WO2016024581A1 - Ventilation device - Google Patents

Ventilation device Download PDF

Info

Publication number
WO2016024581A1
WO2016024581A1 PCT/JP2015/072729 JP2015072729W WO2016024581A1 WO 2016024581 A1 WO2016024581 A1 WO 2016024581A1 JP 2015072729 W JP2015072729 W JP 2015072729W WO 2016024581 A1 WO2016024581 A1 WO 2016024581A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
air supply
filter
air
path
Prior art date
Application number
PCT/JP2015/072729
Other languages
French (fr)
Japanese (ja)
Inventor
亮一 澤村
Original Assignee
株式会社Lixil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014164558A external-priority patent/JP2016040504A/en
Priority claimed from JP2014164514A external-priority patent/JP6262098B2/en
Priority claimed from JP2014164555A external-priority patent/JP6333110B2/en
Priority claimed from JP2014164515A external-priority patent/JP6392025B2/en
Priority claimed from JP2014169302A external-priority patent/JP2016044877A/en
Application filed by 株式会社Lixil filed Critical 株式会社Lixil
Priority to CN201580043100.5A priority Critical patent/CN106574796A/en
Publication of WO2016024581A1 publication Critical patent/WO2016024581A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/36Controlling flow of gases or vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/003Ventilation in combination with air cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/76Cleaning the electrodes by using a mechanical vibrator, e.g. rapping gear ; by using impact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/74Cleaning the electrodes
    • B03C3/80Cleaning the electrodes by gas or solid particle blasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/007Ventilation with forced flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems

Definitions

  • the present invention relates to a ventilation device.
  • a ventilation device for improving the indoor environment in a house is provided.
  • a ventilator equipped with a heat exchanger that performs heat exchange between supply air and exhaust is also known (for example, patents). Reference 1).
  • a filter for collecting dust is arranged at the inlet of the air supply path or the exhaust path of the ventilation device.
  • the collected dust is discharged to the outdoor side (see, for example, Patent Document 2).
  • dust is collected on the upstream side (inlet side) of the heat exchanger in the air supply path and the exhaust path and exhausted. It is preferable to prevent dust from entering the path.
  • This invention aims at providing the ventilation apparatus provided with the heat exchanger which can suppress that heat exchange performance falls.
  • the present invention includes an outdoor air supply port (for example, an outdoor air supply port 21 described later) disposed on the outdoor side and an indoor air supply port (for example, an indoor air supply port 22 described later) disposed indoors.
  • An air supply path for example, an air supply path 20 described later
  • an air supply blower for example, an air supply fan 2 described later
  • An exhaust path for example, described later
  • connecting an indoor side exhaust port for example, an indoor side exhaust port 31 described later
  • an outdoor side exhaust port for example, described later outdoor side exhaust port 32
  • An exhaust passage 30 An exhaust passage 30), an exhaust blower (for example, an exhaust blower 3 to be described later) arranged in the exhaust passage and sending indoor air to the outdoor side, and arranged in the supply passage and the exhaust passage and the supply air Heat exchange between air supply through the air path and exhaust through the exhaust path
  • a heat exchanger for example, a heat exchanger 5 to be described later
  • an exhaust filter for example, an exhaust filter to be described later
  • a bypass path for example, bypass path 9 described later
  • dust removing means for example, fins 24a described later
  • fins 24a described later
  • an inlet of the bypass path (for example, a bypass inlet 91 described later) opens toward the surface of the exhaust filter.
  • it further includes switching means (for example, a damper 100 described later) for switching between exhaust through the heat exchanger and exhaust through the bypass path, and the switching means exhausts through the heat exchanger. It is preferable to switch to the exhaust via the bypass path after executing for a predetermined time.
  • switching means for example, a damper 100 described later
  • An air supply filter (for example, an air supply filter 41 described later) that is disposed on the outdoor air supply port side of the air supply path and collects dust contained in the outside air flowing into the air supply path;
  • a filter moving device (for example, an air supply filter moving device 8 to be described later) for moving an air supply filter to the outdoor exhaust port side of the exhaust path, and a static voltage applying device (for example, an electric voltage applied to the air supply filter)
  • a static voltage application device for example, an electric voltage applied to the air supply filter
  • a static voltage application device for example, an electric voltage applied to the air supply filter
  • the control unit moves the air supply filter to the outdoor side exhaust port side of the exhaust path by the filter moving device, and stops the application of the static voltage to the air supply filter by the static voltage application device, Without even by driving the exhaust fan, it is preferable to perform the filter cleaning control for removing dust trapped on the air supply filter.
  • the filter moving device includes a motor (for example, a motor 81 described later) as a drive source, and the control unit controls the motor to vibrate the air supply filter during the execution of the filter cleaning control.
  • a motor for example, a motor 81 described later
  • the control unit controls the motor to vibrate the air supply filter during the execution of the filter cleaning control.
  • control unit executes the filter cleaning control every predetermined time.
  • an illuminance sensor for example, an illuminance sensor 302 described later
  • a dust sensor for example, a dust sensor 303 described later
  • the exhaust blower is operated according to a control signal from the control unit, the control unit controls the operation of the ventilation device according to outputs of the illuminance sensor and the dust sensor, and the control unit
  • An air supply filter that removes dust from outside air to be supplied and / or a cleaning mode in which the exhaust blower is operated at a high output in order to discharge dust adhering to the exhaust filter, and a dust sensor that is not in the cleaning mode.
  • the exhaust air blower and / or the air supply blower is operated at a high output, and the operation mode is less than two of the two operation modes.
  • Both of the two operation modes are configured so as to switch between any one of the operation modes and a silent mode in which the exhaust blower and the supply blower are operated at a low output. It is preferable to prohibit the operation in an operation mode that can be selected by the control unit among the modes.
  • control unit performs the operation in the silent mode when the illuminance detected by the illuminance sensor is equal to or lower than a predetermined level.
  • control unit controls the rotation speed of the supply air blower and the rotation speed of the exhaust air blower, sets the rotation speed of the supply air blower to a normal rotation speed, and sets the rotation speed of the exhaust air blower to a normal rotation speed.
  • a normal operation mode in which the rotation speed is set, a rotation speed of the air supply blower that is smaller than that in the normal operation mode, an exhaust operation mode in which the rotation speed of the exhaust blower is set to a normal rotation speed, and the supply air According to the air supply operation mode in which the rotation speed of the air blower is set to a normal rotation speed and the rotation speed of the exhaust blower is smaller than that in the normal operation mode, and the outdoor temperature and the indoor temperature, the respective operations It is preferable to include a switching unit that switches modes (for example, a switching unit 318 described later).
  • a supply air distribution section that constitutes a part of the supply air path and through which the supplied air flows to exchange humidity between the air flowing through the supply air path and the air flowing through the exhaust air path;
  • a humidity exchanger (for example, a humidity exchanger 500 described later) functioning as the heat exchanger, and the humidity in the air supply path.
  • An electrostatic atomizer (e.g., an electrostatic atomizer 600 described later) that is disposed downstream of the air supply and circulation section of the exchanger and discharges electrostatic mist, and the electrostatic atomizer Is an electrostatic mist discharge pin (for example, an electrostatic mist discharge pin to be described later) that adsorbs water vapor in the air whose humidity has been exchanged by the humidity exchanger and discharges an electrostatic mist by applying a negative high voltage from the outside. 601).
  • an electrostatic mist discharge pin for example, an electrostatic mist discharge pin to be described later
  • the ventilation apparatus provided with the heat exchanger which can suppress that heat exchange performance falls can be provided.
  • FIG. 1 shows the use condition of the ventilator which concerns on 1st embodiment of this invention.
  • FIG. 1 shows the use condition of the ventilator which concerns on 1st embodiment of this invention.
  • FIG. 1 shows a perspective view of the ventilation apparatus which concerns on 1st embodiment.
  • FIG. 1 It is a figure showing the operation mode regarding ventilation of the ventilation apparatus which concerns on 3rd embodiment. It is a figure showing the conditions by which the driving
  • FIG. 1 is a diagram illustrating a use state of the ventilation device 1 according to the present embodiment.
  • a ventilator 1 according to this embodiment is a ductless ventilator that is attached to an upper part of an indoor wall surface, etc., and ventilates air by supplying and exhausting air between outdoors and indoors of a building. is there.
  • the housing 10 of the ventilator 1 is provided with an indoor air supply port 22 for sending outdoor air from the outdoors to an indoor side and an indoor exhaust port 31 for sending indoor air to the outdoors.
  • FIG. 2 is a perspective view of the ventilation device 1.
  • the ventilator 1 includes a housing 10, an air supply path 20, an air supply blower 2, an exhaust path 30, an exhaust blower 3, a heat exchanger 5, and a bypass path 9.
  • the ventilation device 1 includes an air supply filter 41, an exhaust filter 42, an air supply filter moving device 8, a damper 100, and a control unit (not shown).
  • the housing 10 is formed in a substantially rectangular parallelepiped shape.
  • the rear surface of the housing 10 is formed flat and abuts against the wall surface of the room.
  • the housing 10 is connected to a pipe 11 that leads from the outside to the inside on one end side of the back surface.
  • the housing 10 accommodates each path and member to be described later.
  • the air supply path 20 connects an outdoor air supply port 21 disposed on the outdoor side and an indoor air supply port 22 disposed on the indoor side.
  • the outdoor side air supply port 21 is located in the pipe 11, and the indoor side air supply port 22 is located in the upper end portion on the front side of the housing 10.
  • the exhaust path 30 connects an indoor side exhaust port 31 disposed on the indoor side and an outdoor side exhaust port 32 disposed on the outdoor side.
  • the indoor side exhaust port 31 is located at the lower end portion of the front side of the housing 10, and the outdoor side exhaust port 32 is located in the pipe 11.
  • the outdoor side air supply port 21 and the outdoor side exhaust port 32 are formed by partitioning the inside of the pipe 11 vertically. That is, the outdoor side air supply port 21 is configured by the lower semicircular portion in the cross-sectional view of the pipe 11 of the circular pipe, and the outdoor side exhaust port 32 is configured by the upper semicircular portion.
  • the heat exchanger 5 is disposed in the air supply path 20 and the exhaust path 30.
  • the heat exchanger 5 performs heat exchange between the supply air flowing through the supply air path 20 and the exhaust gas flowing through the exhaust path 30.
  • a rectangular total heat exchange sheet capable of exchanging total heat (sensible heat and latent heat) is laminated with a plurality of ribs extending in the short direction of the total heat exchange sheet. Thus, it is formed in a rectangular parallelepiped shape.
  • the total heat exchange sheet is made of paper, for example.
  • the air supply path 20 and the exhaust path 30 are alternately and independently formed in the stacking direction of the total heat exchange sheet via the total heat exchange sheet.
  • the heat exchanger 5 includes an air supply inlet 51 formed at an upper portion on one end side in the longitudinal direction, an air supply outlet 52 formed at a side surface on the other end side, and an exhaust gas formed at a lower portion on the other end side. It has the inflow port 53 and the exhaust outflow port 54 formed in the side surface of the one end side.
  • the flow path connecting the air supply inlet 51 and the air supply outlet 52 in the heat exchanger 5 constitutes a part of the air supply path 20.
  • the flow path connecting the exhaust inlet 53 and the exhaust outlet 54 in the heat exchanger 5 constitutes a part of the exhaust path 30.
  • the air supply blower 2 is disposed on the terminal end side of the air supply path 20 and sends outside air to the indoor side.
  • the air supply blower 2 is disposed downstream of the heat exchanger 5 in the air supply path 20.
  • the air supply blower 2 is a centrifugal blower that includes a motor 2a and a multi-blade impeller 2b that is connected to the motor 2a and arranged to face the air supply outlet 52.
  • the exhaust blower 3 is disposed on the end side of the exhaust path 30 and sends indoor air to the outdoor side.
  • the exhaust blower 3 is disposed downstream of the heat exchanger 5 in the exhaust path 30.
  • the exhaust blower 3 is a centrifugal blower that includes a motor 3 a and a multi-blade impeller 3 b that is connected to the motor 3 a and is opposed to the exhaust outlet 54.
  • the air supply filter 41 is disposed in the vicinity of the outdoor air supply port 21 upstream of the heat exchanger 5 in the air supply path 20.
  • the air supply filter 41 collects dust contained in the air supply.
  • the air supply filter 41 is annular and is divided in half by a shaft portion 411 extending in the radial direction.
  • the air supply filter 41 has a net portion 412 arranged on one divided semicircle side.
  • the air supply filter 41 prevents the passage of dust by the mesh part 412.
  • the air supply filter 41 is disposed across the outdoor side air supply port 21 and the outdoor side exhaust port 32.
  • the air supply filter 41 has a driven gear 43 formed along the outer periphery.
  • the air supply filter moving device 8 includes a motor 81 and a drive gear 82.
  • the motor 81 is connected to a drive gear 82 that meshes with the driven gear 43.
  • the air supply filter 41 rotates using the motor 81 as a power source.
  • the air supply filter 41 vibrates in conjunction with the drive gear 82 that is vibrated by the motor 81.
  • the air supply filter 41 is controlled by a control unit described later via the air supply filter moving device 8 (motor 81).
  • the exhaust filter 42 is disposed in the vicinity of the indoor exhaust port 31 on the upstream side of the heat exchanger 5 in the exhaust path 30.
  • the exhaust filter 42 collects dust contained in the exhaust.
  • the exhaust filter 42 will be described in detail later.
  • the bypass path 9 connects a bypass inlet 91 located on the upstream side of the exhaust filter 42 in the exhaust path 30 and a bypass outlet 92 located on the downstream side of the heat exchanger 5 in the exhaust path 30.
  • the bypass path 9 bypasses the exhaust gas without passing it through the heat exchanger 5 when dust collected by the exhaust filter 42 is removed.
  • the bypass inlet 91 is located at the peripheral edge of the exhaust filter 42 and opens toward the surface of the exhaust filter 42.
  • the bypass outlet 92 is located between the exhaust outlet 54 and the multiblade impeller 3b, and opens in a direction orthogonal to the axis of the multiblade impeller 3b.
  • the damper 100 switches between exhaust through the heat exchanger 5 and exhaust through the bypass path 9.
  • a motor 62 as an actuator for driving the damper 100 is provided.
  • the damper 100 will be described in detail later.
  • 3A and 3B are views showing the periphery of the exhaust filter 42 and the damper 100, and are enlarged cross-sectional views of the portion where the bypass path 9 branches from the exhaust path 30 as viewed from the arrow X of FIG.
  • FIG. 3A shows the state of exhaust through the heat exchanger 5
  • FIG. 3B shows the state of exhaust through the bypass path 9.
  • 4A and 4B are views of the exhaust filter 42 and the damper 100 viewed from the lower side (an arrow Y in FIGS. 3A and 3B).
  • FIG. 4A shows a state of exhaust through the heat exchanger 5
  • FIG. 4B shows a state of exhaust through the bypass path 9.
  • the damper 100 is a rectangular plate-like member, and the downstream end of the bypass path 9 is bent downward.
  • the damper 100 is sandwiched by the sandwiching member 23 from the vertical direction.
  • the damper 100 closes the bypass path 9 by abutting the bulging portion 93a bulging from the lower side of the bypass path forming member 93 that forms the wall surface of the bypass path 9 at the bent end.
  • the damper 100 shifts in the horizontal direction and is disposed between the exhaust filter 42 and the heat exchanger 5 to close the exhaust path 30. At this time, the bent end of the damper 100 is separated from the bulging portion 93a, and the bypass path 9 is opened.
  • the exhaust filter 42 is disposed between the clamping member 23 and the exhaust path forming member 24 that forms the wall surface of the exhaust path 30.
  • an opening through which exhaust gas flows is formed in a portion where the exhaust filter 42 is disposed.
  • the exhaust filter 42 is fitted to the clamping member 23 and the exhaust path forming member 24 at the periphery.
  • the exhaust path forming member 24 has fins 24a as dust removing means disposed so as to overlap the exhaust filter 42 in the horizontal direction.
  • the fin 24a is rod-shaped and crosses the opening of the exhaust path forming member 24 in the direction in which the damper 100 is shifted (the left-right direction in FIGS. 3A and 3B).
  • the fin 24a is disposed so that the upper end portion thereof is close to the surface of the exhaust filter 42 on the indoor exhaust port 31 side (a net 420 described later).
  • the exhaust filter 42 is annular and is divided into six equal parts by a plurality of shafts extending in the radial direction. 4A and 4B do not show the exhaust path forming member 24 (FIGS. 3A and 3B).
  • the exhaust filter 42 has a mesh portion 420 disposed on the front surface (lower side surface).
  • the exhaust filter 42 prevents the passage of dust by the mesh portion 420.
  • the exhaust filter 42 has a groove 421 formed along the outer periphery.
  • the groove 421 meshes with a gear 61 a connected to the motor 61.
  • the exhaust filter 42 rotates using the motor 61 as a power source.
  • the fins 24 a rotate relative to the mesh portion 420.
  • the exhaust filter 42 is controlled by a control unit described later via the motor 61.
  • the damper 100 has a groove 100a formed at the end portion on the back side of the ventilation device 1.
  • the groove 100 a meshes with a gear 62 a connected to the motor 62.
  • the damper 100 moves in the horizontal direction and switches the exhaust path.
  • the damper 100 is controlled by a control unit described later via the motor 62.
  • FIG. 5 is a functional block diagram illustrating the configuration of the control unit 301 of the ventilation device 1.
  • the control unit 301 shown in FIG. 5 is composed of a circuit mainly composed of a CPU 304, and an output of a timer 305 for measuring various control timings is input to the CPU 304.
  • the control unit 301 issues the following control outputs: (A) Supply motor control output: output for controlling the motor 2a which is a power source of the supply air blower 2 (b) Exhaust motor control output: output for controlling the motor 3a which is a power source of the exhaust blower 3 (c) Supply Air filter actuator control output: Output for controlling the air supply filter actuator that switches the air supply filter 41, which is normally located at the position of the air supply inlet, to a position where it is exposed to exhaust gas in the cleaning mode. (D) Inside air flow path switching control output: Exhaust gas Output for switching the flow path downstream of the filter 42 to the bypass side (e) Exhaust filter control output: Output for rotating the exhaust filter 42
  • the ventilation device 1 has a plurality of operation modes.
  • FIG. 6 is a schematic diagram illustrating the normal operation mode among the operation modes of the ventilation device 1.
  • 7 and 8 are schematic diagrams illustrating the cleaning mode among the operation modes of the ventilation device 1.
  • FIG. 7 is a diagram illustrating an exhaust filter cleaning mode in the cleaning mode
  • FIG. 8 is a diagram illustrating an air supply filter cleaning mode in the cleaning mode.
  • both the air supply blower 2 and the exhaust blower 3 are operated.
  • the air supply is introduced into the air supply path 20 from the outdoor air supply port 21 and supplied indoors from the indoor air supply port 22.
  • the exhaust is introduced into the exhaust path 30 from the indoor side exhaust port 31 and is discharged to the outside from the outdoor side exhaust port 32.
  • the damper 100 closes the bypass path 9.
  • heat exchange is performed in the heat exchanger 5 between the supply air that flows through the supply passage 20 and the exhaust that flows through the exhaust passage 30. This heat exchange keeps the indoor temperature and humidity constant.
  • the dust D is collected on the surface of the net portion 412 of the air supply filter 41 on the outdoor air supply port 21 side.
  • dust D is also collected on the surface on the indoor exhaust port 31 side of the mesh portion 420 of the exhaust filter 42.
  • the damper 100 closes the exhaust path 30 on the upstream side of the exhaust filter 42 and opens the bypass path 9.
  • the exhaust flows through the bypass path 9 to bypass the heat exchanger 5 and is discharged to the outside from the outdoor side exhaust port 32.
  • the dust D collected by the exhaust filter 42 in the normal operation mode is discharged to the outside via the bypass path.
  • the mesh portion 412 is not disposed on the outdoor side exhaust port 32 side of the air supply filter 41, the dust D can be discharged outdoors.
  • the exhaust blower 3 is operated, but the supply air blower 2 is not operated.
  • the mesh portion 412 of the air supply filter 41 located at the air supply inlet (outdoor air supply port 21) is changed to the exhaust outlet (outdoor exhaust port 32) in the air supply filter cleaning mode. Be placed.
  • the dust D collected by the air supply filter 41 in the normal operation mode is located on the downstream side of the air supply filter 41 in the exhaust path 30. Accordingly, in the air supply filter cleaning mode, the dust D collected by the air supply filter 41 can be discharged outdoors.
  • FIG. 9 is a flowchart for explaining the operation of the control unit 301 of the ventilation device 1.
  • a timer time value T related to the operation time (operation duration) in the normal operation mode is read (step S401).
  • the time value T of the timer is compared with a predetermined value Ts as a time interval for executing the cleaning mode operation (step S402).
  • the timer value T which is the operation duration, does not reach the predetermined value Ts or more (step S404: NO)
  • the normal operation mode is maintained.
  • step S404 when it is determined that the time count T of the timer exceeds a predetermined value Ts as a time interval for executing the cleaning mode operation (step S404: YES), the cleaning operation mode (exhaust filter cleaning mode and / or air supply filter) is determined. Operation in the cleaning mode) is started (step S403).
  • FIG. 10 is a flowchart showing details of a control procedure in the cleaning mode (step S403) of the ventilation device 1.
  • the exhaust filter cleaning mode (FIG. 7) is executed. Specifically, first, the motor 2a that is the power source of the supply air blower 2 is stopped by the supply motor control output from the control unit 301 (step S501). Subsequently, the flow path downstream of the exhaust filter 42 is switched to the bypass path 9 side (step S502). This switching is executed by the control unit 301 outputting an exhaust flow path switching control output to the motor 62 for switching the flow path. Next, the motor 3a that is the power source of the exhaust blower 3 is switched to the high output operation by the exhaust motor control output from the control unit 301 (step S503).
  • step S503 the exhaust filter 42 is rotated.
  • the rotation of the exhaust filter 42 is executed when the control unit 301 outputs an exhaust filter control output to the motor 61.
  • the fin 24 a rotates relative to the exhaust filter 42 and comes into contact with dust accumulated on the exhaust filter 42. The dust is more effectively removed by the fin 24a coming into contact with the dust accumulated on the exhaust filter 42.
  • step S504 When the motor 3a shifts to the high output operation, the timekeeping operation is performed for the duration TE1 of the cleaning operation of the exhaust filter 42 (step S504), and whether or not the operation time TE1 has reached the predetermined duration Ts1 of the exhaust filter cleaning. Is monitored (step S505).
  • This continuation time Ts1 related to the cleaning of the exhaust filter 42 is, for example, a time within and outside 30 seconds. Until the time Ts1 is reached, the exhaust filter 42 continues to be cleaned (step S505: NO).
  • step S506 When the operation time TE1 reaches the predetermined time Ts1 (step S505: YES), the flow path downstream of the exhaust filter 42 that has been switched to the bypass path 9 side in step S501 is returned to the original state (step S506).
  • the flow path return in step S506 is executed by the control unit 301 outputting the exhaust flow path switching control output to the motor 62 for switching the flow path. Thereafter, the operation proceeds to the air supply filter cleaning mode (FIG. 8).
  • step S506 the control unit 301 stops the motor 61 by the exhaust filter control output, and stops the rotation of the exhaust filter 42.
  • step S506 the position of the air supply filter 41 is changed to a position where it is exposed to exhaust (step S507).
  • the change of the position of the air supply filter 41 in step S507 is performed by the control unit 301 giving an air supply filter actuator control output to the air supply filter actuator (that is, the air supply filter moving device 8).
  • the arrangement of the air supply filter 41 is changed so that the air supply filter 41 located at the air supply inlet (outdoor side air supply port 21) is positioned at the exhaust outlet (outdoor side exhaust port 32).
  • the air supply filter 41 is exposed to the exhaust gas that has been switched to the high-power operation in step S502 to increase the flow velocity, and dust accumulated on the surface is effectively removed.
  • step S508 When the position of the air supply filter 41 is changed in step S507 and the air supply filter cleaning mode (FIG. 8) starts, the timekeeping operation is then performed for the duration TE2 of the cleaning operation of the air supply filter 41 (step S508). It is monitored whether or not the operation time TE2 has reached a predetermined duration Ts2 of the air supply filter cleaning (step S509).
  • the predetermined duration Ts2 related to the cleaning of the air supply filter 41 is, for example, a time within and outside 30 seconds. Until the time Ts2 is reached, the air supply filter cleaning mode (FIG. 8) is continued (step S509: NO).
  • step S509 YES
  • the air supply filter 41 whose arrangement has been changed so as to be positioned at the exhaust outlet (outdoor exhaust port 32) in step S507 is the original.
  • step S510 Returning to the position (outdoor air supply port 21) (step S510).
  • the return of the air supply filter position in step S510 is executed by the control unit 301 outputting the air supply filter actuator control output to the air supply filter moving device 8 which is an actuator for changing the air supply filter position.
  • step S510 the operation of the motor 2a that is the power source of the air supply blower 2 is restarted by the supply motor control output from the control unit 301 (step S511).
  • step S511 the motor 3a that is the power source of the exhaust blower 3 is switched from the high output operation to the normal output operation by the exhaust motor control output from the control unit 301.
  • the operation in the cleaning mode (FIG. 9: Step S403) is completed, and the control procedure by the control unit 301 proceeds to Step S403 in FIG.
  • the heat exchanger 5 that performs heat exchange between the supply air that flows through the supply air path 20 and the exhaust gas that flows through the exhaust path 30, and the upstream side of the heat exchanger 5 in the exhaust path 30 are arranged.
  • the exhaust filter 42 that collects dust contained in the exhaust gas
  • the ventilator 1 connects the upstream side of the exhaust path 30 with respect to the exhaust filter 42 and the downstream side of the heat exchanger 5 of the exhaust path 30.
  • the bypass path 9 is further provided. Thereby, the dust collected on the indoor exhaust port 31 side of the exhaust path 30 can be smoothly discharged to the outdoor side through the bypass path 9 without passing through the heat exchanger 5. Therefore, in the ventilation apparatus 1 provided with the heat exchanger 5, it can suppress that heat exchange performance falls.
  • the ventilation apparatus 1 shall further have the fin 24a arrange
  • the bypass inlet 91 opens toward the surface direction of the exhaust filter 42.
  • the bypass inlet 91 opens toward the surface direction of the exhaust filter 42, when the dust is discharged outdoors by the exhaust via the bypass path 9, the exhaust blows from the lateral direction to the surface of the exhaust filter 42. It will be.
  • the exhaust gas blown from the side the effect of removing dust collected by the exhaust filter 42 can be further enhanced.
  • the ventilation apparatus 1 shall further be provided with the damper 100 which switches the exhaust_gas
  • the damper 100 is assumed to switch to the exhaust via the bypass path 9 after executing the exhaust via the heat exchanger 5 for a predetermined time. Thereby, the ventilation apparatus 1 can be operated stably by removing the dust collected by the exhaust filter 42 every predetermined time.
  • the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
  • the dust removing means disposed on the surface of the exhaust filter 42 on the indoor exhaust port 31 side may be, for example, a brush that contacts the exhaust filter 42.
  • the ventilation device of the second embodiment includes a static voltage application device 7 (not shown).
  • FIG. 11 is a perspective view of the air supply filter 41.
  • the air supply filter 41 has a substantially circular frame portion 410 and a net portion 412 and is divided in half by a shaft portion 411 extending in the radial direction.
  • the net part 412 is arranged on one semicircular side divided by the shaft part 411 and has a semicircular shape.
  • the mesh unit 412 is formed of a coarse mesh. The air supply filter 41 prevents the passage of dust by the mesh part 412.
  • the frame portion 410 is disposed across the outdoor side air supply port 21 and the outdoor side exhaust port 32.
  • the air supply filter 41 has a driven gear 43 formed along the outer periphery of the frame portion 410.
  • the air supply filter 41 is rotated by an air supply filter moving device 8 described below.
  • the air supply filter 41 vibrates in conjunction with the air supply filter moving device 8 by vibrating it.
  • the drive gear 82 meshes with the driven gear 43 formed in the frame portion 410 of the air supply filter 41, so that the air supply filter 41 is removed from the outdoor air supply port 21 of the air supply path 20.
  • the exhaust path 30 is moved to the outdoor side exhaust port 32 side.
  • the drive gear 82 vibrates the air supply filter 41 by moving in small increments in a short time before and after the rotation direction.
  • the static voltage applying device 7 includes a power source (not shown) and a plurality of electric wires 71 (see FIG. 1).
  • the electric wire 71 is disposed at a position facing the mesh portion 412 of the air supply filter 41 disposed in the outdoor air supply port 21.
  • a plurality of electric wires 71 are arranged in a rectangular frame arranged in front of the net portion 412 so as to extend from one side to the other in the width direction of the net portion 412 along the longitudinal direction of the heat exchanger 5.
  • the static voltage applying device 7 is supplied with electricity from a power source and applies a static voltage to the electric wire 71 to charge the mesh portion 412 of the air supply filter 41 facing the electric wire 71.
  • FIG. 12 is a block diagram showing the control unit 301 in the ventilation device 1 of the second embodiment.
  • the control unit 301 includes an operation mode unit 306 and a cleaning mode unit 307, and switches the ventilation device 1 between an operation mode and a cleaning mode. Further, the control unit 301 controls the air supply blower 2 and the exhaust blower 3, the static voltage application device 7, the motor 81, and the drive gear 82 according to the operation mode unit 306 and the cleaning mode unit 307.
  • control unit 301 is connected to the static voltage application device 7.
  • the control unit 301 controls the static voltage application device 7 to apply a static voltage to the electric wire 71 and charge the air supply filter 41.
  • the control unit 301 monitors the accumulated time in the operation mode.
  • the control part 301 switches the operation mode of the ventilation apparatus 1 to cleaning mode for every predetermined time according to the integration time of an operation mode, and performs the cleaning control of the air supply filter 41.
  • FIG. In the cleaning mode the control unit 301 stops the air supply blower 2 and moves the air supply filter 41 from the outdoor side air supply port 21 to the outdoor side exhaust port 32 while the exhaust air blower 3 is driven.
  • control unit 301 stops the application of the static voltage by the static voltage application device 7 and releases the charge of the air supply filter 41.
  • the control unit 301 moves the driving gear 82 of the air supply filter moving device 8 in small increments in a short period and vibrates the air supply filter 41 by the vibration of the driving gear 82.
  • FIG. 13 is a schematic diagram of operation modes in the ventilation device 1 of the second embodiment.
  • FIG. 14 is a schematic diagram of a cleaning mode in the ventilation device 1 of the second embodiment.
  • FIG. 15 is a flowchart for explaining the procedure for using the ventilation device of the present embodiment. A state of use of the ventilation device 1 of the second embodiment will be described with reference to FIGS.
  • the outside air OA flows into the housing 10 from the outdoor side air inlet 21 as the air supply SA.
  • the air supply filter 41 is disposed across the outdoor side air supply port 21 and the outdoor side exhaust port 32.
  • the air supply filter 41 is charged with static electricity by the electrostatic voltage application device 7.
  • the semicircular net 412 of the air supply filter 41 is disposed on the outdoor air supply port 21 side. For this reason. Dust contained in the outside air OA is collected by the net 412 and does not pass through the air supply path 20.
  • the outside air OA flowing into the housing 10 is sucked by the air supply blower 2 and passes through the air supply path 20 in the heat exchanger 5.
  • the return air RA from the indoor side which becomes the exhaust EA, circulates without being mixed with the supply air SA flowing from the outside air OA, and only the heat and humidity are supplied by the supply air SA and the exhaust EA. Have been replaced. For this reason, the temperature of supply air SA which flows in from the outdoors becomes close to the temperature of indoor air.
  • the outside air OA passes through the air supply path 20, becomes air supply SA supplied from the indoor air supply port 22, and flows into the room.
  • the indoor return air RA flows into the housing 10 from the indoor exhaust port 31.
  • An exhaust filter 42 is disposed at the indoor exhaust port 31, and dust floating in the room is collected by the exhaust filter 42 and does not pass through the exhaust path 30.
  • the return air RA that has flowed into the housing 10 becomes the exhaust EA, is sucked by the exhaust blower 3, and passes through the exhaust path 30 in the heat exchanger 5.
  • the return air RA passes through the exhaust passage 30 and is discharged from the outdoor side exhaust port 32 to the outdoors.
  • the control unit 301 monitors the accumulated operation time in the operation mode (step S1).
  • the control unit 301 performs integration from the time when the previous cleaning mode is switched to the operation mode, and switches the operation mode to the cleaning mode when a preset integration time has elapsed. For example, when 5 hours or 6 hours have elapsed in the operation mode, the 1-minute operation mode is switched to the cleaning mode. If the preset integration time has not elapsed, the operation mode is continued (step S2).
  • step S3 the operation of the air supply blower 2 is stopped while the exhaust blower 3 is driven (step S3). Further, the control unit 301 controls the motor 81 and the drive gear 82 to rotate the air supply filter 41 by 180 degrees. By this rotation, the mesh part 412 moves to the outdoor side exhaust port 32 of the exhaust path 30 (step S4). In the exhaust path 30, air flows from the indoor side toward the outdoor side due to the rotation of the exhaust blower 3. For this reason, only the net
  • control unit 301 controls the static voltage application device 7 to stop the application of the static voltage to the air supply filter 41 (step S5). For this reason, the dust is more easily separated from the net portion 412.
  • control unit 301 drives the motor 81 to vibrate the drive gear 82 (step S6).
  • the air supply filter 41 vibrates due to the vibration of the drive gear 82. Due to the vibration of the air supply filter 41, the dust is more easily separated from the net portion 412.
  • control unit 301 controls the drive gear 82 to stop the vibration of the air supply filter 41 (step S7). Further, the control unit 301 further rotates the air supply filter 41 by 180 degrees to return the mesh unit 412 to the outdoor side air supply port 21 (step 8). Moreover, the control part 301 starts the static voltage application apparatus 7, applies a static voltage to the air supply filter 41, and charges the air supply filter 41 (step S9). Then, the operation of the air supply blower 2 is started (step S10).
  • the ventilation device 1 having the above configuration has the following effects.
  • the ventilation device 1 is connected to an outdoor air supply port 21 arranged on the outdoor side and an indoor air supply port 22 arranged on the indoor side, and an air supply route 20. And an air supply blower 2 that sends outside air to the indoor side.
  • the ventilation device 1 is disposed in the exhaust path 30, which connects the indoor side exhaust port 31 disposed on the indoor side and the outdoor side exhaust port 32 disposed on the outdoor side, and is disposed on the indoor side.
  • an exhaust blower 3 for sending air to the outdoor side.
  • the ventilation device 1 is disposed on the outdoor air supply port 21 side of the air supply path 20, and an air supply filter 41 that collects dust contained in outside air flowing into the air supply path 20, and an air supply filter 41 are provided.
  • An air supply filter moving device 8 for moving to the outdoor exhaust port 32 side of the exhaust path 30, a static voltage applying device 7 for applying a static voltage to the air supply filter 41, an air supply blower 2, an exhaust blower 3, and an air supply filter And a control unit 301 that controls the moving device 8 and the static voltage applying device 7. Then, the air supply filter moving device 8 moves the air supply filter 41 to the outdoor side exhaust port 32 side of the exhaust passage 30, and the static voltage applying device 7 applies the static voltage to the air supply filter 41. By stopping and driving at least the exhaust blower 3, the filter cleaning control for removing dust collected by the air supply filter 41 was executed.
  • the air supply filter 41 of the ventilation device 1 since a static voltage is applied to the air supply filter 41 of the ventilation device 1, even fine dust can be collected more reliably. Further, in the cleaning mode, with the exhaust blower 3 being driven, the air supply filter 41 to which dust is attached is moved to the exhaust path 30 and the application of the static voltage is stopped. For this reason, in the state where the application of the static voltage is stopped, the dust is discharged outdoors by the exhaust EA. Therefore, the dust is easily separated from the air supply filter 41, and the dust can be reliably removed from the air supply filter 41. As described above, according to the ventilation device 1 of the present embodiment, finer dust can be collected and removed.
  • ventilators that take outside air from the outside into the room and exhaust indoor air to the outside are known.
  • a filter is disposed in the ventilation device to remove dust contained in air taken from the outdoors.
  • the ventilator 1 aims to provide a ventilator that can reliably remove dust from the filter, and can reliably remove dust from the filter as described above. become.
  • the air supply filter moving device 8 is configured to include the motor 81 as a drive source. Further, the control unit 301 controls the motor 81 to vibrate the air supply filter 41 during execution of the air supply filter cleaning control, thereby removing dust collected by the air supply filter 41. Thereby, the dust adhering to the air supply filter 41 can be more reliably removed.
  • control part 301 was made to perform filter cleaning control for every predetermined time. Thereby, the dust adhering to the air supply filter 41 can be removed automatically, and even if the user forgets, the air supply filter 41 can be continuously cleaned.
  • the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
  • the air supply filter 41 easily removes dust by vibrating by the motor 81 of the air supply filter moving device 8, but is not limited thereto.
  • a physical dust removing member such as a fin may be attached to the air supply filter, and dust may be removed by this member.
  • the air supply filter 41 includes the mesh portion 412 configured by a coarse mesh, but is not limited thereto.
  • the configuration of the air supply filter 41 is not limited as long as dust can be prevented from passing therethrough, and may be configured to be detachable from the circular frame of the air supply filter 41.
  • the operation of the air supply blower 2 is stopped while the exhaust blower 3 is driven.
  • the present invention is not limited to this. Once the exhaust blower 3 is stopped, the air supply filter 41 may be moved, and the exhaust blower 3 may be moved again.
  • the ventilation device 1 according to the third embodiment includes an illuminance sensor 302 and a dust sensor 303.
  • FIG. 16 is a functional block diagram illustrating the configuration of the control unit 301 of the ventilation device 1 of FIG.
  • the outputs of the illuminance sensor 302 and the dust sensor 303 are supplied to the control unit 301 in FIG.
  • the control unit 301 is composed of a circuit mainly including a CPU 304, and an output of a timer 305 for measuring various control timings is input to the CPU 304.
  • the control unit 301 issues the following control output signals: (A) Air supply motor control output: signal for controlling the motor 2a that is the power source of the air supply blower 2 (b) Exhaust motor control output: signal that controls the motor 3a that is the power source of the exhaust air blower 3 (c) Supply Air filter actuator control output: Signal (d) for controlling an air supply filter actuator (supply air filter moving device 8) that switches the air supply filter 41, which is normally at the position of the air supply inlet, to a position where it is exposed to exhaust gas in the cleaning mode. Exhaust flow path switching control output: A signal for controlling the driving of the motor 62 to switch the flow path downstream of the exhaust filter 42 to the bypass side in the cleaning mode.
  • FIG. 17 is a flowchart for explaining the operation of the control unit 301 of the ventilation device 1 of FIG.
  • the output L of the illuminance sensor 302 is first read (step S401).
  • the output L is compared with Ls, which is a predetermined level value regarding the detected illuminance (step S402).
  • Ls is set as a value corresponding to a case where the room is completely turned off or only the nightlight is lit.
  • step S402 When the output L is equal to or lower than the predetermined level Ls in step S402 (step S402: YES), the control unit 301 is in a silent mode in which the exhaust blower 3 and the supply blower 2 are operated at a low output. As described above, the exhaust motor control output and the air supply motor control output described above are issued (step S410). In this silent mode, the exhaust blower 3 and the supply blower 2 are operated at a low output and the noise level is lowered, so that the possibility of causing environmental noise problems at night is effectively avoided, and further, the ventilation device is operated at bedtime. There is no risk that sleep may be disturbed by sound.
  • step S402 If the output L is not less than or equal to the predetermined level Ls in step S402 (step S402: NO), then the timer time value T relating to the operation time (operation duration) is read (step S403). ). Next, the timer value T is compared with a predetermined value Ts as a time interval for executing the cleaning mode operation (step S404). When the measured value T of the timer, which is the operation duration, does not reach the predetermined value Ts (step S404: NO), the output D of the dust sensor 303 is read (step S405).
  • the output D is compared with a predetermined value Ds related to the output of the dust sensor 303 (step S406).
  • This predetermined value Ds is, for example, a predetermined value set as a level at which it is desirable for indoor dust to be subjected to forced ventilation.
  • the control unit 301 sets the exhaust motor described above so as to be in the normal operation mode in which the exhaust blower 3 and the supply blower 2 are operated with normal output.
  • a control output and an air supply motor control output are issued (step S407). In this normal operation mode, the exhaust blower 3 and the supply air blower 2 are operated with normal output, and proper ventilation is maintained.
  • step S406 when the output D of the dust sensor 303 is equal to or greater than the predetermined value Ds in step S406 (step S406: YES), the control unit 301 is a strong operation that operates the exhaust blower 3 and / or the supply blower 2 with high output. An exhaust motor control output and / or an air supply motor control output are issued so as to be in the mode (step S408).
  • the strong operation mode is entered in step S408, the process returns to step S405, and the output D of the dust sensor 303 is read (step S405).
  • step S406 determines whether or not the output D of the dust sensor 303 at the present time is still equal to or greater than a predetermined value Ds set as a level at which it is desirable for indoor dust to be subjected to forced ventilation. Is determined (step S406), and as long as it is equal to or greater than the predetermined value Ds (step S406: YES), the strong operation mode is continued, and when the indoor air is cleaned by decreasing to the predetermined value Ds or less (step S406: NO) ) And shift to the normal operation mode (step S407).
  • the operation is performed in the strong operation mode only when necessary in this way, and the operation is continuously switched to the silent mode at night and the like, so that the noise reduction effect is achieved. Excellent and energy saving.
  • step S404 When it is determined in step S404 described above that the time measured value T of the timer has exceeded a predetermined value Ts as a time interval for performing the cleaning mode operation (step S404: YES), dust from outside air supplied by the ventilator is removed.
  • the operation In order to discharge the dust adhering to the air supply filter 41 to be removed and / or the exhaust filter 42 to remove the dust of the inside air to be exhausted, the operation enters a cleaning mode in which the exhaust blower 3 is operated at a high output (step S409).
  • FIG. 18 is a flowchart showing details of the control procedure in the cleaning mode (step S409).
  • the flow path downstream of the exhaust filter 42 is first switched to the bypass path 9 side (step S501).
  • This switching is executed by the control unit 301 outputting an exhaust flow path switching control output to the motor 62 that is an actuator for switching the flow path.
  • the motor 3a that is the power source of the exhaust blower 3 is switched to the high output operation by the exhaust motor control output from the control unit 301 (step S502).
  • the resistance of the flow path is reduced and the risk of dust deposition on other parts in the ventilator (for example, the heat exchanger 5 that performs heat exchange between exhaust air and air supply) is released. Dust accumulated on the exhaust filter 42 is effectively removed by the exhaust gas whose flow rate has been increased by the output operation.
  • step S503 When the motor 3a shifts to the high output operation, the timekeeping operation is performed for the duration TE1 of the cleaning operation of the exhaust filter 42 (step S503), and whether or not the operation time TE1 has reached the predetermined duration Ts1 of the exhaust filter cleaning. Is monitored (step S504).
  • This continuation time Ts1 related to the cleaning of the exhaust filter 42 is, for example, a time within and outside 30 seconds. Until the time Ts1 is reached, the exhaust filter 42 is continuously cleaned (step S504: NO).
  • step S504 When the operation time TE1 reaches the predetermined time Ts1 (step S504: YES), the flow path downstream of the exhaust filter 42 that has been switched to the bypass path 9 in step S501 is returned to the original state (step S505).
  • the flow path return in step S505 is executed by the control unit 301 outputting the exhaust flow path switching control output to the actuator for switching the flow path. Thereafter, the procedure proceeds to a procedure for cleaning the air supply filter 41.
  • step S506 the position of the air supply filter 41 is changed to a position where it is exposed to the exhaust gas.
  • the change of the position of the air supply filter 41 in step S506 is performed by the control unit 301 giving an air supply filter actuator control output to the air supply filter actuator (that is, the air supply filter moving device 8).
  • the arrangement of the air supply filter 41 is changed so that the air supply filter 41 located at the air supply inlet (outdoor side air supply port 21) is positioned at the exhaust outlet (outdoor side exhaust port 32).
  • the air supply filter 41 is exposed to the exhaust gas that has been switched to the high-power operation in step S502 to increase the flow velocity, and dust accumulated on the surface is effectively removed.
  • step S506 When the position of the air supply filter is changed in step S506 and the cleaning operation of the air supply filter 41 is started, the timekeeping operation is then performed for the duration TE2 of the cleaning operation of the air supply filter 41 (step S507). It is monitored whether TE2 has reached a predetermined duration Ts2 for air supply filter cleaning (step S508).
  • the predetermined duration Ts2 related to the cleaning of the air supply filter 41 is, for example, a time within and outside 30 seconds. Until the time Ts2 is reached, the cleaning operation of the air supply filter 41 is continued (step S508: NO).
  • step S508 YES
  • the air supply filter 41 whose arrangement has been changed so as to be located at the exhaust outlet (outdoor exhaust port 32) in step S506 is the original.
  • step S509 The return of the air supply filter position in step S509 is executed by the control unit 301 outputting the air supply filter actuator control output to the air supply filter moving device 8 which is an actuator for changing the air supply filter position.
  • the operation in the cleaning mode (FIG. 4: step S409) is completed, and the control procedure by the control unit 301 proceeds to step S405 in FIG.
  • step S ⁇ b> 402: YES the predetermined value Ls
  • FIG. 19 is a diagram showing ventilation operation modes that are allowed according to the output of the illuminance sensor 302 and the output of the dust sensor 303.
  • “H” related to the illuminance sensor 302 indicates a bright case where the output level is not lower than the predetermined value Ls
  • “L” indicates a dark case where the output level is lower than the predetermined value Ls.
  • the driving in both the strong operation mode and the normal operation mode is performed according to the output of the dust sensor 303. Can be selectively performed.
  • the ventilation device 1 having the above configuration has the following effects.
  • the ventilator 1 that supplies outside air from outside and exhausts indoor air, according to the output of the illuminance sensor 302 that detects ambient illuminance and the dust sensor 303 that detects indoor dust.
  • the control unit 301 that controls the operation of the ventilation device, the air supply fan 2 that supplies outside air into the room according to a control signal from the control unit 301, and the indoor air according to the control signal from the control unit 301 And an exhaust blower 3 for exhausting the air.
  • control unit 301 is configured to output the exhaust blower 3 at a high output in order to discharge dust adhering to the air supply filter 41 that removes dust of outside air to be supplied and / or the exhaust filter 42 that removes dust of inside air to be exhausted.
  • the operation mode is switched between at least one of the operation modes and the silent mode in which the exhaust blower 3 and the supply blower 2 are operated at low output.
  • operation in an operation mode that can be selected by the control unit 301 is prohibited.
  • the illuminance sensor 302 is disposed so as to detect outdoor light and the nighttime illuminance is low, or the illuminance sensor 302 is disposed so as to detect indoor illuminance. If it is determined that all lights are turned off or only the nightlight is turned on, ventilation operation in a mode with a relatively high noise level is prohibited. For this reason, driving noise is quiet at night or at bedtime, and the risk of disturbing environmental noise and sleep is eliminated. In addition, since operation in the silent mode is allowed even at night or at bedtime, it can be embodied as a ventilation device that performs continuous operation for 24 hours.
  • the control unit 301 when the illuminance detected by the illuminance sensor 302 is equal to or lower than a predetermined level, the control unit 301 is operated in the silent mode. As a result, when the detected illuminance by the illuminance sensor 302 falls below a predetermined level and there is a high probability that noise will be a problem at night or the like, the operation is automatically switched to the silent mode, so noise can be effectively prevented. .
  • an automatic ventilation device that reduces nighttime noise has been proposed. That is, in the conventional automatic ventilation device, the noise is reduced by limiting the operation of the fan motor that performs ventilation in the dark night according to the detection value of the illuminance sensor.
  • the level of operation is switched according to the output of the sensor that detects air contamination.On the other hand, if the detected value of the illuminance sensor falls below a predetermined value, the fan motor is stopped to generate noise. I try to suppress it.
  • the ventilator 1 aims to provide a ventilator that can perform an effective silent operation even for a model that operates continuously for 24 hours and a model that has a cleaning mode, as described above. It becomes possible to provide such a ventilator.
  • FIG. 20 is a diagram illustrating conditions under which driving is performed in each of the strong operation mode, the silent mode, the cleaning mode, and the normal operation mode in the present embodiment.
  • the operation in the strong operation mode is when the output of the illuminance sensor 302 is relatively high and corresponds to “H”, and the output of the dust sensor 303 is also relatively high “H”. Furthermore, it is executed when the operation duration time is not reached the time when the next cleaning mode is executed ("short" time shown).
  • the operation in the silent mode is executed regardless of the output of the dust sensor 303 or the operation duration when the output of the illuminance sensor 302 is relatively low and corresponds to “L”. However, even when the output of the illuminance sensor 302 corresponds to “H”, when the output of the dust sensor 303 corresponds to “L”, the operation in the normal operation mode is executed.
  • the availability of the operation in the cleaning mode is independent of the output of the dust sensor 303.
  • the case where the operation in each mode of the strong operation mode, the silent mode, the cleaning mode, and the normal operation mode can be performed has been described in detail. It is not limited to this. That is, it is configured to switch between at least one of the two operation modes of the cleaning mode and the strong operation mode and the silent mode, and when the illuminance detected by the illuminance sensor 302 is below a predetermined level, A ventilator having a mode for prohibiting operation in an operation mode that can be selected by the control unit among the two operation modes is also included in the present invention.
  • FIG. 21 is a functional block diagram of the control unit 301 provided in the ventilation device 1 according to the present embodiment.
  • the control unit 301 shapes an input signal waveform from various sensors, which will be described later, corrects the voltage level to a predetermined level, and converts an analog signal value into a digital signal value.
  • a processing unit CPU304 a processing unit CPU304.
  • the control unit 301 includes a storage circuit that stores various calculation programs executed by the CPU 304, calculation results, and the like, and an output circuit that outputs control signals to the air supply blower 2 and the exhaust blower 3.
  • the control unit 301 having the above hardware configuration executes the operation mode switching control for switching each operation mode according to the outdoor temperature and the indoor temperature, and executes each operation mode.
  • the control unit 301 is a normal operation mode unit 311, an exhaust operation mode unit 312, an air supply operation mode unit 313, and a strong exhaust operation mode as modules for executing the operation mode switching control.
  • the detection signal output from the outdoor temperature sensor 321, the outdoor humidity sensor 322, the indoor temperature sensor 323, and the indoor humidity sensor 324 is transmitted to the control unit 301.
  • the control unit 301 performs operation mode switching control based on these detection signals.
  • FIG. 22 is a diagram illustrating an example of switching of operation modes of the ventilation device 1 according to the present embodiment.
  • the horizontal axis represents the outdoor temperature
  • the vertical axis represents the indoor temperature. That is, FIG. 22 shows an example of operation mode switching according to the outdoor temperature and the indoor temperature.
  • the straight line Z in FIG. 22 represents the state where outdoor temperature and indoor temperature are equal.
  • the normal operation mode unit 311 executes a normal operation mode in which the rotation speed of the air supply blower 2 is set to a normal rotation speed and the rotation speed of the exhaust blower 3 is set to a normal rotation speed.
  • This normal operation mode is an operation mode that is normally executed when the indoor environment is better than the outdoor environment as shown in FIG. In this normal operation mode, air supply and exhaust are actively performed, and heat exchange is actively performed between the two, so that the indoor environment is improved.
  • the normal number of rotations is set in advance according to the size of the indoor space where the ventilation device 1 is installed.
  • the exhaust operation mode unit 312 executes the exhaust operation mode in which the rotation speed of the supply air blower 2 is made smaller than that in the normal operation mode and the rotation speed of the exhaust blower 3 is the normal rotation speed.
  • This exhaust operation mode is executed when the indoor temperature is 26 ° C. or higher and the outdoor temperature is lower than the indoor temperature. For example, as shown in FIG. 22, it is executed when the outdoor temperature is about 18 ° C. to 22 ° C. and the indoor temperature is about 26 ° C. or more.
  • weak air supply is performed and exhaust is actively performed.
  • exhaust exhaust (exhaust heat) is prioritized and the indoor environment is improved. At the same time, since air supply is not stopped, generation of mold in the heat exchanger 5 is suppressed.
  • the air supply operation mode unit 313 executes the air supply operation mode in which the rotation speed of the supply air blower 2 is set to a normal rotation speed and the rotation speed of the exhaust blower 3 is made smaller than that in the normal operation mode.
  • This air supply operation mode is executed when the indoor temperature is 14 ° C. or lower and the outdoor temperature is higher than the indoor temperature. For example, as shown in FIG. 22, it is executed when the outdoor temperature is about 20 ° C. to 27 ° C. and the indoor temperature is 14 ° C. or less.
  • weak air is exhausted and air is actively supplied.
  • air supply heat supply
  • the strong exhaust operation mode unit 314 executes a strong exhaust operation mode in which the rotational speed of the exhaust blower 3 is made larger than that in the normal operation mode.
  • the strong exhaust operation mode is executed when the outdoor temperature is about 28 ° C. to 32 ° C. and the indoor temperature is higher than the outdoor temperature.
  • this strong exhaust operation mode weak air supply is performed, and powerful exhaust is performed. As a result, exhaust (exhaust heat) is promoted and the indoor environment is improved. At the same time, since air supply is not stopped, generation of mold in the heat exchanger 5 is suppressed.
  • the first switching operation mode unit 315 executes a first switching operation mode that alternately switches between the air supply operation mode and the exhaust operation mode described above. For example, as shown in FIG. 22, the first switching operation mode is executed when the outdoor temperature is about 23 ° C. to 27 ° C. and the indoor temperature is about 27 ° C. or higher. In the first switching operation mode, ventilation is actively performed without heat exchange, and the indoor environment is improved. At the same time, since supply and exhaust are not stopped, generation of mold in the heat exchanger 5 is suppressed.
  • the second switching operation mode unit 316 executes a second switching operation mode that alternately switches between the air supply operation mode and the exhaust operation mode described above. For example, as shown in FIG. 22, in the second switching operation mode, when the outdoor temperature is about 18 ° C. to 24 ° C. and the indoor temperature is about 15 ° C. to 25 ° C., that is, there is almost no difference between the outdoor temperature and the indoor temperature. It is executed when heat exchange between supply air and exhaust is not required. In the second switching operation mode, the air supply operation mode and the exhaust operation mode are executed alternately, thereby suppressing unnecessary air supply / exhaust and reducing the power cost. At the same time, since supply and exhaust are not stopped, generation of mold in the heat exchanger 5 is suppressed.
  • the air supply restriction operation mode unit 317 sets the rotation speed of the supply air blower 2 to a normal rotation speed and makes the rotation speed of the exhaust blower 3 smaller than that in the normal operation mode, as in the above-described air supply operation mode.
  • Execute the air supply restriction operation mode For example, as shown in FIG. 22, the air supply restriction operation mode is executed when the outdoor temperature is ⁇ 16 ° C. or lower.
  • the indoor environment is maintained by restricting only the air supply when air supply should not be performed from the viewpoint of preventing the outdoor temperature from being too low and causing the equipment to fail. At the same time, since supply and exhaust are not stopped, generation of mold in the heat exchanger 5 is suppressed.
  • the switching unit 318 executes operation mode switching control for switching the above-described operation modes. Specifically, each operation mode is switched according to the outdoor temperature and the indoor temperature detected by the outdoor temperature sensor 321, the outdoor humidity sensor 322, the indoor temperature sensor 323, and the indoor humidity sensor 324.
  • the ventilation device 1 is disposed in an air supply path 20 and an air supply path 20 that connect an outdoor air supply port 21 disposed on the outdoor side and an indoor air supply port 22 disposed on the indoor side.
  • the air supply blower 2 that sends outside air to the indoor side
  • the exhaust path 30 that connects the indoor side exhaust port 31 disposed on the indoor side and the outdoor side exhaust port 32 disposed on the outdoor side, and the exhaust path 30 are disposed.
  • heat exchange is performed between the exhaust blower 3 that sends indoor air to the outdoor side, and the air that is disposed in the air supply path 20 and the exhaust path 30 and that flows through the air supply path 20 and the exhaust that flows through the exhaust path 30.
  • a control unit 301 that controls the rotational speed of the supply air blower 2 and the rotational speed of the exhaust air blower 3. Further, the control unit 301 sets the rotation speed of the supply air blower 2 to the normal rotation speed, the normal operation mode in which the rotation speed of the exhaust blower 3 is set to the normal rotation speed, and the rotation speed of the supply air blower 2 to the normal rotation speed.
  • the exhaust mode is smaller than that in the operation mode, and the exhaust fan 3 is rotated at a normal rotation speed.
  • the supply fan 2 is rotated at a normal rotation speed, and the exhaust fan 3 is rotated.
  • An air supply operation mode in which the number is made smaller than that in the normal operation mode, and a switching unit 318 for switching each operation mode according to the outdoor temperature and the indoor temperature are included.
  • the normal operation mode, the exhaust operation mode, the air supply operation mode, the strong exhaust operation mode, the first switching operation mode, the second switching operation mode, the air supply restriction operation mode, Is configured to switch according to the outdoor temperature and the indoor temperature.
  • ventilators equipped with heat exchangers are known as ventilators for improving the indoor environment.
  • the indoor environment is better than the outdoor environment, the indoor environment is improved by performing heat exchange between the supply air and the exhaust air by the ventilation device.
  • a ventilator has been proposed that regulates the outdoor air cooling operation in which outdoor air having a lower temperature than indoors is introduced at night in the summer, etc., according to the temperature difference between the outdoor temperature and the indoor temperature.
  • the conventional ventilator when the temperature difference between the outdoor temperature and the indoor temperature is larger than a predetermined value, at least one of the air supply path and the exhaust path is switched to a bypass path not via a heat exchanger, and the above temperature difference Is smaller than the predetermined value, the supply air blower and the exhaust blower are stopped. Therefore, as a result of causing a state in which the supply air and the exhaust gas do not flow through the heat exchanger, problems such as generation of mold in the heat exchanger have occurred.
  • This embodiment aims to provide a ventilator that can improve the indoor environment while protecting the heat exchanger, and can provide the ventilator as described above.
  • the air supply operation mode is switched.
  • the indoor temperature is 26 ° C. or higher and the outdoor temperature is lower than the indoor temperature
  • the exhaust operation mode is switched.
  • the outdoor temperature sensor 321 and the indoor temperature sensor 323 are provided, and each operation mode is switched according to the outdoor temperature and the indoor temperature detected by the outdoor temperature sensor 321 and the indoor temperature sensor 323. Thereby, switching to each operation mode according to the detected temperature can be automatically controlled, and the above-described effects can be obtained more reliably.
  • an outdoor humidity sensor 322 and an indoor humidity sensor 324 are provided.
  • switching to each operation mode is performed according to the outdoor temperature and the indoor temperature, but the outdoor temperature and humidity detected by the outdoor temperature sensor 321, the outdoor humidity sensor 322, the indoor temperature sensor 323, and the indoor humidity sensor 324, and Each operation mode can be switched according to the indoor temperature and humidity. Thereby, switching to each operation mode according to the detected temperature and humidity can be automatically controlled, and the above-described effects can be obtained more reliably.
  • the ventilation device 1 includes a humidity exchanger 500 (see FIG. 23) that also functions as the heat exchanger 5 and an electrostatic atomizer 600 (see FIGS. 24 and 25).
  • the humidity exchanger 500 is disposed in the air supply path 20 and the exhaust path 30.
  • the humidity exchanger 500 exchanges humidity by exchanging water vapor through a moisture permeable membrane between the supply air that flows through the supply passage 20 and the exhaust that flows through the exhaust passage 30.
  • the humidity exchanger 500 includes an air supply circulation unit 520 through which the air in the air supply path 20 circulates and an exhaust circulation part 530 through which the air in the exhaust path 30 circulates (see FIG. 23). That is, in the humidity exchanger 500, the supply air circulation part 520 and the exhaust gas circulation part 530 are positioned so as to be in contact with each other through the moisture permeable membrane, and by transferring water vapor in the air that circulates between the inside and the other, The humidity of the supply air is adjusted.
  • the humidity exchanger 500 of this example is configured to function also as a heat exchanger that performs heat exchange. That is, in order to obtain a heat exchange function, a rectangular heat exchange sheet capable of exchanging the total heat is laminated with a plurality of ribs extending in the short direction of the heat exchange sheet, thereby being a rectangular parallelepiped. It is formed in a shape.
  • the heat exchange sheet is made of paper, for example.
  • the air supply path 20 and the exhaust path 30 are alternately and independently formed in the stacking direction of the heat exchange sheets via the heat exchange sheets.
  • the functional unit as a heat exchanger in the humidity exchanger 500 may be arranged so as to be positioned in series with respect to the functional unit related to humidity exchange and the air circulation, or both functions of the moisture permeable membrane and the heat exchange sheet are provided. It can also comprise so that humidity exchange and heat exchange may be performed over the whole area
  • the above-described air supply / circulation portion 520 of the humidity exchanger 500 includes an air supply inlet 51 formed at the upper portion on one end side in the longitudinal direction (left-right direction in FIG. 23) and an air supply outlet formed at the side surface on the other end side. 52 is a flow path of air to and from 52.
  • the exhaust circulation part 530 of the humidity exchanger 500 is an air flow path between the exhaust inlet 53 formed in the lower part on the other end side and the exhaust outlet 54 formed on the side surface on the one end side. . That is, the air supply / circulation part 520 of the humidity exchanger 500 constitutes a part of the air supply path 20.
  • the exhaust circulation part 530 of the humidity exchanger 500 constitutes a part of the exhaust path 30. Thereby, the flow of the supply air in the supply air path 20 and the flow of the exhaust gas in the exhaust path 30 become an opposite flow.
  • an electrostatic atomizer 600 (see FIGS. 24 and 25) that discharges electrostatic mist is disposed on the downstream side of the air supply / circulation part 520 of the humidity exchanger 500.
  • a position P indicated by a rectangle shown in FIG. 23 is a position where the electrostatic atomizer 600 is disposed.
  • the electrostatic atomizer 600 in this example is on the downstream side of the air supply passage 20 after the air supply circulation section 520 of the humidity exchanger 500, and in particular, the air supply passage 20. It arrange
  • FIG. 24 is a diagram illustrating an installation mode of the electrostatic atomizer 600 in the ventilation device of FIG. 24 is attached to a side wall 2d of an air supply casing 2c that covers the multi-blade impeller 2b of the air supply blower 2 and discharges the air supply toward the indoor air supply port 22. ing.
  • This attachment position is a position close to the indoor air supply port 22 of the side wall 2d, and the attachment attitude is such that each electrostatic mist discharge pin 601 and 601 of the electrostatic atomizer 600 has a side wall of the air supply casing 2c.
  • the ink is discharged vertically from 2d toward the inside (that is, inside the air supply path 20).
  • the electrostatic atomizer 600 of the present example includes nine electrostatic mist discharge pins 601 as can be easily seen from FIG. These electrostatic mist discharge pins 601 and 601 are housed in an insulating case 602 on the base side and sealed with an insulating sealing plate 603. A holding plate 604 provided with a through hole corresponding to each electrostatic mist discharge pin 601 and 601 is provided on the sealing plate 603, and the position of each electrostatic mist discharge pin 601 and 601 is provided by this holding plate 604. And the posture is maintained. Further, the tip (pointed end) side of each electrostatic mist discharge pin 601, 601 protrudes substantially horizontally from the case 602 into the air supply path 20 that is the outside thereof.
  • An electrode plate 605 is provided on the bottom of the case 602 so that the bases of the electrostatic mist discharge pins 601 and 601 are in common contact.
  • An electrode pin 606 protrudes from the electrode plate 605 through the bottom of the case 602.
  • a negative high voltage from a booster 608 operating under the control of the main circuit board 607 is applied to the electrode pin 606 through a cable 609.
  • the negative high voltage is, for example, about ⁇ 4 KV.
  • the main circuit board 607 is a functional unit that comprehensively manages the operation in various modes in response to a user operation on the ventilation device 1 of the present embodiment or in response to a timer operation of the own device. It is.
  • the previously described control unit is also formed on the main circuit board 607.
  • the ventilation device 1 includes an air supply fan 2 that supplies outside air into the room, an air supply path 20 that guides air into the room using the air supply fan 2, an exhaust fan 3 that exhausts indoor air, A part of the air supply path 20 is configured and supplied to exchange humidity between the exhaust path 30 that guides air to the outside by the exhaust blower 3 and the air flowing through the air supply path 20 and the air flowing through the exhaust path 30.
  • a humidity exchanger 500 including an air supply circulation unit 520 through which air flows and an exhaust circulation unit 530 that constitutes a part of the exhaust path 30 and through which the exhausted air flows, and the supply of the humidity exchanger 300 in the air supply path 20
  • an electrostatic atomizer 600 that is disposed downstream of the air circulation unit 520 and discharges electrostatic mist.
  • the electrostatic atomizer 600 has an electrostatic mist release pin 601 that adsorbs water vapor in the air whose humidity has been exchanged by the humidity exchanger 500 and releases an electrostatic mist when a negative high voltage is applied from the outside. Constructed including.
  • the humidity is exchanged through the air supply / circulation unit 520 of the humidity exchanger 500, and air in which the humidity is appropriately maintained flows out even in the winter when the humidity of the outside air is low.
  • An electrostatic atomizer 600 is disposed in the air supply path 20 near the indoor air supply port 22. For this reason, each electrostatic mist discharge
  • the electrostatic mist is appropriately released into the room with a simple configuration that does not require a Peltier element for generating water or an electric circuit for applying a voltage to the element. Can be made. Further, since there is no need to provide a liquid reservoir for storing a liquid such as a functional liquid or water, handling is easy without inconvenience such as water supply. Furthermore, since the spark phenomenon due to arc discharge is unlikely to occur, the risk of ozone generation is minimal.
  • electrostatic atomization phenomenon in which water is split from the tip of a pin to which a high voltage is applied and electrostatic mist is generated is well known.
  • This electrostatic mist is negatively charged fine particles having a particle size of picometer to nanometer, and exhibits effects such as deodorization, sterilization, and antiallergen.
  • a proposal (2) in which various devices for air conditioning are provided with electrostatic atomization means has also been made.
  • electrostatic atomization means that generates liquid phase water from the gas phase moisture in the air guided to the ventilation path, electrostatically atomizes this water, and discharges it into the room.
  • An air conditioner that controls the operation of the electrostatic atomizer in accordance with the output of the sensor to be detected has been proposed (3).
  • a ventilation facility has been proposed in which an electrostatic atomizer that generates charged fine particle water from water stored in a water tank is provided at an air supply port for blowing air into the room. Furthermore, a mist releasing pin that can release mist without replenishing an aqueous solution has been proposed (4).
  • the electrostatic atomization means in the air conditioner of proposal (2) requires a Peltier element for water generation and an electric circuit for applying a voltage to this element.
  • the electrostatic atomizer in the ventilation equipment of the proposal (3) it is essential to have a liquid reservoir for storing a liquid such as a functional liquid or water. Accordingly, it is necessary to replenish the liquid reservoir with a liquid such as a functional liquid or water.
  • the liquid refilling operation is troublesome for the user.
  • the fifth embodiment has been made in view of the situation as described above, and does not require a Peltier element for water generation or an electric circuit for applying a voltage to this element.
  • a ventilator equipped with an electrostatic atomizing function unit that is easy to handle and has a minimal risk of ozone generation, such a ventilator can be provided as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

 A ventilation device, provided with: an air supply path linking an outdoor side air supply port disposed on the outdoor side and an indoor side air supply port disposed on the indoor side; an air supply blower disposed on the air supply path, the air supply blower sending external air to the indoor side; an exhaust path linking an indoor side exhaust port disposed on the indoor side and an outdoor side exhaust port disposed on the outdoor side; an exhaust blower disposed on the exhaust path, the exhaust blower sending the air on the indoor side to the outdoor side; a heat exchanger disposed on the air supply path and the exhaust path, the heat exchanger exchanging heat between supplied air channeled through the air supply path and the exhaust channeled through the exhaust path; an exhaust filter disposed on the side of the exhaust path upstream of the heat exchanger, the exhaust filter capturing dust contained in the exhaust; and a bypass path linking the side of the exhaust path upstream of the exhaust filter and the side of the exhaust path downstream of the heat exchanger.

Description

換気装置Ventilation equipment
 本発明は、換気装置に関する。 The present invention relates to a ventilation device.
 従来、住宅に屋内の環境を改善するための換気装置が設けられる。また、空調機の使用電力の削減や快適な居住環境の提供をするために、給気と排気との間で熱交換を行う熱交換器を備えた換気装置も知られている(例えば、特許文献1参照)。 Conventionally, a ventilation device for improving the indoor environment in a house is provided. In addition, in order to reduce the electric power used by the air conditioner and provide a comfortable living environment, a ventilator equipped with a heat exchanger that performs heat exchange between supply air and exhaust is also known (for example, patents). Reference 1).
 ところで、換気装置の給気経路や排気経路の入口には塵埃を補集するためのフィルタが配置される場合がある。給気経路の入口にフィルタを配置する場合、捕集された塵埃は屋外側に排出される(例えば、特許文献2参照)。特に、熱交換器を備えた換気装置においては、熱交換性能をできるだけ長く維持するために、給気経路及び排気経路の熱交換器よりも上流側(入口側)において塵埃を補集し、排気経路内に塵埃が混入することを防ぐことが好ましい。 By the way, there is a case where a filter for collecting dust is arranged at the inlet of the air supply path or the exhaust path of the ventilation device. When a filter is disposed at the inlet of the air supply path, the collected dust is discharged to the outdoor side (see, for example, Patent Document 2). In particular, in a ventilator equipped with a heat exchanger, in order to maintain the heat exchange performance as long as possible, dust is collected on the upstream side (inlet side) of the heat exchanger in the air supply path and the exhaust path and exhausted. It is preferable to prevent dust from entering the path.
特開2011-231973号公報JP 2011-231973 A 特開2012-166182号公報JP 2012-166182 A
 しかし、熱交換器を備えた換気装置において、排気経路の入口に塵埃を補集するためのフィルタを配置したとしても、排気経路のフィルタよりも下流側に熱交換器が配置されるので、捕集された塵埃を屋外に排出することは困難である。補集された塵埃が屋外に排出されないと、換気装置の熱交換性能が低下してしまう場合がある。 However, in a ventilator equipped with a heat exchanger, even if a filter for collecting dust is disposed at the inlet of the exhaust path, the heat exchanger is disposed downstream of the filter in the exhaust path. It is difficult to discharge the collected dust outdoors. If the collected dust is not discharged outdoors, the heat exchange performance of the ventilator may be degraded.
 本発明は、熱交換性能が低下してしまうのを抑えることができる、熱交換器を備えた換気装置を提供することを目的とする。 This invention aims at providing the ventilation apparatus provided with the heat exchanger which can suppress that heat exchange performance falls.
 本発明は、屋外側に配置される屋外側給気口(例えば、後述の屋外側給気口21)と屋内側に配置される屋内側給気口(例えば、後述の屋内側給気口22)とを結ぶ給気経路(例えば、後述の給気経路20)と、前記給気経路に配置され且つ外気を屋内側に送る給気送風機(例えば、後述の給気送風機2)と、屋内側に配置される屋内側排気口(例えば、後述の屋内側排気口31)と屋外側に配置される屋外側排気口(例えば、後述の屋外側排気口32)とを結ぶ排気経路(例えば、後述の排気経路30)と、前記排気経路に配置され且つ屋内側の空気を屋外側に送る排気送風機(例えば、後述の排気送風機3)と、前記給気経路及び前記排気経路に配置され且つ前記給気経路を流通する給気と前記排気経路を流通する排気との間で熱交換を行う熱交換器(例えば、後述の熱交換器5)と、前記排気経路の前記熱交換器よりも上流側に配置され且つ排気に含まれる塵埃を捕集する排気フィルタ(例えば、後述の排気フィルタ42)と、前記排気経路の前記排気フィルタよりも上流側と、前記排気経路の前記熱交換器よりも下流側と、を結ぶバイパス経路(例えば、後述のバイパス経路9)と、を備える換気装置(例えば、後述の換気装置1)に関する。 The present invention includes an outdoor air supply port (for example, an outdoor air supply port 21 described later) disposed on the outdoor side and an indoor air supply port (for example, an indoor air supply port 22 described later) disposed indoors. An air supply path (for example, an air supply path 20 described later), an air supply blower (for example, an air supply fan 2 described later) that is disposed in the air supply path and sends outside air to the indoor side, and an indoor side An exhaust path (for example, described later) connecting an indoor side exhaust port (for example, an indoor side exhaust port 31 described later) and an outdoor side exhaust port (for example, described later outdoor side exhaust port 32) disposed on the outdoor side. An exhaust passage 30), an exhaust blower (for example, an exhaust blower 3 to be described later) arranged in the exhaust passage and sending indoor air to the outdoor side, and arranged in the supply passage and the exhaust passage and the supply air Heat exchange between air supply through the air path and exhaust through the exhaust path A heat exchanger (for example, a heat exchanger 5 to be described later) to be performed, and an exhaust filter (for example, an exhaust filter to be described later) that is disposed upstream of the heat exchanger in the exhaust path and collects dust contained in the exhaust gas 42) and a bypass path (for example, bypass path 9 described later) connecting the upstream side of the exhaust path with respect to the exhaust filter and the downstream side of the heat exchanger with respect to the exhaust path. (For example, the ventilation apparatus 1 described later).
 これにより、排気経路の屋内側排気口側で捕集した塵埃を、熱交換器を通すことなく、バイパス経路を通じて円滑に屋外側に排出することができる。従って、熱交換器を備えた換気装置において、熱交換性能が低下してしまうのを抑えることができる。 Thus, dust collected on the indoor exhaust port side of the exhaust path can be smoothly discharged to the outdoor side through the bypass path without passing through the heat exchanger. Therefore, in the ventilator provided with a heat exchanger, it can suppress that heat exchange performance falls.
 また、前記排気フィルタの前記屋内側排気口側の面に配置され、前記排気フィルタに付着した塵埃を除去する塵埃除去手段(例えば、後述のフィン24a)をさらに有することが好ましい。 Further, it is preferable to further include dust removing means (for example, fins 24a described later) disposed on the surface of the exhaust filter on the indoor exhaust port side to remove dust attached to the exhaust filter.
 また、前記バイパス経路の入口(例えば、後述のバイパス入口91)は、前記排気フィルタの面方向に向かって開口することが好ましい。 Further, it is preferable that an inlet of the bypass path (for example, a bypass inlet 91 described later) opens toward the surface of the exhaust filter.
 また、前記熱交換器を介した排気と、前記バイパス経路を介した排気と、を切り替える切替手段(例えば、後述のダンパ100)をさらに備え、前記切替手段は、前記熱交換器を介した排気を所定時間実行した後に、前記バイパス経路を介した排気に切り替えることが好ましい。 In addition, it further includes switching means (for example, a damper 100 described later) for switching between exhaust through the heat exchanger and exhaust through the bypass path, and the switching means exhausts through the heat exchanger. It is preferable to switch to the exhaust via the bypass path after executing for a predetermined time.
 また、前記給気経路の前記屋外側給気口側に配置され、前記給気経路に流入する外気に含まれる塵埃を捕集する給気フィルタ(例えば、後述の給気フィルタ41)と、前記給気フィルタを前記排気経路の前記屋外側排気口側に移動させるフィルタ移動装置(例えば、後述の給気フィルタ移動装置8)と、前記給気フィルタに静電圧を付加する静電圧印加装置(例えば、後述の静電圧印加装置7)と、前記給気送風機、前記排気送風機、前記フィルタ移動装置及び前記静電圧印加装置を制御する制御部(例えば、後述の制御部301)と、をさらに備え、前記制御部は、前記フィルタ移動装置により前記給気フィルタを前記排気経路の前記屋外側排気口側に移動させ、前記静電圧印加装置による前記給気フィルタへの静電圧の印加を停止し、少なくとも前記排気送風機を駆動させることで、前記給気フィルタに捕集された塵埃を除去するフィルタ掃除制御を実行することが好ましい。 An air supply filter (for example, an air supply filter 41 described later) that is disposed on the outdoor air supply port side of the air supply path and collects dust contained in the outside air flowing into the air supply path; A filter moving device (for example, an air supply filter moving device 8 to be described later) for moving an air supply filter to the outdoor exhaust port side of the exhaust path, and a static voltage applying device (for example, an electric voltage applied to the air supply filter) A static voltage application device 7) described later, and a control unit (for example, a control unit 301 described later) that controls the air supply blower, the exhaust blower, the filter moving device, and the static voltage application device. The control unit moves the air supply filter to the outdoor side exhaust port side of the exhaust path by the filter moving device, and stops the application of the static voltage to the air supply filter by the static voltage application device, Without even by driving the exhaust fan, it is preferable to perform the filter cleaning control for removing dust trapped on the air supply filter.
 また、前記フィルタ移動装置は、駆動源としてモータ(例えば、後述のモータ81)を備え、前記制御部は、前記フィルタ掃除制御の実行中において、前記モータを制御して前記給気フィルタを振動させることで、前記給気フィルタに捕集された塵埃を除去することが好ましい。 Further, the filter moving device includes a motor (for example, a motor 81 described later) as a drive source, and the control unit controls the motor to vibrate the air supply filter during the execution of the filter cleaning control. Thus, it is preferable to remove dust collected by the air supply filter.
 また、前記制御部は、前記フィルタ掃除制御を所定時間ごとに実行することが好ましい。 Moreover, it is preferable that the control unit executes the filter cleaning control every predetermined time.
 また、周囲の照度を検出する照度センサ(例えば、後述の照度センサ302)と、室内の塵埃を検出する塵埃センサ(例えば、後述の塵埃センサ303)と、をさらに備え、前記給気送風機及び前記排気送風機は、前記制御部からの制御信号に応じて運転され、前記制御部は、前記照度センサ及び前記塵埃センサの出力に応じて、前記換気装置の運転を制御し、前記制御部は、前記給気する外気の塵埃を除去する給気フィルタ及び/若しくは前記排気フィルタに付着した塵埃を排出するために前記排気送風機を高出力で運転する掃除モードと、前記掃除モードでない場合に前記塵埃センサの出力が所定値を超えたときには前記排気送風機及び/若しくは前記給気送風機を高出力で運転する強運転モードと、の2つの運転モードのうちの少なくとも何れかの運転モードと、前記排気送風機及び前記給気送風機を低出力で運転する静音モードとを切換えるように構成され、前記照度センサによる検出照度が所定水準以下であるときには、前記2つの運転モードのうち当該制御部で選択され得る運転モードでの運転を禁止することが好ましい。 In addition, an illuminance sensor (for example, an illuminance sensor 302 described later) for detecting ambient illuminance and a dust sensor (for example, a dust sensor 303 described later) for detecting indoor dust are further provided, The exhaust blower is operated according to a control signal from the control unit, the control unit controls the operation of the ventilation device according to outputs of the illuminance sensor and the dust sensor, and the control unit An air supply filter that removes dust from outside air to be supplied and / or a cleaning mode in which the exhaust blower is operated at a high output in order to discharge dust adhering to the exhaust filter, and a dust sensor that is not in the cleaning mode. When the output exceeds a predetermined value, the exhaust air blower and / or the air supply blower is operated at a high output, and the operation mode is less than two of the two operation modes. Both of the two operation modes are configured so as to switch between any one of the operation modes and a silent mode in which the exhaust blower and the supply blower are operated at a low output. It is preferable to prohibit the operation in an operation mode that can be selected by the control unit among the modes.
 また、前記制御部は、前記照度センサによる検出照度が所定水準以下であるときには、前記静音モードでの運転を行うことが好ましい。 Moreover, it is preferable that the control unit performs the operation in the silent mode when the illuminance detected by the illuminance sensor is equal to or lower than a predetermined level.
 また、前記制御部は、前記給気送風機の回転数及び前記排気送風機の回転数を制御し、前記給気送風機の回転数を通常の回転数とするとともに、前記排気送風機の回転数を通常の回転数とする通常運転モードと、前記給気送風機の回転数を前記通常運転モード時と比べて微小にするとともに、前記排気送風機の回転数を通常の回転数とする排気運転モードと、前記給気送風機の回転数を通常の回転数とするとともに、前記排気送風機の回転数を前記通常運転モード時と比べて微小にする給気運転モードと、屋外温度及び屋内温度に応じて、前記各運転モードを切り替える切替部(例えば、後述の切替部318)と、を有することが好ましい。 In addition, the control unit controls the rotation speed of the supply air blower and the rotation speed of the exhaust air blower, sets the rotation speed of the supply air blower to a normal rotation speed, and sets the rotation speed of the exhaust air blower to a normal rotation speed. A normal operation mode in which the rotation speed is set, a rotation speed of the air supply blower that is smaller than that in the normal operation mode, an exhaust operation mode in which the rotation speed of the exhaust blower is set to a normal rotation speed, and the supply air According to the air supply operation mode in which the rotation speed of the air blower is set to a normal rotation speed and the rotation speed of the exhaust blower is smaller than that in the normal operation mode, and the outdoor temperature and the indoor temperature, the respective operations It is preferable to include a switching unit that switches modes (for example, a switching unit 318 described later).
 また、前記給気経路を流れる空気と前記排気経路を流れる空気との間で湿度交換を行うべく前記給気経路の一部を構成し給気する空気が流通する給気流通部と、前記排気経路の一部を構成し排気する空気が流通する排気流通部と、を備え、前記熱交換器として機能する湿度交換器(例えば、後述の湿度交換器500)と、前記給気経路における前記湿度交換器の給気流通部以降の下流側に配置され、静電ミストを放出させる静電霧化装置(例えば、後述の静電霧化装置600)と、をさらに備え、前記静電霧化装置は、前記湿度交換器によって湿度交換された空気中の水蒸気を吸着し、外部から負の高電圧が印加されて静電ミストを放出させる静電ミスト放出ピン(例えば、後述の静電ミスト放出ピン601)を有することが好ましい。 A supply air distribution section that constitutes a part of the supply air path and through which the supplied air flows to exchange humidity between the air flowing through the supply air path and the air flowing through the exhaust air path; A humidity exchanger (for example, a humidity exchanger 500 described later) functioning as the heat exchanger, and the humidity in the air supply path. An electrostatic atomizer (e.g., an electrostatic atomizer 600 described later) that is disposed downstream of the air supply and circulation section of the exchanger and discharges electrostatic mist, and the electrostatic atomizer Is an electrostatic mist discharge pin (for example, an electrostatic mist discharge pin to be described later) that adsorbs water vapor in the air whose humidity has been exchanged by the humidity exchanger and discharges an electrostatic mist by applying a negative high voltage from the outside. 601).
 本発明によれば、熱交換器を備えた換気装置において、排気経路の屋内側排気口側で捕集した塵埃を、熱交換器を通すことなく円滑に屋外側に排出することができる。従って、熱交換性能が低下してしまうのを抑えることができる、熱交換器を備えた換気装置を提供できる。 According to the present invention, in a ventilator equipped with a heat exchanger, dust collected on the indoor exhaust port side of the exhaust path can be smoothly discharged to the outdoor side without passing through the heat exchanger. Therefore, the ventilation apparatus provided with the heat exchanger which can suppress that heat exchange performance falls can be provided.
本発明の第一実施形態に係る換気装置の使用状態を示す図である。It is a figure which shows the use condition of the ventilator which concerns on 1st embodiment of this invention. 第一実施形態に係る換気装置の斜視図である。It is a perspective view of the ventilation apparatus which concerns on 1st embodiment. 第一実施形態に係る換気装置における、排気フィルタ及びダンパの周辺を示した拡大断面図である。It is an expanded sectional view showing the circumference of an exhaust filter and a damper in a ventilator concerning a first embodiment. 第一実施形態に係る換気装置における、排気フィルタ及びダンパの周辺を示した拡大断面図である。It is an expanded sectional view showing the circumference of an exhaust filter and a damper in a ventilator concerning a first embodiment. 第一実施形態に係る換気装置における、排気フィルタ及びダンパを示した底面図である。It is the bottom view which showed the exhaust filter and the damper in the ventilation apparatus which concerns on 1st embodiment. 第一実施形態に係る換気装置における、排気フィルタ及びダンパを示した底面図である。It is the bottom view which showed the exhaust filter and the damper in the ventilation apparatus which concerns on 1st embodiment. 第一実施形態に係る換気装置の制御部の構成を表す機能ブロック図である。It is a functional block diagram showing the structure of the control part of the ventilation apparatus which concerns on 1st embodiment. 第一実施形態に係る換気装置の通常運転モードについて示す模式図である。It is a schematic diagram shown about the normal operation mode of the ventilation apparatus which concerns on 1st embodiment. 第一実施形態に係る換気装置の掃除モード(排気フィルタ掃除モード)での動作について示す模式図である。It is a schematic diagram shown about the operation | movement in the cleaning mode (exhaust filter cleaning mode) of the ventilation apparatus which concerns on 1st embodiment. 第一実施形態に係る換気装置の掃除モード(給気フィルタ掃除モード)での動作について示す模式図である。It is a schematic diagram shown about the operation | movement in the cleaning mode (air supply filter cleaning mode) of the ventilation apparatus which concerns on 1st embodiment. 第一実施形態に係る換気装置の制御部の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the control part of the ventilation apparatus which concerns on 1st embodiment. 第一実施形態に係る換気装置の掃除モードでの制御手順の詳細を表すフローチャートである。It is a flowchart showing the detail of the control procedure in the cleaning mode of the ventilation apparatus which concerns on 1st embodiment. 本発明の第二実施形態に係る換気装置の給気フィルタの斜視図である。It is a perspective view of the air supply filter of the ventilator which concerns on 2nd embodiment of this invention. 第二実施形態の換気装置における制御部の構成を表す機能ブロック図である。It is a functional block diagram showing the structure of the control part in the ventilation apparatus of 2nd embodiment. 第二実施形態の換気装置における運転モードの模式図である。It is a schematic diagram of the operation mode in the ventilation apparatus of 2nd embodiment. 第二実施形態の換気装置における掃除モードの模式図である。It is a schematic diagram of the cleaning mode in the ventilation apparatus of 2nd embodiment. 第二実施形態に係る換気装置の使用手順を説明するフローチャートである。It is a flowchart explaining the use procedure of the ventilator which concerns on 2nd embodiment. 本発明の第三実施形態に係る換気装置の制御部の構成を表す機能ブロック図である。It is a functional block diagram showing the structure of the control part of the ventilation apparatus which concerns on 3rd embodiment of this invention. 第三実施形態に係る換気装置の制御部の動作を説明するためのフローチャートである。It is a flowchart for demonstrating operation | movement of the control part of the ventilation apparatus which concerns on 3rd embodiment. 第三実施形態に係る換気装置の掃除モードでの制御手順の詳細を表すフローチャートである。It is a flowchart showing the detail of the control procedure in the cleaning mode of the ventilation apparatus which concerns on 3rd embodiment. 第三実施形態に係る換気装置の換気に関する運転モードを表す図である。It is a figure showing the operation mode regarding ventilation of the ventilation apparatus which concerns on 3rd embodiment. 第三実施形態に係る換気装置の各モードでの運転が行われる条件を表す図である。It is a figure showing the conditions by which the driving | operation in each mode of the ventilation apparatus which concerns on 3rd embodiment is performed. 本発明の第四実施形態に係る換気装置の制御部の機能ブロック図である。It is a functional block diagram of the control part of the ventilator which concerns on 4th embodiment of this invention. 第四実施形態に係る換気装置の運転モードの切り替えの一例を示す図である。It is a figure which shows an example of the switching of the operation mode of the ventilation apparatus which concerns on 4th embodiment. 本発明の第五実施形態に係る換気装置の斜視図である。It is a perspective view of the ventilation apparatus which concerns on 5th embodiment of this invention. 図23の換気装置における静電霧化装置の設置態様を表す図である。It is a figure showing the installation aspect of the electrostatic atomizer in the ventilation apparatus of FIG. 図24の静電霧化装置の構成を説明するための図である。It is a figure for demonstrating the structure of the electrostatic atomizer of FIG.
<第1実施形態>
 以下、本発明の一実施形態について、図面を参照しながら詳しく説明する。
 図1は、本実施形態に係る換気装置1の使用状態を示す図である。図1に示すように、本実施形態に係る換気装置1は、室内の壁面の上部等に取り付けられ、建物の屋外と屋内の間で空気を給排気して換気を行うダクトレス式の換気装置である。
 換気装置1のハウジング10には、屋外からの外気を屋内に送り込む屋内側給気口22と、屋内の内気を屋外に送り出す屋内側排気口31が設けられている。
<First Embodiment>
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating a use state of the ventilation device 1 according to the present embodiment. As shown in FIG. 1, a ventilator 1 according to this embodiment is a ductless ventilator that is attached to an upper part of an indoor wall surface, etc., and ventilates air by supplying and exhausting air between outdoors and indoors of a building. is there.
The housing 10 of the ventilator 1 is provided with an indoor air supply port 22 for sending outdoor air from the outdoors to an indoor side and an indoor exhaust port 31 for sending indoor air to the outdoors.
 図2は、換気装置1の斜視図である。図2に示すように、換気装置1は、ハウジング10と、給気経路20と、給気送風機2と、排気経路30と、排気送風機3と、熱交換器5と、バイパス経路9と、を備える。
 また、換気装置1は、給気フィルタ41と、排気フィルタ42と、給気フィルタ移動装置8と、ダンパ100と、制御部(図示せず)と、を備える。
FIG. 2 is a perspective view of the ventilation device 1. As shown in FIG. 2, the ventilator 1 includes a housing 10, an air supply path 20, an air supply blower 2, an exhaust path 30, an exhaust blower 3, a heat exchanger 5, and a bypass path 9. Prepare.
The ventilation device 1 includes an air supply filter 41, an exhaust filter 42, an air supply filter moving device 8, a damper 100, and a control unit (not shown).
 ハウジング10は、略直方体状に形成されている。ハウジング10の背面は平坦に形成され、室内の壁面等に当接する。ハウジング10は、背面の一端側において、屋外から屋内に通じる配管11と接続される。ハウジング10は、後述する各経路及び部材をその内部に収容する。 The housing 10 is formed in a substantially rectangular parallelepiped shape. The rear surface of the housing 10 is formed flat and abuts against the wall surface of the room. The housing 10 is connected to a pipe 11 that leads from the outside to the inside on one end side of the back surface. The housing 10 accommodates each path and member to be described later.
 給気経路20は、屋外側に配置される屋外側給気口21と、屋内側に配置される屋内側給気口22と、を結ぶ。屋外側給気口21は、配管11に位置し、屋内側給気口22は、ハウジング10の正面側の上端部に位置する。 The air supply path 20 connects an outdoor air supply port 21 disposed on the outdoor side and an indoor air supply port 22 disposed on the indoor side. The outdoor side air supply port 21 is located in the pipe 11, and the indoor side air supply port 22 is located in the upper end portion on the front side of the housing 10.
 排気経路30は、屋内側に配置される屋内側排気口31と、屋外側に配置される屋外側排気口32と、を結ぶ。屋内側排気口31は、ハウジング10の正面側の下端部に位置し、屋外側排気口32は、配管11に位置する。 The exhaust path 30 connects an indoor side exhaust port 31 disposed on the indoor side and an outdoor side exhaust port 32 disposed on the outdoor side. The indoor side exhaust port 31 is located at the lower end portion of the front side of the housing 10, and the outdoor side exhaust port 32 is located in the pipe 11.
 ここで、屋外側給気口21及び屋外側排気口32は、配管11の内部が上下に仕切られることで形成されている。即ち、円管の配管11の断面視における下側の半円部分により屋外側給気口21が構成され、上側の半円部分により屋外側排気口32が構成される。 Here, the outdoor side air supply port 21 and the outdoor side exhaust port 32 are formed by partitioning the inside of the pipe 11 vertically. That is, the outdoor side air supply port 21 is configured by the lower semicircular portion in the cross-sectional view of the pipe 11 of the circular pipe, and the outdoor side exhaust port 32 is configured by the upper semicircular portion.
 熱交換器5は、給気経路20及び排気経路30に配置される。熱交換器5は、給気経路20を流通する給気と排気経路30を流通する排気との間で熱交換を行う。熱交換器5は、全熱(顕熱及び潜熱)を交換することが可能な長方形の全熱交換シートが、当該全熱交換シートの短手方向に延びる複数のリブを介在させて積層されることで、直方体状に形成される。この全熱交換シートは、例えば紙からなる。熱交換器5の内部において、給気経路20及び排気経路30は、全熱交換シートを介して、全熱交換シートの積層方向に交互に独立して形成される。 The heat exchanger 5 is disposed in the air supply path 20 and the exhaust path 30. The heat exchanger 5 performs heat exchange between the supply air flowing through the supply air path 20 and the exhaust gas flowing through the exhaust path 30. In the heat exchanger 5, a rectangular total heat exchange sheet capable of exchanging total heat (sensible heat and latent heat) is laminated with a plurality of ribs extending in the short direction of the total heat exchange sheet. Thus, it is formed in a rectangular parallelepiped shape. The total heat exchange sheet is made of paper, for example. Inside the heat exchanger 5, the air supply path 20 and the exhaust path 30 are alternately and independently formed in the stacking direction of the total heat exchange sheet via the total heat exchange sheet.
 また、熱交換器5は、長手方向の一端側の上部に形成される給気流入口51と、他端側の側面に形成される給気流出口52と、他端側の下部に形成される排気流入口53と、一端側の側面に形成される排気流出口54と、を有する。熱交換器5内における給気流入口51と給気流出口52とを結ぶ流路は、給気経路20の一部を構成する。同様に、熱交換器5内における排気流入口53と排気流出口54とを結ぶ流路は、排気経路30の一部を構成する。これにより、給気経路20における給気の流れと排気経路30における排気の流れとは、対向流となる。 The heat exchanger 5 includes an air supply inlet 51 formed at an upper portion on one end side in the longitudinal direction, an air supply outlet 52 formed at a side surface on the other end side, and an exhaust gas formed at a lower portion on the other end side. It has the inflow port 53 and the exhaust outflow port 54 formed in the side surface of the one end side. The flow path connecting the air supply inlet 51 and the air supply outlet 52 in the heat exchanger 5 constitutes a part of the air supply path 20. Similarly, the flow path connecting the exhaust inlet 53 and the exhaust outlet 54 in the heat exchanger 5 constitutes a part of the exhaust path 30. Thereby, the flow of the supply air in the supply air path 20 and the flow of the exhaust gas in the exhaust path 30 become an opposite flow.
 給気送風機2は、給気経路20の終端側に配置されて、外気を屋内側に送る。給気送風機2は、給気経路20の熱交換器5よりも下流側に配置される。給気送風機2は、モータ2aと、モータ2aに接続され且つ給気流出口52と対向して配置される多翼羽根車2bと、を備える遠心送風機である。 The air supply blower 2 is disposed on the terminal end side of the air supply path 20 and sends outside air to the indoor side. The air supply blower 2 is disposed downstream of the heat exchanger 5 in the air supply path 20. The air supply blower 2 is a centrifugal blower that includes a motor 2a and a multi-blade impeller 2b that is connected to the motor 2a and arranged to face the air supply outlet 52.
 排気送風機3は、排気経路30の終端側に配置されて、屋内側の空気を屋外側に送る。排気送風機3は、排気経路30の熱交換器5よりも下流側に配置される。排気送風機3は、モータ3aと、モータ3aに接続され且つ排気流出口54と対向して配置される多翼羽根車3bと、を備える遠心送風機である。 The exhaust blower 3 is disposed on the end side of the exhaust path 30 and sends indoor air to the outdoor side. The exhaust blower 3 is disposed downstream of the heat exchanger 5 in the exhaust path 30. The exhaust blower 3 is a centrifugal blower that includes a motor 3 a and a multi-blade impeller 3 b that is connected to the motor 3 a and is opposed to the exhaust outlet 54.
 給気フィルタ41は、給気経路20の熱交換器5よりも上流側の屋外側給気口21近傍に配置される。給気フィルタ41は、給気に含まれる塵埃を捕集する。
 給気フィルタ41は、環状であり、径方向に延びる軸部411により半分に分割されている。給気フィルタ41は、分割された一方の半円側に配置される網部412を有する。給気フィルタ41は、網部412により、塵埃の通過を防止する。
 給気フィルタ41は、屋外側給気口21及び屋外側排気口32に跨って配置される。給気フィルタ41は、外周に沿って被動ギア43が形成されている。
The air supply filter 41 is disposed in the vicinity of the outdoor air supply port 21 upstream of the heat exchanger 5 in the air supply path 20. The air supply filter 41 collects dust contained in the air supply.
The air supply filter 41 is annular and is divided in half by a shaft portion 411 extending in the radial direction. The air supply filter 41 has a net portion 412 arranged on one divided semicircle side. The air supply filter 41 prevents the passage of dust by the mesh part 412.
The air supply filter 41 is disposed across the outdoor side air supply port 21 and the outdoor side exhaust port 32. The air supply filter 41 has a driven gear 43 formed along the outer periphery.
 給気フィルタ移動装置8は、モータ81及び駆動ギア82を有する。モータ81は、被動ギア43と噛み合う駆動ギア82に接続される。給気フィルタ41は、モータ81を動力源として回転する。また、給気フィルタ41は、モータ81により駆動ギア82が振動することで、連動して振動する。給気フィルタ41は、給気フィルタ移動装置8(モータ81)を介して後述の制御部によって制御される。 The air supply filter moving device 8 includes a motor 81 and a drive gear 82. The motor 81 is connected to a drive gear 82 that meshes with the driven gear 43. The air supply filter 41 rotates using the motor 81 as a power source. The air supply filter 41 vibrates in conjunction with the drive gear 82 that is vibrated by the motor 81. The air supply filter 41 is controlled by a control unit described later via the air supply filter moving device 8 (motor 81).
 排気フィルタ42は、排気経路30の熱交換器5よりも上流側の屋内側排気口31近傍に配置される。排気フィルタ42は、排気に含まれる塵埃を捕集する。排気フィルタ42については後段で詳述する。 The exhaust filter 42 is disposed in the vicinity of the indoor exhaust port 31 on the upstream side of the heat exchanger 5 in the exhaust path 30. The exhaust filter 42 collects dust contained in the exhaust. The exhaust filter 42 will be described in detail later.
 バイパス経路9は、排気経路30の排気フィルタ42よりも上流側に位置するバイパス入口91と、排気経路30の熱交換器5よりも下流側に位置するバイパス出口92と、を結ぶ。バイパス経路9は、排気フィルタ42の捕集された塵埃を除去する際に、排気を熱交換器5に流通させることなくバイパスする。バイパス入口91は、排気フィルタ42の周縁に位置し、排気フィルタ42の面方向に向かって開口する。バイパス出口92は、排気流出口54と多翼羽根車3bとの間に位置し、多翼羽根車3bの軸と直交する方向に向かって開口する。 The bypass path 9 connects a bypass inlet 91 located on the upstream side of the exhaust filter 42 in the exhaust path 30 and a bypass outlet 92 located on the downstream side of the heat exchanger 5 in the exhaust path 30. The bypass path 9 bypasses the exhaust gas without passing it through the heat exchanger 5 when dust collected by the exhaust filter 42 is removed. The bypass inlet 91 is located at the peripheral edge of the exhaust filter 42 and opens toward the surface of the exhaust filter 42. The bypass outlet 92 is located between the exhaust outlet 54 and the multiblade impeller 3b, and opens in a direction orthogonal to the axis of the multiblade impeller 3b.
 ダンパ100は、熱交換器5を介した排気と、バイパス経路9を介した排気と、を切り替える。この切換のために、ダンパ100を駆動するアクチュエータとしてのモータ62が設けられている。ダンパ100については、後段で詳述する。
 図3A及び図3Bは、排気フィルタ42及びダンパ100の周辺を示した図であり、排気経路30からバイパス経路9が分岐した部分を図2の矢視Xから視た拡大断面図である。図3Aは、熱交換器5を介した排気の状態であり、図3Bは、バイパス経路9を介した排気の状態である。
 図4A及び図4Bは、排気フィルタ42及びダンパ100を下側(図3A及び図3Bの矢視Y)から視た図である。図4Aは、熱交換器5を介した排気の状態であり、図4Bは、バイパス経路9を介した排気の状態である。
The damper 100 switches between exhaust through the heat exchanger 5 and exhaust through the bypass path 9. For this switching, a motor 62 as an actuator for driving the damper 100 is provided. The damper 100 will be described in detail later.
3A and 3B are views showing the periphery of the exhaust filter 42 and the damper 100, and are enlarged cross-sectional views of the portion where the bypass path 9 branches from the exhaust path 30 as viewed from the arrow X of FIG. FIG. 3A shows the state of exhaust through the heat exchanger 5, and FIG. 3B shows the state of exhaust through the bypass path 9.
4A and 4B are views of the exhaust filter 42 and the damper 100 viewed from the lower side (an arrow Y in FIGS. 3A and 3B). FIG. 4A shows a state of exhaust through the heat exchanger 5, and FIG. 4B shows a state of exhaust through the bypass path 9.
 図4A及び図4Bに示すように、ダンパ100は矩形板状の部材であり、バイパス経路9の下流側の端部が下方向に屈曲している。図3Aに示すように、ダンパ100は、上下方向から挟持部材23によって挟持される。ダンパ100は、屈曲している側の先端がバイパス経路9の壁面を形成するバイパス経路形成部材93の下側から膨出した膨出部93aと当接することで、バイパス経路9を閉鎖する。一方、図3Bに示すように、ダンパ100は、水平方向にシフトして、排気フィルタ42と熱交換器5との間に配置されることで、排気経路30を閉鎖する。この際に、ダンパ100の屈曲している側の先端は、膨出部93aから離隔されており、バイパス経路9は開通する。 4A and 4B, the damper 100 is a rectangular plate-like member, and the downstream end of the bypass path 9 is bent downward. As shown in FIG. 3A, the damper 100 is sandwiched by the sandwiching member 23 from the vertical direction. The damper 100 closes the bypass path 9 by abutting the bulging portion 93a bulging from the lower side of the bypass path forming member 93 that forms the wall surface of the bypass path 9 at the bent end. On the other hand, as shown in FIG. 3B, the damper 100 shifts in the horizontal direction and is disposed between the exhaust filter 42 and the heat exchanger 5 to close the exhaust path 30. At this time, the bent end of the damper 100 is separated from the bulging portion 93a, and the bypass path 9 is opened.
 図3A及び図3Bに示すように、排気フィルタ42は、挟持部材23と排気経路30の壁面を形成する排気経路形成部材24との間に配置される。排気経路形成部材24には、排気フィルタ42の配置される部分に排気の流通する開口が形成される。排気フィルタ42は、周縁において挟持部材23及び排気経路形成部材24とそれぞれ嵌合する。排気経路形成部材24は、排気フィルタ42と水平方向において重複するように配置される塵埃除去手段としてのフィン24aを有する。フィン24aは、棒状であり、排気経路形成部材24の開口を、ダンパ100のシフトする方向(図3A及び図3Bの左右方向)に横断する。フィン24aは、上端部が排気フィルタ42の屋内側排気口31側の面(後述する網部420)に近接して配置される。 3A and 3B, the exhaust filter 42 is disposed between the clamping member 23 and the exhaust path forming member 24 that forms the wall surface of the exhaust path 30. In the exhaust path forming member 24, an opening through which exhaust gas flows is formed in a portion where the exhaust filter 42 is disposed. The exhaust filter 42 is fitted to the clamping member 23 and the exhaust path forming member 24 at the periphery. The exhaust path forming member 24 has fins 24a as dust removing means disposed so as to overlap the exhaust filter 42 in the horizontal direction. The fin 24a is rod-shaped and crosses the opening of the exhaust path forming member 24 in the direction in which the damper 100 is shifted (the left-right direction in FIGS. 3A and 3B). The fin 24a is disposed so that the upper end portion thereof is close to the surface of the exhaust filter 42 on the indoor exhaust port 31 side (a net 420 described later).
 図4A及び図4Bに示すように、排気フィルタ42は、環状であり、径方向に延びる複数の軸により6等分されている。なお、図4A及び図4Bには、排気経路形成部材24(図3A及び図3B)は示されていない。排気フィルタ42は、前面(下側面)に配置される網部420を有する。排気フィルタ42は、網部420により、塵埃の通過を防止する。排気フィルタ42は、外周に沿って溝421が形成されている。溝421は、モータ61に接続されたギア61aと噛み合う。このような構造によって、排気フィルタ42は、モータ61を動力源として回転する。排気フィルタ42が回転することにより、フィン24aが網部420に対して相対的に回転する。排気フィルタ42は、モータ61を介して後述の制御部によって制御される。 As shown in FIGS. 4A and 4B, the exhaust filter 42 is annular and is divided into six equal parts by a plurality of shafts extending in the radial direction. 4A and 4B do not show the exhaust path forming member 24 (FIGS. 3A and 3B). The exhaust filter 42 has a mesh portion 420 disposed on the front surface (lower side surface). The exhaust filter 42 prevents the passage of dust by the mesh portion 420. The exhaust filter 42 has a groove 421 formed along the outer periphery. The groove 421 meshes with a gear 61 a connected to the motor 61. With such a structure, the exhaust filter 42 rotates using the motor 61 as a power source. As the exhaust filter 42 rotates, the fins 24 a rotate relative to the mesh portion 420. The exhaust filter 42 is controlled by a control unit described later via the motor 61.
 図4A及び図4Bに示すように、ダンパ100は、換気装置1の背面側の端部に溝100aが形成されている。この溝100aは、モータ62に接続されたギア62aと噛み合う。このような構造によって、ダンパ100は水平方向に移動して排気の経路を切り替える。ダンパ100は、モータ62を介して後述の制御部によって制御される。 As shown in FIG. 4A and FIG. 4B, the damper 100 has a groove 100a formed at the end portion on the back side of the ventilation device 1. The groove 100 a meshes with a gear 62 a connected to the motor 62. With such a structure, the damper 100 moves in the horizontal direction and switches the exhaust path. The damper 100 is controlled by a control unit described later via the motor 62.
 図5は、換気装置1の制御部301の構成を表す機能ブロック図である。
 図5の制御部301はCPU304を主体とする回路で構成され、各種の制御のタイミングをはかるためのタイマ305の出力がCPU304に入力される。
 この制御部301からは、次のような各制御出力が発せられる:
(a)給気モータ制御出力:給気送風機2の動力源であるモータ2aを制御する出力
(b)排気モータ制御出力:排気送風機3の動力源であるモータ3aを制御する出力
(c)給気フィルタアクチュエータ制御出力:掃除モード時に、通常は給気入口の位置にある給気フィルタ41を排気に晒す位置に転換させる給気フィルタクチュエータを制御する出力
(d)内気流路切換制御出力:排気フィルタ42下流の流路をバイパス側に切換える出力
(e)排気フィルタ制御出力:排気フィルタ42を回転させる出力
FIG. 5 is a functional block diagram illustrating the configuration of the control unit 301 of the ventilation device 1.
The control unit 301 shown in FIG. 5 is composed of a circuit mainly composed of a CPU 304, and an output of a timer 305 for measuring various control timings is input to the CPU 304.
The control unit 301 issues the following control outputs:
(A) Supply motor control output: output for controlling the motor 2a which is a power source of the supply air blower 2 (b) Exhaust motor control output: output for controlling the motor 3a which is a power source of the exhaust blower 3 (c) Supply Air filter actuator control output: Output for controlling the air supply filter actuator that switches the air supply filter 41, which is normally located at the position of the air supply inlet, to a position where it is exposed to exhaust gas in the cleaning mode. (D) Inside air flow path switching control output: Exhaust gas Output for switching the flow path downstream of the filter 42 to the bypass side (e) Exhaust filter control output: Output for rotating the exhaust filter 42
 続いて、本実施形態に係る換気装置1の動作(運転モード)について説明する。換気装置1は、複数の運転モードを有する。図6は、換気装置1の運転モードのうち、通常運転モードについて示す模式図である。図7及び図8は、換気装置1の運転モードのうち、掃除モードについて示す模式図である。特に、図7は、掃除モードのうちの排気フィルタ掃除モードについて示す図であり、図8は、掃除モードのうちの給気フィルタ掃除モードについて示す図である。 Subsequently, the operation (operation mode) of the ventilation device 1 according to the present embodiment will be described. The ventilation device 1 has a plurality of operation modes. FIG. 6 is a schematic diagram illustrating the normal operation mode among the operation modes of the ventilation device 1. 7 and 8 are schematic diagrams illustrating the cleaning mode among the operation modes of the ventilation device 1. In particular, FIG. 7 is a diagram illustrating an exhaust filter cleaning mode in the cleaning mode, and FIG. 8 is a diagram illustrating an air supply filter cleaning mode in the cleaning mode.
 図6に示すように、通常運転モードでは、給気送風機2及び排気送風機3の両方が運転する。給気は、屋外側給気口21から給気経路20に導入され、屋内側給気口22から屋内に供給される。一方、排気は、屋内側排気口31から排気経路30に導入されて、屋外側排気口32から屋外に排出される。なお、この際に、ダンパ100は、バイパス経路9を閉鎖する。通常運転モードでは熱交換器5において、給気経路20を流通する給気と排気経路30を流通する排気との間で熱交換が行われる。この熱交換によって、屋内の温度及び湿度が一定に保たれる。 As shown in FIG. 6, in the normal operation mode, both the air supply blower 2 and the exhaust blower 3 are operated. The air supply is introduced into the air supply path 20 from the outdoor air supply port 21 and supplied indoors from the indoor air supply port 22. On the other hand, the exhaust is introduced into the exhaust path 30 from the indoor side exhaust port 31 and is discharged to the outside from the outdoor side exhaust port 32. At this time, the damper 100 closes the bypass path 9. In the normal operation mode, heat exchange is performed in the heat exchanger 5 between the supply air that flows through the supply passage 20 and the exhaust that flows through the exhaust passage 30. This heat exchange keeps the indoor temperature and humidity constant.
 通常運転モードを継続することにより、給気フィルタ41の網部412の屋外側給気口21側の表面に塵埃Dが捕集される。一方、排気フィルタ42の網部420の屋内側排気口31側の表面にも塵埃Dが捕集される。 By continuing the normal operation mode, the dust D is collected on the surface of the net portion 412 of the air supply filter 41 on the outdoor air supply port 21 side. On the other hand, dust D is also collected on the surface on the indoor exhaust port 31 side of the mesh portion 420 of the exhaust filter 42.
 図7に示すように、排気フィルタ掃除モードでは、排気送風機3のみ運転する。排気フィルタ掃除モードでは、ダンパ100は、排気フィルタ42の上流側において排気経路30を閉鎖し、バイパス経路9を開放する。排気フィルタ掃除モードにおいて、排気は、バイパス経路9を流通することで熱交換器5をバイパスして、屋外側排気口32から屋外に排出される。 As shown in FIG. 7, in the exhaust filter cleaning mode, only the exhaust blower 3 is operated. In the exhaust filter cleaning mode, the damper 100 closes the exhaust path 30 on the upstream side of the exhaust filter 42 and opens the bypass path 9. In the exhaust filter cleaning mode, the exhaust flows through the bypass path 9 to bypass the heat exchanger 5 and is discharged to the outside from the outdoor side exhaust port 32.
 排気フィルタ掃除モードを継続することにより、通常運転モードで排気フィルタ42の捕集した塵埃Dは、バイパス経路を経由して屋外側に排出される。この際に、給気フィルタ41の屋外側排気口32側には網部412が配置されないので、塵埃Dを屋外に排出することが可能になる。 継 続 By continuing the exhaust filter cleaning mode, the dust D collected by the exhaust filter 42 in the normal operation mode is discharged to the outside via the bypass path. At this time, since the mesh portion 412 is not disposed on the outdoor side exhaust port 32 side of the air supply filter 41, the dust D can be discharged outdoors.
 図8に示すように、給気フィルタ掃除モードでは、排気送風機3は運転するが、給気送風機2は運転しない。通常運転モードでは給気の入口(屋外側給気口21)に位置した給気フィルタ41の網部412が、給気フィルタ掃除モードでは、排気の出口(屋外側排気口32)に転換して配置される。 As shown in FIG. 8, in the air supply filter cleaning mode, the exhaust blower 3 is operated, but the supply air blower 2 is not operated. In the normal operation mode, the mesh portion 412 of the air supply filter 41 located at the air supply inlet (outdoor air supply port 21) is changed to the exhaust outlet (outdoor exhaust port 32) in the air supply filter cleaning mode. Be placed.
 給気フィルタ掃除モードでは、通常運転モードで給気フィルタ41の捕集した塵埃Dは、排気経路30の給気フィルタ41よりも下流側に位置することになる。従って、給気フィルタ掃除モードでは給気フィルタ41の捕集した塵埃Dを屋外に排出することができる。 In the air supply filter cleaning mode, the dust D collected by the air supply filter 41 in the normal operation mode is located on the downstream side of the air supply filter 41 in the exhaust path 30. Accordingly, in the air supply filter cleaning mode, the dust D collected by the air supply filter 41 can be discharged outdoors.
 図9は、換気装置1の制御部301の動作を説明するためのフローチャートである。
 動作が開始すると、まず通常運転モードの運転時間(運転持続時間)に関するタイマの計時値Tが読込まれる(ステップS401)。次いで、タイマの計時値Tが、掃除モード運転を実行する時間間隔としての既定値Tsと比較される(ステップS402)。
 運転持続時間であるタイマの計時値Tが既定値Ts以上に至っていないときには(ステップS404:NO)、通常運転モードが持続される。一方、タイマの計時値Tが、掃除モード運転を実行する時間間隔としての既定値Tsを超えたと判断されたときには(ステップS404:YES)、掃除運転モード(排気フィルタ掃除モード及び/又は給気フィルタ掃除モード)での運転に入る(ステップS403)。
FIG. 9 is a flowchart for explaining the operation of the control unit 301 of the ventilation device 1.
When the operation starts, first, a timer time value T related to the operation time (operation duration) in the normal operation mode is read (step S401). Next, the time value T of the timer is compared with a predetermined value Ts as a time interval for executing the cleaning mode operation (step S402).
When the timer value T, which is the operation duration, does not reach the predetermined value Ts or more (step S404: NO), the normal operation mode is maintained. On the other hand, when it is determined that the time count T of the timer exceeds a predetermined value Ts as a time interval for executing the cleaning mode operation (step S404: YES), the cleaning operation mode (exhaust filter cleaning mode and / or air supply filter) is determined. Operation in the cleaning mode) is started (step S403).
 図10は、換気装置1の掃除モード(ステップS403)での制御手順の詳細を表すフローチャートである。
 掃除モードが起動すると、排気フィルタ掃除モード(図7)が実行される。具体的には、まず制御部301からの給気モータ制御出力によって、給気送風機2の動力源であるモータ2aが停止される(ステップS501)。続いて、排気フィルタ42下流の流路をバイパス経路9側に切換える(ステップS502)。この切換えは、制御部301が、排気流路切換制御出力を、流路を切換えるためのモータ62に出力することによって実行される。次いで、制御部301からの排気モータ制御出力によって、排気送風機3の動力源であるモータ3aが高出力運転に切換えられる(ステップS503)。これにより、流路の抵抗が低減され換気装置内の他部(例えば、排気と給気との熱交換を行う熱交換器5等)への塵埃被着のおそれが解除された状態で、高出力運転で流速が上がった排気で、排気フィルタ42に堆積した塵埃が効果的に除去される。
FIG. 10 is a flowchart showing details of a control procedure in the cleaning mode (step S403) of the ventilation device 1.
When the cleaning mode is activated, the exhaust filter cleaning mode (FIG. 7) is executed. Specifically, first, the motor 2a that is the power source of the supply air blower 2 is stopped by the supply motor control output from the control unit 301 (step S501). Subsequently, the flow path downstream of the exhaust filter 42 is switched to the bypass path 9 side (step S502). This switching is executed by the control unit 301 outputting an exhaust flow path switching control output to the motor 62 for switching the flow path. Next, the motor 3a that is the power source of the exhaust blower 3 is switched to the high output operation by the exhaust motor control output from the control unit 301 (step S503). As a result, the resistance of the flow path is reduced and the risk of dust deposition on other parts in the ventilator (for example, the heat exchanger 5 that performs heat exchange between exhaust air and air supply) is released. Dust accumulated on the exhaust filter 42 is effectively removed by the exhaust gas whose flow rate has been increased by the output operation.
 ステップS503においては、排気フィルタ42を回転させる。排気フィルタ42の回転は、制御部301が、排気フィルタ制御出力をモータ61に出力することによって実行される。排気フィルタ42が回転することで、フィン24aが排気フィルタ42に対して相対的に回転し、排気フィルタ42に堆積した塵埃と接触する。フィン24aが排気フィルタ42に堆積した塵埃と接触することによって塵埃がより効果的に除去される。 In step S503, the exhaust filter 42 is rotated. The rotation of the exhaust filter 42 is executed when the control unit 301 outputs an exhaust filter control output to the motor 61. By rotating the exhaust filter 42, the fin 24 a rotates relative to the exhaust filter 42 and comes into contact with dust accumulated on the exhaust filter 42. The dust is more effectively removed by the fin 24a coming into contact with the dust accumulated on the exhaust filter 42.
 モータ3aが高出力運転に移行すると、排気フィルタ42の掃除運転の持続時間TE1について計時動作が行われ(ステップS504)、運転時間TE1が排気フィルタ掃除の既定の継続時間Ts1に達したか否かが監視される(ステップS505)。排気フィルタ42の掃除に係るこの継続時間Ts1は、例えば、30秒内外の時間である。時間Ts1に達するまでの間、排気フィルタ42の掃除が続けられる(ステップS505:NO)。 When the motor 3a shifts to the high output operation, the timekeeping operation is performed for the duration TE1 of the cleaning operation of the exhaust filter 42 (step S504), and whether or not the operation time TE1 has reached the predetermined duration Ts1 of the exhaust filter cleaning. Is monitored (step S505). This continuation time Ts1 related to the cleaning of the exhaust filter 42 is, for example, a time within and outside 30 seconds. Until the time Ts1 is reached, the exhaust filter 42 continues to be cleaned (step S505: NO).
 運転時間TE1が既定の時間Ts1に達すると(ステップS505:YES)、ステップS501でバイパス経路9側に切換えられていた排気フィルタ42下流の流路が元の状態に復帰される(ステップS506)。ステップS506での流路復帰は、制御部301が、排気流路切換制御出力を、流路を切換えるためのモータ62に出力することによって実行される。この後、給気フィルタ掃除モード(図8)に移行する。
 ステップS506においては、制御部301が、排気フィルタ制御出力によりモータ61を停止して、排気フィルタ42の回転を停止する。
When the operation time TE1 reaches the predetermined time Ts1 (step S505: YES), the flow path downstream of the exhaust filter 42 that has been switched to the bypass path 9 side in step S501 is returned to the original state (step S506). The flow path return in step S506 is executed by the control unit 301 outputting the exhaust flow path switching control output to the motor 62 for switching the flow path. Thereafter, the operation proceeds to the air supply filter cleaning mode (FIG. 8).
In step S506, the control unit 301 stops the motor 61 by the exhaust filter control output, and stops the rotation of the exhaust filter 42.
 ステップS506に次いで、給気フィルタ41の位置を排気に晒す位置に転換させる(ステップS507)。ステップS507での給気フィルタ41の位置の転換は、制御部301が、給気フィルタアクチュエータ制御出力を給気フィルタアクチュエータ(即ち、給気フィルタ移動装置8)に与えることによって行われる。この制御によって、給気フィルタ41は給気の入口(屋外側給気口21)に位置していたものが排気の出口(屋外側排気口32)に位置するようにその配置が転換される。
 この転換後の位置では、給気フィルタ41は、ステップS502で高出力運転に切換えられて流速が上がっている排気に晒されて、表面に堆積した塵埃が効果的に除去される。
Subsequent to step S506, the position of the air supply filter 41 is changed to a position where it is exposed to exhaust (step S507). The change of the position of the air supply filter 41 in step S507 is performed by the control unit 301 giving an air supply filter actuator control output to the air supply filter actuator (that is, the air supply filter moving device 8). With this control, the arrangement of the air supply filter 41 is changed so that the air supply filter 41 located at the air supply inlet (outdoor side air supply port 21) is positioned at the exhaust outlet (outdoor side exhaust port 32).
At the position after the change, the air supply filter 41 is exposed to the exhaust gas that has been switched to the high-power operation in step S502 to increase the flow velocity, and dust accumulated on the surface is effectively removed.
 ステップS507で給気フィルタ41の位置が転換されて、給気フィルタ掃除モード(図8)が開始すると、次いで、給気フィルタ41の掃除運転の持続時間TE2について計時動作が行われ(ステップS508)、運転時間TE2が給気フィルタ掃除の既定の継続時間Ts2に達したか否かが監視される(ステップS509)。
 給気フィルタ41の掃除に係る既定の継続時間Ts2は、例えば、30秒内外の時間である。時間Ts2に達するまでの間、給気フィルタ掃除モード(図8)が継続される(ステップS509:NO)。
When the position of the air supply filter 41 is changed in step S507 and the air supply filter cleaning mode (FIG. 8) starts, the timekeeping operation is then performed for the duration TE2 of the cleaning operation of the air supply filter 41 (step S508). It is monitored whether or not the operation time TE2 has reached a predetermined duration Ts2 of the air supply filter cleaning (step S509).
The predetermined duration Ts2 related to the cleaning of the air supply filter 41 is, for example, a time within and outside 30 seconds. Until the time Ts2 is reached, the air supply filter cleaning mode (FIG. 8) is continued (step S509: NO).
 運転時間TE2が既定の時間Ts2に達すると(ステップS509:YES)、ステップS507で排気の出口(屋外側排気口32)に位置するようにその配置が転換されていた給気フィルタ41が元の位置(屋外側給気口21)に復帰される(ステップS510)。ステップS510での給気フィルタ位置の復帰は、制御部301が、給気フィルタアクチュエータ制御出力を、給気フィルタ位置を転換するためのアクチュエータである給気フィルタ移動装置8に出力することによって実行される。 When the operation time TE2 reaches the predetermined time Ts2 (step S509: YES), the air supply filter 41 whose arrangement has been changed so as to be positioned at the exhaust outlet (outdoor exhaust port 32) in step S507 is the original. Returning to the position (outdoor air supply port 21) (step S510). The return of the air supply filter position in step S510 is executed by the control unit 301 outputting the air supply filter actuator control output to the air supply filter moving device 8 which is an actuator for changing the air supply filter position. The
 ステップS510に次いで、制御部301からの給気モータ制御出力によって、給気送風機2の動力源であるモータ2aの運転が再開される(ステップS511)。ステップS511においては、制御部301からの排気モータ制御出力によって、排気送風機3の動力源であるモータ3aが、高出力運転から通常の出力の運転に切換えられる。
 以上で、掃除モード(図9:ステップS403)での運転が終了し、制御部301による制御手順は、図9のステップS403に移行する。
Following step S510, the operation of the motor 2a that is the power source of the air supply blower 2 is restarted by the supply motor control output from the control unit 301 (step S511). In step S511, the motor 3a that is the power source of the exhaust blower 3 is switched from the high output operation to the normal output operation by the exhaust motor control output from the control unit 301.
Thus, the operation in the cleaning mode (FIG. 9: Step S403) is completed, and the control procedure by the control unit 301 proceeds to Step S403 in FIG.
 以上説明した本実施形態に係る換気装置1によれば、以下の効果が奏される。
 上記実施形態では、給気経路20を流通する給気と排気経路30を流通する排気との間で熱交換を行う熱交換器5と、排気経路30の熱交換器5よりも上流側に配置され且つ排気に含まれる塵埃を捕集する排気フィルタ42と、を備える換気装置1が、排気経路30の排気フィルタ42よりも上流側と排気経路30の熱交換器5よりも下流側とを結ぶバイパス経路9をさらに備えるものとした。
 これにより、排気経路30の屋内側排気口31側で捕集した塵埃を、熱交換器5を通すことなく、バイパス経路9を通じて円滑に屋外側に排出することができる。従って、熱交換器5を備えた換気装置1において、熱交換性能が低下してしまうのを抑えることができる。
According to the ventilation apparatus 1 which concerns on this embodiment demonstrated above, the following effects are show | played.
In the above embodiment, the heat exchanger 5 that performs heat exchange between the supply air that flows through the supply air path 20 and the exhaust gas that flows through the exhaust path 30, and the upstream side of the heat exchanger 5 in the exhaust path 30 are arranged. And the exhaust filter 42 that collects dust contained in the exhaust gas, the ventilator 1 connects the upstream side of the exhaust path 30 with respect to the exhaust filter 42 and the downstream side of the heat exchanger 5 of the exhaust path 30. The bypass path 9 is further provided.
Thereby, the dust collected on the indoor exhaust port 31 side of the exhaust path 30 can be smoothly discharged to the outdoor side through the bypass path 9 without passing through the heat exchanger 5. Therefore, in the ventilation apparatus 1 provided with the heat exchanger 5, it can suppress that heat exchange performance falls.
 上記実施形態では、換気装置1が、排気フィルタ42の屋内側排気口31側の面に配置されるフィン24aをさらに有するものとした。
 これにより、排気フィルタ42で捕集された塵埃の除去効果をより高めることができる。
In the said embodiment, the ventilation apparatus 1 shall further have the fin 24a arrange | positioned on the surface by the side of the indoor side exhaust port 31 of the exhaust filter 42. FIG.
Thereby, the removal effect of the dust collected with the exhaust filter 42 can be improved more.
 上記実施形態では、バイパス入口91が、排気フィルタ42の面方向に向かって開口するものとした。
 これにより、バイパス入口91が、排気フィルタ42の面方向に向かって開口することで、バイパス経路9を介した排気により塵埃を屋外に排出する際、排気フィルタ42の表面に横方向から排気が吹き付けることになる。この横から吹き付ける排気により、排気フィルタ42で捕集された塵埃の除去効果をより高めることができる。
In the above embodiment, the bypass inlet 91 opens toward the surface direction of the exhaust filter 42.
Thereby, when the bypass inlet 91 opens toward the surface direction of the exhaust filter 42, when the dust is discharged outdoors by the exhaust via the bypass path 9, the exhaust blows from the lateral direction to the surface of the exhaust filter 42. It will be. By the exhaust gas blown from the side, the effect of removing dust collected by the exhaust filter 42 can be further enhanced.
 上記実施形態では、換気装置1が、熱交換器5を介した排気と、バイパス経路9を介した排気と、を切り替えるダンパ100をさらに備えるものとした。さらに、ダンパ100が、熱交換器5を介した排気を所定時間実行した後に、バイパス経路9を介した排気に切り替えるものとした。
 これにより、所定時間ごとに排気フィルタ42で捕集された塵埃を除去することで、安定して換気装置1を運転することができる。
In the said embodiment, the ventilation apparatus 1 shall further be provided with the damper 100 which switches the exhaust_gas | exhaustion via the heat exchanger 5, and the exhaust_gas | exhaustion via the bypass route 9. FIG. Furthermore, the damper 100 is assumed to switch to the exhaust via the bypass path 9 after executing the exhaust via the heat exchanger 5 for a predetermined time.
Thereby, the ventilation apparatus 1 can be operated stably by removing the dust collected by the exhaust filter 42 every predetermined time.
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 例えば、排気フィルタ42の屋内側排気口31側の面に配置される塵埃除去手段は無くてもよいし、配置する場合にも、その形状や素材は限定されない。排気フィルタ42の屋内側排気口31側の面に配置される塵埃除去手段は、例えば排気フィルタ42に当接するブラシであってもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
For example, there may be no dust removing means arranged on the surface of the exhaust filter 42 on the indoor exhaust port 31 side, and the shape and material of the exhaust filter 42 are not limited even when arranged. The dust removing means disposed on the surface of the exhaust filter 42 on the indoor exhaust port 31 side may be, for example, a brush that contacts the exhaust filter 42.
<第二実施形態>
 次に、本発明の第二実施形態について、図面を参照しながら詳しく説明する。第二実施形態以降の説明において、特に説明しない部分については、第一実施形態と同様の構成を有する。
 第二実施形態の換気装置は、静電圧印加装置7(図示せず)を備える。
<Second embodiment>
Next, a second embodiment of the present invention will be described in detail with reference to the drawings. In the description after the second embodiment, parts that are not particularly described have the same configuration as that of the first embodiment.
The ventilation device of the second embodiment includes a static voltage application device 7 (not shown).
 図11は、給気フィルタ41の斜視図である。給気フィルタ41は、略円形の枠部410と、網部412とを有し、半径方向に延びる軸部411により半分に分割されている。網部412は、軸部411により分割された一方の半円側に配置され、半円形である。網部412は、目の粗い金網により構成される。給気フィルタ41は、網部412により塵埃の通過を防止する。 FIG. 11 is a perspective view of the air supply filter 41. The air supply filter 41 has a substantially circular frame portion 410 and a net portion 412 and is divided in half by a shaft portion 411 extending in the radial direction. The net part 412 is arranged on one semicircular side divided by the shaft part 411 and has a semicircular shape. The mesh unit 412 is formed of a coarse mesh. The air supply filter 41 prevents the passage of dust by the mesh part 412.
 給気フィルタ41では、枠部410が屋外側給気口21及び屋外側排気口32に跨って配置される。給気フィルタ41は、枠部410の外周に沿って被動ギア43が形成されている。給気フィルタ41は、以下に述べる給気フィルタ移動装置8により回転する。また、給気フィルタ41は、給気フィルタ移動装置8を振動させることで、連動して振動する。 In the air supply filter 41, the frame portion 410 is disposed across the outdoor side air supply port 21 and the outdoor side exhaust port 32. The air supply filter 41 has a driven gear 43 formed along the outer periphery of the frame portion 410. The air supply filter 41 is rotated by an air supply filter moving device 8 described below. The air supply filter 41 vibrates in conjunction with the air supply filter moving device 8 by vibrating it.
 給気フィルタ移動装置8は、駆動ギア82が給気フィルタ41の枠部410に形成される被動ギア43に噛みあうことで、給気フィルタ41を給気経路20の屋外側給気口21から排気経路30の屋外側排気口32側に移動させる。また、駆動ギア82は、回転方向の前後に短い時間で小刻みに移動することにより、給気フィルタ41を振動させる。 In the air supply filter moving device 8, the drive gear 82 meshes with the driven gear 43 formed in the frame portion 410 of the air supply filter 41, so that the air supply filter 41 is removed from the outdoor air supply port 21 of the air supply path 20. The exhaust path 30 is moved to the outdoor side exhaust port 32 side. The drive gear 82 vibrates the air supply filter 41 by moving in small increments in a short time before and after the rotation direction.
 静電圧印加装置7は、電源(図示せず)と、複数の電線71(図1参照)と、により構成される。電線71は、屋外側給気口21に配置される給気フィルタ41の網部412に対向する位置に配置される。電線71は、網部412の手前に配置される長方形の枠内に、熱交換器5の長手方向に沿い、網部412の幅方向における一方から他方に延びるように複数配置される。静電圧印加装置7は、電源から電気を供給され、電線71に静電圧を印加することにより、電線71に対向している給気フィルタ41の網部412を帯電させる。 The static voltage applying device 7 includes a power source (not shown) and a plurality of electric wires 71 (see FIG. 1). The electric wire 71 is disposed at a position facing the mesh portion 412 of the air supply filter 41 disposed in the outdoor air supply port 21. A plurality of electric wires 71 are arranged in a rectangular frame arranged in front of the net portion 412 so as to extend from one side to the other in the width direction of the net portion 412 along the longitudinal direction of the heat exchanger 5. The static voltage applying device 7 is supplied with electricity from a power source and applies a static voltage to the electric wire 71 to charge the mesh portion 412 of the air supply filter 41 facing the electric wire 71.
 図12は、第二実施形態の換気装置1における制御部301を示すブロック図である。
 図12に示すように、制御部301は、運転モード部306と、掃除モード部307と
、を有し、換気装置1を運転モードと掃除モードとに切り替える。また、制御部301は、運転モード部306及び掃除モード部307に応じて、給気送風機2及び排気送風機3、静電圧印加装置7、モータ81及び駆動ギア82を制御する。
FIG. 12 is a block diagram showing the control unit 301 in the ventilation device 1 of the second embodiment.
As illustrated in FIG. 12, the control unit 301 includes an operation mode unit 306 and a cleaning mode unit 307, and switches the ventilation device 1 between an operation mode and a cleaning mode. Further, the control unit 301 controls the air supply blower 2 and the exhaust blower 3, the static voltage application device 7, the motor 81, and the drive gear 82 according to the operation mode unit 306 and the cleaning mode unit 307.
 具体的には、制御部301は、静電圧印加装置7に接続されており、運転モードでは、静電圧印加装置7を制御して電線71に静電圧を印加し、給気フィルタ41に帯電させるように指令する。
 制御部301は、運転モードの積算時間を監視する。そして、制御部301は、換気装置1の運転モードを、運転モードの積算時間に応じて所定時間ごとに掃除モードに切り替え、給気フィルタ41の掃除制御を実行する。
 制御部301は、掃除モードでは、給気送風機2を停止し、排気送風機3を駆動した状態で、給気フィルタ41を屋外側給気口21から屋外側排気口32へ移動させる。
 制御部301は、掃除モードでは、静電圧印加装置7による静電圧の印加を停止し、給気フィルタ41の帯電を解除する。
 制御部301は、掃除モードでは、給気フィルタ移動装置8の駆動ギア82を短い期間で前後に小刻みに移動させ、駆動ギア82の振動により給気フィルタ41を振動させる。
Specifically, the control unit 301 is connected to the static voltage application device 7. In the operation mode, the control unit 301 controls the static voltage application device 7 to apply a static voltage to the electric wire 71 and charge the air supply filter 41. To command.
The control unit 301 monitors the accumulated time in the operation mode. And the control part 301 switches the operation mode of the ventilation apparatus 1 to cleaning mode for every predetermined time according to the integration time of an operation mode, and performs the cleaning control of the air supply filter 41. FIG.
In the cleaning mode, the control unit 301 stops the air supply blower 2 and moves the air supply filter 41 from the outdoor side air supply port 21 to the outdoor side exhaust port 32 while the exhaust air blower 3 is driven.
In the cleaning mode, the control unit 301 stops the application of the static voltage by the static voltage application device 7 and releases the charge of the air supply filter 41.
In the cleaning mode, the control unit 301 moves the driving gear 82 of the air supply filter moving device 8 in small increments in a short period and vibrates the air supply filter 41 by the vibration of the driving gear 82.
 図13は、第二実施形態の換気装置1における運転モードの模式図である。
 図14は、第二実施形態の換気装置1における掃除モードの模式図である。図15は、本実施形態の換気装置の使用手順を説明するフローチャートである。
 図13~15を参照して、第二実施形態の換気装置1の使用の状態について説明する。
 図13に示すように、運転モードでは、外気OAは、給気SAとなって屋外側給気口21からハウジング10の内部に流入する。給気フィルタ41は、屋外側給気口21及び屋外側排気口32に跨って配置されている。この給気フィルタ41には、静電圧印加装置7により静電気が帯電されている。給気フィルタ41の半円の網部412は、屋外側給気口21側に配置されている。このため。外気OAに含まれる塵埃は、網部412で捕集され、給気経路20へは通過しない。
FIG. 13 is a schematic diagram of operation modes in the ventilation device 1 of the second embodiment.
FIG. 14 is a schematic diagram of a cleaning mode in the ventilation device 1 of the second embodiment. FIG. 15 is a flowchart for explaining the procedure for using the ventilation device of the present embodiment.
A state of use of the ventilation device 1 of the second embodiment will be described with reference to FIGS.
As shown in FIG. 13, in the operation mode, the outside air OA flows into the housing 10 from the outdoor side air inlet 21 as the air supply SA. The air supply filter 41 is disposed across the outdoor side air supply port 21 and the outdoor side exhaust port 32. The air supply filter 41 is charged with static electricity by the electrostatic voltage application device 7. The semicircular net 412 of the air supply filter 41 is disposed on the outdoor air supply port 21 side. For this reason. Dust contained in the outside air OA is collected by the net 412 and does not pass through the air supply path 20.
 ハウジング10に流入した外気OAは、給気送風機2により吸引されて、熱交換器5内の給気経路20を通過する。熱交換器5の内部では、排気EAとなる室内側からの還気RAが、外気OAから流入する給気SAとは混じり合わない状態で流通し、給気SAと排気EAで熱と湿度のみを交換している。このため、屋外から流入する給気SAの温度が、室内の空気の温度に近くなる。
 外気OAは、給気経路20を通過し、屋内側給気口22から給気される給気SAとなって、室内へ流入する。
The outside air OA flowing into the housing 10 is sucked by the air supply blower 2 and passes through the air supply path 20 in the heat exchanger 5. Inside the heat exchanger 5, the return air RA from the indoor side, which becomes the exhaust EA, circulates without being mixed with the supply air SA flowing from the outside air OA, and only the heat and humidity are supplied by the supply air SA and the exhaust EA. Have been replaced. For this reason, the temperature of supply air SA which flows in from the outdoors becomes close to the temperature of indoor air.
The outside air OA passes through the air supply path 20, becomes air supply SA supplied from the indoor air supply port 22, and flows into the room.
 一方、室内側の還気RAは、屋内側排気口31からハウジング10の内部に流入する。屋内側排気口31には、排気フィルタ42が配置されており、室内に浮遊する塵は、排気フィルタ42で捕集され、排気経路30へは通過しない。 On the other hand, the indoor return air RA flows into the housing 10 from the indoor exhaust port 31. An exhaust filter 42 is disposed at the indoor exhaust port 31, and dust floating in the room is collected by the exhaust filter 42 and does not pass through the exhaust path 30.
 ハウジング10に流入した還気RAは、排気EAとなって排気送風機3により吸引されて、熱交換器5内の排気経路30を通過する。
 還気RAは、排気経路30を通過し、屋外側排気口32から屋外へ排出される。
The return air RA that has flowed into the housing 10 becomes the exhaust EA, is sucked by the exhaust blower 3, and passes through the exhaust path 30 in the heat exchanger 5.
The return air RA passes through the exhaust passage 30 and is discharged from the outdoor side exhaust port 32 to the outdoors.
 運転モードで運転を続けていると、給気フィルタ41の網部412に付着する塵埃が増加する。塵埃が増加すると、空気が屋外側給気口21を通過しにくくなり、給気経路20を通過する際の圧力損失も増加する。 If the operation is continued in the operation mode, dust adhering to the mesh portion 412 of the air supply filter 41 increases. When dust increases, it becomes difficult for air to pass through the outdoor air supply port 21, and pressure loss when passing through the air supply path 20 also increases.
 制御部301は、運転モードによる運転の積算時間を監視する(ステップS1)。制御部301は、前回掃除モードから運転モードに切り替えた時点から積算して、予め設定されている積算時間を経過すると、運転モードを掃除モードに切り替える。例えば、運転モードで運転する積算時間が5時間又は6時間を経過すると、1分間運転モードを掃除モードに切り替える。予め設定されている積算時間を経過していない場合は、運転モードを継続する(ステップS2)。 The control unit 301 monitors the accumulated operation time in the operation mode (step S1). The control unit 301 performs integration from the time when the previous cleaning mode is switched to the operation mode, and switches the operation mode to the cleaning mode when a preset integration time has elapsed. For example, when 5 hours or 6 hours have elapsed in the operation mode, the 1-minute operation mode is switched to the cleaning mode. If the preset integration time has not elapsed, the operation mode is continued (step S2).
 図15に示すように、掃除モードでは、排気送風機3を駆動させた状態で、給気送風機2の運転を停止する(ステップS3)。また、制御部301は、モータ81及び駆動ギア82を制御し、給気フィルタ41を180度回転させる。この回転により、網部412は排気経路30の屋外側排気口32に移動する(ステップS4)。排気経路30には、排気送風機3の回転により、室内側から屋外側へ向かって空気が流れている。このため、塵埃の付着した網部412が排気経路30に位置するのみで、塵埃は屋外へ排出される。 As shown in FIG. 15, in the cleaning mode, the operation of the air supply blower 2 is stopped while the exhaust blower 3 is driven (step S3). Further, the control unit 301 controls the motor 81 and the drive gear 82 to rotate the air supply filter 41 by 180 degrees. By this rotation, the mesh part 412 moves to the outdoor side exhaust port 32 of the exhaust path 30 (step S4). In the exhaust path 30, air flows from the indoor side toward the outdoor side due to the rotation of the exhaust blower 3. For this reason, only the net | network part 412 to which dust adhered is located in the exhaust path 30, and dust is discharged | emitted outdoors.
 さらに、制御部301は、静電圧印加装置7を制御して、給気フィルタ41への静電圧の印加を停止する(ステップS5)。このため、塵埃は網部412からより剥離しやすくなる。 Furthermore, the control unit 301 controls the static voltage application device 7 to stop the application of the static voltage to the air supply filter 41 (step S5). For this reason, the dust is more easily separated from the net portion 412.
 さらに、制御部301は、モータ81を駆動して駆動ギア82を振動させる(ステップS6)。給気フィルタ41は、駆動ギア82の振動により振動する。給気フィルタ41の振動により、塵埃は網部412からより剥離しやすくなる。 Further, the control unit 301 drives the motor 81 to vibrate the drive gear 82 (step S6). The air supply filter 41 vibrates due to the vibration of the drive gear 82. Due to the vibration of the air supply filter 41, the dust is more easily separated from the net portion 412.
 掃除モードで給気フィルタ41に付着した塵埃を除去した後、制御部301は、駆動ギア82を制御して、給気フィルタ41の振動を止める(ステップS7)。また、制御部301は、給気フィルタ41をさらに180度回転させて、網部412を屋外側給気口21へ戻す(ステップ8)。また、制御部301は、静電圧印加装置7を起動して、給気フィルタ41に静電圧を印加し、給気フィルタ41を帯電させる(ステップS9)。そして、給気送風機2の運転を開始する(ステップS10) After removing dust adhering to the air supply filter 41 in the cleaning mode, the control unit 301 controls the drive gear 82 to stop the vibration of the air supply filter 41 (step S7). Further, the control unit 301 further rotates the air supply filter 41 by 180 degrees to return the mesh unit 412 to the outdoor side air supply port 21 (step 8). Moreover, the control part 301 starts the static voltage application apparatus 7, applies a static voltage to the air supply filter 41, and charges the air supply filter 41 (step S9). Then, the operation of the air supply blower 2 is started (step S10).
 以上の構成を備える換気装置1は、以下のような効果を奏する。
 本実施形態では、換気装置1を、屋外側に配置される屋外側給気口21と、屋内側に配置される屋内側給気口22と、を結ぶ給気経路20と、給気経路20に配置され、外気を屋内側に送る給気送風機2と、を含んで構成した。また、換気装置1を、屋内側に配置される屋内側排気口31と、屋外側に配置される屋外側排気口32と、を結ぶ排気経路30と、排気経路30に配置され、屋内側の空気を屋外側に送る排気送風機3と、を含んで構成した。また、換気装置1を、給気経路20の屋外側給気口21側に配置され、給気経路20に流入する外気に含まれる塵埃を捕集する給気フィルタ41と、給気フィルタ41を排気経路30の屋外側排気口32側に移動させる給気フィルタ移動装置8と、給気フィルタ41に静電圧を付加する静電圧印加装置7と、給気送風機2、排気送風機3、給気フィルタ移動装置8及び静電圧印加装置7を制御する制御部301と、を含んで構成した。そして、制御部301に、給気フィルタ移動装置8により給気フィルタ41を排気経路30の屋外側排気口32側に移動させ、静電圧印加装置7による給気フィルタ41への静電圧の印加を停止し、少なくとも排気送風機3を駆動させることで、給気フィルタ41に捕集された塵埃を除去するフィルタ掃除制御を実行させた。
The ventilation device 1 having the above configuration has the following effects.
In the present embodiment, the ventilation device 1 is connected to an outdoor air supply port 21 arranged on the outdoor side and an indoor air supply port 22 arranged on the indoor side, and an air supply route 20. And an air supply blower 2 that sends outside air to the indoor side. Further, the ventilation device 1 is disposed in the exhaust path 30, which connects the indoor side exhaust port 31 disposed on the indoor side and the outdoor side exhaust port 32 disposed on the outdoor side, and is disposed on the indoor side. And an exhaust blower 3 for sending air to the outdoor side. In addition, the ventilation device 1 is disposed on the outdoor air supply port 21 side of the air supply path 20, and an air supply filter 41 that collects dust contained in outside air flowing into the air supply path 20, and an air supply filter 41 are provided. An air supply filter moving device 8 for moving to the outdoor exhaust port 32 side of the exhaust path 30, a static voltage applying device 7 for applying a static voltage to the air supply filter 41, an air supply blower 2, an exhaust blower 3, and an air supply filter And a control unit 301 that controls the moving device 8 and the static voltage applying device 7. Then, the air supply filter moving device 8 moves the air supply filter 41 to the outdoor side exhaust port 32 side of the exhaust passage 30, and the static voltage applying device 7 applies the static voltage to the air supply filter 41. By stopping and driving at least the exhaust blower 3, the filter cleaning control for removing dust collected by the air supply filter 41 was executed.
 本実施形態によれば、換気装置1の給気フィルタ41に静電圧を付加するため、細かい塵埃であってもより確実に捕集することができる。また、掃除モードで、排気送風機3を駆動させた状態で、塵埃の付着した給気フィルタ41を、排気経路30に移動させ、静電圧の印加を停止する。このため、静電圧の印加が停止された状態で、排気EAにより塵埃が屋外へ排出される。よって塵埃が給気フィルタ41から離れやすくなり、給気フィルタ41から塵埃を、確実に除去することができる。以上より、本実施形態の換気装置1によれば、より細かい塵埃の捕集及び除去が可能となる。 According to the present embodiment, since a static voltage is applied to the air supply filter 41 of the ventilation device 1, even fine dust can be collected more reliably. Further, in the cleaning mode, with the exhaust blower 3 being driven, the air supply filter 41 to which dust is attached is moved to the exhaust path 30 and the application of the static voltage is stopped. For this reason, in the state where the application of the static voltage is stopped, the dust is discharged outdoors by the exhaust EA. Therefore, the dust is easily separated from the air supply filter 41, and the dust can be reliably removed from the air supply filter 41. As described above, according to the ventilation device 1 of the present embodiment, finer dust can be collected and removed.
 従来、屋外から外気を室内へ取り込むとともに、室内の空気を屋外へ排気する換気装置が知られている。また、この換気装置にフィルタを配置して、屋外から取り込まれる空気に含まれる塵埃を除去することが知られている。 Conventionally, ventilators that take outside air from the outside into the room and exhaust indoor air to the outside are known. In addition, it is known that a filter is disposed in the ventilation device to remove dust contained in air taken from the outdoors.
 フィルタに塵埃が付着すると、換気風量が低下するため、フィルタの塵埃を除去する必要が生じる。そこで、フィルタに塵埃を除去する可動式のブラシを設ける等、様々な手段により塵埃を除去する技術が提案されている。特許文献2の技術は、ブラシに摺接する突起を排気経路に設け、ブラシが突起に当たって反発し、振動する力により、塵埃をブラシから除去している。
 しかしながら、従来の技術では、塵埃がより細かくなった場合、ブラシに摺接する突起に当たってもブラシから細かい塵埃が離れず、塵埃の除去が十分に行われにくいという問題があった。また、ブラシから除去されきれない細かな塵埃が、吸気ダクトを通過する際に室内に取り込まれてしまい、細かい塵埃が室内に入りやすいという問題があった。
If dust adheres to the filter, the ventilation air volume decreases, so it is necessary to remove the dust from the filter. Therefore, techniques for removing dust by various means such as providing a movable brush for removing dust on the filter have been proposed. In the technique of Patent Document 2, a protrusion that slides on the brush is provided in the exhaust path, and the brush strikes the protrusion and repels and removes dust from the brush by a vibrating force.
However, in the conventional technology, when the dust becomes finer, there is a problem that fine dust is not separated from the brush even if it hits the protrusion slidingly contacting the brush, and it is difficult to remove the dust sufficiently. In addition, there is a problem that fine dust that cannot be removed from the brush is taken into the room when passing through the intake duct, and fine dust tends to enter the room.
 これに対し、第二実施形態に係る換気装置1は、塵埃をフィルタから確実に除去することのできる換気装置を提供することを目的とし、以上のとおり塵埃をフィルタから確実に除去することが可能になる。 On the other hand, the ventilator 1 according to the second embodiment aims to provide a ventilator that can reliably remove dust from the filter, and can reliably remove dust from the filter as described above. become.
 また、本実施形態によれば、給気フィルタ移動装置8を、駆動源としてモータ81を含んで構成した。また制御部301に、給気フィルタ掃除制御実行中において、モータ81を制御して給気フィルタ41を振動させることで、給気フィルタ41に捕集された塵埃を除去させた。これにより、給気フィルタ41に付着した塵埃の除去をより確実に行うことができる。 Further, according to the present embodiment, the air supply filter moving device 8 is configured to include the motor 81 as a drive source. Further, the control unit 301 controls the motor 81 to vibrate the air supply filter 41 during execution of the air supply filter cleaning control, thereby removing dust collected by the air supply filter 41. Thereby, the dust adhering to the air supply filter 41 can be more reliably removed.
 また、本実施形態によれば、制御部301に、フィルタ掃除制御を所定時間ごとに実行させた。これにより、自動で給気フィルタ41に付着した塵埃を取り除くことができ、使用者が忘れても、給気フィルタ41の掃除を継続的に行うことできる。 Moreover, according to this embodiment, the control part 301 was made to perform filter cleaning control for every predetermined time. Thereby, the dust adhering to the air supply filter 41 can be removed automatically, and even if the user forgets, the air supply filter 41 can be continuously cleaned.
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 例えば、上記実施形態では、給気フィルタ41は、給気フィルタ移動装置8のモータ81によって振動することで塵埃を除去しやすくしているが、これに限られない。例えば、給気フィルタにフィン等の物理的な塵埃除去部材を取り付けて、この部材により塵埃を除去するように構成してもよい。
It should be noted that the present invention is not limited to the above-described embodiment, and modifications, improvements, etc. within a scope that can achieve the object of the present invention are included in the present invention.
For example, in the above-described embodiment, the air supply filter 41 easily removes dust by vibrating by the motor 81 of the air supply filter moving device 8, but is not limited thereto. For example, a physical dust removing member such as a fin may be attached to the air supply filter, and dust may be removed by this member.
 また、上記実施形態では、給気フィルタ41は、目の粗い金網により構成される網部412を有するが、これに限られない。給気フィルタ41は、塵埃の通過を防止することができれば、構成は限定されず、また、給気フィルタ41の円形の枠に対して着脱可能に構成されてもよい。 In the above-described embodiment, the air supply filter 41 includes the mesh portion 412 configured by a coarse mesh, but is not limited thereto. The configuration of the air supply filter 41 is not limited as long as dust can be prevented from passing therethrough, and may be configured to be detachable from the circular frame of the air supply filter 41.
 また、上記実施形態では、掃除モードでは、排気送風機3を駆動させた状態で、給気送風機2の運転を停止しているが、これに限られない。一度排気送風機3を停止してから給気フィルタ41を移動させ、再び排気送風機3を動かしてもよい。 In the above embodiment, in the cleaning mode, the operation of the air supply blower 2 is stopped while the exhaust blower 3 is driven. However, the present invention is not limited to this. Once the exhaust blower 3 is stopped, the air supply filter 41 may be moved, and the exhaust blower 3 may be moved again.
<第三実施形態>
 第三実施形態の換気装置1は、照度センサ302及び塵埃センサ303を有する。
 図16は、図2の換気装置1の制御部301の構成を表す機能ブロック図である。
 図16の制御部301には照度センサ302及び塵埃センサ303の出力が供給される。制御部301はCPU304を主体とする回路で構成され、各種の制御のタイミングをはかるためのタイマ305の出力がCPU304に入力される。
 この制御部301からは、次のような各制御出力信号が発せられる:
(a)給気モータ制御出力:給気送風機2の動力源であるモータ2aを制御する信号
(b)排気モータ制御出力:排気送風機3の動力源であるモータ3aを制御する信号
(c)給気フィルタアクチュエータ制御出力:掃除モード時に、通常は給気入口の位置にある給気フィルタ41を排気に晒す位置に転換させる給気フィルタクチュエータ(給気フィルタ移動装置8)を制御する信号
(d)排気流路切換制御出力:掃除モード時に排気フィルタ42下流の流路をバイパス側に切換えるためにモータ62の駆動を制御する信号
<Third embodiment>
The ventilation device 1 according to the third embodiment includes an illuminance sensor 302 and a dust sensor 303.
FIG. 16 is a functional block diagram illustrating the configuration of the control unit 301 of the ventilation device 1 of FIG.
The outputs of the illuminance sensor 302 and the dust sensor 303 are supplied to the control unit 301 in FIG. The control unit 301 is composed of a circuit mainly including a CPU 304, and an output of a timer 305 for measuring various control timings is input to the CPU 304.
The control unit 301 issues the following control output signals:
(A) Air supply motor control output: signal for controlling the motor 2a that is the power source of the air supply blower 2 (b) Exhaust motor control output: signal that controls the motor 3a that is the power source of the exhaust air blower 3 (c) Supply Air filter actuator control output: Signal (d) for controlling an air supply filter actuator (supply air filter moving device 8) that switches the air supply filter 41, which is normally at the position of the air supply inlet, to a position where it is exposed to exhaust gas in the cleaning mode. Exhaust flow path switching control output: A signal for controlling the driving of the motor 62 to switch the flow path downstream of the exhaust filter 42 to the bypass side in the cleaning mode.
 図17は、図16の換気装置1の制御部301の動作を説明するためのフローチャートである。
 動作が開始すると、まず照度センサ302の出力Lが読込まれる(ステップS401)。次いで、出力Lが、検出照度に関する所定の水準値であるLsと比較される(ステップS402)。このLsは、例えば、照度センサ302が室内照度を検出するように配置されている場合には、室内全消灯状態や常夜灯のみが点灯状態にある場合に対応する値として設定される。
 ステップS402で、出力Lが、所定の水準値であるLs以下になっているときには(ステップS402:YES)、制御部301は、排気送風機3及び給気送風機2を低出力で運転する静音モードとなるように、既述の排気モータ制御出力及び給気モータ制御出力を発する(ステップS410)。
 この静音モードでは、排気送風機3及び給気送風機2が低出力で運転され、騒音レベルが低くなるため、夜間の環境騒音の問題が生じるおそれが有効に回避され、さらに、就寝時に換気装置の運転音によって安眠が妨げられるようなことが生じるおそれもない。
FIG. 17 is a flowchart for explaining the operation of the control unit 301 of the ventilation device 1 of FIG.
When the operation starts, the output L of the illuminance sensor 302 is first read (step S401). Next, the output L is compared with Ls, which is a predetermined level value regarding the detected illuminance (step S402). For example, when the illuminance sensor 302 is arranged so as to detect room illuminance, Ls is set as a value corresponding to a case where the room is completely turned off or only the nightlight is lit.
When the output L is equal to or lower than the predetermined level Ls in step S402 (step S402: YES), the control unit 301 is in a silent mode in which the exhaust blower 3 and the supply blower 2 are operated at a low output. As described above, the exhaust motor control output and the air supply motor control output described above are issued (step S410).
In this silent mode, the exhaust blower 3 and the supply blower 2 are operated at a low output and the noise level is lowered, so that the possibility of causing environmental noise problems at night is effectively avoided, and further, the ventilation device is operated at bedtime. There is no risk that sleep may be disturbed by sound.
 ステップS402で、出力Lが、所定の水準値であるLs以下になっていないときには(ステップS402:NO)、次いで、運転時間(運転持続時間)に関するタイマの計時値Tが読込まれる(ステップS403)。次いで、タイマの計時値Tが、掃除モード運転を実行する時間間隔としての既定値Tsと比較される(ステップS404)。
 運転持続時間であるタイマの計時値Tが既定値Ts以上に至っていないときには(ステップS404:NO)、塵埃センサ303の出力Dが読込まれる(ステップS405)。
If the output L is not less than or equal to the predetermined level Ls in step S402 (step S402: NO), then the timer time value T relating to the operation time (operation duration) is read (step S403). ). Next, the timer value T is compared with a predetermined value Ts as a time interval for executing the cleaning mode operation (step S404).
When the measured value T of the timer, which is the operation duration, does not reach the predetermined value Ts (step S404: NO), the output D of the dust sensor 303 is read (step S405).
 次いで、出力Dが、塵埃センサ303の出力に関する所定値Dsと比較される(ステップS406)。この所定値Dsは、例えば、室内の塵埃が強制換気を行うことが望ましい水準として設定された既定値である。
 出力Dが所定値Ds以上に至っていないときには(ステップS406:NO)、制御部301は、排気送風機3及び給気送風機2を通常出力で運転する通常運転モードとなるように、既述の排気モータ制御出力及び給気モータ制御出力を発する(ステップS407)。
 この通常運転モードでは、排気送風機3及び給気送風機2が通常出力で運転され、適度な換気が持続される。
Next, the output D is compared with a predetermined value Ds related to the output of the dust sensor 303 (step S406). This predetermined value Ds is, for example, a predetermined value set as a level at which it is desirable for indoor dust to be subjected to forced ventilation.
When the output D does not reach the predetermined value Ds or more (step S406: NO), the control unit 301 sets the exhaust motor described above so as to be in the normal operation mode in which the exhaust blower 3 and the supply blower 2 are operated with normal output. A control output and an air supply motor control output are issued (step S407).
In this normal operation mode, the exhaust blower 3 and the supply air blower 2 are operated with normal output, and proper ventilation is maintained.
 一方、ステップS406で、塵埃センサ303の出力Dが所定値Ds以上であるときには(ステップS406:YES)、制御部301は、排気送風機3及び/又は給気送風機2を高出力で運転する強運転モードとなるように排気モータ制御出力及び/又は給気モータ制御出力を発する(ステップS408)。
 ステップS408で強運転モードに入ると、次いでステップS405に戻り、塵埃センサ303の出力Dが読込まれる(ステップS405)。
On the other hand, when the output D of the dust sensor 303 is equal to or greater than the predetermined value Ds in step S406 (step S406: YES), the control unit 301 is a strong operation that operates the exhaust blower 3 and / or the supply blower 2 with high output. An exhaust motor control output and / or an air supply motor control output are issued so as to be in the mode (step S408).
When the strong operation mode is entered in step S408, the process returns to step S405, and the output D of the dust sensor 303 is read (step S405).
 即ち、一旦強運転モードに入った後は、現在時点での塵埃センサ303の出力Dが、未だ、室内の塵埃が強制換気を行うことが望ましい水準として設定された既定値Ds以上であるか否かが判断され(ステップS406)、既定値Ds以上である限りは(ステップS406:YES)強運転モードが継続され、既定値Ds以下まで低下して室内の空気が清浄になると(ステップS406:NO)、通常運転モードに移行する(ステップS407)。
 本実施形態の換気装置では、このようにして、必要があるときのみ強運転モードで運転が行われ、夜間等は自動的に静音モードに切換えられて運転が持続されるため、騒音低減効果に優れ、また、省エネルギーの点でも優れる。
That is, once the strong operation mode is entered, whether or not the output D of the dust sensor 303 at the present time is still equal to or greater than a predetermined value Ds set as a level at which it is desirable for indoor dust to be subjected to forced ventilation. Is determined (step S406), and as long as it is equal to or greater than the predetermined value Ds (step S406: YES), the strong operation mode is continued, and when the indoor air is cleaned by decreasing to the predetermined value Ds or less (step S406: NO) ) And shift to the normal operation mode (step S407).
In the ventilator of the present embodiment, the operation is performed in the strong operation mode only when necessary in this way, and the operation is continuously switched to the silent mode at night and the like, so that the noise reduction effect is achieved. Excellent and energy saving.
 上述のステップS404で、タイマの計時値Tが、掃除モード運転を実行する時間間隔としての既定値Tsを超えたと判断されたときには(ステップS404:YES)、換気装置が給気する外気の塵埃を除去する給気フィルタ41及び/又は排気する内気の塵埃を除去する排気フィルタ42に付着した塵埃を排出するために排気送風機3を高出力で運転する掃除モードでの運転に入る(ステップS409)。 When it is determined in step S404 described above that the time measured value T of the timer has exceeded a predetermined value Ts as a time interval for performing the cleaning mode operation (step S404: YES), dust from outside air supplied by the ventilator is removed. In order to discharge the dust adhering to the air supply filter 41 to be removed and / or the exhaust filter 42 to remove the dust of the inside air to be exhausted, the operation enters a cleaning mode in which the exhaust blower 3 is operated at a high output (step S409).
 図18は、掃除モード(ステップS409)での制御手順の詳細を表すフローチャートである。
 掃除モードが起動すると、先ず、排気フィルタ42下流の流路をバイパス経路9側に切換える(ステップS501)。この切換えは、制御部301が、排気流路切換制御出力を、流路を切換えるためのアクチュエータであるモータ62に出力することによって実行される。次いで、制御部301からの排気モータ制御出力によって、排気送風機3の動力源であるモータ3aが高出力運転に切換えられる(ステップS502)。これにより、流路の抵抗が低減され換気装置内の他部(例えば、排気と給気との熱交換を行う熱交換器5等)への塵埃被着のおそれが解除された状態で、高出力運転で流速が上がった排気で、排気フィルタ42に堆積した塵埃が効果的に除去される。
FIG. 18 is a flowchart showing details of the control procedure in the cleaning mode (step S409).
When the cleaning mode is activated, the flow path downstream of the exhaust filter 42 is first switched to the bypass path 9 side (step S501). This switching is executed by the control unit 301 outputting an exhaust flow path switching control output to the motor 62 that is an actuator for switching the flow path. Next, the motor 3a that is the power source of the exhaust blower 3 is switched to the high output operation by the exhaust motor control output from the control unit 301 (step S502). As a result, the resistance of the flow path is reduced and the risk of dust deposition on other parts in the ventilator (for example, the heat exchanger 5 that performs heat exchange between exhaust air and air supply) is released. Dust accumulated on the exhaust filter 42 is effectively removed by the exhaust gas whose flow rate has been increased by the output operation.
 モータ3aが高出力運転に移行すると、排気フィルタ42の掃除運転の持続時間TE1について計時動作が行われ(ステップS503)、運転時間TE1が排気フィルタ掃除の既定の継続時間Ts1に達したか否かが監視される(ステップS504)。排気フィルタ42の掃除に係るこの継続時間Ts1は、例えば、30秒内外の時間である。時間Ts1に達するまでの間、排気フィルタ42の掃除が続けられる(ステップS504:NO)。 When the motor 3a shifts to the high output operation, the timekeeping operation is performed for the duration TE1 of the cleaning operation of the exhaust filter 42 (step S503), and whether or not the operation time TE1 has reached the predetermined duration Ts1 of the exhaust filter cleaning. Is monitored (step S504). This continuation time Ts1 related to the cleaning of the exhaust filter 42 is, for example, a time within and outside 30 seconds. Until the time Ts1 is reached, the exhaust filter 42 is continuously cleaned (step S504: NO).
 運転時間TE1が既定の時間Ts1に達すると(ステップS504:YES)、ステップS501でバイパス経路9側に切換えられていた排気フィルタ42下流の流路が元の状態に復帰される(ステップS505)。ステップS505での流路復帰は、制御部301が、排気流路切換制御出力を、流路を切換えるためのアクチュエータに出力することによって実行される。この後、給気フィルタ41を掃除する手順に移行する。 When the operation time TE1 reaches the predetermined time Ts1 (step S504: YES), the flow path downstream of the exhaust filter 42 that has been switched to the bypass path 9 in step S501 is returned to the original state (step S505). The flow path return in step S505 is executed by the control unit 301 outputting the exhaust flow path switching control output to the actuator for switching the flow path. Thereafter, the procedure proceeds to a procedure for cleaning the air supply filter 41.
 上述のステップS505に次いで、給気フィルタ41の位置を排気に晒す位置に転換させる(ステップS506)。ステップS506での給気フィルタ41の位置の転換は、制御部301が、給気フィルタアクチュエータ制御出力を給気フィルタアクチュエータ(即ち、給気フィルタ移動装置8)に与えることによって行われる。この制御によって、給気フィルタ41は給気の入口(屋外側給気口21)に位置していたものが排気の出口(屋外側排気口32)に位置するようにその配置が転換される。
 この転換後の位置では、給気フィルタ41は、ステップS502で高出力運転に切換えられて流速が上がっている排気に晒されて、表面に堆積した塵埃が効果的に除去される。
Subsequent to step S505 described above, the position of the air supply filter 41 is changed to a position where it is exposed to the exhaust gas (step S506). The change of the position of the air supply filter 41 in step S506 is performed by the control unit 301 giving an air supply filter actuator control output to the air supply filter actuator (that is, the air supply filter moving device 8). With this control, the arrangement of the air supply filter 41 is changed so that the air supply filter 41 located at the air supply inlet (outdoor side air supply port 21) is positioned at the exhaust outlet (outdoor side exhaust port 32).
At the position after the change, the air supply filter 41 is exposed to the exhaust gas that has been switched to the high-power operation in step S502 to increase the flow velocity, and dust accumulated on the surface is effectively removed.
 ステップS506で給気フィルタの位置が転換されて、給気フィルタ41の掃除運転が開始すると、次いで、給気フィルタ41の掃除運転の持続時間TE2について計時動作が行われ(ステップS507)、運転時間TE2が給気フィルタ掃除の既定の継続時間Ts2に達したか否かが監視される(ステップS508)。
 給気フィルタ41の掃除に係る既定の継続時間Ts2は、例えば、30秒内外の時間である。時間Ts2に達するまでの間、給気フィルタ41の掃除運転が続けられる(ステップS508:NO)。
When the position of the air supply filter is changed in step S506 and the cleaning operation of the air supply filter 41 is started, the timekeeping operation is then performed for the duration TE2 of the cleaning operation of the air supply filter 41 (step S507). It is monitored whether TE2 has reached a predetermined duration Ts2 for air supply filter cleaning (step S508).
The predetermined duration Ts2 related to the cleaning of the air supply filter 41 is, for example, a time within and outside 30 seconds. Until the time Ts2 is reached, the cleaning operation of the air supply filter 41 is continued (step S508: NO).
 運転時間TE2が既定の時間Ts2に達すると(ステップS508:YES)、ステップS506で排気の出口(屋外側排気口32)に位置するようにその配置が転換されていた給気フィルタ41が元の位置(屋外側給気口21)に復帰される(ステップS509)。ステップS509での給気フィルタ位置の復帰は、制御部301が、給気フィルタアクチュエータ制御出力を、給気フィルタ位置を転換するためのアクチュエータである給気フィルタ移動装置8に出力することによって実行される。
 以上で、掃除モード(図4:ステップS409)での運転が終了し、制御部301による制御手順は、図4のステップS405に移行する。
When the operation time TE2 reaches the predetermined time Ts2 (step S508: YES), the air supply filter 41 whose arrangement has been changed so as to be located at the exhaust outlet (outdoor exhaust port 32) in step S506 is the original. Returning to the position (outdoor air supply port 21) (step S509). The return of the air supply filter position in step S509 is executed by the control unit 301 outputting the air supply filter actuator control output to the air supply filter moving device 8 which is an actuator for changing the air supply filter position. The
Thus, the operation in the cleaning mode (FIG. 4: step S409) is completed, and the control procedure by the control unit 301 proceeds to step S405 in FIG.
 図17のフローチャートを参照して容易に理解されるとおり、本実施形態では特に、照度センサ302の出力Lが上述の既定値Ls以下であるような、夜間や就寝時においては(ステップS402:YES)、相対的に運転音の大きい強運転モード(ステップS408)及び掃除モード(ステップS409)での運転が禁止され、静音モード(ステップS407)での運転のみが許容される。 As can be easily understood with reference to the flowchart of FIG. 17, in the present embodiment, particularly at night or at bedtime when the output L of the illuminance sensor 302 is equal to or less than the predetermined value Ls (step S <b> 402: YES). ), The operation in the strong operation mode (step S408) and the cleaning mode (step S409) with relatively large operation noise is prohibited, and only the operation in the silent mode (step S407) is allowed.
 図19は、照度センサ302の出力と塵埃センサ303の出力とに応じて許容される換気の運転モードを表す図である。図中、照度センサ302に係る「H」は、出力レベルが既定値Ls以下ではない明るい場合を示し、「L」は、出力レベルが既定値Ls以下である暗い場合を示している。
 図19のとおり、照度センサ302の出力によって周囲が明るいと判断される「H」の場合には、塵埃センサ303の出力に応じて、強運転モードと通常運転モードとの双方のモードでの運転が選択的に実行され得る。即ち、塵埃センサ303の出力が相対的に高く「H」に該当するときには、室内の空気が汚れて急速な換気が望まれるときであり、強運転モードでの換気が行われる。また、塵埃センサ303の出力が相対的に低く「L」に該当するときには、通常運転モードでの換気が行われる。
FIG. 19 is a diagram showing ventilation operation modes that are allowed according to the output of the illuminance sensor 302 and the output of the dust sensor 303. In the figure, “H” related to the illuminance sensor 302 indicates a bright case where the output level is not lower than the predetermined value Ls, and “L” indicates a dark case where the output level is lower than the predetermined value Ls.
As shown in FIG. 19, in the case of “H” where the surroundings are determined to be bright by the output of the illuminance sensor 302, the driving in both the strong operation mode and the normal operation mode is performed according to the output of the dust sensor 303. Can be selectively performed. That is, when the output of the dust sensor 303 is relatively high and corresponds to “H”, indoor air is dirty and rapid ventilation is desired, and ventilation in the strong operation mode is performed. When the output of the dust sensor 303 is relatively low and corresponds to “L”, ventilation is performed in the normal operation mode.
 以上に対し、照度センサ302の出力によって周囲が暗いと判断される「L」の場合には、塵埃センサ303の出力如何によらず、穏やかな換気が望まれるときであり、静音モードでの換気のみが許容される。 On the other hand, in the case of “L” in which it is determined that the surroundings are dark by the output of the illuminance sensor 302, it is a time when gentle ventilation is desired regardless of the output of the dust sensor 303. Only allowed.
 以上の構成を備える換気装置1は、以下のような効果を奏する。
 本実施形態では、屋外から外気を給気し、室内の内気を排気する換気装置1において、周囲の照度を検出する照度センサ302、及び、室内の塵埃を検出する塵埃センサ303の出力に応じて、前記換気装置の運転を制御する制御部301と、制御部301からの制御信号に応じて外気を室内に給気する給気送風機2と、制御部301からの制御信号に応じて室内の空気を排気する排気送風機3と、を含んで構成した。また、制御部301を、給気する外気の塵埃を除去する給気フィルタ41及び/若しくは排気する内気の塵埃を除去する排気フィルタ42に付着した塵埃を排出するために排気送風機3を高出力で運転する掃除モードと、掃除モードでない場合に塵埃センサ303の出力が所定値を超えたときには排気送風機3及び/若しくは給気送風機2を高出力で運転する強運転モードと、の2つの運転モードのうちの少なくとも何れかの運転モードと、排気送風機3及び給気送風機2を低出力で運転する静音モードとを切換えるように構成し、照度センサ302による検出照度が所定水準以下であるときには、2つの運転モードのうち当該制御部301で選択され得る運転モードでの運転を禁止させた。
The ventilation device 1 having the above configuration has the following effects.
In the present embodiment, in the ventilator 1 that supplies outside air from outside and exhausts indoor air, according to the output of the illuminance sensor 302 that detects ambient illuminance and the dust sensor 303 that detects indoor dust. The control unit 301 that controls the operation of the ventilation device, the air supply fan 2 that supplies outside air into the room according to a control signal from the control unit 301, and the indoor air according to the control signal from the control unit 301 And an exhaust blower 3 for exhausting the air. Further, the control unit 301 is configured to output the exhaust blower 3 at a high output in order to discharge dust adhering to the air supply filter 41 that removes dust of outside air to be supplied and / or the exhaust filter 42 that removes dust of inside air to be exhausted. There are two operation modes: a cleaning mode for driving and a strong operation mode for operating the exhaust blower 3 and / or the supply blower 2 at a high output when the output of the dust sensor 303 exceeds a predetermined value when not in the cleaning mode. When the illuminance detected by the illuminance sensor 302 is below a predetermined level, the operation mode is switched between at least one of the operation modes and the silent mode in which the exhaust blower 3 and the supply blower 2 are operated at low output. Among the operation modes, operation in an operation mode that can be selected by the control unit 301 is prohibited.
 本実施形態によれば、照度センサ302が屋外光を検出するように配置されていて外光照度が低い夜の状態にあることが判定されたり、照度センサ302が室内照度を検出するように配置されていて全消灯状態や常夜灯のみ点灯の状態にあることが判定されたりした場合には、騒音レベルが相対的に高いモードでの換気運転が禁止される。このため、夜間や就寝時には運転音が静かになり、環境騒音や安眠が妨げられるといったおそれが払拭される。
 また、夜間や就寝時にも静音モードでの運転は許容されるため、24時間連続運転を行う換気装置としても具現することができる。
According to the present embodiment, it is determined that the illuminance sensor 302 is disposed so as to detect outdoor light and the nighttime illuminance is low, or the illuminance sensor 302 is disposed so as to detect indoor illuminance. If it is determined that all lights are turned off or only the nightlight is turned on, ventilation operation in a mode with a relatively high noise level is prohibited. For this reason, driving noise is quiet at night or at bedtime, and the risk of disturbing environmental noise and sleep is eliminated.
In addition, since operation in the silent mode is allowed even at night or at bedtime, it can be embodied as a ventilation device that performs continuous operation for 24 hours.
 また、本実施形態では、制御部301に、照度センサ302による検出照度が所定水準以下であるときには、静音モードでの運転を行わせた。これにより、照度センサ302による検出照度が所定水準以下となり、夜間など騒音が問題となる蓋然性が高いときに、自動的に静音モードでの運転に切換わるため、効果的に騒音防止がはかられる。 Further, in the present embodiment, when the illuminance detected by the illuminance sensor 302 is equal to or lower than a predetermined level, the control unit 301 is operated in the silent mode. As a result, when the detected illuminance by the illuminance sensor 302 falls below a predetermined level and there is a high probability that noise will be a problem at night or the like, the operation is automatically switched to the silent mode, so noise can be effectively prevented. .
 従来、夜間の騒音を低減した自動換気装置が提案されている。即ち、従来の自動換気装置においては、照度センサの検出値に応じて、暗い夜間には換気を行うファンモータの運転を制限して騒音が低減示されている。 Conventionally, an automatic ventilation device that reduces nighttime noise has been proposed. That is, in the conventional automatic ventilation device, the noise is reduced by limiting the operation of the fan motor that performs ventilation in the dark night according to the detection value of the illuminance sensor.
 従来の換気装置では、空気の汚れを検出するセンサの出力に応じて運転の強弱を切換える一方、照度センサの検出値が所定値を下回った場合には、ファンモータを停止して騒音の発生を抑えるようにしている。 In the conventional ventilator, the level of operation is switched according to the output of the sensor that detects air contamination.On the other hand, if the detected value of the illuminance sensor falls below a predetermined value, the fan motor is stopped to generate noise. I try to suppress it.
 しかしながら、従来の換気装置は、24時間連続運転が義務付けられているような用途には適合しない。
 また、近年普及しているような、エアフィルタの自動掃除機能、即ち、掃除モードでの運転を行うような機種への適用については別段の配慮がない。
 第三実施形態に係る換気装置1は、24時間連続運転を行う機種や掃除モードを有する機種についても効果的な静音運転を行うことが可能な換気装置を提供することを目的とし、上述のとおり係る換気装置を提供することが可能になる。
However, conventional ventilators are not suitable for applications that require 24 hours continuous operation.
Further, there is no special consideration for application to an automatic cleaning function of an air filter, which is popular in recent years, that is, a model that operates in a cleaning mode.
The ventilator 1 according to the third embodiment aims to provide a ventilator that can perform an effective silent operation even for a model that operates continuously for 24 hours and a model that has a cleaning mode, as described above. It becomes possible to provide such a ventilator.
 図20は、本実施形態における強運転モード、静音モード、掃除モード、及び、通常運転モードの各モードでの運転が行われる条件を表す図である。
 図20に示されたとおり、強運転モードでの運転は、照度センサ302の出力が相対的に高く「H」に該当するときであって、塵埃センサ303の出力も相対的に高く「H」に該当するときであって、さらに、運転持続時間が、次の掃除モードを実行する時点には至っていない時期にあるとき(図示の「短」の時期)に実行される。
FIG. 20 is a diagram illustrating conditions under which driving is performed in each of the strong operation mode, the silent mode, the cleaning mode, and the normal operation mode in the present embodiment.
As shown in FIG. 20, the operation in the strong operation mode is when the output of the illuminance sensor 302 is relatively high and corresponds to “H”, and the output of the dust sensor 303 is also relatively high “H”. Furthermore, it is executed when the operation duration time is not reached the time when the next cleaning mode is executed ("short" time shown).
 また、静音モードでの運転は、照度センサ302の出力が相対的に低く「L」に該当するときには、塵埃センサ303の出力や運転持続時間の如何に依らずに実行される。但し、照度センサ302の出力が「H」に該当するときであっても、塵埃センサ303の出力が「L」に該当するときには、通常運転モードでの運転が実行される。
 掃除モードでの運転の可否は、塵埃センサ303の出力とは無関係である。照度センサ302の出力が相対的に高く「H」に該当していることを実行許容の条件として、さらに、運転持続時間が、次の掃除モードを実行する時点に達している時期にあるとき(図示の「長」の時期)に実行される。
The operation in the silent mode is executed regardless of the output of the dust sensor 303 or the operation duration when the output of the illuminance sensor 302 is relatively low and corresponds to “L”. However, even when the output of the illuminance sensor 302 corresponds to “H”, when the output of the dust sensor 303 corresponds to “L”, the operation in the normal operation mode is executed.
The availability of the operation in the cleaning mode is independent of the output of the dust sensor 303. When the output of the illuminance sensor 302 is relatively high and corresponds to “H” as a condition for execution permission, when the operation duration is at the time when the next cleaning mode is executed ( It is executed at the “long” time in the figure.
 尚、上述の実施形態では、強運転モード、静音モード、掃除モード、及び、通常運転モードの各モードでの運転が行われ得る態様を採った場合について詳述したが、本発明の換気装置はこれに限定されない。即ち、掃除モードと強運転モードとの2つの運転モードのうちの少なくとも何れかの運転モードと、静音モードとを切換えるように構成され、照度センサ302による検出照度が所定水準以下であるときには、これら2つの運転モードのうち当該制御部で選択され得る運転モードでの運転を禁止する態様の換気装置も本発明に含まれる。 In the above-described embodiment, the case where the operation in each mode of the strong operation mode, the silent mode, the cleaning mode, and the normal operation mode can be performed has been described in detail. It is not limited to this. That is, it is configured to switch between at least one of the two operation modes of the cleaning mode and the strong operation mode and the silent mode, and when the illuminance detected by the illuminance sensor 302 is below a predetermined level, A ventilator having a mode for prohibiting operation in an operation mode that can be selected by the control unit among the two operation modes is also included in the present invention.
<第四実施形態>
 第四実施形態では、換気装置1は、運転モード切替制御を実行するための各モジュールを備える。
 図21は、本実施形態に係る換気装置1が備える制御部301の機能ブロック図である。制御部301は、後述する各種センサ等からの入力信号波形を整形し、電圧レベルを所定のレベルに修正し、アナログ信号値をデジタル信号値に変換する等の機能を有する入力回路と、中央演算処理ユニットCPU304と、を備える。また、制御部301は、CPU304で実行される各種演算プログラム及び演算結果等を記憶する記憶回路と、給気送風機2や排気送風機3に制御信号を出力する出力回路と、を備える。
<Fourth embodiment>
In 4th embodiment, the ventilator 1 is provided with each module for performing operation mode switching control.
FIG. 21 is a functional block diagram of the control unit 301 provided in the ventilation device 1 according to the present embodiment. The control unit 301 shapes an input signal waveform from various sensors, which will be described later, corrects the voltage level to a predetermined level, and converts an analog signal value into a digital signal value. And a processing unit CPU304. In addition, the control unit 301 includes a storage circuit that stores various calculation programs executed by the CPU 304, calculation results, and the like, and an output circuit that outputs control signals to the air supply blower 2 and the exhaust blower 3.
 以上のハードウェア構成からなる制御部301は、屋外温度及び屋内温度に応じて、各運転モードを切り替える運転モード切替制御を実行するとともに、各運転モードを実行する。図21に示すように、制御部301は、運転モード切替制御を実行するためのモジュールとして、通常運転モード部311と、排気運転モード部312と、給気運転モード部313と、強排気運転モード部314と、第1切替運転モード部315と、第2切替運転モード部316と、給気制限運転モード部317と、切替部318と、を備える。
 また、この制御部301には、屋外温度センサ321、屋外湿度センサ322、屋内温度センサ323及び屋内湿度センサ324から出力された各検出信号が送信される。制御部301は、これらの検出信号に基づいて、運転モード切替制御を実行する。
The control unit 301 having the above hardware configuration executes the operation mode switching control for switching each operation mode according to the outdoor temperature and the indoor temperature, and executes each operation mode. As shown in FIG. 21, the control unit 301 is a normal operation mode unit 311, an exhaust operation mode unit 312, an air supply operation mode unit 313, and a strong exhaust operation mode as modules for executing the operation mode switching control. A unit 314, a first switching operation mode unit 315, a second switching operation mode unit 316, an air supply restriction operation mode unit 317, and a switching unit 318.
Further, the detection signal output from the outdoor temperature sensor 321, the outdoor humidity sensor 322, the indoor temperature sensor 323, and the indoor humidity sensor 324 is transmitted to the control unit 301. The control unit 301 performs operation mode switching control based on these detection signals.
 以下、制御部301の各モジュールの機能について、図22を参照しながら説明する。
 図22は、本実施形態に係る換気装置1の運転モードの切り替えの一例を示す図である。図22中、横軸は屋外温度を表しており、縦軸は屋内温度を表している。即ち、図22では、屋外温度及び屋内温度に応じた運転モードの切り替えの一例を示している。また、図22中の直線Zは、屋外温度と屋内温度が等しい状態を表している。
Hereinafter, the function of each module of the control unit 301 will be described with reference to FIG.
FIG. 22 is a diagram illustrating an example of switching of operation modes of the ventilation device 1 according to the present embodiment. In FIG. 22, the horizontal axis represents the outdoor temperature, and the vertical axis represents the indoor temperature. That is, FIG. 22 shows an example of operation mode switching according to the outdoor temperature and the indoor temperature. Moreover, the straight line Z in FIG. 22 represents the state where outdoor temperature and indoor temperature are equal.
 先ず、通常運転モード部311は、給気送風機2の回転数を通常の回転数とするとともに、排気送風機3の回転数を通常の回転数とする通常運転モードを実行する。この通常運転モードは、図22に示すように屋内環境が屋外環境よりも良いときに通常よく実行される運転モードである。この通常運転モードでは、給気と排気が積極的に行われ、両者間で積極的に熱交換が行われる結果、屋内環境が改善される。
 ここで、通常の回転数とは、換気装置1が設置される屋内の広さ等に応じて予め設定される。
First, the normal operation mode unit 311 executes a normal operation mode in which the rotation speed of the air supply blower 2 is set to a normal rotation speed and the rotation speed of the exhaust blower 3 is set to a normal rotation speed. This normal operation mode is an operation mode that is normally executed when the indoor environment is better than the outdoor environment as shown in FIG. In this normal operation mode, air supply and exhaust are actively performed, and heat exchange is actively performed between the two, so that the indoor environment is improved.
Here, the normal number of rotations is set in advance according to the size of the indoor space where the ventilation device 1 is installed.
 排気運転モード部312は、給気送風機2の回転数を通常運転モード時と比べて微小にするとともに、排気送風機3の回転数を通常の回転数とする排気運転モードを実行する。この排気運転モードは、屋内温度が26℃以上で且つ屋外温度が屋内温度よりも低いときに実行される。例えば図22に示すように、屋外温度が約18℃~22℃で屋内温度が約26℃以上のときに実行される。この排気運転モードでは、微弱な給気が行われるとともに排気が積極的に行われる結果、排気(排熱)が優先されて屋内環境が改善される。同時に、給気を停止しないため、熱交換器5内におけるカビの発生が抑制される。 The exhaust operation mode unit 312 executes the exhaust operation mode in which the rotation speed of the supply air blower 2 is made smaller than that in the normal operation mode and the rotation speed of the exhaust blower 3 is the normal rotation speed. This exhaust operation mode is executed when the indoor temperature is 26 ° C. or higher and the outdoor temperature is lower than the indoor temperature. For example, as shown in FIG. 22, it is executed when the outdoor temperature is about 18 ° C. to 22 ° C. and the indoor temperature is about 26 ° C. or more. In this exhaust operation mode, weak air supply is performed and exhaust is actively performed. As a result, exhaust (exhaust heat) is prioritized and the indoor environment is improved. At the same time, since air supply is not stopped, generation of mold in the heat exchanger 5 is suppressed.
 給気運転モード部313は、給気送風機2の回転数を通常の回転数とするとともに、排気送風機3の回転数を通常運転モード時と比べて微小にする給気運転モードを実行する。この給気運転モードは、屋内温度が14℃以下で且つ屋外温度が屋内温度よりも高いときに実行される。例えば図22に示すように、屋外温度が約20℃~27℃で屋内温度が14℃以下のときに実行される。この給気運転モードでは、微弱な排気が行われるとともに給気が積極的に行われる結果、給気(給熱)が優先されて屋内環境が改善される。同時に、排気を停止しないため、熱交換器5内におけるカビの発生が抑制される。 The air supply operation mode unit 313 executes the air supply operation mode in which the rotation speed of the supply air blower 2 is set to a normal rotation speed and the rotation speed of the exhaust blower 3 is made smaller than that in the normal operation mode. This air supply operation mode is executed when the indoor temperature is 14 ° C. or lower and the outdoor temperature is higher than the indoor temperature. For example, as shown in FIG. 22, it is executed when the outdoor temperature is about 20 ° C. to 27 ° C. and the indoor temperature is 14 ° C. or less. In this air supply operation mode, weak air is exhausted and air is actively supplied. As a result, air supply (heat supply) is prioritized and the indoor environment is improved. At the same time, since the exhaust is not stopped, generation of mold in the heat exchanger 5 is suppressed.
 強排気運転モード部314は、排気送風機3の回転数を通常運転モード時と比べて大きくする強排気運転モードを実行する。例えば図22に示すように、この強排気運転モードは、屋外温度が約28℃~32℃で屋内温度が屋外温度よりも高いときに実行される。例えばこの強排気運転モードでは、微弱な給気が行われるとともに、強力な排気が行われる結果、排気(排熱)が促進されて屋内環境が改善される。同時に、給気を停止しないため、熱交換器5内におけるカビの発生が抑制される。 The strong exhaust operation mode unit 314 executes a strong exhaust operation mode in which the rotational speed of the exhaust blower 3 is made larger than that in the normal operation mode. For example, as shown in FIG. 22, the strong exhaust operation mode is executed when the outdoor temperature is about 28 ° C. to 32 ° C. and the indoor temperature is higher than the outdoor temperature. For example, in this strong exhaust operation mode, weak air supply is performed, and powerful exhaust is performed. As a result, exhaust (exhaust heat) is promoted and the indoor environment is improved. At the same time, since air supply is not stopped, generation of mold in the heat exchanger 5 is suppressed.
 第1切替運転モード部315は、上述の給気運転モードと排気運転モードとを交互に切り替える第1切替運転モードを実行する。例えば図22に示すように、この第1切替運転モードは、屋外温度が約23℃~27℃で屋内温度が約27℃以上のときに実行される。この第1切替運転モードでは、熱交換しない状態で換気が積極的に行われて屋内環境が改善される。同時に、給気や排気を停止しないため、熱交換器5内におけるカビの発生が抑制される。 The first switching operation mode unit 315 executes a first switching operation mode that alternately switches between the air supply operation mode and the exhaust operation mode described above. For example, as shown in FIG. 22, the first switching operation mode is executed when the outdoor temperature is about 23 ° C. to 27 ° C. and the indoor temperature is about 27 ° C. or higher. In the first switching operation mode, ventilation is actively performed without heat exchange, and the indoor environment is improved. At the same time, since supply and exhaust are not stopped, generation of mold in the heat exchanger 5 is suppressed.
 第2切替運転モード部316は、上述の給気運転モードと排気運転モードとを交互に切り替える第2切替運転モードを実行する。例えば図22に示すように、この第2切替運転モードは、屋外温度が約18℃~24℃で屋内温度が約15℃~25℃のとき、即ち屋外温度と屋内温度の差がほとんど無く、給気と排気の熱交換が不要なときに実行される。この第2切替運転モードでは、給気運転モードと排気運転モードが交互に実行されることで、不要な給排気が抑制されて電力コストが削減される。同時に、給気や排気を停止しないため、熱交換器5内におけるカビの発生が抑制される。 The second switching operation mode unit 316 executes a second switching operation mode that alternately switches between the air supply operation mode and the exhaust operation mode described above. For example, as shown in FIG. 22, in the second switching operation mode, when the outdoor temperature is about 18 ° C. to 24 ° C. and the indoor temperature is about 15 ° C. to 25 ° C., that is, there is almost no difference between the outdoor temperature and the indoor temperature. It is executed when heat exchange between supply air and exhaust is not required. In the second switching operation mode, the air supply operation mode and the exhaust operation mode are executed alternately, thereby suppressing unnecessary air supply / exhaust and reducing the power cost. At the same time, since supply and exhaust are not stopped, generation of mold in the heat exchanger 5 is suppressed.
 給気制限運転モード部317は、上述の給気運転モードと同様に、給気送風機2の回転数を通常の回転数とするとともに、排気送風機3の回転数を通常運転モード時と比べて微小にする給気制限運転モードを実行する。例えば図22に示すように、この給気制限運転モードは、屋外温度が-16℃以下のときに実行される。この給気制限運転モードでは、屋外温度が低すぎて機器が故障するのを防止する観点から給気を行うべきでないときに、給気のみが制限されることで、屋内環境が維持される。同時に、給気や排気を停止しないため、熱交換器5内におけるカビの発生が抑制される。 The air supply restriction operation mode unit 317 sets the rotation speed of the supply air blower 2 to a normal rotation speed and makes the rotation speed of the exhaust blower 3 smaller than that in the normal operation mode, as in the above-described air supply operation mode. Execute the air supply restriction operation mode. For example, as shown in FIG. 22, the air supply restriction operation mode is executed when the outdoor temperature is −16 ° C. or lower. In this air supply restriction operation mode, the indoor environment is maintained by restricting only the air supply when air supply should not be performed from the viewpoint of preventing the outdoor temperature from being too low and causing the equipment to fail. At the same time, since supply and exhaust are not stopped, generation of mold in the heat exchanger 5 is suppressed.
 切替部318は、上述の各運転モードを切り替える運転モード切替制御を実行する。具体的には、屋外温度センサ321、屋外湿度センサ322、屋内温度センサ323及び屋内湿度センサ324により検出された屋外温度及び屋内温度に応じて、各運転モードを切り替える。 The switching unit 318 executes operation mode switching control for switching the above-described operation modes. Specifically, each operation mode is switched according to the outdoor temperature and the indoor temperature detected by the outdoor temperature sensor 321, the outdoor humidity sensor 322, the indoor temperature sensor 323, and the indoor humidity sensor 324.
 本実施形態によれば、以下の効果が奏される。
 本実施形態では、換気装置1を、屋外側に配置される屋外側給気口21と屋内側に配置される屋内側給気口22とを結ぶ給気経路20、給気経路20に配置され且つ外気を屋内側に送る給気送風機2と、屋内側に配置される屋内側排気口31と屋外側に配置される屋外側排気口32とを結ぶ排気経路30と、排気経路30に配置され且つ屋内側の空気を屋外側に送る排気送風機3と、給気経路20及び排気経路30に配置され且つ給気経路20を流通する給気と排気経路30を流通する排気との間で熱交換させる熱交換器5と、給気送風機2の回転数及び排気送風機3の回転数を制御する制御部301と、を含んで構成した。また、制御部301を、給気送風機2の回転数を通常の回転数とするとともに、排気送風機3の回転数を通常の回転数とする通常運転モードと、給気送風機2の回転数を通常運転モード時と比べて微小にするとともに、排気送風機3の回転数を通常の回転数とする排気運転モードと、給気送風機2の回転数を通常の回転数とするとともに、排気送風機3の回転数を前記通常運転モード時と比べて微小にする給気運転モードと、屋外温度及び屋内温度に応じて、各運転モードを切り替える切替部318と、を含んで構成した。
According to this embodiment, the following effects are produced.
In the present embodiment, the ventilation device 1 is disposed in an air supply path 20 and an air supply path 20 that connect an outdoor air supply port 21 disposed on the outdoor side and an indoor air supply port 22 disposed on the indoor side. The air supply blower 2 that sends outside air to the indoor side, the exhaust path 30 that connects the indoor side exhaust port 31 disposed on the indoor side and the outdoor side exhaust port 32 disposed on the outdoor side, and the exhaust path 30 are disposed. Further, heat exchange is performed between the exhaust blower 3 that sends indoor air to the outdoor side, and the air that is disposed in the air supply path 20 and the exhaust path 30 and that flows through the air supply path 20 and the exhaust that flows through the exhaust path 30. And a control unit 301 that controls the rotational speed of the supply air blower 2 and the rotational speed of the exhaust air blower 3. Further, the control unit 301 sets the rotation speed of the supply air blower 2 to the normal rotation speed, the normal operation mode in which the rotation speed of the exhaust blower 3 is set to the normal rotation speed, and the rotation speed of the supply air blower 2 to the normal rotation speed. The exhaust mode is smaller than that in the operation mode, and the exhaust fan 3 is rotated at a normal rotation speed. The supply fan 2 is rotated at a normal rotation speed, and the exhaust fan 3 is rotated. An air supply operation mode in which the number is made smaller than that in the normal operation mode, and a switching unit 318 for switching each operation mode according to the outdoor temperature and the indoor temperature are included.
 以上のように、上述の通常運転モードと、排気運転モードと、給気運転モードと、強排気運転モードと、第1切替運転モードと、第2切替運転モードと、給気制限運転モードと、を、屋外温度及び屋内温度に応じて切り替える構成とした。これにより、屋外温度及び屋内温度に応じて、最も効果的な換気方式を実行できるため、屋内環境を改善できる。また、給気や排気を停止することがなく、熱交換器5内に常に給気及び排気が流通するため、熱交換器5内におけるカビの発生を抑制できる。 As described above, the normal operation mode, the exhaust operation mode, the air supply operation mode, the strong exhaust operation mode, the first switching operation mode, the second switching operation mode, the air supply restriction operation mode, Is configured to switch according to the outdoor temperature and the indoor temperature. Thereby, since the most effective ventilation system can be executed according to the outdoor temperature and the indoor temperature, the indoor environment can be improved. Moreover, since supply and exhaust always circulate in the heat exchanger 5 without stopping supply or exhaust, generation of mold in the heat exchanger 5 can be suppressed.
 従来、屋内環境を改善するための換気装置として、熱交換器を備えた換気装置が知られている。通常、屋内環境は屋外環境よりも良いため、この換気装置により給気と排気との間で熱交換が行われることで、屋内環境が改善される。 Conventionally, ventilators equipped with heat exchangers are known as ventilators for improving the indoor environment. Usually, since the indoor environment is better than the outdoor environment, the indoor environment is improved by performing heat exchange between the supply air and the exhaust air by the ventilation device.
 ところで、屋内環境が屋外環境よりも悪い場合には、上記換気装置により給気と排気との間で熱交換が行われると、屋内環境が悪化する。そこで、例えば、夏期の夜間等に屋内よりも低温の外気を導入して屋内を冷房する外気冷房運転を、屋外温度と屋内温度の温度差に応じて規制する換気装置が提案されている。 By the way, when the indoor environment is worse than the outdoor environment, if the heat exchange is performed between the supply air and the exhaust air by the ventilation device, the indoor environment is deteriorated. In view of this, for example, a ventilator has been proposed that regulates the outdoor air cooling operation in which outdoor air having a lower temperature than indoors is introduced at night in the summer, etc., according to the temperature difference between the outdoor temperature and the indoor temperature.
 しかしながら、従来の換気装置では、屋外温度と屋内温度の温度差が所定値よりも大きい場合には、給気経路及び排気経路の少なくとも一方を熱交換器を介さないバイパス経路に切り替え、上記温度差が所定値より小さい場合には、給気送風機及び排気送風機を停止する。そのため、給気及び排気が熱交換器内を流通しない状態を招く結果、熱交換器内にカビが発生する等の不具合が生じていた。 However, in the conventional ventilator, when the temperature difference between the outdoor temperature and the indoor temperature is larger than a predetermined value, at least one of the air supply path and the exhaust path is switched to a bypass path not via a heat exchanger, and the above temperature difference Is smaller than the predetermined value, the supply air blower and the exhaust blower are stopped. Therefore, as a result of causing a state in which the supply air and the exhaust gas do not flow through the heat exchanger, problems such as generation of mold in the heat exchanger have occurred.
 本実施形態は、熱交換器を保護しつつ屋内環境を改善できる換気装置を提供することを目的とし、上述のとおり、係る換気装置を提供することができる。 This embodiment aims to provide a ventilator that can improve the indoor environment while protecting the heat exchanger, and can provide the ventilator as described above.
 また本実施形態では、屋内温度が14℃以下で且つ屋外温度が屋内温度よりも高いときに、給気運転モードに切り替える構成とした。また、屋内温度が26℃以上で且つ屋外温度が屋内温度よりも低いときには、排気運転モードに切り替える構成とした。これらにより、上述の効果をより確実に得ることができる。 In the present embodiment, when the indoor temperature is 14 ° C. or lower and the outdoor temperature is higher than the indoor temperature, the air supply operation mode is switched. When the indoor temperature is 26 ° C. or higher and the outdoor temperature is lower than the indoor temperature, the exhaust operation mode is switched. By these, the above-mentioned effect can be acquired more reliably.
 また本実施形態では、屋外温度センサ321と屋内温度センサ323を設け、これら屋外温度センサ321及び屋内温度センサ323により検出された屋外温度及び屋内温度に応じて、各運転モードを切り替える構成とした。これにより、検出温度に応じた各運転モードへの切り替えを自動制御でき、上述の効果をより確実に得ることができる。 In this embodiment, the outdoor temperature sensor 321 and the indoor temperature sensor 323 are provided, and each operation mode is switched according to the outdoor temperature and the indoor temperature detected by the outdoor temperature sensor 321 and the indoor temperature sensor 323. Thereby, switching to each operation mode according to the detected temperature can be automatically controlled, and the above-described effects can be obtained more reliably.
 また本実施形態では、屋外湿度センサ322と屋内湿度センサ324を設けた。上述の一例では屋外温度と屋内温度に応じて各運転モードへの切り替えを実行したが、屋外温度センサ321、屋外湿度センサ322、屋内温度センサ323及び屋内湿度センサ324により検出された屋外温湿度及び屋内温湿度に応じて、各運転モードを切り替えることもできる。これにより、検出温湿度に応じた各運転モードへの切り替えを自動制御でき、上述の効果をより確実に得ることができる。 In this embodiment, an outdoor humidity sensor 322 and an indoor humidity sensor 324 are provided. In the above example, switching to each operation mode is performed according to the outdoor temperature and the indoor temperature, but the outdoor temperature and humidity detected by the outdoor temperature sensor 321, the outdoor humidity sensor 322, the indoor temperature sensor 323, and the indoor humidity sensor 324, and Each operation mode can be switched according to the indoor temperature and humidity. Thereby, switching to each operation mode according to the detected temperature and humidity can be automatically controlled, and the above-described effects can be obtained more reliably.
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。 Note that the present invention is not limited to the above-described embodiment, and modifications, improvements, and the like within a scope in which the object of the present invention can be achieved are included in the present invention.
<第五実施形態>
 第五実施形態では、換気装置1が、熱交換器5としても機能する湿度交換器500(図23参照)と、静電霧化装置600(図24、図25参照)と、を備える。
<Fifth embodiment>
In the fifth embodiment, the ventilation device 1 includes a humidity exchanger 500 (see FIG. 23) that also functions as the heat exchanger 5 and an electrostatic atomizer 600 (see FIGS. 24 and 25).
 湿度交換器500は、給気経路20及び排気経路30に配置される。湿度交換器500は、給気経路20を流通する給気と排気経路30を流通する排気との間で透湿膜を介して水蒸気を授受することにより湿度交換を行う。湿度交換器500は、給気経路20の空気が流通する給気流通部520と、排気経路30の空気が流通する排気流通部530とを備えている(図23参照)。即ち、湿度交換器500では、給気流通部520と排気流通部530とが透湿膜を介して接するように位置して、相互間で内部を流通する空気中の水蒸気を授受することにより、給気の湿度が調節される。 The humidity exchanger 500 is disposed in the air supply path 20 and the exhaust path 30. The humidity exchanger 500 exchanges humidity by exchanging water vapor through a moisture permeable membrane between the supply air that flows through the supply passage 20 and the exhaust that flows through the exhaust passage 30. The humidity exchanger 500 includes an air supply circulation unit 520 through which the air in the air supply path 20 circulates and an exhaust circulation part 530 through which the air in the exhaust path 30 circulates (see FIG. 23). That is, in the humidity exchanger 500, the supply air circulation part 520 and the exhaust gas circulation part 530 are positioned so as to be in contact with each other through the moisture permeable membrane, and by transferring water vapor in the air that circulates between the inside and the other, The humidity of the supply air is adjusted.
 本例の湿度交換器500は、熱交換する熱交換器としても機能するように構成されている。即ち、熱交換機能を得るために、全熱を交換することが可能な長方形の熱交換シートが、当該熱交換シートの短手方向に延びる複数のリブを介在させて積層されることで、直方体状に形成される。この熱交換シートは、例えば紙からなる。湿度交換器500の内部において、給気経路20及び排気経路30は、熱交換シートを介して、熱交換シートの積層方向に交互に独立して形成される。
 湿度交換器500における熱交換器としての機能部は湿度交換に関する機能部と空気の流通に関して直列に位置するように配置してもよく、或いは、透湿膜と熱交換シートとの双方の機能を兼ねる隔膜により空気の流通に関する全域に亘って湿度交換及び熱交換するように構成することもできる。
The humidity exchanger 500 of this example is configured to function also as a heat exchanger that performs heat exchange. That is, in order to obtain a heat exchange function, a rectangular heat exchange sheet capable of exchanging the total heat is laminated with a plurality of ribs extending in the short direction of the heat exchange sheet, thereby being a rectangular parallelepiped. It is formed in a shape. The heat exchange sheet is made of paper, for example. In the humidity exchanger 500, the air supply path 20 and the exhaust path 30 are alternately and independently formed in the stacking direction of the heat exchange sheets via the heat exchange sheets.
The functional unit as a heat exchanger in the humidity exchanger 500 may be arranged so as to be positioned in series with respect to the functional unit related to humidity exchange and the air circulation, or both functions of the moisture permeable membrane and the heat exchange sheet are provided. It can also comprise so that humidity exchange and heat exchange may be performed over the whole area | region regarding the distribution | circulation of air by the diaphragm which serves as both.
 上述の、湿度交換器500の給気流通部520は、長手方向(図23における左右方向)の一端側の上部に形成される給気流入口51と他端側の側面に形成される給気流出口52との間の空気の流路である。また、湿度交換器500の排気流通部530は、他端側の下部に形成される排気流入口53と、一端側の側面に形成される排気流出口54との間の空気の流路である。即ち、湿度交換器500の給気流通部520は給気経路20の一部を構成する。同様に、湿度交換器500の排気流通部530は、排気経路30の一部を構成する。これにより、給気経路20における給気の流れと排気経路30における排気の流れとは、対向流となる。 The above-described air supply / circulation portion 520 of the humidity exchanger 500 includes an air supply inlet 51 formed at the upper portion on one end side in the longitudinal direction (left-right direction in FIG. 23) and an air supply outlet formed at the side surface on the other end side. 52 is a flow path of air to and from 52. Moreover, the exhaust circulation part 530 of the humidity exchanger 500 is an air flow path between the exhaust inlet 53 formed in the lower part on the other end side and the exhaust outlet 54 formed on the side surface on the one end side. . That is, the air supply / circulation part 520 of the humidity exchanger 500 constitutes a part of the air supply path 20. Similarly, the exhaust circulation part 530 of the humidity exchanger 500 constitutes a part of the exhaust path 30. Thereby, the flow of the supply air in the supply air path 20 and the flow of the exhaust gas in the exhaust path 30 become an opposite flow.
 第五実施形態では、湿度交換器500の給気流通部520の下流側に、静電ミストを放出させる静電霧化装置600(図24、図25参照)を配置している。図23において図示の矩形にて示す位置Pが静電霧化装置600を配置する位置である。図より容易に理解されるとおり、本例における静電霧化装置600は、給気経路20における湿度交換器500の給気流通部520以降の下流側であって、特に、給気経路20の空気が室内に放出される屋内側給気口22近傍部に配置される。このため、静電霧化装置600で発生した静電ミストが屋内側給気口22から効率よく室内に放出される。 In the fifth embodiment, an electrostatic atomizer 600 (see FIGS. 24 and 25) that discharges electrostatic mist is disposed on the downstream side of the air supply / circulation part 520 of the humidity exchanger 500. In FIG. 23, a position P indicated by a rectangle shown in FIG. 23 is a position where the electrostatic atomizer 600 is disposed. As can be easily understood from the figure, the electrostatic atomizer 600 in this example is on the downstream side of the air supply passage 20 after the air supply circulation section 520 of the humidity exchanger 500, and in particular, the air supply passage 20. It arrange | positions in the indoor side air inlet 22 vicinity part from which air is discharge | released indoors. For this reason, the electrostatic mist generated in the electrostatic atomizer 600 is efficiently discharged indoors from the indoor air supply port 22.
 図24は、図23の換気装置における静電霧化装置600の設置態様を表す図である。
 図24の静電霧化装置600は、給気送風機2の多翼羽根車2bを覆い、給気を屋内側給気口22に向けて放出させるための給気ケーシング2cの側壁2dに取付けられている。この取付位置は、側壁2dの屋内側給気口22に近接する位置であり、その取付の姿勢は、静電霧化装置600の各静電ミスト放出ピン601,601が給気ケーシング2cの側壁2dから内部(即ち、給気経路20内)に向かって垂直に吐出する態様である。
FIG. 24 is a diagram illustrating an installation mode of the electrostatic atomizer 600 in the ventilation device of FIG.
24 is attached to a side wall 2d of an air supply casing 2c that covers the multi-blade impeller 2b of the air supply blower 2 and discharges the air supply toward the indoor air supply port 22. ing. This attachment position is a position close to the indoor air supply port 22 of the side wall 2d, and the attachment attitude is such that each electrostatic mist discharge pin 601 and 601 of the electrostatic atomizer 600 has a side wall of the air supply casing 2c. In this mode, the ink is discharged vertically from 2d toward the inside (that is, inside the air supply path 20).
 図25は、図24の静電霧化装置の構成を説明するための図であり、図24のA-A線断面図である。図25において、図24との対応部は同一の符号により示されている。
 本例の静電霧化装置600は図24より容易に視認されるとおり9本の静電ミスト放出ピン601を備えている。これらの各静電ミスト放出ピン601,601は絶縁体のケース602内にそれらの基部側が収納され、絶縁体の封止板603で封止されている。封止板603に重ねて、各静電ミスト放出ピン601,601に対応する貫通孔が穿設された保持板604が設けられ、この保持板604によって各静電ミスト放出ピン601,601の位置及び姿勢が保持されている。また各静電ミスト放出ピン601,601の先端(尖端)側は、ケース602からその外部である給気経路20内に略水平に突出している。
25 is a diagram for explaining the configuration of the electrostatic atomizer shown in FIG. 24, and is a cross-sectional view taken along line AA of FIG. In FIG. 25, corresponding parts to those in FIG. 24 are denoted by the same reference numerals.
The electrostatic atomizer 600 of the present example includes nine electrostatic mist discharge pins 601 as can be easily seen from FIG. These electrostatic mist discharge pins 601 and 601 are housed in an insulating case 602 on the base side and sealed with an insulating sealing plate 603. A holding plate 604 provided with a through hole corresponding to each electrostatic mist discharge pin 601 and 601 is provided on the sealing plate 603, and the position of each electrostatic mist discharge pin 601 and 601 is provided by this holding plate 604. And the posture is maintained. Further, the tip (pointed end) side of each electrostatic mist discharge pin 601, 601 protrudes substantially horizontally from the case 602 into the air supply path 20 that is the outside thereof.
 ケース602内の底部には、各静電ミスト放出ピン601,601の基部が共通に接触するようにして電極板605が設けられている。この電極板605からケース602の底部を貫通して電極ピン606が外部に突出している。この電極ピン606には、主回路基板607の制御下で作動する昇圧器608からの負の高電圧がケーブル609を通して印加される。負の高電圧は、例えば、-4KV程度である。主回路基板607は、本実施形態の換気装置1に対するユーザからの操作に応じて、或いは、自装置が有するタイマの計時動作に応動して、各種モードでの動作を統括的に管理する機能部である。既述の制御部もこの主回路基板607上に形成されている。 An electrode plate 605 is provided on the bottom of the case 602 so that the bases of the electrostatic mist discharge pins 601 and 601 are in common contact. An electrode pin 606 protrudes from the electrode plate 605 through the bottom of the case 602. A negative high voltage from a booster 608 operating under the control of the main circuit board 607 is applied to the electrode pin 606 through a cable 609. The negative high voltage is, for example, about −4 KV. The main circuit board 607 is a functional unit that comprehensively manages the operation in various modes in response to a user operation on the ventilation device 1 of the present embodiment or in response to a timer operation of the own device. It is. The previously described control unit is also formed on the main circuit board 607.
 本実施形態では、換気装置1を、外気を室内に給気する給気送風機2と、給気送風機2により空気を室内に導く給気経路20と、室内の空気を排気する排気送風機3と、排気送風機3により空気を室外に導く排気経路30と、給気経路20を流れる空気と排気経路30を流れる空気との間で湿度交換を行うべく給気経路20の一部を構成し給気する空気が流通する給気流通部520と排気経路30の一部を構成し排気する空気が流通する排気流通部530とを備えた湿度交換器500と、給気経路20における湿度交換器300の給気流通部520以降の下流側に配置され、静電ミストを放出させる静電霧化装置600と、を含んで構成した。また、静電霧化装置600を、湿度交換器500によって湿度交換された空気中の水蒸気を吸着し、外部から負の高電圧が印加されて静電ミストを放出させる静電ミスト放出ピン601を含んで構成した。 In the present embodiment, the ventilation device 1 includes an air supply fan 2 that supplies outside air into the room, an air supply path 20 that guides air into the room using the air supply fan 2, an exhaust fan 3 that exhausts indoor air, A part of the air supply path 20 is configured and supplied to exchange humidity between the exhaust path 30 that guides air to the outside by the exhaust blower 3 and the air flowing through the air supply path 20 and the air flowing through the exhaust path 30. A humidity exchanger 500 including an air supply circulation unit 520 through which air flows and an exhaust circulation unit 530 that constitutes a part of the exhaust path 30 and through which the exhausted air flows, and the supply of the humidity exchanger 300 in the air supply path 20 And an electrostatic atomizer 600 that is disposed downstream of the air circulation unit 520 and discharges electrostatic mist. In addition, the electrostatic atomizer 600 has an electrostatic mist release pin 601 that adsorbs water vapor in the air whose humidity has been exchanged by the humidity exchanger 500 and releases an electrostatic mist when a negative high voltage is applied from the outside. Constructed including.
 既述のとおり、第五実施形態の換気装置1では、湿度交換器500の給気流通部520を通って湿度交換され、外気の湿度が低い冬季においても適度に湿度が保たれた空気が流れ出る屋内側給気口22近傍の給気経路20内に静電霧化装置600が配置されている。このため、静電霧化装置600の各静電ミスト放出ピン601,601は、湿度交換器500の給気流通部520の下流側で、湿度が保たれた空気流に晒されることにより、水蒸気を吸着する。この状態で、各静電ミスト放出ピン601,601に昇圧器608から負の高電圧が印加されると、静電ミストを放出させる。
 従って、第五実施形態の換気装置1では、水生成のためのペルチェ素子やこの素子に電圧を印加するための電気回路等を要さない簡単な構成で、静電ミストを室内に適度に放出させることができる。また、機能性液体や水等の液体を貯留する液溜め部を備える必要がないため、給水等の煩わしさがなく取り扱いが容易である。さらに、アーク放電によるスパーク現象が生じにくいためオゾンが発生のおそれが極小である。
As described above, in the ventilator 1 according to the fifth embodiment, the humidity is exchanged through the air supply / circulation unit 520 of the humidity exchanger 500, and air in which the humidity is appropriately maintained flows out even in the winter when the humidity of the outside air is low. An electrostatic atomizer 600 is disposed in the air supply path 20 near the indoor air supply port 22. For this reason, each electrostatic mist discharge | release pin 601 and 601 of the electrostatic atomizer 600 is exposed to the air flow in which humidity was maintained in the downstream of the air supply distribution | circulation part 520 of the humidity exchanger 500, thereby water vapor. To adsorb. In this state, when a negative high voltage is applied from the booster 608 to the electrostatic mist discharge pins 601 and 601, the electrostatic mist is discharged.
Therefore, in the ventilator 1 of the fifth embodiment, the electrostatic mist is appropriately released into the room with a simple configuration that does not require a Peltier element for generating water or an electric circuit for applying a voltage to the element. Can be made. Further, since there is no need to provide a liquid reservoir for storing a liquid such as a functional liquid or water, handling is easy without inconvenience such as water supply. Furthermore, since the spark phenomenon due to arc discharge is unlikely to occur, the risk of ozone generation is minimal.
 近年、換気において温度及び湿度を回収できる空調用の熱交換器に関する改良が進んでいる。低コストで、且つ高い湿度交換効率を実現することができる熱交換器及び熱交換換気装置の提案(1)もなされている。 In recent years, improvements related to heat exchangers for air conditioning that can recover temperature and humidity during ventilation have progressed. A proposal (1) of a heat exchanger and a heat exchange ventilator that can realize high humidity exchange efficiency at low cost has also been made.
 ところで、高電圧を印加したピンの尖端から水が分裂して静電ミストが生成する静電霧化現象はよく知られている。この静電ミストは粒子径がピコメートルからナノメートルサイズの負の帯電微粒子であり、消臭、除菌、抗アレルゲン等の効果を発揮する。このような効果を期待して、空気調和用の各種機器に静電霧化手段を備える提案(2)もなされている。 Incidentally, the electrostatic atomization phenomenon in which water is split from the tip of a pin to which a high voltage is applied and electrostatic mist is generated is well known. This electrostatic mist is negatively charged fine particles having a particle size of picometer to nanometer, and exhibits effects such as deodorization, sterilization, and antiallergen. In anticipation of such an effect, a proposal (2) in which various devices for air conditioning are provided with electrostatic atomization means has also been made.
 例えば、通風路に導かれた空気中の気相の水分から液相の水を生成し、この水を静電霧化して室内に放出する静電霧化手段を備え、室内空気の汚れ度を検出するセンサの出力に応じて静電霧化手段の運転を制御する空気調和機が提案(3)されている。 For example, it is equipped with electrostatic atomization means that generates liquid phase water from the gas phase moisture in the air guided to the ventilation path, electrostatically atomizes this water, and discharges it into the room. An air conditioner that controls the operation of the electrostatic atomizer in accordance with the output of the sensor to be detected has been proposed (3).
 また、水タンクに貯留した水から帯電微粒子水を生成する静電霧化装置を、給気を室内に吹き出す給気口に設けた換気設備が提案されている。
 さらに、水溶液を補充することなくミストを放出することができるミスト放出ピンも提案(4)されるに至っている。
In addition, a ventilation facility has been proposed in which an electrostatic atomizer that generates charged fine particle water from water stored in a water tank is provided at an air supply port for blowing air into the room.
Furthermore, a mist releasing pin that can release mist without replenishing an aqueous solution has been proposed (4).
 しかしながら、提案(1)の熱交換器及び熱交換換気装置では、静電霧化機能部を搭載するという視点が示されていない。
 一方、提案(2)の空気調和機における静電霧化手段では、水生成のためのペルチェ素子やこの素子に電圧を印加するための電気回路が必要になる。
 また、提案(3)の換気設備における静電霧化装置では、機能性液体や水等の液体を貯留する液溜め部を備えることが必須である。従って、液溜め部への機能性液体や水等の液体の補充が必要となる。しかしながら、たとえ補充を促すアラームの発報を自動で行うように構成したとしても、液体の補充操作はユーザにとっては煩わしい。また、霧化手段で生じるアーク放電ではスパーク現象が見られ、オゾンが発生しやすい。
 また、提案(4)には、ミスト放出ピン自体の改良について種々開示されているが、当該ミスト放出ピンを換気装置等に適用する場合の態様等について何等の提案もなされていない。
However, in the heat exchanger and heat exchange ventilator of the proposal (1), the viewpoint of mounting the electrostatic atomizing function unit is not shown.
On the other hand, the electrostatic atomization means in the air conditioner of proposal (2) requires a Peltier element for water generation and an electric circuit for applying a voltage to this element.
Moreover, in the electrostatic atomizer in the ventilation equipment of the proposal (3), it is essential to have a liquid reservoir for storing a liquid such as a functional liquid or water. Accordingly, it is necessary to replenish the liquid reservoir with a liquid such as a functional liquid or water. However, even if it is configured to automatically issue an alarm prompting refilling, the liquid refilling operation is troublesome for the user. Moreover, a spark phenomenon is observed in the arc discharge generated by the atomizing means, and ozone is easily generated.
Further, in the proposal (4), various improvements on the mist discharge pin itself are disclosed, but no proposal has been made regarding an aspect of applying the mist discharge pin to a ventilator or the like.
 第五実施形態は、上述のような状況に鑑みてなされたものであり、水生成のためのペルチェ素子やこの素子に電圧を印加するための電気回路が不要で構成が簡単であり、給水を要さず取り扱いが容易であり、オゾン発生のおそれが極小である静電霧化機能部を備えた換気装置を提供することを目的とし、上述のとおり、係る換気装置を提供することができる。 The fifth embodiment has been made in view of the situation as described above, and does not require a Peltier element for water generation or an electric circuit for applying a voltage to this element. For the purpose of providing a ventilator equipped with an electrostatic atomizing function unit that is easy to handle and has a minimal risk of ozone generation, such a ventilator can be provided as described above.
 1   換気装置
 2   給気送風機
 3   排気送風機
 5   熱交換器
 7   静電圧印加装置
 8   給気フィルタ移動装置(フィルタ移動装置)
 9   バイパス経路
 20  給気経路
 21  屋外側給気口
 22  屋内側給気口
 24a フィン24a(塵埃除去手段)
 30  排気経路
 31  屋内側排気口
 32  屋外側排気口
 41  給気フィルタ
 42  排気フィルタ
 81  モータ
 100 ダンパ(切替手段)
 301 制御部
 302 照度センサ
 303 塵埃センサ
 318 切替部
 500 湿度交換器
 600 静電霧化装置
 601 静電ミスト放出ピン
DESCRIPTION OF SYMBOLS 1 Ventilation device 2 Supply air blower 3 Exhaust air blower 5 Heat exchanger 7 Static voltage application device 8 Supply air filter moving device (filter moving device)
9 Bypass path 20 Air supply path 21 Outdoor side air inlet 22 Indoor side air inlet 24a Fin 24a (dust removing means)
DESCRIPTION OF SYMBOLS 30 Exhaust path 31 Indoor side exhaust port 32 Outdoor side exhaust port 41 Air supply filter 42 Exhaust filter 81 Motor 100 Damper (switching means)
301 Control Unit 302 Illuminance Sensor 303 Dust Sensor 318 Switching Unit 500 Humidity Exchanger 600 Electrostatic Atomizer 601 Electrostatic Mist Release Pin

Claims (11)

  1.  屋外側に配置される屋外側給気口と屋内側に配置される屋内側給気口とを結ぶ給気経路と、
     前記給気経路に配置され且つ外気を屋内側に送る給気送風機と、
     屋内側に配置される屋内側排気口と屋外側に配置される屋外側排気口とを結ぶ排気経路と、
     前記排気経路に配置され且つ屋内側の空気を屋外側に送る排気送風機と、
     前記給気経路及び前記排気経路に配置され且つ前記給気経路を流通する給気と前記排気経路を流通する排気との間で熱交換を行う熱交換器と、
     前記排気経路の前記熱交換器よりも上流側に配置され且つ排気に含まれる塵埃を捕集する排気フィルタと、
     前記排気経路の前記排気フィルタよりも上流側と、前記排気経路の前記熱交換器よりも下流側と、を結ぶバイパス経路と、を備える換気装置。
    An air supply path connecting an outdoor air supply port arranged on the outdoor side and an indoor air supply port arranged on the indoor side;
    An air supply blower arranged in the air supply path and sending outside air to the indoor side;
    An exhaust path connecting an indoor exhaust port disposed on the indoor side and an outdoor exhaust port disposed on the outdoor side;
    An exhaust blower arranged in the exhaust path and sending indoor air to the outdoor side;
    A heat exchanger that is disposed in the air supply path and the exhaust path and exchanges heat between the air that flows through the air supply path and the exhaust that flows through the exhaust path;
    An exhaust filter that is disposed upstream of the heat exchanger in the exhaust path and collects dust contained in the exhaust;
    A ventilation apparatus comprising: a bypass path connecting the exhaust path upstream of the exhaust filter and the exhaust path downstream of the heat exchanger.
  2.  前記排気フィルタの前記屋内側排気口側の面に配置され、前記排気フィルタに付着した塵埃を除去する塵埃除去手段をさらに有する請求項1記載の換気装置。 The ventilator according to claim 1, further comprising a dust removing means disposed on a surface of the exhaust filter on the indoor exhaust port side to remove dust attached to the exhaust filter.
  3.  前記バイパス経路の入口は、前記排気フィルタの面方向に向かって開口する請求項1又は2記載の換気装置。 The ventilator according to claim 1 or 2, wherein an inlet of the bypass path opens toward a surface direction of the exhaust filter.
  4.  前記熱交換器を介した排気と、前記バイパス経路を介した排気と、を切り替える切替手段をさらに備え、
     前記切替手段は、前記熱交換器を介した排気を所定時間実行した後に、前記バイパス経路を介した排気に切り替える請求項1~3いずれかに記載の換気装置。
    A switching means for switching between exhaust through the heat exchanger and exhaust through the bypass path;
    The ventilator according to any one of claims 1 to 3, wherein the switching means performs exhaust through the heat exchanger for a predetermined time and then switches to exhaust through the bypass path.
  5.  前記給気経路の前記屋外側給気口側に配置され、前記給気経路に流入する外気に含まれる塵埃を捕集する給気フィルタと、
     前記給気フィルタを前記排気経路の前記屋外側排気口側に移動させるフィルタ移動装置と、
     前記給気フィルタに静電圧を付加する静電圧印加装置と、
     前記給気送風機、前記排気送風機、前記フィルタ移動装置及び前記静電圧印加装置を制御する制御部と、をさらに備え、
     前記制御部は、前記フィルタ移動装置により前記給気フィルタを前記排気経路の前記屋外側排気口側に移動させ、前記静電圧印加装置による前記給気フィルタへの静電圧の印加を停止し、少なくとも前記排気送風機を駆動させることで、前記給気フィルタに捕集された塵埃を除去するフィルタ掃除制御を実行する請求項1~4いずれかに記載の換気装置。
    An air supply filter that is disposed on the outdoor air supply port side of the air supply path and collects dust contained in outside air flowing into the air supply path;
    A filter moving device for moving the air supply filter to the outdoor side exhaust port side of the exhaust path;
    A static voltage application device for applying a static voltage to the air supply filter;
    A control unit for controlling the air supply blower, the exhaust blower, the filter moving device, and the static voltage application device, and
    The control unit moves the air supply filter to the outdoor side exhaust port side of the exhaust path by the filter moving device, stops application of static voltage to the air supply filter by the static voltage application device, and at least The ventilator according to any one of claims 1 to 4, wherein a filter cleaning control for removing dust collected by the air supply filter is executed by driving the exhaust fan.
  6.  前記フィルタ移動装置は、駆動源としてモータを備え、
     前記制御部は、前記フィルタ掃除制御の実行中において、前記モータを制御して前記給気フィルタを振動させることで、前記給気フィルタに捕集された塵埃を除去する請求項5に記載の換気装置。
    The filter moving device includes a motor as a drive source,
    The ventilation according to claim 5, wherein the control unit removes dust collected by the air supply filter by vibrating the air supply filter by controlling the motor during execution of the filter cleaning control. apparatus.
  7.  前記制御部は、前記フィルタ掃除制御を所定時間ごとに実行する請求項5又は6に記載の換気装置。 The ventilator according to claim 5 or 6, wherein the control unit executes the filter cleaning control every predetermined time.
  8.  周囲の照度を検出する照度センサと、室内の塵埃を検出する塵埃センサと、をさらに備え、
     前記給気送風機及び前記排気送風機は、前記制御部からの制御信号に応じて運転され、
     前記制御部は、前記照度センサ及び前記塵埃センサの出力に応じて、前記換気装置の運転を制御し、
     前記制御部は、前記給気する外気の塵埃を除去する給気フィルタ及び/若しくは前記排気フィルタに付着した塵埃を排出するために前記排気送風機を高出力で運転する掃除モードと、前記掃除モードでない場合に前記塵埃センサの出力が所定値を超えたときには前記排気送風機及び/若しくは前記給気送風機を高出力で運転する強運転モードと、の2つの運転モードのうちの少なくとも何れかの運転モードと、前記排気送風機及び前記給気送風機を低出力で運転する静音モードとを切換えるように構成され、前記照度センサによる検出照度が所定水準以下であるときには、前記2つの運転モードのうち当該制御部で選択され得る運転モードでの運転を禁止する請求項5~7のいずれかに記載の換気装置。
    An illuminance sensor that detects ambient illuminance, and a dust sensor that detects indoor dust,
    The air supply blower and the exhaust blower are operated according to a control signal from the control unit,
    The control unit controls the operation of the ventilation device according to the outputs of the illuminance sensor and the dust sensor,
    The control unit is not a cleaning mode in which the exhaust blower is operated at a high output in order to discharge dust adhering to the air supply filter and / or the exhaust filter that removes dust from the outside air to be supplied, and is not the cleaning mode. In this case, when the output of the dust sensor exceeds a predetermined value, at least one of the two operation modes of the exhaust air blower and / or the strong air supply mode of operating the air supply blower at a high output, and When the illuminance detected by the illuminance sensor is equal to or lower than a predetermined level, the control unit is configured to switch between the silent mode in which the exhaust blower and the air supply blower are operated at a low output. The ventilator according to any one of claims 5 to 7, wherein operation in a selectable operation mode is prohibited.
  9.  前記制御部は、前記照度センサによる検出照度が所定水準以下であるときには、前記静音モードでの運転を行う請求項8に記載の換気装置。 The ventilator according to claim 8, wherein the controller performs the operation in the silent mode when the illuminance detected by the illuminance sensor is below a predetermined level.
  10.  前記制御部は、前記給気送風機の回転数及び前記排気送風機の回転数を制御し、
     前記給気送風機の回転数を通常の回転数とするとともに、前記排気送風機の回転数を通常の回転数とする通常運転モードと、
     前記給気送風機の回転数を前記通常運転モード時と比べて微小にするとともに、前記排気送風機の回転数を通常の回転数とする排気運転モードと、
     前記給気送風機の回転数を通常の回転数とするとともに、前記排気送風機の回転数を前記通常運転モード時と比べて微小にする給気運転モードと、
     屋外温度及び屋内温度に応じて、前記各運転モードを切り替える切替部と、を有する請求項5~9のいずれかに記載の換気装置。
    The control unit controls the rotation speed of the supply air blower and the rotation speed of the exhaust blower,
    A normal operation mode in which the rotation speed of the supply air blower is set to a normal rotation speed, and the rotation speed of the exhaust blower is set to a normal rotation speed;
    An exhaust operation mode in which the rotation speed of the air supply blower is made smaller than that in the normal operation mode, and the rotation speed of the exhaust blower is a normal rotation speed,
    An air supply operation mode in which the rotation speed of the air supply blower is set to a normal rotation speed, and the rotation speed of the exhaust air blower is made smaller than that in the normal operation mode;
    The ventilator according to any one of claims 5 to 9, further comprising a switching unit that switches the operation modes according to an outdoor temperature and an indoor temperature.
  11.  前記給気経路を流れる空気と前記排気経路を流れる空気との間で湿度交換を行うべく前記給気経路の一部を構成し給気する空気が流通する給気流通部と、前記排気経路の一部を構成し排気する空気が流通する排気流通部と、を備え、前記熱交換器として機能する湿度交換器と、
     前記給気経路における前記湿度交換器の給気流通部以降の下流側に配置され、静電ミストを放出させる静電霧化装置と、をさらに備え、
     前記静電霧化装置は、前記湿度交換器によって湿度交換された空気中の水蒸気を吸着し、外部から負の高電圧が印加されて静電ミストを放出させる静電ミスト放出ピンを有する請求項1~10のいずれかに記載の換気装置。
    A supply air distribution part that constitutes a part of the supply air path and exchanges air to exchange humidity between the air flowing through the supply air path and the air flowing through the exhaust air path, A humidity exchanger that functions as the heat exchanger;
    An electrostatic atomizer disposed on the downstream side of the air supply passage of the humidity exchanger after the air supply circulation section, and discharges electrostatic mist.
    The electrostatic atomizer has an electrostatic mist discharge pin that adsorbs water vapor in the air whose humidity has been exchanged by the humidity exchanger and discharges an electrostatic mist when a negative high voltage is applied from the outside. The ventilator according to any one of 1 to 10.
PCT/JP2015/072729 2014-08-12 2015-08-11 Ventilation device WO2016024581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580043100.5A CN106574796A (en) 2014-08-12 2015-08-11 Ventilation device

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2014-164558 2014-08-12
JP2014-164514 2014-08-12
JP2014164558A JP2016040504A (en) 2014-08-12 2014-08-12 Ventilation device
JP2014-164515 2014-08-12
JP2014164514A JP6262098B2 (en) 2014-08-12 2014-08-12 Ventilation equipment
JP2014164555A JP6333110B2 (en) 2014-08-12 2014-08-12 Ventilation equipment
JP2014164515A JP6392025B2 (en) 2014-08-12 2014-08-12 Ventilation equipment
JP2014-164555 2014-08-12
JP2014-169302 2014-08-22
JP2014169302A JP2016044877A (en) 2014-08-22 2014-08-22 Ventilation device

Publications (1)

Publication Number Publication Date
WO2016024581A1 true WO2016024581A1 (en) 2016-02-18

Family

ID=55304208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072729 WO2016024581A1 (en) 2014-08-12 2015-08-11 Ventilation device

Country Status (2)

Country Link
CN (1) CN106574796A (en)
WO (1) WO2016024581A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984431A (en) * 2017-04-08 2017-07-28 安徽盛运重工机械有限责任公司 Electrostatic precipitator convenient to clearance
WO2020255368A1 (en) * 2019-06-21 2020-12-24 三菱電機株式会社 Heat exchange ventilator

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269323A (en) * 1992-03-27 1993-10-19 Daikin Ind Ltd Air cleaner
JPH08140908A (en) * 1994-11-15 1996-06-04 Hamamatsu Photonics Kk Vacuum cleaner for collecting fine dust
JPH1114093A (en) * 1997-06-19 1999-01-22 Sharp Corp Air conditioner
JP2002115887A (en) * 2000-10-05 2002-04-19 Mitsubishi Electric Corp Heat exchanging and ventilating device
JP2005308305A (en) * 2004-04-21 2005-11-04 Matsushita Electric Works Ltd Ventilating installation
JP3831708B2 (en) * 2003-01-15 2006-10-11 東芝テック株式会社 Vacuum cleaner
JP2009058175A (en) * 2007-08-31 2009-03-19 Panasonic Corp Ventilation air-conditioning device
JP2010043854A (en) * 2009-09-29 2010-02-25 Max Co Ltd Air cleaner
JP2012052691A (en) * 2010-08-31 2012-03-15 Daikin Industries Ltd Ventilator
WO2013091099A1 (en) * 2011-12-19 2013-06-27 Dpoint Technologies Inc. Counter-flow energy recovery ventilator (erv) core
JP2013160493A (en) * 2012-02-09 2013-08-19 Sumitomo Forestry Co Ltd Ventilation control system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070121078A (en) * 2006-06-21 2007-12-27 김득중 A ventilation contrivance
KR20080065190A (en) * 2007-01-08 2008-07-11 주식회사 대우일렉트로닉스 Ventilation device with air cleaning function
JP2012055501A (en) * 2010-09-09 2012-03-22 Panasonic Corp Air cleaning device
CN201779784U (en) * 2010-09-11 2011-03-30 辽宁盼盼新风科技有限公司 Fresh air ventilator with pressure detecting device
CN203083075U (en) * 2013-01-17 2013-07-24 北京石油化工工程有限公司 Fresh air ventilator

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05269323A (en) * 1992-03-27 1993-10-19 Daikin Ind Ltd Air cleaner
JPH08140908A (en) * 1994-11-15 1996-06-04 Hamamatsu Photonics Kk Vacuum cleaner for collecting fine dust
JPH1114093A (en) * 1997-06-19 1999-01-22 Sharp Corp Air conditioner
JP2002115887A (en) * 2000-10-05 2002-04-19 Mitsubishi Electric Corp Heat exchanging and ventilating device
JP3831708B2 (en) * 2003-01-15 2006-10-11 東芝テック株式会社 Vacuum cleaner
JP2005308305A (en) * 2004-04-21 2005-11-04 Matsushita Electric Works Ltd Ventilating installation
JP2009058175A (en) * 2007-08-31 2009-03-19 Panasonic Corp Ventilation air-conditioning device
JP2010043854A (en) * 2009-09-29 2010-02-25 Max Co Ltd Air cleaner
JP2012052691A (en) * 2010-08-31 2012-03-15 Daikin Industries Ltd Ventilator
WO2013091099A1 (en) * 2011-12-19 2013-06-27 Dpoint Technologies Inc. Counter-flow energy recovery ventilator (erv) core
JP2013160493A (en) * 2012-02-09 2013-08-19 Sumitomo Forestry Co Ltd Ventilation control system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106984431A (en) * 2017-04-08 2017-07-28 安徽盛运重工机械有限责任公司 Electrostatic precipitator convenient to clearance
WO2020255368A1 (en) * 2019-06-21 2020-12-24 三菱電機株式会社 Heat exchange ventilator
JPWO2020255368A1 (en) * 2019-06-21 2021-10-14 三菱電機株式会社 Heat exchange ventilator
JP7118269B2 (en) 2019-06-21 2022-08-15 三菱電機株式会社 heat exchange ventilator

Also Published As

Publication number Publication date
CN106574796A (en) 2017-04-19

Similar Documents

Publication Publication Date Title
US10583384B2 (en) Air cleaner and home appliance having air processing unit
JP2014525347A (en) Air filtration and air purification equipment
JP2009085558A (en) Air cleaner
CN111365775A (en) Dehumidifying and humidifying device, dehumidifying air cleaner, humidifying air cleaner, and method of operating the same
JP2009068802A (en) Humidity controller
WO2009113244A1 (en) Air conditioner
JP6527432B2 (en) Dehumidifying device
WO2016024581A1 (en) Ventilation device
JP6262098B2 (en) Ventilation equipment
JP5488333B2 (en) Air cleaner
WO2013058071A1 (en) Ventilator device
JP4254874B2 (en) Residential ventilation system
JP2011052876A (en) Humidification device
JP2009216286A (en) Air conditioner
CN109140662B (en) Air conditioner, purification control method thereof, and computer-readable storage medium
JP5060349B2 (en) Air conditioner
JP2012037170A (en) Deodorizing device with humidifying function
JP2016044877A (en) Ventilation device
JP6333110B2 (en) Ventilation equipment
JP2013070791A (en) Air purifier
JP2017194196A (en) Mist generator
JP4433004B2 (en) Air supply grill for residential ventilation systems
JP6392025B2 (en) Ventilation equipment
JP2016040504A (en) Ventilation device
JP4380722B2 (en) Residential ventilation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832274

Country of ref document: EP

Kind code of ref document: A1