WO2016021987A1 - Separator for lithium secondary battery, and lithium secondary battery containing same - Google Patents

Separator for lithium secondary battery, and lithium secondary battery containing same Download PDF

Info

Publication number
WO2016021987A1
WO2016021987A1 PCT/KR2015/008305 KR2015008305W WO2016021987A1 WO 2016021987 A1 WO2016021987 A1 WO 2016021987A1 KR 2015008305 W KR2015008305 W KR 2015008305W WO 2016021987 A1 WO2016021987 A1 WO 2016021987A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
separator
lithium secondary
Prior art date
Application number
PCT/KR2015/008305
Other languages
French (fr)
Korean (ko)
Inventor
서동완
고창홍
진목연
배임혁
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150111137A external-priority patent/KR101972801B1/en
Priority claimed from KR1020150111138A external-priority patent/KR101978373B1/en
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2016021987A1 publication Critical patent/WO2016021987A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G79/00Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule
    • C08G79/02Macromolecular compounds obtained by reactions forming a linkage containing atoms other than silicon, sulfur, nitrogen, oxygen, and carbon with or without the latter elements in the main chain of the macromolecule a linkage containing phosphorus
    • C08G79/04Phosphorus linked to oxygen or to oxygen and carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a separator for a lithium secondary battery and a lithium secondary battery including the same.
  • Such a lithium secondary battery includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the separator includes micropores, which not only move lithium ions through the pores, but also electrically insulate between the anode and the cathode.
  • a separator formed by coating a binder resin and ceramic particles on a porous substrate is used.
  • a separator formed by coating a binder resin and ceramic particles on a porous substrate is used.
  • One embodiment is to provide a separator for a lithium secondary battery excellent in flame retardancy, heat resistance, oxidation resistance and breathability.
  • Another embodiment is to provide a lithium secondary battery having excellent stability and performance including the separator ⁇
  • One embodiment provides a separator for a rechargeable lithium battery including a substrate and a heat resistant porous layer including a polymer disposed on at least one surface of the substrate and having a structural unit represented by the following Chemical Formula 1.
  • X is a single bond, -CO-, -S0 2- , -COO-, -CONR'- (R 'is a substituted or unsubstituted C1 to C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl group),- POR "-(R '' is a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl group), a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, substituted or unsubstituted C2 to C20 alkynylene group, substituted or unsubstituted C3 to C20 cycloalkylene group, substituted or unsubstituted C3 to C20 cycloalkenylene group, substituted or unsub
  • Z is a single bond or an oxygen atom
  • R 1 is a hydrogen atom, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C2 to C20 alkenyl group, substituted or unsubstituted C2 to C20 alkynyl group, substituted or unsubstituted C3 to C20 cycloalkyl group, substituted Or an unsubstituted C3 to C20 cycloalkenyl group, a substituted or unsubstituted C4 to C20 cycloalkynyl group, or a substituted or unsubstituted C6 to C30 aryl group,
  • n is an integer of 3 to 1000.
  • Another embodiment provides a lithium secondary battery including the separator. Specific details of other embodiments are included in the following detailed description. ⁇ Effects of the Invention ⁇
  • a lithium secondary battery having excellent stability and performance can be implemented.
  • FIG. 1 is an exploded perspective view of a rechargeable lithium battery according to one embodiment.
  • 'substituted' means that a hydrogen atom of a compound compound is a halogen atom (F, Br, CI, I), a hydroxyl group, an alkoxy group, a nitro group, a cyano group, an amino group, an azido group, an amino group Dino group, hydrazino group, hydrazono group, carbonyl group, carbamyl group, thi group, ester group, carboxyl group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof C1 to C20 alkyl group, C2 to C20 alkenyl group, C2 C20 to C20 alkynyl group, C6 to C30 aryl group, C7 to C30 arylalkyl group, C1 to C20 alkoxy group, C1 to C20 heteroalkyl group, C3 to C20 heteroarylalkyl group, C3 to C20 cycloalkyl group, C3
  • hetero means all those containing 1 to 3 heteroatoms selected from N, 0, S and P.
  • the separator of the present embodiment separates the negative electrode from the positive electrode and provides a passage for moving lithium ions, and may include a substrate and a heat-resistant porous layer positioned on at least one surface of the substrate.
  • the substrate may be porous, including voids. Lithium ions may move through the pores.
  • the substrate may be made of polyethylene, polypropylene, or the like.
  • Polyolefin, polyester, polytetrafluoroethylene (PTFE), glass fibers or combinations thereof can be used.
  • the polyolefin may be used.
  • the substrate may also be in the form of a nonwoven fabric or a woven fabric.
  • the substrate may have a single film or a multilayer film structure.
  • the substrate may be a polyethylene monolayer, Polypropylene monolayer, polyethylene / polypropylene double membrane,
  • the thickness of the substrate may be 1 kPa to 40 ' , for example, 1; kPa to 30 ⁇ , 1 ⁇ 111 to 20 kPa, 5 to 15, and 5 / m to 10.
  • the thickness of the substrate is within the above range, it is possible to prevent a short circuit between the positive electrode and the negative electrode without increasing the internal resistance of the battery.
  • the heat resistant porous layer is formed on one side or both sides of the substrate, and may include a polymer.
  • the polymer may include a structural unit represented by Formula 1 below.
  • X is a single bond, -CO-, -SO r , -COO-, -CONR '-(R' is a substituted or unsubstituted C1 to C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl ),-POR "-(R" is a hydrogen atom, a substituted or unsubstituted C 1 to C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl group), a substituted or unsubstituted C1 to C20 alkylene group, substituted Or an unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C2 to C20 alkynylene group, a substituted or unsubstituted C3 to C20 cycloalkylene group, a substituted or unsubstituted C3 to C20 cycloalkenylene group,
  • a single bond a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C 1 to C20 alkylidene group, a substituted or unsubstituted C3 to C20 cycloalkylidene group, a substituted or unsubstituted A substituted phthalidylidene group, a substituted or unsubstituted fluorenylidene group, -CO-, -S0 2- , -COO-, -CONR '-(R' is substituted or unsubstituted C1 To C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl group), and for example, -CO-, -S0 2 -or one of the linking groups represented by the following Chemical Formulas 2-1 to 2-3: have.
  • Z may be a single bond or an oxygen atom.
  • R 1 represents a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C2 to C20 alkenyl group, a substituted or unsubstituted C2 to C20 alkynyl group, a substituted or unsubstituted C3 to C20 It may be a cycloalkyl group, a substituted or unsubstituted C3 to C20 cycloalkenyl group, a substituted or unsubstituted C4 to C20 cycloalkynyl group or a substituted or unsubstituted C6 to C30 aryl group.
  • the substituted or unsubstituted C6 to C30 aryl group may be used in terms of securing excellent heat resistance and oxidation resistance.
  • n may be an integer of 3 to 1000, for example, an integer of 5 to 500, an integer of 10 to 450, an integer of 15 to 430, an integer of 50 to 400, an integer of 100 to 400.
  • the polymer may be a phosphonate backbone or
  • It may include a structural unit in which the phosphate skeleton and the bisphenol skeleton are connected to each other.
  • a heat-resistant porous layer of the polymer of the structure can ensure a separator excellent in flame retardancy, heat resistance and breathability, it is possible to implement a stable lithium secondary battery during battery ignition and battery overheating. Also As the adhesion to the substrate is increased, the life characteristics of the battery according to the repeated layer discharge may also be improved.
  • the weight average molecular weight (Mw) of the polymer may be 1,000 g / mol to 350,000 g / mol, for example, 5,000 g / mol to 150,000 g / mol.
  • Mw weight average molecular weight
  • the weight average molecular weight is gel permeation
  • the polystyrene conversion value measured by chromatography (GPC) is shown.
  • the glass transition degree (Tg) of the polymer may be 100 ° C to 250 t, for example, 150 ° C to 220 ° C. When the glass transition temperature of the polymer is within the above range, it is possible to secure a separator having more excellent flame retardancy, heat resistance and breathability.
  • the polymer may be used alone as a binder of the heat resistant porous layer.
  • the heat-resistant porous layer may have a thickness of 0.01 ⁇ to 20 ⁇ , for example, 1 ⁇ to 10, 1 to 5. When the thickness of the heat-resistant porous layer is within the above range, it is excellent in flame retardancy, heat resistance and air permeability, thereby suppressing battery internal short circuit and securing a stable separator and suppressing increase in battery internal resistance.
  • the separator for a rechargeable lithium battery according to the present embodiment may include a substrate and a heat resistant porous layer positioned on at least one surface of the substrate, and the heat resistant porous layer may include a crab binder and a second binder different from the first binder.
  • the first binder may be the polymer described above.
  • the separator of the present embodiment is different from the separator for a lithium secondary battery according to the above-described embodiment in that it includes a second binder, and since the other components are substantially the same, the second binder will be described here as a core.
  • the second binder is a compound different from the polymer, specifically
  • PVdF Polyvinylidene fluoride
  • polymethyl methacrylate polyacrylonitrile
  • polyvinylpyridone polyvinylacetate
  • polyethylene-vinylacetate co-polymer polyethylene oxide
  • cellulose acetate cellulose acetate butyrate
  • Cellulose acetate propionate cyanoethylpullulan
  • cyanoethyl polyvinyl alcohol cyanoethyl cellulose
  • cyanoethyl sucrose Pullulan, carboxymethylcellulose, acrylonitrile-styrene-butadiene copolymers, copolymers thereof or combinations thereof may be used.
  • polyvinylidene fluoride PVdF
  • the polyvinylidene fluoride copolymer may use a copolymer including a vinylidene repeat unit and a nucleus fluoropropylene repeat unit.
  • PVdF-HFP polyvinylidene fluoride-nucleus fluoropropylene
  • Ternary copolymers containing may be used.
  • PVdF polyvinylidene fluoride
  • polyvinylidene fluoride copolymer or a combination thereof is used together with the polymer, it is possible to form a uniform heat-resistant porous layer with higher adhesion to the substrate, thereby More stable
  • the polyvinylidene fluoride (PVdF) has a weight average molecular weight of 800,000 g / mol or more : specifically 1,000,000 g / mol or more, more specifically 1,000,000 to 1,600,000 g / mol, even more specifically 1,000,000 to 1,200,000 g / mol may be used, but is not limited thereto.
  • the weight average molecular weight of the polyvinylidene fluoride (PVdF) is within the above range, not only the adhesion between the substrate and the heat-resistant porous layer can be further enhanced, but also the adhesion with the electrode can be improved.
  • the polyvinylidene fluoride copolymer may have a weight average molecular weight of 800,000 g / mol or less, specifically, 500,000 g / mol to 800,000 g / mol, but is not limited thereto. Of the polyvinylidene fluoride copolymer
  • the weight average molecular weight is within the above range, it is possible to implement a lithium secondary battery having improved electrolyte impregnation property and improved high rate charge / discharge characteristics.
  • the polyvinylidene fluoride copolymer may include a repeating unit derived from propylene in hex-fluoro-0.1% by weight to 40 parts by weight 0/0 with respect to the total of all repeating units, and the like.
  • the heat-resistant porous layer is formed of both the first binder and the second binder of the polymer If it does, the first binder of the polymer is 20 parts by weight 0/0 to 99 weight 0/0 with respect to the total amount of the second binder and the first binder of the polymer, specifically, 50 parts by weight 0/0 to 99% by weight It may be included as.
  • the polymer is included in the content range, as well as flame retardancy and heat resistance, the processability at the time of forming the separator and the stability to the electrolyte are excellent, and as the adhesion to the substrate is enhanced, a more stable separator can be secured.
  • the separator for a rechargeable lithium battery according to the present embodiment may include a substrate and a heat resistant porous layer positioned on at least one surface of the substrate, and the heat resistant porous layer may include a binder and a filler.
  • the binder may be a mixture of two or more kinds of binders including the aforementioned polymer or the aforementioned polymer.
  • the separator of the present embodiment is different from the separator for a lithium secondary battery according to the above-described embodiments and other embodiments in that it includes a filler, and the other components are substantially the same, and thus, the filler will be described herein.
  • the shrinkage of the substrate by heat is further increased.
  • the filler may include inorganic particles, organic particles, or a combination thereof.
  • the inorganic particles may include A1 2 0 3 , Si0 2 , B 2 0 3 , Ga 2 0 3 , Ti0 2 , Sn0 2, or a combination thereof. It may include, but is not limited thereto.
  • the organic particles may be particles including an acrylic compound, an imide compound, an amide compound, or a combination thereof, but are not limited thereto.
  • the organic particles may have a core-shell structure, but are not limited thereto.
  • the filler may have an average particle diameter of l nm to 2000 nm, for example, lOO nm to lOOOO nm, lOO nm to 500 nm. Moreover, you may mix and use 2 or more types of fillers from which a particle diameter differs.
  • the amount of the filler can comprise from 30 weight% to 90 weight 0 /. With respect to the total of the heat resistant porous layer, for example, it may be included as 60 wt% to 90 wt. 0 /.
  • the filler is included in the content range, a short circuit between the positive electrode and the negative electrode
  • the heat-resistant porous insect may be formed by applying a coating composition comprising the polymer and a solvent on at least one side of the substrate and then drying.
  • the coating composition may further include at least one of the second binder and the filler different from the polymer.
  • the solvent includes alcohols such as methanol, ethanol and isopropyl alcohol; Ketones such as acetone may be used, but are not limited thereto.
  • the coating composition may be obtained by mixing 1 to 30% by weight of the polymer and the balance of the solvent, and stirring at 10 ° C to 40 ° C for 30 minutes to 5 hours.
  • the stirring may be performed using a ball mill, a beads mill, a screw mixer, or the like.
  • a method of applying the coating composition to the substrate may include a dip coating method, a die coating method, a roll coating method, a comma coating method, and the like, but is not limited thereto.
  • the drying may be performed by a method of drying by hot air, hot air or low humidity, vacuum drying, or irradiation of far infrared rays, electron beams, etc., but is not limited thereto.
  • the drying process may be carried out at a temperature of 60 ° C to 120 ° C. When performed in the silver range, it is possible to form a heat resistant porous layer having a smooth surface without requiring a long drying time. ⁇
  • Formation of the heat-resistant porous layer on the substrate may be performed by a method such as lamination, coextrusion, etc., in addition to the coating method using the coating composition.
  • Lithium secondary battery according to an embodiment is described as an example of the square, but the present invention is limited thereto The present invention may be applied to various types of batteries such as lithium polymer batteries and cylindrical batteries.
  • a lithium secondary battery 100 includes an electrode assembly 40 wound between a positive electrode 10 and a negative electrode 20 via a separator 30, and the electrode
  • the positive electrode 10, the negative electrode 20 and the separator 30 are impregnated with an electrolyte (not shown).
  • the separator 30 is as described above.
  • the positive electrode 10 may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector.
  • the positive electrode active material layer is a positive electrode active material, a binder and
  • the cathode current collector aluminum (A1), nickel (Ni), or the like may be used, but the present invention is not limited thereto.
  • a compound capable of reversible intercalation and deintercalation of lithium may be used.
  • at least one of cobalt, manganese, nickel, aluminum, iron or a combination of metal and lithium composite oxides or phosphorus oxides may be used.
  • lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium iron phosphate, or a combination thereof may be used.
  • the binder not only adheres the positive electrode active material particles to each other well but also serves to adhere the positive electrode active material to the positive electrode current collector.
  • Diacetyl cellulose polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, ethylene oxide containing polymer, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene , Polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like, but are not limited thereto. These may be used alone or in combination of two or more thereof.
  • the conductive material imparts conductivity to the electrode, and examples thereof include natural graphite, artificial graphite, carbon black, carbon fiber, metal powder, and metal fiber, but are not limited thereto. These can be used individually or in mixture of 2 or more types.
  • the electrolyte solution contains an organic solvent and a lithium salt.
  • the organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move.
  • Specific examples thereof may be selected from carbonate solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents and aprotic solvents.
  • carbonate solvent examples include dimethyl carbonate (DMC) and diethyl
  • DEC dipropyl carbonate
  • DPC dipropyl carbonate
  • MPC methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • EMC ethylmethyl carbonate
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • the carbonate compound and the chain carbonate compound are in a volume ratio of 1: 1 to 1: 9.
  • ester solvents examples include methyl acetate, ethyl acetate, ⁇ -propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone and memeth Melononolactone, caprolactone, and the like.
  • ether solvent examples include methyl acetate, ethyl acetate, ⁇ -propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone and memeth Melononolactone, caprolactone, and the like.
  • ether solvent examples include methyl acetate, ethyl acetate, ⁇ -propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, ⁇ -butyrolactone, decanolide, valerolactone and
  • the ketone solvent include cyclonucleanone and the like
  • examples of the alcohol solvent include ethyl alcohol and isopropyl alcohol.
  • the organic solvents may be used alone or in combination of two or more thereof, and the mixing ratio in the case of mixing two or more kinds may be appropriately adjusted according to the desired battery performance.
  • the lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable operation of a basic lithium secondary battery and to promote the migration of lithium silver between the positive electrode and the negative electrode.
  • lithium salt LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (S0 3 C 2 F 5 ) 2 , LiN (CF 3 S0 2 ) 2 , L1C4F9SO3, L1CIO 4 , LiA10 2 , LiAlCl 4 , LiN (C x F 2x + , SO 2 ) (C y F 2y + , SO 2 ) (x and y are natural numbers), LiCl, Lil, LiB (C 2 0 4 ) 2 or a combination thereof.
  • the concentration of the lithium salt can be used within the range of 0.1M to 2.0M ⁇ When the concentration of the lithium salt is within the above range, since the electrolyte has an appropriate conductivity and viscosity can exhibit excellent electrolyte performance, lithium ions can move effectively. .
  • the lithium secondary battery including the above-described separator can be operated at a high voltage of 4.35V or more, thereby realizing a high capacity lithium secondary battery without deterioration of life characteristics.
  • Synthesis Example 1 35.0 g (140 mmol) of bisphenol ⁇ was substituted for 33.0 g (140 mmol) of bisphenol A. Synthesis was carried out in the same manner as in Synthesis Example 1, except that the polymer containing the structural unit represented by the following Formula 3-2 was synthesized. Of the synthesized polymer
  • the weight average molecular weight (Mw) was 101,000 g / mol.
  • Synthesis Example 1 was synthesized in the same manner as in Synthesis Example 1, except that 30.0 g (140 mmol) of 4,4-dihydroxy benzophenone was used instead of 33.0 g (140 mmol) of Bisphenol A. A polymer comprising structural units was synthesized. The weight average molecular weight (Mw) of the synthesized polymer was 110,000 g / mol.
  • Synthesis was carried out in the same manner as in Synthesis Example 1 except for using biphenol 26.3 g (140 mmol) instead of 33.0 g (140 mmol) of bisphenol A in Synthesis Example 1, to obtain a polymer including a structural unit represented by the following Chemical Formula 3-4: Synthesized.
  • a polymer including a structural unit represented by the following Chemical Formula 3-4 Synthesized.
  • the weight average molecular weight (Mw) was 130,000 g / mol.
  • Synthesis Example 1 was synthesized in the same manner as in Synthesis Example 1, except that 37.5 g (140 mmol) of bisphenol Z was used instead of 33.0 g (140 mmol) of Bisphenol A. A polymer containing the structural unit represented was synthesized. Of the synthesized polymer
  • the weight average molecular weight (Mw) was 125,000 g / mol.
  • Synthesis was carried out in the same manner as in Synthesis Example 1, except that 44.5 g (140 mmol) of phenolphthalein was used instead of 33.0 g (140 mmol) of bisphenol A in Synthesis Example 1 to synthesize a polymer including a structural unit represented by Formula 3-6. It was.
  • the weight average molecular weight (Mw) of the synthesized polymer was 150,000 g / mol.
  • the reaction solution was washed several times with diluted HC1 solution and distilled water.
  • the washed polymer was dried in a vacuum oven at 80 ° C. for 48 hours to synthesize a polymer including a structural unit represented by the following Chemical Formula 3-8.
  • a polymer including a structural unit represented by the following Chemical Formula 3-8 Of the synthesized polymer
  • the weight average molecular weight (Mw) was 123,000 g / mol.
  • Synthesis Example 8 Synthesis was performed in the same manner as in Synthesis Example 8, except that 44.5 g (140 mmol) of phenolphthalein was used instead of 38.0 g (140 mmol) of bisphenol Z to synthesize a polymer including a structural unit represented by Chemical Formula 3-9. It was. Of the synthesized polymer
  • the weight average molecular weight (Mw) was 147,000 g / mol.
  • Formula 3-9 The weight average molecular weight (Mw) was 147,000 g / mol.
  • Synthesis Example 8 Synthesis was performed in the same manner as in Synthesis Example 8, except that 33.0 g (140 mmol) of Bisphenol A was used instead of 38.0 g (140 mmol) of Bisphenol Z, thereby obtaining a polymer including a structural unit represented by the following Formula 3-10: Synthesized.
  • the weight average molecular weight (Mw) of the synthesized polymer was 142,000 g / mol.
  • Synthesis was carried out in the same manner as in Synthesis Example 8 except that 35.0 g (140 mmol) was used to synthesize a polymer including a structural unit represented by Chemical Formula 3-1 1 below.
  • the weight average molecular weight (Mw) of the synthesized polymer was 102,000 g / mol.
  • a polymer comprising a structural unit represented by the following Chemical Formula 3-13 was synthesized in the same manner as in Synthesis Example 8 except for using 26.3 g (140 mmol) of biphenol instead of 38.0 g (140 mmol) of bisphenol Z in Synthesis Example 8. Synthesized.
  • the weight average molecular weight (Mw) of the synthesized polymer was 126,000 g / mol.
  • Synthesis Example 8 was synthesized in the same manner as in Synthesis Example 8, except that 49.0 g (140 mmol) of 9,9′-bis (4-hydroxyphenyl) fluorene was used instead of 38.0 g (140 mmol) of bisphenol Z.
  • a polymer comprising the structural unit represented by 3-14 was synthesized.
  • the weight average molecular weight (Mw) of the synthesized polymer was 132,000 g / mol.
  • a polymer solution was prepared by dissolving the polymer prepared in Synthesis Example 1 at 10 weight 0 /. In tetrahydrofuran (THF). A1 2 0 3 (LS235A, Nippon Light Metal Co., Ltd.) was added to acetone. An inorganic dispersion was prepared by adding 25 weight 0 / ° and milling and dispersing at 25 ° C. for 3 hours using a bead mill. The polymer solution and the inorganic dispersion prepared above were mixed with a mixed solvent of ⁇ , ⁇ -dimethylacetamide (DMAc) and THF so as to have a weight ratio of 2.5: 5: 2.5, respectively, and stirred at 25 ° C. with a power mixer for 1 hour. The coating composition was prepared.
  • DMAc ⁇ , ⁇ -dimethylacetamide
  • the prepared coating composition was coated on both sides of a polyethylene single layer substrate film having a thickness of 9 by a dip coating method, respectively, and then dried at 1 H C for 1 minute to prepare a separator.
  • a separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the plymer prepared in Synthesis Example 2 instead of Synthesis Example 1.
  • Example 3
  • a separator was prepared in the same manner as in Example 1, except that the coating composition was manufactured using the polymer prepared in Synthesis Example 3 instead of Synthesis Example 1.
  • Example 4
  • Example 5 A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 4 instead of Synthesis Example 1.
  • Example 5 A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 5 instead of Synthesis Example 1.
  • a separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 6 instead of Synthesis Example 1.
  • Example 7
  • a separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 7 instead of Synthesis Example 1.
  • a separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 8 instead of Synthesis Example 1.
  • Example 9
  • a separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 9 instead of Synthesis Example 1.
  • Example 10
  • a separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 10 instead of Synthesis Example 1.
  • Example 11
  • a separator was prepared in the same manner as in Example 1, except that the coating composition was manufactured using the polymer prepared in Synthesis Example 1 1 instead of Synthesis Example 1.
  • a separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the plymer prepared in Synthesis Example 12 instead of Synthesis Example 1.
  • a separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 13 instead of Synthesis Example 1.
  • Example 14
  • a separator was prepared in the same manner as in Example 1, except that the coating composition was manufactured using the polymer prepared in Synthesis Example 14 instead of Synthesis Example 1. Comparative Example 1 A separator was prepared in the same manner as in Example 1, except that poly (butyl acrylate -CO- methylmethacrylate -co-vinylacetate) was used instead of the polymer prepared in Synthesis Example 1. Lithium Secondary Battery
  • LiCo0 2 , polyvinylidene fluoride and carbon black were added to an N-methylpyrrolidone (NMP) solvent in a weight ratio of 96: 2: 2 to prepare a slurry.
  • NMP N-methylpyrrolidone
  • the slurry was applied to an aluminum (A1) thin film, dried, and rolled to prepare a positive electrode.
  • NMP N-methylpyrrolidone
  • the electrolyte solution was prepared by adding 1.15 M of LiPF 6 to a mixed solvent in which ethylene carbonate (EC), ethylmethyl carbonate (EMC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 5: 2.
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • DEC diethyl carbonate
  • a lithium secondary battery was manufactured using the positive electrode, the negative electrode, and the electrolyte solution prepared above, and the separators prepared in Examples 1 to 14 and Comparative Example 1. evaluation
  • Weight average molecular weight (Mw) and glass relative to the polymer used in the preparation of the separators of Examples 1 to 14 and the poly (butylacrylate _ C0 -methyl methacrylate ⁇ co _ vinyl acetate) used in the preparation of the separator of Comparative Example 1 Transition temperature (Tg) and flame retardancy were respectively measured by the following method, and the results are shown in Table 1 below.
  • Weight average molecular weight (Mw) It was shown by the polystyrene conversion value measured by the gel permeation chromatography (GPC).
  • Tg Glass transition temperature
  • a specimen was prepared in the following manner to evaluate the flame retardancy according to the UL94 VB flame retardant regulations.
  • the 10 cm X 50 cm separators prepared in Examples 1 to 14 and Comparative Example 1 were folded to 10 cm X 2 cm, and then the upper and lower portions were fixed to prepare specimens. Flame retardant ratings were determined based on specimen burn time in accordance with UL94 VB.
  • Evaluation 3 breathability and heat resistance of the separator
  • the air permeability and heat resistance were measured by the following methods, respectively, and the results are shown in Table 2 below.
  • the air permeability of the air permeation time was measured by OO01 air by using EG01-55-lMR (Asahi Seiko / tt), and the heat resistance measured the shrinkage rate after each separator was placed in a 200 ° C. oven for 30 minutes.
  • the separator of the embodiment to form a heat-resistant porous layer by using the polymer alone as a bar more Examples 1 to 14 it can be seen that excellent air permeability and is excellent in heat resistance compared to Comparative Example 1, i. Accordingly, the separator according to one embodiment may contribute to the stability and performance of the secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

Provided are: a separator for a lithium secondary battery, comprising a substrate and a heat resistant porous layer, which is located on at least one surface of the substrate and comprises a polymer having a structural unit represented by chemical formula 1; and a lithium secondary battery containing the same.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지  Separator for lithium secondary battery and lithium secondary battery comprising same
【기술분야】  Technical Field
리튬 이차 전지용 세퍼레이터 및 이를 포함하는 리튬 이차 전지에 관한 것이다.  The present invention relates to a separator for a lithium secondary battery and a lithium secondary battery including the same.
【배경기술】  Background Art
최근 휴대용 전자 기기의 전원으로 높은 에너지 밀도를 가진 전자의 필요성이 증대되어 리튬 이차 전지의 연구가 활발하게 진행되고 있다. 또한 환경문제에 대한 관심이 커지면서 전기자동차 등에 대한 연구가 진행되고 있으며, 전기자동차의 동력원으로서 리튬 이차 전지를 사용하는 연구도 함께 활발히 진행되고 있다.  Recently, the need for electrons having high energy density as a power source for portable electronic devices has increased, and research of lithium secondary batteries has been actively conducted. In addition, as interest in environmental problems grows, research on electric vehicles is being conducted, and researches using lithium secondary batteries as a power source of electric vehicles are also actively conducted.
이러한 리튬 이차 전지는 양극, 음극, 그리고 양극과 음극 사이에 개재되는 세퍼레이터를 포함한다. 상기 세퍼레이터는 미세 공극을 포함하고 있어 상기 공극을 통하여 리튬 이온이 이동할 뿐 아니라, 양극과 음극 간을 전기적으로 절연시키는 역할을 한다.  Such a lithium secondary battery includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode. The separator includes micropores, which not only move lithium ions through the pores, but also electrically insulate between the anode and the cathode.
이러한 세퍼레이터는, 최근 전지의 경량화 및 소형화 추세와 전기자동차 등에 사용하기 위한 고출력 대용량 전지가 필요해짐에 따라, 두께를 얇게 하고 중량을 가볍게 하는 것이 요구되면서도 그와 동시에 고용량 전지의 생산을 위하여 열에 의한 형태 안정성이 우수할 것이 요구된다.  These separators are required to be made thinner and lighter in weight, and at the same time heat form for the production of high capacity batteries, due to the recent trend of light weight and miniaturization of batteries and the need for high output large capacity batteries for use in electric vehicles. Excellent stability is required.
이를 위해 주로 다공성 기재에 바인더 수지와 세라믹 입자를 코팅하여 형성한 세퍼레이터를 사용하고 있다. 그러나 과열시에는 세퍼레이터의 수축으로 안정성을 확보하기 어렵다.  For this purpose, a separator formed by coating a binder resin and ceramic particles on a porous substrate is used. However, when overheated, it is difficult to secure stability due to shrinkage of the separator.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
일 구현예는 난연성, 내열성, 내산화성 및 통기성이 우수한 리튬 이차 전지용 세퍼레이터를 제공하기 위한 것이다.  One embodiment is to provide a separator for a lithium secondary battery excellent in flame retardancy, heat resistance, oxidation resistance and breathability.
다른 일 구현예는 상기 세퍼레이터를 포함하여 안정성 및 성능이 우수한 리튬 이차 전지를 제공하기 위한 것이다ᅳ  Another embodiment is to provide a lithium secondary battery having excellent stability and performance including the separator ᅳ
【과제의 해결 수단】 일 구현예는 기재, 그리고 상기 기재의 적어도 일면에 위치하고 하기 화학식 1로 표현되는 구조단위를 가지는 폴리머를 포함하는 내열 다공층을 포함하는 리튬 이차 전지용 세퍼레이터를 제공한다. [Measures of problem] One embodiment provides a separator for a rechargeable lithium battery including a substrate and a heat resistant porous layer including a polymer disposed on at least one surface of the substrate and having a structural unit represented by the following Chemical Formula 1.
[화학식 1]  [Formula 1]
Figure imgf000004_0001
Figure imgf000004_0001
상기 화학식 1에서,  In Chemical Formula 1,
X는 단일결합, -CO-, -S02-, -COO-, -CONR'-(R'은 치환 또는 비치환된 C1 내지 C20 알킬기, 또는 치환 또는 비치환된 C6 내지 C30 아릴기임 ), -POR"-(R' '은 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 또는 치환 또는 비치환된 C6 내지 C30 아릴기임), 치환 또는 비치.환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C2 내지 C20 알키닐렌기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬렌기, 치환 또는 비치환된 C3 내지 C20 사이클로알케닐렌기, 치환 또는 비치환된 C4 내지 C20 사이클로알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 플루오레닐렌기, 치환 또는 비치환된 C1 내지 C20 알킬리덴기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬리덴기, 치환 또는 비치환된 프탈리딜리덴기, 치환 또는 비치환된 플루오레닐리덴기, 또는 -CO-, -S02-, -COO- 및 -CONR'- 중 적어도 하나가사슬에 포함되는 스피로 (spiro) 화합물로부터 유도되는 연결기이고, X is a single bond, -CO-, -S0 2- , -COO-, -CONR'- (R 'is a substituted or unsubstituted C1 to C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl group),- POR "-(R '' is a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl group), a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 to C20 alkenylene group, substituted or unsubstituted C2 to C20 alkynylene group, substituted or unsubstituted C3 to C20 cycloalkylene group, substituted or unsubstituted C3 to C20 cycloalkenylene group, substituted or unsubstituted C4 To C20 cycloalkynylene group, substituted or unsubstituted C6 to C30 arylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted C1 to C20 alkylidene group, substituted or unsubstituted C3 to C20 cycloalkyl Leeden group, substituted or unsubstituted phthalidylidene group, substituted or An unsubstituted fluorenylidene group, or at least one of -CO-, -S0 2- , -COO-, and -CONR'- is a linking group derived from a spiro compound included in the chain,
Z는 단일 결합 또는 산소 원자이고,  Z is a single bond or an oxygen atom,
R1은 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C2 내지 C20 알케닐기, 치환 또는 비치환된 C2 내지 C20 알키닐기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알케닐기, 치환 또는 비치환된 C4 내지 C20 사이클로알키닐기, 또는 치환 또는 비치환된 C6 내지 C30 아릴기이고, R 1 is a hydrogen atom, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C2 to C20 alkenyl group, substituted or unsubstituted C2 to C20 alkynyl group, substituted or unsubstituted C3 to C20 cycloalkyl group, substituted Or an unsubstituted C3 to C20 cycloalkenyl group, a substituted or unsubstituted C4 to C20 cycloalkynyl group, or a substituted or unsubstituted C6 to C30 aryl group,
n은 3 내지 1000의 정수이다.  n is an integer of 3 to 1000.
다른 일 구현예는 상기 세퍼레이터를 포함하는 리튬 이차 전지를 제공한다. 기타 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다. 【발명의 효과】 Another embodiment provides a lithium secondary battery including the separator. Specific details of other embodiments are included in the following detailed description. 【Effects of the Invention】
난연성, 내열성, 내산화성 및 통기성이 우수한 세퍼레이터가 제공됨에 따라, 안정성과 성능이 우수한 리튬 이차 전지를 구현할 수 있다.  By providing a separator having excellent flame retardancy, heat resistance, oxidation resistance, and breathability, a lithium secondary battery having excellent stability and performance can be implemented.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 일 구현예에 따른 리튬 이차 전지의 분해 사시도이다.  1 is an exploded perspective view of a rechargeable lithium battery according to one embodiment.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.  Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 명세서에서 별도의 정의가 없는 한, '치환된'이란, 화합물 증의 수소 원자가 할로겐 원자 (F, Br, CI, I), 히드록시기, 알콕시기, 니트로기, 시아노기, 아미노기, 아지도기, 아미디노기, 히드라지노기, 히드라조노기, 카르보닐기, 카르바밀기, 티을기, 에스테르기, 카르복실기 또는 그의 염, 술폰산기 또는 그의 염, 인산기 또는 그의 염 C1 내지 C20 알킬기, C2 내지 C20 알케닐기, C2 내지 C20 알키닐기, C6 내지 C30 아릴기, C7 내지 C30 아릴알킬기, C1 내지 C20 알콕시기, C1 내지 C20 헤테로알킬기, C3 내지 C20 해테로아릴알킬기, C3 내지 C20 사이클로알킬기, C3 내지 C20 사이클로알케닐기, C4 내지 C20 사이클로알키닐기, C2 내지 C20  Unless otherwise defined herein, 'substituted' means that a hydrogen atom of a compound compound is a halogen atom (F, Br, CI, I), a hydroxyl group, an alkoxy group, a nitro group, a cyano group, an amino group, an azido group, an amino group Dino group, hydrazino group, hydrazono group, carbonyl group, carbamyl group, thi group, ester group, carboxyl group or salt thereof, sulfonic acid group or salt thereof, phosphoric acid group or salt thereof C1 to C20 alkyl group, C2 to C20 alkenyl group, C2 C20 to C20 alkynyl group, C6 to C30 aryl group, C7 to C30 arylalkyl group, C1 to C20 alkoxy group, C1 to C20 heteroalkyl group, C3 to C20 heteroarylalkyl group, C3 to C20 cycloalkyl group, C3 to C20 cycloalkenyl group, C4 to C20 cycloalkynyl group, C2 to C20
헤테로사이클로알킬기 및 이들의 조합에서 선택된 치환기로 치환된 것을 의미한다. 또한, 본 명세서에서 별도의 정의가 없는 한, '헤테로 '란 , N, 0, S 및 P에서 선택된 헤테로 원자를 1 내지 3개 함유한 것올 의미한다. Substituted with a substituent selected from a heterocycloalkyl group and combinations thereof. In addition, unless otherwise defined herein, "hetero" means all those containing 1 to 3 heteroatoms selected from N, 0, S and P.
이하, 일 구현예에 따른 리튬 이차 전지용 세퍼레이터에 대해 설명한다.  Hereinafter, a separator for a rechargeable lithium battery according to one embodiment is described.
본 구현예의 세퍼레이터는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 기재 및 상기 기재의 적어도 일면에 위치하는 내열 다공층을 포함할 수 있다.  The separator of the present embodiment separates the negative electrode from the positive electrode and provides a passage for moving lithium ions, and may include a substrate and a heat-resistant porous layer positioned on at least one surface of the substrate.
상기 기재는 공극을 포함하는 다공성일 수 있다. 상기 공극을 통하여 리튬 이온이 이동할 수 있다. 상기 기재는 폴리에틸렌, 폴리프로필렌 등과 같은  The substrate may be porous, including voids. Lithium ions may move through the pores. The substrate may be made of polyethylene, polypropylene, or the like.
폴리을레핀, 폴리에스테르, 폴리테트라플루오로에틸렌 (PTFE), 유리섬유 또는 이들의 조합이 사용될 수 있다. 이들 중에서, 예를 들어, 상기 폴리올레핀을 사용할 수 있다ᅳ 또한 상기 기재는 부직포 또는 직포 형태일 수 있다. 상기 기재는 단일막 또는 다층막 구조일 수 있다. 예를 들면, 상기 기재는 폴리에틸렌 단일막, 폴리프로필렌 단일막, 폴리에틸렌 /폴리프로필렌 이중막, Polyolefin, polyester, polytetrafluoroethylene (PTFE), glass fibers or combinations thereof can be used. Among them, for example, the polyolefin may be used. The substrate may also be in the form of a nonwoven fabric or a woven fabric. The substrate may have a single film or a multilayer film structure. For example, the substrate may be a polyethylene monolayer, Polypropylene monolayer, polyethylene / polypropylene double membrane,
폴리프로필렌 /폴리에틸렌 /폴리프로필렌 삼중막, 폴리에틸렌 /폴리프로필렌 /폴리에틸렌 삼중막 등을 들 수 있다. 상기 기재의 두께는 1卿 내지 40 '일 수 있고, 예를 들면, 1;圆 내지 30^, 1^111 내지 20卿, 5 내지 15 , 5 /m 내지 10 일 수 있다. 상기 기재의 두께가 상기 범위 내인 경우 전지의 내부 저항을 증가시키지 않으면서 양극과 음극 간의 단락올 방지할 수 있다. Polypropylene / polyethylene / polypropylene triple film, polyethylene / polypropylene / polyethylene triple film, etc. are mentioned. The thickness of the substrate may be 1 kPa to 40 ' , for example, 1; kPa to 30 ^, 1 ^ 111 to 20 kPa, 5 to 15, and 5 / m to 10. When the thickness of the substrate is within the above range, it is possible to prevent a short circuit between the positive electrode and the negative electrode without increasing the internal resistance of the battery.
상기 내열 다공층은 상기 기재의 일면 또는 양면에 형성되는 것으로, 폴리머를 포함할 수 있다.  The heat resistant porous layer is formed on one side or both sides of the substrate, and may include a polymer.
상기 폴리머는 하기 화학식 1로 표시되는 구조단위를 포함할 수 있다.  The polymer may include a structural unit represented by Formula 1 below.
[화학식 1]  [Formula 1]
Figure imgf000006_0001
Figure imgf000006_0001
상기 화학식 1에서, X는 단일결합, -CO-, -SOr, -COO-, -CONR'-(R'은 치환 또는 비치환된 C1 내지 C20 알킬기, 또는 치환 또는 비치환된 C6 내지 C30 아릴기임), - POR"-(R"은 수소 원자, 치환 또는 비치환된 C 1 내지 C20 알킬기, 또는 치환 또는 비치환된 C6 내지 C30 아릴기임), 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C2 내지 C20 알키닐렌기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬렌기, 치환 또는 비치환된 C3 내지 C20 사이클로알케닐렌기, 치환 또는 비치환된 C4 내지 C20 사이클로알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 플루오레닐렌기, 치환 또는 비치환된 C1 내지 C20 알킬리덴기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬리덴기, 치환 또는 비치환된 프탈리딜리덴기, 치환 또는 비치환된 플루오레닐리덴기, 또는 -CO-, -SOr, -COO- 및 -CONR'- 중 적어도 하나가 사슬에 포함되는 스피로 (spiro) 화합물로부터 유도되는 연결기일 수 있다. 이들 중에서, 예를 들면, 단일결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C 1 내지 C20 알킬리덴기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬리덴기, 치환 또는 비치환된 프탈리딜리덴기, 치환 또는 비치환된 플루오레닐리덴기, -CO-, -S02-, -COO-, -CONR'-(R'은 치환 또는 비치환된 C1 내지 C20 알킬기, 또는 치환 또는 비치환된 C6 내지 C30 아릴기임)일 수 있고 구체적인 예를 들면, -CO-, -S02- 또는 하기 화학식 2-1 내지 2-3으로 표시되는 연결기 중 하나일 수 있다.In Formula 1, X is a single bond, -CO-, -SO r , -COO-, -CONR '-(R' is a substituted or unsubstituted C1 to C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl ),-POR "-(R" is a hydrogen atom, a substituted or unsubstituted C 1 to C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl group), a substituted or unsubstituted C1 to C20 alkylene group, substituted Or an unsubstituted C2 to C20 alkenylene group, a substituted or unsubstituted C2 to C20 alkynylene group, a substituted or unsubstituted C3 to C20 cycloalkylene group, a substituted or unsubstituted C3 to C20 cycloalkenylene group, a substituted or Unsubstituted C4 to C20 cycloalkynylene group, substituted or unsubstituted C6 to C30 arylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted C1 to C20 alkylidene group, substituted or unsubstituted C3 To C20 cycloalkylidene group, substituted or unsubstituted phthalidyl May group, at least one of a substituted or unsubstituted fluorenylidene group, or a -CO-, -SO r, -COO- and -CONR'- the connection date derived from spiro (spiro) compound contained in the chain. Among them, for example, a single bond, a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C 1 to C20 alkylidene group, a substituted or unsubstituted C3 to C20 cycloalkylidene group, a substituted or unsubstituted A substituted phthalidylidene group, a substituted or unsubstituted fluorenylidene group, -CO-, -S0 2- , -COO-, -CONR '-(R' is substituted or unsubstituted C1 To C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl group), and for example, -CO-, -S0 2 -or one of the linking groups represented by the following Chemical Formulas 2-1 to 2-3: have.
식 2-1 ]
Figure imgf000007_0001
Equation 2-1]
Figure imgf000007_0001
[화학식 2ᅳ2]
Figure imgf000007_0002
[Formula 2 ᅳ 2]
Figure imgf000007_0002
[화학식 2-3]
Figure imgf000007_0003
[Formula 2-3]
Figure imgf000007_0003
상기 화학식 1에서, Z는 단일 결합 또는 산소 원자일 수 있다.  In Chemical Formula 1, Z may be a single bond or an oxygen atom.
상기 화학식 1에서 R1은 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C2 내지 C20 알케닐기, 치환 또는 비치환된 C2 내지 C20 알키닐기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알케닐기, 치환 또는 비치환된 C4 내지 C20 사이클로알키닐기 또는 치환 또는 비치환된 C6 내지 C30 아릴기일 수 있다. 이들 중에서, 예를 들면, 우수한 내열성 및 내산화성의 확보 면에서 상기 치환 또는 비치환된 C6 내지 C30 아릴기가 될 수 있다. In Formula 1, R 1 represents a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, a substituted or unsubstituted C2 to C20 alkenyl group, a substituted or unsubstituted C2 to C20 alkynyl group, a substituted or unsubstituted C3 to C20 It may be a cycloalkyl group, a substituted or unsubstituted C3 to C20 cycloalkenyl group, a substituted or unsubstituted C4 to C20 cycloalkynyl group or a substituted or unsubstituted C6 to C30 aryl group. Among them, for example, the substituted or unsubstituted C6 to C30 aryl group may be used in terms of securing excellent heat resistance and oxidation resistance.
또한 n은 3 내지 1000의 정수일 수 있고, 예를 들면, 5 내지 500의 정수, 10 내지 450의 정수, 15 내지 430의 정수, 50 내지 400의 정수, 100 내지 400의 정수일 수 있다.  In addition, n may be an integer of 3 to 1000, for example, an integer of 5 to 500, an integer of 10 to 450, an integer of 15 to 430, an integer of 50 to 400, an integer of 100 to 400.
상기 폴리머는 상기 화학식 1에서와 같이 포스포네이트 골격 또는  The polymer may be a phosphonate backbone or
포스페이트계 골격과 비스페놀 골격이 서로 연결되어 있는 구조단위를 포함할 수 있다. 일 구현예에 따르면, 상기 구조의 폴리머로 내열 다공층을 형성할 경우 난연성, 내열성 및 통기성이 우수한 세퍼레이터를 확보할 수 있으며, 이에 따라 전지 발화 및 전지 과열시 안정한 리튬 이차 전지를 구현할 수 있다. 또한 기재와의 접착력을 높임에 따라 층방전 반복에 따른 전지의 수명 특성도 향상될 수 있다. It may include a structural unit in which the phosphate skeleton and the bisphenol skeleton are connected to each other. According to one embodiment, when forming a heat-resistant porous layer of the polymer of the structure can ensure a separator excellent in flame retardancy, heat resistance and breathability, it is possible to implement a stable lithium secondary battery during battery ignition and battery overheating. Also As the adhesion to the substrate is increased, the life characteristics of the battery according to the repeated layer discharge may also be improved.
상기 폴리머의 중량평균분자량 (Mw)은 1,000 g/mol 내지 350,000 g/mol 일 수 있고, 예를 들면, 5,000 g/mol 내지 150,000 g/mol 일 수 있다. 상기 폴리머의 중량평균분자량이 상기 범위 내일 경우 난연성, 내열성 및 통기성이 더욱 우수한 세퍼레이터를 확보할 수 있다. 이때 상기 중량평균분자량은 겔 투과  The weight average molecular weight (Mw) of the polymer may be 1,000 g / mol to 350,000 g / mol, for example, 5,000 g / mol to 150,000 g / mol. When the weight average molecular weight of the polymer is within the above range, it is possible to secure a separator having more excellent flame retardancy, heat resistance and breathability. The weight average molecular weight is gel permeation
크로마토그래피 (GPC)로 측정한 폴리스티렌 환산 수치를 나타낸다. The polystyrene conversion value measured by chromatography (GPC) is shown.
상기 폴리머의 유리전이은도 (Tg)는 100 °C 내지 250 t 일 수 있고, 예를 들면, 150 °C 내지 220 °C 일 수 있다. 상기 폴리머의 유리전이온도가 상기 범위 내일 경우 난연성, 내열성 및 통기성이 더욱 우수한 세퍼레이터를 확보할 수 있다. 상기 폴리머는 상기 내열 다공층의 바인더로서 단독으로 사용될 수 있다. 상기 내열 다공층의 두께는 0.01 μΆ 내지 20 ΙΜ 일 수 있으며, 예를 들면, 1 Ά 내지 10 , 1 내지 5 일 수 있다. 내열 다공층의 두께가 상기 범위 내인 경우 난연성, 내열성 및 통기성이 우수하여 전지 내부 단락을 억제하고 안정한 세퍼레이터를 확보할 수 있을 뿐만 아니라 전지의 내부 저항 증가를 억제할 수 있다. The glass transition degree (Tg) of the polymer may be 100 ° C to 250 t, for example, 150 ° C to 220 ° C. When the glass transition temperature of the polymer is within the above range, it is possible to secure a separator having more excellent flame retardancy, heat resistance and breathability. The polymer may be used alone as a binder of the heat resistant porous layer. The heat-resistant porous layer may have a thickness of 0.01 μΆ to 20 ΙΜ, for example, 1 Ά to 10, 1 to 5. When the thickness of the heat-resistant porous layer is within the above range, it is excellent in flame retardancy, heat resistance and air permeability, thereby suppressing battery internal short circuit and securing a stable separator and suppressing increase in battery internal resistance.
이하, 다른 일 구현예에 따른 리튬 이차 전지용 세퍼레이터에 대해 설명한다. 본 구현예에 따른 리튬 이차 전지용 세퍼레이터는 기재 및 상기 기재의 적어도 일면에 위치하는 내열 다공층을 포함하며, 상기 내열 다공층은 게 1 바인더 및 상기 제 1 바인더와 상이한 제 2 바인더를 포함할 수 있다. 이때 상기 게 1 바인더는 전술한 폴리머일 수 있다. 본 구현예의 세퍼레이터는 제 2 바인더를 포함한다는 점에서 상술한 일 구현예에 따른 리튬 이차 전지용 세퍼레이터와 차이가 있으며, 다른 구성요소는 실질적으로 동일하므로, 여기서는 제 2 바인더를 증심으로 설명한다.  Hereinafter, a separator for a rechargeable lithium battery according to another embodiment is described. The separator for a rechargeable lithium battery according to the present embodiment may include a substrate and a heat resistant porous layer positioned on at least one surface of the substrate, and the heat resistant porous layer may include a crab binder and a second binder different from the first binder. . In this case, the first binder may be the polymer described above. The separator of the present embodiment is different from the separator for a lithium secondary battery according to the above-described embodiment in that it includes a second binder, and since the other components are substantially the same, the second binder will be described here as a core.
상기 제 2 바인더는 상기 폴리머와 상이한 화합물로서, 구체적으로  The second binder is a compound different from the polymer, specifically
폴리비닐리덴플루오라이드 (PVdF), 폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐피를리돈, 폴리비닐아세테이트, 폴리에틸렌-비닐아세테이트 공증합체, 폴리에틸렌옥사이드, 셀를로오스 아세테이트, 셀를로오스 아세테이트 부티레이트, 셀를로오스 아세테이트 프로피오네이트, 시아노에틸풀루란 (cyanoethylpullulan), 시아노에틸폴리비닐알코을, 시아노에틸셀를로오스, 시아노에틸수크로오스, 풀루란 (pullulan), 카르복시메틸셀롤로오스, 아크릴로니트릴 -스티렌-부타디엔 공중합체, 이들의 공중합체 또는 이들의 조합을 사용할 수 있다. 이들 중에서, 예를 들면, 폴리비닐리덴플루오라이드 (PVdF), 이의 공중합체 또는 이들의 조합을 사용할 수 있다. 구체적으로, 상기 폴리비닐리덴플루오라이드 공중합체는 비닐리덴 반복단위와 핵사플루오로프로필렌 반복단위를 포함하는 공중합체를 사용할 수 있다. 예를 들어 폴리비닐리덴폴루오라이드-핵사플루오로프로필렌 (PVdF-HFP) 이원 공중합체 또는 비닐리덴 반복단위 및 핵사플루오로플로필렌 반복단위 외에 다른 반복단위 (예를 들어, 아크릴산, 산 무수물등)를 포함하는 삼원 공중합체를 사용할 수도 있다. Polyvinylidene fluoride (PVdF), polymethyl methacrylate, polyacrylonitrile, polyvinylpyridone, polyvinylacetate, polyethylene-vinylacetate co-polymer, polyethylene oxide, cellulose acetate, cellulose acetate butyrate , Cellulose acetate propionate, cyanoethylpullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, Pullulan, carboxymethylcellulose, acrylonitrile-styrene-butadiene copolymers, copolymers thereof or combinations thereof may be used. Among them, for example, polyvinylidene fluoride (PVdF), a copolymer thereof or a combination thereof can be used. Specifically, the polyvinylidene fluoride copolymer may use a copolymer including a vinylidene repeat unit and a nucleus fluoropropylene repeat unit. For example, polyvinylidene fluoride-nucleus fluoropropylene (PVdF-HFP) binary copolymers or other repeating units other than vinylidene repeating units and nuxafluoroflopylene repeating units (e.g., acrylic acid, acid anhydride, etc.) Ternary copolymers containing may be used.
상기 폴리비닐리덴플루오라이드 (PVdF), 폴리비닐리덴플루오라이드 공중합체 또는 이들의 조합을 상기 폴리머와 함께 사용할 경우, 상기 기재와의 접착력을 더 높이면서 균일한 내열 다공층을 형성할 수 있고, 이에 따라 더욱 안정한  When the polyvinylidene fluoride (PVdF), polyvinylidene fluoride copolymer or a combination thereof is used together with the polymer, it is possible to form a uniform heat-resistant porous layer with higher adhesion to the substrate, thereby More stable
세퍼레이터를 확보할 수 있다ᅳ 또한 전해액 함침성이 우수하여 전지의 고율 층방전 특성이 향상될 수 있다. Separator can be secured. In addition, since the electrolyte impregnation property is excellent, the high rate layer discharge characteristic of the battery can be improved.
상기 폴리비닐리덴플루오라이드 (PVdF)는 중량평균분자량이 800,000 g/mol 이상: 구체적으로는 1,000,000 g/mol 이상, 보다 구체적으로, 1,000,000 내지 1,600,000 g/mol, 보다 더 구체적으로 1 ,000,000 내지 1,200,000 g/mol 인 것을 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 폴리비닐리덴플루오라이드 (PVdF)의 중량평균분자량이 상기 범위 내일 경우 기재와 내열 다공층 간의 접착력이 더욱 강화될 수 있을 뿐만 아니라 전극과의 접착력도 향상될 수 있다. 또한, 열에 의한 기재의 수축을 억제할 수 있으며, 양극과 음극의 단락을 방지할 수 있을 뿐만 아니라, 내열 다공층 형성시 적은 양의 용매에도 잘 용해되어 내열 다공층의 건조를 용이하게 할 수 있다. 상기 폴리비닐리덴플루오라이드 공중합체는 중량평균분자량이 800,000 g/mol 이하, 구체적으로는 500,000 g/mol 내지 800,000 g/mol 인 것올 사용할 수 있으나, 이에 한정되는 것은 아니다. 상기 폴리비닐리덴플루오라이드 공중합체의 The polyvinylidene fluoride (PVdF) has a weight average molecular weight of 800,000 g / mol or more : specifically 1,000,000 g / mol or more, more specifically 1,000,000 to 1,600,000 g / mol, even more specifically 1,000,000 to 1,200,000 g / mol may be used, but is not limited thereto. When the weight average molecular weight of the polyvinylidene fluoride (PVdF) is within the above range, not only the adhesion between the substrate and the heat-resistant porous layer can be further enhanced, but also the adhesion with the electrode can be improved. In addition, the shrinkage of the substrate due to heat can be suppressed, and the short-circuit between the positive electrode and the negative electrode can be prevented, and the solvent can be easily dissolved in a small amount of solvent during formation of the heat-resistant porous layer to facilitate drying of the heat-resistant porous layer. . The polyvinylidene fluoride copolymer may have a weight average molecular weight of 800,000 g / mol or less, specifically, 500,000 g / mol to 800,000 g / mol, but is not limited thereto. Of the polyvinylidene fluoride copolymer
중량평균분자량이 상기 범위 내일 경우 전해액 함침성이 더욱 우수하여 고율 충방전 특성이 향상된 리튬 이차 전지를 구현할 수 있다. When the weight average molecular weight is within the above range, it is possible to implement a lithium secondary battery having improved electrolyte impregnation property and improved high rate charge / discharge characteristics.
상기 폴리비닐리덴플루오라이드 공중합체는 핵사플루오로프로필렌으로부터 유도되는 반복단위를 전체 반복단위의 총량에 대하여 0.1 중량% 내지 40 중량0 /0로 포함할 수 있으나, 이에 한정되지 않는다. The polyvinylidene fluoride copolymer, but it may include a repeating unit derived from propylene in hex-fluoro-0.1% by weight to 40 parts by weight 0/0 with respect to the total of all repeating units, and the like.
상기 내열 다공층이 전술한 폴리머의 제 1 바인더와 제 2 바인더를 모두 포함하는 경우, 상기 폴리머의 제 1 바인더는 상기 폴리머의 제 1 바인더와 상기 제 2 바인더의 총량에 대하여 20 중량0 /0 내지 99 중량0 /0, 구체적으로는 50 중량0 /0 내지 99 중량%로 포함될 수 있다. 상기 폴리머가 상기 함량 범위 내로 포함되는 경우 난연성 및 내열성뿐 아니라 세퍼레이터 형성시의 가공성과 전해액에 대한 안정성이 우수하고 기재와의 접착성이 강화됨에 따라 더욱 안정한 세퍼레이터를 확보할 수 있다. The heat-resistant porous layer is formed of both the first binder and the second binder of the polymer If it does, the first binder of the polymer is 20 parts by weight 0/0 to 99 weight 0/0 with respect to the total amount of the second binder and the first binder of the polymer, specifically, 50 parts by weight 0/0 to 99% by weight It may be included as. When the polymer is included in the content range, as well as flame retardancy and heat resistance, the processability at the time of forming the separator and the stability to the electrolyte are excellent, and as the adhesion to the substrate is enhanced, a more stable separator can be secured.
이하, 또 다른 일 구현예에 따른 리튬 이차 전지용 세퍼레이터에 대해 설명한다ᅳ  Hereinafter, a separator for a rechargeable lithium battery according to another embodiment is described.
본 구현예에 따른 리튬 이차 전지용 세퍼레이터는 기재 및 상기 기재의 적어도 일면에 위치하는 내열 다공층을 포함하며, 상기 내열 다공층은 바인더 및 필러를 포함할 수 있다. 이때 상기 바인더는 전술한 폴리머 또는 전술한 폴리머를 포함하는 2종 이상의 바인더의 흔합물일 수 있다. 본 구현예의 세퍼레이터는 필러를 포함한다는 점에서 상술한 일 구현예 및 다른 구현예에 따른 리튬 이차 전지용 세퍼레이터와 차이가 있으며, 다른 구성요소는 실질적으로 동일하므로, 여기서는 필러를 중심으로 설명한다.  The separator for a rechargeable lithium battery according to the present embodiment may include a substrate and a heat resistant porous layer positioned on at least one surface of the substrate, and the heat resistant porous layer may include a binder and a filler. In this case, the binder may be a mixture of two or more kinds of binders including the aforementioned polymer or the aforementioned polymer. The separator of the present embodiment is different from the separator for a lithium secondary battery according to the above-described embodiments and other embodiments in that it includes a filler, and the other components are substantially the same, and thus, the filler will be described herein.
내열 다공층에 필러를 첨가할 경우 열에 의한 기재의 수축을 더욱  When the filler is added to the heat resistant porous layer, the shrinkage of the substrate by heat is further increased.
방지함으로써 양극과 음극 간의 단락을 억제할 수 있으며, 또한 리튬 이온의 저항을 최소화하여 전지의 성능을 개선할 수 있다. 상기 필러는 무기 입자, 유기 입자 또는 이들의 조합을 포함할 수 있다ᅳ 상기 무기 입자는 A1203, Si02, B203, Ga203, Ti02, Sn02 또는 이들의 조합을 포함할 수 있으나, 이에 한정되지 않는다. By preventing, short circuit between the positive electrode and the negative electrode can be suppressed, and the performance of the battery can be improved by minimizing the resistance of lithium ions. The filler may include inorganic particles, organic particles, or a combination thereof. The inorganic particles may include A1 2 0 3 , Si0 2 , B 2 0 3 , Ga 2 0 3 , Ti0 2 , Sn0 2, or a combination thereof. It may include, but is not limited thereto.
상기 유기 입자는 아크릴계 화합물, 이미드계 화합물, 아미드계 화합물 또는 이들의 조합올 포함하는 입자일 수 있으나, 이에 한정되지 않는다. 또한, 유기 입자는 코어-쉘 구조를 가질 수 있으나, 이에 한정되지 않는다.  The organic particles may be particles including an acrylic compound, an imide compound, an amide compound, or a combination thereof, but are not limited thereto. In addition, the organic particles may have a core-shell structure, but are not limited thereto.
상기 필러는 평균입경이 l nm 내지 2000 nm 일 수 있고, 예를 들면, lOO nm 내지 lOOO nm, lOO nm 내지 500 nm 일 수 있다. 또한, 입경이 상이한 2종 이상의 필러를 흔합하여 사용하여도 무방하다. 상기 필러의 평균입경이 상기 범위 내인 경우 내열 다공충 형성시 기재에 균일하게 코팅될 수 있고, 양극과 음극 간의 단락을 억제할 수 있으며, 또한 리튬 이온의 저항을 최소화하여 리튬 이차 전지의 성능을 확보할 수 있다. 상기 필러의 함량은 상기 내열 다공층의 총량에 대하여 30 중량 % 내지 90 중량0 /。로 포함될 수 있고, 예를 들면, 60 중량 % 내지 90 중량0 /。로 포함될 수 있다. 상기 필러가 상기 함량 범위 내로 포함되는 경우 양극과 음극 간의 단락을 The filler may have an average particle diameter of l nm to 2000 nm, for example, lOO nm to lOOOO nm, lOO nm to 500 nm. Moreover, you may mix and use 2 or more types of fillers from which a particle diameter differs. When the average particle diameter of the filler is in the above range, it can be uniformly coated on the substrate when forming a heat-resistant porous insect, can suppress the short circuit between the positive electrode and the negative electrode, and also minimize the resistance of lithium ions to secure the performance of the lithium secondary battery can do. The amount of the filler can comprise from 30 weight% to 90 weight 0 /. With respect to the total of the heat resistant porous layer, for example, it may be included as 60 wt% to 90 wt. 0 /. When the filler is included in the content range, a short circuit between the positive electrode and the negative electrode
억제하고 전지 성능을 향상시킬 수 있다. It can suppress and improve battery performance.
이하, 또 다른 일 구현예에 따른 리튬 이차 전지용 세퍼레이터의 제조 방법에 대해 설명한다.  Hereinafter, a method of manufacturing a separator for a lithium secondary battery according to another embodiment is described.
상기 내열 다공충은 상기 기재의 적어도 일면에 상기 폴리머 및 용매를 포함하는 코팅 조성물을 도포한 후 건조하여 형성할 수 있다. 이때 코팅 조성물은 상기 폴리머와 상이한 상기 제 2 바인더 및 상기 필러 중 적어도 하나를 추가로 포함할 수 있다.  The heat-resistant porous insect may be formed by applying a coating composition comprising the polymer and a solvent on at least one side of the substrate and then drying. In this case, the coating composition may further include at least one of the second binder and the filler different from the polymer.
상기 용매는 메탄올, 에탄올, 이소프로필알코올 등의 알코올류; 아세톤 등의 케톤류 등을 사용할 수 있으나, 이에 한정되지 않는다.  The solvent includes alcohols such as methanol, ethanol and isopropyl alcohol; Ketones such as acetone may be used, but are not limited thereto.
상기 코팅 조성물은 상기 폴리머 1 내지 30 중량% 및 상기 용매 잔부량을 흔합하고, 10 °C 내지 40 °C에서 30분 내지 5시간 동안 교반하여 얻을 수 있다. The coating composition may be obtained by mixing 1 to 30% by weight of the polymer and the balance of the solvent, and stirring at 10 ° C to 40 ° C for 30 minutes to 5 hours.
상기 교반은 볼 밀 (ball mill), 비즈 밀 (beads mill), 스크류 믹서 (screw mixer) 등을 이용하여 수행될 수 있다. The stirring may be performed using a ball mill, a beads mill, a screw mixer, or the like.
상기 코팅 조성물을 상기 기재에 도포하는 방법은 딥 (dip) 코팅법, 다이 (die) 코팅법, 롤 (roll) 코팅법, 콤마 (comma) 코팅법 등을 들 수 있으나, 이에 한정되지 않는다.  A method of applying the coating composition to the substrate may include a dip coating method, a die coating method, a roll coating method, a comma coating method, and the like, but is not limited thereto.
상기 건조는 온풍, 열풍 또는 저습풍에 의한 건조, 진공 건조, 또는 원적외선, 전자선 등의 조사에 의한 방법으로 수행될 수 있으나, 이에 한정되지 않는다. 상기 건조 공정은 60 °C 내지 120 °C의 온도에서 수행될 수 있다. 상기 은도 범위 내에서 수행될 경우 건조 시간이 오래 소요되지 않으면서 표면이 매끈한 내열 다공층을 형성할 수 있다. · The drying may be performed by a method of drying by hot air, hot air or low humidity, vacuum drying, or irradiation of far infrared rays, electron beams, etc., but is not limited thereto. The drying process may be carried out at a temperature of 60 ° C to 120 ° C. When performed in the silver range, it is possible to form a heat resistant porous layer having a smooth surface without requiring a long drying time. ·
기재 위의 내열 다공층의 형성은 상기 코팅 조성물을 이용한 코팅 방법 외에, 라미네이션 (lamination), 공압출 (coextrusion) 등의 방법으로도 가능하다.  Formation of the heat-resistant porous layer on the substrate may be performed by a method such as lamination, coextrusion, etc., in addition to the coating method using the coating composition.
이하, 전술한 세퍼레이터를 포함하는 리튬 이차 전지에 대해 도 1올 참고하여 설명한다ᅳ  Hereinafter, a lithium secondary battery including the above-described separator will be described with reference to FIG. 1.
도 1은 일 구현예에 따른 리튬 이차 전지의 분해 사시도이다. 일 구현예에 따른 리튬 이차 전지는 각형인 것을 예로 설명하지만, 본 발명이 이에 제한되는 것은 아니며, 리튬 폴리머 전지, 원통형 전지 등 다양한 형태의 전지에 적용될 수 있다. 1 is an exploded perspective view of a rechargeable lithium battery according to one embodiment. Lithium secondary battery according to an embodiment is described as an example of the square, but the present invention is limited thereto The present invention may be applied to various types of batteries such as lithium polymer batteries and cylindrical batteries.
도 1을 참고하면, 일 구현예에 따른 리튬 이차 전지 (100)는 양극 (10)과 음극 (20) 사이에 세퍼레이터 (30)를 개재하여 권취된 전극 조립체 (40)와, 상기 전극  Referring to FIG. 1, a lithium secondary battery 100 according to an embodiment includes an electrode assembly 40 wound between a positive electrode 10 and a negative electrode 20 via a separator 30, and the electrode
조립체 (40)가 내장되는 케이스 (50)를 포함한다. 상기 양극 (10), 상기 음극 (20) 및 상기 세퍼레이터 (30)는 전해액 (미도시)에 함침된다ᅳ A case 50 in which the assembly 40 is embedded. The positive electrode 10, the negative electrode 20 and the separator 30 are impregnated with an electrolyte (not shown).
상기 세퍼레이터 (30)는 전술한 바와 같다.  The separator 30 is as described above.
상기 양극 (10)은 양극 집전체 및 상기 양극 집전체 위에 형성되는 양극 활물질층을 포함할 수 있다. 상기 양극 활물질층은 양극 활물질, 바인더 및  The positive electrode 10 may include a positive electrode current collector and a positive electrode active material layer formed on the positive electrode current collector. The positive electrode active material layer is a positive electrode active material, a binder and
선택적으로 도전재를 포함할 수 있다. It may optionally include a conductive material.
상기 양극 집전체로는 알루미늄 (A1), 니켈 (Ni) 등올 사용할 수 있으나, 이에 한정되지 않는다.  As the cathode current collector, aluminum (A1), nickel (Ni), or the like may be used, but the present invention is not limited thereto.
상기 양극 활물질로는 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다. 구체적으로 코발트, 망간, 니켈, 알루미늄, 철 또는 이들의 조합의 금속과 리튬과의 복합 산화물 또는 복합 인산화물 중에서 1종 이상올 사용할 수 있다. 더욱 구체적으로, 리튬 코발트 산화물, 리튬 니켈 산화물, 리튬 망간 산화물, 리튬 니켈 코발트 망간 산화물, 리튬 니켈 코발트 알루미늄 산화물, 리튬 철 인산화물 또는 이들의 조합을 사용할 수 있다.  As the cathode active material, a compound capable of reversible intercalation and deintercalation of lithium may be used. Specifically, at least one of cobalt, manganese, nickel, aluminum, iron or a combination of metal and lithium composite oxides or phosphorus oxides may be used. More specifically, lithium cobalt oxide, lithium nickel oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium iron phosphate, or a combination thereof may be used.
상기 바인더는 양극 활물질 입자들을 서로 잘 부착시킬 뿐 아니라 양극 활물질을 양극 집전체에 잘 부착시키는 역할을 하며, 구체적인 예로는  The binder not only adheres the positive electrode active material particles to each other well but also serves to adhere the positive electrode active material to the positive electrode current collector.
폴리비닐알코올, 카르복시메틸셀롤로오스, 히드록시프로필셀를로오스, Polyvinyl alcohol, carboxymethyl cellulose, hydroxypropyl cellulose,
디아세틸셀롤로오스, 폴리비닐클로라이드, 카르복실화된 폴리비닐클로라이드, 폴리비닐플루오라이드, 에틸렌 옥사이드 함유 폴리머, 폴리비닐피를리돈, 폴리우레탄, 폴리테트라플루오로에틸렌, 폴리비닐리덴 플루오라이드, 폴리에틸렌, 폴리프로필렌, 스티렌-부타디엔 러버, 아크릴레이티드 스티렌-부타디엔 러버, 에폭시 수지, 나일론 등이 있으나, 이에 한정되지 않는다ᅳ 이들은 단독으로 또는 2종 이상 흔합하여 사용할 수 있다. Diacetyl cellulose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, ethylene oxide containing polymer, polyvinylpyridone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene , Polypropylene, styrene-butadiene rubber, acrylated styrene-butadiene rubber, epoxy resin, nylon and the like, but are not limited thereto. These may be used alone or in combination of two or more thereof.
상기 도전재는 전극에 도전성을 부여하는 것으로, 그 예로 천연혹연, 인조혹연, 카본블랙, 탄소섬유, 금속 분말, 금속 섬유 등이 있으나, 이에 한정되지 않는다. 이들은 단독으로 또는 2종 이상 흔합하여 사용할 수 있다. 상기 금속 ts i
Figure imgf000013_0001
οε 통음 ¾ts를 br¾ N극 ^융 tt io -- l¾ ^ I lt-^F^ & to-fe- 륭롬^^ ^릎 ¾ k r
Figure imgf000013_0002
The conductive material imparts conductivity to the electrode, and examples thereof include natural graphite, artificial graphite, carbon black, carbon fiber, metal powder, and metal fiber, but are not limited thereto. These can be used individually or in mixture of 2 or more types. The metal ts i
Figure imgf000013_0001
οε Tongue ¾ts br¾ Negative ^ Yung tt io-l¾ ^ I lt- ^ F ^ & to-fe-
Figure imgf000013_0002
Ha융 를 tl에 3:
Figure imgf000013_0003
n ^튿 ¾ to-tz-tz 긍는꼼 ¼½ o k-t°Y 극 ts융
Figure imgf000013_0004
극^융 는등 [ 52
Ha yong tl 3:
Figure imgf000013_0003
n ^ then ¾ to-tz-tz ¼½ o kt ° Y pole ts jung
Figure imgf000013_0004
Pole ^ jung silver lamp [52
•■ ^ 1: 통음 #¼ίν n - -ts '륨ᅳ1쒜 용ᅳ o<I '91 '3S 'S '!H ' S 'SV 'd '90 'II 'ui 'us 'IV '9 'PD 'uz 'W '§V 'n 'id 'Pd ¾ 'TO 'SH 'SO • ■ ^ 1: Tongue # ¼ίν n--ts 'lium ᅳ 1 쒜 Yong 쒜 o <I '91' 3S 'S'! H 'S' S 'V' d '90 'II' ui 'us' IV '9' PD 'uz' W '§V' n 'id' Pd ¾ 'TO' SH 'SO
'n¾ 'qd 'TO '31 '§S 'Λ\. 'on 'qa ^丄 'qN 'Λ 'JH ¾ 'II '入 'ee ¾ 'n¾' qd 'TO '31' § S 'Λ \. 'on' qa ^ 丄 'qN' Λ 'JH ¾' II '入' ee ¾
극^人 --b^ ¾융^ 를¾^ -b-h¼ ^hi¾ rk ί¾¾ z ^^ -b-h¼ ^ hi¾ rk ί¾¾ z
Ί ^ 를 통음 A-«S'[^-¾¼ -us '¾us 'us A S'l^-^-k- 3 S 'te>x>0)xO!S '!S 극^^륨 극^ ^ ^ 륭을 ki°V '{그ᅵ ¾융 Ιθ· & ¾ ^^은
Figure imgf000013_0005
IV » 'UZ 'ui'qd 'qS '!S ) '붸
Ί ^ through A- «S '(^-¾¼ -us'¾us' us A S'l ^-^-k- 3 S'te>x> 0) x O! S '! S pole ^ volume pole ^ ^ ^ Good luck ki ° V ' {That ¾yung Ιθ · & ¾ ^^
Figure imgf000013_0005
IV »' U Z'ui'qd'qS'! S) '붸
S3 'q¾ ¾ 'ΒΝ -tir ta ^^픈 - ts k v '-bl¾ ^ 름 륭을 ^ΈΊΣ S3 'q¾ ¾' ΒΝ -tir ta ^^ Σ-Σ kv ' -bl¾ ^
ST ST
Figure imgf000013_0006
^玉 ¾i
Figure imgf000013_0007
ki°r ᅵ Φ ¾ 륭
Figure imgf000013_0006
^ 玉 ¾i
Figure imgf000013_0007
ki ° r ᅵ Φ ¾ Excellent
극玉 ^ί¾ [η '^ί¾ ^S n ^ ¾ 통^름 ί^^ί¾ ^ ^^롬 01
Figure imgf000013_0008
Polar 玉 ^ ί¾ [η '^ ί¾ ^ S n ^ ¾ whole stream ί ^^ ί¾ ^ ^^ Rom 01
Figure imgf000013_0008
Figure imgf000013_0009
s- > 통긍 IQ ts극^^튿 ft는퉁 를^ S ^ t fe^ ^ [ i¾{n '^륨 ¾ 는등 금을^튿 ¾ 는응 v
Figure imgf000013_0010
Figure imgf000013_0009
s-> Tong I Q ts pole ^^ Next ft ^^
Figure imgf000013_0010
는등 극 t5 fe I t^ l^t^^ 는등 kl°v ^ 는^ 긍 (0Z)는등 k°r Silver Pole t5 fe I t ^ l ^ t ^^ Silver Pole kl ° v ^ Silver ^ Positive (0Z)
Figure imgf000013_0011
손 극공^ ^은 U-Pv ff fa ¾
Figure imgf000013_0011
U-Pv ff fa ¾
S0C800/ST0ZaM/X3d π .86ΪΖ0/9Ϊ0Ζ OAV 알려진 내용이므로 본 명세서에서 상세한 설명은 생략하기로 한다. S0C800 / ST0ZaM / X3d π .86ΪΖ0 / 9Ϊ0Ζ OAV Since it is known, a detailed description thereof will be omitted.
상기 전해액은 유기용매와 리튬염을 포함한다.  The electrolyte solution contains an organic solvent and a lithium salt.
상기 유기용매는 전지의 전기화학적 반응에 관여하는 이온들이 이동할 수 있는 매질 역할을 한다. 그 구체적인 예로는, 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 케톤계 용매, 알코올계 용매 및 비양성자성 용매에서 선택될 수 있다.  The organic solvent serves as a medium through which ions involved in the electrochemical reaction of the battery can move. Specific examples thereof may be selected from carbonate solvents, ester solvents, ether solvents, ketone solvents, alcohol solvents and aprotic solvents.
상기 카보네이트계 용매의 예로는, 디메틸 카보네이트 (DMC), 디에틸  Examples of the carbonate solvent include dimethyl carbonate (DMC) and diethyl
카보네이트 (DEC), 디프로필 카보네이트 (DPC), 메틸프로필 카보네이트 (MPC), 에틸프로필 카보네이트 (EPC), 에틸메틸 카보네이트 (EMC), 에틸렌 카보네이트 (EC), 프로필렌 카보네이트 (PC), 부틸렌 카보네이트 (BC) 등을 들 수 있다. 구체적으로, 사슬형 카보네이트 화합물과 환형 카보네이트 화합물을 흔합하여 사용하는 경우 유전율을 높이는 동시에 점성이 작은 용매로 제조될 수 있다. 이때 환형 Carbonate (DEC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), ethylmethyl carbonate (EMC), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC ), And the like. Specifically, when a mixture of the chain carbonate compound and the cyclic carbonate compound is used, the dielectric constant may be increased and the solvent may be prepared with a low viscosity. At this time
카보네이트 화합물 및 사슬형 카보네이트 화합물은 1 : 1 내지 1 :9의 부피비로 The carbonate compound and the chain carbonate compound are in a volume ratio of 1: 1 to 1: 9.
흔합하여 사용할 수 있다. It can be used in combination.
상기 에스테르계 용매의 예로는, 메틸아세테이트, 에틸아세테이트 , η- 프로필아세테이트, 디메틸아세테이트, 메틸프로피오네이트, 에틸프로피오네이트 , γ- 부티로락톤, 데카놀라이드 (decanolide), 발레로락톤, 메발로노락톤 (mevalonolactone), 카프로락톤 (caprolactone) 등을 들 수 있다. 상기 에테르계 용매의 예로는,  Examples of the ester solvents include methyl acetate, ethyl acetate, η-propyl acetate, dimethyl acetate, methyl propionate, ethyl propionate, γ-butyrolactone, decanolide, valerolactone and memeth Melononolactone, caprolactone, and the like. Examples of the ether solvent,
디부틸에테르, 테트라글라임, 디글라임, 디메톡시에탄 , 2-메틸테트라히드로퓨란, 테트라히드로퓨란 등을 들 수 .있다. 상기 케톤계 용매로는 시클로핵사논 등을 들 수 있고, 상기 알코올계 용매로는 에틸알코올, 이소프로필 알코을 등을 들 수 있다. 상기 유기용매는 단독으로 또는 2종 이상 흔합하여 사용할 수 있으며 , 2종 이상 흔합하여 사용하는 경우의 흔합 비율은 목적하는 전지 성능에 따라 적절하게 조절할 수 있다. Dibutyl ether, tetraglyme, diglyme, dimethoxyethane, 2-methyltetrahydrofuran, tetrahydrofuran and the like . have. Examples of the ketone solvent include cyclonucleanone and the like, and examples of the alcohol solvent include ethyl alcohol and isopropyl alcohol. The organic solvents may be used alone or in combination of two or more thereof, and the mixing ratio in the case of mixing two or more kinds may be appropriately adjusted according to the desired battery performance.
상기 리륨염은 유기용매에 용해되어, 전지 내에서 리튬 이온의 공급원으로 작용하여 기본적인 리튬 이차 전지의 작동을 가능하게 하고, 양극과 음극 사이의 리튬 이은의 이동을 촉진시키는 물질이다.  The lithium salt is a substance that dissolves in an organic solvent and acts as a source of lithium ions in the battery to enable operation of a basic lithium secondary battery and to promote the migration of lithium silver between the positive electrode and the negative electrode.
상기 리튬염의 예로는, LiPF6, LiBF4, LiSbF6, LiAsF6, LiN(S03C2F5)2, LiN(CF3S02)2, L1C4F9SO3, L1CIO4, LiA102, LiAlCl4, LiN(CxF2x+,S02)(CyF2y+, S02)(x 및 y는 자연수임), LiCl, Lil, LiB(C204)2 또는 이들의 조합을 들 수 있다. 상기 리튬염의 농도는 0.1M 내지 2.0M 범위 내에서 사용할 수 있다ᅳ 리튬염의 농도가 상기 범위 내인 경우, 전해액이 적절한 전도도 및 점도를 가지므로 우수한 전해액 성능을 나타낼 수 있고, 리튬 이온이 효과적으로 이동할 수 있다. 전술한 세퍼레이터를 포함하는 리튬 이차 전지는 4.35V 이상의 고전압에서 작동될 수 있으며, 이에 따라 수명 특성의 열화 없이 고용량의 리튬 이차 전지를 구현할 수 있다. 이하에서는 본 발명의 구체적인 실시예들을 제시한다ᅳ 다만, 하기에 기재된 실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 블과하며 , 이로서 본 발명이 제한되어서는 아니된다. 또한, 여기에 기재되지 않은 내용은 이 기술 분야에서 숙련된 자이면 층분히 기술적으로 유추할 수 있는 것이므로 그 설명을 생략한다. 폴리머 합성 Examples of the lithium salt, LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiN (S0 3 C 2 F 5 ) 2 , LiN (CF 3 S0 2 ) 2 , L1C4F9SO3, L1CIO 4 , LiA10 2 , LiAlCl 4 , LiN (C x F 2x + , SO 2 ) (C y F 2y + , SO 2 ) (x and y are natural numbers), LiCl, Lil, LiB (C 2 0 4 ) 2 or a combination thereof. The concentration of the lithium salt can be used within the range of 0.1M to 2.0M ᅳ When the concentration of the lithium salt is within the above range, since the electrolyte has an appropriate conductivity and viscosity can exhibit excellent electrolyte performance, lithium ions can move effectively. . The lithium secondary battery including the above-described separator can be operated at a high voltage of 4.35V or more, thereby realizing a high capacity lithium secondary battery without deterioration of life characteristics. Hereinafter, specific embodiments of the present invention will be presented. However, the embodiments described below are only used to specifically illustrate or describe the present invention, and the present invention should not be limited thereto. In addition, the contents not described herein are those that can be inferred technically by those skilled in the art will not be described. Polymer synthesis
합성예 1  Synthesis Example 1
비스페놀 A 33.0g(140mmol) 및 트리에틸아민 35.8g(350mmol)을  33.0 g (140 mmol) of bisphenol A and 35.8 g (350 mmol) of triethylamine
메틸렌클로라이드 210mL에 첨가한 후, 0 °C로 넁각시켰다. 이어서 28.1g의 After addition to 210 mL methylene chloride, it was cooled to 0 ° C. Then 28.1 g
페닐포스포닉 디클로라이드를 메틸렌클로라이드 15mL에 녹인 용액을 천천히 1시간 동안 첨가한 후, 실온에서 4시간 동안 반웅시켰다. 반응이 끝난 용액을 회석한 HC1 용액과 증류수를 이용하여 여러 차례 세척하였다. 세척된 고분자를 80 °C A solution of phenylphosphonic dichloride in 15 mL of methylene chloride was slowly added for 1 hour and then reacted at room temperature for 4 hours. The reaction solution was washed several times with distilled water and dilute HC1 solution. 80 ° C Washed Polymer
진공오본에서 48시간 동안 건조시켜, 하기 화학식 3-1로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 중량평균분자량 (Mw)은 145,000 g/mol 이었다.After drying for 48 hours in a vacuum oven, a polymer including a structural unit represented by the following Chemical Formula 3-1 was synthesized. The weight average molecular weight (Mw) of the synthesized polymer was 145,000 g / mol.
-1]  -One]
Figure imgf000015_0001
Figure imgf000015_0001
합성예 2  Synthesis Example 2
합성예 1에서 비스페놀 A 33.0g(140mmol) 대신 비스페놀 β 35.0g(140mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법으로 합성하여, 하기 화학식 3-2로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 In Synthesis Example 1, 35.0 g (140 mmol) of bisphenol β was substituted for 33.0 g (140 mmol) of bisphenol A. Synthesis was carried out in the same manner as in Synthesis Example 1, except that the polymer containing the structural unit represented by the following Formula 3-2 was synthesized. Of the synthesized polymer
중량평균분자량 (Mw)은 101,000 g/mol 이었다.The weight average molecular weight (Mw) was 101,000 g / mol.
-2]  -2]
Figure imgf000016_0001
Figure imgf000016_0001
합성예 3  Synthesis Example 3
합성예 1에서 비스페놀 A 33.0g(140mmol) 대신 4,4-디하이드록시 벤조페논 30.0g(140mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법으로 합성하여, 하기 화학식 3ᅳ 3으로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 중량평균분자량 (Mw)은 110,000 g/mol 이었다. Synthesis Example 1 was synthesized in the same manner as in Synthesis Example 1, except that 30.0 g (140 mmol) of 4,4-dihydroxy benzophenone was used instead of 33.0 g (140 mmol) of Bisphenol A. A polymer comprising structural units was synthesized. The weight average molecular weight (Mw) of the synthesized polymer was 110,000 g / mol.
-3]  -3]
Figure imgf000016_0002
Figure imgf000016_0002
합성예 4  Synthesis Example 4
합성예 1에서 비스페놀 A 33.0g(140mmol) 대신 비페놀 26.3g(140mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법으로 합성하여, 하기 화학식 3-4로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의  Synthesis was carried out in the same manner as in Synthesis Example 1 except for using biphenol 26.3 g (140 mmol) instead of 33.0 g (140 mmol) of bisphenol A in Synthesis Example 1, to obtain a polymer including a structural unit represented by the following Chemical Formula 3-4: Synthesized. Of the synthesized polymer
중량평균분자량 (Mw)은 130,000 g/mol 이었다.The weight average molecular weight (Mw) was 130,000 g / mol.
-4]  -4]
Figure imgf000016_0003
Figure imgf000016_0003
합성예 5  Synthesis Example 5
합성예 1에서 비스페놀 A 33.0g(140mmol) 대신 비스페놀 Z 37.5g(140mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법으로 합성하여, 하기 화학식 3-5로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 Synthesis Example 1 was synthesized in the same manner as in Synthesis Example 1, except that 37.5 g (140 mmol) of bisphenol Z was used instead of 33.0 g (140 mmol) of Bisphenol A. A polymer containing the structural unit represented was synthesized. Of the synthesized polymer
중량평균분자량 (Mw)은 125,000 g/mol 이었다.The weight average molecular weight (Mw) was 125,000 g / mol.
-5]  -5]
Figure imgf000017_0001
Figure imgf000017_0001
합성예 6  Synthesis Example 6
합성예 1에서 비스페놀 A 33.0g(140mmol) 대신 페놀프탈레인 44.5g(140mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법으로 합성하여, 하기 화학식 3- 6으로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 중.량평균분자량 (Mw)은 150,000 g/mol 이었다.  Synthesis was carried out in the same manner as in Synthesis Example 1, except that 44.5 g (140 mmol) of phenolphthalein was used instead of 33.0 g (140 mmol) of bisphenol A in Synthesis Example 1 to synthesize a polymer including a structural unit represented by Formula 3-6. It was. The weight average molecular weight (Mw) of the synthesized polymer was 150,000 g / mol.
3-6]  3-6]
Figure imgf000017_0002
Figure imgf000017_0002
합성예 7  Synthesis Example 7
합성예 1에서 비스페놀 A 33.0g(l40mmol) 대신 9,9 ' -비스 (Φ· 9,9 '-bis (Φ · instead of 33.0 g (l 4 0 mmol) of bisphenol A in Synthesis Example 1
하이드록시페닐)플루오렌 49.0g(140mmol)을 사용한 것을 제외하고는 합성예 1과 동일한 방법으로 합성하여, 하기 화학식 3-7로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 중량평균분자량 (Mw)은 135,000 g/mol 이었다. [화학식 3-7] Except that 49.0 g (140 mmol) of hydroxyphenyl) fluorene was used, it synthesize | combined by the same method as the synthesis example 1, and synthesize | combined the polymer containing the structural unit represented by following formula (3-7). The weight average molecular weight (Mw) of the synthesized polymer was 135,000 g / mol. [Formula 3-7]
Figure imgf000018_0001
Figure imgf000018_0001
합성예 8  Synthesis Example 8
비스페놀 Z 38.0g(140mmol) 및 트리에틸아민 35.8g(350mmol)을  38.0 g (140 mmol) bisphenol Z and 35.8 g (350 mmol) triethylamine
메틸렌클로라이드 210mL에 첨가한 후, 0°C로 냉각시켰다. 이어서 29.53g의 페닐 포스포로디클로리데이트 (phenyl phosphorodichloridate)를 메틸렌클로라이드 15mL에 녹인 용액을 천천히 1시간 동안 첨가한 후, 실온에서 4시간 동안 반웅시켰다. After addition to 210 mL methylene chloride, it was cooled to 0 ° C. Then, a solution of 29.53 g of phenyl phosphorodichloridate dissolved in 15 mL of methylene chloride was slowly added for 1 hour, and then reacted at room temperature for 4 hours.
반응이 끝난 용액을 희석한 HC1 용액과 증류수를 이용하여 여러 차례 세척하였다. 세척된 고분자를 80°C 진공오븐에서 48시간 동안 건조시켜, 하기 화학식 3-8로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 The reaction solution was washed several times with diluted HC1 solution and distilled water. The washed polymer was dried in a vacuum oven at 80 ° C. for 48 hours to synthesize a polymer including a structural unit represented by the following Chemical Formula 3-8. Of the synthesized polymer
중량평균분자량 (Mw)은 123,000 g/mol 이었다.The weight average molecular weight (Mw) was 123,000 g / mol.
-8]  -8]
Figure imgf000018_0002
Figure imgf000018_0002
합성예 9  Synthesis Example 9
합성예 8에서 비스페놀 Z 38.0g(140mmol) 대신 페놀프탈레인 44.5g(140mmol)을 사용한 것을 제외하고는 합성예 8과 동일한 방법으로 합성하여, 하기 화학식 3-9로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의  Synthesis Example 8 Synthesis was performed in the same manner as in Synthesis Example 8, except that 44.5 g (140 mmol) of phenolphthalein was used instead of 38.0 g (140 mmol) of bisphenol Z to synthesize a polymer including a structural unit represented by Chemical Formula 3-9. It was. Of the synthesized polymer
중량평균분자량 (Mw)은 147,000 g/mol 이었다. 화학식 3-9] The weight average molecular weight (Mw) was 147,000 g / mol. Formula 3-9]
Figure imgf000019_0001
Figure imgf000019_0001
합성예 10  Synthesis Example 10
합성예 8에서 비스페놀 Z 38.0g(140mmol) 대신 비스페놀 A 33.0g(140mmol)을 사용한 것을 제외하고는 합성예 8과 동일한 방법으로 합성하여, 하기 화학식 3- 10으로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 중량평균분자량 (Mw)은 142,000 g/mol 이었다. Synthesis Example 8 Synthesis was performed in the same manner as in Synthesis Example 8, except that 33.0 g (140 mmol) of Bisphenol A was used instead of 38.0 g (140 mmol) of Bisphenol Z, thereby obtaining a polymer including a structural unit represented by the following Formula 3-10: Synthesized. The weight average molecular weight (Mw) of the synthesized polymer was 142,000 g / mol.
-10]  -10]
Figure imgf000019_0002
Figure imgf000019_0002
합성예 11  Synthesis Example 11
합성예 8에서 비스페놀 Z 38.0g(140mmol) 대신 4,4 ' -술포닐디페놀  4,4'-sulfonyldiphenol instead of 38.0 g (140 mmol) of bisphenol Z in Synthesis Example 8
35.0g(140mmol)을 사용한 것을 제외하고는 합성예 8과 동일한 방법으로 합성하여, 하가 화학식 3-1 1로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 중량평균분자량 (Mw)은 102,000 g/mol 이었다.Synthesis was carried out in the same manner as in Synthesis Example 8 except that 35.0 g (140 mmol) was used to synthesize a polymer including a structural unit represented by Chemical Formula 3-1 1 below. The weight average molecular weight (Mw) of the synthesized polymer was 102,000 g / mol.
-11]  -11]
Figure imgf000019_0003
Figure imgf000019_0003
합성예 12  Synthesis Example 12
합성예 8에서 비스페놀 Z 38.0g(140mmol) 대신 4,4 ' -디하이드특시 벤조페논 30.0g(140mmol)을 사용한 것올 제외하고는 합성예 8과 동일한 방법으로 합성하여, 하기 화학식 3-12로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 중량평균분자량 (Mw)은 105,000 g/mol 이었다.4,4'-dihydric benzophenone instead of 38.0 g (140 mmol) of bisphenol Z in Synthesis Example 8 Except for using 30.0g (140mmol) was synthesized in the same manner as in Synthesis Example 8, to synthesize a polymer containing a structural unit represented by the following formula (3-12). The weight average molecular weight (Mw) of the synthesized polymer was 105,000 g / mol.
-12]  -12]
Figure imgf000020_0001
Figure imgf000020_0001
합성예 13  Synthesis Example 13
합성예 8에서 비스페놀 Z 38.0g(140mmol) 대신 비페놀 26.3g(140mmol)을 사용한 것을 제외하고는 합성예 8과 동일한 방법으로 합성하여, 하기 화학식 3- 13으로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 중량평균분자량 (Mw)은 126,000 g/mol 이었다. A polymer comprising a structural unit represented by the following Chemical Formula 3-13 was synthesized in the same manner as in Synthesis Example 8 except for using 26.3 g (140 mmol) of biphenol instead of 38.0 g (140 mmol) of bisphenol Z in Synthesis Example 8. Synthesized. The weight average molecular weight (Mw) of the synthesized polymer was 126,000 g / mol.
-13]  -13]
Figure imgf000020_0002
Figure imgf000020_0002
합성예 14  Synthesis Example 14
합성예 8에서 비스페놀 Z 38.0g(140mmol) 대신 9,9 ' -비스 (4- 하이드록시페닐)플루오렌 49.0g(140mmol)을 사용한 것을 제외하고는 합성예 8과 동일한 방법으로 합성하여, 하기 화학식 3-14로 표시되는 구조단위를 포함하는 폴리머를 합성하였다. 합성된 폴리머의 중량평균분자량 (Mw)은 132,000 g/mol 이었다. [화학식 3-14] Synthesis Example 8 was synthesized in the same manner as in Synthesis Example 8, except that 49.0 g (140 mmol) of 9,9′-bis (4-hydroxyphenyl) fluorene was used instead of 38.0 g (140 mmol) of bisphenol Z. A polymer comprising the structural unit represented by 3-14 was synthesized. The weight average molecular weight (Mw) of the synthesized polymer was 132,000 g / mol. [Formula 3-14]
Figure imgf000021_0001
세퍼레이터 제조
Figure imgf000021_0001
Separator manufacturer
실시예 1  Example 1
합성예 1에서 제조된 폴리머를 10 중량0 /。로 테트라하이드로퓨란 (THF)에 용해시켜 폴리머 용액을 제조하였다ᅳ 또한 A1203(일본경금속社, LS235A)를 아세톤 (대정화금社)에 25 중량0 /。로 첨가하고, 비즈밀을 이용해 25 °C에서 3시간 동안 밀링하여 분산시켜 무기 분산액을 제조하였다. 상기 제조된 폴리머 용액 및 무기 분산액과, Ν,Ν-디메틸아세트아미드 (DMAc) 및 THF의 흔합 용매가 각각 2.5:5:2.5의 중량비가 되도록 흔합하고, 파워믹서로 25 °C에서 1시간 교반하여 코팅 조성물을 제조하였다. A polymer solution was prepared by dissolving the polymer prepared in Synthesis Example 1 at 10 weight 0 /. In tetrahydrofuran (THF). A1 2 0 3 (LS235A, Nippon Light Metal Co., Ltd.) was added to acetone. An inorganic dispersion was prepared by adding 25 weight 0 / ° and milling and dispersing at 25 ° C. for 3 hours using a bead mill. The polymer solution and the inorganic dispersion prepared above were mixed with a mixed solvent of Ν, Ν-dimethylacetamide (DMAc) and THF so as to have a weight ratio of 2.5: 5: 2.5, respectively, and stirred at 25 ° C. with a power mixer for 1 hour. The coating composition was prepared.
상기 제조된 코팅 조성물을 두께 9 의 폴리에틸렌 단일막 기재 필름의 양면에 딥 코팅 방식으로 각각 1.5 의 두께로 코팅한 다음, 이를 1 H C에서 1분 동안 건조하여 세퍼레이터를 제조하였다.  The prepared coating composition was coated on both sides of a polyethylene single layer substrate film having a thickness of 9 by a dip coating method, respectively, and then dried at 1 H C for 1 minute to prepare a separator.
실시예 2  Example 2
합성예 1 대신 합성예 2에서 제조된 플리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 3  A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the plymer prepared in Synthesis Example 2 instead of Synthesis Example 1. Example 3
합성예 1 대신 합성예 3에서 제조된 폴리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 4  A separator was prepared in the same manner as in Example 1, except that the coating composition was manufactured using the polymer prepared in Synthesis Example 3 instead of Synthesis Example 1. Example 4
합성예 1 대신 합성예 4에서 제조된 폴리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 5 합성예 1 대신 합성예 5에서 제조된 폴리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 6 A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 4 instead of Synthesis Example 1. Example 5 A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 5 instead of Synthesis Example 1. Example 6
합성예 1 대신 합성예 6에서 제조된 폴리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 7  A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 6 instead of Synthesis Example 1. Example 7
합성예 1 대신 합성예 7에서 제조된 폴리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 8  A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 7 instead of Synthesis Example 1. Example 8
합성예 1 대신 합성예 8에서 제조된 폴리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 9  A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 8 instead of Synthesis Example 1. Example 9
합성예 1 대신 합성예 9에서 제조된 폴리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 10  A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 9 instead of Synthesis Example 1. Example 10
합성예 1 대신 합성예 10에서 제조된 폴리머를 사용하여 코팅 조성물을 제조한 것올 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 11  A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 10 instead of Synthesis Example 1. Example 11
합성예 1 대신 합성예 1 1에서 제조된 폴리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 12  A separator was prepared in the same manner as in Example 1, except that the coating composition was manufactured using the polymer prepared in Synthesis Example 1 1 instead of Synthesis Example 1. Example 12
합성예 1 대신 합성예 12에서 제조된 플리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 13  A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the plymer prepared in Synthesis Example 12 instead of Synthesis Example 1. Example 13
합성예 1 대신 합성예 13에서 제조된 폴리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 실시예 14  A separator was prepared in the same manner as in Example 1, except that the coating composition was prepared using the polymer prepared in Synthesis Example 13 instead of Synthesis Example 1. Example 14
합성예 1 대신 합성예 14에서 제조된 폴리머를 사용하여 코팅 조성물을 제조한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 비교예 1 합성예 1에서 제조된 폴리머 대신 폴리 (부틸아크릴레이트 -CO- 메틸메타크릴레이트 -co-비닐아세테이트)를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 세퍼레이터를 제조하였다. 리튬 이차 전지 제작 A separator was prepared in the same manner as in Example 1, except that the coating composition was manufactured using the polymer prepared in Synthesis Example 14 instead of Synthesis Example 1. Comparative Example 1 A separator was prepared in the same manner as in Example 1, except that poly (butyl acrylate -CO- methylmethacrylate -co-vinylacetate) was used instead of the polymer prepared in Synthesis Example 1. Lithium Secondary Battery
LiCo02, 폴리비닐리덴플루오라이드 및 카본블랙을 96:2:2의 중량비로 N- 메틸피를리돈 (NMP) 용매에 첨가하여 슬러리를 제조하였다. 상기 슬러리를 알루미늄 (A1) 박막에 도포 및 건조하고 압연하여 양극을 제조하였다. LiCo0 2 , polyvinylidene fluoride and carbon black were added to an N-methylpyrrolidone (NMP) solvent in a weight ratio of 96: 2: 2 to prepare a slurry. The slurry was applied to an aluminum (A1) thin film, dried, and rolled to prepare a positive electrode.
혹연, 폴리비닐리덴플루오라이드 및 카본블랙을 98: 1 : 1의 중량비로 N- 메틸피를리돈 (NMP) 용매에 첨가하여 슬러리를 제조하였다. 상기 슬러리를 구리 호일에 도포 및 건조하고 압연하여 음극을 제조하였다.  Absolutely, polyvinylidene fluoride and carbon black were added to an N-methylpyrrolidone (NMP) solvent in a weight ratio of 98: 1: 1 to prepare a slurry. The slurry was applied to copper foil, dried and rolled to prepare a negative electrode.
전해액은 에틸렌 카보네이트 (EC), 에틸메틸 카보네이트 (EMC) 및 디에틸 카보네이트 (DEC)를 3 :5:2의 부피비로 흔합한 흔합 용매에 1.15M의 LiPF6를 첨가하여 전해액을 제조하였다. The electrolyte solution was prepared by adding 1.15 M of LiPF 6 to a mixed solvent in which ethylene carbonate (EC), ethylmethyl carbonate (EMC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 5: 2.
위에서 제조된 양극, 음극 및 전해액과 실시예 1 내지 14 및 비교예 1에서 제조된 세퍼레이터를 사용하여 리튬 이차 전지를 제작하였다. 평가  A lithium secondary battery was manufactured using the positive electrode, the negative electrode, and the electrolyte solution prepared above, and the separators prepared in Examples 1 to 14 and Comparative Example 1. evaluation
평가 1: 바인더의 물성  Evaluation 1: Physical Properties of the Binder
실시예 1 내지 14의 세퍼레이터 제조시 사용된 폴리머와 비교예 1의 세퍼레이터 제조시 사용된 폴리 (부틸아크릴레이트 _C0-메틸메타크릴레이트ᅳ co_ 비닐아세테이트)에 대해 중량평균분자량 (Mw) 및 유리전이온도 (Tg)와 난연도를 각각 아래 방법으로 측정하여 , 그 결과를 하기 표 1에 나타내었다. Weight average molecular weight (Mw) and glass relative to the polymer used in the preparation of the separators of Examples 1 to 14 and the poly (butylacrylate _ C0 -methyl methacrylate ᅳ co _ vinyl acetate) used in the preparation of the separator of Comparative Example 1 Transition temperature (Tg) and flame retardancy were respectively measured by the following method, and the results are shown in Table 1 below.
(1) 중량평균분자량 (Mw): 겔 투과 크로마토그래피 (GPC)로 측정한 폴리스티렌 환산 수치로 나타내었다.  (1) Weight average molecular weight (Mw): It was shown by the polystyrene conversion value measured by the gel permeation chromatography (GPC).
(2) 유리전이온도 (Tg): 시차주사열량측정법 (DSC)으로 측정하였다.  (2) Glass transition temperature (Tg): Measured by differential scanning calorimetry (DSC).
(3) 난연도 (1/8"): UL94 VB 난연 규정에 따라 측정하였다.  (3) Flame retardancy (1/8 "): Measured according to UL94 VB flame retardant regulations.
평가 2: 세퍼레이터의 난연성  Evaluation 2: Flame Retardant of Separator
상기 실시예 1 내지 14 및 비교예 1에서 제조한 세퍼레이터에 대하여 하기와 같은 방법으로 시편을 제조하여 UL94 VB 난연 규정에 따라 난연성을 평가하였다. 실시예 1 내지 14 및 비교예 1에서 제조한 10cm X 50cm의 세퍼레이터를 접어서 10cm X 2cm로 만든 후, 상하부분을 고정하여 시편을 제조하였다. UL94 VB에 의거하여 난연 등급은 시편 연소 시간 기준으로 측정하였다. For the separators prepared in Examples 1 to 14 and Comparative Example 1, a specimen was prepared in the following manner to evaluate the flame retardancy according to the UL94 VB flame retardant regulations. The 10 cm X 50 cm separators prepared in Examples 1 to 14 and Comparative Example 1 were folded to 10 cm X 2 cm, and then the upper and lower portions were fixed to prepare specimens. Flame retardant ratings were determined based on specimen burn time in accordance with UL94 VB.
그 결과는 하기 표 1과 같다.  The results are shown in Table 1 below.
【표 1】  Table 1
Figure imgf000024_0001
Figure imgf000024_0001
상기 표 1을 통하여, 실시예 1 내지 14에서 바인더로 사용된 폴리머는 비교예 1에서 사용된 바인더 대비 난연성 및 내열성이 모두 우수함을 알 수 있고, 이에 따라 상기 폴리머를 바인더 단독으로 사용하여 내열 다공층을 형성한 세퍼레이터는 우수한 난연성 및 내열성이 모두 확보됨을 알 수 있다.  Through Table 1, it can be seen that the polymer used as the binder in Examples 1 to 14 is excellent in both flame retardancy and heat resistance compared to the binder used in Comparative Example 1, accordingly, using the polymer alone as a binder heat-resistant porous layer It can be seen that the separator formed with both excellent flame retardancy and heat resistance.
평가 3: 세퍼레이터의 통기성 및 내열성 실시예 1 내지 14 및 비교예 1에서 제조한 세퍼레이터에 대해 하기의 방법으로 각각 통기도와 내열도를 측정하여, 그 결과를 하기 표 2에 나타내었다. 통기도는 EG01-55-lMR(Asahi Seiko/tt) 기기를 이용하여 lOOcc 공기를 홀려 투과시간을 측정하였고, 내열도는 각 세퍼레이터를 200 °C 오븐에서 30분 동안 넣어둔 후의 수축률을 측정하였다. Evaluation 3: breathability and heat resistance of the separator For the separators prepared in Examples 1 to 14 and Comparative Example 1, the air permeability and heat resistance were measured by the following methods, respectively, and the results are shown in Table 2 below. The air permeability of the air permeation time was measured by OO01 air by using EG01-55-lMR (Asahi Seiko / tt), and the heat resistance measured the shrinkage rate after each separator was placed in a 200 ° C. oven for 30 minutes.
【표 2】  Table 2
Figure imgf000025_0001
Figure imgf000025_0001
상기 표 2를 통하여, 폴리머를 바 더 단독으로 사용하여 내열 다공층을 형성한 실시예 1 내지 14의 세퍼레이터는 통기성이 우수하며 비교예 1 대비 내열성이 우수함을 알 수 있다. 이에 따라 일 구현예에 따른 세퍼레이터는 이차 전지의 안정성과 성능 향상에 기여할 수 있다. 이상에서 본 발명의 바람직한 실시예들에 대하여 상세하게 설명하였지만 본 발명의 권리 범위는 이에 한정되는 것은 아니고 다음의 청구 범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리 범위에 속하는 것이다. Through the Table 2, the separator of the embodiment to form a heat-resistant porous layer by using the polymer alone as a bar more Examples 1 to 14 it can be seen that excellent air permeability and is excellent in heat resistance compared to Comparative Example 1, i. Accordingly, the separator according to one embodiment may contribute to the stability and performance of the secondary battery. Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto and is defined in the following claims. Various modifications and improvements of those skilled in the art using the basic concepts of the present invention are also within the scope of the present invention.
【부호의 설명】  [Explanation of code]
100: 리륨 이차 전지  100: lithium secondary battery
10: 양극  10: anode
20: 음극  20: cathode
30: 세퍼레이터  30: separator
40: 전극 조립체  40: electrode assembly
50: 케이스  50: case

Claims

【청구범위】 【청구항 1】 기재, 그리고 상기 기재의 적어도 일면에 위치하고 하기 화학식 1로 표현되는 구조 단위를 가지는 폴리머를 포함하는 내열 다공층 을 포함하는 리튬 이차 전지용 세퍼레이터. [Claim 1] A separator for a lithium secondary battery comprising a base material and a heat-resistant porous layer comprising a polymer located on at least one side of the base material and having a structural unit represented by the following general formula (1).
[화학식 1]  [Formula 1]
Figure imgf000027_0001
Figure imgf000027_0001
상기 화학식 1에서,  In Chemical Formula 1,
X는 단일결합, -CO-, -S02-, -COO-, -CONR'-(R'은 치환 또는 비치환된 C1 내지 C20 알킬기, 또는 치환 또는 비치환된 C6 내지 C30 아릴기임 ), -POR"-(R"은 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 또는 치환 또는 비치환된 C6 내지 C30 아릴기임), 치환 또는 비치환된 C1 내지 C20 알킬렌기, 치환 또는 비치환된 C2 내지 C20 알케닐렌기, 치환 또는 비치환된 C2 내지 C20 알키닐렌기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬렌기, 치환 또는 비치환된 C3 내지 C20 사이클로알케닐렌기, 치환 또는 비치환된 C4 내지 C20 사이클로알키닐렌기, 치환 또는 비치환된 C6 내지 C30 아릴렌기, 치환 또는 비치환된 플루오레닐렌기, 치환 또는 비치환된 C1 내지 C20 알킬리덴기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬리덴기, 치환 또는 비치환된 프탈리딜리덴기, 치환 또는 비치환된 플루오레닐리덴기, 또는 -CO-, -S02-, -COO- 및 -CONR'- 증 적어도 하나가 사슬에 포함되는 스피로 (spiro) 화합물로부터 유도되는 연결기이고, X is a single bond, -CO-, -S0 2- , -COO-, -CONR'- (R 'is a substituted or unsubstituted C1 to C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl group),- POR "-(R" is a hydrogen atom, a substituted or unsubstituted C1 to C20 alkyl group, or a substituted or unsubstituted C6 to C30 aryl group), a substituted or unsubstituted C1 to C20 alkylene group, a substituted or unsubstituted C2 To C20 alkenylene group, substituted or unsubstituted C2 to C20 alkynylene group, substituted or unsubstituted C3 to C20 cycloalkylene group, substituted or unsubstituted C3 to C20 cycloalkenylene group, substituted or unsubstituted C4 to C20 cycloalkynylene group, substituted or unsubstituted C6 to C30 arylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted C1 to C20 alkylidene group, substituted or unsubstituted C3 to C20 cycloalkylie Den groups, substituted or unsubstituted phthalidylidene groups, substituted or unsubstituted And, spiro linkage group derived from a (spiro) compound contained in the -COO- and -CONR'- increase at least one chain, - a fluorenylidene group, or -CO-, -S0 2
Z는 단일 결합 또는 산소 원자이고,  Z is a single bond or an oxygen atom,
R1은 수소 원자, 치환 또는 비치환된 C1 내지 C20 알킬기, 치환 또는 비치환된 C2 내지 C20 알케닐기, 치환 또는 비치환된 C2 내지 C20 알키닐기, 치환 또는 비치환된 C3 내지 C20 사이클로알킬기, 치환 또는 비치환된 C3 내지 C20 사이클로알케닐기, 치환 또는 비치환된 C4 내지 C20 사이클로알키닐기, 또는 치환 또는 비치환된 C6 내지 C30 아릴기이고, n은 3 내지 1000의 정수이다. R 1 is a hydrogen atom, substituted or unsubstituted C1 to C20 alkyl group, substituted or unsubstituted C2 to C20 alkenyl group, substituted or unsubstituted C2 to C20 alkynyl group, substituted or unsubstituted C3 to C20 cycloalkyl group, substituted Or an unsubstituted C3 to C20 cycloalkenyl group, a substituted or unsubstituted C4 to C20 cycloalkynyl group, or a substituted or unsubstituted C6 to C30 aryl group, n is an integer of 3 to 1000.
【청구항 2]  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 화학식 1에서의 X는 단일결합, 치환 또는 비치환된 C1 내지 C20 알킬렌기, -CO-, -S02-, -COO-, -CONR'-(R'은 치환 또는 비치환된 C1 내지 C20 알킬기 또는 치환 또는 비치환된 C6 내지 C30 아릴기임), 또는 하기 화학식 2-1 내지 2- 3으로 표시되는 연결기 증 하나인 리튬 이차 전지용 세퍼레이터.X in Chemical Formula 1 is a single bond, a substituted or unsubstituted C1 to C20 alkylene group, -CO-, -S0 2- , -COO-, -CONR '-(R' is substituted or unsubstituted C1 to C20 An alkyl group or a substituted or unsubstituted C6 to C30 aryl group, or a separator for a lithium secondary battery, which is one of the linking groups represented by the following Chemical Formulas 2-1 to 2-3.
-1]  -One]
Figure imgf000028_0001
Figure imgf000028_0001
【청구항 3]  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 폴리머의 중량평균분자량 (Mw)은 1,000 g/mol 내지 350,000 g/mol 인 리튬 이차 전지용 세퍼레이터.  A weight average molecular weight (Mw) of the polymer is a separator for a lithium secondary battery is 1,000 g / mol to 350,000 g / mol.
【청구항 4】  [Claim 4]
제 1항에 있어서,  The method of claim 1,
상기 폴리머의 유리전이온도 (Tg)는 110 °C 내지 250 V 인 리튬 이차 전지용 세퍼레이터. The glass transition temperature (Tg) of the polymer is 110 ° C to 250 V separator for lithium secondary battery.
【청구항 5】  [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 내열 다공층은 폴리비닐리덴플루오라이드 (PVdF),  The heat-resistant porous layer is made of polyvinylidene fluoride (PVdF),
폴리메틸메타크릴레이트, 폴리아크릴로니트릴, 폴리비닐피를리돈, 폴리비닐아세테이트, 폴리에틸렌-비닐아세테이트 공중합체, 폴리에틸렌옥사이드, 샐를로오스 아세테이트, 셀롤로오스 아세테이트 부티레이트, 셀를로오스 아세테이트 프로피오네이트, 시아노에틸풀루란, 시아노에틸폴리비닐알코올, Polymethyl methacrylate, polyacrylonitrile, polyvinylpyridone, Polyvinylacetate, polyethylene-vinylacetate copolymer, polyethylene oxide, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol,
시아노에틸샐를로오스, 시아노에틸수크로오스, 풀루란, 카르복시메틸셀롤로오스, 아크릴로니트릴 -스티렌-부타디엔 공중합체, 이들의 공중합체 또는 이들의 조합의 바인더를 더 포함하는 리튬 이차 전지용 세퍼레이터. A separator for a lithium secondary battery, further comprising a binder of cyanoethyl salose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose, acrylonitrile-styrene-butadiene copolymer, copolymers thereof, or a combination thereof.
【청구항 6]  [Claim 6]
제 5항에 있어서,  The method of claim 5,
상기 폴리머는 상기 폴리머 및 상기 바인더의 총량에 대하여 20 중량 % 내지 99 중량 %로 포함되는 리튬 이차 전지용 세퍼레이터.  The polymer is a lithium secondary battery separator comprising from 20% to 99% by weight relative to the total amount of the polymer and the binder.
【청구항 7】  [Claim 7]
게 1항에 있어서,  According to claim 1,
상기 내열 다공층은 무기 입자, 유기 입자 또는 이들의 조합을 포함하는 필러를 더 포함하는 리튬 이차 전지용 세퍼레이터.  The heat-resistant porous layer is a separator for a lithium secondary battery further comprises a filler containing inorganic particles, organic particles or a combination thereof.
【청구항 8】  [Claim 8]
제 7항에 있어서,  The method of claim 7, wherein
상기 무기 입자는 A1203, Si02, B203, Ga203, Ti02, Sn02 또는 이들의 조합을 포함하고, The inorganic particles include A1 2 0 3 , Si0 2 , B 2 0 3 , Ga 2 0 3 , Ti0 2 , Sn0 2 or a combination thereof,
상기 유기 입자는 아크릴계 화합물, 이미드계 화합물, 아미드계 화합물 또는 이들의 조합을 포함하는  The organic particles may include an acrylic compound, an imide compound, an amide compound, or a combination thereof.
리튬 이차 전지용 세퍼레이터.  Separators for lithium secondary batteries.
【청구항 9】  [Claim 9]
제 1항 내지 제 8항 중 어느 한 항의 세퍼레이터 The separator according to any one of claims 1 to 8.
. 를 포함하는 리튬 이차 전지.  . Lithium secondary battery comprising a.
【청구항 10】  [Claim 10]
저 19항에 있어서,  According to claim 19,
상기 리튬 이차 전지는 4.35V 이상의 전압에서 작동되는 리튬 이차 전지.  The lithium secondary battery is a lithium secondary battery operated at a voltage of 4.35V or more.
PCT/KR2015/008305 2014-08-08 2015-08-07 Separator for lithium secondary battery, and lithium secondary battery containing same WO2016021987A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2014-0102610 2014-08-08
KR20140102610 2014-08-08
KR10-2014-0105354 2014-08-13
KR20140105354 2014-08-13
KR1020150111137A KR101972801B1 (en) 2014-08-08 2015-08-06 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR10-2015-0111138 2015-08-06
KR10-2015-0111137 2015-08-06
KR1020150111138A KR101978373B1 (en) 2014-08-13 2015-08-06 Separator for rechargeable lithium battery and rechargeable lithium battery including the same

Publications (1)

Publication Number Publication Date
WO2016021987A1 true WO2016021987A1 (en) 2016-02-11

Family

ID=55264175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008305 WO2016021987A1 (en) 2014-08-08 2015-08-07 Separator for lithium secondary battery, and lithium secondary battery containing same

Country Status (1)

Country Link
WO (1) WO2016021987A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060034181A (en) * 2004-10-18 2006-04-21 주식회사 엘지화학 Lithium secondary battery having frame retardant film
JP2010050076A (en) * 2008-07-03 2010-03-04 Hitachi Chem Co Ltd Separator for electrochemical element, lithium battery or lithium ion battery using this, and manufacturing method of separator for electrochemical element
WO2012088406A2 (en) * 2010-12-22 2012-06-28 Frx Polymers, Inc. Oligomeric phosphonates and compositions including the same
KR20130141698A (en) * 2011-04-15 2013-12-26 폴리원 코포레이션 Flame retardant polylactic acid compounds
KR101392131B1 (en) * 2009-11-20 2014-05-07 미쓰비시 쥬시 가부시끼가이샤 Laminated porous film, separator for battery, and battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060034181A (en) * 2004-10-18 2006-04-21 주식회사 엘지화학 Lithium secondary battery having frame retardant film
JP2010050076A (en) * 2008-07-03 2010-03-04 Hitachi Chem Co Ltd Separator for electrochemical element, lithium battery or lithium ion battery using this, and manufacturing method of separator for electrochemical element
KR101392131B1 (en) * 2009-11-20 2014-05-07 미쓰비시 쥬시 가부시끼가이샤 Laminated porous film, separator for battery, and battery
WO2012088406A2 (en) * 2010-12-22 2012-06-28 Frx Polymers, Inc. Oligomeric phosphonates and compositions including the same
KR20130141698A (en) * 2011-04-15 2013-12-26 폴리원 코포레이션 Flame retardant polylactic acid compounds

Similar Documents

Publication Publication Date Title
JP6802392B2 (en) Separation membrane for secondary battery and lithium secondary battery containing it
JP6657185B2 (en) High heat resistant and flame retardant separation membrane and electrochemical cell
US20180294458A1 (en) Highly heat resistant and flame retardant separator, and electrochemical cell
KR20190072968A (en) Negative electrode for metal battery, metal battery comprising the same, and method of preparing the negative electrode for metal battery
CN113169417A (en) Separator for lithium secondary battery and lithium secondary battery including the same
KR20170024918A (en) Positive electrode active material, method for manufacturing the same, and electrochemical device including the same
CN113273027A (en) Separator for lithium secondary battery and lithium secondary battery including the same
CN109845000B (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
KR101709696B1 (en) Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR101709697B1 (en) Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR101693213B1 (en) Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR20160128135A (en) Separator for rechargeable lithium battery and rechargeable lithium battery including the same
WO2011021569A1 (en) Air cell
WO2016021987A1 (en) Separator for lithium secondary battery, and lithium secondary battery containing same
KR20160055001A (en) Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR101811329B1 (en) Separators containing heat resistant layer, a method for preparing the same, and an electrochemical cell using the same
KR101978373B1 (en) Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR101972801B1 (en) Separator for rechargeable lithium battery and rechargeable lithium battery including the same
KR20170001987A (en) Heat-resistant separator and electrochemical battery
KR102472908B1 (en) Separator for secondary battery, preparing method thereof, and secondary battery including the same
KR20160149734A (en) Heat-resistant separators and an electro-chemical battery comprising the same
CN113169421A (en) Separator for lithium secondary battery and lithium secondary battery including the same
US20230207871A1 (en) Nonaqueous electrolyte secondary battery porous layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830548

Country of ref document: EP

Kind code of ref document: A1