WO2016021892A1 - Thermoelectric element, manufacturing method thereof and device containing thermal element - Google Patents

Thermoelectric element, manufacturing method thereof and device containing thermal element Download PDF

Info

Publication number
WO2016021892A1
WO2016021892A1 PCT/KR2015/008083 KR2015008083W WO2016021892A1 WO 2016021892 A1 WO2016021892 A1 WO 2016021892A1 KR 2015008083 W KR2015008083 W KR 2015008083W WO 2016021892 A1 WO2016021892 A1 WO 2016021892A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
electrolytic cell
flow path
thermoelectric element
electrolytic
Prior art date
Application number
PCT/KR2015/008083
Other languages
French (fr)
Korean (ko)
Inventor
강태준
김용협
김태우
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150047351A external-priority patent/KR101646869B1/en
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Publication of WO2016021892A1 publication Critical patent/WO2016021892A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details

Definitions

  • the present invention relates to a thermoelectric element, a method for manufacturing the same, and a device including a thermoelectric element, and more particularly, a thermoelectric element for converting thermo-electric energy into a temperature difference between two ends by using a thermoelectric electrolyte, a method for manufacturing the same, and a thermoelectric element. It relates to a device comprising a.
  • Thermoelectric element is a device using the thermoelectric effect represented by the interaction of heat and electricity, a device using the Seebeck effect that generates electrical energy by the temperature difference, a Peltier device using a phenomenon that the absorption / generation of heat by the applied electrical energy occurs There is this.
  • Thermoelectric devices are widely used in a wide range of industries such as space, aviation, semiconductors, and power generation.
  • thermoelectric element technology that collects waste heat and converts it into electrical energy has been attracting attention.
  • Thermocouples also known as thermogalvanic cells or thermal electrochemical cells, are power generation mechanisms based on the temperature dependence of the electrochemical redox potential of the electrolyte, direct conversion of thermo-electric energy, simple components, It has the advantages of semi-permanent durability, low maintenance cost and no carbon emissions. Therefore, the thermal cell technology is reported as the most effective coping technology for waste heat energy recovery.
  • thermoelectric elements since it has the advantage of efficiently absorbing the waste heat of less than 100 °C based on the mechanical flexibility and low production cost, researches for improving the efficiency of thermoelectric elements using thermoelectric electrolytes have recently been actively replaced by solid state thermoelectric elements. .
  • thermoelectric device having a high output voltage and high power output.
  • Another object of the present invention is to provide a method of manufacturing a thermoelectric element.
  • Still another object of the present invention is to provide an apparatus including the thermoelectric element.
  • thermoelectric device for one purpose of the present invention includes a plurality of lower electrodes, first electrolytic cells, second electrolytic cells and a plurality of upper electrodes.
  • the first electrolytic cells are disposed above each of the lower electrodes, and include a first electrolyte having a positive thermoelectric coefficient in which a reduction reaction occurs due to an increase in temperature of the lower electrode, and an inlet and an outlet are disposed at both ends thereof. And a first electrolyte channel containing a first electrolyte.
  • the second electrolytic cells each include a second electrolyte having a negative thermoelectric coefficient disposed on one lower electrode and spaced apart from the first electrolytic cell and in which an oxidation reaction occurs due to an increase in temperature of the lower electrode. Disposed at both ends and connected to a second electrolyte channel containing the second electrolyte.
  • the upper electrodes are disposed on the first and second electrolytic cells so as to be connected to the first electrolytic cell and the second electrolytic cell disposed on different lower electrodes.
  • the first electrolytic cells are connected in a one-to-one correspondence with a plurality of first electrolyte channels each having an inlet and an outlet, and the second electrolytic cells are independent of each other having an inlet and an outlet. It can be connected in a one-to-one correspondence with a plurality of second electrolyte channels.
  • the first electrolytic cells may be connected in series between the inlet and outlet of the first electrolyte channel, and the second electrolytic cells may be connected in series between the inlet and outlet of the second electrolyte channel.
  • the first electrolytic cell and the second electrolytic cell are alternately arranged in the first direction, and the first electrolytic cell and the second electrolytic cell are alternately arranged in the second direction crossing the first direction.
  • the first electrolyte channels are sequentially connected to the first electrolytic cells included in the xth row group (where x is a natural number), which is any one row group arranged in a row, in the first direction, and the x
  • the first electrolytic cells of the x + 1 row group arranged in the second direction of the row group are sequentially connected in a direction opposite to the first direction, and the x row group and the x + 1 row group are corresponding row groups
  • the first first electrolytic cells in E or the last first electrolytic cells in the row group are connected to each other, and the second electrolyte channel is included in the x row group, which is any one row group arranged in a row.
  • the second electrolytic cells are sequentially connected in the first direction, and the xth row
  • the second electrolytic cells of the x + 1 row group arranged in the second direction of the group are sequentially connected in the opposite direction to the first direction, and the xth row group and the x + 1 row group are arranged in the corresponding row group.
  • the first second electrolytic cells of or the last second electrolytic cells in the row group may be connected to each other.
  • the first electrolytic cell and the second electrolytic cell are alternately arranged in the first direction, and the first electrolytic cell and the second electrolytic cell are alternately arranged in the second direction crossing the first direction.
  • the second electrolytic cell of any one of the y-th column groups, which is connected to each other in the second direction by a first electrolyte channel, and the plurality of first electrolyte channels are separated from each other and arranged in a row.
  • Any one of the second electrolytic cells of the y + 1 column group is connected to each other in the second direction by a second electrolyte channel, and the plurality of second electrolyte channels may be independently separated from each other.
  • the first electrolytic cells may be connected in series between the inlet and outlet of the first electrolyte channel, and the second electrolytic cells may be connected in series between the inlet and outlet of the second electrolyte channel.
  • the first electrolyte channel includes the first electrolytic cell and the x + 1 row group in the y th column of the x th row group (where x represents a natural number), which is any one row group arranged in a row.
  • the first electrolytic cells of the y + 1th column are connected, and the second electrolyte channel is the second electrolytic cell of the yth column of the xth row group and the x + 1st row group of any one row group arranged in a row.
  • the second electrolytic cells of the y + 1 column may be connected.
  • the second electrolytic cell of the last column of the first row group may be connected to the second electrolyte channel alone, and the first electrolytic cell of the first column of the last row group may be connected to the first electrolyte channel alone.
  • the redox couple contained in the first electrolytic cell is Fe 2 (SO 4) 3 / FeSO 4, I - / I 3-, Np 4 + / NpO 2 +, Pu 4 + / PuO 2 2 +, CN - / CNO -, NO 2 - / NO 3 -, I - / IO 3 -, ClO 3 - / ClO 4 -, ClO - / ClO 2 - and Cl - / ClO - is at least one selected from the
  • the redox couple included in the second electrolytic cell is K 3 Fe (CN) 6 / K 4 Fe (CN) 6 , K 3 Fe (CN) 6 / (NH 4 ) 4 Fe (CN) 6 , Np 3 + / Np 4 + , Cu + / Cu 2 + , Fe 2 + / Fe 3 + , PuO 2 + / PuO 2 2+ , Pu 3 + / Pu 4 + , NpO 2 + / NpO 2 2 + ,
  • the thermoelectric device may further include a barrier rib structure interposed between the lower electrodes and the upper electrodes and separate the first and second electrolytic cells. 2 openings corresponding to the electrolytic cells, at least one opening connected to at least one opening in which the first electrolytic cell is disposed to form a first electrolyte channel, and at least one opening in which the second electrolytic cell is disposed It may include a second electrolyte flow path portion connected to form a second electrolyte channel.
  • the lower electrode when a temperature difference occurs between the lower electrodes and the upper electrode, the lower electrode, the first electrolytic cell, the upper electrode, the second electrolytic cell, and any one of the lower electrodes, based on one lower electrode.
  • the electrons may continuously move in the order of other lower electrodes disposed adjacent to the lower electrode.
  • the lower electrodes and the upper electrodes are arranged in a row in the first direction within one row, and the upper electrodes are arranged in the second direction crossing the first direction between the different rows so as to be different from each other.
  • the first electrolytic cell and the second electrolytic cell of the first column may be connected to each other, or the first and second electrolytic cells of the last column of different rows may be connected to each other.
  • the first electrolyte and the second electrolyte may be in a liquid or gel state.
  • thermoelectric device forming a plurality of lower electrodes disposed in a matrix form on a lower substrate in a first direction and a second direction crossing the first direction.
  • a first electrolyte cell is formed in the opening connected to the second electrolyte cell, and a second electrolyte solution is injected into the second electrolyte flow path part to form the second electrolyte; And forming a second electrolytic cell in the opening connected to the flow path part.
  • the forming of the second electrolytic cell may include injecting the first electrolyte solution into one end of the first electrolyte flow path while opening both ends of the first electrolyte flow path, and opening both ends of the second electrolyte flow path. Injecting the second electrolyte solution into one end portion in a state where the first electrolyte solution is filled in an opening connected to the first electrolyte flow passage portion and the first electrolyte flow passage portion. Sealing the other end, and sealing one end and the other end of the second electrolyte flow path part in a state where the second electrolyte solution is filled in the opening connected to the second electrolyte flow path part and the second electrolyte flow path part. It may include a step.
  • the openings include first openings connected to each of a plurality of first electrolyte flow path parts independent of each other, and second openings connected to a plurality of second electrolyte flow path parts independent of each other, and the first openings And the second openings may be alternately disposed in the first direction and alternately disposed in the second direction.
  • the openings include a plurality of first openings connected to the first electrolyte flow path part and a plurality of second openings connected to the second electrolyte flow path part, and the first openings and the second opening part. They may be alternately arranged in the first direction and alternately arranged in the second direction.
  • the barrier rib structure includes at least two or more first electrolyte flow path portions and at least two or more second electrolyte flow passage portions, each of the first electrolyte flow passage portions connecting first openings in the second direction, Each of the second electrolyte flow path parts may connect the second openings in the second direction.
  • each of the first electrolyte flow path parts may be independent of each other, and each of the second electrolyte flow path parts may be independent of each other.
  • thermoelectric element in which the thermoelectric element is formed.
  • the positive terminal and the negative terminal of the thermoelectric element may be connected to the positive and negative terminals of the battery, respectively.
  • a capacitor that stores the power produced in the thermoelectric element, and delivers to the battery may be formed in the battery.
  • thermoelectric element may include a positive electrode terminal and a negative electrode terminal that are in contact with the positive electrode and the negative electrode of the battery, respectively, and electrically connected to the lower electrodes and the upper electrodes.
  • a capacitor connected to the thermoelectric element to store power generated by the thermoelectric element may be formed in the battery cover, and the capacitor may be provided with a terminal connected to the battery.
  • An apparatus for still another object of the present invention may be an automotive sunroof window or greenhouse window including the thermoelectric element.
  • thermoelectric element the manufacturing method thereof, and the apparatus including the thermoelectric element of the present invention
  • the thermoelectric element can be operated by the waste heat of 100 degrees C or less, and the output voltage and the power productivity can be improved.
  • the thermoelectric element may be applied to an electronic device to operate by heat generated by the driving of the electronic device to generate electric power, and to be easily used in a window or a greenhouse of an automobile.
  • thermoelectric device including a plurality of electrolytic cells may be easily and simply manufactured by configuring an electrolyte channel connected to the electrolytic cell.
  • thermoelectric device 1 is a cross-sectional view illustrating a thermoelectric device according to an exemplary embodiment of the present invention.
  • thermoelectric device 2 is a perspective view illustrating a thermoelectric device according to an exemplary embodiment of the present invention.
  • thermoelectric element 3 is a cross-sectional view of the thermoelectric element illustrated in FIG. 2.
  • FIG. 4 is a plan view illustrating electrical connection between unit cells of the thermoelectric element illustrated in FIG. 2.
  • thermoelectric element of FIG. 4 is an enlarged partial plan view of the thermoelectric element of FIG. 4.
  • FIG. 6 is a graph illustrating a change in open voltage according to the number of unit cells in the thermoelectric element illustrated in FIG. 2.
  • FIG. 7 is a cross-sectional view for describing a method of manufacturing the thermoelectric element illustrated in FIG. 2.
  • FIG. 8 is a plan view illustrating a method of manufacturing the thermoelectric element illustrated in FIG. 2.
  • thermoelectric device 9 is a plan view illustrating a thermoelectric device according to another exemplary embodiment of the present invention.
  • FIG. 10 is a plan view illustrating a method of manufacturing the thermoelectric element of FIG. 9.
  • thermoelectric device 11 is a plan view illustrating a thermoelectric device according to yet another exemplary embodiment of the present invention.
  • FIG. 12 is a plan view illustrating a method of manufacturing the thermoelectric element of FIG. 11.
  • thermoelectric device 13 is a cross-sectional view illustrating an apparatus including a thermoelectric device according to an exemplary embodiment of the present invention.
  • FIG. 14 is a diagram for describing a connection relationship between a thermoelectric element and a battery in FIG. 13.
  • thermoelectric device 15 to 17 are diagrams for describing an apparatus including a thermoelectric device according to an exemplary embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • thermoelectric device 1 is a cross-sectional view illustrating a thermoelectric device according to an exemplary embodiment of the present invention.
  • thermoelectric element 100 includes two lower electrodes 112 and 114, two electrolytic cells 122 and 124, and one upper electrode 130.
  • the two lower electrodes 112 and 114 are spaced apart from each other, and the upper electrode 130 is disposed on the lower electrodes 112 and 114, and both ends of the upper electrode 130 are connected to the lower electrodes 112. , 114) respectively.
  • the first electrolytic cell 122 is interposed between the first lower electrode 112 and the first end of the upper electrode 130 among the lower electrodes 112 and 114.
  • the second electrolytic cell 124 is disposed on the second lower electrode 114 spaced apart from the first lower electrode 112, and is disposed between the second lower electrode 114 and the second end of the upper electrode 130. do.
  • the second end is an end opposite to the first end of the upper electrode 130.
  • the first lower electrode 112 and the second lower electrode 114 may be hot electrodes having a relatively higher temperature than the upper electrode 130, and the upper electrode 130 may be a cold electrode.
  • the surface on which the first and second lower electrodes 112 and 114 are disposed may receive heat from the outside, and the upper electrode 130 may be disposed on an opposite surface thereof.
  • the first and second lower electrodes 112 and 114 and the upper electrode 130 are formed of a conductive layer.
  • the conductive layer may be formed of a colored metal such as aluminum, copper, or silver, or a transparent metal oxide such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the first and second lower electrodes 112 and 114 and the upper electrode 130 may be formed of a carbon-based material.
  • the carbon-based material is not particularly limited, but when the first and second electrodes 110 and 120 are formed of carbon nanotubes or graphenes, characteristics of the thermoelectric element 100 may be changed. It can be further improved.
  • the first electrolytic cell 122 is an electrolytic cell including an electrolyte having a positive thermoelectric coefficient in which a reduction reaction occurs due to a temperature rise.
  • the second electrolytic cell 124 is an electrolytic cell containing an electrolyte having a negative thermoelectric coefficient in which an oxidation reaction occurs by a temperature rise.
  • Each of the first and second electrolytic cells 122 and 124 may be a liquid or a gel. Since the first electrolytic cell 122 is an electrolytic cell having a positive thermoelectric coefficient, and the second electrolytic cell 124 is an electrolytic cell having a negative thermoelectric coefficient, the movement path of electrons is sequentially performed in the first lower electrode 112. ), The first electrolytic cell 122, the upper electrode 130, the second electrolytic cell 124, and the second lower electrode 114.
  • a first electrolytic redox couple contained in the cell (122) (redox couple) As, Fe 2 (SO 4) 3 / FeSO 4, I - / I 3-, Np 4 + / NpO 2 +, Pu 4 + / PuO 2 2 +, CN - / CNO -, NO 2 - / NO 3 -, I - / IO 3 -, ClO 3 - / ClO 4 -, ClO - / ClO 2 -, Cl - / ClO - , etc.
  • Fe 2 (SO 4) 3 / FeSO 4 I - / I 3-, Np 4 + / NpO 2 +, Pu 4 + / PuO 2 2 +, CN - / CNO -, NO 2 - / NO 3 -, I - / IO 3 -, ClO 3 - / ClO 4 -, ClO - / ClO 2 -, Cl - / ClO - , etc.
  • thermoelectric element 100 can operate even at 100 ° C. or lower, waste heat of living such as body temperature, heat generated by a portable device, etc. are recycled. can do.
  • the first electrolytic cell 122 includes an electrolyte solution containing ferrous sulfate (FeSO 4 ) / ferric sulfate (Fe 2 SO 4 ) as an electrolyte
  • the second electrolytic cell 124 is an erythritis (K) as an electrolyte. 3 [Fe (CN) 6 ]) / septic solution (K 4 [Fe (CN) 6 ]) may be included.
  • each of the first electrolytic cell 122 and the second electrolytic cell 124 may have a gel state in addition to the electrolyte. It may further comprise a polymer for maintaining.
  • the first electrolytic cell 122 may include iron (Fe) divalent ions and / or iron trivalent ions. That is, only the iron divalent ions or the iron trivalent ions may be present in the first electrolytic cell 122 or the iron divalent ions and the trivalent ions may coexist.
  • the second electrolytic cell 124 may include hexacyano iron trivalent anion (Fe (CN) 6 3 ⁇ ) and / or hexacyano iron tetravalent anion (Fe (CN) 6 4- ). .
  • a potential difference of about 0.4 to 0.6 mV occurs between the first lower electrode 112 and the upper electrode 130 by the reduction and oxidation of the first electrolytic cell 122.
  • the second electrolytic cell 124 on the side where the upper electrode 130 is disposed electrons generated by the oxidation reaction of the first electrolytic cell 122 are received through the upper electrode 130, and the second electrolytic cell 124 is provided.
  • the hexacyano iron trivalent ions of the electrons are reduced to become hexacyano iron tetravalent ions.
  • the hexacyano iron tetravalent ions are oxidized by the temperature rise of the second lower electrode 114 to emit electrons.
  • the electrons may be provided to an external load connected to the second lower electrode 114 through the second lower electrode 114 to generate power.
  • a potential difference of about 1.4 to 1.6 mV is generated between the upper electrode 130 and the second lower electrode 114 by oxidation and reduction of the second electrolytic cell 124.
  • the thermoelectric coefficient (dV / dT, unit mV / K) which is a voltage change according to the temperature change of the thermoelectric element 100, may be about 1.8 to 2.2 mV / K.
  • thermoelectric coefficient of the thermoelectric element 100 When the overall thermoelectric coefficient of the thermoelectric element 100 is x mV / K, its output voltage may be expressed as in Equation 1 below.
  • Output voltage (mV) thermoelectric coefficient of thermoelectric element (mV / K) ⁇ (T H -T C )
  • T H is the temperature of the lower electrodes 112 and 114
  • T C means the temperature of the upper electrode 130
  • the unit of the output voltage is mV
  • the temperature unit is K.
  • the overall thermoelectric coefficient x of the thermoelectric element 100 may be 1.96 mV / K. Can be.
  • thermoelectric element 100 described above may operate by heat of about 100 ° C. or less by using the first and second electrolytic cells 122 and 124. Thereby, the waste heat of 100 degreeC can be recycled efficiently.
  • the movement path of electrons in the thermoelectric element 100 sequentially starts with the first lower electrode 112, and thus, the first electrolytic cell 122, the upper electrode 130, the second electrolytic cell 124, and the second lower part. Since the electrode 114 is in order, a third electrolytic cell (not shown) is disposed on the second lower electrode 114 to be spaced apart from the second electrolytic cell 124, and is spaced apart from the second lower electrode 114.
  • An electrode (not shown) is disposed and a fourth electrolytic cell (not shown) is disposed thereon, and in the case of another upper electrode (not shown) on the third and fourth electrolytic cells, the first and second electrolytic cells are disposed.
  • And 122 and 124 and the third and fourth electrolytic cells may be electrically connected sequentially by the upper electrodes and the lower electrodes. That is, a plurality of unit cells can be easily connected in series using the thermoelectric element 100 shown in FIG. 1 as a unit cell.
  • the unit cell is defined as including one upper electrode and two lower electrodes, two unit cells may be continuously connected in a structure sharing one lower electrode.
  • two unit cells may be continuously connected in a structure sharing one upper electrode.
  • the electrolytic cells included in the unit cells are electrically connected alternately and electrically between the positive and negative electrolytic cell by the lower electrode and the upper electrode, It can be said that the cells are connected in series.
  • two of the lower electrodes may be respectively connected to the positive electrode terminal and the negative electrode terminal, and the physical arrangement of the lower electrodes and the upper electrodes is not limited, and the plurality of first electrolytic cells 122 and the plurality of second electrolysiss are not limited.
  • Cells 124 may be connected alternately.
  • thermoelectric elements including a plurality of unit cells, a series connection of unit cells, and a method of manufacturing the same will be described in detail with reference to FIGS. 2 to 12 as a unit cell. This will be described.
  • thermoelectric device 2 is a perspective view illustrating a thermoelectric device according to an exemplary embodiment of the present invention.
  • the thermoelectric element 601 includes a plurality of lower electrodes 210, a plurality of first electrolytic cells 410, and a plurality of second electrolytic cells 420 formed on the lower substrate 200. And a plurality of upper electrodes 510 (see FIG. 3) formed on the upper substrate 500.
  • the thermoelectric element 601 further includes electrolyte channels 410 and 420 (see FIG. 5).
  • the thermoelectric element 601 may further include the barrier rib structure 300.
  • the lower electrodes 210 form m ⁇ n matrices in two different directions on the lower substrate 200 (in this case, m and n are each independently one or more natural numbers except that m and n are simultaneously 1). Can be arranged).
  • n are spaced apart from each other in a line along the first direction D1 of the thermoelectric elements 601 of the lower electrodes 210, and the second direction D2 intersects with the first direction D1.
  • M may be arranged in a line apart from each other.
  • the first direction D1 may be a direction perpendicular to the second direction D2.
  • the upper electrodes 510 are arranged on the upper substrate 500 in a matrix form of m ⁇ n, and are arranged to overlap the two lower electrodes 210 of one upper electrode 510. .
  • the first electrolytic cell 410 and the second electrolytic cell 420 are alternately arranged along the first direction D1 and the second direction D2. Accordingly, the first electrolytic cell 410 and the second electrolytic cell 420 are alternately arranged in the first direction D1, and the first electrolytic cell 410 and the second electrolysis are also arranged in the second direction D2.
  • the cells 420 are alternately placed.
  • the first electrolytic cells 410 are disposed on one side of the first direction D1 and the other side opposite to the first direction D1 based on one of the second electrolytic cells 420.
  • the first electrolytic cells 410 may be disposed on one side of the second direction D2 and the other side opposite to the second direction D2 based on any one of the second electrolytic cells 420.
  • two electrolyte cells 410 and 420 including different kinds of electrolytes are disposed on one lower electrode 210.
  • a unit structure includes a structure in which one first electrolytic cell 410 and one second electrolytic cell 420 are disposed on one lower electrode 210.
  • the first electrolytic cell 410 disposed in the first column of the first row group may be a dummy cell
  • the second electrolytic cell 420 disposed in the first column of the mth row group may be a dummy cell.
  • These dummy cells may be omitted.
  • the m ⁇ n matrix form according to the present invention not only a structure including such dummy cells but also a structure including not including m ⁇ n cells as numbers but excluding them.
  • the first electrolytic cell 410 corresponds to the first electrolytic cell 122 described with reference to FIG. 1
  • the second electrolytic cell 420 corresponds to the second electrolytic cell 124 described with reference to FIG. 1, each of which is substantially Duplicate detailed description is omitted since it is the same.
  • the partition structure 300 is disposed between the lower substrate 200 and the upper substrate 500, and serves to spatially separate the electrolytic cells 410 and 420.
  • the barrier rib structure 300 further includes electrolyte flow path parts 320 and 330 forming the electrolyte channels 410 and 420, which will be described later with reference to FIG. 5.
  • the barrier rib structure 300 includes openings 312 corresponding to each of the electrolytic cells 410 and 420, and the electrolyte cells 410 and 420 may be separated from each other by the partition wall forming the openings 312. Can be.
  • the partition structure 300 may have openings 312 having a matrix shape of m ⁇ n.
  • the height of the barrier rib of the barrier rib structure 300 may be constant.
  • the height of the partition wall portion corresponding to the lower electrodes 210 in the partition structure 300 may be higher than the height of the partition wall portions disposed on the lower electrodes 210.
  • thermoelectric element 3 is a cross-sectional view of the thermoelectric element illustrated in FIG. 2.
  • the unit cell UC of the thermoelectric element 601 includes two lower electrodes 210, a first electrolytic cell 410, a second electrolytic cell 420, and one upper part. Electrode 510.
  • the unit cell UC may be defined as one lower electrode 210, a first electrolytic cell 410, a second electrolytic cell 420, and two upper electrodes 510.
  • FIG. 4 is a plan view illustrating electrical connection between unit cells of the thermoelectric element illustrated in FIG. 2.
  • unit cells UC adjacent to each other share the lower electrode 210, and thus may be connected to each other.
  • unit cell UC is defined as one lower electrode 210, a first electrolytic cell 410, a second electrolytic cell 420, and two upper electrodes 510
  • unit cells adjacent to each other may be connected to each other because they share the upper electrode 510.
  • the term “adjacently disposed” refers to a first direction D1, an opposite direction of the first direction D1, a second direction D2, or an opposite direction of the second direction D2 about one unit cell UC. It means the case arranged in the direction.
  • the nth column refers to the last column
  • the mth row refers to the last row in the matrix array
  • the xth row refers to any one of the first to mth rows.
  • the column y refers to any one column from the first column to the nth column.
  • the first row group includes the first electrolytic cells 410 arranged from the first column to the nth column, which are the first column, in a row along the first direction D1 in the lower substrate 200.
  • the first row group is arranged in the second direction D2 in order of the second row group, the third row group, and so on, up to the m-th row group, which is the last row group.
  • the first row group includes second electrolytic cells 420 arranged in a line along the first direction D1, and even the m row group in the order of the second row group, the third row group, and the like. The same applies.
  • the first column is the first electrolytic cell 410 and the second column is the second electrolytic cell 420, and in the second row group, the first column is the second electrolytic cell 420.
  • the second column may be the first electrolytic cell 410.
  • the first second electrolytic cell 420 is the second electrolytic cell 420 in the second column
  • the first first electrolytic cell 410 is the first electrolytic cell in the second column. Cell 410.
  • the same description applies to the following description of the matrix arrangement.
  • both ends of the upper electrode 510 are disposed to overlap each of the ends of the two lower electrodes 210.
  • the outermost electrolytic cells for example, the electrolytic cells of the nth column, which is the last column of the first row, which is the first row disposed at the first edge of the thermoelectric element 601, are opposite thereto.
  • the electrolytic cells of the nth column, which is the last column of the second row disposed at the first edge, may be connected by one upper electrode 510.
  • two electrolytic cells connected by one upper electrode 510 are different electrolytic cells, that is, a first electrolytic cell 410 having a positive thermoelectric coefficient and a second electrolytic cell having a negative thermoelectric coefficient ( 420).
  • Electrolytic cells may be connected by one upper electrode 510.
  • the unit cells UC of the thermoelectric element 601 may be connected in series as a whole.
  • the electrolytic cell disposed at the first edge of the first row in the xth row group is the first electrolytic cell 410
  • the electrolytic cell disposed at the first edge of the first row in the x + 1 row group is second It may be an electrolytic cell 420.
  • the electrolytic cell disposed at the first edge of the first row in the xth row group is the second electrolytic cell 420
  • the electrolytic cell disposed at the first edge of the first row in the x + 1 row group May be the first electrolytic cell 410.
  • the lower electrode 210 or the upper electrode 510 disposed at any one of the first edge, the second edge, the third edge connecting the third edge, and the fourth edge facing the third edge may be external. It may be connected to the wiring connected with.
  • thermoelectric element of FIG. 4 is an enlarged partial plan view of the thermoelectric element of FIG. 4.
  • the first and second electrolytic cells 410 and 420 of the x th row group and the x + 1 th row group are partially enlarged among the thermoelectric elements 601 of FIG. 4.
  • the two electrolytic cells 410 and 420 have a structure connected to the electrolyte channels 411 and 421.
  • each of the first electrolytic cells 410 is connected to a first electrolyte channel 411 whose both ends are defined as an inlet and an outlet.
  • One first electrolytic cell 410 is connected to one first electrolyte channel 411.
  • the inlet and outlet of the first electrolyte channel 411 are sealed.
  • the plurality of first electrolyte channels 411 are physically and electrically separated from each other.
  • the first electrolyte cells 410 and the first electrolyte channels 411 are filled with a first electrolyte solution including an electrolyte having a positive thermoelectric coefficient in which a reduction reaction occurs due to a temperature rise.
  • each of the second electrolytic cells 420 is connected to a second electrolyte channel 421 whose both ends are defined as an inlet and an outlet.
  • One first electrolytic cell 420 is connected to one second electrolyte channel 421.
  • the inlet and outlet of the second electrolyte channel 421 are sealed.
  • the plurality of second electrolyte channels 421 are also physically and electrically separated from each other, as well as physically and electrically separated from the first electrolyte channels 411.
  • the second electrolyte cells 420 and the second electrolyte channels 421 are filled with a second electrolyte solution including an electrolyte having a negative thermoelectric coefficient in which an oxidation reaction occurs due to a temperature rise.
  • FIG. 6 is a graph illustrating a change in open voltage according to the number of unit cells in the thermoelectric element illustrated in FIG. 2.
  • thermoelectric coefficients of the thermoelectric elements 601 described with reference to FIGS. 2 to 5 may be [thermoelectric coefficient ⁇ N] mV / K of a unit cell.
  • N may be the number (integer) of the unit cells UC, and the number of the unit cells UC may be substantially the same as the number of the upper electrodes 510.
  • the output voltage of one unit cell UC may be expressed by Equation 2 below.
  • Equation 2 ⁇ T represents the temperature difference between the lower electrode and the upper electrode.
  • the graph shown in FIG. 6 is a graph in which a thermoelectric element substantially the same as the thermoelectric element 601 described in FIGS. 2 to 5 is manufactured and its open voltage is measured. In fact, the number and opening of the unit cells UC are actually shown. It can be seen that the voltage is in substantial proportional relationship.
  • FIG. 7 is a cross-sectional view for describing a method of manufacturing the thermoelectric element illustrated in FIG. 2.
  • lower electrodes 210 are formed on the lower substrate 200, and the partition structure 300 is disposed thereon.
  • the lower electrodes 210 may be formed by depositing a metal layer on the lower substrate 200 and patterning the metal layer using a photolithography process. Alternatively, the lower electrodes 210 may be formed by printing a conductive material.
  • the barrier rib structure 300 is disposed on the lower substrate 200 on which the lower electrodes 210 are formed. At this time, the partition portion of the partition structure 300 has the same thickness (Hw).
  • the plurality of openings 312 may include a first opening OP1 that is filled with a first electrolyte solution and becomes a first electrolyte cell 410, and a second opening OP2 that is filled with a second electrolyte solution and becomes a second electrolyte cell 420. ) Can be separated.
  • Each of the plurality of first openings OP1 may be connected to the plurality of first electrolyte flow path parts 320 in a one-to-one correspondence, and each of the plurality of second openings OP2 may be connected to the plurality of second electrolyte flow path parts 330. It is connected in a one-to-one correspondence.
  • "one-to-one correspondence" means that one electrolytic cell is connected to one electrolyte flow path part.
  • upper electrodes 510 are formed on the upper substrate 500, and the upper substrate 500 on which the upper electrodes 510 are formed is assembled with the lower substrate 200 and the barrier rib structure 300.
  • the upper and lower portions of the barrier rib structure 300 are partially inserted into the upper electrodes 510 and the lower electrodes 210 by pressing the upper substrate 500 on which the upper electrodes 510 are formed, such as “A”. It can have a structure.
  • the structure Due to the assembly of the lower substrate 200, the barrier rib structure 300, and the upper substrate 400 as shown in FIG. 7, the structure is closed in the vertical direction.
  • the first and second electrolyte flow path parts 320 and 330 formed in the barrier rib structure 300 are opened.
  • the injection hole and the discharge hole of each of the first and second electrolyte flow path parts 320 and 330 have an open state unlike that of FIG. 5.
  • the first electrolyte solution and the second electrolyte solution are injected into the first and second electrolyte flow path parts 320 and 330, respectively.
  • FIG. 8 is a plan view illustrating a method of manufacturing the thermoelectric element illustrated in FIG. 2.
  • a first electrolyte solution and a second electrolyte solution are injected into each of the first and second electrolyte flow path parts 320 and 330.
  • the structure of the first and second electrolyte flow path parts 320 and 330 is substantially the same as that of the first and second electrolyte channels 411 and 412.
  • the first electrolyte solution is collectively supplied from the first supply part PV1, and injection holes of all the first electrolyte flow path parts 320 are connected to the first supply part PV1.
  • the second electrolyte solution is collectively supplied from the second supply part PV2, and the injection holes of all the second electrolyte flow path parts 330 are connected to the second supply part PV2.
  • the first electrolyte solution of the first supply part PV1 is first electrolyte by capillary action.
  • the first opening OP1 is reached along the flow paths 320 to fill the first opening OP1.
  • the outlets of the first electrolyte flow path parts 320 are sealed before being discharged to the outlets of the first electrolyte flow path parts 320, and the first supply part PV is closed. After removal, the injection holes of the first electrolyte flow path parts 320 are also sealed.
  • the inlet of the second electrolyte flow path parts 330 is connected to the second supply part PV2, the second openings OP2 are filled with the second electrolyte solution, and the outlets are sealed, and then the second supply part PV2 is closed.
  • a structure such as the thermoelectric element 601 described with reference to FIG. 5 may be formed.
  • thermoelectric device 9 is a plan view illustrating a thermoelectric device according to another exemplary embodiment of the present invention.
  • thermoelectric element 602 illustrated in FIG. 9 is substantially the same as the thermoelectric element 601 described with reference to FIGS. 2 through 6 except that the first and second electrolyte channels 412 and 422 each form a single channel. same. That is, the thermoelectric element 602 illustrated in FIG. 9 is the same as the thermoelectric element 601 described with reference to FIGS. 2 to 6 except for the structure of the electrolyte flow path portion formed in the barrier rib structure 300. Therefore, overlapping detailed description will be omitted and the differences will be mainly described.
  • thermoelectric element 602 may be formed together with the lower electrodes 210, the upper electrodes 510, and the first and second electrolytic cells 410 and 420. First and second electrolyte channels 412 and 422.
  • the first electrolyte channel 412 is a single channel, and the plurality of first electrolyte cells 410 are all connected to one first electrolyte channel 412. That is, a plurality of first electrolytic cells 410 are connected between the inlet and outlet of the first electrolyte channel 412. At this time, the inlet and outlet of the first electrolyte channel 412 are sealed.
  • the second electrolyte channel 422 is also a single channel, and a plurality of second electrolyte cells 420 are connected to one second electrolyte channel 422. That is, a plurality of second electrolytic cells 420 are connected between the inlet and outlet of the second electrolyte channel 422. At this time, the inlet and outlet of the second electrolyte channel 422 are sealed.
  • the first electrolyte channel 412 sequentially connects the first electrolytic cells 410 of the xth row group arranged in a line in the first direction D1, and connects the first electrolyte channels 410 in the second direction D2 of the xth row group.
  • the first electrolytic cells 410 of the arranged x + 1 row group are sequentially connected in a direction opposite to the first direction D1.
  • the xth row group and the x + 1th row group may be connected by connecting the first first electrolysis cells 410 with each other or the last first electrolysis cells 410 with each other in the row group.
  • the entire first electrolytic cells 410 may be connected in series.
  • the first electrolytic cell 410 of the first column which is the first column of the xth row group
  • the first electrolyte 410 of the second column which is the second column of the x-1st row group, or the last of the xth row group.
  • the second electrolyte channel 422 sequentially connects the second electrolytic cells 420 of the xth row group arranged in a row in the first direction D1, and the second direction D2 of the xth row group. ) Connects the second electrolytic cells 420 of the x + 1 row group in the opposite direction to the first direction D1.
  • the x th row group and the x + 1 th row group may be connected by connecting the first second electrolytic cells 420 in the row group or the last second electrolytic cells 420 in the row group with each other. Accordingly, the entire second electrolytic cells 420 may be connected in series.
  • the first electrolytic cell 420 of the first column which is the first column of the xth row group
  • the first electrolyte 420 of the second column which is the second column of the x + 1 row group, or the last of the xth row group.
  • the first electrolyte channel 412 and the second electrolyte channel 422 are designed so as not to interfere with each other, and the first electrolyte cells 410 and the second electrolyte cells 420 should be designed so as not to interfere with each other.
  • the size of each of the first electrolytic cells 410 is preferably at least 10 times the size of the first electrolyte channel 412. In other words, it is preferable that the size of the first electrolyte channel 412 is equal to or less than 1/10 of the size of each of the first electrolyte cells 410.
  • the first electrolytic cells 410 are connected to each other by the first electrolyte channel 412 which is a single channel, the first electrolytic cells 410 should be separated from each other.
  • the size of the first electrolyte channel 412 is preferably designed to be 1/10 or less of the size of each of the first electrolytic cells 410.
  • the width of the first electrolyte channel 412 may be up to 50 ⁇ m.
  • the size of the second electrolyte channel 414 it is preferable to set the size of the second electrolyte channel 414 to a size less than 1/10 of the size of each of the second electrolytic cells 420. In other words.
  • the size of each of the second electrolytic cells 420 may be at least 10 times the size of the second electrolyte channel 422.
  • the design of the first and second electrolyte channels 412 and 422 shown in FIG. 9 is shown for illustrative purposes only, and as described above, there is no interference with the first and second electrolytic cells 410 and 420. It can be designed in various ways. Since the design of the first and second electrolyte channels 412, 422 is determined by the shape of the first and second electrolyte flow path portions of the partition structure 300, the first and second electrolyte flow paths of the partition structure 400 are defined. This can be achieved by forming the parts in the same shape as the first and second electrolyte channels 412 and 422 as shown in FIG. 9.
  • FIG. 10 is a plan view illustrating a method of manufacturing the thermoelectric element of FIG. 9.
  • thermoelectric element 602 illustrated in FIG. 9 is substantially the same as that described with reference to FIGS. 7 and 8.
  • the shapes of the first and second electrolyte flow path portions of the barrier rib structure 300 may have the shapes shown in FIG. 10, unlike those described with reference to FIG. 8.
  • a plurality of first openings OP1 are seriesed.
  • the first electrolyte solution sequentially fills the first openings OP1 by capillary action. And move.
  • the first electrolyte solution is supplied to the first electrolyte flow path part 340 in the discharge hole of the first electrolyte flow path part 340.
  • the second electrolyte may be caused by capillary action.
  • the solution is sequentially moved while filling the second openings OP2.
  • the second electrolyte solution is supplied to the second electrolyte flow path part 350 in an open state of the outlet of the second electrolyte flow path part 350.
  • thermoelectric element 602 described in FIG. 9 can be manufactured.
  • thermoelectric device 11 is a plan view illustrating a thermoelectric device according to yet another exemplary embodiment of the present invention.
  • thermoelectric element 603 illustrated in FIG. 11 is substantially the same as the thermoelectric element 601 described with reference to FIGS. 2 to 6 except that a plurality of first and second electrolyte channels 412 and 422 are included. Do. That is, the thermoelectric element 603 illustrated in FIG. 11 is the same as the thermoelectric element 601 described with reference to FIGS. 2 to 6 except for the structure of the electrolyte flow path portion formed in the barrier rib structure 300. Therefore, overlapping detailed description will be omitted and the differences will be mainly described.
  • thermoelectric element 603 may be formed together with the lower electrodes 210, the upper electrodes 510, and the first and second electrolytic cells 410 and 420. First and second electrolyte channels 412 and 422.
  • the first electrolytic cells 410 and the second electrolytic cells 420 are alternately arranged in the first direction D1 and the second direction D2.
  • each of the plurality of first electrolyte channels 412 is configured as a second electrolytic cell 410 of the y th column group and one first electrolytic cell 410 of the y + 1 th column group. Are connected to each other in the direction D2.
  • the plurality of first electrolyte channels 412 are separated from each other independently, and each includes a sealed inlet and outlet.
  • each of the plurality of second electrolyte channels 422 may include a second electrolytic cell 420 of the y th column group and a second electrolytic cell 420 of the y + 1 th column group. Are connected to each other in the direction D2.
  • the plurality of second electrolyte channels 422 are independently separated from each other, and each includes a sealed inlet and an outlet.
  • any one of the first electrolyte channels 412 may include the first electrolytic cell 410 in the y th column of the x th row group and the first electrolytic cell 410 in the y + 1 th column of the x + 1 th row group.
  • one of the second electrolyte channels 422 is connected to the second electrolytic cell 420 of the y th column of the x th row group and the second electrolytic cell of the y + 1 th column of the x + 1 th row group 420 may be connected.
  • the second electrolytic cell 420 of the nth column of the first row group is connected to a second electrolyte channel (not shown) alone, and the first electrolytic cell 410 of the first column of the mth row group is independent It may be connected to the first electrolyte channel (not shown).
  • the first and second electrolyte channels alone may be omitted.
  • thermoelectric element 603 having the structure described with reference to FIG. 11 is electrolyzed in the thermoelectric element 602 of FIG. 9 while reducing the area to be secured in order to form the electrolyte channel relative to the thermoelectric element 601 of FIG. 5. Interference / interference by electrolyte channels between cells can be minimized. That is, a structure such as the thermoelectric element 603 of FIG. 11 may form an electrolyte channel without considering such points as the size limitation of the electrolytic cell and the electrolyte channel in the thermoelectric element 602 of FIG. The thermoelectric element 603 can be manufactured easily and simply.
  • FIG. 12 is a plan view illustrating a method of manufacturing the thermoelectric element of FIG. 11.
  • thermoelectric element 603 illustrated in FIG. 11 is substantially the same as that described with reference to FIGS. 7 and 8.
  • the shapes of the first and second electrolyte flow path portions of the barrier rib structure 300 may have the shapes shown in FIG. 12, unlike those described with reference to FIG. 8.
  • the plurality of first openings OP1 are connected when the lower substrate 200 on which the lower electrodes 210 are formed, the barrier rib structure 300, and the upper substrate 400 on which the upper electrodes 410 are formed are assembled.
  • Injection holes of the plurality of second electrolyte flow path parts 370 connecting the injection holes of the plurality of first electrolyte flow path parts 360 and the plurality of second openings OP2 may be the third supply part PV3 and the fourth supply part. (PV4) can be connected.
  • Each of the third and fourth supply parts PV3 and PV4 supplies a first electrolyte solution and a second electrolyte solution.
  • the third and fourth supply units PV3 and PV4 may be integrated into one or divided into multiple units.
  • the first electrolyte may be formed by capillary action.
  • the solution and the second electrolyte solution may move to fill the first openings OP1 and the second openings OP2.
  • the first and second electrolyte solutions are supplied to the outlets of the first electrolyte channel parts 360 and the second electrolyte channel part 370 in an open state, but all of the first and second openings OP1 and OP2 are filled.
  • the first and second electrolytic cells 410 and 420 are formed to seal the outlets of the first and second electrolyte flow path parts 360 and 370, and the third and fourth supply parts PV3 and PV4 are sealed. After removal, their inlets are also sealed. Accordingly, the thermoelectric element 603 described in FIG. 11 can be manufactured.
  • thermoelectric element including a unit cell capable of operating by living waste heat of 100 ° C. or less may improve output voltage and power productivity.
  • the thermoelectric element may be applied to an electronic device to operate by heat generated by the driving of the electronic device to generate electric power, and to be easily used in a window or a greenhouse of an automobile.
  • thermoelectric element an apparatus to which the above-described thermoelectric element is applied will be described with reference to FIGS. 13 to 17.
  • thermoelectric device 13 is a cross-sectional view illustrating an apparatus including a thermoelectric device according to an exemplary embodiment of the present invention.
  • the apparatus 701 including the thermoelectric element includes a display unit 710, a power supply unit 720, and a battery cover 730.
  • the device 701 may be a portable small device such as a mobile phone, and the display unit 710 may include a display panel and a backlight assembly.
  • the battery cover 730 may fix the power supply unit 720 to the display unit 710 and protect the power supply unit 720.
  • the power supply unit 720 is disposed between the display unit 710 and the battery cover 730 and is electrically connected to the display unit 710 to supply power to the display panel and the backlight assembly. Includes a battery 722 formed.
  • Thermoelectric element 724 is the thermoelectric element described above in accordance with the present invention.
  • the thermoelectric elements 724 may be thermoelectric elements 601, 602, and 603 including at least two or more unit cells UC described with reference to FIGS. 2 to 11. Accordingly, detailed descriptions thereof will not be repeated.
  • the lower substrate 200 described above is disposed on one surface of the thermoelectric element 724 directly contacting the battery 722, and the back cover 730 and the upper substrate 500 are provided to face each other.
  • the thermoelectric element 724 may be connected to the battery 722 to generate power by operating by heat generated when the power supply unit 722 is driven or heat generated by the display unit 710.
  • FIG. 14 is a diagram for describing a connection relationship between a thermoelectric element and a battery in FIG. 13.
  • thermoelectric element 724 is connected with a battery 722, where a positive electrode of the battery 722 is connected with a positive terminal of the thermoelectric element 724 and a negative electrode of the battery 722 is thermoelectric. It may be connected to the negative terminal of the device 724.
  • the positive electrode terminal is connected to the outermost one lower electrode among the lower electrodes of the thermoelectric element 724
  • the negative electrode terminal is connected to the outermost one lower electrode among the lower electrodes of the thermoelectric element 724. It may be an external terminal of 724.
  • thermoelectric element 724 may be connected to the capacitor CAP. That is, the thermoelectric element 724 generates power using waste heat, and the capacitor CAP connected thereto stores the power generated by the thermoelectric element 724.
  • the capacitor CAP is connected to the battery 722 to receive power from the capacitor CAP as needed by the battery 722.
  • a switch for controlling the on / off of the capacitor CAP may be further provided.
  • thermoelectric element 732 may be omitted, and the lower electrodes 210 may be directly formed on one surface of the battery 722. Accordingly, the thermoelectric element 732 and the battery 722 may have an integrated structure.
  • thermoelectric device 15 to 17 are diagrams for describing an apparatus including a thermoelectric device according to an exemplary embodiment of the present invention.
  • an apparatus 702 including a thermoelectric device includes a display unit 710, a battery 722, and a cover unit 734.
  • the display unit 710 and the battery 722 are substantially the same as described with reference to FIG. 13. Therefore, redundant descriptions are omitted.
  • the cover unit 734 includes a battery cover 730 on which a thermoelectric element 732 is formed.
  • the thermoelectric element 732 may be integrally formed with the battery cover 730.
  • the lower substrate 200 of the thermoelectric element 732 may be disposed to face the battery 722, and the upper substrate 500 may be formed on the battery cover 730.
  • the upper substrate 500 may be omitted, and the upper electrodes 510 may be directly formed on the battery cover 730 such that the thermoelectric element 732 and the battery cover 730 may have an integrated structure.
  • the capacitor connected to the thermoelectric element 732 may be formed on the battery cover 730. Alternatively, the capacitor may be physically separated to be connected to the battery 722 on the battery 722 side, and the capacitor and the battery 722 may be electrically connected when the battery 722 and the cover unit 734 are coupled to each other. It may include a terminal.
  • the battery 722 and the thermoelectric element 732 are electrically connected through the connection terminals 724a, 724b, 736a, and 736b. That is, the connection terminals 736a and 736b are formed in the battery 722, and the thermoelectric element 732 also contacts the connection terminals 736a and 736b at positions corresponding to the connection terminals 736a and 736b. Capable terminals 724a and 724b may be formed so that the battery 722 and the thermoelectric element 732 may be electrically connected when the cover unit 734 is combined with the battery 722.
  • an apparatus including a thermoelectric device according to the present invention may be a window for an automotive sunroof. That is, by connecting the thermoelectric element described with reference to FIGS. 2 to 12 to the window for the vehicle sunroof, the power generated by the thermoelectric element may be used to drive the vehicle.
  • the electrodes 210 and 510 and the substrates 200 and 500 of the thermoelectric element connected to the window for the automotive sunroof may be formed of a transparent or translucent material, and the partition structure 300 may also be formed of a transparent or translucent material.
  • the lower substrate 200 of the thermoelectric element may be attached to the window for the vehicle sunroof, and the upper substrate 500 may face the lower substrate 200 to face the interior of the vehicle. That is, the thermoelectric element may operate by increasing the temperature of the lower substrate 200 and the lower electrodes 210 by solar heat.
  • the lower substrate 200 may be omitted, and the lower electrodes 210 may be formed directly on the window of the vehicle.
  • thermoelectric element coupled to a window for an automotive sunroof may be connected to a capacitor to store power generated by solar heat in the capacitor.
  • the electrodes 210 and 510 and the substrates 200 and 500 constituting the thermoelectric element are formed of a material capable of transmitting at least 80% of visible light, so that the front, rear and / or front of the vehicle Thermoelectric elements can also be applied to the side windows.
  • an apparatus including a thermoelectric device according to the present invention may be a greenhouse window. That is, by applying the thermoelectric element described with reference to FIGS. 2 to 12 to the greenhouse window, it is possible to convert the thermal energy into electrical energy by using the indoor and outdoor temperature difference generated by sunlight. The obtained electrical energy can be used for facility cooling / heating and lighting.
  • thermoelectric device may be applied to the windows of a house / commercial building in substantially the same manner as the apparatus described with reference to FIGS. 16 and 17.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Provided are a thermoelectric element, a manufacturing method thereof, and a device containing a thermoelectric element, the thermoelectric element comprising: a plurality of lower electrodes; first electrolyte cells which are arranged on individual tops of the lower electrodes, contain first electrolytes having positive thermal coefficients in which a reduction reaction is caused by temperature rise of the lower electrodes, and are connected to first electrolyte channels which have an inlet and an outlet arranged at both ends thereof and which receive the first electrolytes; second electrolyte cells which are individually arranged to be spaced apart from the fist electrolyte cells on a single lower electrode, contain second electrolytes having negative thermal coefficients in which an oxidation reaction is caused by temperature rise of the lower electrode, and are connected to second electrolyte channels which have an inlet and an outlet arranged at both ends thereof and which receive the second electrolytes; and a plurality of upper electrodes which are arranged on the first electrolyte cells and the second electrolyte cells so as to be connected to the first electrolyte cells and the second electrolyte cells arranged on different lower electrodes.

Description

열전 소자, 이의 제조 방법 및 열전 소자를 포함하는 장치Thermoelectric element, method for manufacturing the same, and apparatus including thermoelectric element
본 발명은 열전 소자, 이의 제조 방법 및 열전 소자를 포함하는 장치에 관한 것으로, 더욱 상세하게는 열전 전해질을 이용하여 양단의 온도 차이로 열-전기에너지를 변환시키는 열전 소자, 이의 제조 방법 및 열전 소자를 포함하는 장치에 관한 것이다.The present invention relates to a thermoelectric element, a method for manufacturing the same, and a device including a thermoelectric element, and more particularly, a thermoelectric element for converting thermo-electric energy into a temperature difference between two ends by using a thermoelectric electrolyte, a method for manufacturing the same, and a thermoelectric element. It relates to a device comprising a.
열전 소자는 열과 전기의 상호작용으로 나타내는 열전 효과를 이용한 소자로서, 온도차에 의해 전기적 에너지를 발생하는 제베크 효과를 이용한 소자, 인가된 전기적 에너지에 의해 열의 흡수/발생이 일어나는 현상을 이용한 펠티에 소자 등이 있다. 열전 소자는 우주, 항공, 반도체, 발전 등 산업전반에서 광범위하게 이용되고 있다.Thermoelectric element is a device using the thermoelectric effect represented by the interaction of heat and electricity, a device using the Seebeck effect that generates electrical energy by the temperature difference, a Peltier device using a phenomenon that the absorption / generation of heat by the applied electrical energy occurs There is this. Thermoelectric devices are widely used in a wide range of industries such as space, aviation, semiconductors, and power generation.
최근 에너지 문제를 해결하기 위한 대체 에너지 개발 및 에너지 효율 향상을 위한 다양한 노력이 전 세계적으로 활발하다. 이의 일환으로 폐열을 회수하여 전기에너지로 변환함으로써 에너지 사용 효율을 향상시키는 열전 소자 기술이 주목받고 있다. 온도차 부식 전지(thermogalvanic cell) 혹은 열-전기화학 전지(thermal electrochemical cell)로도 알려진 열전지는 전해질의 전기화학적 산화환원 전위의 온도 의존성에 기반한 전력 생산 기구로 열-전기에너지의 직접 변환, 단순한 구성요소, 반영구적 내구성, 낮은 유지비용 및 탄소 무배출이라는 장점을 가진다. 따라서 열전지 기술은 폐열 에너지 회수를 위한 가장 효과적인 대처 기술로 보고되고 있다. 특히, 기계적 유연성 및 낮은 생산 단가를 바탕으로 100 ℃ 이하의 생활 폐열을 효율적으로 흡수할 수 있는 장점 가지므로 최근에는 고체상 열전 소자를 대체하여 열전 전해질을 이용한 열전 소자의 효율 향상을 위한 연구가 활발하다.Recently, various efforts to develop alternative energy and to improve energy efficiency to solve energy problems are active worldwide. As part of this, the thermoelectric element technology that collects waste heat and converts it into electrical energy has been attracting attention. Thermocouples, also known as thermogalvanic cells or thermal electrochemical cells, are power generation mechanisms based on the temperature dependence of the electrochemical redox potential of the electrolyte, direct conversion of thermo-electric energy, simple components, It has the advantages of semi-permanent durability, low maintenance cost and no carbon emissions. Therefore, the thermal cell technology is reported as the most effective coping technology for waste heat energy recovery. In particular, since it has the advantage of efficiently absorbing the waste heat of less than 100 ℃ based on the mechanical flexibility and low production cost, researches for improving the efficiency of thermoelectric elements using thermoelectric electrolytes have recently been actively replaced by solid state thermoelectric elements. .
본 발명의 일 목적은 출력 전압 및 전력 생산량이 높은 열전 소자를 제공하는 것이다.One object of the present invention is to provide a thermoelectric device having a high output voltage and high power output.
본 발명의 다른 목적은 열전 소자의 제조 방법을 제공하는 것이다.Another object of the present invention is to provide a method of manufacturing a thermoelectric element.
본 발명의 또 다른 목적은 상기 열전 소자를 포함하는 장치를 제공하는 것이다.Still another object of the present invention is to provide an apparatus including the thermoelectric element.
일 측면으로서, 본 발명의 일 목적을 위한 열전 소자는 다수의 하부 전극들, 제1 전해셀들, 제2 전해셀들 및 다수의 상부 전극들을 포함한다.In one aspect, a thermoelectric device for one purpose of the present invention includes a plurality of lower electrodes, first electrolytic cells, second electrolytic cells and a plurality of upper electrodes.
상기 제1 전해셀들은 상기 하부 전극들 각각의 상부에 배치되고, 하부 전극의 온도 상승에 의해 환원 반응이 일어나는 양의 열전계수를 갖는 제1 전해질을 포함하며, 주입구와 배출구가 양단부에 배치되고 상기 제1 전해질을 수용하는 제1 전해질 채널에 연결된다. 상기 제2 전해셀들은 각각이 1개의 하부 전극 상에서 제1 전해셀과 이격되어 배치되고 하부 전극의 온도 상승에 의해서 산화 반응이 일어나는 음의 열전계수를 갖는 제2 전해질을 포함하며, 주입구와 배출구가 양단부에 배치되고 상기 제2 전해질을 수용하는 제2 전해질 채널에 연결된다. 상기 상부 전극들은 서로 다른 하부 전극들 상에 배치된 제1 전해셀과 제2 전해셀에 연결되도록 제1 및 제2 전해셀들 상에 배치된다.The first electrolytic cells are disposed above each of the lower electrodes, and include a first electrolyte having a positive thermoelectric coefficient in which a reduction reaction occurs due to an increase in temperature of the lower electrode, and an inlet and an outlet are disposed at both ends thereof. And a first electrolyte channel containing a first electrolyte. The second electrolytic cells each include a second electrolyte having a negative thermoelectric coefficient disposed on one lower electrode and spaced apart from the first electrolytic cell and in which an oxidation reaction occurs due to an increase in temperature of the lower electrode. Disposed at both ends and connected to a second electrolyte channel containing the second electrolyte. The upper electrodes are disposed on the first and second electrolytic cells so as to be connected to the first electrolytic cell and the second electrolytic cell disposed on different lower electrodes.
일 실시예에서, 상기 제1 전해셀들은 각각이 주입구와 배출구를 갖는 서로 독립적인 다수의 제1 전해질 채널들에 일대일대응으로 연결되고, 상기 제2 전해셀들은 각각이 주입구와 배출구를 갖는 서로 독립적인 다수의 제2 전해질 채널들에 일대일대응으로 연결될 수 있다.In one embodiment, the first electrolytic cells are connected in a one-to-one correspondence with a plurality of first electrolyte channels each having an inlet and an outlet, and the second electrolytic cells are independent of each other having an inlet and an outlet. It can be connected in a one-to-one correspondence with a plurality of second electrolyte channels.
일 실시예에서, 상기 제1 전해셀들은 제1 전해질 채널의 주입구와 배출구 사이에서 직렬로 연결되고, 상기 제2 전해셀들은 제2 전해질 채널의 주입구와 배출구 사이에서 직렬로 연결될 수 있다.In one embodiment, the first electrolytic cells may be connected in series between the inlet and outlet of the first electrolyte channel, and the second electrolytic cells may be connected in series between the inlet and outlet of the second electrolyte channel.
일 실시예에서, 제1 방향으로 제1 전해셀과 제2 전해셀이 교호적으로 배치되고, 상기 제1 방향과 교차하는 제2 방향으로도 제1 전해셀과 제2 전해셀이 교호적으로 배치되고, 상기 제1 전해질 채널은 일렬로 배열된 어느 하나의 행 그룹인 제x 행 그룹(이때, x는 자연수)에 포함되는 제1 전해셀들을 상기 제1 방향으로 순차적으로 연결하고, 제x 행 그룹의 상기 제2 방향에 배치된 제x+1 행 그룹의 제1 전해셀들을 상기 제1 방향의 반대 방향으로 순차적으로 연결하며, 제x 행 그룹과 제x+1 행 그룹은 해당 행 그룹에서의 첫 번째 제1 전해셀들끼리 또는 해당 행 그룹에서 마지막 제1 전해셀들끼리를 서로 연결시키고, 상기 제2 전해질 채널은 일렬로 배열된 어느 하나의 행 그룹인 제x 행 그룹에 포함되는 제2 전해셀들을 상기 제1 방향으로 순차적으로 연결하고, 제x 행 그룹의 상기 제2 방향에 배치된 제x+1 행 그룹의 제2 전해셀들을 상기 제1 방향의 반대 방향으로 순차적으로 연결하며, 제x 행 그룹과 제x+1 행 그룹은 해당 행 그룹에서의 첫 번째 제2 전해셀들끼리 또는 해당 행 그룹에서 마지막 제2 전해셀들끼리를 서로 연결시킬 수 있다.In an embodiment, the first electrolytic cell and the second electrolytic cell are alternately arranged in the first direction, and the first electrolytic cell and the second electrolytic cell are alternately arranged in the second direction crossing the first direction. The first electrolyte channels are sequentially connected to the first electrolytic cells included in the xth row group (where x is a natural number), which is any one row group arranged in a row, in the first direction, and the x The first electrolytic cells of the x + 1 row group arranged in the second direction of the row group are sequentially connected in a direction opposite to the first direction, and the x row group and the x + 1 row group are corresponding row groups The first first electrolytic cells in E or the last first electrolytic cells in the row group are connected to each other, and the second electrolyte channel is included in the x row group, which is any one row group arranged in a row. The second electrolytic cells are sequentially connected in the first direction, and the xth row The second electrolytic cells of the x + 1 row group arranged in the second direction of the group are sequentially connected in the opposite direction to the first direction, and the xth row group and the x + 1 row group are arranged in the corresponding row group. The first second electrolytic cells of or the last second electrolytic cells in the row group may be connected to each other.
일 실시예에서, 제1 방향으로 제1 전해셀과 제2 전해셀이 교호적으로 배치되고, 상기 제1 방향과 교차하는 제2 방향으로도 제1 전해셀과 제2 전해셀이 교호적으로 배치되며, 일렬로 배열된 어느 하나의 열 그룹인 제y 열 그룹(이때, y는 자연수)에 포함되는 어느 하나의 제1 전해셀과 제y+1 열 그룹의 어느 하나의 제1 전해셀이 제1 전해질 채널에 의해 상기 제2 방향으로 서로 연결되며, 다수의 제1 전해질 채널들은 서로 독립적으로 분리되고, 일렬로 배열된 어느 하나의 열 그룹인 제y 열 그룹의 어느 하나의 제2 전해셀과 제y+1 열 그룹의 어느 하나의 제2 전해셀이 제2 전해질 채널에 의해 상기 제2 방향으로 서로 연결되며, 다수의 제2 전해질 채널들은 서로 독립적으로 분리될 수 있다.In an embodiment, the first electrolytic cell and the second electrolytic cell are alternately arranged in the first direction, and the first electrolytic cell and the second electrolytic cell are alternately arranged in the second direction crossing the first direction. The first electrolytic cell and any one of the first electrolytic cells of the y + 1 column group included in the y th column group, wherein y is a natural number, The second electrolytic cell of any one of the y-th column groups, which is connected to each other in the second direction by a first electrolyte channel, and the plurality of first electrolyte channels are separated from each other and arranged in a row. Any one of the second electrolytic cells of the y + 1 column group is connected to each other in the second direction by a second electrolyte channel, and the plurality of second electrolyte channels may be independently separated from each other.
일 실시예에서, 상기 제1 전해셀들은 제1 전해질 채널의 주입구와 배출구 사이에서 직렬로 연결되고, 상기 제2 전해셀들은 제2 전해질 채널의 주입구와 배출구 사이에서 직렬로 연결될 수 있다.In one embodiment, the first electrolytic cells may be connected in series between the inlet and outlet of the first electrolyte channel, and the second electrolytic cells may be connected in series between the inlet and outlet of the second electrolyte channel.
일 실시예에서, 상기 제1 전해질 채널은 일렬로 배열된 어느 하나의 행 그룹인 제x 행 그룹(이때, x는 자연수를 나타냄)의 제y 열의 제1 전해셀과 제x+1 행 그룹의 제y+1 열의 제1 전해셀을 연결하고, 상기 제2 전해질 채널은 일렬로 배열된 어느 하나의 행 그룹인 제x 행 그룹의 제y 열의 제2 전해셀과 제x+1 행 그룹의 제y+1 열의 제2 전해셀을 연결할 수 있다.In one embodiment, the first electrolyte channel includes the first electrolytic cell and the x + 1 row group in the y th column of the x th row group (where x represents a natural number), which is any one row group arranged in a row. The first electrolytic cells of the y + 1th column are connected, and the second electrolyte channel is the second electrolytic cell of the yth column of the xth row group and the x + 1st row group of any one row group arranged in a row. The second electrolytic cells of the y + 1 column may be connected.
일 실시예에서, 첫 번째 행 그룹의 마지막 열의 제2 전해셀은 단독으로 제2 전해질 채널과 연결되고, 마지막 행 그룹의 첫 번째 열의 제1 전해셀은 단독으로 제1 전해질 채널과 연결될 수 있다.In one embodiment, the second electrolytic cell of the last column of the first row group may be connected to the second electrolyte channel alone, and the first electrolytic cell of the first column of the last row group may be connected to the first electrolyte channel alone.
일 실시예에서, 상기 제1 전해셀에 포함되는 레독스 커플은 Fe2(SO4)3/FeSO4, I-/I3-, Np4 +/NpO2 +, Pu4 +/PuO2 2 +, CN-/CNO-, NO2 -/NO3 -, I-/IO3 -, ClO3 -/ClO4 -, ClO-/ClO2 - 및 Cl-/ClO- 중에서 선택된 적어도 하나이고, 상기 제2 전해셀에 포함되는 레독스 커플은 K3Fe(CN)6/K4Fe(CN)6, K3Fe(CN)6/(NH4)4Fe(CN)6 , Np3 +/Np4 +, Cu+/Cu2 +, Fe2 +/Fe3 +, PuO2 +/PuO2 2+, Pu3 +/Pu4 +, NpO2 +/NpO2 2 +, Tl+/Tl3 +, NH4 +/N2H5 +, NH4 +/NH3OH+, Mn2 +/Mn3 + 및 Am3+/Am4+ 중에서 선택된 적어도 하나일 수 있다.In one embodiment, the redox couple contained in the first electrolytic cell is Fe 2 (SO 4) 3 / FeSO 4, I - / I 3-, Np 4 + / NpO 2 +, Pu 4 + / PuO 2 2 +, CN - / CNO -, NO 2 - / NO 3 -, I - / IO 3 -, ClO 3 - / ClO 4 -, ClO - / ClO 2 - and Cl - / ClO - is at least one selected from the The redox couple included in the second electrolytic cell is K 3 Fe (CN) 6 / K 4 Fe (CN) 6 , K 3 Fe (CN) 6 / (NH 4 ) 4 Fe (CN) 6 , Np 3 + / Np 4 + , Cu + / Cu 2 + , Fe 2 + / Fe 3 + , PuO 2 + / PuO 2 2+ , Pu 3 + / Pu 4 + , NpO 2 + / NpO 2 2 + , Tl + / Tl 3 At least one selected from + , NH 4 + / N 2 H 5 + , NH 4 + / NH 3 OH + , Mn 2 + / Mn 3 + and Am 3+ / Am 4+ .
일 실시예에서, 상기 열전 소자는 상기 하부 전극들과 상기 상부 전극들 사이에 개재되고, 상기 제1 및 제2 전해셀들을 분리시키는 격벽 구조체를 더 포함하고, 상기 격벽 구조체는 상기 제1 및 제2 전해셀들과 대응하는 개구부들, 제1 전해셀이 배치되는 적어도 어느 하나의 개구부와 연결되어 제1 전해질 채널을 형성하는 제1 전해질 유로부 및 제2 전해셀이 배치되는 적어도 어느 하나의 개구부와 연결되어 제2 전해질 채널을 형성하는 제2 전해질 유로부를 포함할 수 있다.The thermoelectric device may further include a barrier rib structure interposed between the lower electrodes and the upper electrodes and separate the first and second electrolytic cells. 2 openings corresponding to the electrolytic cells, at least one opening connected to at least one opening in which the first electrolytic cell is disposed to form a first electrolyte channel, and at least one opening in which the second electrolytic cell is disposed It may include a second electrolyte flow path portion connected to form a second electrolyte channel.
일 실시예에서, 상기 하부 전극들과 상기 상부 전극 사이에 온도차가 발생하는 경우, 어느 하나의 하부 전극을 기준으로, 하부 전극, 제1 전해셀, 상부 전극, 제2 전해셀 및 상기 어느 하나의 하부 전극과 인접하게 배치된 다른 하부 전극 순으로 연속적으로 전자가 이동할 수 있다.In an embodiment, when a temperature difference occurs between the lower electrodes and the upper electrode, the lower electrode, the first electrolytic cell, the upper electrode, the second electrolytic cell, and any one of the lower electrodes, based on one lower electrode. The electrons may continuously move in the order of other lower electrodes disposed adjacent to the lower electrode.
일 실시예에서, 하나의 행 내에서는 하부 전극들 및 상부 전극들이 제1 방향으로 일렬로 배열되고, 서로 다른 행들 사이에서는 상부 전극이 상기 제1 방향과 교차하는 제2 방향으로 배열되어 서로 다른 행들의 제1 열의 제1 전해셀과 제2 전해셀을 연결시키거나, 서로 다른 행들의 마지막열의 제1 및 제2 전해셀들을 서로 연결시킬 수 있다.In one embodiment, the lower electrodes and the upper electrodes are arranged in a row in the first direction within one row, and the upper electrodes are arranged in the second direction crossing the first direction between the different rows so as to be different from each other. The first electrolytic cell and the second electrolytic cell of the first column may be connected to each other, or the first and second electrolytic cells of the last column of different rows may be connected to each other.
일 실시예에서, 상기 제1 전해질 및 상기 제2 전해질은 액상 또는 겔(gel) 상태일 수 있다.In one embodiment, the first electrolyte and the second electrolyte may be in a liquid or gel state.
본 발명의 다른 목적을 위한 열전 소자의 제조 방법은, 하부 기판 상에 제1 방향 및 상기 제1 방향과 교차하는 제2 방향으로 매트릭스 형태로 배치된 다수의 하부 전극들을 형성하는 단계, 상기 하부 전극들이 형성된 하부 기판 상에 다수의 개구부들, 제1 전해질 유로부 및 제2 전해질 유로부를 포함하는 격벽 구조체를, 다수의 개구부들 중에서 2개의 개구부들이 1개의 하부 전극에 위치하도록 배치하는 단계, 1개의 하부 전극 상에 2개의 상부 전극들이 배치되도록 상부 전극들이 형성된 상부 기판을 상기 하부 기판 및 상기 격벽 구조체와 어셈블리하는 단계, 및 상기 제1 전해질 유로부로 제1 전해질 용액을 주입하여 상기 제1 전해질 유로부와 연결된 개구부에 제1 전해셀을 형성하고, 상기 제2 전해질 유로부로 제2 전해질 용액을 주입하여 상기 제2 전해질 유로부와 연결된 개구부에 제2 전해셀을 형성하는 단계를 포함한다.According to another aspect of the present invention, there is provided a method of manufacturing a thermoelectric device, forming a plurality of lower electrodes disposed in a matrix form on a lower substrate in a first direction and a second direction crossing the first direction. Arranging a partition structure including a plurality of openings, a first electrolyte flow path part, and a second electrolyte flow path part on the lower substrate on which the openings are formed such that two openings among the plurality of openings are located at one lower electrode, Assembling the upper substrate on which the upper electrodes are formed so that the two upper electrodes are disposed on the lower electrode, with the lower substrate and the barrier rib structure, and injecting a first electrolyte solution into the first electrolyte flow path part to form the first electrolyte flow path part. A first electrolyte cell is formed in the opening connected to the second electrolyte cell, and a second electrolyte solution is injected into the second electrolyte flow path part to form the second electrolyte; And forming a second electrolytic cell in the opening connected to the flow path part.
일 실시예에서, 상기 제2 전해셀을 형성하는 단계는 상기 제1 전해질 유로부의 양단부를 개방시킨 상태에서 일단부에 상기 제1 전해질 용액을 주입하는 단계, 상기 제2 전해질 유로부의 양단부를 개방시킨 상태에서 일단부에 상기 제2 전해질 용액을 주입하는 단계, 상기 제1 전해질 용액이 상기 제1 전해질 유로부 및 상기 제1 전해질 유로부와 연결된 개구부에 충진된 상태에서 상기 제1 전해질 유로부의 일단부 및 타단부를 실링하는 단계, 및 상기 제2 전해질 용액이 상기 제2 전해질 유로부 및 상기 제2 전해질 유로부와 연결된 개구부에 충진된 상태에서 상기 제2 전해질 유로부의 일단부 및 타단부를 실링하는 단계를 포함할 수 있다.In an embodiment, the forming of the second electrolytic cell may include injecting the first electrolyte solution into one end of the first electrolyte flow path while opening both ends of the first electrolyte flow path, and opening both ends of the second electrolyte flow path. Injecting the second electrolyte solution into one end portion in a state where the first electrolyte solution is filled in an opening connected to the first electrolyte flow passage portion and the first electrolyte flow passage portion. Sealing the other end, and sealing one end and the other end of the second electrolyte flow path part in a state where the second electrolyte solution is filled in the opening connected to the second electrolyte flow path part and the second electrolyte flow path part. It may include a step.
일 실시예에서, 상기 개구부들은 서로 독립적인 다수의 제1 전해질 유로부들 각각과 연결된 제1 개구부들 및 서로 독립적인 다수의 제2 전해질 유로부들과 연결된 제2 개구부들을 포함하고, 상기 제1 개구부들과 상기 제2 개구부들은 상기 제1 방향으로 교호적으로 배치되는 동시에 상기 제2 방향으로 교호적으로 배치될 수 있다.In one embodiment, the openings include first openings connected to each of a plurality of first electrolyte flow path parts independent of each other, and second openings connected to a plurality of second electrolyte flow path parts independent of each other, and the first openings And the second openings may be alternately disposed in the first direction and alternately disposed in the second direction.
일 실시예에서, 상기 개구부들은 상기 제1 전해질 유로부에 연결된 다수의 제1 개구부들 및 상기 제2 전해질 유로부에 연결된 다수의 제2 개구부들을 포함하고, 상기 제1 개구부들과 상기 제2 개구부들은 상기 제1 방향으로 교호적으로 배치되는 동시에 상기 제2 방향으로 교호적으로 배치될 수 있다.In one embodiment, the openings include a plurality of first openings connected to the first electrolyte flow path part and a plurality of second openings connected to the second electrolyte flow path part, and the first openings and the second opening part. They may be alternately arranged in the first direction and alternately arranged in the second direction.
일 실시예에서, 상기 격벽 구조체는 적어도 2 이상의 제1 전해질 유로부들과 적어도 2 이상의 제2 전해질 유로부들을 포함하고, 상기 제1 전해질 유로부들 각각은 상기 제2 방향으로 제1 개구부들을 연결시키며, 상기 제2 전해질 유로부들 각각은 상기 제2 방향으로 제2 개구부들을 연결시킬 수 있다.In one embodiment, the barrier rib structure includes at least two or more first electrolyte flow path portions and at least two or more second electrolyte flow passage portions, each of the first electrolyte flow passage portions connecting first openings in the second direction, Each of the second electrolyte flow path parts may connect the second openings in the second direction.
일 실시예에서, 상기 제1 전해질 유로부들 각각은 서로 독립적이고, 상기 제2 전해질 유로부들 각각도 서로 독립적일 수 있다.In some embodiments, each of the first electrolyte flow path parts may be independent of each other, and each of the second electrolyte flow path parts may be independent of each other.
본 발명의 또 다른 목적을 위한 장치는 상기의 열전 소자가 형성된 배터리를 포함한다. 이때, 상기 열전 소자의 양극 단자와 음극 단자들은 각각 상기 배터리의 양극 및 음극과 연결될 수 있다.An apparatus for still another object of the present invention includes a battery in which the thermoelectric element is formed. In this case, the positive terminal and the negative terminal of the thermoelectric element may be connected to the positive and negative terminals of the battery, respectively.
일 실시예에서, 상기 열전 소자에서 생산된 전력을 저장하고, 상기 배터리로 전달하는 커패시터가 상기 배터리에 형성될 수 있다.In one embodiment, a capacitor that stores the power produced in the thermoelectric element, and delivers to the battery may be formed in the battery.
본 발명의 또 다른 목적을 위한 장치는 상기의 열전 소자가 형성된 배터리 커버를 포함한다. 이때, 상기 열전 소자는 배터리의 양극 및 음극과 각각 접촉하고, 상기 하부 전극들 및 상기 상부 전극들과 전기적으로 연결된 양극 단자 및 음극 단자를 포함할 수 있다.An apparatus for still another object of the present invention includes a battery cover in which the thermoelectric element is formed. In this case, the thermoelectric element may include a positive electrode terminal and a negative electrode terminal that are in contact with the positive electrode and the negative electrode of the battery, respectively, and electrically connected to the lower electrodes and the upper electrodes.
일 실시예에서, 상기 열전 소자와 연결되어 상기 열전 소자가 생산한 전력을 저장하는 커패시터가 상기 배터리 커버에 형성되고, 상기 커패시터에는 배터리와 접촉하여 연결되는 단자가 형성될 수 있다.In an embodiment, a capacitor connected to the thermoelectric element to store power generated by the thermoelectric element may be formed in the battery cover, and the capacitor may be provided with a terminal connected to the battery.
본 발명의 또 다른 목적을 위한 장치는, 상기의 열전 소자를 포함하는 자동차용 선루프 윈도우 또는 온실용 윈도우일 수 있다.An apparatus for still another object of the present invention may be an automotive sunroof window or greenhouse window including the thermoelectric element.
본 발명의 열전 소자, 이의 제조 방법 및 열전 소자를 포함하는 장치에 따르면, 열전 소자가 100℃ 이하의 생활 폐열에 의해서 동작할 수 있고, 출력 전압 및 전력 생산성을 향상시킬 수 있다. 이러한 열전 소자를 전자 장치에 적용하여 전자 장치의 구동에 의해 발생하는 열에 의해 동작하여 전력을 생산할 수 있고, 자동차의 창문이나 온실 등에 용이하게 이용할 수 있다.According to the thermoelectric element, the manufacturing method thereof, and the apparatus including the thermoelectric element of the present invention, the thermoelectric element can be operated by the waste heat of 100 degrees C or less, and the output voltage and the power productivity can be improved. The thermoelectric element may be applied to an electronic device to operate by heat generated by the driving of the electronic device to generate electric power, and to be easily used in a window or a greenhouse of an automobile.
본 발명에서와 같이, 전해셀과 연결된 전해질 채널을 구성함으로써 다수의 전해셀들을 포함하는 열전 소자를 용이하고 간단하게 제조할 수 있다.As in the present invention, a thermoelectric device including a plurality of electrolytic cells may be easily and simply manufactured by configuring an electrolyte channel connected to the electrolytic cell.
도 1은 본 발명의 일 실시예에 따른 열전 소자를 설명하기 위한 단면도이다.1 is a cross-sectional view illustrating a thermoelectric device according to an exemplary embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 열전 소자를 설명하기 위한 사시도이다.2 is a perspective view illustrating a thermoelectric device according to an exemplary embodiment of the present invention.
도 3은 도 2에 도시된 열전 소자의 단면도이다.3 is a cross-sectional view of the thermoelectric element illustrated in FIG. 2.
도 4는 도 2에 도시된 열전 소자의 단위 셀들의 전기적 연결을 설명하기 위한 평면도이다.FIG. 4 is a plan view illustrating electrical connection between unit cells of the thermoelectric element illustrated in FIG. 2.
도 5는 도 4의 열전 소자를 확대한 부분 확대 평면도이다.5 is an enlarged partial plan view of the thermoelectric element of FIG. 4.
도 6은 도 2에 도시된 열전 소자에서 단위 셀들의 개수에 따른 개방 전압의 변화를 나타낸 그래프이다.FIG. 6 is a graph illustrating a change in open voltage according to the number of unit cells in the thermoelectric element illustrated in FIG. 2.
도 7은 도 2에 도시된 열전 소자의 제조 방법을 설명하기 위한 단면도이다.FIG. 7 is a cross-sectional view for describing a method of manufacturing the thermoelectric element illustrated in FIG. 2.
도 8은 도 2에 도시된 열전 소자의 제조 방법을 설명하기 위한 평면도이다.FIG. 8 is a plan view illustrating a method of manufacturing the thermoelectric element illustrated in FIG. 2.
도 9는 본 발명의 다른 실시예에 따른 열전 소자를 설명하기 위한 평면도이다.9 is a plan view illustrating a thermoelectric device according to another exemplary embodiment of the present invention.
도 10은 도 9의 열전 소자의 제조 방법을 설명하기 위한 평면도이다.FIG. 10 is a plan view illustrating a method of manufacturing the thermoelectric element of FIG. 9.
도 11은 본 발명의 또 다른 실시예에 따른 열전 소자를 설명하기 위한 평면도이다.11 is a plan view illustrating a thermoelectric device according to yet another exemplary embodiment of the present invention.
도 12는 도 11의 열전 소자의 제조 방법을 설명하기 위한 평면도이다.FIG. 12 is a plan view illustrating a method of manufacturing the thermoelectric element of FIG. 11.
도 13은 본 발명의 일 실시예에 따른 열전 소자를 포함하는 장치를 설명하기 위한 단면도이다.13 is a cross-sectional view illustrating an apparatus including a thermoelectric device according to an exemplary embodiment of the present invention.
도 14는 도 13에서 열전 소자와 배터리의 연결 관계를 설명하기 위한 도면이다.FIG. 14 is a diagram for describing a connection relationship between a thermoelectric element and a battery in FIG. 13.
도 15 내지 도 17은 본 발명의 일 실시예에 따른 열전 소자를 포함하는 장치를 설명하기 위한 도면들이다.15 to 17 are diagrams for describing an apparatus including a thermoelectric device according to an exemplary embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예들에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들에 대해서만 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. As the inventive concept allows for various changes and numerous modifications, particular embodiments will be described in detail. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 구성요소 등이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 구성요소 등이 존재하지 않거나 부가될 수 없음을 의미하는 것은 아니다. The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that a feature, component, or the like described in the specification exists, and one or more other features or components may not be present or added thereto. It does not mean nothing.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 1은 본 발명의 일 실시예에 따른 열전 소자를 설명하기 위한 단면도이다.1 is a cross-sectional view illustrating a thermoelectric device according to an exemplary embodiment of the present invention.
도 1을 참조하면, 열전 소자(100)는 2개의 하부 전극들(112, 114), 2개의 전해셀(122, 124) 및 1개의 상부 전극(130)을 포함한다.Referring to FIG. 1, the thermoelectric element 100 includes two lower electrodes 112 and 114, two electrolytic cells 122 and 124, and one upper electrode 130.
2개의 하부 전극들(112, 114)은 서로 이격되어 배치되고, 상부 전극(130)은 하부 전극들(112, 114) 상에 배치되되, 상부 전극(130)의 양 단부들이 하부 전극들(112, 114)과 각각 중첩된다.The two lower electrodes 112 and 114 are spaced apart from each other, and the upper electrode 130 is disposed on the lower electrodes 112 and 114, and both ends of the upper electrode 130 are connected to the lower electrodes 112. , 114) respectively.
구체적으로, 하부 전극들(112, 114) 중에서 제1 하부 전극(112)과 상부 전극(130)의 제1 단부 사이에 제1 전해셀(122)이 개재된다. 제2 전해셀(124)은 제1 하부 전극(112)과 이격된 제2 하부 전극(114) 상에 배치되되, 제2 하부 전극(114)과 상부 전극(130)의 제2 단부 사이에 배치된다. 상기 제2 단부는 상부 전극(130)의 제1 단부와 대향하는 반대측의 단부이다. 이때, 제1 하부 전극(112)과 제2 하부 전극(114)은 상부 전극(130)에 비해 상대적으로 온도가 높은 핫 전극이고, 상부 전극(130)은 콜드 전극일 수 있다. 제1 및 제2 하부 전극들(112, 114)이 배치된 면이 외부로부터 열을 제공받고, 상부 전극(130)은 그의 대향면에 배치될 수 있다.Specifically, the first electrolytic cell 122 is interposed between the first lower electrode 112 and the first end of the upper electrode 130 among the lower electrodes 112 and 114. The second electrolytic cell 124 is disposed on the second lower electrode 114 spaced apart from the first lower electrode 112, and is disposed between the second lower electrode 114 and the second end of the upper electrode 130. do. The second end is an end opposite to the first end of the upper electrode 130. In this case, the first lower electrode 112 and the second lower electrode 114 may be hot electrodes having a relatively higher temperature than the upper electrode 130, and the upper electrode 130 may be a cold electrode. The surface on which the first and second lower electrodes 112 and 114 are disposed may receive heat from the outside, and the upper electrode 130 may be disposed on an opposite surface thereof.
제1 및 제2 하부 전극들(112, 114)과 상부 전극(130)은 도전층으로 형성된다. 상기 도전층은 알루미늄, 구리, 은 등의 유색 금속이나, 인듐틴옥사이드(indium tin oxide, ITO) 등의 투명한 금속 산화물로 형성될 수 있다. 이와 달리, 제1 및 제2 하부 전극들(112, 114)과 상부 전극(130)은 탄소계 재료로 형성될 수 있다. 상기 탄소계 재료는 특별히 제한되는 것은 아니지만, 탄소나노튜브(carbon nano tube)나 그래핀(graphene)으로 제1 및 제2 전극들(110, 120)을 형성하는 경우 열전 소자(100)의 특성을 더욱 향상시킬 수 있다.The first and second lower electrodes 112 and 114 and the upper electrode 130 are formed of a conductive layer. The conductive layer may be formed of a colored metal such as aluminum, copper, or silver, or a transparent metal oxide such as indium tin oxide (ITO). Alternatively, the first and second lower electrodes 112 and 114 and the upper electrode 130 may be formed of a carbon-based material. The carbon-based material is not particularly limited, but when the first and second electrodes 110 and 120 are formed of carbon nanotubes or graphenes, characteristics of the thermoelectric element 100 may be changed. It can be further improved.
제1 전해셀(122)은 온도 상승에 의해 환원 반응이 일어나는 양의 열전 계수를 갖는 전해질을 포함하는 전해셀이다. 동시에, 제2 전해셀(124)은 온도 상승에 의해 산화 반응이 일어나는 음의 열전 계수를 갖는 전해질을 포함하는 전해셀이다. 제1 및 제2 전해셀들(122, 124) 각각은 액상(liquid) 또는 겔(gel)일 수 있다. 제1 전해셀(122)이 양의 열전 계수를 갖는 전해셀이고, 제2 전해셀(124)이 음의 열전 계수를 갖는 전해셀이기 때문에, 전자의 이동 경로는 순차적으로 제1 하부 전극(112), 제1 전해셀(122), 상부 전극(130), 제2 전해셀(124) 및 제2 하부 전극(114)이 된다.The first electrolytic cell 122 is an electrolytic cell including an electrolyte having a positive thermoelectric coefficient in which a reduction reaction occurs due to a temperature rise. At the same time, the second electrolytic cell 124 is an electrolytic cell containing an electrolyte having a negative thermoelectric coefficient in which an oxidation reaction occurs by a temperature rise. Each of the first and second electrolytic cells 122 and 124 may be a liquid or a gel. Since the first electrolytic cell 122 is an electrolytic cell having a positive thermoelectric coefficient, and the second electrolytic cell 124 is an electrolytic cell having a negative thermoelectric coefficient, the movement path of electrons is sequentially performed in the first lower electrode 112. ), The first electrolytic cell 122, the upper electrode 130, the second electrolytic cell 124, and the second lower electrode 114.
예를 들어, 제1 전해셀(122)에 포함되는 레독스 커플(redox couple)로서는, Fe2(SO4)3/FeSO4, I-/I3-, Np4 +/NpO2 +, Pu4 +/PuO2 2 +, CN-/CNO-, NO2 -/NO3 -, I-/IO3 -, ClO3 -/ClO4 -, ClO-/ClO2 -, Cl-/ClO- 등을 들 수 있다.For example, a first electrolytic redox couple contained in the cell (122) (redox couple) As, Fe 2 (SO 4) 3 / FeSO 4, I - / I 3-, Np 4 + / NpO 2 +, Pu 4 + / PuO 2 2 +, CN - / CNO -, NO 2 - / NO 3 -, I - / IO 3 -, ClO 3 - / ClO 4 -, ClO - / ClO 2 -, Cl - / ClO - , etc. Can be mentioned.
또한, 제2 전해셀(124)에 포함되는 레독스 커플로서는, K3Fe(CN)6/K4Fe(CN)6, K3Fe(CN)6/(NH4)4Fe(CN)6, Np3 +/Np4 +, Cu+/Cu2 +, Fe2 +/Fe3 +, PuO2 +/PuO2 2 +, Pu3 +/Pu4 +, NpO2 +/NpO2 2+, Tl+/Tl3+, NH4 +/N2H5 +, NH4 +/NH3OH+, Mn2+/Mn3+, Am3+/Am4+ 등을 들 수 있다.As the redox couple included in the second electrolytic cell 124, K 3 Fe (CN) 6 / K 4 Fe (CN) 6 , K 3 Fe (CN) 6 / (NH 4 ) 4 Fe (CN) 6, Np 3 + / Np 4 + , Cu + / Cu 2 + , Fe 2 + / Fe 3 + , PuO 2 + / PuO 2 2 + , Pu 3 + / Pu 4 + , NpO 2 + / NpO 2 2+ , Tl + / Tl 3+ , NH 4 + / N 2 H 5 + , NH 4 + / NH 3 OH + , Mn 2+ / Mn 3+ , Am 3+ / Am 4+ , and the like.
상기와 같이 제1 및 제2 전해셀들(122, 124)을 구성함으로써, 열전 소자(100)가 100 ℃ 이하에서도 동작할 수 있기 때문에, 체온, 휴대용 기기가 발생하는 열 등과 같은 생활 폐열을 재활용할 수 있다.By constructing the first and second electrolytic cells 122 and 124 as described above, since the thermoelectric element 100 can operate even at 100 ° C. or lower, waste heat of living such as body temperature, heat generated by a portable device, etc. are recycled. can do.
일례로, 제1 전해셀(122)은 전해질로서 황산제일철(FeSO4)/황산제이철(Fe2SO4)을 포함하는 전해액을 포함하고, 제2 전해셀(124)은 전해질로서 적혈염(K3[Fe(CN)6])/황혈염(K4[Fe(CN)6])을 포함하는 전해액을 포함할 수 있다.For example, the first electrolytic cell 122 includes an electrolyte solution containing ferrous sulfate (FeSO 4 ) / ferric sulfate (Fe 2 SO 4 ) as an electrolyte, and the second electrolytic cell 124 is an erythritis (K) as an electrolyte. 3 [Fe (CN) 6 ]) / septic solution (K 4 [Fe (CN) 6 ]) may be included.
이와 달리, 제1 전해셀(122) 및 제2 전해셀(124)이 겔(gel) 상태인 경우, 제1 전해셀(122) 및 제2 전해셀(124) 각각은 전해질 이외에, 겔 상태를 유지하기 위한 고분자를 더 포함할 수 있다.On the contrary, when the first electrolytic cell 122 and the second electrolytic cell 124 are in a gel state, each of the first electrolytic cell 122 and the second electrolytic cell 124 may have a gel state in addition to the electrolyte. It may further comprise a polymer for maintaining.
일 실시예에서, 제1 전해셀(122)은 철(Fe) 2가 이온 및/또는 철 3가 이온을 포함할 수 있다. 즉, 제1 전해셀(122)에서 철 2가 이온 또는 철 3가 이온만이 존재하거나 철 2가 이온과 3가 이온이 공존하는 상태가 될 수 있다. 또한, 제2 전해셀(124)은 헥사시아노철 3가 음이온(Fe(CN)6 3 -) 및/또는 헥사시아노철 4가 음이온(Fe(CN)6 4-)을 포함할 수 있다. 철 이온의 산화/환원 반응에 따라 제2 전해셀(124)에서는 헥사시아노철 3가 음이온 또는 4가 음이온만이 존재하거나, 헥사시아노철 3가 음이온과 4가 음이온이 공존하는 상태가 될 수 있다.In an embodiment, the first electrolytic cell 122 may include iron (Fe) divalent ions and / or iron trivalent ions. That is, only the iron divalent ions or the iron trivalent ions may be present in the first electrolytic cell 122 or the iron divalent ions and the trivalent ions may coexist. In addition, the second electrolytic cell 124 may include hexacyano iron trivalent anion (Fe (CN) 6 3 ) and / or hexacyano iron tetravalent anion (Fe (CN) 6 4- ). . According to the oxidation / reduction reaction of iron ions, only the hexacyano iron trivalent anion or tetravalent anion is present in the second electrolytic cell 124, or the hexacyano iron trivalent anion and the tetravalent anion coexist. Can be.
구체적으로, 제1 및 제2 하부 전극들(112, 114)의 온도가 상승하는 경우, 온도 상승에 의해 제1 전해셀(122)에서는 철 3가 이온이 철 2가 이온으로 환원되고, 제2 전해셀(124)에서는 헥사시아노철 4가 이온이 산화되어 헥사시아노철 3가 이온이 된다. 동시에, 제1 및 제2 하부 전극들(112, 114)에 비해 상대적으로 저온인 영역, 즉 상부 전극(130)이 배치된 측의 제1 전해셀(122)에서는 철 2가 이온이 철 3가 이온으로 산화되면서 상부 전극(130)으로 전자를 전달한다. 이때, 제1 전해셀(122)의 환원 및 산화에 의해서 제1 하부 전극(112)과 상부 전극(130) 사이에 약 0.4 내지 0.6 mV의 전위차가 발생한다. 상부 전극(130)이 배치된 측의 제2 전해셀(124)에서는 제1 전해셀(122)의 산화 반응으로 생성된 전자를 상부 전극(130)을 통해 전달 받고, 제2 전해셀(124)의 헥사시아노철 3가 이온이 전자를 받아 환원되어 헥사시아노철 4가 이온이 되며, 제2 하부 전극(114)의 온도 상승에 의해서 헥사시아노철 4가 이온은 산화되어 전자를 방출하고, 이 전자는 제2 하부 전극(114)을 통해서 제2 하부 전극(114)과 연결된 외부 부하(external load)에 제공되어 전력을 생산할 수 있다. 이때, 제2 전해셀(124)의 산화 및 환원에 의해서 상부 전극(130)과 제2 하부 전극(114) 사이에 약 1.4 내지 1.6 mV의 전위차가 발생한다. 이에 따라, 궁극적으로 열전 소자(100)의 온도 변화에 따른 전압 변화인 열전 계수(dV/dT, 단위 mV/K)는 약 1.8 내지 2.2 mV/K일 수 있다.Specifically, when the temperature of the first and second lower electrodes 112 and 114 rises, iron trivalent ions are reduced to iron divalent ions in the first electrolytic cell 122 by the temperature rise, and the second In the electrolytic cell 124, hexacyano iron tetravalent ions are oxidized to become hexacyano iron trivalent ions. At the same time, in the first electrolytic cell 122 on the side where the upper electrode 130 is disposed, which is relatively low temperature compared to the first and second lower electrodes 112 and 114, the iron divalent ions become iron trivalent. The electrons are transferred to the upper electrode 130 while being oxidized to ions. At this time, a potential difference of about 0.4 to 0.6 mV occurs between the first lower electrode 112 and the upper electrode 130 by the reduction and oxidation of the first electrolytic cell 122. In the second electrolytic cell 124 on the side where the upper electrode 130 is disposed, electrons generated by the oxidation reaction of the first electrolytic cell 122 are received through the upper electrode 130, and the second electrolytic cell 124 is provided. The hexacyano iron trivalent ions of the electrons are reduced to become hexacyano iron tetravalent ions. The hexacyano iron tetravalent ions are oxidized by the temperature rise of the second lower electrode 114 to emit electrons. The electrons may be provided to an external load connected to the second lower electrode 114 through the second lower electrode 114 to generate power. In this case, a potential difference of about 1.4 to 1.6 mV is generated between the upper electrode 130 and the second lower electrode 114 by oxidation and reduction of the second electrolytic cell 124. Accordingly, the thermoelectric coefficient (dV / dT, unit mV / K), which is a voltage change according to the temperature change of the thermoelectric element 100, may be about 1.8 to 2.2 mV / K.
열전 소자(100)의 전체적인 열전 계수가 x mV/K일 때, 이의 출력 전압은 하기 식 1과 같이 나타낼 수 있다.When the overall thermoelectric coefficient of the thermoelectric element 100 is x mV / K, its output voltage may be expressed as in Equation 1 below.
[식 1][Equation 1]
출력 전압(mV) = 열전 소자의 열전 계수 (mV/K) × (TH-TC)Output voltage (mV) = thermoelectric coefficient of thermoelectric element (mV / K) × (T H -T C )
식 1에서, TH는 하부 전극(112, 114)의 온도이고, TC는 상부 전극(130)의 온도를 의미하며, 출력 전압의 단위는 mV이며, 온도 단위는 K이다. 일례로, 제1 전해셀(122)이 철 이온을 포함하고 제2 전해셀(124)이 헥사시아노철 이온을 포함하는 경우, 열전 소자(100)의 전체적인 열전 계수 x는 1.96 mV/K일 수 있다.In Equation 1, T H is the temperature of the lower electrodes 112 and 114, T C means the temperature of the upper electrode 130, the unit of the output voltage is mV, the temperature unit is K. For example, when the first electrolytic cell 122 includes iron ions and the second electrolytic cell 124 includes hexacyano iron ions, the overall thermoelectric coefficient x of the thermoelectric element 100 may be 1.96 mV / K. Can be.
상기에서 설명한 열전 소자(100)는 제1 및 제2 전해셀들(122, 124)을 이용함으로써 약 100℃ 이하의 열에 의해서도 동작할 수 있다. 이에 따라, 100℃의 생활 폐열을 효율적으로 재활용할 수 있다. 또한, 열전 소자(100)에서 전자의 이동 경로가 제1 하부 전극(112)을 시작으로 순차적으로 제1 전해셀(122), 상부 전극(130), 제2 전해셀(124) 및 제2 하부 전극(114) 순이 되므로, 제2 하부 전극(114) 상에 제2 전해셀(124)과 이격하여 제3 전해셀(미도시)이 배치되고 제2 하부 전극(114)과 이격되어 제3 하부 전극(미도시)이 배치되며 그 위에 제4 전해셀(미도시)이 배치되며, 상기 제3 및 제4 전해셀들 상에 또 다른 상부 전극(미도시) 경우, 제1 및 제2 전해셀들(122, 124)과 상기 제3 및 제4 전해셀들이 상기 상부 전극들 및 하부 전극들에 의해 전기적으로 순차 연결될 수 있다. 즉, 도 1에 도시된 열전 소자(100)를 단위 셀로 하여 다수의 단위 셀들을 용이하게 직렬로 연결할 수 있다. 단위 셀이 1개의 상부 전극 및 2개의 하부 전극들을 포함하는 것으로 정의할 때, 2개의 단위 셀들이 1개의 하부 전극을 공유하는 구조로 연속적으로 연결될 수 있다. 반대로, 1개의 하부 전극과 2개의 상부 전극들을 포함하는 것으로 정의하는 경우, 2개의 단위 셀들이 1개의 상부 전극을 공유하는 구조로 연속적으로 연결될 수 있다.The thermoelectric element 100 described above may operate by heat of about 100 ° C. or less by using the first and second electrolytic cells 122 and 124. Thereby, the waste heat of 100 degreeC can be recycled efficiently. In addition, the movement path of electrons in the thermoelectric element 100 sequentially starts with the first lower electrode 112, and thus, the first electrolytic cell 122, the upper electrode 130, the second electrolytic cell 124, and the second lower part. Since the electrode 114 is in order, a third electrolytic cell (not shown) is disposed on the second lower electrode 114 to be spaced apart from the second electrolytic cell 124, and is spaced apart from the second lower electrode 114. An electrode (not shown) is disposed and a fourth electrolytic cell (not shown) is disposed thereon, and in the case of another upper electrode (not shown) on the third and fourth electrolytic cells, the first and second electrolytic cells are disposed. And 122 and 124 and the third and fourth electrolytic cells may be electrically connected sequentially by the upper electrodes and the lower electrodes. That is, a plurality of unit cells can be easily connected in series using the thermoelectric element 100 shown in FIG. 1 as a unit cell. When the unit cell is defined as including one upper electrode and two lower electrodes, two unit cells may be continuously connected in a structure sharing one lower electrode. On the contrary, when defined as including one lower electrode and two upper electrodes, two unit cells may be continuously connected in a structure sharing one upper electrode.
적어도 2개 이상의 단위 셀들을 포함하는 경우, 단위 셀들에 포함되는 전해셀들이 하부 전극들과 상부 전극들에 의해 열전계수가 양인 전해셀과 음인 전해셀이 교호적으로 전기적으로 연결되는 경우를, 단위 셀들이 직렬 연결된다고 할 수 있다. 이때, 하부 전극들 중 2개가 각각 양극 단자와 음극 단자와 연결될 수 있고, 하부 전극들과 상부 전극들의 물리적인 배열은 한정되지 않고, 다수의 제1 전해셀들(122)과 다수의 제2 전해셀들(124)이 교호적으로 연결되면 된다.In the case of including at least two or more unit cells, a case where the electrolytic cells included in the unit cells are electrically connected alternately and electrically between the positive and negative electrolytic cell by the lower electrode and the upper electrode, It can be said that the cells are connected in series. In this case, two of the lower electrodes may be respectively connected to the positive electrode terminal and the negative electrode terminal, and the physical arrangement of the lower electrodes and the upper electrodes is not limited, and the plurality of first electrolytic cells 122 and the plurality of second electrolysiss are not limited. Cells 124 may be connected alternately.
이하에서는, 도 2 내지 도 12를 참조하여, 도 1에서 설명한 열전 소자(100)를 단위 셀로 하여 복수개의 단위 셀을 포함하는 열전 소자들의 다양한 구조, 단위 셀들의 직렬연결 및 이의 제조 방법에 대해서 구체적으로 설명하기로 한다.Hereinafter, various structures of thermoelectric elements including a plurality of unit cells, a series connection of unit cells, and a method of manufacturing the same will be described in detail with reference to FIGS. 2 to 12 as a unit cell. This will be described.
도 2는 본 발명의 일 실시예에 따른 열전 소자를 설명하기 위한 사시도이다.2 is a perspective view illustrating a thermoelectric device according to an exemplary embodiment of the present invention.
도 2를 참조하면, 열전 소자(601)는 하부 기판(200) 상에 형성된 다수의 하부 전극들(210), 다수의 제1 전해셀들(410), 다수의 제2 전해셀들(420) 및 상부 기판(500) 상에 형성된 다수의 상부 전극들(510, 도 3 참조)을 포함한다. 이때, 열전 소자(601)는 전해질 채널들(410, 420, 도 5 참조)을 더 포함한다. 열전 소자(601)는 격벽 구조체(300)를 더 포함할 수 있다.Referring to FIG. 2, the thermoelectric element 601 includes a plurality of lower electrodes 210, a plurality of first electrolytic cells 410, and a plurality of second electrolytic cells 420 formed on the lower substrate 200. And a plurality of upper electrodes 510 (see FIG. 3) formed on the upper substrate 500. In this case, the thermoelectric element 601 further includes electrolyte channels 410 and 420 (see FIG. 5). The thermoelectric element 601 may further include the barrier rib structure 300.
하부 전극들(210)은 하부 기판(200)에 서로 다른 2개의 방향으로 m×n의 매트릭스 형태(이때, m과 n은 각각 독립적으로 1 이상의 자연수이되, m과 n이 동시에 1인 경우는 제외한다)로 배열될 수 있다. 예를 들어, 하부 전극들(210)의 열전 소자(601)의 제1 방향(D1)을 따라 일렬로 서로 이격되어 n개가 배치되는 동시에, 제1 방향(D1)과 교차하는 제2 방향(D2)을 따라 이격되어 일렬로 m개가 배치될 수 있다. 제1 방향(D1)은 제2 방향(D2)과 수직한 방향일 수 있다.The lower electrodes 210 form m × n matrices in two different directions on the lower substrate 200 (in this case, m and n are each independently one or more natural numbers except that m and n are simultaneously 1). Can be arranged). For example, n are spaced apart from each other in a line along the first direction D1 of the thermoelectric elements 601 of the lower electrodes 210, and the second direction D2 intersects with the first direction D1. M may be arranged in a line apart from each other. The first direction D1 may be a direction perpendicular to the second direction D2.
상부 전극들(510)도 동일하게 m×n의 매트릭스 형태로 상부 기판(500)에 배열되되, 1개의 상부 전극(510)의 2개의 하부 전극들(210)과 중첩되어 배치될 수 있도록 배열된다.Similarly, the upper electrodes 510 are arranged on the upper substrate 500 in a matrix form of m × n, and are arranged to overlap the two lower electrodes 210 of one upper electrode 510. .
제1 전해셀(410) 및 제2 전해셀(420)은 제1 방향(D1) 및 제2 방향(D2)을 따라 교호적으로 일렬로 배열된다. 따라서, 제1 방향(D1)으로 제1 전해셀(410) 및 제2 전해셀(420)이 교호적으로 배치되고, 제2 방향(D2)으로도 제1 전해셀(410) 및 제2 전해셀(420)이 교호적으로 배치된다.The first electrolytic cell 410 and the second electrolytic cell 420 are alternately arranged along the first direction D1 and the second direction D2. Accordingly, the first electrolytic cell 410 and the second electrolytic cell 420 are alternately arranged in the first direction D1, and the first electrolytic cell 410 and the second electrolysis are also arranged in the second direction D2. The cells 420 are alternately placed.
어느 하나의 제2 전해셀(420)을 기준으로 제1 방향(D1)의 일측과 제1 방향(D1)의 반대 방향인 타측에 각각 제1 전해셀들(410)이 배치된다. 또한, 어느 하나의 제2 전해셀(420)을 기준으로 제2 방향(D2)의 일측과 제2 방향(D2)의 반대 방향인 타측에 각각 제1 전해셀들(410)이 배치될 수 있다. 이에 따라, 1개의 하부 전극(210) 상에는 서로 다른 종류의 전해액을 포함하는 2개의 전해셀들(410, 420)이 배치된다. 1개의 하부 전극(210)에 1개의 제1 전해셀(410)과 1개의 제2 전해셀(420)이 배치된 구조가 단위 구조가 된다.The first electrolytic cells 410 are disposed on one side of the first direction D1 and the other side opposite to the first direction D1 based on one of the second electrolytic cells 420. In addition, the first electrolytic cells 410 may be disposed on one side of the second direction D2 and the other side opposite to the second direction D2 based on any one of the second electrolytic cells 420. . Accordingly, two electrolyte cells 410 and 420 including different kinds of electrolytes are disposed on one lower electrode 210. A unit structure includes a structure in which one first electrolytic cell 410 and one second electrolytic cell 420 are disposed on one lower electrode 210.
이때, 제1 행 그룹의 제1 열에 배치된 제1 전해셀(410)은 더미 셀일 수 있고, 제m 행 그룹의 제1 열에 배치된 제2 전해셀(420)은 더미 셀일 수 있다. 이러한 더미 셀들은 생략할 수 있다. 본 발명에서의 m×n 매트릭스 형태에서는 이러한 더미 셀들을 포함된 구조뿐만 아니라 실제로 숫자로서는 m×n개의 셀들을 가지는 것은 아니지만 이들을 제외하는 구조까지도 포함하는 것으로 정의한다.In this case, the first electrolytic cell 410 disposed in the first column of the first row group may be a dummy cell, and the second electrolytic cell 420 disposed in the first column of the mth row group may be a dummy cell. These dummy cells may be omitted. In the m × n matrix form according to the present invention, not only a structure including such dummy cells but also a structure including not including m × n cells as numbers but excluding them.
한편, 1개의 상부 전극(510) 상에도 2개의 서로 다른 전해셀들(410, 420)이 배치된다. 제1 전해셀(410)은 도 1에서 설명한 제1 전해셀(122)과 대응되고, 제2 전해셀(420)은 도 1에서 설명한 제2 전해셀(124)과 대응하고, 각각은 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.Meanwhile, two different electrolytic cells 410 and 420 are disposed on one upper electrode 510. The first electrolytic cell 410 corresponds to the first electrolytic cell 122 described with reference to FIG. 1, and the second electrolytic cell 420 corresponds to the second electrolytic cell 124 described with reference to FIG. 1, each of which is substantially Duplicate detailed description is omitted since it is the same.
격벽 구조체(300)는 하부 기판(200)과 상부 기판(500) 사이에 배치되고, 전해셀들(410, 420)을 공간적으로 분리하는 역할을 한다. 동시에 격벽 구조체(300)는 전해질 채널들(410, 420)을 형성하는 전해질 유로부들(320, 330)을 더 포함하는데, 이에 대해서는 도 5를 참조하여 후술하기로 한다.The partition structure 300 is disposed between the lower substrate 200 and the upper substrate 500, and serves to spatially separate the electrolytic cells 410 and 420. At the same time, the barrier rib structure 300 further includes electrolyte flow path parts 320 and 330 forming the electrolyte channels 410 and 420, which will be described later with reference to FIG. 5.
격벽 구조체(300)는 전해셀들(410, 420) 각각과 대응하는 개구부들(312)을 포함하고, 개구부들(312)을 형성하는 격벽에 의해서 전해셀들(410, 420)이 서로 분리될 수 있다. 격벽 구조체(300)에는 m×n의 매트릭스 형태의 개구부들(312)이 형성될 수 있다. 격벽 구조체(300)의 격벽의 높이는 일정할 수 있다. 이와 달리, 격벽 구조체(300)에서 하부 전극들(210) 사이에 대응하는 격벽 부분의 높이는, 하부 전극들(210) 상에 배치되는 격벽 부분의 높이보다 높을 수 있다.The barrier rib structure 300 includes openings 312 corresponding to each of the electrolytic cells 410 and 420, and the electrolyte cells 410 and 420 may be separated from each other by the partition wall forming the openings 312. Can be. The partition structure 300 may have openings 312 having a matrix shape of m × n. The height of the barrier rib of the barrier rib structure 300 may be constant. Alternatively, the height of the partition wall portion corresponding to the lower electrodes 210 in the partition structure 300 may be higher than the height of the partition wall portions disposed on the lower electrodes 210.
도 3은 도 2에 도시된 열전 소자의 단면도이다.3 is a cross-sectional view of the thermoelectric element illustrated in FIG. 2.
도 3을 도 2와 함께 참조하면, 열전 소자(601)의 단위 셀(UC)은 2개의 하부 전극들(210), 제1 전해셀(410), 제2 전해셀(420) 및 1개의 상부 전극(510)을 포함한다.Referring to FIG. 3 together with FIG. 2, the unit cell UC of the thermoelectric element 601 includes two lower electrodes 210, a first electrolytic cell 410, a second electrolytic cell 420, and one upper part. Electrode 510.
이와 반대로, 단위 셀(UC)은 1개의 하부 전극(210), 제1 전해셀(410), 제2 전해셀(420) 및 2개의 상부 전극들(510)로 정의될 수도 있다.In contrast, the unit cell UC may be defined as one lower electrode 210, a first electrolytic cell 410, a second electrolytic cell 420, and two upper electrodes 510.
도 4는 도 2에 도시된 열전 소자의 단위 셀들의 전기적 연결을 설명하기 위한 평면도이다.FIG. 4 is a plan view illustrating electrical connection between unit cells of the thermoelectric element illustrated in FIG. 2.
도 4를 도 2 및 도 3과 함께 참조하면, 서로 인접한 단위 셀들(UC)이 하부 전극(210)을 공유하기 때문에 이에 의해서 서로 연결될 수 있다. 반대로, 단위 셀(UC)이 1개의 하부 전극(210), 제1 전해셀(410), 제2 전해셀(420) 및 2개의 상부 전극들(510)로 정의되는 경우에는 서로 인접한 단위 셀들(UC)은 상부 전극(510)을 공유하기 때문에 서로 연결될 수 있다. "인접하게 배치된다"는 어느 하나의 단위 셀(UC)을 중심으로 제1 방향(D1), 제1 방향(D1)의 반대방향, 제2 방향(D2) 또는 제2 방향(D2)의 반대방향에 배치된 경우를 의미한다. Referring to FIG. 4 together with FIGS. 2 and 3, unit cells UC adjacent to each other share the lower electrode 210, and thus may be connected to each other. On the contrary, when the unit cell UC is defined as one lower electrode 210, a first electrolytic cell 410, a second electrolytic cell 420, and two upper electrodes 510, unit cells adjacent to each other ( UC) may be connected to each other because they share the upper electrode 510. The term “adjacently disposed” refers to a first direction D1, an opposite direction of the first direction D1, a second direction D2, or an opposite direction of the second direction D2 about one unit cell UC. It means the case arranged in the direction.
이하에서, m×n 배열의 매트릭스에서, 제n 열은 마지막 열을, 제m 행은 매트릭스 배열에서 마지막 행을 의미하며, 제x 행은 제1 행부터 제m 행까지 중에서 어느 하나의 행을 의미하고, 제y 열은 제1 열부터 제n 열까지 중에서 어느 하나의 열을 의미한다. 이때, m, n, x 및 y는 각각 독립적으로 자연수를 나타낸다.Hereinafter, in the matrix of the m × n array, the nth column refers to the last column, the mth row refers to the last row in the matrix array, and the xth row refers to any one of the first to mth rows. The column y refers to any one column from the first column to the nth column. At this time, m, n, x and y each independently represent a natural number.
구체적으로, 하부 기판(200)에 제1 방향(D1)을 따라 일렬로 첫 번째 열인 제1 열부터 제n 열까지 배열된 제1 전해셀들(410)을 첫 번째 행 그룹인 제1 행 그룹이라고 할 때, 제1 행 그룹을 기준으로 제2 방향(D2)으로 제2 행 그룹, 제3 행 그룹 등의 순으로 마지막 행 그룹인 제m 행 그룹까지 배치된다. 동일하게, 제1 행 그룹에는 제1 방향(D1)을 따라 일렬로 배열된 제2 전해셀들(420)이 포함되며, 제2 행 그룹, 제3 행 그룹 등의 순으로 제m 행 그룹까지도 동일하게 적용된다. 예를 들어, 제1 행 그룹에서는 제1 열이 제1 전해셀(410)이고 제2 열이 제2 전해셀(420)이며, 제2 행 그룹에서는 제1 열이 제2 전해셀(420)이고 제2 열이 제1 전해셀(410)일 수 있다. 다만, 제1 행 그룹에서 첫 번째 제2 전해셀(420)은 제2 열의 제2 전해셀(420)이며, 제2 행 그룹에서 첫 번째 제1 전해셀(410)은 제2 열의 제1 전해셀(410)이 된다. 상기와 같은 설명은 이하의 매트릭스 배열에 대한 설명에서도 동일하게 적용된다.In detail, the first row group includes the first electrolytic cells 410 arranged from the first column to the nth column, which are the first column, in a row along the first direction D1 in the lower substrate 200. In this case, the first row group is arranged in the second direction D2 in order of the second row group, the third row group, and so on, up to the m-th row group, which is the last row group. Similarly, the first row group includes second electrolytic cells 420 arranged in a line along the first direction D1, and even the m row group in the order of the second row group, the third row group, and the like. The same applies. For example, in the first row group, the first column is the first electrolytic cell 410 and the second column is the second electrolytic cell 420, and in the second row group, the first column is the second electrolytic cell 420. And the second column may be the first electrolytic cell 410. However, in the first row group, the first second electrolytic cell 420 is the second electrolytic cell 420 in the second column, and in the second row group, the first first electrolytic cell 410 is the first electrolytic cell in the second column. Cell 410. The same description applies to the following description of the matrix arrangement.
하나의 행에서는, 상부 전극(510)의 양단부가 2개의 하부 전극들(210)의 단부들과 각각 중첩되도록 배치된다.In one row, both ends of the upper electrode 510 are disposed to overlap each of the ends of the two lower electrodes 210.
행과 행 사이에서는, 최외곽에 배치된 전해셀들, 예를 들면, 열전 소자(601)의 제1 가장자리에 배치된 첫 번째 행인 제1 행의 마지막 열인 제n 열의 전해셀과, 그와 마주하면서 상기 제1 가장자리에 배치된 제2 행의 마지막 열인 제n 열의 전해셀이 1개의 상부 전극(510)에 의해서 연결될 수 있다. 이때, 1개의 상부 전극(510)에 의해서 연결되는 2개의 전해셀들은 서로 다른 전해셀들, 즉 양의 열전계수를 갖는 제1 전해셀(410) 및 음의 열전계수를 갖는 제2 전해셀(420)을 포함한다. 또한, 상기 제1 가장자리와 마주하는 제2 가장자리에 배치된 제2 행의 첫 번째 열인 제1 열의 전해셀과, 그와 마주하면서 상기 제2 가장자리에 배치된 제3 행의 첫 번째 열인 제1 열의 전해셀이 1개의 상부 전극(510)에 의해서 연결될 수 있다. 이와 같은 방식으로, 열전 소자(601)의 단위 셀들(UC)이 전체적으로 직렬 연결될 수 있다.Between the rows and the rows, the outermost electrolytic cells, for example, the electrolytic cells of the nth column, which is the last column of the first row, which is the first row disposed at the first edge of the thermoelectric element 601, are opposite thereto. The electrolytic cells of the nth column, which is the last column of the second row disposed at the first edge, may be connected by one upper electrode 510. In this case, two electrolytic cells connected by one upper electrode 510 are different electrolytic cells, that is, a first electrolytic cell 410 having a positive thermoelectric coefficient and a second electrolytic cell having a negative thermoelectric coefficient ( 420). In addition, the first column of the first column of the first row of the second row disposed on the second edge facing the first edge and the first column of the first column of the third row disposed on the second edge facing the first edge Electrolytic cells may be connected by one upper electrode 510. In this manner, the unit cells UC of the thermoelectric element 601 may be connected in series as a whole.
제x 행 그룹에서 제1 행의 제1 가장자리에 배치된 전해셀이 제1 전해셀(410)인 경우, 제x+1 행 그룹에서 제1 행의 제1 가장자리에 배치된 전해셀은 제2 전해셀(420)이 될 수 있다. 이와 달리, 제x 행 그룹에서 제1 행의 제1 가장자리에 배치된 전해셀이 제2 전해셀(420)인 경우, 제x+1 행 그룹에서 제1 행의 제1 가장자리에 배치된 전해셀은 제1 전해셀(410)이 될 수 있다.When the electrolytic cell disposed at the first edge of the first row in the xth row group is the first electrolytic cell 410, the electrolytic cell disposed at the first edge of the first row in the x + 1 row group is second It may be an electrolytic cell 420. In contrast, when the electrolytic cell disposed at the first edge of the first row in the xth row group is the second electrolytic cell 420, the electrolytic cell disposed at the first edge of the first row in the x + 1 row group May be the first electrolytic cell 410.
경우에 따라, 제1 가장자리, 제2 가장자리, 이들을 연결하는 제3 가장자리 및 상기 제3 가장자리와 마주하는 제4 가장자리 중 어느 하나의 가장자리에 배치된 하부 전극(210)이나 상부 전극(510)은 외부와 연결되는 배선과 연결될 수 있다.In some cases, the lower electrode 210 or the upper electrode 510 disposed at any one of the first edge, the second edge, the third edge connecting the third edge, and the fourth edge facing the third edge may be external. It may be connected to the wiring connected with.
도 5는 도 4의 열전 소자를 확대한 부분 확대 평면도이다.5 is an enlarged partial plan view of the thermoelectric element of FIG. 4.
도 5에서는 도 4의 열전 소자(601) 중에서, 제x 행 그룹과 제x+1 행 그룹의 제1 및 제2 전해셀들(410, 420)을 부분적으로 확대하여 도시하였고, 제1 및 제2 전해셀들(410, 420)은 전해질 채널들(411, 421)과 연결된 구조를 갖는다.In FIG. 5, the first and second electrolytic cells 410 and 420 of the x th row group and the x + 1 th row group are partially enlarged among the thermoelectric elements 601 of FIG. 4. The two electrolytic cells 410 and 420 have a structure connected to the electrolyte channels 411 and 421.
도 5를 참조하면, 제1 전해셀들(410) 각각은 양단이 주입구와 배출구로 정의되는 제1 전해질 채널(411)에 연결된다. 1개의 제1 전해셀(410)은 1개의 제1 전해질 채널(411)에 연결된다. 이때, 제1 전해질 채널(411)의 주입구와 배출구는 실링(sealing)된 상태이다. 다수의 제1 전해질 채널들(411)은 서로 물리적으로, 전기적으로 분리된 상태로 존재한다. 제1 전해셀들(410)과 제1 전해질 채널들(411)에 온도 상승에 의해 환원 반응이 일어나는 양의 열전 계수를 갖는 전해질을 포함하는 제1 전해질 용액이 충진된다. Referring to FIG. 5, each of the first electrolytic cells 410 is connected to a first electrolyte channel 411 whose both ends are defined as an inlet and an outlet. One first electrolytic cell 410 is connected to one first electrolyte channel 411. In this case, the inlet and outlet of the first electrolyte channel 411 are sealed. The plurality of first electrolyte channels 411 are physically and electrically separated from each other. The first electrolyte cells 410 and the first electrolyte channels 411 are filled with a first electrolyte solution including an electrolyte having a positive thermoelectric coefficient in which a reduction reaction occurs due to a temperature rise.
또한, 제2 전해셀들(420) 각각은 양단이 주입구와 배출구로 정의되는 제2 전해질 채널(421)에 연결된다. 1개의 제1 전해셀(420)은 1개의 제2 전해질 채널(421)에 연결된다. 이때, 제2 전해질 채널(421)의 주입구와 배출구는 실링된 상태이다. 다수의 제2 전해질 채널들(421)도 서로 물리적으로, 전기적으로 분리된 상태이며, 뿐만 아니라 제1 전해질 채널들(411)과도 물리적, 전기적으로 분리된 상태이다. 제2 전해셀들(420)과 제2 전해질 채널들(421)에 온도 상승에 의해 산화 반응이 일어나는 음의 열전 계수를 갖는 전해질을 포함하는 제2 전해질 용액이 충진된다.In addition, each of the second electrolytic cells 420 is connected to a second electrolyte channel 421 whose both ends are defined as an inlet and an outlet. One first electrolytic cell 420 is connected to one second electrolyte channel 421. In this case, the inlet and outlet of the second electrolyte channel 421 are sealed. The plurality of second electrolyte channels 421 are also physically and electrically separated from each other, as well as physically and electrically separated from the first electrolyte channels 411. The second electrolyte cells 420 and the second electrolyte channels 421 are filled with a second electrolyte solution including an electrolyte having a negative thermoelectric coefficient in which an oxidation reaction occurs due to a temperature rise.
도 6은 도 2에 도시된 열전 소자에서 단위 셀들의 개수에 따른 개방 전압의 변화를 나타낸 그래프이다.FIG. 6 is a graph illustrating a change in open voltage according to the number of unit cells in the thermoelectric element illustrated in FIG. 2.
도 6을 도 4와 함께 참조하면, 도 2 내지 도 5에서 설명한 열전 소자(601)의 열전 계수는 [단위 셀의 열전계수 × N] mV/K일 수 있다. 여기서, N은 단위 셀들(UC)의 개수(정수)이고, 상기 단위 셀들(UC)의 개수는 상부 전극(510)의 개수와 실질적으로 동일할 수 있다. 열전 소자(601)에서, 1개의 단위 셀(UC)의 출력 전압은 하기 식 2와 같이 나타낼 수 있다.Referring to FIG. 6 together with FIG. 4, the thermoelectric coefficients of the thermoelectric elements 601 described with reference to FIGS. 2 to 5 may be [thermoelectric coefficient × N] mV / K of a unit cell. Here, N may be the number (integer) of the unit cells UC, and the number of the unit cells UC may be substantially the same as the number of the upper electrodes 510. In the thermoelectric element 601, the output voltage of one unit cell UC may be expressed by Equation 2 below.
[식 2][Equation 2]
출력 전압 = 열전 소자의 열전계수 × ΔTOutput voltage = thermoelectric coefficient of thermoelectric element × ΔT
식 2에서, ΔT는 하부 전극과 상부 전극 사이의 온도 차이를 나타낸다.In Equation 2, ΔT represents the temperature difference between the lower electrode and the upper electrode.
도 6에 도시한 그래프는, 실제로 도 2 내지 도 5에서 설명한 열전 소자(601)와 실질적으로 동일한 열전 소자를 제조하고, 이의 개방 전압을 측정한 그래프로서, 실제로 단위 셀(UC)의 개수와 개방 전압이 실질적인 비례 관계에 있음을 알 수 있다.The graph shown in FIG. 6 is a graph in which a thermoelectric element substantially the same as the thermoelectric element 601 described in FIGS. 2 to 5 is manufactured and its open voltage is measured. In fact, the number and opening of the unit cells UC are actually shown. It can be seen that the voltage is in substantial proportional relationship.
도 7은 도 2에 도시된 열전 소자의 제조 방법을 설명하기 위한 단면도이다.FIG. 7 is a cross-sectional view for describing a method of manufacturing the thermoelectric element illustrated in FIG. 2.
도 7을 참조하면, 하부 기판(200) 상에 하부 전극들(210)을 형성하고, 그 위에 격벽 구조체(300)를 배치시킨다.Referring to FIG. 7, lower electrodes 210 are formed on the lower substrate 200, and the partition structure 300 is disposed thereon.
구체적으로, 하부 기판(200) 상에 금속층을 증착하고, 포토리소그래피 공정을 이용하여 상기 금속층을 패터닝하여 하부 전극들(210)을 형성할 수 있다. 이와 달리, 하부 전극들(210)은 도전성 물질을 프린팅하여 형성할 수도 있다.In detail, the lower electrodes 210 may be formed by depositing a metal layer on the lower substrate 200 and patterning the metal layer using a photolithography process. Alternatively, the lower electrodes 210 may be formed by printing a conductive material.
격벽 구조체(300)를 하부 전극들(210)이 형성된 하부 기판(200) 상에 배치시킨다. 이때, 격벽 구조체(300)의 격벽 부분은 동일한 두께(Hw)를 갖는다. 다수의 개구부들(312)은 제1 전해질 용액이 채워져 제1 전해셀(410)이 되는 제1 개구부(OP1)와 제2 전해질 용액이 채워져 제2 전해셀(420)이 되는 제2 개구부(OP2)로 구분될 수 있다. 다수의 제1 개구부들(OP1) 각각은 다수의 제1 전해질 유로부들(320)과 일대일 대응으로 연결되고, 다수의 제2 개구부들(OP2) 각각은 다수의 제2 전해질 유로부들(330)과 일대일 대응으로 연결된다. 이때, "일대일 대응"은 1개의 전해셀이 1개의 전해질 유로부와 연결됨을 의미한다.The barrier rib structure 300 is disposed on the lower substrate 200 on which the lower electrodes 210 are formed. At this time, the partition portion of the partition structure 300 has the same thickness (Hw). The plurality of openings 312 may include a first opening OP1 that is filled with a first electrolyte solution and becomes a first electrolyte cell 410, and a second opening OP2 that is filled with a second electrolyte solution and becomes a second electrolyte cell 420. ) Can be separated. Each of the plurality of first openings OP1 may be connected to the plurality of first electrolyte flow path parts 320 in a one-to-one correspondence, and each of the plurality of second openings OP2 may be connected to the plurality of second electrolyte flow path parts 330. It is connected in a one-to-one correspondence. At this time, "one-to-one correspondence" means that one electrolytic cell is connected to one electrolyte flow path part.
이어서, 상부 기판(500) 상에 상부 전극들(510)을 형성하고, 상부 전극들(510)이 형성된 상부 기판(500)을 하부 기판(200) 및 격벽 구조체(300)와 어셈블리한다. 이때, 상부 전극들(510)이 형성된 상부 기판(500)을 가압함으로써 상부 전극들(510)과 하부 전극들(210)에 격벽 구조체(300)의 상단부와 하단부가 "A"와 같이 부분적으로 삽입된 구조를 가질 수 있다.Subsequently, upper electrodes 510 are formed on the upper substrate 500, and the upper substrate 500 on which the upper electrodes 510 are formed is assembled with the lower substrate 200 and the barrier rib structure 300. At this time, the upper and lower portions of the barrier rib structure 300 are partially inserted into the upper electrodes 510 and the lower electrodes 210 by pressing the upper substrate 500 on which the upper electrodes 510 are formed, such as “A”. It can have a structure.
도 7과 같이 하부 기판(200), 격벽 구조체(300) 및 상부 기판(400)의 어셈블리로 인해, 상하 방향으로는 폐쇄된 구조를 갖게 된다. 반면, 좌우 방향으로는 격벽 구조체(300)에 형성된 제1 및 제2 전해질 유로부들(320, 330)에 의해서 개방된 상태를 갖는다. 이때, 제1 및 제2 전해질 유로부들(320, 330) 각각의 주입구와 배출구는 도 5에서 실링된 것과 달리 개방된 상태를 갖는다.Due to the assembly of the lower substrate 200, the barrier rib structure 300, and the upper substrate 400 as shown in FIG. 7, the structure is closed in the vertical direction. On the other hand, in the left and right directions, the first and second electrolyte flow path parts 320 and 330 formed in the barrier rib structure 300 are opened. In this case, the injection hole and the discharge hole of each of the first and second electrolyte flow path parts 320 and 330 have an open state unlike that of FIG. 5.
하부 기판(200), 격벽 구조체(300) 및 상부 기판(400)가 어셈블리된 상태에서, 제1 전해질 용액과 제2 전해질 용액을 제1 및 제2 전해질 유로부들(320, 330) 각각에 주입시킨다.In the state where the lower substrate 200, the barrier rib structure 300 and the upper substrate 400 are assembled, the first electrolyte solution and the second electrolyte solution are injected into the first and second electrolyte flow path parts 320 and 330, respectively. .
도 8은 도 2에 도시된 열전 소자의 제조 방법을 설명하기 위한 평면도이다.FIG. 8 is a plan view illustrating a method of manufacturing the thermoelectric element illustrated in FIG. 2.
도 8을 참조하면, 제1 전해질 용액과 제2 전해질 용액을 제1 및 제2 전해질 유로부들(320, 330) 각각에 주입시킨다. 제1 및 제2 전해질 유로부들(320, 330)의 구조는 제1 및 제2 전해질 채널들(411, 412)의 형태와 실질적으로 동일하다. 이때, 제1 전해질 용액은 제1 공급부(PV1)로부터 일괄적으로 공급되고, 모든 제1 전해질 유로부들(320)의 주입구들이 제1 공급부(PV1)에 연결된다. 또한, 제2 전해질 용액은 제2 공급부(PV2)로부터 일괄적으로 공급되고, 모든 제2 전해질 유로부들(330)의 주입구들이 제2 공급부(PV2)에 연결된다.Referring to FIG. 8, a first electrolyte solution and a second electrolyte solution are injected into each of the first and second electrolyte flow path parts 320 and 330. The structure of the first and second electrolyte flow path parts 320 and 330 is substantially the same as that of the first and second electrolyte channels 411 and 412. At this time, the first electrolyte solution is collectively supplied from the first supply part PV1, and injection holes of all the first electrolyte flow path parts 320 are connected to the first supply part PV1. In addition, the second electrolyte solution is collectively supplied from the second supply part PV2, and the injection holes of all the second electrolyte flow path parts 330 are connected to the second supply part PV2.
제1 및 제2 전해질 유로부들(320, 330) 각각이 제1 및 제2 공급부들(PV1, PV2)에 연결되면, 모세관 현상에 의해서 제1 공급부(PV1)의 제1 전해질 용액이 제1 전해질 유로부들(320)을 따라 제1 개구부(OP1)에 도달하여 제1 개구부(OP1)를 충진시킨다. 제1 전해질 용액이 제1 개구부(OP1)를 채우되, 제1 전해질 유로부들(320)의 배출구로 배출되기 전에 제1 전해질 유로부들(320)의 배출구를 실링하고, 제1 공급부(PV)를 제거한 후 제1 전해질 유로부들(320)의 주입구 또한 실링한다. 동일하게, 제2 전해질 유로부들(330)의 주입구들을 제2 공급부(PV2)와 연결시키고 제2 개구부들(OP2)을 제2 전해질 용액으로 충진시키고 배출구들을 실링한 후에 제2 공급부(PV2)를 제거하고 주입구들을 실링하여 도 5에서 설명한 열전 소자(601)와 같은 구조를 형성할 수 있다.When each of the first and second electrolyte flow path parts 320 and 330 is connected to the first and second supply parts PV1 and PV2, the first electrolyte solution of the first supply part PV1 is first electrolyte by capillary action. The first opening OP1 is reached along the flow paths 320 to fill the first opening OP1. While the first electrolyte solution fills the first opening OP1, the outlets of the first electrolyte flow path parts 320 are sealed before being discharged to the outlets of the first electrolyte flow path parts 320, and the first supply part PV is closed. After removal, the injection holes of the first electrolyte flow path parts 320 are also sealed. In the same manner, the inlet of the second electrolyte flow path parts 330 is connected to the second supply part PV2, the second openings OP2 are filled with the second electrolyte solution, and the outlets are sealed, and then the second supply part PV2 is closed. By removing and sealing the injection holes, a structure such as the thermoelectric element 601 described with reference to FIG. 5 may be formed.
도 9는 본 발명의 다른 실시예에 따른 열전 소자를 설명하기 위한 평면도이다.9 is a plan view illustrating a thermoelectric device according to another exemplary embodiment of the present invention.
도 9에 도시된 열전 소자(602)는 제1 및 제2 전해질 채널들(412, 422)이 각각 단일 채널을 이루고 있는 것을 제외하고는 도 2 내지 도 6에서 설명한 열전 소자(601)와 실질적으로 동일하다. 즉, 도 9에 도시된 열전 소자(602)는 격벽 구조체(300)에 형성된 전해질 유로부의 구조를 제외하고는 도 2 내지 도 6에서 설명한 열전 소자(601)와 동일하다. 따라서, 중복되는 상세한 설명은 생략하고 차이점을 위주로 설명한다.The thermoelectric element 602 illustrated in FIG. 9 is substantially the same as the thermoelectric element 601 described with reference to FIGS. 2 through 6 except that the first and second electrolyte channels 412 and 422 each form a single channel. same. That is, the thermoelectric element 602 illustrated in FIG. 9 is the same as the thermoelectric element 601 described with reference to FIGS. 2 to 6 except for the structure of the electrolyte flow path portion formed in the barrier rib structure 300. Therefore, overlapping detailed description will be omitted and the differences will be mainly described.
도 9를 도 2 내지 도 4와 함께 참조하면, 열전 소자(602)는 하부 전극들(210), 상부 전극들(510) 및 제1 및 제2 전해셀들(410, 420)과 함께, 제1 및 제2 전해질 채널들(412, 422)을 포함한다.Referring to FIG. 9 along with FIGS. 2 to 4, the thermoelectric element 602 may be formed together with the lower electrodes 210, the upper electrodes 510, and the first and second electrolytic cells 410 and 420. First and second electrolyte channels 412 and 422.
제1 전해질 채널(412)은 단일 채널로서, 다수의 제1 전해셀들(410)이 모두 하나의 제1 전해질 채널(412)에 연결된다. 즉, 제1 전해질 채널(412)의 주입구와 배출구 사이에 다수의 제1 전해셀들(410)이 연결된다. 이때, 제1 전해질 채널(412)의 주입구와 배출구는 각각 실링된 상태이다.The first electrolyte channel 412 is a single channel, and the plurality of first electrolyte cells 410 are all connected to one first electrolyte channel 412. That is, a plurality of first electrolytic cells 410 are connected between the inlet and outlet of the first electrolyte channel 412. At this time, the inlet and outlet of the first electrolyte channel 412 are sealed.
또한, 제2 전해질 채널(422)도 단일 채널로서, 다수의 제2 전해셀들(420)이 모두 하나의 제2 전해질 채널(422)에 연결된다. 즉, 제2 전해질 채널(422)의 주입구와 배출구 사이에 다수의 제2 전해셀들(420)이 연결된다. 이때, 제2 전해질 채널(422)의 주입구와 배출구는 각각 실링된 상태이다.In addition, the second electrolyte channel 422 is also a single channel, and a plurality of second electrolyte cells 420 are connected to one second electrolyte channel 422. That is, a plurality of second electrolytic cells 420 are connected between the inlet and outlet of the second electrolyte channel 422. At this time, the inlet and outlet of the second electrolyte channel 422 are sealed.
제1 전해질 채널(412)은 일렬로 배열된 제x 행 그룹의 제1 전해셀들(410)을 제1 방향(D1)으로 순차적으로 연결하고, 제x 행 그룹의 제2 방향(D2)에 배치된 제x+1 행 그룹의 제1 전해셀들(410)을 제1 방향(D1)의 반대 방향으로 순차적으로 연결한다. 이때, 제x 행 그룹과 제x+1 행 그룹은 해당 행 그룹에서의 첫 번째 제1 전해셀들(410)끼리 또는 해당 행 그룹에서 마지막 제1 전해셀들(410)끼리를 서로 연결시킴으로써 연결될 수 있고, 이에 따라 전체의 제1 전해셀들(410)이 직렬로 연결될 수 있다. 즉, 제x 행 그룹의 첫 번째 열인 제1 열의 제1 전해셀(410)과 제x-1 행 그룹의 두 번째 열인 제2 열의 제1 전해질(410)을 연결하거나, 제x 행 그룹의 마지막 열인 제 m열의 제1 전해셀(410)과 제x-1 행 그룹의 제m-1 열의 제1 전해질(410)을 연결시킴으로써, 전체적으로 직렬로 연결될 수 있다.The first electrolyte channel 412 sequentially connects the first electrolytic cells 410 of the xth row group arranged in a line in the first direction D1, and connects the first electrolyte channels 410 in the second direction D2 of the xth row group. The first electrolytic cells 410 of the arranged x + 1 row group are sequentially connected in a direction opposite to the first direction D1. In this case, the xth row group and the x + 1th row group may be connected by connecting the first first electrolysis cells 410 with each other or the last first electrolysis cells 410 with each other in the row group. As a result, the entire first electrolytic cells 410 may be connected in series. That is, the first electrolytic cell 410 of the first column, which is the first column of the xth row group, is connected to the first electrolyte 410 of the second column, which is the second column of the x-1st row group, or the last of the xth row group. By connecting the first electrolytic cell 410 of the mth column, which is a column, and the first electrolyte 410 of the m-1th column of the x-1th row group, the first electrolytic cell 410 may be connected in series.
또한, 제2 전해질 채널(422)은 일렬로 배열된 제x 행 그룹의 제2 전해셀들(420)을 제1 방향(D1)으로 순차적으로 연결하고, 제x 행 그룹의 제2 방향(D2)에 배치된 제x+1 행 그룹의 제2 전해셀(420)을 제1 방향(D1)의 반대 방향으로 순차적으로 연결한다. 이때, 제x 행 그룹과 제x+1 행 그룹은 해당 행 그룹에서의 첫 번째 제2 전해셀들(420)끼리 또는 해당 행 그룹에서 마지막 제2 전해셀들(420)끼리를 서로 연결시킴으로써 연결될 수 있고, 이에 따라 전체의 제2 전해셀들(420)이 직렬로 연결될 수 있다. 즉, 제x 행 그룹의 첫 번째 열인 제1 열의 제1 전해셀(420)과 제x+1 행 그룹의 두 번째 열인 제2 열의 제1 전해질(420)을 연결하거나, 제x 행 그룹의 마지막 열인 제 m열의 제1 전해셀(410)과 제x+1 행 그룹의 제m-1 열의 제1 전해질(410)을 연결시킴으로써, 전체적으로 직렬로 연결될 수 있다.In addition, the second electrolyte channel 422 sequentially connects the second electrolytic cells 420 of the xth row group arranged in a row in the first direction D1, and the second direction D2 of the xth row group. ) Connects the second electrolytic cells 420 of the x + 1 row group in the opposite direction to the first direction D1. In this case, the x th row group and the x + 1 th row group may be connected by connecting the first second electrolytic cells 420 in the row group or the last second electrolytic cells 420 in the row group with each other. Accordingly, the entire second electrolytic cells 420 may be connected in series. That is, the first electrolytic cell 420 of the first column, which is the first column of the xth row group, is connected to the first electrolyte 420 of the second column, which is the second column of the x + 1 row group, or the last of the xth row group. By connecting the first electrolytic cell 410 of the mth column, which is a column, and the first electrolyte 410 of the m−1th column of the x + 1th row group, the whole may be connected in series.
제1 전해질 채널(412)과 제2 전해질 채널(422)은 각각 서로 간섭되지 않도록 디자인되고, 제1 전해셀들(410)과 제2 전해셀들(420)과도 서로 간섭되지 않도록 디자인되어야 한다. 이때, 제1 전해셀들(410) 각각의 크기는 제1 전해질 채널(412)의 크기의 10배 이상이 되는 것이 바람직하다. 즉, 반대로 제1 전해질 채널(412)의 크기가 제1 전해셀들(410) 각각의 크기의 1/10 이하가 되는 것이 바람직하다. 비록, 단일 채널인 제1 전해질 채널(412)에 의해서 제1 전해셀들(410)이 서로 연결되기는 하지만 전기적으로는 제1 전해셀들(410)이 서로 분리되어야 하는데 1/10 초과인 경우에는 이들이 물리적/전기적으로 연결된 구조를 가지게 되므로 열전 소자(602)의 작동에 문제가 발생할 수 있다. 따라서, 이를 방지하기 위해서 제1 전해질 채널(412)의 크기가 제1 전해셀들(410) 각각의 크기의 1/10 이하로 설계하는 것이 바람직하다. 일례로, 제1 전해셀들(410) 각각의 일 변의 길이가 500 ㎛인 경우, 제1 전해질 채널(412)의 너비는 최대 50 ㎛일 수 있다.The first electrolyte channel 412 and the second electrolyte channel 422 are designed so as not to interfere with each other, and the first electrolyte cells 410 and the second electrolyte cells 420 should be designed so as not to interfere with each other. In this case, the size of each of the first electrolytic cells 410 is preferably at least 10 times the size of the first electrolyte channel 412. In other words, it is preferable that the size of the first electrolyte channel 412 is equal to or less than 1/10 of the size of each of the first electrolyte cells 410. Although the first electrolytic cells 410 are connected to each other by the first electrolyte channel 412 which is a single channel, the first electrolytic cells 410 should be separated from each other. Since these have physically / electrically connected structures, problems may occur in the operation of the thermoelectric element 602. Therefore, in order to prevent this, the size of the first electrolyte channel 412 is preferably designed to be 1/10 or less of the size of each of the first electrolytic cells 410. For example, when the length of one side of each of the first electrolytic cells 410 is 500 μm, the width of the first electrolyte channel 412 may be up to 50 μm.
동일하게, 제2 전해셀들(420) 각각의 크기의 1/10 이하의 크기로 제2 전해질 채널(414)의 크기를 설정하는 것이 바람직하다. 즉. 제2 전해셀들(420) 각각의 크기는 제2 전해질 채널(422)의 크기의 10 배이상이 되는 것이 바람직하다.Similarly, it is preferable to set the size of the second electrolyte channel 414 to a size less than 1/10 of the size of each of the second electrolytic cells 420. In other words. The size of each of the second electrolytic cells 420 may be at least 10 times the size of the second electrolyte channel 422.
도 9에 도시한 제1 및 제2 전해질 채널들(412, 422)의 디자인은 일례를 위해서 도시한 것뿐이고, 앞서 설명한 것과 같이 제1 및 제2 전해셀들(410, 420)과 간섭이 없는 범위 내에서 다양하게 디자인될 수 있다. 제1 및 제2 전해질 채널들(412, 422)의 디자인은 격벽 구조체(300)의 제1 및 제2 전해질 유로부들의 형태에 의해서 결정되므로, 격벽 구조체(400)의 제1 및 제2 전해질 유로부들을 도 9에 도시된 것과 같은 제1 및 제2 전해질 채널들(412, 422)의 형태와 동일하게 형성함으로써 이를 구현할 수 있다.The design of the first and second electrolyte channels 412 and 422 shown in FIG. 9 is shown for illustrative purposes only, and as described above, there is no interference with the first and second electrolytic cells 410 and 420. It can be designed in various ways. Since the design of the first and second electrolyte channels 412, 422 is determined by the shape of the first and second electrolyte flow path portions of the partition structure 300, the first and second electrolyte flow paths of the partition structure 400 are defined. This can be achieved by forming the parts in the same shape as the first and second electrolyte channels 412 and 422 as shown in FIG. 9.
도 10은 도 9의 열전 소자의 제조 방법을 설명하기 위한 평면도이다.FIG. 10 is a plan view illustrating a method of manufacturing the thermoelectric element of FIG. 9.
도 9에 도시된 열전 소자(602)의 제조 방법은 실질적으로 도 7 및 도 8에서 설명한 것과 동일하다. 다만, 격벽 구조체(300)의 제1 및 제2 전해질 유로부들의 형태가 도 8에서 설명한 것과 달리, 도 10에서 도시한 형태를 가질 수 있다.The manufacturing method of the thermoelectric element 602 illustrated in FIG. 9 is substantially the same as that described with reference to FIGS. 7 and 8. However, the shapes of the first and second electrolyte flow path portions of the barrier rib structure 300 may have the shapes shown in FIG. 10, unlike those described with reference to FIG. 8.
하부 전극들(210)이 형성된 하부 기판(200), 격벽 구조체(300) 및 상부 전극들(410)이 형성된 상부 기판(400)이 어셈블리된 상태에서, 다수의 제1 개구부들(OP1)을 직렬로 연결하는 제1 전해질 유로부(340)의 주입구가 제1 전해질 용액을 공급하는 제1 공급부(PV1)에 연결되면 모세관 현상에 의해서 제1 전해질 용액이 순차적으로 제1 개구부들(OP1)을 충진시키면서 이동하게 된다. 이때, 제1 전해질 유로부(340)의 배출구는 개방된 상태에서 제1 전해질 유로부(340)에 제1 전해질 용액이 공급된다.In a state where the lower substrate 200 having the lower electrodes 210 formed thereon, the barrier rib structure 300, and the upper substrate 400 having the upper electrodes 410 assembled thereon, a plurality of first openings OP1 are seriesed. When the injection hole of the first electrolyte flow path portion 340 connected to the first supply portion PV1 supplies the first electrolyte solution, the first electrolyte solution sequentially fills the first openings OP1 by capillary action. And move. In this case, the first electrolyte solution is supplied to the first electrolyte flow path part 340 in the discharge hole of the first electrolyte flow path part 340.
또한, 다수의 제2 개구부들(OP2)을 직렬로 연결하는 제2 전해질 유로부(350)의 주입구가 제2 전해질 용액을 공급하는 제2 공급부(PV2)에 연결되면 모세관 현상에 의해서 제2 전해질 용액이 순차적으로 제2 개구부들(OP2)을 충진시키면서 이동하게 된다. 이때 역시, 제2 전해질 유로부(350)의 배출구는 개방된 상태에서 제2 전해질 유로부(350)에 제2 전해질 용액이 공급된다.In addition, when the injection hole of the second electrolyte flow path portion 350 connecting the plurality of second openings OP2 in series is connected to the second supply portion PV2 for supplying the second electrolyte solution, the second electrolyte may be caused by capillary action. The solution is sequentially moved while filling the second openings OP2. In this case, the second electrolyte solution is supplied to the second electrolyte flow path part 350 in an open state of the outlet of the second electrolyte flow path part 350.
모든 제1 및 제2 개구부들(OP1, OP2)이 충진되어 제1 및 제2 전해셀들(410, 420)을 형성한 후에 제1 및 제2 전해질 유로부들(340, 350)의 배출구를 실링하고, 제1 및 제2 공급부들(PV1, PV2)을 제거한 후 이들의 주입구 또한 실링한다. 이에 따라, 도 9에서 설명한 열전 소자(602)를 제조할 수 있다.After all the first and second openings OP1 and OP2 are filled to form the first and second electrolytic cells 410 and 420, the outlets of the first and second electrolyte flow path parts 340 and 350 are sealed. After removing the first and second supply parts PV1 and PV2, the injection holes thereof are also sealed. Accordingly, the thermoelectric element 602 described in FIG. 9 can be manufactured.
도 11은 본 발명의 또 다른 실시예에 따른 열전 소자를 설명하기 위한 평면도이다.11 is a plan view illustrating a thermoelectric device according to yet another exemplary embodiment of the present invention.
도 11에 도시된 열전 소자(603)는 제1 및 제2 전해질 채널들(412, 422)이 각각 다수개가 포함되는 것을 제외하고는 도 2 내지 도 6에서 설명한 열전 소자(601)와 실질적으로 동일하다. 즉, 도 11에 도시된 열전 소자(603)는 격벽 구조체(300)에 형성된 전해질 유로부의 구조를 제외하고는 도 2 내지 도 6에서 설명한 열전 소자(601)와 동일하다. 따라서, 중복되는 상세한 설명은 생략하고 차이점을 위주로 설명한다.The thermoelectric element 603 illustrated in FIG. 11 is substantially the same as the thermoelectric element 601 described with reference to FIGS. 2 to 6 except that a plurality of first and second electrolyte channels 412 and 422 are included. Do. That is, the thermoelectric element 603 illustrated in FIG. 11 is the same as the thermoelectric element 601 described with reference to FIGS. 2 to 6 except for the structure of the electrolyte flow path portion formed in the barrier rib structure 300. Therefore, overlapping detailed description will be omitted and the differences will be mainly described.
도 11을 도 2 내지 도 4와 함께 참조하면, 열전 소자(603)는 하부 전극들(210), 상부 전극들(510) 및 제1 및 제2 전해셀들(410, 420)과 함께, 제1 및 제2 전해질 채널들(412, 422)을 포함한다.Referring to FIG. 11 along with FIGS. 2 to 4, the thermoelectric element 603 may be formed together with the lower electrodes 210, the upper electrodes 510, and the first and second electrolytic cells 410 and 420. First and second electrolyte channels 412 and 422.
제1 전해셀들(410)과 제2 전해셀들(420)은 제1 방향(D1) 및 제2 방향(D2)으로 교호적으로 배치된다. 이때, 다수의 제1 전해질 채널들(412) 각각은 제y 열 그룹의 어느 하나의 제1 전해셀(410)과 제y+1 열 그룹의 어느 하나의 제1 전해셀(410)을 제2 방향(D2)으로 서로 연결시킨다. 다만, 다수의 제1 전해질 채널들(412)은 서로 독립적으로 분리되고, 각각이 실링된 주입구와 배출구를 포함한다.The first electrolytic cells 410 and the second electrolytic cells 420 are alternately arranged in the first direction D1 and the second direction D2. In this case, each of the plurality of first electrolyte channels 412 is configured as a second electrolytic cell 410 of the y th column group and one first electrolytic cell 410 of the y + 1 th column group. Are connected to each other in the direction D2. However, the plurality of first electrolyte channels 412 are separated from each other independently, and each includes a sealed inlet and outlet.
또한, 다수의 제2 전해질 채널들(422) 각각은 제y 열 그룹의 어느 하나의 제2 전해셀(420)과 제y+1 열 그룹의 어느 하나의 제2 전해셀(420)을 제2 방향(D2)으로 서로 연결시킨다. 이때도, 다수의 제2 전해질 채널들(422)은 서로 독립적으로 분리되고, 각각이 실링된 주입구와 배출구를 포함한다.In addition, each of the plurality of second electrolyte channels 422 may include a second electrolytic cell 420 of the y th column group and a second electrolytic cell 420 of the y + 1 th column group. Are connected to each other in the direction D2. In this case, the plurality of second electrolyte channels 422 are independently separated from each other, and each includes a sealed inlet and an outlet.
구체적으로는, 제1 전해질 채널들(412) 중 어느 하나는 제x 행 그룹의 제y 열의 제1 전해셀(410)과 제x+1 행 그룹의 제y+1 열의 제1 전해셀(410)을 연결하고, 제2 전해질 채널들(422) 중 어느 하나는 제x 행 그룹의 제y 열의 제2 전해셀(420)과 제x+1 행 그룹의 제y+1 열의 제2 전해셀(420)을 연결할 수 있다. 이때, 제1 행 그룹의 제n 열의 제2 전해셀(420)은 단독의 제2 전해질 채널(미도시)과 연결되고, 제m 행 그룹의 제1 열의 제1 전해셀(410)은 단독의 제1 전해질 채널(미도시)과 연결될 수 있다. 상기 단독의 제1 및 제2 전해질 채널들은 생략될 수 있다.Specifically, any one of the first electrolyte channels 412 may include the first electrolytic cell 410 in the y th column of the x th row group and the first electrolytic cell 410 in the y + 1 th column of the x + 1 th row group. And one of the second electrolyte channels 422 is connected to the second electrolytic cell 420 of the y th column of the x th row group and the second electrolytic cell of the y + 1 th column of the x + 1 th row group 420 may be connected. In this case, the second electrolytic cell 420 of the nth column of the first row group is connected to a second electrolyte channel (not shown) alone, and the first electrolytic cell 410 of the first column of the mth row group is independent It may be connected to the first electrolyte channel (not shown). The first and second electrolyte channels alone may be omitted.
도 11에서 설명한 것과 같은 구조를 갖는 열전 소자(603)는 도 5의 열전 소자(601)에 비해서 상대적으로 전해질 채널을 형성하기 위해서 확보해야하는 면적을 줄이면서도, 도 9의 열전 소자(602)에서 전해셀들 간의 전해질 채널에 의한 방해/간섭을 최소화할 수 있다. 즉, 도 11의 열전 소자(603)와 같은 구조는, 도 9의 열전 소자(602)에서의 전해셀과 전해질 채널의 크기 제한 등과 같은 점들을 고려하지 않고도 전해질 채널을 형성할 수 있고, 이를 통해서 열전 소자(603)를 용이하고 간단하게 제조할 수 있다.The thermoelectric element 603 having the structure described with reference to FIG. 11 is electrolyzed in the thermoelectric element 602 of FIG. 9 while reducing the area to be secured in order to form the electrolyte channel relative to the thermoelectric element 601 of FIG. 5. Interference / interference by electrolyte channels between cells can be minimized. That is, a structure such as the thermoelectric element 603 of FIG. 11 may form an electrolyte channel without considering such points as the size limitation of the electrolytic cell and the electrolyte channel in the thermoelectric element 602 of FIG. The thermoelectric element 603 can be manufactured easily and simply.
도 12는 도 11의 열전 소자의 제조 방법을 설명하기 위한 평면도이다.FIG. 12 is a plan view illustrating a method of manufacturing the thermoelectric element of FIG. 11.
도 11에 도시된 열전 소자(603)의 제조 방법은 실질적으로 도 7 및 도 8에서 설명한 것과 동일하다. 다만, 격벽 구조체(300)의 제1 및 제2 전해질 유로부들의 형태가 도 8에서 설명한 것과 달리, 도 12에서 도시한 형태를 가질 수 있다.The manufacturing method of the thermoelectric element 603 illustrated in FIG. 11 is substantially the same as that described with reference to FIGS. 7 and 8. However, the shapes of the first and second electrolyte flow path portions of the barrier rib structure 300 may have the shapes shown in FIG. 12, unlike those described with reference to FIG. 8.
하부 전극들(210)이 형성된 하부 기판(200), 격벽 구조체(300) 및 상부 전극들(410)이 형성된 상부 기판(400)이 어셈블리된 상태에서, 다수의 제1 개구부들(OP1)을 연결하는 다수의 제1 전해질 유로부들(360)의 주입구들과 다수의 제2 개구부들(OP2)을 연결하는 다수의 제2 전해질 유로부들(370)의 주입구들이 제3 공급부(PV3) 및 제4 공급부(PV4)에 연결될 수 있다. 제3 및 제4 공급부들(PV3, PV4) 각각은 제1 전해질 용액 및 제2 전해질 용액을 공급한다. 제3 및 제4 공급부들(PV3, PV4)은 경우에 따라 1개로 통합되거나 다수개로 분할될 수도 있다.The plurality of first openings OP1 are connected when the lower substrate 200 on which the lower electrodes 210 are formed, the barrier rib structure 300, and the upper substrate 400 on which the upper electrodes 410 are formed are assembled. Injection holes of the plurality of second electrolyte flow path parts 370 connecting the injection holes of the plurality of first electrolyte flow path parts 360 and the plurality of second openings OP2 may be the third supply part PV3 and the fourth supply part. (PV4) can be connected. Each of the third and fourth supply parts PV3 and PV4 supplies a first electrolyte solution and a second electrolyte solution. In some cases, the third and fourth supply units PV3 and PV4 may be integrated into one or divided into multiple units.
다수의 제1 전해질 유로부들(360)의 주입구들과 다수의 제2 전해질 유로부들(370)의 주입구들이 제3 및 제4 공급부들(PV3, PV4)에 연결되면, 모세관 현상에 의해서 제1 전해질 용액 및 제2 전해질 용액이 이동하여 제1 개구부들(OP1) 및 제2 개구부들(OP2)을 충진시킬 수 있다. When the injection holes of the plurality of first electrolyte flow path parts 360 and the injection holes of the plurality of second electrolyte flow path parts 370 are connected to the third and fourth supply parts PV3 and PV4, the first electrolyte may be formed by capillary action. The solution and the second electrolyte solution may move to fill the first openings OP1 and the second openings OP2.
제1 전해질 유로부들(360)과 제2 전해질 유로부(370)의 배출구는 개방된 상태에서 제1 및 제2 전해질 용액들이 공급되나, 모든 제1 및 제2 개구부들(OP1, OP2)이 충진되어 제1 및 제2 전해셀들(410, 420)을 형성한 후에 제1 및 제2 전해질 유로부들(360, 370)의 배출구를 실링하고, 제3 및 제4 공급부들(PV3, PV4)을 제거한 후 이들의 주입구 또한 실링한다. 이에 따라, 도 11에서 설명한 열전 소자(603)를 제조할 수 있다.The first and second electrolyte solutions are supplied to the outlets of the first electrolyte channel parts 360 and the second electrolyte channel part 370 in an open state, but all of the first and second openings OP1 and OP2 are filled. After the first and second electrolytic cells 410 and 420 are formed to seal the outlets of the first and second electrolyte flow path parts 360 and 370, and the third and fourth supply parts PV3 and PV4 are sealed. After removal, their inlets are also sealed. Accordingly, the thermoelectric element 603 described in FIG. 11 can be manufactured.
도 2 내지 도 12를 참조하여 상기에서 설명한 바에 따르면, 100℃ 이하의 생활 폐열에 의해서 동작할 수 있는 단위 셀을 포함하는 열전 소자로서, 출력 전압 및 전력 생산성을 향상시킬 수 있다. 이러한 열전 소자를 전자 장치에 적용하여 전자 장치의 구동에 의해 발생하는 열에 의해 동작하여 전력을 생산할 수 있고, 자동차의 창문이나 온실 등에 용이하게 이용할 수 있다.As described above with reference to FIGS. 2 to 12, a thermoelectric element including a unit cell capable of operating by living waste heat of 100 ° C. or less may improve output voltage and power productivity. The thermoelectric element may be applied to an electronic device to operate by heat generated by the driving of the electronic device to generate electric power, and to be easily used in a window or a greenhouse of an automobile.
이하에서는, 도 13 내지 도 17을 참조하여 상기에서 설명한 열전 소자가 적용된 장치에 대해서 설명하기로 한다.Hereinafter, an apparatus to which the above-described thermoelectric element is applied will be described with reference to FIGS. 13 to 17.
도 13은 본 발명의 일 실시예에 따른 열전 소자를 포함하는 장치를 설명하기 위한 단면도이다.13 is a cross-sectional view illustrating an apparatus including a thermoelectric device according to an exemplary embodiment of the present invention.
도 13을 참조하면, 본열전 소자를 포함하는 장치(701)는 표시부(710), 전력 공급 유닛(720) 및 배터리 커버(730)를 포함한다. 일례로, 상기 장치(701)는 핸드폰 등의 휴대형 소형 기기일 수 있고, 표시부(710)는 표시 패널 및 백라이트 어셈블리를 포함할 수 있다. 배터리 커버(730)는 전력 공급 유닛(720)을 표시부(710)에 고정시키고 전력 공급 유닛(720)을 보호할 수 있다.Referring to FIG. 13, the apparatus 701 including the thermoelectric element includes a display unit 710, a power supply unit 720, and a battery cover 730. For example, the device 701 may be a portable small device such as a mobile phone, and the display unit 710 may include a display panel and a backlight assembly. The battery cover 730 may fix the power supply unit 720 to the display unit 710 and protect the power supply unit 720.
전력 공급 유닛(720)은 표시부(710)와 배터리 커버(730) 사이에 배치되고, 표시부(710)와 전기적으로 연결되어 상기 표시 패널 및 상기 백라이트 어셈블리에 전력을 공급하는 부분으로서, 열전 소자(724)가 형성된 배터리(722)를 포함한다.The power supply unit 720 is disposed between the display unit 710 and the battery cover 730 and is electrically connected to the display unit 710 to supply power to the display panel and the backlight assembly. Includes a battery 722 formed.
열전 소자(724)는 본 발명에 따라 상기에서 설명한 열전 소자이다. 이때, 열전 소자(724)는 도 2 내지 도 11에서 설명한 적어도 2 이상의 단위 셀들(UC)을 포함하는 열전 소자(601, 602, 603)일 수 있다. 따라서, 중복되는 구체적인 상세한 설명은 생략한다. 배터리(722)와 직접 맞닿는 열전 소자(724)의 일 면에 상기에서 설명한 하부 기판(200)이 배치되고, 백커버(730)와 상부 기판(500)이 마주하도록 구비된다. 열전 소자(724)는 배터리(722)와 연결되어 전력 공급 유닛(722)이 구동되면서 발생하는 열이나, 표시부(710)에서 발생된 열에 의해서 동작하여 전력을 생산할 수 있다. Thermoelectric element 724 is the thermoelectric element described above in accordance with the present invention. In this case, the thermoelectric elements 724 may be thermoelectric elements 601, 602, and 603 including at least two or more unit cells UC described with reference to FIGS. 2 to 11. Accordingly, detailed descriptions thereof will not be repeated. The lower substrate 200 described above is disposed on one surface of the thermoelectric element 724 directly contacting the battery 722, and the back cover 730 and the upper substrate 500 are provided to face each other. The thermoelectric element 724 may be connected to the battery 722 to generate power by operating by heat generated when the power supply unit 722 is driven or heat generated by the display unit 710.
도 14는 도 13에서 열전 소자와 배터리의 연결 관계를 설명하기 위한 도면이다.FIG. 14 is a diagram for describing a connection relationship between a thermoelectric element and a battery in FIG. 13.
도 14를 도 13과 함께 참조하면, 열전 소자(724)는 배터리(722)와 연결되되, 배터리(722)의 양극은 열전 소자(724)의 양극 단자와 연결되고 배터리(722)의 음극은 열전 소자(724)의 음극 단자와 연결될 수 있다. 이때, 상기 양극 단자는 열전 소자(724)의 하부 전극들 중 최외곽의 일 하부 전극과 연결되고, 상기 음극 단자는 열전 소자(724)의 하부 전극들 중 최외곽의 일 하부 전극과 연결된 열전 소자(724)의 외부 단자일 수 있다.Referring to FIG. 14 together with FIG. 13, a thermoelectric element 724 is connected with a battery 722, where a positive electrode of the battery 722 is connected with a positive terminal of the thermoelectric element 724 and a negative electrode of the battery 722 is thermoelectric. It may be connected to the negative terminal of the device 724. In this case, the positive electrode terminal is connected to the outermost one lower electrode among the lower electrodes of the thermoelectric element 724, and the negative electrode terminal is connected to the outermost one lower electrode among the lower electrodes of the thermoelectric element 724. It may be an external terminal of 724.
이때, 열전 소자(724)는 커패시터(CAP)와 연결될 수 있다. 즉, 열전 소자(724)는 폐열을 이용하여 전력을 생산하고, 이와 연결된 커패시터(CAP)가 열전 소자(724)가 생산한 전력을 저장한다. 상기 커패시터(CAP)는 배터리(722)와 연결되어, 배터리(722)의 필요에 따라 상기 커패시터(CAP)로부터 전력을 공급받을 수 있다. 도면으로 도시하지 않았으나 커패시터(CAP)의 온/오프를 제어하기 위한 스위치가 더 구비될 수 있다.In this case, the thermoelectric element 724 may be connected to the capacitor CAP. That is, the thermoelectric element 724 generates power using waste heat, and the capacitor CAP connected thereto stores the power generated by the thermoelectric element 724. The capacitor CAP is connected to the battery 722 to receive power from the capacitor CAP as needed by the battery 722. Although not shown in the drawings, a switch for controlling the on / off of the capacitor CAP may be further provided.
한편, 열전 소자(732)의 하부 기판(200)이 생략되고, 배터리(722)의 일 면에 직접 하부 전극들(210)이 형성될 수 있다. 이에 따라, 열전 소자(732)와 배터리(722)는 일체형 구조를 가질 수 있다.The lower substrate 200 of the thermoelectric element 732 may be omitted, and the lower electrodes 210 may be directly formed on one surface of the battery 722. Accordingly, the thermoelectric element 732 and the battery 722 may have an integrated structure.
도 15 내지 도 17은 본 발명의 일 실시예에 따른 열전 소자를 포함하는 장치를 설명하기 위한 도면들이다.15 to 17 are diagrams for describing an apparatus including a thermoelectric device according to an exemplary embodiment of the present invention.
도 15를 참조하면, 본 발명의 일 실시예에 따른 열전 소자를 포함하는 장치(702)는 표시부(710), 배터리(722) 및 커버 유닛(734)을 포함한다. 표시부(710) 및 배터리(722)는 도 13에서 설명한 것과 실질적으로 동일하다. 따라서, 중복되는 상세한 설명은 생략한다.Referring to FIG. 15, an apparatus 702 including a thermoelectric device according to an exemplary embodiment of the present invention includes a display unit 710, a battery 722, and a cover unit 734. The display unit 710 and the battery 722 are substantially the same as described with reference to FIG. 13. Therefore, redundant descriptions are omitted.
커버 유닛(734)은 열전 소자(732)가 형성된 배터리 커버(730)를 포함한다. 이때, 열전 소자(732)는 배터리 커버(730)와 일체로 형성될 수 있다. 이때, 열전 소자(732)의 하부 기판(200)은 배터리(722)와 마주하도록 배치되고, 상부 기판(500)은 배터리 커버(730) 상에 형성될 수 있다. 이와 달리, 상부 기판(500)은 생략되고, 배터리 커버(730)에 직접 상부 전극들(510)이 형성되어 열전 소자(732)와 배터리 커버(730)가 일체형 구조를 가질 수 있다. 열전 소자(732)와 연결된 커패시터는 배터리 커버(730) 상에 형성될 수 있다. 이와 달리, 커패시터는 물리적으로 분리되어 배터리(722) 측에 배터리(722)와 연결되어 형성되고, 배터리(722)와 커버 유닛(734)이 결합될 때 커패시터와 배터리(722)가 전기적으로 연결될 수 있는 단자를 포함할 수 있다.The cover unit 734 includes a battery cover 730 on which a thermoelectric element 732 is formed. In this case, the thermoelectric element 732 may be integrally formed with the battery cover 730. In this case, the lower substrate 200 of the thermoelectric element 732 may be disposed to face the battery 722, and the upper substrate 500 may be formed on the battery cover 730. In contrast, the upper substrate 500 may be omitted, and the upper electrodes 510 may be directly formed on the battery cover 730 such that the thermoelectric element 732 and the battery cover 730 may have an integrated structure. The capacitor connected to the thermoelectric element 732 may be formed on the battery cover 730. Alternatively, the capacitor may be physically separated to be connected to the battery 722 on the battery 722 side, and the capacitor and the battery 722 may be electrically connected when the battery 722 and the cover unit 734 are coupled to each other. It may include a terminal.
이때, 배터리(722)와 열전 소자(732)는 연결 단자들(724a, 724b, 736a, 736b)을 통해 전기적으로 연결된다. 즉, 배터리(722)에 연결 단자들(736a, 736b)이 형성되고, 열전 소자(732)에도 상기 연결 단자들(736a, 736b)과 대응하는 위치에 상기 연결 단자들(736a, 736b)과 접촉할 수 있는 단자들(724a, 724b)이 형성되어, 커버 유닛(734)이 배터리(722)와 결합한 경우에 배터리(722)와 열전 소자(732)가 전기적으로 연결될 수 있다.In this case, the battery 722 and the thermoelectric element 732 are electrically connected through the connection terminals 724a, 724b, 736a, and 736b. That is, the connection terminals 736a and 736b are formed in the battery 722, and the thermoelectric element 732 also contacts the connection terminals 736a and 736b at positions corresponding to the connection terminals 736a and 736b. Capable terminals 724a and 724b may be formed so that the battery 722 and the thermoelectric element 732 may be electrically connected when the cover unit 734 is combined with the battery 722.
도 16을 참조하면, 본 발명에 따른 열전 소자를 포함하는 장치는 자동차 선루프용 윈도우일 수 있다. 즉, 도 2 내지 도 12에서 설명한 열전 소자를 자동차 선루프용 윈도우에 연결하여 열전 소자가 생성하는 전력을 자동차의 구동에 이용할 수 있다.Referring to FIG. 16, an apparatus including a thermoelectric device according to the present invention may be a window for an automotive sunroof. That is, by connecting the thermoelectric element described with reference to FIGS. 2 to 12 to the window for the vehicle sunroof, the power generated by the thermoelectric element may be used to drive the vehicle.
자동차 선루프용 윈도우에 연결되는 열전 소자의 전극들(210, 510) 및 기판들(200, 500)은 투명 또는 반투명 물질로 형성되고, 격벽 구조체(300) 또한 투명 또는 반투명 물질로 형성될 수 있다. 열전 소자의 하부 기판(200)이 자동차 선루프용 윈도우에 부착되고, 상부 기판(500)이 하부 기판(200)과 마주하여 자동차의 실내를 향해 배치될 수 있다. 즉, 태양열에 의해서 하부 기판(200) 및 하부 전극들(210)의 온도가 상승하여 열전 소자가 동작될 수 있다. 이와 달리, 하부 기판(200)이 생략되고, 자동차용 윈도우에 직접 하부 전극들(210)이 형성될 수도 있다.The electrodes 210 and 510 and the substrates 200 and 500 of the thermoelectric element connected to the window for the automotive sunroof may be formed of a transparent or translucent material, and the partition structure 300 may also be formed of a transparent or translucent material. . The lower substrate 200 of the thermoelectric element may be attached to the window for the vehicle sunroof, and the upper substrate 500 may face the lower substrate 200 to face the interior of the vehicle. That is, the thermoelectric element may operate by increasing the temperature of the lower substrate 200 and the lower electrodes 210 by solar heat. Alternatively, the lower substrate 200 may be omitted, and the lower electrodes 210 may be formed directly on the window of the vehicle.
한편, 자동차 선루프용 윈도우와 결합된 열전 소자는 커패시터와 연결되어, 태양열에 의해서 생성한 전력을 상기 커패시터에 저장할 수 있다.Meanwhile, a thermoelectric element coupled to a window for an automotive sunroof may be connected to a capacitor to store power generated by solar heat in the capacitor.
상기에서 설명한 바와 같이, 열전 소자를 구성하는 전극들(210, 510) 및 기판들(200, 500)을 가시광선을 80% 이상 투과할 수 있는 물질로 형성되어, 자동차의 전면, 후면 및/또는 측면 유리창에도 열전 소자를 적용될 수 있다.As described above, the electrodes 210 and 510 and the substrates 200 and 500 constituting the thermoelectric element are formed of a material capable of transmitting at least 80% of visible light, so that the front, rear and / or front of the vehicle Thermoelectric elements can also be applied to the side windows.
도 17을 참조하면, 본 발명에 따른 열전 소자를 포함하는 장치는 온실용 윈도우일 수 있다. 즉, 도 2 내지 도 12에서 설명한 열전 소자를 온실용 윈도우에 적용하여 태양광에 의해 발생되는 실내외 온도 차를 이용하여 열에너지를 전기 에너지로 변환할 수 있다. 얻어진 전기 에너지는 시설물 냉/난방 및 조명 등에 이용할 수 있다.Referring to FIG. 17, an apparatus including a thermoelectric device according to the present invention may be a greenhouse window. That is, by applying the thermoelectric element described with reference to FIGS. 2 to 12 to the greenhouse window, it is possible to convert the thermal energy into electrical energy by using the indoor and outdoor temperature difference generated by sunlight. The obtained electrical energy can be used for facility cooling / heating and lighting.
도면으로 도시하지는 않았으나, 본 발명에 따른 열전 소자는 주택/상업용 건물의 윈도우에도 도 16 및 도 17에서 설명한 장치와 실질적으로 동일하게 적용하여 이용할 수 있다.Although not illustrated in the drawings, the thermoelectric device according to the present invention may be applied to the windows of a house / commercial building in substantially the same manner as the apparatus described with reference to FIGS. 16 and 17.

Claims (26)

  1. 다수의 하부 전극들;A plurality of lower electrodes;
    상기 하부 전극들 각각의 상부에 배치되고, 하부 전극의 온도 상승에 의해 환원 반응이 일어나는 양의 열전계수를 갖는 제1 전해질을 포함하며, 주입구와 배출구가 양단부에 배치되고 상기 제1 전해질을 수용하는 제1 전해질 채널에 연결된 제1 전해셀들;A first electrolyte disposed on each of the lower electrodes, the first electrolyte having a positive thermoelectric coefficient in which a reduction reaction occurs due to an increase in temperature of the lower electrode, and an inlet and an outlet are disposed at both ends and accommodate the first electrolyte; First electrolytic cells connected to the first electrolyte channel;
    각각이 1개의 하부 전극 상에서 제1 전해셀과 이격되어 배치되고 하부 전극의 온도 상승에 의해서 산화 반응이 일어나는 음의 열전계수를 갖는 제2 전해질을 포함하며, 주입구와 배출구가 양단부에 배치되고 상기 제2 전해질을 수용하는 제2 전해질 채널에 연결된 제2 전해셀들; 및A second electrolyte disposed on one lower electrode and spaced apart from the first electrolytic cell, the second electrolyte having a negative thermoelectric coefficient at which an oxidation reaction occurs due to a temperature rise of the lower electrode, and an inlet and an outlet are disposed at both ends and Second electrolyte cells connected to a second electrolyte channel containing a second electrolyte; And
    서로 다른 하부 전극들 상에 배치된 제1 전해셀과 제2 전해셀에 연결되도록 제1 및 제2 전해셀들 상에 배치된 다수의 상부 전극들을 포함하는,It includes a plurality of upper electrodes disposed on the first and second electrolytic cells to be connected to the first electrolytic cell and the second electrolytic cells disposed on the different lower electrodes,
    열전 소자.Thermoelectric elements.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 전해셀들은 각각이 주입구와 배출구를 갖는 서로 독립적인 다수의 제1 전해질 채널들에 일대일대응으로 연결되고,The first electrolytic cells are connected in a one-to-one correspondence to a plurality of first electrolyte channels, each of which is independent of each other having an inlet and an outlet,
    상기 제2 전해셀들은 각각이 주입구와 배출구를 갖는 서로 독립적인 다수의 제2 전해질 채널들에 일대일대응으로 연결된 것을 특징으로 하는,The second electrolytic cells may be connected in a one-to-one correspondence with a plurality of second electrolyte channels each having an inlet and an outlet, which are independent of each other.
    열전 소자.Thermoelectric elements.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1 전해셀들은 제1 전해질 채널의 주입구와 배출구 사이에서 직렬로 연결되고,The first electrolytic cells are connected in series between the inlet and outlet of the first electrolyte channel,
    상기 제2 전해셀들은 제2 전해질 채널의 주입구와 배출구 사이에서 직렬로 연결된 것을 특징으로 하는,The second electrolytic cells are characterized in that connected in series between the inlet and outlet of the second electrolyte channel,
    열전 소자.Thermoelectric elements.
  4. 제3항에 있어서,The method of claim 3,
    제1 방향으로 제1 전해셀과 제2 전해셀이 교호적으로 배치되고, 상기 제1 방향과 교차하는 제2 방향으로도 제1 전해셀과 제2 전해셀이 교호적으로 배치되고,The first electrolytic cell and the second electrolytic cell are alternately arranged in the first direction, and the first electrolytic cell and the second electrolytic cell are alternately arranged in the second direction crossing the first direction,
    상기 제1 전해질 채널은The first electrolyte channel is
    일렬로 배열된 어느 하나의 행 그룹인 제x 행 그룹(이때, x는 자연수)에 포함되는 제1 전해셀들을 상기 제1 방향으로 순차적으로 연결하고, 제x 행 그룹의 상기 제2 방향에 배치된 제x+1 행 그룹의 제1 전해셀들을 상기 제1 방향의 반대 방향으로 순차적으로 연결하며, 제x 행 그룹과 제x+1 행 그룹은 해당 행 그룹에서의 첫 번째 제1 전해셀들끼리 또는 해당 행 그룹에서 마지막 제1 전해셀들끼리를 서로 연결시키고,The first electrolytic cells included in the x row group (where x is a natural number), which is any row group arranged in a row, are sequentially connected in the first direction, and are arranged in the second direction of the x row group. Sequentially connecting the first electrolysis cells of the x + 1 row group in the opposite direction to the first direction, and the x th row group and the x + 1 row group are the first first electrolysis cells in the row group. Connect the last first electrolytic cells to each other or to the corresponding row group,
    상기 제2 전해질 채널은The second electrolyte channel is
    일렬로 배열된 어느 하나의 행 그룹인 제x 행 그룹에 포함되는 제2 전해셀들을 상기 제1 방향으로 순차적으로 연결하고, 제x 행 그룹의 상기 제2 방향에 배치된 제x+1 행 그룹의 제2 전해셀들을 상기 제1 방향의 반대 방향으로 순차적으로 연결하며, 제x 행 그룹과 제x+1 행 그룹은 해당 행 그룹에서의 첫 번째 제2 전해셀들끼리 또는 해당 행 그룹에서 마지막 제2 전해셀들끼리를 서로 연결시키는 것을 특징으로 하는,The second electrolytic cells included in the xth row group, which are any row groups arranged in a row, are sequentially connected in the first direction, and the x + 1 row group arranged in the second direction of the xth row group The second electrolytic cells of are sequentially connected in a direction opposite to the first direction, and the xth row group and the x + 1 row group are the first second electrolytic cells in the row group or last in the row group. Characterized in that the second electrolytic cells are connected to each other,
    열전 소자.Thermoelectric elements.
  5. 제1항에 있어서,The method of claim 1,
    제1 방향으로 제1 전해셀과 제2 전해셀이 교호적으로 배치되고, 상기 제1 방향과 교차하는 제2 방향으로도 제1 전해셀과 제2 전해셀이 교호적으로 배치되며,The first electrolytic cell and the second electrolytic cell are alternately arranged in the first direction, and the first electrolytic cell and the second electrolytic cell are alternately arranged in the second direction crossing the first direction,
    일렬로 배열된 어느 하나의 열 그룹인 제y 열 그룹(이때, y는 자연수)에 포함되는 어느 하나의 제1 전해셀과 제y+1 열 그룹의 어느 하나의 제1 전해셀이 제1 전해질 채널에 의해 상기 제2 방향으로 서로 연결되며, 다수의 제1 전해질 채널들은 서로 독립적으로 분리되고,Any one of the first electrolytic cells included in the y th column group (where y is a natural number) and any one first electrolytic cell of the y + 1 column group arranged in a row is the first electrolyte Connected to each other in the second direction by a channel, the plurality of first electrolyte channels are separated from each other independently,
    일렬로 배열된 어느 하나의 열 그룹인 제y 열 그룹의 어느 하나의 제2 전해셀과 제y+1 열 그룹의 어느 하나의 제2 전해셀이 제2 전해질 채널에 의해 상기 제2 방향으로 서로 연결되며, 다수의 제2 전해질 채널들은 서로 독립적으로 분리되는 것을 특징으로 하는,Any one of the second electrolytic cells of the y-th column group and any of the second electrolysis cells of the y + 1 column group, which is any one column group arranged in a row, is mutually connected in the second direction by a second electrolyte channel. Connected, wherein the plurality of second electrolyte channels are separated from each other independently,
    상기 제1 전해셀들은 제1 전해질 채널의 주입구와 배출구 사이에서 직렬로 연결되고,The first electrolytic cells are connected in series between the inlet and outlet of the first electrolyte channel,
    상기 제2 전해셀들은 제2 전해질 채널의 주입구와 배출구 사이에서 직렬로 연결된 것을 특징으로 하는,The second electrolytic cells are characterized in that connected in series between the inlet and outlet of the second electrolyte channel,
    열전 소자.Thermoelectric elements.
  6. 제5항에 있어서,The method of claim 5,
    상기 제1 전해질 채널은 일렬로 배열된 어느 하나의 행 그룹인 제x 행 그룹(이때, x는 자연수를 나타냄)의 제y 열의 제1 전해셀과 제x+1 행 그룹의 제y+1 열의 제1 전해셀을 연결하고,The first electrolyte channel includes the first electrolytic cell of the yth column of the xth row group (where x represents a natural number) and the y + 1 column of the x + 1 row group, which are any row groups arranged in a row. Connecting the first electrolytic cell,
    상기 제2 전해질 채널은 일렬로 배열된 어느 하나의 행 그룹인 제x 행 그룹의 제y 열의 제2 전해셀과 제x+1 행 그룹의 제y+1 열의 제2 전해셀을 연결하는 것을 특징으로 하는,The second electrolyte channel connects the second electrolytic cell of the y th column of the x th row group, which is any one row group arranged in a row, and the second electrolytic cell of the y + 1 th column of the x + 1 th row group. Made,
    열전 소자.Thermoelectric elements.
  7. 제6항에 있어서,The method of claim 6,
    첫 번째 행 그룹의 마지막 열의 제2 전해셀은 단독으로 제2 전해질 채널과 연결되고,The second electrolytic cell of the last column of the first row group is connected to the second electrolyte channel alone,
    마지막 행 그룹의 첫 번째 열의 제1 전해셀은 단독으로 제1 전해질 채널과 연결된 것을 특징으로 하는,The first electrolytic cell of the first column of the last row group is connected to the first electrolyte channel alone,
    열전 소자.Thermoelectric elements.
  8. 제1항에 있어서,The method of claim 1,
    상기 제1 전해셀에 포함되는 레독스 커플은 Fe2(SO4)3/FeSO4, I-/I3-, Np4+/NpO2 +, Pu4 +/PuO2 2 +, CN-/CNO-, NO2 -/NO3 -, I-/IO3 -, ClO3 -/ClO4 -, ClO-/ClO2 - 및 Cl-/ClO- 중에서 선택된 적어도 하나이고,Redox couples are included in the first electrolytic cell is Fe 2 (SO 4) 3 / FeSO 4, I - / I 3-, Np 4+ / NpO 2 +, Pu 4 + / PuO 2 2 +, CN - / is at least one selected from, - CNO -, NO 2 - / NO 3 -, I - / IO 3 -, ClO 3 - / ClO 4 -, ClO - / ClO 2 - and Cl - / ClO
    상기 제2 전해셀에 포함되는 레독스 커플은 K3Fe(CN)6/K4Fe(CN)6, K3Fe(CN)6/(NH4)4Fe(CN)6, Np3 +/Np4 +, Cu+/Cu2 +, Fe2 +/Fe3 +, PuO2 +/PuO2 2 +, Pu3 +/Pu4 +, NpO2 +/NpO2 2+, Tl+/Tl3 +, NH4 +/N2H5 +, NH4 +/NH3OH+, Mn2 +/Mn3 + 및 Am3 +/Am4 + 중에서 선택된 적어도 하나인 것을 특징으로 하는,Redox couples included in the second electrolytic cell are K 3 Fe (CN) 6 / K 4 Fe (CN) 6 , K 3 Fe (CN) 6 / (NH 4 ) 4 Fe (CN) 6, Np 3 + / Np 4 + , Cu + / Cu 2 + , Fe 2 + / Fe 3 + , PuO 2 + / PuO 2 2 + , Pu 3 + / Pu 4 + , NpO 2 + / NpO 2 2+ , Tl + / Tl 3 + , NH 4 + / N 2 H 5 + , NH 4 + / NH 3 OH + , Mn 2 + / Mn 3 + and Am 3 + / Am 4 + characterized in that at least one selected from
    열전 소자.Thermoelectric element.
  9. 제1항에 있어서,The method of claim 1,
    상기 하부 전극들과 상기 상부 전극들 사이에 개재되고, 상기 제1 및 제2 전해셀들을 분리시키는 격벽 구조체를 더 포함하고, 상기 격벽 구조체는The barrier rib structure is interposed between the lower electrodes and the upper electrodes and separates the first and second electrolytic cells.
    상기 제1 및 제2 전해셀들과 대응하는 개구부들;Openings corresponding to the first and second electrolytic cells;
    제1 전해셀이 배치되는 적어도 어느 하나의 개구부와 연결되어 제1 전해질 채널을 형성하는 제1 전해질 유로부; 및A first electrolyte flow path part connected to at least one opening in which the first electrolyte cell is disposed to form a first electrolyte channel; And
    제2 전해셀이 배치되는 적어도 어느 하나의 개구부와 연결되어 제2 전해질 채널을 형성하는 제2 전해질 유로부를 포함하는 것을 특징으로 하는,And a second electrolyte flow path part connected to at least one opening in which the second electrolyte cell is disposed to form a second electrolyte channel.
    열전 소자.Thermoelectric elements.
  10. 제1항에 있어서,The method of claim 1,
    상기 하부 전극들과 상기 상부 전극 사이에 온도차가 발생하는 경우,When a temperature difference occurs between the lower electrodes and the upper electrode,
    어느 하나의 하부 전극을 기준으로, 하부 전극, 제1 전해셀, 상부 전극, 제2 전해셀 및 상기 어느 하나의 하부 전극과 인접하게 배치된 다른 하부 전극 순으로 연속적으로 전자가 이동하는 것을 특징으로 하는,Based on any one of the lower electrodes, electrons continuously move in the order of the lower electrode, the first electrolytic cell, the upper electrode, the second electrolytic cell, and the other lower electrode disposed adjacent to the one lower electrode. doing,
    열전 소자.Thermoelectric elements.
  11. 제1항에 있어서,The method of claim 1,
    하나의 행 내에서는 하부 전극들 및 상부 전극들이 제1 방향으로 일렬로 배열되고,In one row, the lower electrodes and the upper electrodes are arranged in a line in the first direction,
    서로 다른 행들 사이에서는 상부 전극이 상기 제1 방향과 교차하는 제2 방향으로 배열되어 서로 다른 행들의 제1 열의 제1 전해셀과 제2 전해셀을 연결시키거나, 서로 다른 행들의 마지막열의 제1 및 제2 전해셀들을 서로 연결시키는 것을 특징으로 하는,The upper electrodes are arranged in a second direction crossing the first direction to connect the first and second electrolytic cells in the first column of the different rows between the different rows, or the first column in the last column of the different rows. And connecting the second electrolytic cells to each other,
    열전 소자.Thermoelectric elements.
  12. 제1항에 있어서,The method of claim 1,
    상기 제1 전해질 및 상기 제2 전해질은The first electrolyte and the second electrolyte
    액상 또는 겔(gel) 상태인 것을 특징으로 하는,Characterized in that the liquid or gel (gel) state,
    열전 소자.Thermoelectric element.
  13. 하부 기판 상에 제1 방향 및 상기 제1 방향과 교차하는 제2 방향으로 매트릭스 형태로 배치된 다수의 하부 전극들을 형성하는 단계;Forming a plurality of lower electrodes disposed in a matrix on a lower substrate in a first direction and a second direction crossing the first direction;
    상기 하부 전극들이 형성된 하부 기판 상에 다수의 개구부들, 제1 전해질 유로부 및 제2 전해질 유로부를 포함하는 격벽 구조체를, 다수의 개구부들 중에서 2개의 개구부들이 1개의 하부 전극에 위치하도록 배치하는 단계;Arranging a partition structure including a plurality of openings, a first electrolyte flow path part, and a second electrolyte flow path part on a lower substrate on which the bottom electrodes are formed, such that two openings among the plurality of openings are located at one bottom electrode; ;
    1개의 하부 전극 상에 2개의 상부 전극들이 배치되도록 상부 전극들이 형성된 상부 기판을 상기 하부 기판 및 상기 격벽 구조체와 어셈블리하는 단계; 및Assembling the upper substrate, on which the upper electrodes are formed, with the lower substrate and the partition structure so that two upper electrodes are disposed on one lower electrode; And
    상기 제1 전해질 유로부로 제1 전해질 용액을 주입하여 상기 제1 전해질 유로부와 연결된 개구부에 제1 전해셀을 형성하고, 상기 제2 전해질 유로부로 제2 전해질 용액을 주입하여 상기 제2 전해질 유로부와 연결된 개구부에 제2 전해셀을 형성하는 단계를 포함하는,Injecting a first electrolyte solution into the first electrolyte flow path portion to form a first electrolytic cell in the opening connected to the first electrolyte flow path portion, and injecting a second electrolyte solution into the second electrolyte flow path portion to the second electrolyte flow path portion Forming a second electrolytic cell in the opening connected to the
    열전 소자의 제조 방법.Method of manufacturing a thermoelectric element.
  14. 제13항에 있어서,The method of claim 13,
    상기 제2 전해셀을 형성하는 단계는Forming the second electrolytic cell is
    상기 제1 전해질 유로부의 양단부를 개방시킨 상태에서 일단부에 상기 제1 전해질 용액을 주입하는 단계;Injecting the first electrolyte solution into one end while the both ends of the first electrolyte channel part are opened;
    상기 제2 전해질 유로부의 양단부를 개방시킨 상태에서 일단부에 상기 제2 전해질 용액을 주입하는 단계;Injecting the second electrolyte solution into one end while the both ends of the second electrolyte flow path part are opened;
    상기 제1 전해질 용액이 상기 제1 전해질 유로부 및 상기 제1 전해질 유로부와 연결된 개구부에 충진된 상태에서 상기 제1 전해질 유로부의 일단부 및 타단부를 실링하는 단계; 및Sealing one end and the other end of the first electrolyte flow path part in a state where the first electrolyte solution is filled in the opening connected to the first electrolyte flow path part and the first electrolyte flow path part; And
    상기 제2 전해질 용액이 상기 제2 전해질 유로부 및 상기 제2 전해질 유로부와 연결된 개구부에 충진된 상태에서 상기 제2 전해질 유로부의 일단부 및 타단부를 실링하는 단계를 포함하는 것을 특징으로 하는,And sealing one end and the other end of the second electrolyte flow path part in a state where the second electrolyte solution is filled in the opening connected to the second electrolyte flow path part and the second electrolyte flow path part.
    열전 소자의 제조 방법.Method of manufacturing a thermoelectric element.
  15. 제13항에 있어서,The method of claim 13,
    상기 개구부들은The openings
    서로 독립적인 다수의 제1 전해질 유로부들 각각과 연결된 제1 개구부들; 및First openings connected to each of a plurality of first electrolyte flow path parts independent of each other; And
    서로 독립적인 다수의 제2 전해질 유로부들과 연결된 제2 개구부들을 포함하고,Second openings connected to a plurality of second electrolyte flow path portions independent of each other,
    상기 제1 개구부들과 상기 제2 개구부들은 상기 제1 방향으로 교호적으로 배치되는 동시에 상기 제2 방향으로 교호적으로 배치되는 것을 특징으로 하는,The first openings and the second openings are alternately arranged in the first direction and at the same time alternately arranged in the second direction,
    열전 소자의 제조 방법.Method of manufacturing a thermoelectric element.
  16. 제13항에 있어서,The method of claim 13,
    상기 개구부들은The openings
    상기 제1 전해질 유로부에 연결된 다수의 제1 개구부들; 및A plurality of first openings connected to the first electrolyte channel part; And
    상기 제2 전해질 유로부에 연결된 다수의 제2 개구부들을 포함하고,A plurality of second openings connected to the second electrolyte flow path part;
    상기 제1 개구부들과 상기 제2 개구부들은 상기 제1 방향으로 교호적으로 배치되는 동시에 상기 제2 방향으로 교호적으로 배치되는 것을 특징으로 하는,The first openings and the second openings are alternately arranged in the first direction and at the same time alternately arranged in the second direction,
    열전 소자의 제조 방법.Method of manufacturing a thermoelectric element.
  17. 제13항에 있어서,The method of claim 13,
    상기 격벽 구조체는 적어도 2 이상의 제1 전해질 유로부들과 적어도 2 이상의 제2 전해질 유로부들을 포함하고,The barrier rib structure includes at least two first electrolyte flow path parts and at least two second electrolyte flow path parts,
    상기 제1 전해질 유로부들 각각은 상기 제2 방향으로 제1 개구부들을 연결시키며,Each of the first electrolyte flow path portions connects first openings in the second direction,
    상기 제2 전해질 유로부들 각각은 상기 제2 방향으로 제2 개구부들을 연결시키는 것을 특징으로 하는,Each of the second electrolyte flow path portions connects the second openings in the second direction.
    열전 소자의 제조 방법.Method of manufacturing a thermoelectric element.
  18. 제17항에 있어서,The method of claim 17,
    상기 제1 전해질 유로부들 각각은 서로 독립적이고,Each of the first electrolyte flow path portions is independent of each other,
    상기 제2 전해질 유로부들 각각도 서로 독립적인 것을 특징으로 하는,Characterized in that each of the second electrolyte flow path portion is also independent of each other,
    열전 소자의 제조 방법.Method of manufacturing a thermoelectric element.
  19. 제1항 내지 제12항 중 어느 한 항에 따른 열전 소자가 형성된 배터리를 포함하는 장치.An apparatus comprising a battery having a thermoelectric element according to any one of claims 1 to 12.
  20. 제19항에 있어서,The method of claim 19,
    상기 열전 소자의 양극 단자와 음극 단자들은 각각 상기 배터리의 양극 및 음극과 연결된 것을 특징으로 하는 장치.And the positive and negative terminals of the thermoelectric element are connected to the positive and negative electrodes of the battery, respectively.
  21. 제19항에 있어서,The method of claim 19,
    상기 열전 소자에서 생산된 전력을 저장하고, 상기 배터리로 전달하는 커패시터가 상기 배터리에 형성된 것을 특징으로 하는 장치.And a capacitor is formed in the battery that stores the power produced by the thermoelectric element and delivers it to the battery.
  22. 제1항 내지 제12항 중 어느 한 항에 따른 열전 소자가 형성된 배터리 커버를 포함하는 장치.An apparatus comprising a battery cover having a thermoelectric element according to any one of claims 1 to 12.
  23. 제22항에 있어서,The method of claim 22,
    상기 열전 소자는The thermoelectric element is
    배터리의 양극 및 음극과 각각 접촉하고, 상기 하부 전극들 및 상기 상부 전극들과 전기적으로 연결된 양극 단자 및 음극 단자를 포함하는 것을 특징으로 하는 장치.And a positive terminal and a negative terminal in contact with the positive and negative electrodes of the battery, respectively, and electrically connected to the lower electrodes and the upper electrodes.
  24. 제22항에 있어서,The method of claim 22,
    상기 열전 소자와 연결되어 상기 열전 소자가 생산한 전력을 저장하는 커패시터가 상기 배터리 커버에 형성되고, 상기 커패시터에는 배터리와 접촉하여 연결되는 단자가 형성된 것을 특징으로 하는 장치.And a capacitor connected to the thermoelectric element to store power generated by the thermoelectric element is formed in the battery cover, and the capacitor has a terminal connected to the battery.
  25. 제1항 내지 제12항 중 어느 한 항에 따른 열전 소자가 형성된 자동차용 선루프 윈도우.13. The sunroof window for automobiles, wherein the thermoelectric element according to any one of claims 1 to 12 is formed.
  26. 제1항 내지 제12항 중 어느 한 항에 따른 열전 소자가 형성된 온실용 윈도우.A greenhouse window in which the thermoelectric element according to any one of claims 1 to 12 is formed.
PCT/KR2015/008083 2014-08-04 2015-08-03 Thermoelectric element, manufacturing method thereof and device containing thermal element WO2016021892A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20140099879 2014-08-04
KR10-2014-0099879 2014-08-04
KR10-2014-0153883 2014-11-06
KR20140153883 2014-11-06
KR10-2015-0047351 2015-04-03
KR1020150047351A KR101646869B1 (en) 2014-08-04 2015-04-03 Thermoelectric element, method of manufacturing the thermoelectric device, and apparatus including the thermoelectric device

Publications (1)

Publication Number Publication Date
WO2016021892A1 true WO2016021892A1 (en) 2016-02-11

Family

ID=55264101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/008083 WO2016021892A1 (en) 2014-08-04 2015-08-03 Thermoelectric element, manufacturing method thereof and device containing thermal element

Country Status (1)

Country Link
WO (1) WO2016021892A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299102A (en) * 2016-08-26 2017-01-04 华中科技大学 A kind of thermoelectricity colloidal materials and the preparation method of device and product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060054760A (en) * 2004-11-16 2006-05-23 한국전기연구원 Composite dye-sensitized solar cell having carbon nano tube and thermoelectric generator
JP2008098197A (en) * 2006-10-05 2008-04-24 Sony Corp Thermoelectric conversion element and its fabrication process
JP2009260256A (en) * 2008-01-29 2009-11-05 Kyocera Corp Thermoelectric module, and method of manufacturing the same
KR20120020940A (en) * 2010-08-31 2012-03-08 삼성에스디아이 주식회사 Solid electrolyte and thermoelectric convertor containing same
KR20120098242A (en) * 2011-02-28 2012-09-05 한국기계연구원 A manufacturing method of thermolectric semiconductor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060054760A (en) * 2004-11-16 2006-05-23 한국전기연구원 Composite dye-sensitized solar cell having carbon nano tube and thermoelectric generator
JP2008098197A (en) * 2006-10-05 2008-04-24 Sony Corp Thermoelectric conversion element and its fabrication process
JP2009260256A (en) * 2008-01-29 2009-11-05 Kyocera Corp Thermoelectric module, and method of manufacturing the same
KR20120020940A (en) * 2010-08-31 2012-03-08 삼성에스디아이 주식회사 Solid electrolyte and thermoelectric convertor containing same
KR20120098242A (en) * 2011-02-28 2012-09-05 한국기계연구원 A manufacturing method of thermolectric semiconductor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299102A (en) * 2016-08-26 2017-01-04 华中科技大学 A kind of thermoelectricity colloidal materials and the preparation method of device and product

Similar Documents

Publication Publication Date Title
WO2014109541A1 (en) Solar cell module-equipped panel and exterior building material using same
KR101646869B1 (en) Thermoelectric element, method of manufacturing the thermoelectric device, and apparatus including the thermoelectric device
WO2016186317A1 (en) Perovskite solar cell module
WO2011037373A2 (en) Solar cell module and method of manufacturing the same
WO2011040779A2 (en) Photovoltaic power generating apparatus
WO2011062380A2 (en) Solar photovoltaic device
WO2015056934A1 (en) Solar cell module
WO2014114015A1 (en) Solar cell
CN101276121A (en) Method of driving organic transistor and electrophoretic display device
WO2016021892A1 (en) Thermoelectric element, manufacturing method thereof and device containing thermal element
WO2016021893A1 (en) Thermoelectric element, manufacturing method thereof, wearable device and device comprising thermoelectric element
WO2012018194A2 (en) Liquid crystal panel for a window using a dye-sensitized solar cell module
WO2011126209A2 (en) Multi-solar cell having pn junction and schottky junction and manufacturing method thereof
WO2020204527A1 (en) Solar cell panel and manufacturing method therefor
WO2013162302A1 (en) Photovoltaic apparatus
WO2013147517A1 (en) Solar cell and method of fabricating the same
WO2012015286A2 (en) Device for generating photovoltaic power and manufacturing method for same
WO2012015150A1 (en) Device for generating photovoltaic power and method for manufacturing same
WO2011083995A2 (en) Solar photovoltaic device and a production method for the same
TW202203469A (en) Glass block having power generating function
JP2001068715A (en) Building material integral type solar cell module
WO2013162254A1 (en) Photovoltaic apparatus
WO2011002231A2 (en) Solar photovoltaic device
WO2013051849A2 (en) Solar apparatus and method of fabricating the same
JP2000058894A (en) Solar cell unit and solar power generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830291

Country of ref document: EP

Kind code of ref document: A1