WO2016021898A1 - Composition for forming conductive pattern and resin structure having conductive pattern - Google Patents

Composition for forming conductive pattern and resin structure having conductive pattern Download PDF

Info

Publication number
WO2016021898A1
WO2016021898A1 PCT/KR2015/008101 KR2015008101W WO2016021898A1 WO 2016021898 A1 WO2016021898 A1 WO 2016021898A1 KR 2015008101 W KR2015008101 W KR 2015008101W WO 2016021898 A1 WO2016021898 A1 WO 2016021898A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
conductive pattern
composition
conductive
conductive metal
Prior art date
Application number
PCT/KR2015/008101
Other languages
French (fr)
Korean (ko)
Inventor
정한나
이하나
박철희
박치성
김재현
전신희
이율
김민지
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150109125A external-priority patent/KR101698159B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201580039536.7A priority Critical patent/CN106575539B/en
Priority to EP15828983.5A priority patent/EP3139387B1/en
Priority to JP2017502151A priority patent/JP6427656B2/en
Priority to US15/317,023 priority patent/US10354774B2/en
Publication of WO2016021898A1 publication Critical patent/WO2016021898A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • Resin structure which has composition for electroconductive pattern formation and electroconductive pattern [cross-reference with related application (s)]
  • the present invention enables to form a fine conductive pattern in a simplified process on the polymer resin product or resin layer without deformation of various polymer resin products or resin layers, and more effectively meet the needs of the art, such as various colors It relates to a resin structure having a composition for forming a conductive pattern and a conductive pattern.
  • the conductive pattern on the surface of the polymer resin substrate may be applied to form various objects such as an antenna, various sensors, a MEMS structure, or an RFID tag integrated in an electronic device case.
  • a method of forming a conductive pattern by forming a metal layer on the surface of the polymer resin substrate and then applying photolithography or printing a conductive paste may be considered.
  • the disadvantage is that the equipment becomes too complicated or difficult to form good and fine conductive patterns.
  • a polymer resin substrate is prepared by including a special inorganic additive in a resin, irradiating electromagnetic waves such as a laser to a portion to form a conductive pattern, and plating such electromagnetic wave irradiation region. It is known to simply form a conductive pattern on the surface.
  • the present invention enables to form a fine conductive pattern in a simplified process on the polymer resin product or resin layer without deformation of various polymer resin products or resin layers, and more effectively meet the needs of the art, such as the implementation of various colors It is to provide a composition for forming a conductive pattern.
  • the present invention also provides a resin structure having a conductive pattern formed through the conductive pattern forming method from the composition for forming a conductive pattern.
  • a polymer resin And a non-conductive metal compound including a compound represented by the following Chemical Formula 1, and a composition for forming a conductive pattern by electromagnetic wave irradiation, wherein a metal nucleus is formed from the non-conductive metal compound by electromagnetic wave irradiation, is provided.
  • M is one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt, Mg, Ca, Sr ⁇ Au
  • x is a ratio of more than 0 to less than 3 _
  • the non-conductive metal compound is Cu0 4 or M0 4 of the rectangular plane type; Cu0 5 or M0 5 of trigonal bipyramids; And tetrahedron ⁇ 0 4 may have a three-dimensional structure that is connected three-dimensionally while sharing oxygen.
  • the polymer resin may be a thermosetting resin or a thermoplastic resin, more specific examples thereof, ABS (Acryloniti le poly-butadiene styrene) resin, polyalkylene terephthalate resin, And at least one selected from the group consisting of polycarbonate resins, polypropylene resins, and polyphthalamide resins.
  • ABS Acryloniti le poly-butadiene styrene
  • polyalkylene terephthalate resin And at least one selected from the group consisting of polycarbonate resins, polypropylene resins, and polyphthalamide resins.
  • the nonconductive metal compound may be included in an amount of about 0.1 to 15 wt% based on the total composition.
  • composition for forming a conductive pattern may further include at least one additive selected from the group consisting of flame retardants, heat stabilizers, UV stabilizers, lubricants, antioxidants, inorganic layering agents, color additives, impact modifiers, and functional reinforcing agents. .
  • a resin structure in which a conductive metal layer (conductive pattern) is formed on the surface of a polymer resin substrate using the above-described composition for forming a conductive pattern.
  • the resin structure having such a conductive pattern is a polymer resin substrate; A non-conductive metal compound dispersed in a polymer resin substrate and including a compound represented by the following general formula (1); An adhesive active surface comprising a metal nucleus exposed to the surface of the polymer resin substrate in a predetermined region; And it may include a conductive metal layer formed on the adhesive active surface.
  • M is one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, kg, Ta, W, Pt, Mg, Ca, Sr and Au
  • x is a ratio of 0 or more and less than 3.
  • a predetermined region in which the adhesive active surface and the conductive metal layer are formed may correspond to a region in which electromagnetic waves are irradiated onto the polymer resin substrate.
  • a composition for forming a conductive pattern capable of forming a fine conductive pattern on a polymer resin substrate such as various polymer resin products or resin layers, by a very simplified process of irradiating electromagnetic waves such as a laser, and from therefrom A resin structure having a formed conductive pattern is provided.
  • the use of the composition for forming the conductive pattern does not cause modification of the resin structure (various polymer resin products or resin layers, etc.), and more effectively meets the needs of the art to realize various colors, such a resin structure A good conductive pattern can be easily formed on it.
  • conductive patterns on various resin products such as mobile phones and tablet PC cases, RFID tags, various sensors, MEMS structures, and the like can be formed very effectively.
  • 1 is a view schematically showing a structure of Cu 3 P 2 0 8 included in the composition for forming a conductive pattern according to an embodiment of the present invention.
  • FIG. 2 is a graph showing absorbance according to the wavelength (nm) of Cu 3 P 2 0 8 included in the composition for forming a conductive pattern according to the exemplary embodiment of the present invention.
  • Absorbance is calculated as (1-R% * 0.01) 2 /(2R%*0.01) according to Kubelka-Munk equation, where 1 »is diffuse reflectance that can be immediately estimated by Uv-Visible spectroscopy.
  • FIG. 3 is a view briefly showing an example of a method of forming a conductive pattern using a composition according to an embodiment of the present invention in process steps.
  • 5 is a graph comparing XRD patterns of Cu 3 P 2 O 8 and CLu.sZm.sPsOs.
  • Figure 6 is a graph showing the absorbance according to the wavelength (nm) of Sb doped Sn0 2 coated on Cu 3 P 2 0 8 and mica.
  • a composition for forming a conductive pattern and a resin structure having a conductive pattern formed therefrom according to a specific embodiment of the present invention will be described.
  • a polymer resin; And a non-conductive metal compound including a compound represented by the following Chemical Formula 1, and a composition for forming a conductive pattern by electromagnetic wave irradiation, wherein a metal nucleus is formed from the non-conductive metal compound by electromagnetic wave irradiation is provided.
  • M is Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt,
  • At least one metal selected from the group consisting of Mg, Ca, Sr and Au, x is a ratio of 0 or more and less than 3.
  • the composition for forming a conductive pattern includes a specific nonconductive metal compound represented by Chemical Formula 1.
  • the specific nonconductive metal compound represented by Chemical Formula 1 may have a triclinic system structure having the least symmetry among 7 crystal systems.
  • the triclinic structure not only are all three vectors forming the unit cell different (a ⁇ b ⁇ c), but also the angles formed by the vectors are different and the right angle is pT.
  • the non-conductive metal compound may belong to a ri space group. 1, the triclinic system structure of such a nonelectroconductive metal compound is shown typically.
  • Cu and M may be positioned at two sites.
  • one Cu or M is coordinated by four oxygens to form a square plane or Ml site, which forms the local symmetry of square pl anar, and M2 site, where 1 Cu or M is coordinated by 5 oxygen to form local symmetry of the trigonal bipyramid.
  • the non-conductive metal compound may include a tetrahedron of P0 4 in which one P is coordinated by four oxygen to form local symmetry.
  • Such local symmetric parts may be connected in three dimensions while sharing oxygen as shown in FIG. 1 to form a triclinic system.
  • the non-conductive metal compound is Cu0 4 black silver M0 4 of the square plane type as shown in FIG.
  • Cu0 5 black of trigonal bipyramid is M0 5 ;
  • it may have a three-dimensional structure in which the tetrahedron P0 4 is three-dimensionally connected while sharing oxygen.
  • the metal from the non-conductive metal compound Nuclei can form.
  • the non-conductive metal compound is chemically stable in a general environment, but the metal core may be more easily formed in an area exposed to electromagnetic waves such as near infrared wavelengths.
  • non-conductive metal compound represented by Chemical Formula 1 is
  • the absorptivity of the visible region (about 300 nm to 700 nm) is low, and high absorbance is shown in the near infrared to infrared region (about 700 nm to 3000 nm), such as 2 (horizontal axis: wavelength (nm), ' vertical axis: absorbance).
  • the non cause strong absorption of near-infrared region of the non-conductive metal compounds is due to the local symmetry of teurigo Cu0 5 forming the edge by a pyramid (tr igonal bypyramid).
  • Cu 2+ in the center of the trigonal bipyramid is located in a non-cent rosymmetr icsi te, so that the laforte permissible transition in the d-orbital of Cu 2+ ( Laporte al lowed transit ion is possible.
  • the transition between the energy levels resulting from this crystal structure contains less visible light region (about 300 nm to 700 nm) and considerably includes near infrared to infrared region (about 700 nm to 3000 nm). Therefore, the non-conductive metal compound has low absorbance in the visible light region and high absorbance in the near infrared to infrared region, and has a bright color. In response to the stimulation of electromagnetic waves in the near infrared wavelength, it is possible to form metal nuclei for Cu-electroless plating.
  • the metal core thus formed may be selectively exposed in a predetermined region irradiated with electromagnetic waves to form an adhesive active surface of the polymer resin substrate surface. Subsequently, when the metal nucleus or the like is chemically reduced or electroless plated with a plating solution containing conductive metal ions or the like as see d, the conductive metal layer may be formed on the adhesive active surface including the metal nucleus.
  • the metal core can be easily formed even with low electromagnetic wave power.
  • the metal core can easily form a conductive pattern by a reduction or plating method, for example, Cu-electroless plating.
  • the non-conductive metal compound not only exhibits non-conductivity prior to electromagnetic wave irradiation in the near infrared region, but also has excellent compatibility with the polymer resin, and is also used in the solution used for the reduction or plating treatment. It is stable and has a characteristic of maintaining non-conductivity.
  • such a non-conductive metal compound may remain chemically stable in a state uniformly dispersed in the polymer resin substrate in the region where electromagnetic waves are not irradiated, thereby exhibiting non-conductivity.
  • metal nuclei in a predetermined region irradiated with electromagnetic waves of the near infrared wavelength, metal nuclei can be easily formed from the non-conductive metal compound based on the principle described above, and thus a fine conductive pattern can be easily formed.
  • composition of the embodiment described above it is possible to form a fine conductive pattern in a very simplified process of irradiating electromagnetic waves, such as a laser, on various polymer resin products or polymer resin substrates such as resin layers, in particular, Since the metal nucleus which promotes the formation of the conductive pattern can be formed very easily, a better conductive pattern can be formed more easily than the composition of the same kind previously known.
  • CuCr 2 O 4 having a spinel structure are dark black.
  • bl ack a composition comprising such a non-conductive metal compound may not be suitable for realizing polymer resin products or resinous resins of various colors.
  • Cu 3 P 2 O 8 which is one of the compounds represented by Formula 1, may exhibit a relatively bright color because the absorption of the visible light region (about 300 nm to 700 nm) is low as shown in FIG. 2. Accordingly, Cu 3 P 2 0 8 may hardly color the colors of various polymer resin products or resin layers.
  • composition of one embodiment comprising the same can more effectively meet the needs of the art to implement a variety of colors, such as various polymer resin products with the addition of a relatively small color additive.
  • a part of Cu in Cu 3 P 2 0 8 may be transferred to other transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt , Mg, Ca, Sr, Au and the like) can be obtained.
  • transition metals Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt , Mg, Ca, Sr, Au and the like
  • any thermosetting resin or thermoplastic resin capable of forming various polymer resin products or resin layers may be used without particular limitation.
  • the specific non-conductive metal compound described above may exhibit excellent compatibility and uniform dispersibility with various polymer resins, and the composition of one embodiment may be molded into various resin products or resin layers including various polymer resins. .
  • polymer resins include polyalkylene terephthalate resins, polycarbonate resins, polypropylene resins or poly (ABS) such as ABS (Acryloni tile poly-butadiene styrene) resins, polybutylene terephthalate resins or polyethylene terephthalate resins.
  • ABS Acryloni tile poly-butadiene styrene
  • polybutylene terephthalate resins polyethylene terephthalate resins.
  • a phthalamide resin etc. can be mentioned,
  • various polymeric resins can be included.
  • the non-conductive metal compound including the compound represented by Formula 1 may be included in about 0.1 to 15% by weight, or about 1 to 10% by weight based on the total composition, the rest Content of polymeric resin may be included. According to this content range, while maintaining the basic physical properties such as the mechanical properties of the polymer resin product or resin layer formed from the composition, while forming a conductive pattern in a predetermined region by electromagnetic wave irradiation
  • the characteristic can be preferably represented.
  • the conductive pattern forming composition described above high molecular resin and in addition to a predetermined non-conductive metal compounds, the group consisting of flame retardants, thermal stabilizers, UV stabilizers, lubricants, antioxidants, inorganic fillers, color additives, cheunggyeok reinforcing agents and functionality adjuvant It may further comprise one or more additives selected from. With the addition of such additives, the physical properties of the resin structure obtained from the composition of one embodiment can be appropriately reinforced.
  • the color additives for example, pigments, etc., they may be included in an amount of about 0.1 to 10% by weight to give a desired color to the resin structure.
  • color additives such as pigments, ZnO, ZnS, Talc, Ti0 2 ,
  • white pigments such as Sn0 2 or BaS0 4
  • color additives such as pigments of various kinds and colors known to be usable in the polymer resin composition may be used.
  • the flame retardant may include phosphorus-based flame retardant and inorganic flame retardant. More specifically, the phosphorus-based flame retardant may include triphenyl phosphate (TPP), trixylenyl phosphate (TXP), tricresyl phosphate (TCP), or triisophenyl phosphate.
  • TPP triphenyl phosphate
  • TXP trixylenyl phosphate
  • TCP tricresyl phosphate
  • triisophenyl phosphate triisophenyl phosphate.
  • phosphate ester flame retardants including phosphate, RE0F0S
  • Aromatic polyphosphate-based flame retardants including phosphate, RE0F0S
  • Aromatic polyphosphate-based flame retardants Polyphosphate flame retardants
  • red phosphorus-based flame retardants may be used, and various phosphorus-based flame retardants known to be usable in the resin composition may be used without any particular limitation.
  • the inorganic flame retardant includes aluminum hydroxide, magnesium hydroxide, zinc borate, molybdenum oxide (Mo0 3 ); Molybdenum peroxide salt (Mo 2 0 7 2 —), chamomile-zinc-molybdate, antimony trioxide (Sb 2 0 3 ), antimony pentoxide (Sb 2 0 5 ), and the like.
  • examples of the inorganic flame retardant are not limited thereto, and various inorganic flame retardants known to be usable in other resin compositions may be used without any particular limitation.
  • a layer reinforcing agent heat stabilizer, UV stabilizer, lubricant or antioxidant
  • it is included in an amount of about 0.01 to 5% by weight, or about 0.05 to 3% by weight. Desired physical properties can be appropriately expressed in the resin structure.
  • Such a method of forming a conductive pattern may include forming a resin layer by molding the above-described composition for forming a conductive pattern into a resin product or by applying it to another product; Irradiating electromagnetic waves to a predetermined region of the resin product or the resin layer to generate metal nuclei from non-conductive metal compound particles including the compound represented by Chemical Formula 1; And chemically reducing or plating the region generating the metal nucleus to form a conductive metal layer.
  • FIG. 3 an example of the method of forming the conductive pattern is shown in a simplified step by step.
  • the above-mentioned composition for conductive pattern formation can be shape
  • a product molding method or a resin layer forming method using a conventional polymer resin composition can be applied without particular limitation.
  • the composition for forming the conductive pattern is extruded and engraved, and then formed into pellets or particles, and then injection molded into a desired form to prepare various polymer resin products. Can be.
  • the polymer resin product or the resin layer thus formed may have a form in which the specific non-conductive metal compound described above is uniformly dispersed on the resin substrate formed from the polymer resin.
  • the non-conductive metal compound including the compound of Formula 1 has excellent compatibility and chemical stability with various polymer resins, it can be uniformly dispersed throughout the entire area on the resin substrate can be maintained in a non-conductive state .
  • the resin product to form the conductive pattern or Electromagnetic waves such as a laser can be irradiated to a predetermined region of the resin layer.
  • the metal or its ions may be released from the non-conductive metal compound, and a metal nucleus including the same may be generated (see the second drawing of FIG. 3).
  • the metal nucleus generation step by the electromagnetic wave irradiation proceeds, a portion of the non-conductive metal compound including the compound of Formula 1 is exposed to the surface of the predetermined region of the resin product or the resin layer to generate a metal nucleus therefrom. And the adhesion-activated surface activated to have higher adhesion. Since the adhesion-activated surface is selectively formed only in a predetermined region irradiated with electromagnetic waves, when the plating step described below is performed, chemical reduction of the metal core and the conductive metal ions included in the adhesion-activated surface, and / or By chemically reducing the conductive metal ions by electroless plating, the conductive metal layer may be selectively formed on the polymer resin substrate in a predetermined region.
  • the metal nucleus acts as a kind of seed
  • the conductive metal ions contained in the plating solution are chemically reduced, strong bonds may be formed.
  • the conductive metal layer can be selectively formed more easily.
  • laser electromagnetic waves can be irradiated, for example, laser electromagnetic waves having a wavelength in the near infrared (NIR) region of about 755 nm, about 1064 nm, about 1550 nm or about 2940 nm. Can be investigated. In another example, laser electromagnetic waves having a wavelength in the infrared (IR) region may be irradiated. In addition, the laser electromagnetic wave can be irradiated under normal conditions or power.
  • NIR near infrared
  • metal nuclei By irradiation of such a laser, metal nuclei can be generated from a non-conductive metal compound including the compound represented by Chemical Formula 1 more effectively, and the adhesion-activated surface including the same can be selectively generated and exposed to a predetermined region.
  • the step of forming a conductive metal layer by chemically reducing or plating the region that generated the metal nucleus may proceed. .
  • the conductive metal layer may be selectively formed in a predetermined region where the metal nucleus and the adhesive active surface are exposed, and in the remaining regions, the chemically stable non-conductive metal compound may maintain the non-conductivity. Accordingly, a fine conductive pattern may be selectively formed only in a predetermined region on the polymer resin substrate.
  • the forming of the conductive metal layer may be performed by electroless plating, and thus a good conductive metal layer may be formed on the adhesively active surface.
  • the adhesion-activated surface formed from the non-conductive metal compound including the compound represented by Formula 1 may effectively form a fine conductive pattern by Cu-electroless plating.
  • a reduction or plating step can process the "resin products or resin layer given that caused the metal nucleus region with an acidic or basic solution containing a reducing agent, such a solution as the reducing agent, formaldehyde, hypophosphite , and a dimethylamino borane (DMAB), diethylamino borane (DEAB) and hydrazine one or more selected from the group consisting of may contain.
  • a reducing agent such as the reducing agent, formaldehyde, hypophosphite , and a dimethylamino borane (DMAB), diethylamino borane (DEAB) and hydrazine one or more selected from the group consisting of may contain.
  • DMAB dimethylamino borane
  • DEAB diethylamino borane
  • hydrazine one or more selected from the group consisting of may contain.
  • the conductive metal layer may be formed by the electroless plating by treating with
  • the conductive metal silver contained in the electroless plating solution is chemically reduced by using the seed as a seed in the region where the metal nucleus is formed, and a good conductive pattern may be selectively formed in a predetermined region.
  • the metal nucleus and the adhesion-activated surface may form strong bonds with the chemically reduced conductive metal ions, and as a result, a conductive pattern may be more easily formed in a predetermined region.
  • the non-conductive metal compound including the compound represented by Chemical Formula 1 is uniformly dispersed in the resin structure.
  • the resin structure having a conductive pattern obtained by the above-described composition for forming a conductive pattern and the conductive pattern forming method Is provided.
  • a resin structure includes a polymer resin substrate; A non-conductive metal compound dispersed in a polymer resin substrate and including a compound represented by Chemical Formula 1; An adhesion-activated surface comprising a metal nucleus containing copper metal or copper ions exposed to the surface of the polymer resin substrate in a predetermined region; And it may include a conductive metal layer formed on the adhesive active surface.
  • a predetermined region in which the adhesive active surface and the conductive metal layer are formed may be defined in a region in which electromagnetic waves are irradiated onto the polymer resin substrate.
  • the metal or its ions contained in the metal nucleus of the adhesion-activated surface may be derived from a non-conductive metal compound including the compound represented by the formula (1).
  • the conductive metal layer may be derived from the metal contained in the non-conductive metal compound including the compound represented by the formula (1), or may be derived from the conductive metal ions contained in the electroless plating solution.
  • the resin structure may further include a residue derived from the non-conductive metal compound.
  • a residue may have a structure in which at least some of the metals included in the non-conductive metal compound are released, and vacancy is formed in at least a portion of the site.
  • the resin structure described above may be various resin products or resin layers, such as a mobile phone or tablet PC case having a conductive pattern for an antenna, or various resin products or resin layers having conductive patterns, such as other RFID tags, various sensors, or MEMS structures. have.
  • Example 1 Cu 3 P 2 0 8 having a triclinic structure was synthesized by a solid phase reaction method in which CuO and (NH 4 ) 2 HP0 4 were mixed at a molar ratio of 3: 2 by heat treatment at 1000 ° C. for 10 hours. And, the X-ray diffraction (XRD) pattern showing the crystal characteristic is shown in FIG.
  • Polycarbonate resin which is a basic resin, and Cu 3 P 2 0 8 prepared above as a non-conductive metal compound, and additives for process and stabilization were used together to prepare a composition for forming a conductive pattern by electromagnetic wave irradiation.
  • heat stabilizers IR1076, PEP36
  • UV stabilizers UV329
  • lubricants EP184
  • impact modifiers S2001
  • the composition was mixed by 5% by weight, which was extruded through an extruder at a temperature of 260 to 280 ° C.
  • the composition in the form of extruded pellets was injection molded at about 260 to 270 ° C. in the form of a substrate having a diameter of 100 mm, a thickness of 2 mm and an izod bar of ASTM standard.
  • the injection molded specimen was irradiated with a laser of 1064 nm wavelength under 40 kHz and 7 W conditions to activate the surface, and the electroless plating process was performed as follows.
  • the plating solution (hereinafter PA solution) was prepared by dissolving 3 g of copper sulfate, 14 g of loxal salt, and 4 g of sodium hydroxide in 100 ml of deionized water. To 40 ml of the prepared PA solution, 1.6 ml of formaldehyde was added as a reducing agent. The resin structure whose surface was activated with a laser was immersed in the plating solution for 4 to 5 hours, and then washed with distilled water.
  • PA solution The plating solution
  • the resin structure irradiated with the laser power of 7 W formed a good conductive pattern (copper metal) on the surface of the adhesively active surface containing the metal nucleus through Cu-electroless plating.
  • Example 2
  • Example 2 A resin structure having a conductive pattern was formed in the same manner as in Example 1 except that 5 wt% of Ti0 2 was further added as a pigment to the composition for forming a conductive pattern of Example 1.
  • Example 2 a resin structure of a lighter color than in Example 1 is formed, and similarly to Example 1, a good conductive pattern (copper Metal layer) was formed.
  • Example 3
  • Ci. SZ .sP ⁇ has three vectors of the unit cells and their angles changed due to the substitution of Zn, but the peak shift is observed.
  • XRD is similar to the XRD pattern of Cu 3 P 2 0 8 . Looks pattern. It is confirmed from the XRD pattern that Ci.sZnuPsOs also has a ri space group of triclinic structure.
  • Example 1 A resin structure in which a conductive pattern was formed in the same manner as in Example 1, except that CuuZ .s Os was used instead of Cu 3 P 2 O 8 as the non-conductive metal compound in Example 1. Comparative Example 1
  • Example 2 Except for using the non-conductive metal compound in Cu 2 P 2 0 8 instead of Sb doped Sn0 2 coated with mica in Example 2, to prepare a composition for forming a conductive pattern in the same manner as in Example 2, using To prepare an injection molded specimen under the same conditions as in Example 2.
  • Test Example 1 A resin structure in which a conductive pattern was formed in the same manner as in Example 1, except that Cu 2 (0H) P0 4 was used instead of Cu 3 P 2 0 8 as the non-conductive metal compound in Example 1.
  • melt index (MI: mel t index) was measured under a temperature of 300 ° C. and a load of 2.16 kg according to ASTM D1238.
  • Example 1 exhibited a melt index very close to the melt index of the polycarbonate resin substrate to which the non-conductive metal compound was not added. Thereby, it is confirmed that the nonelectroconductive metal compound used in Example 1 does not cause denaturation of a polymer resin. Accordingly, in Example 1, it is confirmed that a resin structure having excellent thermal stability can be provided using another non-conductive metal compound in one embodiment of the present invention. On the other hand, the resin structures of Comparative Examples 1 and 2 exhibited a very high melt index compared to the polycarbonate resin substrate without the addition of the non-conductive metal compound.

Abstract

The present invention relates to a composition for forming a conductive pattern and a resin structure having a conductive pattern, wherein, without modifying various types of polymer resin products or resin layers, a micro conductive pattern can be formed on the polymer resin products or resin layers through a simplified process, and demands of the relevant industry, such as implementation of various colors, can be satisfied more effectively.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
도전성 패턴 형성용 조성물 및 도전성 패턴을 갖는 수지 구조체 【관련 출원 (들)과의 상호 인용】  Resin structure which has composition for electroconductive pattern formation and electroconductive pattern [cross-reference with related application (s)]
본 출원은 2014년 8월 4일자 한국 특허 출원 제 10-2014-0100040 호 및 2015년 7월 31일자 한국 특허 출원 제 10-2015-0109125 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.  This application claims the benefit of priority based on Korean Patent Application No. 10-2014-0100040 dated August 4, 2014 and Korean Patent Application No. 10-2015-0109125 dated July 31, 2015. All content disclosed in the literature is included as part of this specification.
【기술분야】  Technical Field
본 발명은 각종 고분자 수지 제품 또는 수지층의 변형 없이 상기 고분자 수지 제품 또는 수지층 상에 단순화된 공정으로 미세한 도전성 패턴을 형성할 수 있게 하며, 다양한 색상 구현 등의 당업계의 요구를 보다 효과적으로 충족할 수 있게 하는 도전성 패턴 형성용 조성물 및 도전성 패턴을 갖는 수지 구조체에 관한 것이다.  The present invention enables to form a fine conductive pattern in a simplified process on the polymer resin product or resin layer without deformation of various polymer resin products or resin layers, and more effectively meet the needs of the art, such as various colors It relates to a resin structure having a composition for forming a conductive pattern and a conductive pattern.
【배경기술】  Background Art
최근 들어 미세 전자 기술이 발전함에 따라, 각종 수지 제품 또는 수지층 등의 고분자 수지 기재 (또는 제품) 표면에 미세한 도전성 패턴이 형성된 구조체에 대한 요구가 증대되고 있다. 이러한 고분자 수지 기재 표면의 도전성 패턴은 전자 기기 케이스에 일체화된 안테나, 각종 센서, MEMS 구조체 또는 RFID 태그 등의 다양한 대상물을 형성하는데 적용될 수 있다.  In recent years, with the development of fine electronic technology, the demand for structures having a fine conductive pattern formed on the surface of polymer resin substrates (or products) such as various resin products or resin layers is increasing. The conductive pattern on the surface of the polymer resin substrate may be applied to form various objects such as an antenna, various sensors, a MEMS structure, or an RFID tag integrated in an electronic device case.
이와 같이, 고분자 수지 기재 표면에 도전성 패턴을 형성하는 기술에 대한 관심이 증가하면서, 이에 관한 몇 가지 기술이 제안된 바 있다. 그러나, 아직까지 이러한 기술을 보다 효과적으로 이용할 수 있는 방법은 제안되지 못하고 있는 실정이다.  As such, as the interest in the technology of forming the conductive pattern on the surface of the polymer resin substrate increases, some techniques related thereto have been proposed. However, there is no proposal to use such technology more effectively.
예를 들어, 이전에 알려진 기술에 따르면, 고분자 수지 기재 표면에 금속층을 형성한 후 포토리소그라피를 적용하여 도전성 패턴을 형성하거나, 도전성 페이스트를 인쇄하여 도전성 패턴을 형성하는 방법 등이 고려될 수 있다. 그러나, 이러한 기술에 따라 도전성 패턴을 형성할 경우, 필요한 공정 또는 장비가 지나치게 복잡해지거나, 양호하고도 미세한 도전성 패턴을 형성하기가 어려워지는 단점이 있다. For example, according to a known technique, a method of forming a conductive pattern by forming a metal layer on the surface of the polymer resin substrate and then applying photolithography or printing a conductive paste may be considered. However, in the case of forming a conductive pattern according to this technique, The disadvantage is that the equipment becomes too complicated or difficult to form good and fine conductive patterns.
이에 보다 단순화된 공정으로 고분자 수지 기재 표면에 미세한 도전성 패턴을 보다 효과적으로 형성할 수 있는 기술의 개발이 이전부터 요구되어 왔다 . 이러한 당업계의 요구를 층족할 수 있는 기술의 하나로서, 수지 내에 특수한 무기 첨가제를 포함시키고, 도전성 패턴을 형성할 부분에 레이저 등 전자기파를 조사한 후, 이러한 전자기파 조사 영역에 도금 등을 진행해 고분자 수지 기재 표면에 도전성 패턴을 간단히 형성하는 방법이 알려진 바 있다.  Therefore, the development of a technology that can more effectively form a fine conductive pattern on the surface of the polymer resin substrate in a simplified process has been required before. As one of technologies capable of satisfying the needs of the art, a polymer resin substrate is prepared by including a special inorganic additive in a resin, irradiating electromagnetic waves such as a laser to a portion to form a conductive pattern, and plating such electromagnetic wave irradiation region. It is known to simply form a conductive pattern on the surface.
그런데, 이러한 도전성 패턴 형성 방법에서, 이전에 무기 첨가제로 제안된 것들은 수지 본연의 물성에 영향을 미쳐 얻어진 고분자 수지 제품 혹은 수지층의 제반 물성이 열악하거나 흑은 다양한 색상 구현이 어려운 등의 문제가 있었다. 이에 따라, 수지의 변성을 초래하지 않으면서 다양한 색상 구현 등과 같은 당업계의 여러 요구를 충족시킬 수 있는 다양한 종류의 무기 첨가제의 개발이 필요하다.  However, in the method of forming the conductive pattern, those previously proposed as inorganic additives have problems such as poor polymer properties or poor physical properties of the resin layer obtained by influencing the physical properties of the resin, or various black colors. . Accordingly, there is a need for the development of various kinds of inorganic additives that can meet various needs of the art such as various colors without causing denaturation of the resin.
【발명의 내용】  [Content of invention]
【해결하려는 과제】  [Problem to solve]
본 발명은 각종 고분자 수지 제품 또는 수지층의 변형 없이 상기 고분자 수지 제품 또는 수지층 상에 단순화된 공정으로 미세한 도전성 패턴을 형성할 수 있게 하며, 다양한 색상 구현 등의 당업계의 요구를 보다 효과적으로 충족할 수 있게 하는 도전성 패턴 형성용 조성물을 제공하는 것이다.  The present invention enables to form a fine conductive pattern in a simplified process on the polymer resin product or resin layer without deformation of various polymer resin products or resin layers, and more effectively meet the needs of the art, such as the implementation of various colors It is to provide a composition for forming a conductive pattern.
본 발명은 또한, 상기 도전성 패턴 형성용 조성물 등으로부터, 도전성 패턴 형성 방법을 통하여 형성된 도전성 패턴을 가지는 수지 구조체를 제공하는 것이다.  The present invention also provides a resin structure having a conductive pattern formed through the conductive pattern forming method from the composition for forming a conductive pattern.
【과제의 해결 수단】  [Measures of problem]
발명의 일 구현예에 따르면, 고분자 수지 ; 및 하기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물을 포함하고, 전자기파 조사에 의해, 상기 비도전성 금속 화합물로부터 금속핵이 형성되는 전자기파 조사에 의한 도전성 패턴 형성용 조성물이 제공된다.  According to one embodiment of the invention, a polymer resin; And a non-conductive metal compound including a compound represented by the following Chemical Formula 1, and a composition for forming a conductive pattern by electromagnetic wave irradiation, wherein a metal nucleus is formed from the non-conductive metal compound by electromagnetic wave irradiation, is provided.
[화학식 1]
Figure imgf000005_0001
[Formula 1]
Figure imgf000005_0001
상기 화학식 1에서,  In Chemical Formula 1,
M은 Ti, V, Cr, Mn, Fe, Co, Ni , Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt, Mg, Ca, Sr 맟 Au로 이루어진 군에서 선택된 1종 이상의 금속이며, x는 0 이상 3 미만의 유리수이다. _ 이러한 비도전성 금속 화합물은 삼사정계 구조를 가지며, P1 공간군 (space group)에 속하는 것일 수 있다. 보다 구체적으로, 상기 비도전성 금속 화합물은 사각 평면형의 Cu04 혹은 M04; 트리고날 바이피라미드 (trigonal bipyramid)의 Cu05 혹은 M05; 및 사면체의 Ρ04가 산소를 공유하면서 3차원적으로 연결되어 있는 입체 구조를 가질 수 있다. M is one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt, Mg, Ca, Sr 맟 Au The metal is the above, and x is a ratio of more than 0 to less than 3 _ Such a non-conductive metal compound has a triclinic structure and may belong to the P1 space group. More specifically, the non-conductive metal compound is Cu0 4 or M0 4 of the rectangular plane type; Cu0 5 or M0 5 of trigonal bipyramids; And tetrahedron Ρ0 4 may have a three-dimensional structure that is connected three-dimensionally while sharing oxygen.
한편, 상기 도전성 패턴 형성용 조성물에서, 상기 고분자 수지는 열 경화성 수지 또는 열 가소성 수지로 될 수 있고, 이의 보다 구체적인 예로는, ABS (Acryloniti le poly-butadiene styrene) 수지, 폴리알킬렌테레프탈레이트 수지, 폴리카보네이트 수지, 폴리프로필렌 수지 및 폴리프탈아미드 수지로 이루어진 군에서 선택된 1종 이상을 들 수 있다.  On the other hand, in the composition for forming a conductive pattern, the polymer resin may be a thermosetting resin or a thermoplastic resin, more specific examples thereof, ABS (Acryloniti le poly-butadiene styrene) resin, polyalkylene terephthalate resin, And at least one selected from the group consisting of polycarbonate resins, polypropylene resins, and polyphthalamide resins.
그리고, 상기 도전성 패턴 형성용 조성물에서, 상기 비도전성 금속 화합물은 전체 조성물에 대해 약 0.1 내지 15 중량 %로 포함될 수 있다.  In the composition for forming a conductive pattern, the nonconductive metal compound may be included in an amount of about 0.1 to 15 wt% based on the total composition.
또한, 상기 도전성 패턴 형성용 조성물은 난연제, 열 안정제, UV 안정게, 활제, 항산화제, 무기 층전제, 색 첨가제, 충격 보강제 및 기능성 보강제로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함할 수 있다.  In addition, the composition for forming a conductive pattern may further include at least one additive selected from the group consisting of flame retardants, heat stabilizers, UV stabilizers, lubricants, antioxidants, inorganic layering agents, color additives, impact modifiers, and functional reinforcing agents. .
한편, 발명의 다른 구현예에 따르면, 상술한 도전성 패턴 형성용 조성물을 사용하여 고분자 수지 기재 표면에 도전성 금속층 (도전성 패턴)을 형성한 수지 구조체가 제공된다. 이러한 도전성 패턴을 갖는 수지 구조체는 고분자 수지 기재; 고분자 수지 기재에 분산되어 있고, 하기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물; 소정 영역의 고분자 수지 기재 표면에 노출된 금속핵을 포함하는 접착활성 표면 ; 및 상기 접착활성 표면 상에 형성된 도전성 금속층을 포함할 수 있다.  On the other hand, according to another embodiment of the invention, there is provided a resin structure in which a conductive metal layer (conductive pattern) is formed on the surface of a polymer resin substrate using the above-described composition for forming a conductive pattern. The resin structure having such a conductive pattern is a polymer resin substrate; A non-conductive metal compound dispersed in a polymer resin substrate and including a compound represented by the following general formula (1); An adhesive active surface comprising a metal nucleus exposed to the surface of the polymer resin substrate in a predetermined region; And it may include a conductive metal layer formed on the adhesive active surface.
[화학식 1]  [Formula 1]
Cu3-xMxP208 상기 화학식 1에서, Cu3-xMxP 2 0 8 In Chemical Formula 1,
M은 Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, kg, Ta, W, Pt , Mg, Ca, Sr 및 Au로 이루어진 군에서 선택된 1종 이상의 금속이며, x는 0 이상 3 미만의 유리수이다.  M is one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, kg, Ta, W, Pt, Mg, Ca, Sr and Au The metal is the above, and x is a ratio of 0 or more and less than 3.
이러한 도전성 패턴을 갖는 수지 구조체에서, 상기 접착활성 표면 및 도전성 금속층이 형성된 소정 영역은 상기 고분자 수지 기재에 전자기파가 조사된 영역에 대응할 수 있다.  In the resin structure having the conductive pattern, a predetermined region in which the adhesive active surface and the conductive metal layer are formed may correspond to a region in which electromagnetic waves are irradiated onto the polymer resin substrate.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 각종 고분자 수지 제품 또는 수지층 등의 고분자 수지 기재 상에, 레이저 등 전자기파를 조사하는 매우 단순화된 공정으로 미세한 도전성 패턴을 형성할 수 있게 .하는 도전성 패턴 형성용 조성물과, 이로부터 형성된 도전성 패턴을 갖는 수지 구조체가 제공된다.  According to the present invention, a composition for forming a conductive pattern capable of forming a fine conductive pattern on a polymer resin substrate such as various polymer resin products or resin layers, by a very simplified process of irradiating electromagnetic waves such as a laser, and from therefrom A resin structure having a formed conductive pattern is provided.
특히, 상기 도전성 패턴 형성용 조성물을 사용하면, 수지 구조체 (각종 고분자 수지 제품 또는 수지층 등)의 변성을 초래하지 않으며, 다양한 색상을 구현하고자 하는 당업계의 요구를 보다 효과적으로 충족시키면서도, 이러한 수지 구조체 상에 양호한 도전성 패턴을 용이하게 형성할 수 있다.  In particular, the use of the composition for forming the conductive pattern does not cause modification of the resin structure (various polymer resin products or resin layers, etc.), and more effectively meets the needs of the art to realize various colors, such a resin structure A good conductive pattern can be easily formed on it.
따라서, 이러한 도전성 패턴 형성용 조성물 등을 이용해, 휴대폰이나 타블렛 PC 케이스 등 각종 수지 제품 상의 도전성 패턴, RFID 태그, 각종 센서, MEMS 구조체 등을 매우 효과적으로 형성할 수 있게 된다.  Therefore, by using such a composition for forming a conductive pattern, conductive patterns on various resin products such as mobile phones and tablet PC cases, RFID tags, various sensors, MEMS structures, and the like can be formed very effectively.
【도면의 간단한 설명】  [Brief Description of Drawings]
도 1은 발명의 일 구현예에 따른 도전성 패턴 형성용 조성물에 포함되는 Cu3P208의 구조를 모식적으로 나타낸 도면이다. 1 is a view schematically showing a structure of Cu 3 P 2 0 8 included in the composition for forming a conductive pattern according to an embodiment of the present invention.
도 2는 발명의 일 구현예에 따른 도전성 패턴 형성용 조성물에 포함되는 Cu3P208의 파장 (nm)에 따른 흡광도를 나타낸 그래프이다. 흡광도 (absorbance)는 Kubelka-Munk 방정식에 따라 (1-R%*0.01)2/(2R%*0.01)로 계산한 값이며, 1»는 Uv-Visible spectroscopy로 즉정할 수 있는 diffuse reflectance이다. 2 is a graph showing absorbance according to the wavelength (nm) of Cu 3 P 2 0 8 included in the composition for forming a conductive pattern according to the exemplary embodiment of the present invention. Absorbance is calculated as (1-R% * 0.01) 2 /(2R%*0.01) according to Kubelka-Munk equation, where 1 »is diffuse reflectance that can be immediately estimated by Uv-Visible spectroscopy.
도 3은 발명의 일 구현예에 따른 조성물을 사용하여 도전성 패턴을 형성하는 방법의 일 예를 공정 단계별로 간략화하여 나타낸 도면이다.  3 is a view briefly showing an example of a method of forming a conductive pattern using a composition according to an embodiment of the present invention in process steps.
도 4은 실시예 1과 2에서 사용된 비도전성 금속 화합물의 XRD 패턴을 나타내는 도면이다. 4 is an XRD pattern of a non-conductive metal compound used in Examples 1 and 2; It is a figure which shows.
도 5는 Cu3P208과 CLu.sZm.sPsOs의 XRD 패턴을 비교한 그래프이다. 5 is a graph comparing XRD patterns of Cu 3 P 2 O 8 and CLu.sZm.sPsOs.
도 6은 Cu3P208 및 mica에 코팅된 Sb doped Sn02의 파장 (nm)에 따른 흡광도를 나타낸 그래프이다. Figure 6 is a graph showing the absorbance according to the wavelength (nm) of Sb doped Sn0 2 coated on Cu 3 P 2 0 8 and mica.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하 발명의 구체적인 구현예에 따른 도전성 패턴 형성용 조성물과, 이로부터 형성된 도전성 패턴을 갖는 수지 구조체 등에 대해 설명하기로 한다. 발명의 일 구현예에 따르면, 고분자 수지; 및 하기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물을 포함하고, 전자기파 조사에 의해, 상기 비도전성 금속 화합물로부터 금속핵이 형성되는 전자기파 조사에 의한 도전성 패턴 형성용 조성물이 제공된다.  Hereinafter, a composition for forming a conductive pattern and a resin structure having a conductive pattern formed therefrom according to a specific embodiment of the present invention will be described. According to one embodiment of the invention, a polymer resin; And a non-conductive metal compound including a compound represented by the following Chemical Formula 1, and a composition for forming a conductive pattern by electromagnetic wave irradiation, wherein a metal nucleus is formed from the non-conductive metal compound by electromagnetic wave irradiation, is provided.
[화학식 1] [Formula 1]
Figure imgf000007_0001
Figure imgf000007_0001
상기 화학식 1에서,  In Chemical Formula 1,
M은 Ti, V, Cr, Mn, Fe, Co, Ni , Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt , M is Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt,
Mg, Ca, Sr 및 Au로 이루어진 군에서 선택된 1종 이상의 금속이며, x는 0 이상 3 미만의 유리수이다. At least one metal selected from the group consisting of Mg, Ca, Sr and Au, x is a ratio of 0 or more and less than 3.
일 구현예의 도전성 패턴 형성용 조성물은 상기 화학식 1로 표시되는 특정한 비도전성 금속 화합물을 포함한다.  In one embodiment, the composition for forming a conductive pattern includes a specific nonconductive metal compound represented by Chemical Formula 1.
상기 화학식 1로 표시되는 특정한 비도전성 금속 화합물은 7 결정계 (7 crystal system) 중 가장 대칭성이 적은 삼사정계 (triclinic system) 구조를 가질 수 있다. 삼사정계 구조에서는 단위포를 이루는 3개의 백터 길이가 모두 다를 뿐만 아니라 (a≠b≠c), 백터가 이루는 각도 서로 다르며 직각이 pT  The specific nonconductive metal compound represented by Chemical Formula 1 may have a triclinic system structure having the least symmetry among 7 crystal systems. In the triclinic structure, not only are all three vectors forming the unit cell different (a ≠ b ≠ c), but also the angles formed by the vectors are different and the right angle is pT.
아니다 ( α≠β≠ γ≠90). 또한, 상기 비도전성 금속 화합물은 ri 공간군 (space group)에 속하는 것일 수 있다. 도 1에는 이러한 비도전성 금속 화합물의 삼사정계 구조를 모식적으로 나타내고 있다. (Α ≠ β ≠ γ ≠ 90). In addition, the non-conductive metal compound may belong to a ri space group. 1, the triclinic system structure of such a nonelectroconductive metal compound is shown typically.
도 1을 참고하면, 삼사정계 구조를 갖는 비도전성 금속 화합물에서 Cu와 M은 2종의 부위에 위치할 수 있다. 구체적으로, 상기 비도전성 금속 화합물은 1개의 Cu 또는 M이 4개의 산소에 의해 배위되어 사각 평면 (square plane 또는 square pl anar )의 국소 대칭 ( local symmetry)을 이루는 Ml 부위 (Ml s i te)와 1개의 Cu 또는 M이 5개의 산소에 의해 배위되어 트리고날 바이피라미드 (tr igonal bipyramid)의 국소 대칭을 이루는 M2 부위에 위치할 수 있다. 또한, 비도전성 금속 화합물은 1개의 P가 4개의 산소에 의해 배위되어 국소 대칭을 이루는 P04의 사면체 (tetrahedron)를 포함할 수 있다. 이러한 국소 대칭을 이루는 부위들은 도 1과 같이 산소를 공유하면서 3차원적으로 연결되어 삼사정계 구조를 이를 수 있다. 구체적으로, 상기 비도전성 금속 화합물은 도 1과 같이 사각 평면형의 Cu04 흑은 M04 ; 트리고날 바이피라미드 (tr igonal bipyramid)의 Cu05 흑은 M05 ; 및 사면체의 P04가 산소를 공유하면서 3차원적으로 연결되어 있는 입체 구조를 가질 수 있다. Referring to FIG. 1, in the non-conductive metal compound having a triclinic structure, Cu and M may be positioned at two sites. Specifically, in the non-conductive metal compound, one Cu or M is coordinated by four oxygens to form a square plane or Ml site, which forms the local symmetry of square pl anar, and M2 site, where 1 Cu or M is coordinated by 5 oxygen to form local symmetry of the trigonal bipyramid. It can be located at In addition, the non-conductive metal compound may include a tetrahedron of P0 4 in which one P is coordinated by four oxygen to form local symmetry. Such local symmetric parts may be connected in three dimensions while sharing oxygen as shown in FIG. 1 to form a triclinic system. Specifically, the non-conductive metal compound is Cu0 4 black silver M0 4 of the square plane type as shown in FIG. Cu0 5 black of trigonal bipyramid is M0 5 ; And it may have a three-dimensional structure in which the tetrahedron P0 4 is three-dimensionally connected while sharing oxygen.
이하에 더욱 상세히 설명하겠지만, 이러한 비도전성 금속 화합물을 포함하는 도전성 패턴 형성용 조성물을 사용해 고분자 수지 제품 또는 수지층을 성형한 후, 소정 영역에 레이저 등 전자기파를 조사하면, 상기 비도전성 금속 화합물로부터 금속핵이 형성될 수 있다. 상기 비도전성 금속 화합물은 일반적인 환경에서는 화학적으로 안정하나, 근적외선 파장 등의 전자기파에 노출된 영역에서는, 상기 금속핵이 보다 용이하게 형성될 수 있다.  As will be described in more detail below, after molding a polymer resin product or a resin layer using a composition for forming a conductive pattern containing such a non-conductive metal compound, and irradiating electromagnetic waves such as a laser to a predetermined region, the metal from the non-conductive metal compound Nuclei can form. The non-conductive metal compound is chemically stable in a general environment, but the metal core may be more easily formed in an area exposed to electromagnetic waves such as near infrared wavelengths.
보다 구체적으로, 상기 화학식 1로 표시되는 비도전성 금속 화합물은 도 More specifically, the non-conductive metal compound represented by Chemical Formula 1 is
2(가로축: 파장 (nm) , '세로축: 흡광도)와 같이 가시광선 영역 (약 300nm 내지 700nm)의 흡광도가 낮고, 근적외선 내지 적외선 영역 (약 700nm 내지 3000nm)에서 높은 흡광도를 보인다. 상기 비도전성 금속 화합물의 근적외선 영역의 강한 흡광도의 원인은 Cu05가 이루는 트리고날 바이피라미드 (tr igonal bypyramid)의 국소 대칭에 기인한다. 그 이유로는 첫째로, 상기 트리고날 바이피라미드의 중심에 존재하는 Cu2+는 중심 대칭성을 가지지 않는 부위 (non-cent rosymmetr i c s i te)에 위치하여 Cu2+의 d-오비탈에서 라포르테 허용 전이 (Laporte al lowed transi t ion)가 가능하기 때문이다. 둘째로, 이 결정 구조에서 기인하는 에너지 준위 간의 전이는 가시광선 영역 (약 300nm 내지 700nm)을 적게 포함하고, 근적외선 내지 적외선 영역 (약 700nm 내지 3000nm)을 상당 부분 포함하기 때문이다. 따라서, 상기 비전도성 금속 화합물이 가시광선 영역의 흡광도는 낮으면서 근적외선 내지 적외선 영역의 흡광도가 높아, 밝은 색상을 가지면서도 근적외선 파장의 전자기파의 자극에 잘 반응하여 Cu-무전해 도금을 위한 금속핵을 잘 형성할 수 있다. 2, the absorptivity of the visible region (about 300 nm to 700 nm) is low, and high absorbance is shown in the near infrared to infrared region (about 700 nm to 3000 nm), such as 2 (horizontal axis: wavelength (nm), ' vertical axis: absorbance). The non cause strong absorption of near-infrared region of the non-conductive metal compounds is due to the local symmetry of teurigo Cu0 5 forming the edge by a pyramid (tr igonal bypyramid). For this reason, firstly, Cu 2+ in the center of the trigonal bipyramid is located in a non-cent rosymmetr icsi te, so that the laforte permissible transition in the d-orbital of Cu 2+ ( Laporte al lowed transit ion is possible. Secondly, the transition between the energy levels resulting from this crystal structure contains less visible light region (about 300 nm to 700 nm) and considerably includes near infrared to infrared region (about 700 nm to 3000 nm). Therefore, the non-conductive metal compound has low absorbance in the visible light region and high absorbance in the near infrared to infrared region, and has a bright color. In response to the stimulation of electromagnetic waves in the near infrared wavelength, it is possible to form metal nuclei for Cu-electroless plating.
이렇게 형성된 금속핵은 전자기파가 조사된 소정 영역에서 선택적으로 노출되어 고분자 수지 기재 표면의 접착활성 표면을 형성할 수 있다. 이후, 금속핵 등을 화학적 환원 처리하거나, 이를 seed로 하여 도전성 금속 이온 등을 포함하는 도금 용액으로 무전해 도금하면, 상기 금속핵을 포함하는 접착활성 표면 상에 도전성 금속층이 형성될 수 있다. 특히, 상술한 바와 같이, 비도전성 금속 화합물의 구조적 특징에 의해, 상기 비도전성 금속 화합물에 근적외선 파장의 전자기파가 조사되면, 낮은 전자기파 파워로도 금속핵을 쉽게 형성할 수 있다. 또한, 상기 금속핵은 환원 또는 도금 방법, 예를 들면, Cu-무전해 도금에 의해 도전성 패턴을 용이하게 형성할 수 있다. The metal core thus formed may be selectively exposed in a predetermined region irradiated with electromagnetic waves to form an adhesive active surface of the polymer resin substrate surface. Subsequently, when the metal nucleus or the like is chemically reduced or electroless plated with a plating solution containing conductive metal ions or the like as see d, the conductive metal layer may be formed on the adhesive active surface including the metal nucleus. In particular, as described above, when the non-conductive metal compound is irradiated with electromagnetic waves having a near infrared wavelength, the metal core can be easily formed even with low electromagnetic wave power. In addition, the metal core can easily form a conductive pattern by a reduction or plating method, for example, Cu-electroless plating.
한편, 상기 일 구현예의 조성물에서, 상기 비도전성 금속 화합물은 근적외선 영역의 전자기파 조사 전에는 비도전성을 나타낼 뿐 아니라, 상기 고분자 수지와 우수한 상용성을 가지며, 상기 환원 또는 도금 처리 등에 사용되는 용액^ 대해서도 화학적으로 안정하여 비도전성을 유지하는 특성을 갖는다.  On the other hand, in the composition of the embodiment, the non-conductive metal compound not only exhibits non-conductivity prior to electromagnetic wave irradiation in the near infrared region, but also has excellent compatibility with the polymer resin, and is also used in the solution used for the reduction or plating treatment. It is stable and has a characteristic of maintaining non-conductivity.
따라서, 이러한 비도전성 금속 화합물은 전자기파가 조사되지 않은 영역에서는, 고분자 수지 기재 내에 균일하게 분산된 상태로 화학적으로 안정하게 유지되어 비도전성을 나타낼 수 있다. 이에 비해, 상기 근적외선 파장의 전자기파가 조사된 소정 영역에서는 상기 비도전성 금속 화합물로부터 이미 상술한 원리로 금속핵 형성이 용이하며 이에 따라 미세한 도전성 패턴을 쉽게 형성할 수 있다.  Therefore, such a non-conductive metal compound may remain chemically stable in a state uniformly dispersed in the polymer resin substrate in the region where electromagnetic waves are not irradiated, thereby exhibiting non-conductivity. On the other hand, in a predetermined region irradiated with electromagnetic waves of the near infrared wavelength, metal nuclei can be easily formed from the non-conductive metal compound based on the principle described above, and thus a fine conductive pattern can be easily formed.
따라서, 상술한 일 구현예의 조성물을 사용하면, 각종 고분자 수지 제품 또는 수지층 등의 고분자 수지 기재 상에, 레이저 등 전자기파를 조사하는 매우 단순화된 공정으로 미세한 도전성 패턴을 형성할 수 있으며, 특히, 상기 도전성 패턴의 형성을 촉진하는 금속핵을 매우 용이하게 형성할 수 있으므로 이전에 알려진 동종의 조성물에 비해서도 더욱 양호한 도전성 패턴을 매우 용이하게 형성할 수 있게 된다.  Therefore, by using the composition of the embodiment described above, it is possible to form a fine conductive pattern in a very simplified process of irradiating electromagnetic waves, such as a laser, on various polymer resin products or polymer resin substrates such as resin layers, in particular, Since the metal nucleus which promotes the formation of the conductive pattern can be formed very easily, a better conductive pattern can be formed more easily than the composition of the same kind previously known.
부가하여, 스피넬 구조를 갖는 CuCr204 등의 화합물은 어두운 흑색 (dark bl ack)을 나타냄에 따라, 이러한 비도전성 금속 화합물을 포함하는 조성물은 다양한 색채의 고분자 수지 제품 또는 수지충을 구현하는데 적합하지 않을 수 있다. 이에 비해, 상기 화학식 1로 표시되는 화합물 중 하나인 Cu3P208은 도 2와 같이 가시광선 영역 (약 300nm 내지 700nm)의 흡수율이 낮기 때문에 상대적으로 밝은 색상을 나타낼 수 있다. 이에 따라, Cu3P208은 각종 고분자 수지 제품 또는 수지층 등의 색상을 거의 착색시키지 않을 수 있다. 따라서, 이를 포함하는 일 구현예의 조성물을 사용하면 상대적으로 적은 색 첨가제의 추가로도 각종 고분자 수지 제품 등의 다양한 색상을 구현하고자 하는 당업계의 요구를 보다 효과적으로 충족시킬 수 있다. 또한, Cu3P208에서 Cu의 일부를 다른 전이 금속 (Ti , V, Cr , Mn , Fe , Co , Ni , Y , Zn, Nb , Mo , Tc , Pd , Ag, Ta , W, Pt , Mg, Ca , Sr 및 Au 등)으로 치환하여도 상기의 목적을 얻을 수 있다. 특히 Cu의 일부를 Zn로 치환하면 Cu3P208보다 색상이 더 밝아지는 효과를 얻을 수 있다. In addition, compounds such as CuCr 2 O 4 having a spinel structure are dark black. bl ack), a composition comprising such a non-conductive metal compound may not be suitable for realizing polymer resin products or resinous resins of various colors. In contrast, Cu 3 P 2 O 8 , which is one of the compounds represented by Formula 1, may exhibit a relatively bright color because the absorption of the visible light region (about 300 nm to 700 nm) is low as shown in FIG. 2. Accordingly, Cu 3 P 2 0 8 may hardly color the colors of various polymer resin products or resin layers. Therefore, the use of the composition of one embodiment comprising the same can more effectively meet the needs of the art to implement a variety of colors, such as various polymer resin products with the addition of a relatively small color additive. In addition, a part of Cu in Cu 3 P 2 0 8 may be transferred to other transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt , Mg, Ca, Sr, Au and the like) can be obtained. In particular, when a part of Cu is replaced with Zn, the color becomes brighter than Cu 3 P 2 O 8 .
한편, 상술한 일 구현예의 도전성 패턴 형성용 조성물에서, 상기 고분자 수지로는 다양한 고분자 수지 제품 또는 수지층을 형성할 수 있는 임의의 열 경화성 수지 또는 열 가소성 수지를 별다른 제한 없이 사용할 수 있다. 특히, 상술한 특정 비도전성 금속 화합물은 다양한 고분자 수지와 우수한 상용성 및 균일한 분산성을 나타낼 수 있으며, 일 구현예의 조성물은 다양한 고분자 수지를 포함하여 여러 가지 수지 제품 또는 수지층으로 성형될 수 있다. 이러한 고분자 수지의 구체적인 예로는, ABS (Acryloni t i le poly-butadi ene styrene) 수지, 폴리부틸렌테레프탈레이트 수지 또는 폴리에틸렌테레프탈레이트 수지 등의 폴리알킬렌테레프탈레이트 수지, 폴리카보네이트 수지, 폴리프로필렌 수지 또는 폴리프탈아미드 수지 등을 들 수 있고, 이외에도 다양한 고분자 수지를 포함할 수 있다.  On the other hand, in the composition for forming a conductive pattern of the above-described embodiment, as the polymer resin, any thermosetting resin or thermoplastic resin capable of forming various polymer resin products or resin layers may be used without particular limitation. In particular, the specific non-conductive metal compound described above may exhibit excellent compatibility and uniform dispersibility with various polymer resins, and the composition of one embodiment may be molded into various resin products or resin layers including various polymer resins. . Specific examples of such polymer resins include polyalkylene terephthalate resins, polycarbonate resins, polypropylene resins or poly (ABS) such as ABS (Acryloni tile poly-butadiene styrene) resins, polybutylene terephthalate resins or polyethylene terephthalate resins. A phthalamide resin etc. can be mentioned, In addition, various polymeric resins can be included.
또한, 상기 도전성 패턴 형성용 조성물에서, 상기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물은 전체 조성물에 대해 약 0. 1 내지 15 중량 % , 혹은 약 1 내지 10 중량 %로 포함될 수 있으며, 나머지 함량의 고분자 수지가 포함될 수 있다. 이러한 함량 범위에 따라, 상기 조성물로부터 형성된 고분자 수지 제품 또는 수지층의 기계적 물성 등 기본적인 물성을 적절히 유지하면서도, 전자기파 조사에 의해 일정 영역에 도전성 패턴을 형성하는 특성을 바람직하게 나타낼 수 있다. In addition, in the composition for forming a conductive pattern, the non-conductive metal compound including the compound represented by Formula 1 may be included in about 0.1 to 15% by weight, or about 1 to 10% by weight based on the total composition, the rest Content of polymeric resin may be included. According to this content range, while maintaining the basic physical properties such as the mechanical properties of the polymer resin product or resin layer formed from the composition, while forming a conductive pattern in a predetermined region by electromagnetic wave irradiation The characteristic can be preferably represented.
그리고, 상기 도전성 패턴 형성용 조성물은 상술한 고분자 수지 , 및 소정의 비도전성 금속 화합물 외에, 난연제, 열 안정제, UV 안정제, 활제, 항산화제, 무기 충전제, 색 첨가제, 층격 보강제 및 기능성 보강제로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함할 수도 있다. 이러한 첨가제의 부가로, 일 구현예의 조성물로부터 얻어진 수지 구조체의 물성을 적절히 보강할 수 있다. 이러한 첨가제 중, 상기 색 첨가제, 예를 들어, 안료 등의 경우에는, 약 0.1 내지 10 증량 %의 함량으로 포함되어, 상기 수지 구조체에 원하는 색상을 부여할 수 있다. Further, for the conductive pattern forming composition described above high molecular resin, and in addition to a predetermined non-conductive metal compounds, the group consisting of flame retardants, thermal stabilizers, UV stabilizers, lubricants, antioxidants, inorganic fillers, color additives, cheunggyeok reinforcing agents and functionality adjuvant It may further comprise one or more additives selected from. With the addition of such additives, the physical properties of the resin structure obtained from the composition of one embodiment can be appropriately reinforced. Among these additives, in the case of the color additives, for example, pigments, etc., they may be included in an amount of about 0.1 to 10% by weight to give a desired color to the resin structure.
이러한 안료 등 색 첨가제의 대표적인 예로는, ZnO, ZnS, Talc, Ti02,Representative examples of color additives such as pigments, ZnO, ZnS, Talc, Ti0 2 ,
Sn02, 또는 BaS04 등의 백색 안료가 있으며, 이외에도 이전부터 고분자 수지 조성물에 사용 가능한 것으로 알려진 다양한 종류 및 색상의 안료 등 색 첨가제를 사용할 수 있음은 물론이다. There are white pigments such as Sn0 2 or BaS0 4 , and of course, color additives such as pigments of various kinds and colors known to be usable in the polymer resin composition may be used.
상기 난연제는 인계 난연쩨 및 무기 난연제를 포함하는 것일 수 있다. 보다 구체적으로, 상기 인계 난연제로는 트리페닐 포스페이트 (triphenyl phosphate, TPP) , 트리자일레닐 포스페이트 (tr ixylenyl phosphate, TXP), 트리크레실 포스페이트 (tricresyl phosphate, TCP), 또는 트리이소페닐 포스페이트 (triisophenyl phosphate, RE0F0S) 등을 포함하는 인산 에스테르계 난연제; 방향족 폴리포스페이트 (aromatic polyphosphate)계 난연제; 폴리인산염계 난연제; 또는 적린계 난연제 등을 사용할 수 있으며, 이외에도 수지 조성물에 사용 가능한 것으로 알려진 다양한 인계 난연제를 별다른 제한 없이 모두 사용할 수 있다. 또한, 상기 무기 난연제로는 수산화 알루미늄, 수산화 마그네슴, 붕산 아연, 몰리브덴 산화물 (Mo03); 몰리브덴 과산화물 염 (Mo207 2— ), 칼슴-아연-몰리브산염 , 삼산화 안티몬 (Sb203), 또는 오산화 안티몬 (Sb205) 등을 들 수 있다. 다만, 무기 난연제의 예가 이에 한정되는 것은 아니며, 기타 수지 조성물에 사용 가능한 것으로 알려진 다양한 무기 난연제를 별다른 제한 없이 모두 사용할 수 있다. The flame retardant may include phosphorus-based flame retardant and inorganic flame retardant. More specifically, the phosphorus-based flame retardant may include triphenyl phosphate (TPP), trixylenyl phosphate (TXP), tricresyl phosphate (TCP), or triisophenyl phosphate. phosphate ester flame retardants, including phosphate, RE0F0S); Aromatic polyphosphate-based flame retardants; Polyphosphate flame retardants; Alternatively, red phosphorus-based flame retardants may be used, and various phosphorus-based flame retardants known to be usable in the resin composition may be used without any particular limitation. In addition, the inorganic flame retardant includes aluminum hydroxide, magnesium hydroxide, zinc borate, molybdenum oxide (Mo0 3 ); Molybdenum peroxide salt (Mo 2 0 7 2 —), chamomile-zinc-molybdate, antimony trioxide (Sb 2 0 3 ), antimony pentoxide (Sb 2 0 5 ), and the like. However, examples of the inorganic flame retardant are not limited thereto, and various inorganic flame retardants known to be usable in other resin compositions may be used without any particular limitation.
또, 층격 보강제, 열 안정제, UV 안정게, 활제 또는 항산화제 등의 경우 약 0.01 내지 5 중량 %, 혹은 약 0.05 내지 3 중량 %의 함량으로 포함되어, 상기 수지 구조체에 원하는 물성을 적절히 발현시킬 수 있다. In addition, in the case of a layer reinforcing agent, heat stabilizer, UV stabilizer, lubricant or antioxidant, it is included in an amount of about 0.01 to 5% by weight, or about 0.05 to 3% by weight. Desired physical properties can be appropriately expressed in the resin structure.
한편, 이하에서는 상술한 일 구현예의 도전성 패턴 형성용 조성물을 사용하여, 수지 제품 또는 수지층 등의 고분자 수지 기재 상에, 전자기파의 직접 조사에 의해 도전성 패턴을 형성하는 방법을 구체적으로 설명하기로 한다 . 이러한 도전성 패턴의 형성 방법은, 상술한 도전성 패턴 형성용 조성물을 수지 제품으로 성형하거나, 다른 제품에 도포하여 수지층을 형성하는 단계; 상기 수지 제품 또는 수지층의 소정 영역에 전자기파를 조사하여 상기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물 입자로부터 금속핵을 발생시키는 단계; 및 상기 금속핵을 발생시킨 영역을 화학적으로 환원 또는 도금시켜 도전성 금속층을 형성하는 단계를 포함할 수 있다.  Meanwhile, hereinafter, a method of forming a conductive pattern by direct irradiation of electromagnetic waves on a polymer resin substrate such as a resin product or a resin layer using the composition for forming a conductive pattern according to the above-described embodiment will be described in detail. . Such a method of forming a conductive pattern may include forming a resin layer by molding the above-described composition for forming a conductive pattern into a resin product or by applying it to another product; Irradiating electromagnetic waves to a predetermined region of the resin product or the resin layer to generate metal nuclei from non-conductive metal compound particles including the compound represented by Chemical Formula 1; And chemically reducing or plating the region generating the metal nucleus to form a conductive metal layer.
이러한 도전성 패턴의 형성 방법을 첨부한 도면을 참고하여 각 단계별로 설명하면 이하와 같다. 참고로, 도 3에서는 상기 도전성 패턴 형성 방법의 일 예를 공정 단계별로 간략화하여 나타내고 있다.  Referring to the accompanying drawings, a method of forming the conductive pattern is described in each step as follows. For reference, in FIG. 3, an example of the method of forming the conductive pattern is shown in a simplified step by step.
상기 도전성 패턴 형성 방법에서는, 먼저, 상술한 도전성 패턴 형성용 조성물을 수지 제품으로 성형하거나, 다른 제품에 도포하여 수지층을 형성할 수 있다. 이러한 수지 제품의 성형 또는 수지층의 형성에 있어서는, 통상적인 고분자 수지 조성물을 사용한 제품 성형 방법 또는 수지층 형성 방법이 별다른 제한 없이 적용될 수 있다. 예를 들어, 상기 조성물을 사용하여 수지 제품을 성형함에 있어서는, 상기 도전성 패턴 형성용 조성물을 압출 및 넁각한 후 펠릿 또는 입자 형태로 형성하고, 이를 원하는 형태로 사출 성형하여 다양한 고분자 수지 제품을 제조할 수 있다.  In the said conductive pattern formation method, the above-mentioned composition for conductive pattern formation can be shape | molded by a resin product, or can be apply | coated to another product and can form a resin layer. In molding such a resin product or forming a resin layer, a product molding method or a resin layer forming method using a conventional polymer resin composition can be applied without particular limitation. For example, in molding a resin product using the composition, the composition for forming the conductive pattern is extruded and engraved, and then formed into pellets or particles, and then injection molded into a desired form to prepare various polymer resin products. Can be.
이렇게 형성된 고분자 수지 제품 또는 수지층은 상기 고분자 수지로부터 형성된 수지 기재 상에, 상술한 특정 비도전성 금속 화합물이 균일하게 분산된 형태를 가질 수 있다. 특히, 상기 화학식 1의 화합물을 포함한 비도전성 금속 화합물은 다양한 고분자 수지와 우수한 상용성 및 화학적 안정성을 가지므로, 상기 수지 기재 상의 전 영역에 걸쳐 균일하게 분산되어 비도전성을 갖는 상태로 유지될 수 있다.  The polymer resin product or the resin layer thus formed may have a form in which the specific non-conductive metal compound described above is uniformly dispersed on the resin substrate formed from the polymer resin. In particular, the non-conductive metal compound including the compound of Formula 1 has excellent compatibility and chemical stability with various polymer resins, it can be uniformly dispersed throughout the entire area on the resin substrate can be maintained in a non-conductive state .
이러한 고분자 수지 제품 또는 수지층을 형성한 후에는, 도 3의 첫 번째 도면에 도시된 바와 같이, 도전성 패턴을 형성하고자 하는 상기 수지 제품 또는 수지층의 소정 영역에, 레이저 등 전자기파를 조사할 수 있다. 이러한 전자기파를 조사하면, 상기 비도전성 금속 화합물로부터 금속이나 그 이온이 방출될 수 있고, 이를 포함한 금속핵을 발생시킬 수 있다 (도 3의 두 번째 도면 참조) . After the polymer resin product or the resin layer is formed, as shown in the first drawing of FIG. 3, the resin product to form the conductive pattern or Electromagnetic waves such as a laser can be irradiated to a predetermined region of the resin layer. When irradiated with such electromagnetic waves, the metal or its ions may be released from the non-conductive metal compound, and a metal nucleus including the same may be generated (see the second drawing of FIG. 3).
보다 구체적으로, 상기 전자기파 조사에 의한 금속핵 발생 단계를 진행하면, 상기 화학식 1의 화합물을 포함한 비도전성 금속 화합물의 일부가 상기 수지 제품 또는 수지층의 소정 영역 표면으로 노출되면서 이로부터 금속핵이 발생되고, 보다 높은 접착성을 갖도록 활성화된 접착활성 표면을 형성할 수 있다. 이러한 접착활성 표면이 전자기파가 조사된 일정 영역에서만 선택적으로 형성됨에 따라, 후술하는 도금 단계 등을 진행하면, 상기 금속핵 및 접착활성 표면에 포함된 도전성 금속 이온 등의 화학적 환원, 및 /또는 이에 대한 무전해 도금에 의해 상기 도전성 금속 이온이 화학적 환원됨으로써, 상기 도전성 금속층이 소정 영역의 고분자 수지 기재 상에 선택적으로 형성될 수 있다. 보다 구체적으로, 상기 무전해 도금시에는, 상기 금속핵이 일종의 seed로 작용하여 도금 용액에 포함된 도전성 금속 이온이 화학적으로 환원될 때, 이와 강한 결합을 형성할 수 있다. 그 결과, 상기 도전성 금속층이 보다 용이하게 선택적으로 형성될 수 있다.  More specifically, when the metal nucleus generation step by the electromagnetic wave irradiation proceeds, a portion of the non-conductive metal compound including the compound of Formula 1 is exposed to the surface of the predetermined region of the resin product or the resin layer to generate a metal nucleus therefrom. And the adhesion-activated surface activated to have higher adhesion. Since the adhesion-activated surface is selectively formed only in a predetermined region irradiated with electromagnetic waves, when the plating step described below is performed, chemical reduction of the metal core and the conductive metal ions included in the adhesion-activated surface, and / or By chemically reducing the conductive metal ions by electroless plating, the conductive metal layer may be selectively formed on the polymer resin substrate in a predetermined region. More specifically, in the electroless plating, when the metal nucleus acts as a kind of seed, when the conductive metal ions contained in the plating solution are chemically reduced, strong bonds may be formed. As a result, the conductive metal layer can be selectively formed more easily.
한편, 상술한 금속핵 발생 단계에 있어서는, 전자기파 중에서도, 레이저 전자기파가 조사될 수 있고, 예를 들어, 약 755nm , 약 1064nm , 약 1550nm 또는 약 2940nm의 근적외선 (NIR) 영역의 파장을 갖는 레이저 전자기파가 조사될 수 있다. 다른 예에서, 적외선 ( IR) 영역의 파장을 갖는 레이저 전자기파가 조사될 수 있다. 또한, 상기 레이저 전자기파는 통상적인 조건이나 파워 하에 조사될 수 있다.  On the other hand, in the above-described metal nucleation step, among the electromagnetic waves, laser electromagnetic waves can be irradiated, for example, laser electromagnetic waves having a wavelength in the near infrared (NIR) region of about 755 nm, about 1064 nm, about 1550 nm or about 2940 nm. Can be investigated. In another example, laser electromagnetic waves having a wavelength in the infrared (IR) region may be irradiated. In addition, the laser electromagnetic wave can be irradiated under normal conditions or power.
이러한 레이저의 조사에 의해, 보다 효과적으로 상기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물로부터 금속핵이 발생할 수 있고, 이를 포함한 접착활성 표면을 소정 영역에 선택적으로 발생 및 노출시킬 수 있다. 한편, 상술한 금속핵 발생 단계를 진행한 후에는, 도 3의 세 번째 도면에 도시된 바와 같이, 상기 금속핵을 발생시킨 영역올 화학적으로 환원 또는 도금시켜 도전성 금속층을 형성하는 단계를 진행할 수 있다. 이러한 환원 또는 도금 단계를 진행한 결과 상기 금속핵 및 접착활성 표면이 노출된 소정 영역에서 선택적으로 도전성 금속층이 형성될 수 있고, 나머지 영역에서는 화학적으로 안정한 비도전성 금속 화합물이 그대로 비도전성을 유지할 수 있다. 이에 따라, 고분자 수지 기재 상의 소정 영역에만 선택적으로 미세한 도전성 패턴이 형성될 수 있다. By irradiation of such a laser, metal nuclei can be generated from a non-conductive metal compound including the compound represented by Chemical Formula 1 more effectively, and the adhesion-activated surface including the same can be selectively generated and exposed to a predetermined region. On the other hand, after the above-described metal nucleus generation step, as shown in the third drawing of FIG. 3, the step of forming a conductive metal layer by chemically reducing or plating the region that generated the metal nucleus may proceed. . Such reduction or As a result of the plating step, the conductive metal layer may be selectively formed in a predetermined region where the metal nucleus and the adhesive active surface are exposed, and in the remaining regions, the chemically stable non-conductive metal compound may maintain the non-conductivity. Accordingly, a fine conductive pattern may be selectively formed only in a predetermined region on the polymer resin substrate.
보다 구체적으로, 상기 도전성 금속층의 형성 단계는 무전해 도금에 의해 진행될 수 있고, 이에 따라 상기 접착활성 표면 상에 양호한 도전성 금속층이 형성될 수 있다. 특히, 상기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물로부터 형성된 접착활성 표면은 Cu-무전해 도금에 의해 효과적으로 미세한 도전성 패턴을 형성시킬 수 있다.  More specifically, the forming of the conductive metal layer may be performed by electroless plating, and thus a good conductive metal layer may be formed on the adhesively active surface. In particular, the adhesion-activated surface formed from the non-conductive metal compound including the compound represented by Formula 1 may effectively form a fine conductive pattern by Cu-electroless plating.
일 예에서, 이러한 환원 또는 도금 단계에서는 상기 금속핵을 발생시킨 소정 영역의 ' 수지 제품 또는 수지층을 환원제를 포함한 산성 또는 염기성 용액으로 처리할 수 있으며, 이러한 용액은 환원제로서, 포름알데히드, 차아인산염, 디메틸아미노보레인 (DMAB) , 디에틸아미노보레인 (DEAB) 및 히드라진으로 이루어진 군에서 선택된 1종 이상을'포함할 수 있다. 또한, 상기 환원 또는 도금 단계에서는, 상술한 환원제 및 도전성 금속 이온을 포함한 무전해 도금 용액 등으로 처리하여 상기 무전해 도금에 의해 도전성 금속층을 형성할 수 있다. In one example, in such a reduction or plating step can process the "resin products or resin layer given that caused the metal nucleus region with an acidic or basic solution containing a reducing agent, such a solution as the reducing agent, formaldehyde, hypophosphite , and a dimethylamino borane (DMAB), diethylamino borane (DEAB) and hydrazine one or more selected from the group consisting of may contain. In the reducing or plating step, the conductive metal layer may be formed by the electroless plating by treating with the above-described reducing agent and the electroless plating solution including the conductive metal ions.
이와 같은 환원 또는 도금 단계의 진행으로, 상기 금속핵이 형성된 영역에서 이를 seed로 하여 상기 무전해 도금 용액에 포함된 도전성 금속 이은이 화학적 환원되어, 소정 영역에 선택적으로 양호한 도전성 패턴이 형성될 수 있다. 이때, 상기 금속핵 및 접착활성 표면은 상기 화학적으로 환원되는 도전성 금속 이온과 강한 결합을 형성할 수 있고, 그 결과 소정 영역에 선택적으로 도전성 패턴이 보다 용이하게 형성될 수 있다.  As the reduction or plating step proceeds, the conductive metal silver contained in the electroless plating solution is chemically reduced by using the seed as a seed in the region where the metal nucleus is formed, and a good conductive pattern may be selectively formed in a predetermined region. . In this case, the metal nucleus and the adhesion-activated surface may form strong bonds with the chemically reduced conductive metal ions, and as a result, a conductive pattern may be more easily formed in a predetermined region.
또한, 이러한 도전성 패턴이 형성되지 않은 나머지 영역에서, 상기 수지 구조체에는 상기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물이 균일하게 분산되어 있다.  In addition, in the remaining region where the conductive pattern is not formed, the non-conductive metal compound including the compound represented by Chemical Formula 1 is uniformly dispersed in the resin structure.
한편, 발명의 다른 구현예에 따르면, 상술한 도전성 패턴 형성용 조성물 및 도전성 패턴 형성 방법에 의해 얻어진 도전성 패턴을 갖는 수지 구조체가 제공된다. 이러한 수지 구조체는 고분자 수지 기재; 고분자 수지 기재에 분산되어 있고, 상기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물; 소정 영역의 고분자 수지 기재 표면에 노출된 구리 금속 또는 구리 이온을 포함한 금속핵을 포함하는 접착활성 표면; 및 상기 접착활성 표면 상에 형성된 도전성 금속층을 포함할 수 있다. On the other hand, according to another embodiment of the invention, the resin structure having a conductive pattern obtained by the above-described composition for forming a conductive pattern and the conductive pattern forming method Is provided. Such a resin structure includes a polymer resin substrate; A non-conductive metal compound dispersed in a polymer resin substrate and including a compound represented by Chemical Formula 1; An adhesion-activated surface comprising a metal nucleus containing copper metal or copper ions exposed to the surface of the polymer resin substrate in a predetermined region; And it may include a conductive metal layer formed on the adhesive active surface.
이러한 수지 구조체에서, 상기 접착활성 표면 및 도전성 금속층이 형성된 소정 영역은 상기 고분자 수지 기재에 전자기파가 조사된 영역에 대웅할 수 있다. 또, 상기 접착활성 표면의 금속핵에 포함된 금속이나 그 이온은 상기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물에서 유래한 것으로 될 수 있다. 한편, 상기 도전성 금속층은 상기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물에 포함된 금속에서 유래하거나, 무전해 도금 용액에 포함된 도전성 금속 이온에서 유래한 것으로 될 수 있다.  In such a resin structure, a predetermined region in which the adhesive active surface and the conductive metal layer are formed may be defined in a region in which electromagnetic waves are irradiated onto the polymer resin substrate. In addition, the metal or its ions contained in the metal nucleus of the adhesion-activated surface may be derived from a non-conductive metal compound including the compound represented by the formula (1). On the other hand, the conductive metal layer may be derived from the metal contained in the non-conductive metal compound including the compound represented by the formula (1), or may be derived from the conductive metal ions contained in the electroless plating solution.
또한, 상기 수지 구조체는, 상기 비도전성 금속 화합물에서 유래한 잔류물을 더 포함할 수 있다. 이러한 잔류물은 상기 비도전성 금속 화합물에 포함된 금속 중 적어도 일부가 방출되어, 그 자리의 적어도 일부에 vacancy가 형성된 구조를 가질 수 있다.  In addition, the resin structure may further include a residue derived from the non-conductive metal compound. Such a residue may have a structure in which at least some of the metals included in the non-conductive metal compound are released, and vacancy is formed in at least a portion of the site.
상술한 수지 구조체는 안테나용 도전성 패턴을 갖는 휴대폰 또는 타블렛 PC케이스 등 각종 수지 제품 또는 수지층으로 되거나, 기타 RFID 태그, 각종 센서 또는 MEMS 구조체 등의 도전성 패턴을 갖는 다양한 수지 제품 또는 수지층으로 될 수 있다.  The resin structure described above may be various resin products or resin layers, such as a mobile phone or tablet PC case having a conductive pattern for an antenna, or various resin products or resin layers having conductive patterns, such as other RFID tags, various sensors, or MEMS structures. have.
상술한 바와 같이, 발명의 구현예들에 따르면, 레이저 등 전자기파를 조사하고 환원 또는 도금하는 매우 단순화된 방법으로, 각종 미세 도전성 패턴을 갖는 다양한 수지 제품을 양호하고도 용이하게 형성할 수 있다. 이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. 실시예 1 CuO와 (NH4)2HP04를 3 : 2의 몰 비로 흔합한 흔합물을 1000 °C에서 10시간 열처리하는 고상 반웅 방법을 통하여 삼사정계 구조를 가지는 Cu3P208을 합성하였다. 그리고, 그 결정 특성을 나타내는 XRD (X-ray Di f fract ion) 패턴을 도 4에 나타내었다. As described above, according to embodiments of the present invention, it is possible to easily and easily form various resin products having various fine conductive patterns by a very simplified method of irradiating, reducing or plating electromagnetic waves such as a laser. Hereinafter, the operation and effects of the invention will be described in more detail with reference to specific examples. However, this is presented as an example of the invention, whereby the scope of the invention is not limited in any sense. Example 1 Cu 3 P 2 0 8 having a triclinic structure was synthesized by a solid phase reaction method in which CuO and (NH 4 ) 2 HP0 4 were mixed at a molar ratio of 3: 2 by heat treatment at 1000 ° C. for 10 hours. And, the X-ray diffraction (XRD) pattern showing the crystal characteristic is shown in FIG.
기본수지인 폴리카보네이트 수지와, 비도전성 금속 화합물로 상기에서 제조한 Cu3P208를 사용하고, 공정 및 안정화를 위한 첨가제들을 함께 사용하여 전자기파 조사에 의한 도전성 패턴 형성용 조성물을 제조하였다. Polycarbonate resin, which is a basic resin, and Cu 3 P 2 0 8 prepared above as a non-conductive metal compound, and additives for process and stabilization were used together to prepare a composition for forming a conductive pattern by electromagnetic wave irradiation.
이들 첨가제로는 열 안정화제 ( IR1076 , PEP36) , UV 안정제 (UV329) , 활제 (EP184) , 충격보강제 (S2001)를 사용하였다.  As these additives, heat stabilizers (IR1076, PEP36), UV stabilizers (UV329), lubricants (EP184), and impact modifiers (S2001) were used.
상기 폴리카보네이트 수지를 90 중량 %, 13¾08를 5 중량 %, 기타 첨가제를90% by weight of the polycarbonate resin, ¾0 1 3 8 5% by weight, and other additives
5 중량 %로 흔합하여 조성물을 얻고, 이를 260 내지 280°C 온도에서 압출기를 통해 압출하였다. 압출된 펠렛 형태의 조성물을 약 260 내지 270°C에서 직경 100隱, 두께 2隱의 기판 및 ASTM 규격의 아이조드바 형태로 사출 성형하였다. 상기 사출 성형된 시편에 대해, 40kHz, 7W 조건 하에 1064nm 파장의 레이저를 조사하여 표면을 활성화시키고, 다음과 같이 무전해 도금 공정을 실시하였다. The composition was mixed by 5% by weight, which was extruded through an extruder at a temperature of 260 to 280 ° C. The composition in the form of extruded pellets was injection molded at about 260 to 270 ° C. in the form of a substrate having a diameter of 100 mm, a thickness of 2 mm and an izod bar of ASTM standard. The injection molded specimen was irradiated with a laser of 1064 nm wavelength under 40 kHz and 7 W conditions to activate the surface, and the electroless plating process was performed as follows.
도금 용액 (이하 PA 용액)은 황산구리 3g , 롯샐염 14g , 수산화 나트륨 4g을 100ml의 탈이온수에 용해시켜 제조하였다. 제조된 PA 용액 40ml에 환원제로 포름알데하이드 1.6ml를 첨가하였다. 레이저로 표면이 활성화된 수지 구조체를 4 내지 5시간 동안 도금 용액에 담지시킨 후, 증류수로 세척하였다. The plating solution (hereinafter PA solution) was prepared by dissolving 3 g of copper sulfate, 14 g of loxal salt, and 4 g of sodium hydroxide in 100 ml of deionized water. To 40 ml of the prepared PA solution, 1.6 ml of formaldehyde was added as a reducing agent. The resin structure whose surface was activated with a laser was immersed in the plating solution for 4 to 5 hours, and then washed with distilled water.
상기 7W의 레이저 파워를 조사한 수지 구조체는 Cu-무전해 도금을 통하여 금속핵을 포함하는 접착활성 표면에 양호한 도전성 패턴 (구리 금속충)을 형성하였다. 실시예 2  The resin structure irradiated with the laser power of 7 W formed a good conductive pattern (copper metal) on the surface of the adhesively active surface containing the metal nucleus through Cu-electroless plating. Example 2
상기 실시예 1의 도전성 패턴 형성용 조성물에 안료로서 5 중량 %의 Ti02를 추가로 첨가한 것을 제외하고, 실시예 1과 동일한 방법으로 도전성 패턴이 형성된 수지 구조체를 형성하였다. 실시예 2에서는 실시예 1 보다 밝은 색상의 수지 구조체가 형성되며, 실시예 1과 마찬가지로 양호한 도전성 패턴 (구리 금속층)이 형성되었다. 실시예 3 A resin structure having a conductive pattern was formed in the same manner as in Example 1 except that 5 wt% of Ti0 2 was further added as a pigment to the composition for forming a conductive pattern of Example 1. In Example 2, a resin structure of a lighter color than in Example 1 is formed, and similarly to Example 1, a good conductive pattern (copper Metal layer) was formed. Example 3
CuO; Ζηθ; 및 (NH4)2HP04를 1.5: 1.5 :2의 몰 비로 흔합한 흔합물을 95CTC에서 10시간 열처리하는 고상 반응 방법을 통하여 삼사정계 구조를 가지는 Q .sZr .si^Os을 합성하였고, 그 결정 특성을 나타내는 XRD (X-ray Diffraction)패턴을 도 5에 나타내었다. 도 5에서 보는 바와 같이 Ci .sZ .sP^은 치환된 Zn에 의해 단위포의 세 백터와 그 각도가 변화하여 peak의 이동이 관찰되긴 하나, 대체로 Cu3P208의 XRD 패턴과 유사한 XRD 패턴을 보인다. 상기 XRD 패턴으로부터 Ci .sZnuPsOs도 triclinic 구조의 ri 공간군을 가지는 것이 확인된다. CuO; Ζηθ; And Q.sZr.si ^ Os having a triclinic structure were synthesized through a solid phase reaction method in which the mixed mixture of (NH 4 ) 2 HP0 4 at a molar ratio of 1.5: 1.5: 2 was heat treated at 95 CTC for 10 hours. An XRD (X-ray Diffraction) pattern showing crystal characteristics is shown in FIG. 5. As shown in FIG. 5, Ci. SZ .sP ^ has three vectors of the unit cells and their angles changed due to the substitution of Zn, but the peak shift is observed. XRD is similar to the XRD pattern of Cu 3 P 2 0 8 . Looks pattern. It is confirmed from the XRD pattern that Ci.sZnuPsOs also has a ri space group of triclinic structure.
상기 실시예 1에서 비도전성 금속 화합물로 Cu3P208 대신 상기 CuuZ .s Os를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 도전성 패턴이 형성된 수지 구조체를 제조하였다. 비교예 1 A resin structure in which a conductive pattern was formed in the same manner as in Example 1, except that CuuZ .s Os was used instead of Cu 3 P 2 O 8 as the non-conductive metal compound in Example 1. Comparative Example 1
상기 실시예 2에서 비도전성 금속 화합물로 Cu3P208 대신 mica에 코팅된 Sb doped Sn02를 사용하는 것을 제외하고, 실시예 2와 동일한 방법으로 도전성 패턴 형성용 조성물을 제조하고, 이를 이용하여 실시예 2와 동일한 조건에서 사출 성형된 시편을 제조하였다. Except for using the non-conductive metal compound in Cu 2 P 2 0 8 instead of Sb doped Sn0 2 coated with mica in Example 2, to prepare a composition for forming a conductive pattern in the same manner as in Example 2, using To prepare an injection molded specimen under the same conditions as in Example 2.
그러나, 상기 사출 성형된 시편에 실시예 2와 동일한 조건의 레이저를 조사하여도 레이저에 노출된 영역에 금속핵 또는 접착활성 표면이 잘 형성되지 않았다. 이에 따라, Cu-무전해 도금을 통해 형성된 도전성 패턴의 접착력이 양호하지 않은 결과를 얻었다.  However, even when the injection molded specimen was irradiated with the laser under the same condition as in Example 2, the metal core or the adhesive active surface was not well formed in the area exposed to the laser. As a result, the adhesion of the conductive pattern formed through the Cu-electroless plating was not good.
이는 도 6에서 보는 바와 같이 실시예 1과 2에서 사용된 Cu3P208 보다 비교예 1에서 사용된 mica에 코팅된 Sb doped Sn¾의 흡광도가 낮아, 비교예 1에서는 실시예에 비해 용이하게 접착활성 표면이 형성되지 않은 것으로 예측된다. As shown in FIG. 6, the absorbance of Sb doped Sn¾ coated on the mica used in Comparative Example 1 was lower than that of Cu 3 P 2 0 8 used in Examples 1 and 2, and in Comparative Example 1, it was more easily compared to Example. It is expected that no adhesively active surface is formed.
이에, 상기 사출 성형된 시편에 13W의 레이저를 조사하여 표면을 활성화시키고, 실시예 1과 동일하게 무전해 도금 공정을 실시하였다. 이러한 결과로부터, 흡광도가 높은 본 발명의 일 구현예에 따른 비도전성 금속 화합물의 경우 낮은 레이저 조사 파워에서도 구리 금속 또는 구리 이온을 포함하는 금속핵 또는 접착활성 표면의 형성이 효과적임이 확인된다. 비교예 2 Accordingly, the surface of the injection molded specimen by irradiating a laser of 13W It was activated and electroless plating process was performed similarly to Example 1. From these results, it is confirmed that, in the case of the non-conductive metal compound according to the embodiment of the present invention having high absorbance, the formation of a metal core or an adhesive active surface including copper metal or copper ions is effective even at low laser irradiation power. Comparative Example 2
상기 실시예 1에서 비도전성 금속 화합물로 Cu3P208 대신 Cu2(0H)P04를 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 도전성 패턴이 형성된 수지 구조체를 제조하였다. 시험예 A resin structure in which a conductive pattern was formed in the same manner as in Example 1, except that Cu 2 (0H) P0 4 was used instead of Cu 3 P 2 0 8 as the non-conductive metal compound in Example 1. Test Example
상기 실시예 및 비교예에서 사용한 비도전성 금속 화합물이 고분자 수지의 안정성에 영향을 미치는지 여부를 확인하기 위해, 비도전성 금속 화합물이 첨가되지 않은 폴리카보네이트 수지 기판의 용융 지수와 실시예 및 비교예에서 제조한 수지 구조체의 용융 지수를 비교하였다.  In order to confirm whether the non-conductive metal compound used in Examples and Comparative Examples affects the stability of the polymer resin, the melt index of the polycarbonate resin substrate to which the non-conductive metal compound is not added and prepared in Examples and Comparative Examples The melt index of one resin structure was compared.
구체적으로, 용융 지수 (MI : mel t index)는 ASTM D1238에 따라 300°C의 온도 및 2.16kg의 하중 하에서 측정하였다. Specifically, the melt index (MI: mel t index) was measured under a temperature of 300 ° C. and a load of 2.16 kg according to ASTM D1238.
【표 1】 Table 1
Figure imgf000018_0001
Figure imgf000018_0001
상기 표 1을 참조하면, 실시예 1의 수지 구조체는 비도전성 금속 화합물을 첨가하지 않은 폴리카보네이트 수지 기판의 용융지수에 매우 근접한 용융지수를 나타내었다. 이로써, 실시예 1에서 사용한 비도전성 금속 화합물은 고분자 수지의 변성을 초래하지 않음이 확인된다. 따라세 상기 실시예 1에서는 본 발명의 일 구현예에 다른 비도전성 금속 화합물을 이용하여 우수한 열안정성을 갖는 수지 구조체를 제공할 수 있음이 확인된다. 반면, 비교예 1 및 2의 수지 구조체는 비도전성 금속 화합물을 첨가하지 않은 폴리카보네이트 수지 기판 대비 매우 높은 용융지수를 나타내었다. 즉, 비교예 1에서 사용한 mi ca에 코팅된 Sb doped Sn02 및 비교예 2에서 사용한 Cu2(0H)P04는 수지의 변성을 초래함으로써, 이들을 이용해 수지 구조체를 제조할 경우 열악한 열안정성을 나타냄이 확인된다. Referring to Table 1, the resin structure of Example 1 exhibited a melt index very close to the melt index of the polycarbonate resin substrate to which the non-conductive metal compound was not added. Thereby, it is confirmed that the nonelectroconductive metal compound used in Example 1 does not cause denaturation of a polymer resin. Accordingly, in Example 1, it is confirmed that a resin structure having excellent thermal stability can be provided using another non-conductive metal compound in one embodiment of the present invention. On the other hand, the resin structures of Comparative Examples 1 and 2 exhibited a very high melt index compared to the polycarbonate resin substrate without the addition of the non-conductive metal compound. In other words, Sb doped Sn0 2 coated on mi ca used in Comparative Example 1 and Cu 2 (0H) P0 4 used in Comparative Example 2 resulted in the denaturation of the resin, and thus exhibited poor thermal stability when the resin structure was prepared using them. This is confirmed.

Claims

【청구범위】 【청구항 1】 고분자 수지 ; 및 하기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물을 포함하고, 전자기파 조사에 의해, 상기 비도전성 금속 화합물로부터 금속핵이 형성되는 전자기파 조사에 의한 도전성 패턴 형성용 조성물: Claims Claim 1 Polymeric resins; And a non-conductive metal compound including a compound represented by the following Chemical Formula 1, and a composition for forming a conductive pattern by electromagnetic wave irradiation wherein a metal nucleus is formed from the non-conductive metal compound by electromagnetic wave irradiation:
[화학식 1] [Formula 1]
Figure imgf000020_0001
Figure imgf000020_0001
상기 화학식 1에서,  In Chemical Formula 1,
M은 Ti, V, Cr, Mn, Fe, Co, Ni , Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt, Mg, Ca, Sr 및 Au로 이루어진 군에서 선택된 1종 이상의 금속이며, x는 0 이상 3 미만의 유리수이다.  M is one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt, Mg, Ca, Sr and Au The metal is the above, and x is a ratio of 0 or more and less than 3.
【청구항 2】 [Claim 2]
_ 제 1 항에 있어서, 상기 비도전성 금속 화합물은 삼사정계 구조를 가지고, P1 공간군에 속하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물. The composition for forming a conductive pattern of claim 1, wherein the non-conductive metal compound has a triclinic structure and belongs to a P1 space group.
【청구항 3】 [Claim 3]
제 1 항에 있어서, 상기 비도전성 금속 화합물은 사각 평면형의 Cu04 혹은The method of claim 1, wherein the non-conductive metal compound is Cu0 4 or
M04; 트리고날 바이피라미드의 Cu05 혹은 M05; 및 사면체의 P04가 산소를 공유하면서 3차원적으로 연결되어 있는 입체 구조를 갖는 전자기파 조사에 의한 도전성 패턴 형성용 조성물. M0 4 ; Cu0 5 or M0 5 of trigonal bipyramid; And a composition for forming a conductive pattern by electromagnetic wave irradiation having a three-dimensional structure in which tetrahedron P0 4 is three-dimensionally connected while sharing oxygen.
【청구항 4】 ' [Claim 4] "
제 1 항에 있어서, 상기 고분자 수지는 열 경화성 수지 또는 열 가소성 수지를 포함하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물.  The composition of claim 1, wherein the polymer resin comprises a thermosetting resin or a thermoplastic resin.
【청구항 5】 게 4 항에 있어서, 상기 고분자 수지는 ABS 수지, 폴리알킬렌테레프탈레이트 수지, 폴리카보네이트 수지, 폴리프로필렌 수지 및 폴리프탈아미드 수지로 이루어진 군에서 선택된 1종 이상을 포함하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물. [Claim 5] The method of claim 4, wherein the polymer resin is conductive pattern formation by electromagnetic wave radiation containing one or more selected from the group consisting of ABS resin, polyalkylene terephthalate resin, polycarbonate resin, polypropylene resin and polyphthalamide resin Composition.
【청구항 6】 [Claim 6]
제 1 항에 있어서, 상기 비도전성 금속 화합물은 전체 조성물에 대해 0. 1 내지 15 중량 %로 포함되는 전자기파 조사에 의한 도전성 패턴 형성용 조성물.  The composition of claim 1, wherein the nonconductive metal compound is present in an amount of 0.1 to 15 wt% based on the total composition.
【청구항 7】 [Claim 7]
제 1 항에 있어서, 난연제, 열 안정제, UV 안정제, 활제, 항산화제, 무기 충전제, 색 첨가제, 층격 보강제 및 기능성 보강제로 이루어진 군에서 선택된 1종 이상의 첨가제를 더 포함하는 전자기파 조사에 의한 도전성 패턴 형성용 조성물.  The conductive pattern is formed by electromagnetic radiation according to claim 1, further comprising at least one additive selected from the group consisting of flame retardants, heat stabilizers, UV stabilizers, lubricants, antioxidants, inorganic fillers, color additives, layer reinforcing agents and functional reinforcing agents. Composition.
【청구항 8】 [Claim 8]
고분자 수지 기재; ¾ A polymer resin substrate; ¾
고분자 수지 기재에 분산되어'있고, 하기 화학식 1로 표시되는 화합물을 포함한 비도전성 금속 화합물; It is dispersed in a polymer resin base material, and, to a non-conductive metal compounds, including compounds represented by formula (1);
소정 영역의 고분자 수지 기재 표면에 노출된 금속핵을 포함하는 접착활성 표면 ; 및  An adhesive active surface comprising a metal nucleus exposed to the surface of the polymer resin substrate in a predetermined region; And
상기 접착활성 표면 상에 형성된 도전성 금속층을 포함하는 도전성 패턴을 갖는 수지 구조체 :  Resin structure having a conductive pattern comprising a conductive metal layer formed on the adhesive active surface:
[화학식 1]  [Formula 1]
Cu3 -具 P208 Cu 3-具 P 2 0 8
상기 화학식 1에서,  In Chemical Formula 1,
M은 Ti , V, Cr , Mn, Fe , Co , Ni , Y , Zn, Nb , Mo , Tc , Pd , Ag, Ta, W, Pt , Mg, Ca , Sr 및 Au로 이루어진 군에서 선택된 1종 이상의 금속이며, x는 0 이상 3 미만의 유리수이다. 【청구항 9】 M is one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Y, Zn, Nb, Mo, Tc, Pd, Ag, Ta, W, Pt, Mg, Ca, Sr and Au The metal is the above, and x is a ratio of more than 0 to less than 3 [Claim 9]
제 8 항에 있어서, 상기 접착활성 표면 및 도전성 금속층이 형성된 소정 영역은 상기 고분자 수지 기재에 전자기파가 조사된 영역에 대웅하는 도전성 패턴을 갖는 수지 구조체 .  The resin structure according to claim 8, wherein the predetermined region on which the adhesion-active surface and the conductive metal layer are formed has a conductive pattern on the region of the polymer resin substrate to which electromagnetic waves are irradiated.
PCT/KR2015/008101 2014-08-04 2015-08-03 Composition for forming conductive pattern and resin structure having conductive pattern WO2016021898A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580039536.7A CN106575539B (en) 2014-08-04 2015-08-03 For forming the composition of conductive pattern and there is the resin structure of conductive pattern
EP15828983.5A EP3139387B1 (en) 2014-08-04 2015-08-03 Composition for forming conductive pattern and resin structure having conductive pattern
JP2017502151A JP6427656B2 (en) 2014-08-04 2015-08-03 Composition for forming conductive pattern and resin structure having conductive pattern
US15/317,023 US10354774B2 (en) 2014-08-04 2015-08-03 Composition for forming conductive pattern and resin structure having conductive pattern

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140100040 2014-08-04
KR10-2014-0100040 2014-08-04
KR1020150109125A KR101698159B1 (en) 2014-08-04 2015-07-31 Composition for forming conductive pattern and resin structure having conductive pattern thereon
KR10-2015-0109125 2015-07-31

Publications (1)

Publication Number Publication Date
WO2016021898A1 true WO2016021898A1 (en) 2016-02-11

Family

ID=55264107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008101 WO2016021898A1 (en) 2014-08-04 2015-08-03 Composition for forming conductive pattern and resin structure having conductive pattern

Country Status (1)

Country Link
WO (1) WO2016021898A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930019080A (en) * 1992-02-17 1993-09-22 사토 후미오 Wiring board and manufacturing method thereof
KR20100040803A (en) * 2007-05-18 2010-04-21 이시하라 야쿠힌 가부시끼가이샤 Metallic ink
KR20130054847A (en) * 2011-11-17 2013-05-27 한국기계연구원 Manufacturing system of flexible printed circuit board using laser and manufacturing method thereof
KR20130064824A (en) * 2009-12-17 2013-06-18 비와이디 컴퍼니 리미티드 Surface metallizing method, method for preparing plastic article and plastic article made therefrom
US20140076616A1 (en) * 2012-09-17 2014-03-20 Sabic Innovative Plastics Ip B.V. Laser direct structuring materials with improved plating performance and acceptable mechanical properties

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930019080A (en) * 1992-02-17 1993-09-22 사토 후미오 Wiring board and manufacturing method thereof
KR20100040803A (en) * 2007-05-18 2010-04-21 이시하라 야쿠힌 가부시끼가이샤 Metallic ink
KR20130064824A (en) * 2009-12-17 2013-06-18 비와이디 컴퍼니 리미티드 Surface metallizing method, method for preparing plastic article and plastic article made therefrom
KR20130054847A (en) * 2011-11-17 2013-05-27 한국기계연구원 Manufacturing system of flexible printed circuit board using laser and manufacturing method thereof
US20140076616A1 (en) * 2012-09-17 2014-03-20 Sabic Innovative Plastics Ip B.V. Laser direct structuring materials with improved plating performance and acceptable mechanical properties

Similar Documents

Publication Publication Date Title
JP6259071B2 (en) Composition for forming conductive pattern, method for forming conductive pattern using the same, and resin structure having conductive pattern
JP6254272B2 (en) Conductive pattern forming composition, conductive pattern forming method using the same, and resin structure having conductive pattern
US9756725B2 (en) Composition for forming conductive pattern and resin structure having conductive pattern thereon
JP2016521453A (en) Composition for forming conductive pattern, method for forming conductive pattern using the same, and resin structure having conductive pattern
US10183866B2 (en) Composition for forming conductive pattern and resin structure having conductive pattern
US10354774B2 (en) Composition for forming conductive pattern and resin structure having conductive pattern
US10121566B2 (en) Composition from forming conductive pattern and resin structure having conductive pattern thereon
WO2016021898A1 (en) Composition for forming conductive pattern and resin structure having conductive pattern
JP6475267B2 (en) Composition for forming conductive pattern, and method for forming conductive pattern using the same
EP3154066B1 (en) Composition for forming conductive pattern and resin structure having conductive pattern
KR101983271B1 (en) Composition for forming conductive pattern and resin structure having conductive pattern thereon
JP2017535023A (en) Conductive pattern forming composition, conductive pattern forming method using the same, and resin structure having conductive pattern
WO2016043542A1 (en) Composition for forming conductive pattern and resin structure having conductive pattern
WO2016043541A1 (en) Composition for forming conductive pattern and resin structure having conductive pattern
WO2016043540A1 (en) Composition for forming conductive patterns and resin structure having conductive pattern

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828983

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015828983

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015828983

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15317023

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017502151

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE