WO2016023427A1 - 具有控制波束宽度的小型化天线单元和大规模天线阵列 - Google Patents

具有控制波束宽度的小型化天线单元和大规模天线阵列 Download PDF

Info

Publication number
WO2016023427A1
WO2016023427A1 PCT/CN2015/085917 CN2015085917W WO2016023427A1 WO 2016023427 A1 WO2016023427 A1 WO 2016023427A1 CN 2015085917 W CN2015085917 W CN 2015085917W WO 2016023427 A1 WO2016023427 A1 WO 2016023427A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric constant
substrate
antenna
miniaturized
high dielectric
Prior art date
Application number
PCT/CN2015/085917
Other languages
English (en)
French (fr)
Inventor
庄昆杰
Original Assignee
庄昆杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 庄昆杰 filed Critical 庄昆杰
Publication of WO2016023427A1 publication Critical patent/WO2016023427A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to the field of mobile communication technologies, and in particular, to a miniaturized antenna unit and a large-scale antenna array having a control beam width.
  • wireless data services will grow 500-1000 times in the next decade, with an average annual increase of 1.6-2 times, which puts higher requirements on the network capacity of wireless communication systems.
  • networks including improving spectrum efficiency, increasing network density, increasing system bandwidth, and intelligent service offloading.
  • the basic feature of the large-scale antenna array system is that by arranging a large number of antenna arrays (from tens to thousands) on the base station side, it is more than the conventional antenna array system (the number of antenna arrays is less than eight). To accurately control the wave number, and then use spatial multiplexing technology to simultaneously serve more users on the same time-frequency resource to improve the spectrum efficiency of the wireless communication system, so as to meet the transmission requirements of massive information in the future 4G/5G wireless communication system. .
  • the large-scale antenna array system can well suppress the interference in the wireless communication system, and bring about huge interference suppression gains within the cell and between cells, so that the capacity and coverage of the entire wireless communication system are further improved.
  • the large-scale antenna array system can deeply utilize spatial radio resources, and theoretically can significantly improve the spectrum efficiency and power efficiency of the system, and is an important technology for constructing a future energy-efficient green broadband wireless communication system.
  • the antenna unit of the existing large-scale antenna array has a large volume design, which further causes a large-sized antenna array to have a large volume.
  • the area of the antenna array of 128 units can be 30cm x 120cm.
  • the beam width of a common antenna is generally around 65 ° ⁇ 10 °, and the beam width is narrow.
  • the present invention is to overcome the drawbacks of the prior art antenna unit having a large volume. According to an aspect of the present invention, a miniaturized antenna unit having a control beam width is proposed.
  • a miniaturized antenna unit having a control beam width comprising: a radiation piece, a dielectric layer, a microstrip slot antenna substrate, and a reflection cavity; the dielectric layer is disposed on a front surface of the radiation piece and the microstrip slot antenna substrate And the dielectric constant of the dielectric layer is greater than the dielectric constant of the air; the microstrip slot antenna substrate uses a high dielectric constant substrate, and the dielectric constant of the high dielectric constant substrate is greater than 3.5; the reflective cavity is disposed in the microstrip gap The reverse side of the antenna substrate.
  • the microstrip slot antenna substrate comprises a high dielectric constant substrate, a microslot slit and a microstrip line; the microslot slit is disposed on the front surface of the high dielectric constant substrate, and the microstrip line is disposed on the high dielectric constant
  • the reverse side of the substrate; the front surface of the microstrip slot antenna substrate is flush with the front surface of the high dielectric constant substrate, and the reverse side of the microstrip slot antenna substrate is the same as the opposite surface of the high dielectric constant substrate.
  • the dielectric constant values of the high dielectric constant substrate and the dielectric layer are respectively:
  • N is the dielectric constant of the high dielectric constant substrate and M is the dielectric constant of the dielectric layer.
  • the miniaturized antenna unit provided by the embodiment of the invention shortens the wavelength of the frequency signal excited in the substrate by increasing the dielectric constant of the substrate, so that the microgroove gap needs to be correspondingly shortened in order to achieve resonant radiation. Thereby, the size of the antenna substrate can be greatly reduced.
  • the wavelength of the signal is reduced, and the size of the radiation sheet that resonates with it is correspondingly reduced; meanwhile, since the dielectric constant of the dielectric layer becomes high The loss is correspondingly increased.
  • the miniaturized antenna unit provided by the embodiment of the present invention can control the beam width of the antenna by changing the material of the dielectric layer (ie, changing the dielectric constant of the dielectric layer).
  • the present invention is directed to overcoming the drawbacks of large-scale antenna arrays in the prior art. According to one aspect of the present invention, a miniaturized large-scale antenna array having a control beam width is proposed.
  • a miniaturized large-scale antenna array having a control beam width according to an embodiment of the present invention is composed of the above-described miniaturized antenna unit having a control beam width.
  • the miniaturized large-scale antenna array having the control beam width is a two-dimensional large-scale antenna array.
  • the miniaturized large-scale antenna array with control beam width provided by the embodiment of the invention adopts a miniaturized antenna unit and has small volume, so it has the advantages of miniaturization, light and compact, small wind receiving area, light weight, and easy installation.
  • the control beam width can be achieved by changing the dielectric constant of the dielectric layer and the high dielectric constant substrate in the antenna unit.
  • the miniaturized antenna array can also realize green invisibility, and the antenna array is placed in a building such as a road sign to achieve efficient signal coverage.
  • FIG. 1 is a configuration diagram of a large-scale antenna array system in the prior art
  • FIG. 2 is a structural diagram of a miniaturized antenna unit according to an embodiment of the present invention.
  • FIG. 3 is a top plan view of a 4 ⁇ 4 miniaturized large-scale antenna array according to an embodiment of the present invention.
  • FIG. 4 is a side view of a 4 ⁇ 4 miniaturized large-scale antenna array in accordance with an embodiment of the present invention.
  • FIG. 2 is a structural diagram of the miniaturized antenna unit, including: a radiation sheet 10, a dielectric layer 20, a microstrip slot antenna substrate 30, and a reflection. Cavity 40.
  • the dielectric layer 20 is disposed between the radiation sheet 10 and the front surface of the microstrip slot antenna substrate 30, and the dielectric constant of the dielectric layer 20 is greater than the dielectric constant of the air; the microstrip slot antenna substrate 30 is used.
  • the reflective surface 401 of the reflective cavity 40 is used to reflect the signal transmitted by the microstrip slot antenna, ensuring that the antenna element transmits signals only in one direction.
  • the microstrip slot antenna substrate 30 includes a high dielectric constant substrate 301, a microslot slit 302, and a microstrip line 303.
  • the microslot slit 302 is disposed on the front surface of the high dielectric constant substrate 301
  • the microstrip line 303 is disposed on the reverse side of the high dielectric constant substrate 301; the front surface of the microstrip slot antenna substrate 30 and the high dielectric constant substrate 301
  • the front surface is the same surface, and the reverse side of the microstrip slot antenna substrate 30 is flush with the opposite surface of the high dielectric constant substrate 301.
  • the miniaturized antenna unit provided by the embodiment of the invention shortens the wavelength of the frequency signal excited in the substrate by increasing the dielectric constant of the substrate, so that the microgroove gap needs to be correspondingly shortened in order to achieve resonant radiation. Thereby, the size of the antenna substrate can be greatly reduced.
  • the wavelength of the signal is reduced, and the size of the radiation sheet that resonates with it is correspondingly reduced; meanwhile, since the dielectric constant of the dielectric layer becomes high The loss is correspondingly increased.
  • the miniaturized antenna unit provided by the embodiment of the present invention can control the beam width of the antenna by changing the material of the dielectric layer (ie, changing the dielectric constant of the dielectric layer).
  • the miniaturized antenna unit provided by the embodiment of the invention has the characteristics of high gain of the unit antenna structure: when the dielectric layer is air, the gain of the miniaturized antenna unit can reach 8.3 dB, and the gain of the conventional antenna unit is generally about 6 dB. . After increasing the dielectric constant of the dielectric layer, the gain of the unit antenna drops to the same extent as the conventional antenna unit, but the volume is much smaller than that of the conventional antenna unit.
  • the reference antenna in Table 1 is a miniaturized antenna unit in which the dielectric layers are all air. Compared with the conventional antenna, the excitation antenna has different excitation modes, and the reference antenna has a higher gain (the gain of the conventional antenna unit is generally about 6 dB, The gain of the reference antenna can reach 8.3dB). Can be derived from Table 1. When the dielectric constant of the antenna substrate is generally from 3.5 to 10, and the dielectric constant of the dielectric layer reaches about 10, the antenna unit cannot operate normally. Therefore, the dielectric constants of the high dielectric constant substrate and the dielectric layer are respectively in the range of:
  • the antenna beamwidth can be controlled to be approximately between 60° and 110°.
  • the antenna unit of the frequency range of 2555-2635 is taken as an example, and the antenna unit can also be applied to antennas or ultra-wideband antennas of other frequency ranges.
  • Embodiments of the present invention also provide a miniaturized large-scale antenna array having a control beam width.
  • the miniaturized large-scale antenna array is composed of the above-described miniaturized antenna unit having a control beam width.
  • the miniaturized large-scale antenna array is a two-dimensional large-scale antenna array, and a square array or a circular array may be specifically used.
  • the embodiment of the present invention takes a square array as an example.
  • the structure of the miniaturized large-scale antenna array can be specifically shown in FIG. 3 to FIG. 4 . It should be noted that, FIG. 3 to FIG. 4 take 4 ⁇ 4 as an example, and the array may also adopt other arrangements, such as an array of 4 ⁇ 8, 4 ⁇ 16, 8 ⁇ 8, 8 ⁇ 16, 8 ⁇ 32, etc. Do not give an example.
  • the 4 ⁇ 16 antenna array includes 128 units (since each antenna unit has two The road signal line, so each antenna unit is counted as two units; the 4 ⁇ 16 antenna array includes 64 antenna units as described above, a total of 128 units), and the area can be 20 cm ⁇ 80 cm.
  • the control beam width can be achieved by changing the dielectric constant of the dielectric layer and the high dielectric constant substrate in the antenna unit.
  • the miniaturized large-scale antenna array with control beam width provided by the embodiment of the invention adopts a miniaturized antenna unit and has small volume, so it has the advantages of miniaturization, light and compact, small wind receiving area, light weight, and easy installation.
  • the control beam width can be achieved by changing the dielectric constant of the dielectric layer and the high dielectric constant substrate in the antenna unit.
  • the miniaturized antenna array can also realize green invisibility, and the antenna array is placed in a building such as a road sign to achieve efficient signal coverage.
  • the present invention can be embodied in a variety of different forms.
  • the technical solutions of the present invention are exemplified above with reference to FIG. 2 to FIG. 4, which does not mean that the specific examples applied to the present invention can be limited to In a particular process or embodiment structure, one of ordinary skill in the art will appreciate that the specific embodiments provided above are only a few examples of various preferred uses, and any embodiment embodying the claims of the present invention should be in the present invention. Within the scope of the technical solution.

Abstract

本发明公开了一种具有控制波束宽度的小型化天线单元和大规模天线阵列,其中,该小型化天线单元包括:辐射片、介质层、微带缝隙天线基板和反射腔;介质层设置于辐射片与微带缝隙天线基板的正面之间,且介质层的介电常数大于空气的介电常数;微带缝隙天线基板采用高介电常数基片,且高介电常数基片的介电常数大于3.5;反射腔设置于微带缝隙天线基板的反面。该小型化天线单元和大规模天线阵列具有更小的体积,且通过改变天线单元中介质层和高介电常数基片的介电常数,可以实现控制波束宽度。

Description

具有控制波束宽度的小型化天线单元和大规模天线阵列 技术领域
本发明涉及移动通信技术领域,具体地,涉及一种具有控制波束宽度的小型化天线单元和大规模天线阵列。
背景技术
随着智能终端的兴起及无线数据应用业务的丰富,无线通信系统中的数据用户数大幅增加,数据内容也不再限于传统的文字或图像,未来用户对高清晰度视频、手机电视等多媒体业务的需求越来越多,导致无线网络流量呈现出爆炸式增长的态势。根据市场机构预测,未来十年,无线数据业务将增长500-1000倍,平均每年增长1.6-2倍,这对无线通信系统的网络容量提出了更高的要求。提升无线通信系统网络容量的方法有多种,主要包括提升频谱效率、提高网络密度、增加系统带宽、智能业务分流等。
如图1所示,大规模天线阵列系统的基本特征就是通过在基站侧配置数量众多的天线阵列(从几十至几千),获得比传统天线阵列系统(天线阵列数不超过8个)更为精确地波数控制能力,然后通过空间复用技术,在相同的时频资源上同时服务更多用户来提升无线通信系统的频谱效率,从而满足未来4G/5G无线通信系统中海量信息的传输需求。另外大规模天线阵列系统还可以很好的抑制无线通信系统中的干扰,带来巨大的小区内及小区间的干扰抑制增益,使得整个无线通信系统的容量和覆盖范围得到进一步提高。
大规模天线阵列系统能够深度利用空间无线资源,理论上可显著提高系统的频谱效率和功率效率,是构建未来高能效绿色宽带无线通信系统的重要技术。但是,现有大规模天线阵列的天线单元由于体积设计较大,进一步造成大规模天线阵列的体积较大。目前,128个单元的天线阵列的面积可以做到30cm×120cm。此外,普通天线的波束宽度一般在65°±10°左右,波束宽度较窄。
发明内容
本发明是为了克服现有技术中天线单元体积较大的缺陷,根据本发明的一个方面,提出一种具有控制波束宽度的小型化天线单元。
本发明实施例提供的一种具有控制波束宽度的小型化天线单元,包括:辐射片、介质层、微带缝隙天线基板和反射腔;介质层设置于辐射片与微带缝隙天线基板的正面之间,且介质层的介电常数大于空气的介电常数;微带缝隙天线基板采用高介电常数基片,且高介电常数基片的介电常数大于3.5;反射腔设置于微带缝隙天线基板的反面。
在上述技术方案中,微带缝隙天线基板包括高介电常数基片、微槽缝隙和微带线;微槽缝隙设置于高介电常数基片的正面,微带线设置于高介电常数基片的反面;微带缝隙天线基板的正面与高介电常数基片的正面为同一面,微带缝隙天线基板的反面与高介电常数基片的反面为同一面。
在上述技术方案中,高介电常数基片和介质层的介电常数的取值范围分别为:
3.5<N<10,1<M<10;
其中,N为高介电常数基片的介电常数,M为介质层的介电常数。
本发明实施例提供的小型化天线单元,通过提高基片的介电常数,使在基片中激励出来的频率信号波长变短,这样为了达到谐振辐射,微槽缝隙就需要相应的变短,从而可以大大减小了天线基片的尺寸。此外,当天线辐射出的信号经过具有更高介电常数的介质层时,缩小了信号的波长,与其产生谐振的辐射片的尺寸也相应减小;同时,由于介质层的介电常数变高,其损耗相应变大,当天线辐射出的信号经过具有更高介电常数的介质层时,天线的辐射效率便会降低,即天线增益降低,从而使得天线的波束宽度变宽。所以,介质层的介电常数越高,波束宽度越宽,即本发明实施例提供的小型化天线单元通过改变介质层的材质(即改变介质层的介电常数),可以控制天线的波束宽度。
本发明是为了克服现有技术中大规模天线阵列体积较大的缺陷,根据本发明的一个方面,提出一种具有控制波束宽度的小型化大规模天线阵列。
本发明实施例提供的一种具有控制波束宽度的小型化大规模天线阵列,由上述的具有控制波束宽度的小型化天线单元组成。
在上述技术方案中,具有控制波束宽度的小型化大规模天线阵列为二维大规模天线阵列。
本发明实施例提供的具有控制波束宽度的小型化大规模天线阵列,采用小型化天线单元,体积小,因此具有小型化、轻薄紧凑、受风面积小、重量轻、便于安装等优点。同时,通过改变天线单元中介质层和高介电常数基片的介电常数,可以实现控制波束宽度。该小型化天线阵列还可以实现绿色隐形化,将天线阵列设置于路标等建筑物中,实现高效信号覆盖。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
图1为现有技术中的大规模天线阵列系统配置图;
图2为本发明实施例中小型化天线单元的结构图;
图3为本发明实施例中4×4小型化大规模天线阵列的俯视图;
图4为本发明实施例中4×4小型化大规模天线阵列的侧视图。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
根据本发明实施例,提供了一种具有控制波束宽度的小型化天线单元,图2为该小型化天线单元的结构图,包括:辐射片10、介质层20、微带缝隙天线基板30和反射腔40。
其中,如图2所示,介质层20设置于辐射片10与微带缝隙天线基板30的正面之间,且介质层20的介电常数大于空气的介电常数;微带缝隙天线基板30采用高介电常数基片301,且高介电常数基片301的介电常数 大于3.5;同时,反射腔40设置于微带缝隙天线基板30的反面。反射腔40的反射面401用于反射微带缝隙天线发射的信号,保证天线单元只在一个方向上发射信号。
具体的,微带缝隙天线基板30包括高介电常数基片301、微槽缝隙302和微带线303。其中,微槽缝隙302设置于高介电常数基片301的正面,微带线303设置于高介电常数基片301的反面;微带缝隙天线基板30的正面与高介电常数基片301的正面为同一面,微带缝隙天线基板30的反面与高介电常数基片301的反面为同一面。
本发明实施例提供的小型化天线单元,通过提高基片的介电常数,使在基片中激励出来的频率信号波长变短,这样为了达到谐振辐射,微槽缝隙就需要相应的变短,从而可以大大减小了天线基片的尺寸。此外,当天线辐射出的信号经过具有更高介电常数的介质层时,缩小了信号的波长,与其产生谐振的辐射片的尺寸也相应减小;同时,由于介质层的介电常数变高,其损耗相应变大,当天线辐射出的信号经过具有更高介电常数的介质层时,天线的辐射效率便会降低,即天线增益降低,从而使得天线的波束宽度变宽。所以,介质层的介电常数越高,波束宽度越宽,即本发明实施例提供的小型化天线单元通过改变介质层的材质(即改变介质层的介电常数),可以控制天线的波束宽度。
本发明实施例提供的小型化天线单元,采用的单元天线结构具有高增益的特点:当介质层为空气时,小型化天线单元的增益可达到8.3dB,而传统天线单元的增益一般在6dB左右。提高介质层介电常数后,单元天线增益虽然下降到跟传统天线单元一样的情况,但体积却比传统天线单元小很多。
下面以图2所示的LTE天线为例,采用不同介电常数的基片和介质层时的测试结果如下表1所示:
表1
Figure PCTCN2015085917-appb-000001
表1中的参考天线即为介质层全部为空气的小型化天线单元,其与传统天线相比,激励方式不同,该参考天线具有更高的增益(传统天线单元的增益一般在6dB左右,该参考天线的增益可达到8.3dB)。由表1可得出。天线基片的介电常数一般是从3.5~10,介质层的介电常数达到10左右时,天线单元已不能正常工作。因此,高介电常数基片和介质层的介电常数的取值范围分别为:
3.5<N<10;1<M<10;
其中,N为高介电常数基片的介电常数,M为介质层的介电常数。相应的,天线波束宽度大约可控制在60°到110°之间。同时,表1中仅以2555-2635频率范围的天线单元为例,该天线单元也可以应用于其他频率范围的天线或超宽带天线中。
本发明实施例还提供一种具有控制波束宽度的小型化大规模天线阵 列,该小型化大规模天线阵列由上述的具有控制波束宽度的小型化天线单元组成。且该小型化大规模天线阵列为二维大规模天线阵列,具体可采用方形阵列或圆形阵列。本发明实施例以方形阵列为例,该小型化大规模天线阵列的结构图具体可参见图3-图4所示。需要说明的是,图3-图4以4×4为例,该阵列也可采用其他的排列,例如4×8、4×16、8×8、8×16、8×32等阵列,此处不做举例说明。
此外,由于本发明实施例中所采用的天线单元具有更小的体积,以49×49×35(单位mm)为例,4×16的天线阵列包括128个单元(由于每个天线单元具有两路信号线路,因此每个天线单元算作两个单元;4×16的天线阵列包括64个如上所述的天线单元,共128个单元),其面积可以做到20cm×80cm。同时,通过改变天线单元中介质层和高介电常数基片的介电常数,可以实现控制波束宽度。
本发明实施例提供的具有控制波束宽度的小型化大规模天线阵列,采用小型化天线单元,体积小,因此具有小型化、轻薄紧凑、受风面积小、重量轻、便于安装等优点。同时,通过改变天线单元中介质层和高介电常数基片的介电常数,可以实现控制波束宽度。该小型化天线阵列还可以实现绿色隐形化,将天线阵列设置于路标等建筑物中,实现高效信号覆盖。
本发明能有多种不同形式的具体实施方式,上面以图2-图4为例结合附图对本发明的技术方案作举例说明,这并不意味着本发明所应用的具体实例只能局限在特定的流程或实施例结构中,本领域的普通技术人员应当了解,上文所提供的具体实施方案只是多种优选用法中的一些示例,任何体现本发明权利要求的实施方式均应在本发明技术方案所要求保护的范围之内。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种具有控制波束宽度的小型化天线单元,其特征在于,包括:辐射片、介质层、微带缝隙天线基板和反射腔;
    所述介质层设置于所述辐射片与所述微带缝隙天线基板的正面之间,且所述介质层的介电常数大于空气的介电常数;
    所述微带缝隙天线基板采用高介电常数基片,且所述高介电常数基片的介电常数大于3.5;
    所述反射腔设置于所述微带缝隙天线基板的反面。
  2. 根据权利要求1所述的小型化天线单元,其特征在于,所述微带缝隙天线基板包括高介电常数基片、微槽缝隙和微带线;
    所述微槽缝隙设置于所述高介电常数基片的正面,所述微带线设置于所述高介电常数基片的反面;所述微带缝隙天线基板的正面与所述高介电常数基片的正面为同一面,所述微带缝隙天线基板的反面与所述高介电常数基片的反面为同一面。
  3. 根据权利要求1所述的小型化天线单元,其特征在于,所述微带缝隙天线基板包括高介电常数基片、微槽缝隙和微带线;
    所述微槽缝隙设置于所述高介电常数基片的正面,所述微带线设置于所述高介电常数基片的反面;所述微带缝隙天线基板的正面与所述高介电常数基片的正面为同一面,所述微带缝隙天线基板的反面与所述高介电常数基片的反面为同一面。
  4. 根据权利要求2所述的小型化天线单元,其特征在于,所述微带缝隙天线基板包括高介电常数基片、微槽缝隙和微带线;
    所述微槽缝隙设置于所述高介电常数基片的正面,所述微带线设置于所述高介电常数基片的反面;所述微带缝隙天线基板的正面与所述高介电常数基片的正面为同一面,所述微带缝隙天线基板的反面与所述高介电常数基片的反面为同一面。
  5. 根据权利要求1所述的小型化天线单元,其特征在于,所述高介电常数基片和所述介质层的介电常数的取值范围为:
    3.5<N<10;1<M<10;
    其中,N为高介电常数基片的介电常数,M为介质层的介电常数。
  6. 根据权利要求2所述的小型化天线单元,其特征在于,所述高介电常数基片和所述介质层的介电常数的取值范围为:
    3.5<N<10;1<M<10;
    其中,N为高介电常数基片的介电常数,M为介质层的介电常数。
  7. 根据权利要求3所述的小型化天线单元,其特征在于,所述高介电常数基片和所述介质层的介电常数的取值范围为:
    3.5<N<10;1<M<10;
    其中,N为高介电常数基片的介电常数,M为介质层的介电常数。
  8. 一种具有控制波束宽度的小型化大规模天线阵列,其特征在于,所述具有控制波束宽度的小型化大规模天线阵列由权利要求1-7任一所述的具有控制波束宽度的小型化天线单元组成。
  9. 根据权利要求8所述的小型化大规模天线阵列,其特征在于,所述具有控制波束宽度的小型化大规模天线阵列为二维大规模天线阵列。
  10. 根据权利要求9所述的小型化大规模天线阵列,其特征在于,所述具有控制波束宽度的小型化大规模天线阵列为4×4、4×16、8×8、8×16或8×32阵列的大规模天线阵列。
PCT/CN2015/085917 2014-08-11 2015-08-03 具有控制波束宽度的小型化天线单元和大规模天线阵列 WO2016023427A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410392011.9 2014-08-11
CN201410392011.9A CN104701610A (zh) 2014-08-11 2014-08-11 具有控制波束宽度的小型化天线单元和大规模天线阵列

Publications (1)

Publication Number Publication Date
WO2016023427A1 true WO2016023427A1 (zh) 2016-02-18

Family

ID=53348504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085917 WO2016023427A1 (zh) 2014-08-11 2015-08-03 具有控制波束宽度的小型化天线单元和大规模天线阵列

Country Status (2)

Country Link
CN (1) CN104701610A (zh)
WO (1) WO2016023427A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104701610A (zh) * 2014-08-11 2015-06-10 庄昆杰 具有控制波束宽度的小型化天线单元和大规模天线阵列
CN111725607B (zh) * 2019-03-20 2021-09-14 Oppo广东移动通信有限公司 毫米波天线模组和电子设备
CN111755805B (zh) * 2019-03-28 2022-02-18 Oppo广东移动通信有限公司 天线模组和电子设备
CN112751172B (zh) * 2020-12-25 2021-10-22 电子科技大学 一种用于射频能量采集的高增益定向辐射双频接收天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316008A (zh) * 2008-06-13 2008-12-03 哈尔滨工业大学 具有高隔离低相关特性的mimo移动终端多天线
CN201812925U (zh) * 2010-09-07 2011-04-27 庄昆杰 小型四通道双极化微带天线
CN103022685A (zh) * 2013-01-18 2013-04-03 厦门大学 北斗系统耦合加载寄生单元正交合成双频微带天线
CN203983493U (zh) * 2014-08-11 2014-12-03 庄昆杰 具有控制波束宽度的小型化天线单元和大规模天线阵列
CN104701610A (zh) * 2014-08-11 2015-06-10 庄昆杰 具有控制波束宽度的小型化天线单元和大规模天线阵列

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065882B (zh) * 2004-09-24 2010-12-01 贾斯特有限公司 用于移动卫星应用的平面天线
CN101141023B (zh) * 2007-09-07 2011-12-07 中国电子科技集团公司第五十五研究所 微机电层叠式毫米波天线
US8901688B2 (en) * 2011-05-05 2014-12-02 Intel Corporation High performance glass-based 60 ghz / mm-wave phased array antennas and methods of making same
CN203760674U (zh) * 2014-01-06 2014-08-06 深圳市维力谷无线技术有限公司 一种宽频带高精度卫星定位终端天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101316008A (zh) * 2008-06-13 2008-12-03 哈尔滨工业大学 具有高隔离低相关特性的mimo移动终端多天线
CN201812925U (zh) * 2010-09-07 2011-04-27 庄昆杰 小型四通道双极化微带天线
CN103022685A (zh) * 2013-01-18 2013-04-03 厦门大学 北斗系统耦合加载寄生单元正交合成双频微带天线
CN203983493U (zh) * 2014-08-11 2014-12-03 庄昆杰 具有控制波束宽度的小型化天线单元和大规模天线阵列
CN104701610A (zh) * 2014-08-11 2015-06-10 庄昆杰 具有控制波束宽度的小型化天线单元和大规模天线阵列

Also Published As

Publication number Publication date
CN104701610A (zh) 2015-06-10

Similar Documents

Publication Publication Date Title
US9030364B2 (en) Dual-polarized microstrip antenna
WO2018001007A1 (zh) 一种用于5g系统的密集阵列天线
CN102170044B (zh) 一种基于左右手复合传输线的水平极化全向天线
CN203589220U (zh) 天线
CN104900998A (zh) 低剖面双极化基站天线
WO2016023427A1 (zh) 具有控制波束宽度的小型化天线单元和大规模天线阵列
CN106159436A (zh) 一种适用于wlan的小型化双极化天线及其制作方法
CN101697380A (zh) 用于无线局域网移动终端的双极化内置槽天线
CN103779671B (zh) 一种应用于有源天线系统的基站阵列天线
WO2013185708A9 (zh) 一种多输入多输出天线及移动终端
CN203760677U (zh) 双极化天线阵列
CN106785423A (zh) 5g通信高隔离全向阵列天线
CN201812933U (zh) 一体化滤波天线
CN109742540B (zh) 一种小型化高隔离度多源多波束天线
CN106356618B (zh) 一种微波高频段双极化小基站平板天线
CN203983493U (zh) 具有控制波束宽度的小型化天线单元和大规模天线阵列
CN106549225A (zh) 一种超宽带对跖Vivaldi天线
CN206412474U (zh) 5g通信高隔离全向阵列天线
CN206541932U (zh) 一种适用于无线局域网的双频mimo天线
CN206076502U (zh) 垂直极化吸顶天线及双极化全向吸顶天线
CN109390672B (zh) 一种基于液态金属汞的重力场调控全向圆极化天线
CN204179235U (zh) 一种新型lte室内吸顶天线
CN206850028U (zh) 宽带高增益垂直极化全向天线
CN202333131U (zh) 一种小型化宽频带平面天线
CN105024144A (zh) 高性能全频段双极化全向吸顶天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15832486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15832486

Country of ref document: EP

Kind code of ref document: A1