WO2016024478A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2016024478A1
WO2016024478A1 PCT/JP2015/071610 JP2015071610W WO2016024478A1 WO 2016024478 A1 WO2016024478 A1 WO 2016024478A1 JP 2015071610 W JP2015071610 W JP 2015071610W WO 2016024478 A1 WO2016024478 A1 WO 2016024478A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat exchange
tank
temperature
cooling device
Prior art date
Application number
PCT/JP2015/071610
Other languages
French (fr)
Japanese (ja)
Inventor
隈元匡章
Original Assignee
株式会社テイエルブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイエルブイ filed Critical 株式会社テイエルブイ
Priority to JP2016502821A priority Critical patent/JP5989932B2/en
Publication of WO2016024478A1 publication Critical patent/WO2016024478A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B19/00Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour
    • F25B19/02Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour using fluid jet, e.g. of steam
    • F25B19/04Machines, plants or systems, using evaporation of a refrigerant but without recovery of the vapour using fluid jet, e.g. of steam using liquid jet, e.g. of water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D7/00Devices using evaporation effects without recovery of the vapour

Definitions

  • This application relates to a cooling device that vaporizes and cools with water.
  • a cooling device that evaporates and cools an object by latent heat of water evaporation.
  • This cooling device is provided with a pump mechanism (suction means) that supplies cooling water into the heat exchange container and places the heat exchange container in a predetermined reduced pressure state (for example, a vacuum state below atmospheric pressure) by suction. Yes.
  • a pump mechanism suction means
  • the cooling water supplied into the heat exchange vessel evaporates, and the heat exchange surface in the heat exchange vessel is cooled (vaporization cooling).
  • the heat exchange surface is maintained at a predetermined temperature.
  • the temperature of the heat exchange surface in the heat exchange vessel is measured (detected), and the supply temperature of the cooling water is controlled so that the measured temperature (detected temperature) becomes a predetermined value. Is done.
  • this temperature control method there is a possibility that the measured temperature of the heat exchange surface may vary, and there is a problem that controllability is poor.
  • the technology disclosed in the present application has been made in view of such circumstances, and an object thereof is to provide a cooling device capable of improving temperature controllability.
  • the technology disclosed in the present application includes a water tank, an ejector having a suction port connected to a heat exchange container, and a circulation pipe through which water in the tank circulates between the ejector and the water in the tank. It is premised on a cooling device that includes a pump mechanism that supplies the heat exchange vessel and cools the heat exchange surface in the heat exchange vessel by evaporation of water supplied from the pump mechanism to the heat exchange vessel. And the cooling device of this application is provided with the control part which controls the temperature of the water of the said tank so that the temperature of the water of the said tank may become the same temperature as the target temperature of the said heat exchange surface.
  • the water in the tank circulates between the ejector and the suction port of the ejector becomes a saturated pressure (temperature equivalent saturated pressure) corresponding to the water temperature of the tank. Then, the internal pressure of the heat exchange container connected to the suction port of the ejector also becomes a saturation pressure corresponding to the water temperature of the tank. And the water of a tank is supplied to a heat exchange container, and it evaporates and the internal temperature of a heat exchange container becomes the same temperature as the water temperature of a tank.
  • the water temperature of the tank is controlled so that the water temperature of the tank becomes the same temperature as the target temperature of the heat exchange surface.
  • the internal pressure of the heat exchange vessel can be set to a saturation pressure corresponding to the target temperature of the heat exchange surface.
  • the internal temperature of the heat exchange container can be maintained at the same temperature as the target temperature of the heat exchange surface, and the temperature of the heat exchange surface can be maintained to be cooled to the target temperature.
  • the temperature control is performed on the water temperature of the tank that is less likely to vary than the temperature of the heat exchange surface, so that the temperature controllability can be improved.
  • FIG. 1 is a piping system diagram illustrating a schematic configuration of a cooling device according to an embodiment.
  • the cooling device 1 of the present embodiment supplies water (cooling water), which is a cooling source, into the heat exchange vessel 20 and evaporates it to target the heat exchange surface 22 of the heat exchange vessel 20. It is a vaporization cooling device that cools to a temperature (set temperature).
  • the cooling device 1 includes a fluid circuit 10 for water and steam.
  • the fluid circuit 10 includes a supply rod 11, a discharge pipe 12, a heat exchange container 20, a vacuum generation unit 30, and a control unit 40.
  • the heat exchange container 20 is formed in a cylindrical shape, for example, and the lower surface of a flat plate provided at the upper end is a heat exchange surface 22.
  • the supply rod 11 has one end (outflow end) connected to the lower surface of the heat exchange container 20 and the other end (inflow end) connected to the vacuum generation unit 30.
  • water cooling water
  • a spray nozzle for spraying water into the container interior 21 of the heat exchange container 20 is provided at one end of the supply rod 11.
  • the heat exchange container 20 the water supplied from the supply tank 11 to the container inside 21 exchanges heat with the heat exchange surface 22 and evaporates (vaporizes), and the heat exchange surface 22 is cooled. That is, the heat exchange surface 22 of the heat exchange vessel 20 is cooled (vaporized and cooled) by the heat (latent heat of water evaporation) being taken away by water.
  • the discharge pipe 12 has one end (inflow end) connected to the top of the heat exchange vessel 20 and the other end (outflow end) connected to the vacuum generation unit 30.
  • the discharge pipe 12 discharges steam generated by evaporation of water in the container interior 21 (including water that could not be evaporated in the container interior 21; the same applies hereinafter).
  • the vacuum generation unit 30 includes a tank 31, a circulation pipe 32, a pump 33, and an ejector 34, and constitutes a pump mechanism according to the claims of the present application.
  • the tank 31 stores water (cooling water) to be supplied to the heat exchange container 20 and water for driving the ejector 34, and constitutes an open tank.
  • the circulation pipe 32 is connected to the tank 31. That is, one end (inflow end) of the circulation pipe 32 is connected to the lower part of the tank 31, and the other end (outflow end) is connected to the upper part of the tank 31.
  • the circulation pipe 32 is provided with a pump 33 and an ejector 34 in order from the upstream side (inflow end side).
  • the discharge pipe 12 is connected to the suction port of the ejector 34, and the supply rod 11 is connected between the outlet of the pump 33 and the inlet of the ejector 34 in the circulation pipe 32. That is, the suction port of the ejector 34 is connected to the heat exchange container 20 via the discharge pipe 12.
  • the water in the tank 31 is circulated through the circulation pipe 32 by the pump 33. That is, the circulation pipe 32 circulates the water in the tank 31 with the ejector 34.
  • the vacuum generation unit 30 is configured such that a suction action is generated at the suction port of the ejector 34 when water in the tank 31 is supplied to the inlet of the ejector 34 by the pump 33 and discharged from the outlet of the ejector 34. ing. That is, the ejector 34 is driven as the water in the tank 31 circulates between the ejector 34 and the water. By the suction action of the ejector 34, the vapor inside the container 21 is discharged to the discharge pipe 12.
  • the ejector 34 sucks the vapor (including water that could not be evaporated; the same applies hereinafter) inside the container 21 through the discharge pipe 12.
  • the vacuum generation unit 30 a part of the water flowing through the circulation pipe 32 is supplied to the heat exchange container 20 through the supply tank 11.
  • the vacuum generation unit 30 is configured to supply the water in the tank 31 to the container inside 21 of the heat exchange container 20 and suck the vapor generated by the evaporation of water in the container inside 21.
  • the tank 31 is connected to a supply pipe 13 for water (cooling water).
  • the supply pipe 13 is provided with a supply valve 14 (flow rate adjustment valve) capable of adjusting the amount of water supplied to the tank 31.
  • the tank 31 is supplied with water at a predetermined temperature (for example, room temperature) through the supply pipe 13.
  • the tank 31 is provided with a temperature sensor 35 that detects (measures) the temperature of the stored water.
  • a cooling operation is performed in which the water (cooling water) in the tank 31 is supplied to the heat exchange vessel 20 to cool the heat exchange surface 22 to the target temperature.
  • water in the tank 31 is supplied to the ejector 34 by the pump 33 and also supplied to the container inside 21 of the heat exchange container 20 through the supply tank 11.
  • the inside 21 of the container is brought into a predetermined vacuum decompression state (for example, a vacuum state below atmospheric pressure) by the suction action of the ejector 34, the water supplied to the inside 21 of the container evaporates, and the heat exchange surface 22 is cooled to the target temperature.
  • a predetermined vacuum decompression state for example, a vacuum state below atmospheric pressure
  • the control unit 40 of the present embodiment performs a vacuum so that the temperature detected by the temperature sensor 35 (hereinafter also referred to as the water temperature of the tank 31) becomes the target temperature (for example, 90 ° C.).
  • the generation unit 30 is controlled.
  • the control unit 40 is configured to control the opening degree of the supply valve 14.
  • the target temperature of the water temperature of the tank 31 is set to the same value as the target temperature (90 ° C.) of the heat exchange surface 22.
  • the internal pressure of the tank 31 (hereinafter also referred to as tank internal pressure) is atmospheric pressure, and the pressure between the discharge port of the pump 33 and the inlet of the ejector 34 in the circulation pipe 32 and the supply rod 11 is positive pressure.
  • the pressure at the suction port of the ejector 34 (hereinafter also referred to as suction port pressure), the pressure at the discharge pipe 12, and the pressure inside the container 21 (hereinafter also referred to as container internal pressure) are in the same vacuum decompression state.
  • the suction port pressure becomes a saturation pressure (temperature equivalent saturation pressure) corresponding to the temperature of the water flowing into the inlet (that is, the water temperature of the tank 31). Therefore, the internal pressure of the container also becomes a saturation pressure corresponding to the water temperature of the tank 31.
  • the controller 40 controls the water temperature of the tank 31 to the same target temperature as the target temperature of the heat exchange surface 22, so that the suction port pressure of the ejector 34 is saturated corresponding to the target temperature.
  • Pressure temperature equivalent saturation pressure
  • the water temperature of the tank 31 changes according to the amount of water supplied from the supply pipe 13. For example, when the opening degree of the supply valve 14 is set to a large opening degree, the amount of water supplied from the supply pipe 13 to the tank 31 increases, and the water temperature of the tank 31 decreases. Further, when the opening of the refill valve 14 is set to a small opening, the amount of water supplied from the refill pipe 13 to the tank 31 decreases, and the water temperature of the tank 31 rises.
  • the internal pressure of the container when the suction port pressure of the ejector 34 reaches a saturation pressure corresponding to the target temperature, the internal pressure of the container also becomes the same saturation pressure as the suction port pressure of the ejector 34. That is, the internal pressure of the container becomes a saturation pressure (temperature equivalent saturation pressure) corresponding to the target temperature of the heat exchange surface 22.
  • water at the target temperature of the water temperature of the tank 31 that is, the target temperature of the heat exchange surface 22
  • the water supplied from the tank 31 evaporates and becomes steam having the same temperature as the target temperature of the heat exchange surface 22.
  • the temperature inside the container 21 (hereinafter also referred to as container internal temperature) is maintained at the same temperature as the target temperature of the heat exchange surface 22.
  • the temperature of the heat exchange surface 22 is cooled and maintained at the target temperature.
  • the water temperature of the tank 31 is detected (measured) instead of the temperature of the heat exchange surface 22, and the detected temperature (measured temperature) is the same temperature as the target temperature of the heat exchange surface 22. I tried to become. Thereby, the heat exchange surface 22 can be cooled to the target temperature. Since the water temperature of the tank 31 is less likely to vary than the temperature of the heat exchange surface 22, the controllability of the water temperature of the tank 31 is easy, and as a result, the temperature controllability of the heat exchange surface 22 is improved. .
  • the technique disclosed in the present application is useful for a cooling device that evaporates and cools an object by evaporation of water.
  • Cooling Device 1 Cooling Device 13 Supply Pipe 14 Supply Valve (Flow Control Valve) 20 Heat exchange vessel 22 Heat exchange surface 30 Vacuum generation unit (pump mechanism) 31 Tank 32 Circulating Piping 34 Ejector 40 Control Unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

Provided is a cooling device having improved temperature controllability. A cooling device 1 is provided with: a vacuum generating unit 30 having a water tank 31; an ejector 34, a suction port of which is connected to a heat exchange container 20; and a circulation pipe 32 through which the water in the tank 31 circulates between the tank 31 and the ejector 34. The vacuum generating unit 30 feeds the water in the tank 31 to the heat exchange container 20. The cooling device 1 cools a heat exchange surface 22 within the heat exchange container 20 by means of evaporation of the water fed from the vacuum generating unit 30 to the heat exchange container 20. The cooling device 1 is further provided with a controller 40 that controls the water temperature in the tank 31 so that the water temperature in the tank 31 becomes equal to a target temperature of the heat exchange surface 22.

Description

冷却装置Cooling system
 本願は、水で気化冷却する冷却装置に関するものである。 This application relates to a cooling device that vaporizes and cools with water.
 例えば特許文献1に開示されているように、水の蒸発潜熱によって対象物を気化冷却する冷却装置が知られている。この冷却装置は、熱交換容器内へ冷却水を供給すると共に、吸引作用により熱交換容器内を所定の減圧状態(例えば、大気圧以下の真空状態)にするポンプ機構(吸引手段)を備えている。この冷却装置では、熱交換容器内に供給された冷却水が蒸発し、熱交換容器内の熱交換面が冷却(気化冷却)される。こうして、上記の冷却装置では熱交換面を所定温度に維持するようにしている。 For example, as disclosed in Patent Document 1, a cooling device that evaporates and cools an object by latent heat of water evaporation is known. This cooling device is provided with a pump mechanism (suction means) that supplies cooling water into the heat exchange container and places the heat exchange container in a predetermined reduced pressure state (for example, a vacuum state below atmospheric pressure) by suction. Yes. In this cooling device, the cooling water supplied into the heat exchange vessel evaporates, and the heat exchange surface in the heat exchange vessel is cooled (vaporization cooling). Thus, in the above cooling device, the heat exchange surface is maintained at a predetermined temperature.
特許第5384236号公報Japanese Patent No. 5384236
 ところで、上述したような冷却装置では、一般に、熱交換容器内の熱交換面の温度を測定(検出)し、その測定温度(検出温度)が所定値になるように冷却水の供給温度が制御される。ところが、この温度制御方法では、熱交換面の測定温度がばらつく虞があり、そのため、制御性が悪いという問題があった。 By the way, in the cooling device as described above, generally, the temperature of the heat exchange surface in the heat exchange vessel is measured (detected), and the supply temperature of the cooling water is controlled so that the measured temperature (detected temperature) becomes a predetermined value. Is done. However, in this temperature control method, there is a possibility that the measured temperature of the heat exchange surface may vary, and there is a problem that controllability is poor.
 本願に開示の技術は、かかる事情に鑑みてなされたものであり、その目的は、温度制御性を向上し得る冷却装置を提供することにある。 The technology disclosed in the present application has been made in view of such circumstances, and an object thereof is to provide a cooling device capable of improving temperature controllability.
 本願に開示の技術は、水のタンクと、吸引口が熱交換容器に接続されるエゼクタと、上記タンクの水が上記エゼクタとの間で循環する循環配管とを有し、上記タンクの水を上記熱交換容器に供給するポンプ機構を備え、該ポンプ機構から上記熱交換容器に供給された水の蒸発によって上記熱交換容器内の熱交換面を冷却する冷却装置を前提としている。そして、本願の冷却装置は、上記タンクの水の温度が上記熱交換面の目標温度と同じ温度になるように、上記タンクの水の温度を制御する制御部を備えているものである。 The technology disclosed in the present application includes a water tank, an ejector having a suction port connected to a heat exchange container, and a circulation pipe through which water in the tank circulates between the ejector and the water in the tank. It is premised on a cooling device that includes a pump mechanism that supplies the heat exchange vessel and cools the heat exchange surface in the heat exchange vessel by evaporation of water supplied from the pump mechanism to the heat exchange vessel. And the cooling device of this application is provided with the control part which controls the temperature of the water of the said tank so that the temperature of the water of the said tank may become the same temperature as the target temperature of the said heat exchange surface.
 以上のように、本願の冷却装置によれば、タンクの水がエゼクタとの間で循環することにより、エゼクタの吸引口はタンクの水温に相当する飽和圧力(温度相当飽和圧力)となる。そうすると、エゼクタの吸引口に接続されている熱交換容器の内部圧力も、タンクの水温に相当する飽和圧力となる。そして、タンクの水が熱交換容器に供給されて蒸発気化することで、熱交換容器の内部温度はタンクの水温と同じ温度となる。ここで、本願の冷却装置では、タンクの水温が熱交換面の目標温度と同じ温度になるようにタンクの水温を制御するようにした。そのため、熱交換容器の内部圧力を熱交換面の目標温度に相当する飽和圧力にすることができる。これにより、熱交換容器の内部温度を熱交換面の目標温度と同じ温度に維持することができ、熱交換面の温度をその目標温度に冷却維持することができる。このように、熱交換面の温度よりもばらつきの虞が少ないタンクの水温について温度制御するようにしたので、温度制御性を向上させることができる。 As described above, according to the cooling device of the present application, the water in the tank circulates between the ejector and the suction port of the ejector becomes a saturated pressure (temperature equivalent saturated pressure) corresponding to the water temperature of the tank. Then, the internal pressure of the heat exchange container connected to the suction port of the ejector also becomes a saturation pressure corresponding to the water temperature of the tank. And the water of a tank is supplied to a heat exchange container, and it evaporates and the internal temperature of a heat exchange container becomes the same temperature as the water temperature of a tank. Here, in the cooling device of the present application, the water temperature of the tank is controlled so that the water temperature of the tank becomes the same temperature as the target temperature of the heat exchange surface. Therefore, the internal pressure of the heat exchange vessel can be set to a saturation pressure corresponding to the target temperature of the heat exchange surface. Thereby, the internal temperature of the heat exchange container can be maintained at the same temperature as the target temperature of the heat exchange surface, and the temperature of the heat exchange surface can be maintained to be cooled to the target temperature. As described above, the temperature control is performed on the water temperature of the tank that is less likely to vary than the temperature of the heat exchange surface, so that the temperature controllability can be improved.
図1は、実施形態に係る冷却装置の概略構成を示す配管系統図である。FIG. 1 is a piping system diagram illustrating a schematic configuration of a cooling device according to an embodiment.
 以下、本願の実施形態について図面を参照しながら説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本願に開示の技術、その適用物、あるいはその用途の範囲を制限することを意図するものではない。 Hereinafter, embodiments of the present application will be described with reference to the drawings. Note that the following embodiments are essentially preferable examples, and are not intended to limit the scope of the technology disclosed in the present application, applications thereof, or uses thereof.
 図1に示すように、本実施形態の冷却装置1は、熱交換容器20内に冷却源である水(冷却水)を供給して蒸発させて、熱交換容器20の熱交換面22を目標温度(設定温度)に冷却する気化冷却装置である。 As shown in FIG. 1, the cooling device 1 of the present embodiment supplies water (cooling water), which is a cooling source, into the heat exchange vessel 20 and evaporates it to target the heat exchange surface 22 of the heat exchange vessel 20. It is a vaporization cooling device that cools to a temperature (set temperature).
 冷却装置1は、水や蒸気の流体回路10を備えている。流体回路10は、供給菅11と、排出管12と、熱交換容器20と、真空発生ユニット30と、制御部40とを備えている。 The cooling device 1 includes a fluid circuit 10 for water and steam. The fluid circuit 10 includes a supply rod 11, a discharge pipe 12, a heat exchange container 20, a vacuum generation unit 30, and a control unit 40.
 熱交換容器20は、例えば円筒状に形成されており、上端に設けられた平板の下面が熱交換面22となっている。供給菅11は、一端(流出端)が熱交換容器20の下面に接続され、他端(流入端)が真空発生ユニット30に接続されている。供給菅11は、真空発生ユニット30から水(冷却水)が熱交換容器20に供給される。なお、図示しないが、供給菅11の一端には熱交換容器20の容器内部21に水を噴霧するためのスプレーノズルが設けられている。熱交換容器20では、供給菅11から容器内部21に供給された水が熱交換面22と熱交換して蒸発(気化)し、熱交換面22が冷却される。つまり、熱交換容器20の熱交換面22は水に熱(水の蒸発潜熱)を奪われることにより冷却(気化冷却)される。 The heat exchange container 20 is formed in a cylindrical shape, for example, and the lower surface of a flat plate provided at the upper end is a heat exchange surface 22. The supply rod 11 has one end (outflow end) connected to the lower surface of the heat exchange container 20 and the other end (inflow end) connected to the vacuum generation unit 30. In the supply tank 11, water (cooling water) is supplied from the vacuum generation unit 30 to the heat exchange container 20. Although not shown, a spray nozzle for spraying water into the container interior 21 of the heat exchange container 20 is provided at one end of the supply rod 11. In the heat exchange container 20, the water supplied from the supply tank 11 to the container inside 21 exchanges heat with the heat exchange surface 22 and evaporates (vaporizes), and the heat exchange surface 22 is cooled. That is, the heat exchange surface 22 of the heat exchange vessel 20 is cooled (vaporized and cooled) by the heat (latent heat of water evaporation) being taken away by water.
 排出管12は、一端(流入端)が熱交換容器20の上部に接続され、他端(流出端)が真空発生ユニット30に接続されている。排出管12は、容器内部21で水が蒸発して発生した蒸気(容器内部21で蒸発しきれなかった水を含む。以下同様)が排出される。 The discharge pipe 12 has one end (inflow end) connected to the top of the heat exchange vessel 20 and the other end (outflow end) connected to the vacuum generation unit 30. The discharge pipe 12 discharges steam generated by evaporation of water in the container interior 21 (including water that could not be evaporated in the container interior 21; the same applies hereinafter).
 真空発生ユニット30は、タンク31と、循環配管32と、ポンプ33と、エゼクタ34とを備えており、本願の請求項に係るポンプ機構を構成している。タンク31は、熱交換容器20に供給するための水(冷却水)とエゼクタ34を駆動させるための水が貯留されるものであり、開放タンクを構成している。循環配管32は、タンク31に接続されている。つまり、循環配管32は、一端(流入端)がタンク31の下部に接続され、他端(流出端)がタンク31の上部に接続されている。循環配管32には、上流側(流入端側)から順に、ポンプ33およびエゼクタ34が設けられている。真空発生ユニット30では、排出管12がエゼクタ34の吸引口に接続され、供給菅11が循環配管32におけるポンプ33の流出口とエゼクタ34の流入口との間に接続されている。つまり、エゼクタ34の吸引口は排出管12を介して熱交換容器20に接続されている。 The vacuum generation unit 30 includes a tank 31, a circulation pipe 32, a pump 33, and an ejector 34, and constitutes a pump mechanism according to the claims of the present application. The tank 31 stores water (cooling water) to be supplied to the heat exchange container 20 and water for driving the ejector 34, and constitutes an open tank. The circulation pipe 32 is connected to the tank 31. That is, one end (inflow end) of the circulation pipe 32 is connected to the lower part of the tank 31, and the other end (outflow end) is connected to the upper part of the tank 31. The circulation pipe 32 is provided with a pump 33 and an ejector 34 in order from the upstream side (inflow end side). In the vacuum generation unit 30, the discharge pipe 12 is connected to the suction port of the ejector 34, and the supply rod 11 is connected between the outlet of the pump 33 and the inlet of the ejector 34 in the circulation pipe 32. That is, the suction port of the ejector 34 is connected to the heat exchange container 20 via the discharge pipe 12.
 真空発生ユニット30では、ポンプ33によってタンク31の水が循環配管32を通って循環する。つまり、循環配管32はタンク31の水がエゼクタ34との間で循環するものである。真空発生ユニット30は、ポンプ33によってタンク31の水が、エゼクタ34の流入口に供給され、エゼクタ34の流出口から排出されることにより、エゼクタ34の吸引口において吸引作用が生じるように構成されている。つまり、タンク31の水がエゼクタ34との間で循環することによってエゼクタ34が駆動される。このエゼクタ34の吸引作用によって、容器内部21の蒸気が排出管12に排出される。つまり、エゼクタ34は、排出管12を介して容器内部21の蒸気(蒸発しきれなかった水を含む。以下同様)を吸引する。また、真空発生ユニット30では、循環配管32を流れる水の一部が供給菅11を介して熱交換容器20に供給される。このように、真空発生ユニット30は、タンク31の水を熱交換容器20の容器内部21に供給すると共に、容器内部21で水が蒸発して発生した蒸気を吸引するように構成されている。 In the vacuum generation unit 30, the water in the tank 31 is circulated through the circulation pipe 32 by the pump 33. That is, the circulation pipe 32 circulates the water in the tank 31 with the ejector 34. The vacuum generation unit 30 is configured such that a suction action is generated at the suction port of the ejector 34 when water in the tank 31 is supplied to the inlet of the ejector 34 by the pump 33 and discharged from the outlet of the ejector 34. ing. That is, the ejector 34 is driven as the water in the tank 31 circulates between the ejector 34 and the water. By the suction action of the ejector 34, the vapor inside the container 21 is discharged to the discharge pipe 12. That is, the ejector 34 sucks the vapor (including water that could not be evaporated; the same applies hereinafter) inside the container 21 through the discharge pipe 12. In the vacuum generation unit 30, a part of the water flowing through the circulation pipe 32 is supplied to the heat exchange container 20 through the supply tank 11. As described above, the vacuum generation unit 30 is configured to supply the water in the tank 31 to the container inside 21 of the heat exchange container 20 and suck the vapor generated by the evaporation of water in the container inside 21.
 タンク31には、水(冷却水)の補給管13が接続されている。補給管13には、タンク31への供給水量を調節可能な補給弁14(流量調整弁)が設けられている。タンク31には、補給管13を通じて所定温度(例えば、常温)の水が供給される。また、タンク31には、貯留されている水の温度を検出(測定)する温度センサ35が設けられている。 The tank 31 is connected to a supply pipe 13 for water (cooling water). The supply pipe 13 is provided with a supply valve 14 (flow rate adjustment valve) capable of adjusting the amount of water supplied to the tank 31. The tank 31 is supplied with water at a predetermined temperature (for example, room temperature) through the supply pipe 13. The tank 31 is provided with a temperature sensor 35 that detects (measures) the temperature of the stored water.
 上記のように構成された冷却装置1では、タンク31の水(冷却水)を熱交換容器20に供給して熱交換面22を目標温度に冷却する冷却動作が行われる。具体的に、この冷却動作では、ポンプ33が駆動されると、タンク31の水がポンプ33によってエゼクタ34に供給されると共に供給菅11を通じて熱交換容器20の容器内部21に供給される。容器内部21はエゼクタ34の吸引作用によって所定の真空減圧状態(例えば、大気圧以下の真空状態)になり、その容器内部21に供給された水は蒸発し、熱交換面22が目標温度に冷却(気化冷却)される。容器内部21で水が蒸発して発生した蒸気は、排出管12を通じてエゼクタ34に吸引されてタンク31に貯留される。 In the cooling device 1 configured as described above, a cooling operation is performed in which the water (cooling water) in the tank 31 is supplied to the heat exchange vessel 20 to cool the heat exchange surface 22 to the target temperature. Specifically, in this cooling operation, when the pump 33 is driven, water in the tank 31 is supplied to the ejector 34 by the pump 33 and also supplied to the container inside 21 of the heat exchange container 20 through the supply tank 11. The inside 21 of the container is brought into a predetermined vacuum decompression state (for example, a vacuum state below atmospheric pressure) by the suction action of the ejector 34, the water supplied to the inside 21 of the container evaporates, and the heat exchange surface 22 is cooled to the target temperature. (Vaporization cooling). Steam generated by evaporation of water inside the container 21 is sucked into the ejector 34 through the discharge pipe 12 and stored in the tank 31.
 そして、本実施形態の制御部40は、上記の冷却動作において、温度センサ35の検出温度(以下、タンク31の水温とも言う。)がその目標温度(例えば、90℃)となるように、真空発生ユニット30を制御する。具体的に、制御部40は補給弁14の開度を制御するように構成されている。タンク31の水温の目標温度は、熱交換面22の目標温度(90℃)と同じ値に設定される。 Then, in the cooling operation, the control unit 40 of the present embodiment performs a vacuum so that the temperature detected by the temperature sensor 35 (hereinafter also referred to as the water temperature of the tank 31) becomes the target temperature (for example, 90 ° C.). The generation unit 30 is controlled. Specifically, the control unit 40 is configured to control the opening degree of the supply valve 14. The target temperature of the water temperature of the tank 31 is set to the same value as the target temperature (90 ° C.) of the heat exchange surface 22.
 ここで、流体回路10内の圧力状態について説明する。タンク31の内部圧力(以下、タンク内部圧力とも言う。)は大気圧であり、循環配管32におけるポンプ33の吐出口とエゼクタ34の流入口との間および供給菅11は正圧である。エゼクタ34の吸引口の圧力(以下、吸引口圧力とも言う。)と、排出管12の圧力と、容器内部21の圧力(以下、容器内部圧力とも言う。)は、同じ真空減圧状態である。具体的に、エゼクタ34では吸引口圧力が流入口に流入する水の温度(即ち、タンク31の水温)に相当する飽和圧力(温度相当飽和圧力)となる。そのため、容器内部圧力もタンク31の水温に相当する飽和圧力となる。 Here, the pressure state in the fluid circuit 10 will be described. The internal pressure of the tank 31 (hereinafter also referred to as tank internal pressure) is atmospheric pressure, and the pressure between the discharge port of the pump 33 and the inlet of the ejector 34 in the circulation pipe 32 and the supply rod 11 is positive pressure. The pressure at the suction port of the ejector 34 (hereinafter also referred to as suction port pressure), the pressure at the discharge pipe 12, and the pressure inside the container 21 (hereinafter also referred to as container internal pressure) are in the same vacuum decompression state. Specifically, in the ejector 34, the suction port pressure becomes a saturation pressure (temperature equivalent saturation pressure) corresponding to the temperature of the water flowing into the inlet (that is, the water temperature of the tank 31). Therefore, the internal pressure of the container also becomes a saturation pressure corresponding to the water temperature of the tank 31.
 本実施形態では、冷却動作時、制御部40によってタンク31の水温が熱交換面22の目標温度と同じ目標温度に制御されることにより、エゼクタ34の吸引口圧力がその目標温度に相当する飽和圧力(温度相当飽和圧力)になる。タンク31の水温は補給管13から供給される水量に応じて変化する。例えば、補給弁14の開度が大開度に設定されると、補給管13からタンク31への供給水量が多くなり、タンク31の水温は低下する。また、補給弁14の開度が小開度に設定されると、補給管13からタンク31への供給水量が少なくなり、タンク31の水温は上昇する。 In the present embodiment, during the cooling operation, the controller 40 controls the water temperature of the tank 31 to the same target temperature as the target temperature of the heat exchange surface 22, so that the suction port pressure of the ejector 34 is saturated corresponding to the target temperature. Pressure (temperature equivalent saturation pressure). The water temperature of the tank 31 changes according to the amount of water supplied from the supply pipe 13. For example, when the opening degree of the supply valve 14 is set to a large opening degree, the amount of water supplied from the supply pipe 13 to the tank 31 increases, and the water temperature of the tank 31 decreases. Further, when the opening of the refill valve 14 is set to a small opening, the amount of water supplied from the refill pipe 13 to the tank 31 decreases, and the water temperature of the tank 31 rises.
 こうして、エゼクタ34の吸引口圧力が目標温度に相当する飽和圧力になると、容器内部圧力もエゼクタ34の吸引口圧力と同じ飽和圧力となる。つまり、容器内部圧力は、熱交換面22の目標温度に相当する飽和圧力(温度相当飽和圧力)になる。一方、容器内部21には、タンク31の水温の目標温度(即ち、熱交換面22の目標温度)の水がタンク31から供給菅11を介して供給される。容器内部21では、タンク31から供給された水が蒸発して熱交換面22の目標温度と同じ温度の蒸気となる。これにより、容器内部21の温度(以下、容器内部温度とも言う。)は熱交換面22の目標温度と同じ温度に維持される。その結果、熱交換面22の温度はその目標温度に冷却維持されることになる。 Thus, when the suction port pressure of the ejector 34 reaches a saturation pressure corresponding to the target temperature, the internal pressure of the container also becomes the same saturation pressure as the suction port pressure of the ejector 34. That is, the internal pressure of the container becomes a saturation pressure (temperature equivalent saturation pressure) corresponding to the target temperature of the heat exchange surface 22. On the other hand, water at the target temperature of the water temperature of the tank 31 (that is, the target temperature of the heat exchange surface 22) is supplied from the tank 31 through the supply tank 11 to the container interior 21. In the container interior 21, the water supplied from the tank 31 evaporates and becomes steam having the same temperature as the target temperature of the heat exchange surface 22. As a result, the temperature inside the container 21 (hereinafter also referred to as container internal temperature) is maintained at the same temperature as the target temperature of the heat exchange surface 22. As a result, the temperature of the heat exchange surface 22 is cooled and maintained at the target temperature.
 以上のように、上記実施形態によれば、熱交換面22の温度の代わりにタンク31の水温を検出(測定)し、その検出温度(測定温度)が熱交換面22の目標温度と同じ温度になるようにした。これにより、熱交換面22を目標温度に冷却することができる。タンク31の水温は熱交換面22の温度に比してばらつきの虞が少ないため、タンク31の水温についての制御性が容易であり、その結果、熱交換面22についての温度制御性が向上する。 As described above, according to the embodiment, the water temperature of the tank 31 is detected (measured) instead of the temperature of the heat exchange surface 22, and the detected temperature (measured temperature) is the same temperature as the target temperature of the heat exchange surface 22. I tried to become. Thereby, the heat exchange surface 22 can be cooled to the target temperature. Since the water temperature of the tank 31 is less likely to vary than the temperature of the heat exchange surface 22, the controllability of the water temperature of the tank 31 is easy, and as a result, the temperature controllability of the heat exchange surface 22 is improved. .
 本願に開示の技術は、水の蒸発によって対象物を気化冷却する冷却装置について有用である。 The technique disclosed in the present application is useful for a cooling device that evaporates and cools an object by evaporation of water.
1    冷却装置
13   補給管
14   補給弁(流量調整弁)
20   熱交換容器
22   熱交換面
30   真空発生ユニット(ポンプ機構)
31   タンク
32   循環配管
34   エゼクタ
40   制御部
 
1 Cooling Device 13 Supply Pipe 14 Supply Valve (Flow Control Valve)
20 Heat exchange vessel 22 Heat exchange surface 30 Vacuum generation unit (pump mechanism)
31 Tank 32 Circulating Piping 34 Ejector 40 Control Unit

Claims (2)

  1.  水のタンクと、吸引口が熱交換容器に接続されるエゼクタと、上記タンクの水が上記エゼクタとの間で循環する循環配管とを有し、上記タンクの水を上記熱交換容器に供給するポンプ機構を備え、該ポンプ機構から上記熱交換容器に供給された水の蒸発によって上記熱交換容器内の熱交換面を冷却する冷却装置であって、
     上記タンクの水の温度が上記熱交換面の目標温度と同じ温度になるように、上記タンクの水の温度を制御する制御部を備えている
    ことを特徴とする冷却装置。
    A water tank, an ejector whose suction port is connected to the heat exchange container, and a circulation pipe through which water in the tank circulates between the ejector and supplying water from the tank to the heat exchange container A cooling device comprising a pump mechanism, wherein the heat exchange surface in the heat exchange vessel is cooled by evaporation of water supplied from the pump mechanism to the heat exchange vessel,
    A cooling device comprising a control unit for controlling the temperature of the water in the tank so that the temperature of the water in the tank is the same as the target temperature of the heat exchange surface.
  2.  請求項1に記載の冷却装置において、
     上記タンクに接続され、該タンクに上記水が供給される補給管と、
     上記補給管に設けられる流量調整弁とを備え、
     上記制御部は、上記タンクの水の温度が上記熱交換面の目標温度と同じ温度になるように、上記流量調整弁を制御するように構成されている
    ことを特徴とする冷却装置。
     
    The cooling device according to claim 1, wherein
    A supply pipe connected to the tank and supplied with the water;
    A flow rate adjustment valve provided in the supply pipe,
    The said control part is comprised so that the temperature of the water of the said tank may control the said flow regulating valve so that it may become the same temperature as the target temperature of the said heat exchange surface, The cooling device characterized by the above-mentioned.
PCT/JP2015/071610 2014-08-11 2015-07-30 Cooling device WO2016024478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016502821A JP5989932B2 (en) 2014-08-11 2015-07-30 Cooling system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-163502 2014-08-11
JP2014163502 2014-08-11

Publications (1)

Publication Number Publication Date
WO2016024478A1 true WO2016024478A1 (en) 2016-02-18

Family

ID=55304107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071610 WO2016024478A1 (en) 2014-08-11 2015-07-30 Cooling device

Country Status (2)

Country Link
JP (1) JP5989932B2 (en)
WO (1) WO2016024478A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208845A (en) * 1994-01-14 1995-08-11 Tlv Co Ltd Pressure-reduced vaporizing cooler
JPH102631A (en) * 1996-06-14 1998-01-06 Tlv Co Ltd Evaporative cooling device
JP2006308185A (en) * 2005-04-28 2006-11-09 Tlv Co Ltd Evaporative cooling device
JP5384236B2 (en) * 2009-07-16 2014-01-08 株式会社テイエルブイ Evaporative cooling device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07208845A (en) * 1994-01-14 1995-08-11 Tlv Co Ltd Pressure-reduced vaporizing cooler
JPH102631A (en) * 1996-06-14 1998-01-06 Tlv Co Ltd Evaporative cooling device
JP2006308185A (en) * 2005-04-28 2006-11-09 Tlv Co Ltd Evaporative cooling device
JP5384236B2 (en) * 2009-07-16 2014-01-08 株式会社テイエルブイ Evaporative cooling device

Also Published As

Publication number Publication date
JPWO2016024478A1 (en) 2017-04-27
JP5989932B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP2006226540A (en) Heating/cooling device
JP2008122041A (en) Heating/cooling device
JP5989932B2 (en) Cooling system
JP2009300014A (en) Evaporative cooling device
JP2006349248A (en) Heating/cooling apparatus
JP2008096058A (en) Evaporative cooling device
JP2008170125A (en) Heating/cooing device
JP2008224175A (en) Heating and cooling device
JP2008096059A (en) Decompression steam heating device
JP2018047418A (en) Steam heating device
JP2011085327A (en) Heating-cooling device
JP2013064530A (en) Heat exchanger
JP2011085329A (en) Heating-cooling device
JP2011064348A (en) Steam heating device
JP2008309420A (en) Heat exchanger
JP2000356443A (en) Evaporative cooling device
JP5301263B2 (en) Cooling system
JP5813355B2 (en) Vacuum steam thawing device
JP5184158B2 (en) Heating and cooling device
JP5184159B2 (en) Heating and cooling device
JP2008096060A (en) Heating/cooling device
JP2013064531A (en) Heat exchanger
JP2012223116A (en) Vacuum steam thawing apparatus
JP2006223927A (en) Steam heating system
JP2008309419A (en) Heat exchanger

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016502821

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15831626

Country of ref document: EP

Kind code of ref document: A1