation sample such as a permanent magnet sample by an alternating magnetic force microscope, measurement of an absolute value including positive / negative of a DC magnetic field generated from a magnetic sample, and the like. Can be used. The magnetic field observation apparatus and magnetic field observation method of the present invention can be suitably used for magnetic domain observation of a permanent magnet sample, for example.
 1 磁性体試料
 10 芯部材
 20 カンチレバー
 30 磁性被膜
 41 チャンバ
 42 回転保持台
 43 回転駆動軸
 44 強磁性元素ターゲット
 45 非磁性元素ターゲット
 100 探針
 110 カンチレバー
 200 励振器
 300 交流磁場発生器
 310 交流電流電源
 320 コイル
 400 振動センサー
 410 光源
 420 光学変位センサー
 430 復調器(FM復調器)
 440 復調信号処理装置(ロックインアンプ)
 500 走査機構
 600 画像表示装置
 1000 磁場観察装置
DESCRIPTION OF SYMBOLS 1 Magnetic body sample 10 Core member 20 Cantilever 30 Magnetic film 41 Chamber 42 Rotation holding stand 43 Rotation drive shaft 44 Ferromagnetic element target 45 Nonmagnetic element target 100 Probe 110 Cantilever 200 Exciter 300 AC magnetic field generator 310 AC current power supply 320 Coil 400 Vibration sensor 410 Light source 420 Optical displacement sensor 430 Demodulator (FM demodulator)
440 Demodulated signal processing device (lock-in amplifier)
500 Scanning mechanism 600 Image display device 1000 Magnetic field observation device

Claims (22)

  1.  少なくとも1種の磁性材料を備え、
     少なくとも10~30℃の温度域にわたって、磁場が印加されたときに磁化が飽和せず、
    (a) 前記磁性材料が、1種以上の強磁性元素と1種以上の非磁性元素との固溶体である;
    (b) 前記磁性材料が、1種以上の強磁性元素と1種以上の非磁性元素とを含む非晶質の磁性材料である;又は
    (c) 前記磁性材料が、1種以上の強磁性体粒子と1種以上の非磁性材料とを含み、前記強磁性体粒子が前記非磁性材料中に分散されて支持されている構造を有する磁性材料である
    ことを特徴とする、磁気力顕微鏡用探針。
    Comprising at least one magnetic material,
    Magnetization is not saturated when a magnetic field is applied over a temperature range of at least 10-30 ° C.,
    (A) the magnetic material is a solid solution of one or more ferromagnetic elements and one or more nonmagnetic elements;
    (B) the magnetic material is an amorphous magnetic material containing one or more ferromagnetic elements and one or more nonmagnetic elements; or (c) the magnetic material is one or more ferromagnetic materials. A magnetic material comprising a body particle and at least one non-magnetic material, wherein the ferromagnetic particle is supported by being dispersed in the non-magnetic material. Probe.
  2.  磁場が印加されていない条件下では少なくとも10~30℃の温度域にわたって残留磁化を有しないことを特徴とする、請求項1に記載の磁気力顕微鏡用探針。 2. The probe for a magnetic force microscope according to claim 1, wherein the probe does not have residual magnetization over a temperature range of at least 10 to 30 ° C. under a condition where no magnetic field is applied.
  3.  前記磁性材料の初磁化率が、少なくとも10~30℃の温度域にわたって、3×10-8H/m以上である、請求項1又は2に記載の磁気力顕微鏡用探針。 3. The magnetic force microscope probe according to claim 1, wherein the magnetic material has an initial magnetic susceptibility of 3 × 10 −8 H / m or more over a temperature range of at least 10 to 30 ° C.
  4.  前記(a)又は(b)の要件を満たし、
     前記強磁性元素が、Ni、Fe、及びCoからなる群から選ばれる1種以上の強磁性元素であり、
     前記非磁性元素が、Ti、V,Cr,Mn,Cu、Zn、Zr、Nb,Mo、Ta、W、B、Al、C、O、N、及びSiからなる群から選ばれる1種以上の非磁性元素である、
    請求項1~3のいずれかに記載の磁気力顕微鏡用探針。
    Satisfy the requirements of (a) or (b),
    The ferromagnetic element is one or more ferromagnetic elements selected from the group consisting of Ni, Fe, and Co;
    The nonmagnetic element is at least one selected from the group consisting of Ti, V, Cr, Mn, Cu, Zn, Zr, Nb, Mo, Ta, W, B, Al, C, O, N, and Si. A non-magnetic element,
    The probe for a magnetic force microscope according to any one of claims 1 to 3.
  5.  前記(a)又は(b)の要件を満たし、
     前記磁性材料が常磁性または超常磁性を示す、請求項1~4のいずれかに記載の磁気力顕微鏡用探針。
    Satisfy the requirements of (a) or (b),
    The probe for a magnetic force microscope according to claim 1, wherein the magnetic material exhibits paramagnetism or superparamagnetism.
  6.  前記(c)の要件を満たし、
     前記磁性材料の全量に対して、
     前記強磁性体粒子の含有量が10~45体積%であり、
     前記非磁性材料の含有量が55~90体積%である、
    請求項1~3のいずれかに記載の磁気力顕微鏡用探針。
    Satisfy the requirements of (c) above,
    For the total amount of the magnetic material,
    The content of the ferromagnetic particles is 10 to 45% by volume,
    The content of the nonmagnetic material is 55 to 90% by volume.
    The probe for a magnetic force microscope according to any one of claims 1 to 3.
  7.  前記(c)の要件を満たし、
     前記強磁性体粒子の画像解析法による球換算直径の平均値が30nm以下である、請求項1~3及び6のいずれかに記載の磁気力顕微鏡用探針。
    Satisfy the requirements of (c) above,
    The probe for a magnetic force microscope according to any one of claims 1 to 3 and 6, wherein an average value of spherical equivalent diameters of the ferromagnetic particles by an image analysis method is 30 nm or less.
  8.  前記(c)の要件を満たし、
     前記強磁性体粒子が、Ni、Fe、及びCoからなる群から選ばれる1種以上の強磁性元素の粒子であり、
     前記非磁性材料が、Au、Ag、Cu、二酸化ケイ素、酸化チタン、酸化タングステン、酸化クロム、酸化コバルト、酸化タンタル、酸化ホウ素、酸化マグネシウム、酸化セリウム、酸化イットリウム、酸化ニッケル、酸化アルミニウム、酸化ルテニウム、希土類元素の酸化物、及び炭素からなる群から選ばれる1種以上の非磁性材料である、
    請求項1~3、6及び7のいずれかに記載の磁気力顕微鏡用探針。
    Satisfy the requirements of (c) above,
    The ferromagnetic particles are particles of one or more ferromagnetic elements selected from the group consisting of Ni, Fe, and Co;
    The nonmagnetic material is Au, Ag, Cu, silicon dioxide, titanium oxide, tungsten oxide, chromium oxide, cobalt oxide, tantalum oxide, boron oxide, magnesium oxide, cerium oxide, yttrium oxide, nickel oxide, aluminum oxide, ruthenium oxide. , One or more nonmagnetic materials selected from the group consisting of rare earth element oxides and carbon,
    The probe for a magnetic force microscope according to any one of claims 1 to 3, 6, and 7.
  9.  前記(c)の要件を満たし、
     前記磁性材料が超常磁性を示す、請求項1~3及び6~8のいずれかに記載の磁気力顕微鏡用探針。
    Satisfy the requirements of (c) above,
    The probe for a magnetic force microscope according to any one of claims 1 to 3 and 6 to 8, wherein the magnetic material exhibits superparamagnetism.
  10.  前記(c)の要件を満たし、
     磁化率が、25~200℃の温度範囲において実質的に温度依存性を有しない、請求項1~3及び6~9のいずれかに記載の磁気力顕微鏡用探針。
    Satisfy the requirements of (c) above,
    The probe for a magnetic force microscope according to any one of claims 1 to 3 and 6 to 9, wherein the magnetic susceptibility has substantially no temperature dependence in a temperature range of 25 to 200 ° C.
  11.  前記(c)の要件を満たし、
     前記磁性材料の初磁化率が、少なくとも10~30℃の温度域にわたって2×10-7H/m以上である、請求項1~3及び6~10のいずれかに記載の磁気力顕微鏡用探針。
    Satisfy the requirements of (c) above,
    The magnetic force microscope probe according to any one of claims 1 to 3 and 6 to 10, wherein an initial magnetic susceptibility of the magnetic material is 2 × 10 -7 H / m or more over a temperature range of at least 10 to 30 ° C. needle.
  12.  1種以上の非磁性体からなる芯部材と、
     前記芯部材の表面の少なくとも一部を被覆する前記磁性材料の被膜と
    を有する、請求項1~11のいずれかに記載の磁気力顕微鏡用探針。
    A core member made of one or more non-magnetic materials;
    The probe for a magnetic force microscope according to any one of claims 1 to 11, further comprising a coating of the magnetic material that covers at least a part of a surface of the core member.
  13.  磁性体試料から漏洩する直流磁場を観察する磁場観察装置であって、
     磁気飽和がなく印加磁場方向に磁気モーメントが発生する磁性探針を一方の端部に有するカンチレバーと、
     前記カンチレバーを励振させる励振器と、
     前記磁性体試料を磁化反転させない大きさの交流磁場を前記探針に印加し、前記探針の磁化を周期的に変動させることにより、前記カンチレバーの励振振動を周波数変調させる、交流磁場発生器と、
     前記探針の振動を検出する振動センサーと、
     前記振動センサーの検出信号から、前記探針と前記磁性体試料との間に生じる磁気力の交流成分に対応する信号を復調する、復調器と、
     前記復調器から得た復調信号および前記交流磁場発生器の電圧信号から、前記直流磁場の情報を得る、復調信号処理装置と、
     前記探針に前記磁性体試料表面上の走査領域を走査させる走査機構と
    を備え、
     前記磁性探針は、請求項1~12のいずれかに記載の磁気力顕微鏡用探針であることを特徴とする、強磁場発生試料の磁場観察装置。
    A magnetic field observation apparatus for observing a DC magnetic field leaking from a magnetic sample,
    A cantilever having a magnetic probe at one end that has no magnetic saturation and generates a magnetic moment in the direction of the applied magnetic field;
    An exciter for exciting the cantilever;
    An alternating magnetic field generator for applying frequency modulation to the excitation vibration of the cantilever by applying an alternating magnetic field of a magnitude that does not reverse the magnetization of the magnetic sample to the probe and periodically varying the magnetization of the probe; ,
    A vibration sensor for detecting the vibration of the probe;
    A demodulator that demodulates a signal corresponding to an alternating current component of the magnetic force generated between the probe and the magnetic sample from the detection signal of the vibration sensor;
    A demodulated signal processing device for obtaining information on the DC magnetic field from the demodulated signal obtained from the demodulator and the voltage signal of the AC magnetic field generator;
    A scanning mechanism for causing the probe to scan a scanning region on the surface of the magnetic sample,
    13. A magnetic field observation apparatus for a magnetic field generation sample, wherein the magnetic probe is the probe for a magnetic force microscope according to claim 1.
  14.  前記復調器が、
     (A)前記振動センサーの検出信号を周波数復調するか、又は、
     (B)前記振動センサーの検出信号に含まれる側帯波スペクトルの強度を計測する、
    請求項13に記載の磁場観察装置。
    The demodulator
    (A) The frequency of the detection signal of the vibration sensor is demodulated, or
    (B) Measure the intensity of the sideband spectrum included in the detection signal of the vibration sensor,
    The magnetic field observation apparatus according to claim 13.
  15.   前記復調信号処理装置が、
     (X)前記復調器から得た復調信号の振幅、及び、前記復調信号と前記交流磁場発生器の電流信号または電圧信号との位相差を計測するか、又は、
     (Y)前記復調器から得た復調信号の、前記交流磁場発生器の電流信号に対する同相成分および直交成分を計測する、
    請求項13又は14に記載の磁場観察装置。
    The demodulated signal processing device comprises:
    (X) measuring the amplitude of the demodulated signal obtained from the demodulator and the phase difference between the demodulated signal and the current signal or voltage signal of the AC magnetic field generator, or
    (Y) measuring the in-phase component and the quadrature component of the demodulated signal obtained from the demodulator with respect to the current signal of the AC magnetic field generator;
    The magnetic field observation apparatus according to claim 13 or 14.
  16.  前記交流磁場発生機構が、前記直流磁場の測定される成分の方向と同一方向に、前記交流磁場を印加する、請求項13~15のいずれかに記載の磁場観察装置。 The magnetic field observation apparatus according to any one of claims 13 to 15, wherein the AC magnetic field generation mechanism applies the AC magnetic field in the same direction as a direction of a component to be measured of the DC magnetic field.
  17.  前記磁性体試料が永久磁石である、請求項13~16のいずれかに記載の磁場観察装置。 The magnetic field observation apparatus according to any one of claims 13 to 16, wherein the magnetic sample is a permanent magnet.
  18.  前記走査機構により前記走査領域を走査することで得られた、前記走査領域の各座標における前記直流磁場の情報に基づく磁場分布画像を表示する画像表示装置をさらに有する、請求項13~17のいずれかに記載の磁場観察装置。 The image display device according to any one of claims 13 to 17, further comprising an image display device that displays a magnetic field distribution image based on information on the DC magnetic field at each coordinate of the scanning region obtained by scanning the scanning region with the scanning mechanism. The magnetic field observation apparatus according to claim 1.
  19.  磁性体試料から漏洩する直流磁場を観察する磁場観察方法であって、
     磁気飽和がなく印加磁場方向に磁気モーメントが発生する磁性探針を一方の端部に有するカンチレバーを励振させる工程と、
     前記磁性体試料を磁化反転させない大きさの交流磁場を前記探針に印加し、前記探針の磁化を周期的に変動させることにより、前記カンチレバーの励振振動を周波数変調させる工程と、
     前記探針の振動を検出し、該探針の振動の検出信号から、前記探針と前記磁性体試料との間に生じる磁気力の交流成分に対応する信号を復調する工程と、
     前記復調された信号および前記交流磁場発生器の電圧信号から、前記直流磁場の情報を得る工程と、
     前記探針に前記磁性体試料表面上の走査領域を走査させる工程と
    を含み、
     前記磁性探針は、請求項1~12のいずれかに記載の磁気力顕微鏡用探針であることを特徴とする、強磁場発生試料の磁場観察方法。
    A magnetic field observation method for observing a DC magnetic field leaking from a magnetic sample,
    Exciting a cantilever having a magnetic probe at one end that has no magnetic saturation and generates a magnetic moment in the direction of the applied magnetic field;
    Applying an alternating magnetic field of a magnitude that does not reverse the magnetization of the magnetic sample to the probe, and periodically modulating the magnetization of the probe, thereby frequency-modulating the excitation vibration of the cantilever;
    Detecting the vibration of the probe and demodulating a signal corresponding to an alternating current component of the magnetic force generated between the probe and the magnetic sample from the detection signal of the vibration of the probe;
    Obtaining the DC magnetic field information from the demodulated signal and the AC magnetic field generator voltage signal;
    Scanning the scanning region on the surface of the magnetic material sample with the probe,
    A magnetic field observation method for a magnetic field generation sample, wherein the magnetic probe is the probe for a magnetic force microscope according to any one of claims 1 to 12.
  20.  前記交流磁場を、前記直流磁場の測定される成分の方向と同一方向に印加する、請求項19に記載の磁場観察方法。 The magnetic field observation method according to claim 19, wherein the alternating magnetic field is applied in the same direction as a direction of a component to be measured of the direct magnetic field.
  21.  前記磁性体試料が永久磁石である、請求項19又は20に記載の磁場観察方法。 The magnetic field observation method according to claim 19 or 20, wherein the magnetic sample is a permanent magnet.
  22.  前記走査機構により前記走査領域を走査することで得られた、前記走査領域の各座標における前記直流磁場の情報に基づく磁場分布画像を画像表示装置に表示する工程をさらに有する、請求項19~21のいずれかに記載の磁場観察方法。 The method further comprises a step of displaying, on an image display device, a magnetic field distribution image obtained by scanning the scanning region with the scanning mechanism and based on information on the DC magnetic field at each coordinate of the scanning region. The magnetic field observation method according to any one of the above.
PCT/JP2015/072969 2014-08-15 2015-08-14 Magnetic force microscope probe for measuring ferromagnetic field and measuring magnetic field value, and method and device for observing magnetic field of ferromagnetic-field-emitting sample WO2016024636A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016542615A JP6624737B2 (en) 2014-08-15 2015-08-14 Probe for magnetic force microscope for measuring strong magnetic field and measuring magnetic field value, and method and apparatus for observing magnetic field of sample generating strong magnetic field

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014165492 2014-08-15
JP2014-165435 2014-08-15
JP2014-165492 2014-08-15
JP2014165435 2014-08-15

Publications (1)

Publication Number Publication Date
WO2016024636A1 true WO2016024636A1 (en) 2016-02-18

Family

ID=55304262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072969 WO2016024636A1 (en) 2014-08-15 2015-08-14 Magnetic force microscope probe for measuring ferromagnetic field and measuring magnetic field value, and method and device for observing magnetic field of ferromagnetic-field-emitting sample

Country Status (2)

Country Link
JP (1) JP6624737B2 (en)
WO (1) WO2016024636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116359127A (en) * 2023-02-16 2023-06-30 广东微容电子科技有限公司 Magnetic detection device and magnetic detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285519A (en) * 1995-04-11 1996-11-01 Ykk Kk Observing method of sample surface and probe used therefor
JPH11166936A (en) * 1997-03-20 1999-06-22 Internatl Business Mach Corp <Ibm> Probe for magnetic microscope and cantilever assembly
JP2003254887A (en) * 2001-12-28 2003-09-10 Seiko Instruments Inc Scanning probe microscope and its probe for detecting electromagnetic field with ultrahigh sensitivity
JP2008209276A (en) * 2007-02-27 2008-09-11 Akita Univ Method of manufacturing probe for magnetic force microscope
WO2012029973A1 (en) * 2010-09-03 2012-03-08 国立大学法人秋田大学 Magnetic field observation device and magnetic field observation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285519A (en) * 1995-04-11 1996-11-01 Ykk Kk Observing method of sample surface and probe used therefor
JPH11166936A (en) * 1997-03-20 1999-06-22 Internatl Business Mach Corp <Ibm> Probe for magnetic microscope and cantilever assembly
JP2003254887A (en) * 2001-12-28 2003-09-10 Seiko Instruments Inc Scanning probe microscope and its probe for detecting electromagnetic field with ultrahigh sensitivity
JP2008209276A (en) * 2007-02-27 2008-09-11 Akita Univ Method of manufacturing probe for magnetic force microscope
WO2012029973A1 (en) * 2010-09-03 2012-03-08 国立大学法人秋田大学 Magnetic field observation device and magnetic field observation method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HOPKINS P.F. ET AL.: "Superparamagnetic magnetic force microscopy tips", JOURNAL OF APPLIED PHYSICS, vol. 79, 1996, pages 6448 - 6450, XP000695086, doi:10.1063/1.361969 *
SATOSHI YOSHIMURA ET AL.: "Development of high- susceptibility Fe-based paramagnetic and Ag-Co superparamagnetic tips for magnetic imaging of strong DC magnetic field by alternating magnetic force microscopy", DIGESTS OF THE 38TH ANNUAL CONFERENCE ON MAGNETICS IN JAPAN, vol. 4pA-6, 2 September 2014 (2014-09-02), pages 218, Retrieved from the Internet <URL:http://www.magnetics.jp/kouenkai/2014/doc/program/4pA-6.pdf>> [retrieved on 20151102] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116359127A (en) * 2023-02-16 2023-06-30 广东微容电子科技有限公司 Magnetic detection device and magnetic detection method
CN116359127B (en) * 2023-02-16 2024-04-16 广东微容电子科技有限公司 Magnetic detection device and magnetic detection method

Also Published As

Publication number Publication date
JPWO2016024636A1 (en) 2017-05-25
JP6624737B2 (en) 2019-12-25

Similar Documents

Publication Publication Date Title
Kubetzka et al. Spin-polarized scanning tunneling microscopy with antiferromagnetic probe tips
JP4769918B1 (en) Magnetic field observation apparatus and magnetic field observation method
Szmaja Investigations of the domain structure of anisotropic sintered Nd–Fe–B-based permanent magnets
Zhao et al. Magnetic force microscopy with frequency-modulated capacitive tip–sample distance control
Carl et al. Magnetization reversal and coercivity of magnetic-force microscopy tips
Cao et al. Magnetic domain imaging of a very rough fractured surface of Sr ferrite magnet without topographic crosstalk by alternating magnetic force microscopy with a sensitive FeCo-GdOx superparamagnetic tip
JP6624737B2 (en) Probe for magnetic force microscope for measuring strong magnetic field and measuring magnetic field value, and method and apparatus for observing magnetic field of sample generating strong magnetic field
Wang et al. Magnetic force microscopic study of Ce2 (Fe, Co) 14B, and its modifications by Ni and Cu
Ranchal et al. Tailoring the magnetic anisotropy and domain patterns of sputtered TbFeGa alloys
Akdogan et al. SmCo-based MFM probes with high switching fields
Ishihara et al. Magnetic force microscope tips coated with FePd, FePt, and CoPt alloy films
Cao et al. Magnetic domain structure imaging near sample surface with alternating magnetic force microscopy by using AC magnetic field modulated superparamagnetic tip
Abuthahir et al. Magnetic force microscopy studies in bulk polycrystalline iron
Kumar et al. High resolution magnetic field energy imaging of the magnetic recording head by A-MFM with Co-GdOx super-paramagnetic tip
Mentz et al. Magnetization reversal and spin reorientation in Fe/Cu (100) ultrathin films
Koch et al. Magnetic force microscopy on cobalt nanocluster films
Zhang et al. Magnetic domain structure in nanocrystalline Ni-Zn-Co spinel ferrite thin films using off-axis electron holography
Xia et al. Uniaxial magnetic anisotropy in three-bilayer Co/Cu and Co/Al superlattices
JP2024025989A (en) DC magnetic field measurement method and DC magnetic field measurement device, and AC magnetic field measurement method and AC magnetic field measurement device
Sun et al. Magnetic properties and domain structures of FeSiB thin films
Szmaja Studies of the domain structure of anisotropic sintered SmCo5 permanent magnets
Kumar et al. Magnetic energy flow imaging of magnetic recording head with enhanced resolution and sensitivity by A-MFM using high magnetic moment superparamagnetic tip
JP3926356B2 (en) Magnetic probe for magnetic force microscope and manufacturing method thereof
JP2005098804A (en) Magnetic probe for magnetic force microscope and its manufacturing method
Glasmachers et al. Influence of strain on the high‐frequency magnetic properties of FeCoBSi thin films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542615

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831797

Country of ref document: EP

Kind code of ref document: A1